source: trunk/src/Scantable.cpp @ 2752

Last change on this file since 2752 was 2740, checked in by WataruKawasaki, 11 years ago

New Development: No

JIRA Issue: Yes CAS-4794

Ready for Test: No

Interface Changes: No

What Interface Changed:

Test Programs:

Put in Release Notes: No

Module(s): sd

Description:


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 142.3 KB
RevLine 
[805]1//
2// C++ Implementation: Scantable
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2005
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
[206]12#include <map>
[2591]13#include <sys/time.h>
[206]14
[2186]15#include <atnf/PKSIO/SrcType.h>
16
[125]17#include <casa/aips.h>
[2186]18#include <casa/iomanip.h>
[80]19#include <casa/iostream.h>
[2186]20#include <casa/OS/File.h>
[805]21#include <casa/OS/Path.h>
[2658]22#include <casa/Logging/LogIO.h>
[80]23#include <casa/Arrays/Array.h>
[2186]24#include <casa/Arrays/ArrayAccessor.h>
25#include <casa/Arrays/ArrayLogical.h>
[80]26#include <casa/Arrays/ArrayMath.h>
27#include <casa/Arrays/MaskArrMath.h>
[2186]28#include <casa/Arrays/Slice.h>
[1325]29#include <casa/Arrays/Vector.h>
[455]30#include <casa/Arrays/VectorSTLIterator.h>
[418]31#include <casa/BasicMath/Math.h>
[504]32#include <casa/BasicSL/Constants.h>
[2186]33#include <casa/Containers/RecordField.h>
34#include <casa/Logging/LogIO.h>
[286]35#include <casa/Quanta/MVAngle.h>
[2186]36#include <casa/Quanta/MVTime.h>
[902]37#include <casa/Utilities/GenSort.h>
[2]38
[2186]39#include <coordinates/Coordinates/CoordinateUtil.h>
[2]40
[1325]41// needed to avoid error in .tcc
42#include <measures/Measures/MCDirection.h>
43//
44#include <measures/Measures/MDirection.h>
[2186]45#include <measures/Measures/MEpoch.h>
[80]46#include <measures/Measures/MFrequency.h>
[2186]47#include <measures/Measures/MeasRef.h>
48#include <measures/Measures/MeasTable.h>
49#include <measures/TableMeasures/ScalarMeasColumn.h>
50#include <measures/TableMeasures/TableMeasDesc.h>
[805]51#include <measures/TableMeasures/TableMeasRefDesc.h>
52#include <measures/TableMeasures/TableMeasValueDesc.h>
[2]53
[2186]54#include <tables/Tables/ArrColDesc.h>
55#include <tables/Tables/ExprNode.h>
56#include <tables/Tables/ScaColDesc.h>
57#include <tables/Tables/SetupNewTab.h>
58#include <tables/Tables/TableCopy.h>
59#include <tables/Tables/TableDesc.h>
60#include <tables/Tables/TableIter.h>
61#include <tables/Tables/TableParse.h>
62#include <tables/Tables/TableRecord.h>
63#include <tables/Tables/TableRow.h>
64#include <tables/Tables/TableVector.h>
65
66#include "MathUtils.h"
67#include "STAttr.h"
[2737]68#include "STBaselineTable.h"
[2186]69#include "STLineFinder.h"
70#include "STPolCircular.h"
[896]71#include "STPolLinear.h"
[913]72#include "STPolStokes.h"
[2321]73#include "STUpgrade.h"
[2666]74#include "STFitter.h"
[2186]75#include "Scantable.h"
[2]76
[2462]77#define debug 1
78
[125]79using namespace casa;
[2]80
[805]81namespace asap {
82
[896]83std::map<std::string, STPol::STPolFactory *> Scantable::factories_;
84
85void Scantable::initFactories() {
86  if ( factories_.empty() ) {
87    Scantable::factories_["linear"] = &STPolLinear::myFactory;
[1323]88    Scantable::factories_["circular"] = &STPolCircular::myFactory;
[913]89    Scantable::factories_["stokes"] = &STPolStokes::myFactory;
[896]90  }
91}
92
[805]93Scantable::Scantable(Table::TableType ttype) :
[852]94  type_(ttype)
[206]95{
[896]96  initFactories();
[805]97  setupMainTable();
[2346]98  freqTable_ = STFrequencies(*this);
99  table_.rwKeywordSet().defineTable("FREQUENCIES", freqTable_.table());
[852]100  weatherTable_ = STWeather(*this);
[805]101  table_.rwKeywordSet().defineTable("WEATHER", weatherTable_.table());
[852]102  focusTable_ = STFocus(*this);
[805]103  table_.rwKeywordSet().defineTable("FOCUS", focusTable_.table());
[852]104  tcalTable_ = STTcal(*this);
[805]105  table_.rwKeywordSet().defineTable("TCAL", tcalTable_.table());
[852]106  moleculeTable_ = STMolecules(*this);
[805]107  table_.rwKeywordSet().defineTable("MOLECULES", moleculeTable_.table());
[860]108  historyTable_ = STHistory(*this);
109  table_.rwKeywordSet().defineTable("HISTORY", historyTable_.table());
[959]110  fitTable_ = STFit(*this);
111  table_.rwKeywordSet().defineTable("FIT", fitTable_.table());
[1881]112  table_.tableInfo().setType( "Scantable" ) ;
[805]113  originalTable_ = table_;
[322]114  attach();
[18]115}
[206]116
[805]117Scantable::Scantable(const std::string& name, Table::TableType ttype) :
[852]118  type_(ttype)
[206]119{
[896]120  initFactories();
[1819]121
[865]122  Table tab(name, Table::Update);
[1009]123  uInt version = tab.keywordSet().asuInt("VERSION");
[483]124  if (version != version_) {
[2321]125      STUpgrade upgrader(version_);
[2162]126      LogIO os( LogOrigin( "Scantable" ) ) ;
127      os << LogIO::WARN
[2321]128         << name << " data format version " << version
129         << " is deprecated" << endl
130         << "Running upgrade."<< endl 
[2162]131         << LogIO::POST ; 
[2321]132      std::string outname = upgrader.upgrade(name);
[2332]133      if ( outname != name ) {
134        os << LogIO::WARN
135           << "Data will be loaded from " << outname << " instead of "
136           << name << LogIO::POST ;
137        tab = Table(outname, Table::Update ) ;
138      }
[483]139  }
[1009]140  if ( type_ == Table::Memory ) {
[852]141    table_ = tab.copyToMemoryTable(generateName());
[1009]142  } else {
[805]143    table_ = tab;
[1009]144  }
[1881]145  table_.tableInfo().setType( "Scantable" ) ;
[1009]146
[859]147  attachSubtables();
[805]148  originalTable_ = table_;
[329]149  attach();
[2]150}
[1819]151/*
152Scantable::Scantable(const std::string& name, Table::TableType ttype) :
153  type_(ttype)
154{
155  initFactories();
156  Table tab(name, Table::Update);
157  uInt version = tab.keywordSet().asuInt("VERSION");
158  if (version != version_) {
159    throw(AipsError("Unsupported version of ASAP file."));
160  }
161  if ( type_ == Table::Memory ) {
162    table_ = tab.copyToMemoryTable(generateName());
163  } else {
164    table_ = tab;
165  }
[2]166
[1819]167  attachSubtables();
168  originalTable_ = table_;
169  attach();
170}
171*/
172
[2658]173Scantable::Scantable( const Scantable& other, bool clear )
[206]174{
[805]175  // with or without data
[859]176  String newname = String(generateName());
[865]177  type_ = other.table_.tableType();
[859]178  if ( other.table_.tableType() == Table::Memory ) {
179      if ( clear ) {
180        table_ = TableCopy::makeEmptyMemoryTable(newname,
181                                                 other.table_, True);
182      } else
183        table_ = other.table_.copyToMemoryTable(newname);
[16]184  } else {
[915]185      other.table_.deepCopy(newname, Table::New, False,
186                            other.table_.endianFormat(),
[865]187                            Bool(clear));
188      table_ = Table(newname, Table::Update);
189      table_.markForDelete();
190  }
[1881]191  table_.tableInfo().setType( "Scantable" ) ;
[1111]192  /// @todo reindex SCANNO, recompute nbeam, nif, npol
[915]193  if ( clear ) copySubtables(other);
[859]194  attachSubtables();
[805]195  originalTable_ = table_;
[322]196  attach();
[2]197}
198
[865]199void Scantable::copySubtables(const Scantable& other) {
200  Table t = table_.rwKeywordSet().asTable("FREQUENCIES");
[2346]201  TableCopy::copyRows(t, other.freqTable_.table());
[865]202  t = table_.rwKeywordSet().asTable("FOCUS");
203  TableCopy::copyRows(t, other.focusTable_.table());
204  t = table_.rwKeywordSet().asTable("WEATHER");
205  TableCopy::copyRows(t, other.weatherTable_.table());
206  t = table_.rwKeywordSet().asTable("TCAL");
207  TableCopy::copyRows(t, other.tcalTable_.table());
208  t = table_.rwKeywordSet().asTable("MOLECULES");
209  TableCopy::copyRows(t, other.moleculeTable_.table());
210  t = table_.rwKeywordSet().asTable("HISTORY");
211  TableCopy::copyRows(t, other.historyTable_.table());
[972]212  t = table_.rwKeywordSet().asTable("FIT");
213  TableCopy::copyRows(t, other.fitTable_.table());
[865]214}
215
[859]216void Scantable::attachSubtables()
217{
[2346]218  freqTable_ = STFrequencies(table_);
[859]219  focusTable_ = STFocus(table_);
220  weatherTable_ = STWeather(table_);
221  tcalTable_ = STTcal(table_);
222  moleculeTable_ = STMolecules(table_);
[860]223  historyTable_ = STHistory(table_);
[972]224  fitTable_ = STFit(table_);
[859]225}
226
[805]227Scantable::~Scantable()
[206]228{
[2]229}
230
[805]231void Scantable::setupMainTable()
[206]232{
[805]233  TableDesc td("", "1", TableDesc::Scratch);
234  td.comment() = "An ASAP Scantable";
[1009]235  td.rwKeywordSet().define("VERSION", uInt(version_));
[2]236
[805]237  // n Cycles
238  td.addColumn(ScalarColumnDesc<uInt>("SCANNO"));
239  // new index every nBeam x nIF x nPol
240  td.addColumn(ScalarColumnDesc<uInt>("CYCLENO"));
[2]241
[805]242  td.addColumn(ScalarColumnDesc<uInt>("BEAMNO"));
243  td.addColumn(ScalarColumnDesc<uInt>("IFNO"));
[972]244  // linear, circular, stokes
[805]245  td.rwKeywordSet().define("POLTYPE", String("linear"));
246  td.addColumn(ScalarColumnDesc<uInt>("POLNO"));
[138]247
[805]248  td.addColumn(ScalarColumnDesc<uInt>("FREQ_ID"));
249  td.addColumn(ScalarColumnDesc<uInt>("MOLECULE_ID"));
[80]250
[1819]251  ScalarColumnDesc<Int> refbeamnoColumn("REFBEAMNO");
252  refbeamnoColumn.setDefault(Int(-1));
253  td.addColumn(refbeamnoColumn);
254
255  ScalarColumnDesc<uInt> flagrowColumn("FLAGROW");
256  flagrowColumn.setDefault(uInt(0));
257  td.addColumn(flagrowColumn);
258
[805]259  td.addColumn(ScalarColumnDesc<Double>("TIME"));
260  TableMeasRefDesc measRef(MEpoch::UTC); // UTC as default
261  TableMeasValueDesc measVal(td, "TIME");
262  TableMeasDesc<MEpoch> mepochCol(measVal, measRef);
263  mepochCol.write(td);
[483]264
[805]265  td.addColumn(ScalarColumnDesc<Double>("INTERVAL"));
266
[2]267  td.addColumn(ScalarColumnDesc<String>("SRCNAME"));
[805]268  // Type of source (on=0, off=1, other=-1)
[1503]269  ScalarColumnDesc<Int> stypeColumn("SRCTYPE");
270  stypeColumn.setDefault(Int(-1));
271  td.addColumn(stypeColumn);
[805]272  td.addColumn(ScalarColumnDesc<String>("FIELDNAME"));
273
274  //The actual Data Vectors
[2]275  td.addColumn(ArrayColumnDesc<Float>("SPECTRA"));
276  td.addColumn(ArrayColumnDesc<uChar>("FLAGTRA"));
[89]277  td.addColumn(ArrayColumnDesc<Float>("TSYS"));
[805]278
279  td.addColumn(ArrayColumnDesc<Double>("DIRECTION",
280                                       IPosition(1,2),
281                                       ColumnDesc::Direct));
282  TableMeasRefDesc mdirRef(MDirection::J2000); // default
283  TableMeasValueDesc tmvdMDir(td, "DIRECTION");
284  // the TableMeasDesc gives the column a type
285  TableMeasDesc<MDirection> mdirCol(tmvdMDir, mdirRef);
[987]286  // a uder set table type e.g. GALCTIC, B1950 ...
287  td.rwKeywordSet().define("DIRECTIONREF", String("J2000"));
[805]288  // writing create the measure column
289  mdirCol.write(td);
[923]290  td.addColumn(ScalarColumnDesc<Float>("AZIMUTH"));
291  td.addColumn(ScalarColumnDesc<Float>("ELEVATION"));
[1047]292  td.addColumn(ScalarColumnDesc<Float>("OPACITY"));
[105]293
[805]294  td.addColumn(ScalarColumnDesc<uInt>("TCAL_ID"));
[972]295  ScalarColumnDesc<Int> fitColumn("FIT_ID");
[973]296  fitColumn.setDefault(Int(-1));
[972]297  td.addColumn(fitColumn);
[805]298
299  td.addColumn(ScalarColumnDesc<uInt>("FOCUS_ID"));
300  td.addColumn(ScalarColumnDesc<uInt>("WEATHER_ID"));
301
[999]302  // columns which just get dragged along, as they aren't used in asap
303  td.addColumn(ScalarColumnDesc<Double>("SRCVELOCITY"));
304  td.addColumn(ArrayColumnDesc<Double>("SRCPROPERMOTION"));
305  td.addColumn(ArrayColumnDesc<Double>("SRCDIRECTION"));
306  td.addColumn(ArrayColumnDesc<Double>("SCANRATE"));
307
[805]308  td.rwKeywordSet().define("OBSMODE", String(""));
309
[418]310  // Now create Table SetUp from the description.
[859]311  SetupNewTable aNewTab(generateName(), td, Table::Scratch);
[852]312  table_ = Table(aNewTab, type_, 0);
[805]313  originalTable_ = table_;
314}
[418]315
[805]316void Scantable::attach()
[455]317{
[805]318  timeCol_.attach(table_, "TIME");
319  srcnCol_.attach(table_, "SRCNAME");
[1068]320  srctCol_.attach(table_, "SRCTYPE");
[805]321  specCol_.attach(table_, "SPECTRA");
322  flagsCol_.attach(table_, "FLAGTRA");
[865]323  tsysCol_.attach(table_, "TSYS");
[805]324  cycleCol_.attach(table_,"CYCLENO");
325  scanCol_.attach(table_, "SCANNO");
326  beamCol_.attach(table_, "BEAMNO");
[847]327  ifCol_.attach(table_, "IFNO");
328  polCol_.attach(table_, "POLNO");
[805]329  integrCol_.attach(table_, "INTERVAL");
330  azCol_.attach(table_, "AZIMUTH");
331  elCol_.attach(table_, "ELEVATION");
332  dirCol_.attach(table_, "DIRECTION");
333  fldnCol_.attach(table_, "FIELDNAME");
334  rbeamCol_.attach(table_, "REFBEAMNO");
[455]335
[1730]336  mweatheridCol_.attach(table_,"WEATHER_ID");
[805]337  mfitidCol_.attach(table_,"FIT_ID");
338  mfreqidCol_.attach(table_, "FREQ_ID");
339  mtcalidCol_.attach(table_, "TCAL_ID");
340  mfocusidCol_.attach(table_, "FOCUS_ID");
341  mmolidCol_.attach(table_, "MOLECULE_ID");
[1819]342
343  //Add auxiliary column for row-based flagging (CAS-1433 Wataru Kawasaki)
344  attachAuxColumnDef(flagrowCol_, "FLAGROW", 0);
345
[455]346}
347
[1819]348template<class T, class T2>
349void Scantable::attachAuxColumnDef(ScalarColumn<T>& col,
350                                   const String& colName,
351                                   const T2& defValue)
352{
353  try {
354    col.attach(table_, colName);
355  } catch (TableError& err) {
356    String errMesg = err.getMesg();
357    if (errMesg == "Table column " + colName + " is unknown") {
358      table_.addColumn(ScalarColumnDesc<T>(colName));
359      col.attach(table_, colName);
360      col.fillColumn(static_cast<T>(defValue));
361    } else {
362      throw;
363    }
364  } catch (...) {
365    throw;
366  }
367}
368
369template<class T, class T2>
370void Scantable::attachAuxColumnDef(ArrayColumn<T>& col,
371                                   const String& colName,
372                                   const Array<T2>& defValue)
373{
374  try {
375    col.attach(table_, colName);
376  } catch (TableError& err) {
377    String errMesg = err.getMesg();
378    if (errMesg == "Table column " + colName + " is unknown") {
379      table_.addColumn(ArrayColumnDesc<T>(colName));
380      col.attach(table_, colName);
381
382      int size = 0;
383      ArrayIterator<T2>& it = defValue.begin();
384      while (it != defValue.end()) {
385        ++size;
386        ++it;
387      }
388      IPosition ip(1, size);
389      Array<T>& arr(ip);
390      for (int i = 0; i < size; ++i)
391        arr[i] = static_cast<T>(defValue[i]);
392
393      col.fillColumn(arr);
394    } else {
395      throw;
396    }
397  } catch (...) {
398    throw;
399  }
400}
401
[901]402void Scantable::setHeader(const STHeader& sdh)
[206]403{
[18]404  table_.rwKeywordSet().define("nIF", sdh.nif);
405  table_.rwKeywordSet().define("nBeam", sdh.nbeam);
406  table_.rwKeywordSet().define("nPol", sdh.npol);
407  table_.rwKeywordSet().define("nChan", sdh.nchan);
408  table_.rwKeywordSet().define("Observer", sdh.observer);
409  table_.rwKeywordSet().define("Project", sdh.project);
410  table_.rwKeywordSet().define("Obstype", sdh.obstype);
411  table_.rwKeywordSet().define("AntennaName", sdh.antennaname);
412  table_.rwKeywordSet().define("AntennaPosition", sdh.antennaposition);
413  table_.rwKeywordSet().define("Equinox", sdh.equinox);
414  table_.rwKeywordSet().define("FreqRefFrame", sdh.freqref);
415  table_.rwKeywordSet().define("FreqRefVal", sdh.reffreq);
416  table_.rwKeywordSet().define("Bandwidth", sdh.bandwidth);
417  table_.rwKeywordSet().define("UTC", sdh.utc);
[206]418  table_.rwKeywordSet().define("FluxUnit", sdh.fluxunit);
419  table_.rwKeywordSet().define("Epoch", sdh.epoch);
[905]420  table_.rwKeywordSet().define("POLTYPE", sdh.poltype);
[50]421}
[21]422
[901]423STHeader Scantable::getHeader() const
[206]424{
[901]425  STHeader sdh;
[21]426  table_.keywordSet().get("nBeam",sdh.nbeam);
427  table_.keywordSet().get("nIF",sdh.nif);
428  table_.keywordSet().get("nPol",sdh.npol);
429  table_.keywordSet().get("nChan",sdh.nchan);
430  table_.keywordSet().get("Observer", sdh.observer);
431  table_.keywordSet().get("Project", sdh.project);
432  table_.keywordSet().get("Obstype", sdh.obstype);
433  table_.keywordSet().get("AntennaName", sdh.antennaname);
434  table_.keywordSet().get("AntennaPosition", sdh.antennaposition);
435  table_.keywordSet().get("Equinox", sdh.equinox);
436  table_.keywordSet().get("FreqRefFrame", sdh.freqref);
437  table_.keywordSet().get("FreqRefVal", sdh.reffreq);
438  table_.keywordSet().get("Bandwidth", sdh.bandwidth);
439  table_.keywordSet().get("UTC", sdh.utc);
[206]440  table_.keywordSet().get("FluxUnit", sdh.fluxunit);
441  table_.keywordSet().get("Epoch", sdh.epoch);
[905]442  table_.keywordSet().get("POLTYPE", sdh.poltype);
[21]443  return sdh;
[18]444}
[805]445
[1360]446void Scantable::setSourceType( int stype )
[1068]447{
448  if ( stype < 0 || stype > 1 )
449    throw(AipsError("Illegal sourcetype."));
450  TableVector<Int> tabvec(table_, "SRCTYPE");
451  tabvec = Int(stype);
452}
453
[845]454bool Scantable::conformant( const Scantable& other )
455{
456  return this->getHeader().conformant(other.getHeader());
457}
458
459
[50]460
[805]461std::string Scantable::formatSec(Double x) const
[206]462{
[105]463  Double xcop = x;
464  MVTime mvt(xcop/24./3600.);  // make days
[365]465
[105]466  if (x < 59.95)
[281]467    return  String("      ") + mvt.string(MVTime::TIME_CLEAN_NO_HM, 7)+"s";
[745]468  else if (x < 3599.95)
[281]469    return String("   ") + mvt.string(MVTime::TIME_CLEAN_NO_H,7)+" ";
470  else {
471    ostringstream oss;
472    oss << setw(2) << std::right << setprecision(1) << mvt.hour();
473    oss << ":" << mvt.string(MVTime::TIME_CLEAN_NO_H,7) << " ";
474    return String(oss);
[745]475  }
[105]476};
477
[805]478std::string Scantable::formatDirection(const MDirection& md) const
[281]479{
480  Vector<Double> t = md.getAngle(Unit(String("rad"))).getValue();
481  Int prec = 7;
482
[2575]483  String ref = md.getRefString();
[281]484  MVAngle mvLon(t[0]);
485  String sLon = mvLon.string(MVAngle::TIME,prec);
[987]486  uInt tp = md.getRef().getType();
487  if (tp == MDirection::GALACTIC ||
488      tp == MDirection::SUPERGAL ) {
489    sLon = mvLon(0.0).string(MVAngle::ANGLE_CLEAN,prec);
490  }
[281]491  MVAngle mvLat(t[1]);
492  String sLat = mvLat.string(MVAngle::ANGLE+MVAngle::DIG2,prec);
[2575]493  return  ref + String(" ") + sLon + String(" ") + sLat;
[281]494}
495
496
[805]497std::string Scantable::getFluxUnit() const
[206]498{
[847]499  return table_.keywordSet().asString("FluxUnit");
[206]500}
501
[805]502void Scantable::setFluxUnit(const std::string& unit)
[218]503{
504  String tmp(unit);
505  Unit tU(tmp);
506  if (tU==Unit("K") || tU==Unit("Jy")) {
507     table_.rwKeywordSet().define(String("FluxUnit"), tmp);
508  } else {
509     throw AipsError("Illegal unit - must be compatible with Jy or K");
510  }
511}
512
[805]513void Scantable::setInstrument(const std::string& name)
[236]514{
[805]515  bool throwIt = true;
[996]516  // create an Instrument to see if this is valid
517  STAttr::convertInstrument(name, throwIt);
[236]518  String nameU(name);
519  nameU.upcase();
520  table_.rwKeywordSet().define(String("AntennaName"), nameU);
521}
522
[1189]523void Scantable::setFeedType(const std::string& feedtype)
524{
525  if ( Scantable::factories_.find(feedtype) ==  Scantable::factories_.end() ) {
526    std::string msg = "Illegal feed type "+ feedtype;
527    throw(casa::AipsError(msg));
528  }
529  table_.rwKeywordSet().define(String("POLTYPE"), feedtype);
530}
531
[1743]532MPosition Scantable::getAntennaPosition() const
[805]533{
534  Vector<Double> antpos;
535  table_.keywordSet().get("AntennaPosition", antpos);
536  MVPosition mvpos(antpos(0),antpos(1),antpos(2));
537  return MPosition(mvpos);
538}
[281]539
[805]540void Scantable::makePersistent(const std::string& filename)
541{
542  String inname(filename);
543  Path path(inname);
[1111]544  /// @todo reindex SCANNO, recompute nbeam, nif, npol
[805]545  inname = path.expandedName();
[2030]546  // 2011/03/04 TN
547  // We can comment out this workaround since the essential bug is
548  // fixed in casacore (r20889 in google code).
549  table_.deepCopy(inname, Table::New);
550//   // WORKAROUND !!! for Table bug
551//   // Remove when fixed in casacore
552//   if ( table_.tableType() == Table::Memory  && !selector_.empty() ) {
553//     Table tab = table_.copyToMemoryTable(generateName());
554//     tab.deepCopy(inname, Table::New);
555//     tab.markForDelete();
556//
557//   } else {
558//     table_.deepCopy(inname, Table::New);
559//   }
[805]560}
561
[837]562int Scantable::nbeam( int scanno ) const
[805]563{
564  if ( scanno < 0 ) {
565    Int n;
566    table_.keywordSet().get("nBeam",n);
567    return int(n);
[105]568  } else {
[805]569    // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
[888]570    Table t = table_(table_.col("SCANNO") == scanno);
571    ROTableRow row(t);
572    const TableRecord& rec = row.get(0);
573    Table subt = t( t.col("IFNO") == Int(rec.asuInt("IFNO"))
574                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
575                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
576    ROTableVector<uInt> v(subt, "BEAMNO");
[805]577    return int(v.nelements());
[105]578  }
[805]579  return 0;
580}
[455]581
[837]582int Scantable::nif( int scanno ) const
[805]583{
584  if ( scanno < 0 ) {
585    Int n;
586    table_.keywordSet().get("nIF",n);
587    return int(n);
588  } else {
589    // take the first POLNO,BEAMNO,CYCLENO as nbeam shouldn't vary with these
[888]590    Table t = table_(table_.col("SCANNO") == scanno);
591    ROTableRow row(t);
592    const TableRecord& rec = row.get(0);
593    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
594                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
595                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
596    if ( subt.nrow() == 0 ) return 0;
597    ROTableVector<uInt> v(subt, "IFNO");
[805]598    return int(v.nelements());
[2]599  }
[805]600  return 0;
601}
[321]602
[837]603int Scantable::npol( int scanno ) const
[805]604{
605  if ( scanno < 0 ) {
606    Int n;
607    table_.keywordSet().get("nPol",n);
608    return n;
609  } else {
610    // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
[888]611    Table t = table_(table_.col("SCANNO") == scanno);
612    ROTableRow row(t);
613    const TableRecord& rec = row.get(0);
614    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
615                    && t.col("IFNO") == Int(rec.asuInt("IFNO"))
616                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
617    if ( subt.nrow() == 0 ) return 0;
618    ROTableVector<uInt> v(subt, "POLNO");
[805]619    return int(v.nelements());
[321]620  }
[805]621  return 0;
[2]622}
[805]623
[845]624int Scantable::ncycle( int scanno ) const
[206]625{
[805]626  if ( scanno < 0 ) {
[837]627    Block<String> cols(2);
628    cols[0] = "SCANNO";
629    cols[1] = "CYCLENO";
630    TableIterator it(table_, cols);
631    int n = 0;
632    while ( !it.pastEnd() ) {
633      ++n;
[902]634      ++it;
[837]635    }
636    return n;
[805]637  } else {
[888]638    Table t = table_(table_.col("SCANNO") == scanno);
639    ROTableRow row(t);
640    const TableRecord& rec = row.get(0);
641    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
642                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
643                    && t.col("IFNO") == Int(rec.asuInt("IFNO")) );
644    if ( subt.nrow() == 0 ) return 0;
645    return int(subt.nrow());
[805]646  }
647  return 0;
[18]648}
[455]649
650
[845]651int Scantable::nrow( int scanno ) const
[805]652{
[845]653  return int(table_.nrow());
654}
655
656int Scantable::nchan( int ifno ) const
657{
658  if ( ifno < 0 ) {
[805]659    Int n;
660    table_.keywordSet().get("nChan",n);
661    return int(n);
662  } else {
[1360]663    // take the first SCANNO,POLNO,BEAMNO,CYCLENO as nbeam shouldn't
664    // vary with these
[2244]665    Table t = table_(table_.col("IFNO") == ifno, 1);
[888]666    if ( t.nrow() == 0 ) return 0;
667    ROArrayColumn<Float> v(t, "SPECTRA");
[923]668    return v.shape(0)(0);
[805]669  }
670  return 0;
[18]671}
[455]672
[1111]673int Scantable::nscan() const {
674  Vector<uInt> scannos(scanCol_.getColumn());
[1148]675  uInt nout = genSort( scannos, Sort::Ascending,
[1111]676                       Sort::QuickSort|Sort::NoDuplicates );
677  return int(nout);
678}
679
[923]680int Scantable::getChannels(int whichrow) const
681{
682  return specCol_.shape(whichrow)(0);
683}
[847]684
685int Scantable::getBeam(int whichrow) const
686{
687  return beamCol_(whichrow);
688}
689
[1694]690std::vector<uint> Scantable::getNumbers(const ScalarColumn<uInt>& col) const
[1111]691{
692  Vector<uInt> nos(col.getColumn());
[1148]693  uInt n = genSort( nos, Sort::Ascending, Sort::QuickSort|Sort::NoDuplicates );
694  nos.resize(n, True);
[1111]695  std::vector<uint> stlout;
696  nos.tovector(stlout);
697  return stlout;
698}
699
[847]700int Scantable::getIF(int whichrow) const
701{
702  return ifCol_(whichrow);
703}
704
705int Scantable::getPol(int whichrow) const
706{
707  return polCol_(whichrow);
708}
709
[805]710std::string Scantable::formatTime(const MEpoch& me, bool showdate) const
711{
[1947]712  return formatTime(me, showdate, 0);
713}
714
715std::string Scantable::formatTime(const MEpoch& me, bool showdate, uInt prec) const
716{
[805]717  MVTime mvt(me.getValue());
718  if (showdate)
[1947]719    //mvt.setFormat(MVTime::YMD);
720    mvt.setFormat(MVTime::YMD, prec);
[805]721  else
[1947]722    //mvt.setFormat(MVTime::TIME);
723    mvt.setFormat(MVTime::TIME, prec);
[805]724  ostringstream oss;
725  oss << mvt;
726  return String(oss);
727}
[488]728
[805]729void Scantable::calculateAZEL()
[2658]730
731  LogIO os( LogOrigin( "Scantable", "calculateAZEL()", WHERE ) ) ;
[805]732  MPosition mp = getAntennaPosition();
733  MEpoch::ROScalarColumn timeCol(table_, "TIME");
734  ostringstream oss;
[2658]735  oss << mp;
736  os << "Computed azimuth/elevation using " << endl
737     << String(oss) << endl;
[996]738  for (Int i=0; i<nrow(); ++i) {
[805]739    MEpoch me = timeCol(i);
[987]740    MDirection md = getDirection(i);
[2658]741    os  << " Time: " << formatTime(me,False)
742        << " Direction: " << formatDirection(md)
[805]743         << endl << "     => ";
744    MeasFrame frame(mp, me);
745    Vector<Double> azel =
746        MDirection::Convert(md, MDirection::Ref(MDirection::AZEL,
747                                                frame)
748                            )().getAngle("rad").getValue();
[923]749    azCol_.put(i,Float(azel[0]));
750    elCol_.put(i,Float(azel[1]));
[2658]751    os << "azel: " << azel[0]/C::pi*180.0 << " "
752       << azel[1]/C::pi*180.0 << " (deg)" << LogIO::POST;
[16]753  }
[805]754}
[89]755
[1819]756void Scantable::clip(const Float uthres, const Float dthres, bool clipoutside, bool unflag)
757{
758  for (uInt i=0; i<table_.nrow(); ++i) {
759    Vector<uChar> flgs = flagsCol_(i);
760    srchChannelsToClip(i, uthres, dthres, clipoutside, unflag, flgs);
761    flagsCol_.put(i, flgs);
762  }
763}
764
765std::vector<bool> Scantable::getClipMask(int whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag)
766{
767  Vector<uChar> flags;
768  flagsCol_.get(uInt(whichrow), flags);
769  srchChannelsToClip(uInt(whichrow), uthres, dthres, clipoutside, unflag, flags);
770  Vector<Bool> bflag(flags.shape());
771  convertArray(bflag, flags);
772  //bflag = !bflag;
773
774  std::vector<bool> mask;
775  bflag.tovector(mask);
776  return mask;
777}
778
779void Scantable::srchChannelsToClip(uInt whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag,
780                                   Vector<uChar> flgs)
781{
782    Vector<Float> spcs = specCol_(whichrow);
[2348]783    uInt nchannel = spcs.nelements();
[1819]784    if (spcs.nelements() != nchannel) {
785      throw(AipsError("Data has incorrect number of channels"));
786    }
787    uChar userflag = 1 << 7;
788    if (unflag) {
789      userflag = 0 << 7;
790    }
791    if (clipoutside) {
792      for (uInt j = 0; j < nchannel; ++j) {
793        Float spc = spcs(j);
794        if ((spc >= uthres) || (spc <= dthres)) {
795          flgs(j) = userflag;
796        }
797      }
798    } else {
799      for (uInt j = 0; j < nchannel; ++j) {
800        Float spc = spcs(j);
801        if ((spc < uthres) && (spc > dthres)) {
802          flgs(j) = userflag;
803        }
804      }
805    }
806}
807
[1994]808
809void Scantable::flag( int whichrow, const std::vector<bool>& msk, bool unflag ) {
[1333]810  std::vector<bool>::const_iterator it;
811  uInt ntrue = 0;
[1994]812  if (whichrow >= int(table_.nrow()) ) {
813    throw(AipsError("Invalid row number"));
814  }
[1333]815  for (it = msk.begin(); it != msk.end(); ++it) {
816    if ( *it ) {
817      ntrue++;
818    }
819  }
[1994]820  //if ( selector_.empty()  && (msk.size() == 0 || msk.size() == ntrue) )
821  if ( whichrow == -1 && !unflag && selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
[1000]822    throw(AipsError("Trying to flag whole scantable."));
[1994]823  uChar userflag = 1 << 7;
824  if ( unflag ) {
825    userflag = 0 << 7;
826  }
827  if (whichrow > -1 ) {
828    applyChanFlag(uInt(whichrow), msk, userflag);
829  } else {
[1000]830    for ( uInt i=0; i<table_.nrow(); ++i) {
[1994]831      applyChanFlag(i, msk, userflag);
[1000]832    }
[1994]833  }
834}
835
836void Scantable::applyChanFlag( uInt whichrow, const std::vector<bool>& msk, uChar flagval )
837{
838  if (whichrow >= table_.nrow() ) {
839    throw( casa::indexError<int>( whichrow, "asap::Scantable::applyChanFlag: Invalid row number" ) );
840  }
841  Vector<uChar> flgs = flagsCol_(whichrow);
842  if ( msk.size() == 0 ) {
843    flgs = flagval;
844    flagsCol_.put(whichrow, flgs);
[1000]845    return;
846  }
[2348]847  if ( int(msk.size()) != nchan( getIF(whichrow) ) ) {
[1000]848    throw(AipsError("Mask has incorrect number of channels."));
849  }
[1994]850  if ( flgs.nelements() != msk.size() ) {
851    throw(AipsError("Mask has incorrect number of channels."
852                    " Probably varying with IF. Please flag per IF"));
853  }
854  std::vector<bool>::const_iterator it;
855  uInt j = 0;
856  for (it = msk.begin(); it != msk.end(); ++it) {
857    if ( *it ) {
858      flgs(j) = flagval;
[1000]859    }
[1994]860    ++j;
[1000]861  }
[1994]862  flagsCol_.put(whichrow, flgs);
[865]863}
864
[1819]865void Scantable::flagRow(const std::vector<uInt>& rows, bool unflag)
866{
[2683]867  if (selector_.empty() && (rows.size() == table_.nrow()) && !unflag)
[1819]868    throw(AipsError("Trying to flag whole scantable."));
869
870  uInt rowflag = (unflag ? 0 : 1);
871  std::vector<uInt>::const_iterator it;
872  for (it = rows.begin(); it != rows.end(); ++it)
873    flagrowCol_.put(*it, rowflag);
874}
875
[805]876std::vector<bool> Scantable::getMask(int whichrow) const
877{
878  Vector<uChar> flags;
879  flagsCol_.get(uInt(whichrow), flags);
880  Vector<Bool> bflag(flags.shape());
881  convertArray(bflag, flags);
882  bflag = !bflag;
883  std::vector<bool> mask;
884  bflag.tovector(mask);
885  return mask;
886}
[89]887
[896]888std::vector<float> Scantable::getSpectrum( int whichrow,
[902]889                                           const std::string& poltype ) const
[805]890{
[2658]891  LogIO os( LogOrigin( "Scantable", "getSpectrum()", WHERE ) ) ;
892
[905]893  String ptype = poltype;
894  if (poltype == "" ) ptype = getPolType();
[902]895  if ( whichrow  < 0 || whichrow >= nrow() )
896    throw(AipsError("Illegal row number."));
[896]897  std::vector<float> out;
[805]898  Vector<Float> arr;
[896]899  uInt requestedpol = polCol_(whichrow);
900  String basetype = getPolType();
[905]901  if ( ptype == basetype ) {
[896]902    specCol_.get(whichrow, arr);
903  } else {
[1598]904    CountedPtr<STPol> stpol(STPol::getPolClass(Scantable::factories_,
[1586]905                                               basetype));
[1334]906    uInt row = uInt(whichrow);
907    stpol->setSpectra(getPolMatrix(row));
[2047]908    Float fang,fhand;
[1586]909    fang = focusTable_.getTotalAngle(mfocusidCol_(row));
[1334]910    fhand = focusTable_.getFeedHand(mfocusidCol_(row));
[1586]911    stpol->setPhaseCorrections(fang, fhand);
[1334]912    arr = stpol->getSpectrum(requestedpol, ptype);
[896]913  }
[902]914  if ( arr.nelements() == 0 )
[2658]915   
916    os << "Not enough polarisations present to do the conversion."
917       << LogIO::POST;
[805]918  arr.tovector(out);
919  return out;
[89]920}
[212]921
[1360]922void Scantable::setSpectrum( const std::vector<float>& spec,
[884]923                                   int whichrow )
924{
925  Vector<Float> spectrum(spec);
926  Vector<Float> arr;
927  specCol_.get(whichrow, arr);
928  if ( spectrum.nelements() != arr.nelements() )
[896]929    throw AipsError("The spectrum has incorrect number of channels.");
[884]930  specCol_.put(whichrow, spectrum);
931}
932
933
[805]934String Scantable::generateName()
[745]935{
[805]936  return (File::newUniqueName("./","temp")).baseName();
[212]937}
938
[805]939const casa::Table& Scantable::table( ) const
[212]940{
[805]941  return table_;
[212]942}
943
[805]944casa::Table& Scantable::table( )
[386]945{
[805]946  return table_;
[386]947}
948
[896]949std::string Scantable::getPolType() const
950{
951  return table_.keywordSet().asString("POLTYPE");
952}
953
[805]954void Scantable::unsetSelection()
[380]955{
[805]956  table_ = originalTable_;
[847]957  attach();
[805]958  selector_.reset();
[380]959}
[386]960
[805]961void Scantable::setSelection( const STSelector& selection )
[430]962{
[805]963  Table tab = const_cast<STSelector&>(selection).apply(originalTable_);
964  if ( tab.nrow() == 0 ) {
965    throw(AipsError("Selection contains no data. Not applying it."));
966  }
967  table_ = tab;
[847]968  attach();
[2084]969//   tab.rwKeywordSet().define("nBeam",(Int)(getBeamNos().size())) ;
970//   vector<uint> selectedIFs = getIFNos() ;
971//   Int newnIF = selectedIFs.size() ;
972//   tab.rwKeywordSet().define("nIF",newnIF) ;
973//   if ( newnIF != 0 ) {
974//     Int newnChan = 0 ;
975//     for ( Int i = 0 ; i < newnIF ; i++ ) {
976//       Int nChan = nchan( selectedIFs[i] ) ;
977//       if ( newnChan > nChan )
978//         newnChan = nChan ;
979//     }
980//     tab.rwKeywordSet().define("nChan",newnChan) ;
981//   }
982//   tab.rwKeywordSet().define("nPol",(Int)(getPolNos().size())) ;
[805]983  selector_ = selection;
[430]984}
985
[2111]986
[2163]987std::string Scantable::headerSummary()
[447]988{
[805]989  // Format header info
[2111]990//   STHeader sdh;
991//   sdh = getHeader();
992//   sdh.print();
[805]993  ostringstream oss;
994  oss.flags(std::ios_base::left);
[2290]995  String tmp;
996  // Project
997  table_.keywordSet().get("Project", tmp);
998  oss << setw(15) << "Project:" << tmp << endl;
999  // Observation date
1000  oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1001  // Observer
1002  oss << setw(15) << "Observer:"
1003      << table_.keywordSet().asString("Observer") << endl;
1004  // Antenna Name
1005  table_.keywordSet().get("AntennaName", tmp);
1006  oss << setw(15) << "Antenna Name:" << tmp << endl;
1007  // Obs type
1008  table_.keywordSet().get("Obstype", tmp);
1009  // Records (nrow)
1010  oss << setw(15) << "Data Records:" << table_.nrow() << " rows" << endl;
1011  oss << setw(15) << "Obs. Type:" << tmp << endl;
1012  // Beams, IFs, Polarizations, and Channels
[805]1013  oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1014      << setw(15) << "IFs:" << setw(4) << nif() << endl
[896]1015      << setw(15) << "Polarisations:" << setw(4) << npol()
1016      << "(" << getPolType() << ")" << endl
[1694]1017      << setw(15) << "Channels:" << nchan() << endl;
[2290]1018  // Flux unit
1019  table_.keywordSet().get("FluxUnit", tmp);
1020  oss << setw(15) << "Flux Unit:" << tmp << endl;
1021  // Abscissa Unit
1022  oss << setw(15) << "Abscissa:" << getAbcissaLabel(0) << endl;
1023  // Selection
1024  oss << selector_.print() << endl;
1025
1026  return String(oss);
1027}
1028
1029void Scantable::summary( const std::string& filename )
1030{
1031  ostringstream oss;
1032  ofstream ofs;
1033  LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1034
1035  if (filename != "")
1036    ofs.open( filename.c_str(),  ios::out );
1037
1038  oss << endl;
1039  oss << asap::SEPERATOR << endl;
1040  oss << " Scan Table Summary" << endl;
1041  oss << asap::SEPERATOR << endl;
1042
1043  // Format header info
1044  oss << headerSummary();
1045  oss << endl;
1046
1047  if (table_.nrow() <= 0){
1048    oss << asap::SEPERATOR << endl;
1049    oss << "The MAIN table is empty: there are no data!!!" << endl;
1050    oss << asap::SEPERATOR << endl;
1051
1052    ols << String(oss) << LogIO::POST;
1053    if (ofs) {
1054      ofs << String(oss) << flush;
1055      ofs.close();
1056    }
1057    return;
1058  }
1059
1060
1061
1062  // main table
1063  String dirtype = "Position ("
1064                  + getDirectionRefString()
1065                  + ")";
1066  oss.flags(std::ios_base::left);
1067  oss << setw(5) << "Scan"
1068      << setw(15) << "Source"
1069      << setw(35) << "Time range"
1070      << setw(2) << "" << setw(7) << "Int[s]"
1071      << setw(7) << "Record"
1072      << setw(8) << "SrcType"
1073      << setw(8) << "FreqIDs"
1074      << setw(7) << "MolIDs" << endl;
1075  oss << setw(7)<< "" << setw(6) << "Beam"
1076      << setw(23) << dirtype << endl;
1077
1078  oss << asap::SEPERATOR << endl;
1079
1080  // Flush summary and clear up the string
1081  ols << String(oss) << LogIO::POST;
1082  if (ofs) ofs << String(oss) << flush;
1083  oss.str("");
1084  oss.clear();
1085
1086
1087  // Get Freq_ID map
1088  ROScalarColumn<uInt> ftabIds(frequencies().table(), "ID");
1089  Int nfid = ftabIds.nrow();
1090  if (nfid <= 0){
1091    oss << "FREQUENCIES subtable is empty: there are no data!!!" << endl;
1092    oss << asap::SEPERATOR << endl;
1093
1094    ols << String(oss) << LogIO::POST;
1095    if (ofs) {
1096      ofs << String(oss) << flush;
1097      ofs.close();
1098    }
1099    return;
1100  }
1101  // Storages of overall IFNO, POLNO, and nchan per FREQ_ID
1102  // the orders are identical to ID in FREQ subtable
1103  Block< Vector<uInt> > ifNos(nfid), polNos(nfid);
1104  Vector<Int> fIdchans(nfid,-1);
1105  map<uInt, Int> fidMap;  // (FREQ_ID, row # in FREQ subtable) pair
1106  for (Int i=0; i < nfid; i++){
1107   // fidMap[freqId] returns row number in FREQ subtable
1108   fidMap.insert(pair<uInt, Int>(ftabIds(i),i));
1109   ifNos[i] = Vector<uInt>();
1110   polNos[i] = Vector<uInt>();
1111  }
1112
1113  TableIterator iter(table_, "SCANNO");
1114
1115  // Vars for keeping track of time, freqids, molIds in a SCANNO
1116  Vector<uInt> freqids;
1117  Vector<uInt> molids;
1118  Vector<uInt> beamids(1,0);
1119  Vector<MDirection> beamDirs;
1120  Vector<Int> stypeids(1,0);
1121  Vector<String> stypestrs;
1122  Int nfreq(1);
1123  Int nmol(1);
1124  uInt nbeam(1);
1125  uInt nstype(1);
1126
1127  Double btime(0.0), etime(0.0);
1128  Double meanIntTim(0.0);
1129
1130  uInt currFreqId(0), ftabRow(0);
1131  Int iflen(0), pollen(0);
1132
1133  while (!iter.pastEnd()) {
1134    Table subt = iter.table();
1135    uInt snrow = subt.nrow();
1136    ROTableRow row(subt);
1137    const TableRecord& rec = row.get(0);
1138
1139    // relevant columns
1140    ROScalarColumn<Double> mjdCol(subt,"TIME");
1141    ROScalarColumn<Double> intervalCol(subt,"INTERVAL");
1142    MDirection::ROScalarColumn dirCol(subt,"DIRECTION");
1143
1144    ScalarColumn<uInt> freqIdCol(subt,"FREQ_ID");
1145    ScalarColumn<uInt> molIdCol(subt,"MOLECULE_ID");
1146    ROScalarColumn<uInt> beamCol(subt,"BEAMNO");
1147    ROScalarColumn<Int> stypeCol(subt,"SRCTYPE");
1148
1149    ROScalarColumn<uInt> ifNoCol(subt,"IFNO");
1150    ROScalarColumn<uInt> polNoCol(subt,"POLNO");
1151
1152
1153    // Times
1154    meanIntTim = sum(intervalCol.getColumn()) / (double) snrow;
1155    minMax(btime, etime, mjdCol.getColumn());
1156    etime += meanIntTim/C::day;
1157
1158    // MOLECULE_ID and FREQ_ID
1159    molids = getNumbers(molIdCol);
1160    molids.shape(nmol);
1161
1162    freqids = getNumbers(freqIdCol);
1163    freqids.shape(nfreq);
1164
1165    // Add first beamid, and srcNames
1166    beamids.resize(1,False);
1167    beamDirs.resize(1,False);
1168    beamids(0)=beamCol(0);
1169    beamDirs(0)=dirCol(0);
1170    nbeam = 1;
1171
1172    stypeids.resize(1,False);
1173    stypeids(0)=stypeCol(0);
1174    nstype = 1;
1175
1176    // Global listings of nchan/IFNO/POLNO per FREQ_ID
1177    currFreqId=freqIdCol(0);
1178    ftabRow = fidMap[currFreqId];
1179    // Assumes an identical number of channels per FREQ_ID
1180    if (fIdchans(ftabRow) < 0 ) {
1181      RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1182      fIdchans(ftabRow)=(*spec).shape()(0);
1183    }
1184    // Should keep ifNos and polNos form the previous SCANNO
1185    if ( !anyEQ(ifNos[ftabRow],ifNoCol(0)) ) {
1186      ifNos[ftabRow].shape(iflen);
1187      iflen++;
1188      ifNos[ftabRow].resize(iflen,True);
1189      ifNos[ftabRow](iflen-1) = ifNoCol(0);
1190    }
1191    if ( !anyEQ(polNos[ftabRow],polNoCol(0)) ) {
1192      polNos[ftabRow].shape(pollen);
1193      pollen++;
1194      polNos[ftabRow].resize(pollen,True);
1195      polNos[ftabRow](pollen-1) = polNoCol(0);
1196    }
1197
1198    for (uInt i=1; i < snrow; i++){
1199      // Need to list BEAMNO and DIRECTION in the same order
1200      if ( !anyEQ(beamids,beamCol(i)) ) {
1201        nbeam++;
1202        beamids.resize(nbeam,True);
1203        beamids(nbeam-1)=beamCol(i);
1204        beamDirs.resize(nbeam,True);
1205        beamDirs(nbeam-1)=dirCol(i);
1206      }
1207
1208      // SRCTYPE is Int (getNumber takes only uInt)
1209      if ( !anyEQ(stypeids,stypeCol(i)) ) {
1210        nstype++;
1211        stypeids.resize(nstype,True);
1212        stypeids(nstype-1)=stypeCol(i);
1213      }
1214
1215      // Global listings of nchan/IFNO/POLNO per FREQ_ID
1216      currFreqId=freqIdCol(i);
1217      ftabRow = fidMap[currFreqId];
1218      if (fIdchans(ftabRow) < 0 ) {
1219        const TableRecord& rec = row.get(i);
1220        RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1221        fIdchans(ftabRow) = (*spec).shape()(0);
1222      }
1223      if ( !anyEQ(ifNos[ftabRow],ifNoCol(i)) ) {
1224        ifNos[ftabRow].shape(iflen);
1225        iflen++;
1226        ifNos[ftabRow].resize(iflen,True);
1227        ifNos[ftabRow](iflen-1) = ifNoCol(i);
1228      }
1229      if ( !anyEQ(polNos[ftabRow],polNoCol(i)) ) {
1230        polNos[ftabRow].shape(pollen);
1231        pollen++;
1232        polNos[ftabRow].resize(pollen,True);
1233        polNos[ftabRow](pollen-1) = polNoCol(i);
1234      }
1235    } // end of row iteration
1236
1237    stypestrs.resize(nstype,False);
1238    for (uInt j=0; j < nstype; j++)
1239      stypestrs(j) = SrcType::getName(stypeids(j));
1240
1241    // Format Scan summary
1242    oss << setw(4) << std::right << rec.asuInt("SCANNO")
1243        << std::left << setw(1) << ""
1244        << setw(15) << rec.asString("SRCNAME")
1245        << setw(21) << MVTime(btime).string(MVTime::YMD,7)
1246        << setw(3) << " - " << MVTime(etime).string(MVTime::TIME,7)
1247        << setw(3) << "" << setw(6) << meanIntTim << setw(1) << ""
1248        << std::right << setw(5) << snrow << setw(2) << ""
1249        << std::left << stypestrs << setw(1) << ""
1250        << freqids << setw(1) << ""
1251        << molids  << endl;
1252    // Format Beam summary
1253    for (uInt j=0; j < nbeam; j++) {
1254      oss << setw(7) << "" << setw(6) << beamids(j) << setw(1) << ""
1255          << formatDirection(beamDirs(j)) << endl;
1256    }
1257    // Flush summary every scan and clear up the string
1258    ols << String(oss) << LogIO::POST;
1259    if (ofs) ofs << String(oss) << flush;
1260    oss.str("");
1261    oss.clear();
1262
1263    ++iter;
1264  } // end of scan iteration
1265  oss << asap::SEPERATOR << endl;
1266 
1267  // List FRECUENCIES Table (using STFrequencies.print may be slow)
1268  oss << "FREQUENCIES: " << nfreq << endl;
1269  oss << std::right << setw(5) << "ID" << setw(2) << ""
1270      << std::left  << setw(5) << "IFNO" << setw(2) << ""
1271      << setw(8) << "Frame"
1272      << setw(16) << "RefVal"
1273      << setw(7) << "RefPix"
1274      << setw(15) << "Increment"
1275      << setw(9) << "Channels"
1276      << setw(6) << "POLNOs" << endl;
1277  Int tmplen;
1278  for (Int i=0; i < nfid; i++){
1279    // List row=i of FREQUENCIES subtable
1280    ifNos[i].shape(tmplen);
[2531]1281    if (tmplen >= 1) {
[2290]1282      oss << std::right << setw(5) << ftabIds(i) << setw(2) << ""
1283          << setw(3) << ifNos[i](0) << setw(1) << ""
1284          << std::left << setw(46) << frequencies().print(ftabIds(i))
1285          << setw(2) << ""
1286          << std::right << setw(8) << fIdchans[i] << setw(2) << ""
[2531]1287          << std::left << polNos[i];
1288      if (tmplen > 1) {
1289        oss  << " (" << tmplen << " chains)";
1290      }
1291      oss << endl;
[2290]1292    }
[2531]1293   
[2290]1294  }
1295  oss << asap::SEPERATOR << endl;
1296
1297  // List MOLECULES Table (currently lists all rows)
1298  oss << "MOLECULES: " << endl;
1299  if (molecules().nrow() <= 0) {
1300    oss << "   MOLECULES subtable is empty: there are no data" << endl;
1301  } else {
1302    ROTableRow row(molecules().table());
1303    oss << std::right << setw(5) << "ID"
1304        << std::left << setw(3) << ""
1305        << setw(18) << "RestFreq"
1306        << setw(15) << "Name" << endl;
1307    for (Int i=0; i < molecules().nrow(); i++){
1308      const TableRecord& rec=row.get(i);
1309      oss << std::right << setw(5) << rec.asuInt("ID")
1310          << std::left << setw(3) << ""
1311          << rec.asArrayDouble("RESTFREQUENCY") << setw(1) << ""
1312          << rec.asArrayString("NAME") << endl;
1313    }
1314  }
1315  oss << asap::SEPERATOR << endl;
1316  ols << String(oss) << LogIO::POST;
1317  if (ofs) {
1318    ofs << String(oss) << flush;
1319    ofs.close();
1320  }
1321  //  return String(oss);
1322}
1323
1324
1325std::string Scantable::oldheaderSummary()
1326{
1327  // Format header info
1328//   STHeader sdh;
1329//   sdh = getHeader();
1330//   sdh.print();
1331  ostringstream oss;
1332  oss.flags(std::ios_base::left);
1333  oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1334      << setw(15) << "IFs:" << setw(4) << nif() << endl
1335      << setw(15) << "Polarisations:" << setw(4) << npol()
1336      << "(" << getPolType() << ")" << endl
1337      << setw(15) << "Channels:" << nchan() << endl;
[805]1338  String tmp;
[860]1339  oss << setw(15) << "Observer:"
1340      << table_.keywordSet().asString("Observer") << endl;
[805]1341  oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1342  table_.keywordSet().get("Project", tmp);
1343  oss << setw(15) << "Project:" << tmp << endl;
1344  table_.keywordSet().get("Obstype", tmp);
1345  oss << setw(15) << "Obs. Type:" << tmp << endl;
1346  table_.keywordSet().get("AntennaName", tmp);
1347  oss << setw(15) << "Antenna Name:" << tmp << endl;
1348  table_.keywordSet().get("FluxUnit", tmp);
1349  oss << setw(15) << "Flux Unit:" << tmp << endl;
[1819]1350  int nid = moleculeTable_.nrow();
1351  Bool firstline = True;
[805]1352  oss << setw(15) << "Rest Freqs:";
[1819]1353  for (int i=0; i<nid; i++) {
[2244]1354    Table t = table_(table_.col("MOLECULE_ID") == i, 1);
[1819]1355      if (t.nrow() >  0) {
1356          Vector<Double> vec(moleculeTable_.getRestFrequency(i));
1357          if (vec.nelements() > 0) {
1358               if (firstline) {
1359                   oss << setprecision(10) << vec << " [Hz]" << endl;
1360                   firstline=False;
1361               }
1362               else{
1363                   oss << setw(15)<<" " << setprecision(10) << vec << " [Hz]" << endl;
1364               }
1365          } else {
1366              oss << "none" << endl;
1367          }
1368      }
[805]1369  }
[941]1370
1371  oss << setw(15) << "Abcissa:" << getAbcissaLabel(0) << endl;
[805]1372  oss << selector_.print() << endl;
[2111]1373  return String(oss);
1374}
1375
[2286]1376  //std::string Scantable::summary( const std::string& filename )
[2290]1377void Scantable::oldsummary( const std::string& filename )
[2111]1378{
1379  ostringstream oss;
[2286]1380  ofstream ofs;
1381  LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1382
1383  if (filename != "")
1384    ofs.open( filename.c_str(),  ios::out );
1385
[805]1386  oss << endl;
[2111]1387  oss << asap::SEPERATOR << endl;
1388  oss << " Scan Table Summary" << endl;
1389  oss << asap::SEPERATOR << endl;
1390
1391  // Format header info
[2290]1392  oss << oldheaderSummary();
[2111]1393  oss << endl;
1394
[805]1395  // main table
1396  String dirtype = "Position ("
[987]1397                  + getDirectionRefString()
[805]1398                  + ")";
[2111]1399  oss.flags(std::ios_base::left);
[941]1400  oss << setw(5) << "Scan" << setw(15) << "Source"
[2005]1401      << setw(10) << "Time" << setw(18) << "Integration"
1402      << setw(15) << "Source Type" << endl;
[941]1403  oss << setw(5) << "" << setw(5) << "Beam" << setw(3) << "" << dirtype << endl;
[1694]1404  oss << setw(10) << "" << setw(3) << "IF" << setw(3) << ""
[805]1405      << setw(8) << "Frame" << setw(16)
[1694]1406      << "RefVal" << setw(10) << "RefPix" << setw(12) << "Increment"
1407      << setw(7) << "Channels"
1408      << endl;
[805]1409  oss << asap::SEPERATOR << endl;
[2286]1410
1411  // Flush summary and clear up the string
1412  ols << String(oss) << LogIO::POST;
1413  if (ofs) ofs << String(oss) << flush;
1414  oss.str("");
1415  oss.clear();
1416
[805]1417  TableIterator iter(table_, "SCANNO");
1418  while (!iter.pastEnd()) {
1419    Table subt = iter.table();
1420    ROTableRow row(subt);
1421    MEpoch::ROScalarColumn timeCol(subt,"TIME");
1422    const TableRecord& rec = row.get(0);
1423    oss << setw(4) << std::right << rec.asuInt("SCANNO")
1424        << std::left << setw(1) << ""
1425        << setw(15) << rec.asString("SRCNAME")
1426        << setw(10) << formatTime(timeCol(0), false);
1427    // count the cycles in the scan
1428    TableIterator cyciter(subt, "CYCLENO");
1429    int nint = 0;
1430    while (!cyciter.pastEnd()) {
1431      ++nint;
1432      ++cyciter;
1433    }
1434    oss << setw(3) << std::right << nint  << setw(3) << " x " << std::left
[2005]1435        << setw(11) <<  formatSec(rec.asFloat("INTERVAL")) << setw(1) << ""
1436        << setw(15) << SrcType::getName(rec.asInt("SRCTYPE")) << endl;
[447]1437
[805]1438    TableIterator biter(subt, "BEAMNO");
1439    while (!biter.pastEnd()) {
1440      Table bsubt = biter.table();
1441      ROTableRow brow(bsubt);
1442      const TableRecord& brec = brow.get(0);
[1000]1443      uInt row0 = bsubt.rowNumbers(table_)[0];
[941]1444      oss << setw(5) << "" <<  setw(4) << std::right << brec.asuInt("BEAMNO")<< std::left;
[987]1445      oss  << setw(4) << ""  << formatDirection(getDirection(row0)) << endl;
[805]1446      TableIterator iiter(bsubt, "IFNO");
1447      while (!iiter.pastEnd()) {
1448        Table isubt = iiter.table();
1449        ROTableRow irow(isubt);
1450        const TableRecord& irec = irow.get(0);
[1694]1451        oss << setw(9) << "";
[941]1452        oss << setw(3) << std::right << irec.asuInt("IFNO") << std::left
[1694]1453            << setw(1) << "" << frequencies().print(irec.asuInt("FREQ_ID"))
1454            << setw(3) << "" << nchan(irec.asuInt("IFNO"))
[1375]1455            << endl;
[447]1456
[805]1457        ++iiter;
1458      }
1459      ++biter;
1460    }
[2286]1461    // Flush summary every scan and clear up the string
1462    ols << String(oss) << LogIO::POST;
1463    if (ofs) ofs << String(oss) << flush;
1464    oss.str("");
1465    oss.clear();
1466
[805]1467    ++iter;
[447]1468  }
[2286]1469  oss << asap::SEPERATOR << endl;
1470  ols << String(oss) << LogIO::POST;
1471  if (ofs) {
[2290]1472    ofs << String(oss) << flush;
[2286]1473    ofs.close();
1474  }
1475  //  return String(oss);
[447]1476}
1477
[1947]1478// std::string Scantable::getTime(int whichrow, bool showdate) const
1479// {
1480//   MEpoch::ROScalarColumn timeCol(table_, "TIME");
1481//   MEpoch me;
1482//   if (whichrow > -1) {
1483//     me = timeCol(uInt(whichrow));
1484//   } else {
1485//     Double tm;
1486//     table_.keywordSet().get("UTC",tm);
1487//     me = MEpoch(MVEpoch(tm));
1488//   }
1489//   return formatTime(me, showdate);
1490// }
1491
1492std::string Scantable::getTime(int whichrow, bool showdate, uInt prec) const
[777]1493{
[805]1494  MEpoch me;
[1947]1495  me = getEpoch(whichrow);
1496  return formatTime(me, showdate, prec);
[777]1497}
[805]1498
[1411]1499MEpoch Scantable::getEpoch(int whichrow) const
1500{
1501  if (whichrow > -1) {
1502    return timeCol_(uInt(whichrow));
1503  } else {
1504    Double tm;
1505    table_.keywordSet().get("UTC",tm);
[1598]1506    return MEpoch(MVEpoch(tm));
[1411]1507  }
1508}
1509
[1068]1510std::string Scantable::getDirectionString(int whichrow) const
1511{
1512  return formatDirection(getDirection(uInt(whichrow)));
1513}
1514
[1598]1515
1516SpectralCoordinate Scantable::getSpectralCoordinate(int whichrow) const {
1517  const MPosition& mp = getAntennaPosition();
1518  const MDirection& md = getDirection(whichrow);
1519  const MEpoch& me = timeCol_(whichrow);
[1819]1520  //Double rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1521  Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
[2346]1522  return freqTable_.getSpectralCoordinate(md, mp, me, rf,
[1598]1523                                          mfreqidCol_(whichrow));
1524}
1525
[1360]1526std::vector< double > Scantable::getAbcissa( int whichrow ) const
[865]1527{
[1507]1528  if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal row number"));
[865]1529  std::vector<double> stlout;
1530  int nchan = specCol_(whichrow).nelements();
[2346]1531  String us = freqTable_.getUnitString();
[865]1532  if ( us == "" || us == "pixel" || us == "channel" ) {
1533    for (int i=0; i<nchan; ++i) {
1534      stlout.push_back(double(i));
1535    }
1536    return stlout;
1537  }
[1598]1538  SpectralCoordinate spc = getSpectralCoordinate(whichrow);
[865]1539  Vector<Double> pixel(nchan);
1540  Vector<Double> world;
1541  indgen(pixel);
1542  if ( Unit(us) == Unit("Hz") ) {
1543    for ( int i=0; i < nchan; ++i) {
1544      Double world;
1545      spc.toWorld(world, pixel[i]);
1546      stlout.push_back(double(world));
1547    }
1548  } else if ( Unit(us) == Unit("km/s") ) {
1549    Vector<Double> world;
1550    spc.pixelToVelocity(world, pixel);
1551    world.tovector(stlout);
1552  }
1553  return stlout;
1554}
[1360]1555void Scantable::setDirectionRefString( const std::string & refstr )
[987]1556{
1557  MDirection::Types mdt;
1558  if (refstr != "" && !MDirection::getType(mdt, refstr)) {
1559    throw(AipsError("Illegal Direction frame."));
1560  }
1561  if ( refstr == "" ) {
1562    String defaultstr = MDirection::showType(dirCol_.getMeasRef().getType());
1563    table_.rwKeywordSet().define("DIRECTIONREF", defaultstr);
1564  } else {
1565    table_.rwKeywordSet().define("DIRECTIONREF", String(refstr));
1566  }
1567}
[865]1568
[1360]1569std::string Scantable::getDirectionRefString( ) const
[987]1570{
1571  return table_.keywordSet().asString("DIRECTIONREF");
1572}
1573
1574MDirection Scantable::getDirection(int whichrow ) const
1575{
1576  String usertype = table_.keywordSet().asString("DIRECTIONREF");
1577  String type = MDirection::showType(dirCol_.getMeasRef().getType());
1578  if ( usertype != type ) {
1579    MDirection::Types mdt;
1580    if (!MDirection::getType(mdt, usertype)) {
1581      throw(AipsError("Illegal Direction frame."));
1582    }
1583    return dirCol_.convert(uInt(whichrow), mdt);
1584  } else {
1585    return dirCol_(uInt(whichrow));
1586  }
1587}
1588
[847]1589std::string Scantable::getAbcissaLabel( int whichrow ) const
1590{
[996]1591  if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal ro number"));
[847]1592  const MPosition& mp = getAntennaPosition();
[987]1593  const MDirection& md = getDirection(whichrow);
[847]1594  const MEpoch& me = timeCol_(whichrow);
[1819]1595  //const Double& rf = mmolidCol_(whichrow);
1596  const Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
[847]1597  SpectralCoordinate spc =
[2346]1598    freqTable_.getSpectralCoordinate(md, mp, me, rf, mfreqidCol_(whichrow));
[847]1599
1600  String s = "Channel";
[2346]1601  Unit u = Unit(freqTable_.getUnitString());
[847]1602  if (u == Unit("km/s")) {
[1170]1603    s = CoordinateUtil::axisLabel(spc, 0, True,True,  True);
[847]1604  } else if (u == Unit("Hz")) {
1605    Vector<String> wau(1);wau = u.getName();
1606    spc.setWorldAxisUnits(wau);
[1170]1607    s = CoordinateUtil::axisLabel(spc, 0, True, True, False);
[847]1608  }
1609  return s;
1610
1611}
1612
[1819]1613/**
1614void asap::Scantable::setRestFrequencies( double rf, const std::string& name,
[1170]1615                                          const std::string& unit )
[1819]1616**/
1617void Scantable::setRestFrequencies( vector<double> rf, const vector<std::string>& name,
1618                                          const std::string& unit )
1619
[847]1620{
[923]1621  ///@todo lookup in line table to fill in name and formattedname
[847]1622  Unit u(unit);
[1819]1623  //Quantum<Double> urf(rf, u);
1624  Quantum<Vector<Double> >urf(rf, u);
1625  Vector<String> formattedname(0);
1626  //cerr<<"Scantable::setRestFrequnecies="<<urf<<endl;
1627
1628  //uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), name, "");
1629  uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), mathutil::toVectorString(name), formattedname);
[847]1630  TableVector<uInt> tabvec(table_, "MOLECULE_ID");
1631  tabvec = id;
1632}
1633
[1819]1634/**
1635void asap::Scantable::setRestFrequencies( const std::string& name )
[847]1636{
1637  throw(AipsError("setRestFrequencies( const std::string& name ) NYI"));
1638  ///@todo implement
1639}
[1819]1640**/
[2012]1641
[1819]1642void Scantable::setRestFrequencies( const vector<std::string>& name )
1643{
[2163]1644  (void) name; // suppress unused warning
[1819]1645  throw(AipsError("setRestFrequencies( const vector<std::string>& name ) NYI"));
1646  ///@todo implement
1647}
[847]1648
[1360]1649std::vector< unsigned int > Scantable::rownumbers( ) const
[852]1650{
1651  std::vector<unsigned int> stlout;
1652  Vector<uInt> vec = table_.rowNumbers();
1653  vec.tovector(stlout);
1654  return stlout;
1655}
1656
[865]1657
[1360]1658Matrix<Float> Scantable::getPolMatrix( uInt whichrow ) const
[896]1659{
1660  ROTableRow row(table_);
1661  const TableRecord& rec = row.get(whichrow);
1662  Table t =
1663    originalTable_( originalTable_.col("SCANNO") == Int(rec.asuInt("SCANNO"))
1664                    && originalTable_.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1665                    && originalTable_.col("IFNO") == Int(rec.asuInt("IFNO"))
1666                    && originalTable_.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
1667  ROArrayColumn<Float> speccol(t, "SPECTRA");
1668  return speccol.getColumn();
1669}
[865]1670
[1360]1671std::vector< std::string > Scantable::columnNames( ) const
[902]1672{
1673  Vector<String> vec = table_.tableDesc().columnNames();
1674  return mathutil::tovectorstring(vec);
1675}
[896]1676
[1360]1677MEpoch::Types Scantable::getTimeReference( ) const
[915]1678{
1679  return MEpoch::castType(timeCol_.getMeasRef().getType());
[972]1680}
[915]1681
[1360]1682void Scantable::addFit( const STFitEntry& fit, int row )
[972]1683{
[1819]1684  //cout << mfitidCol_(uInt(row)) << endl;
1685  LogIO os( LogOrigin( "Scantable", "addFit()", WHERE ) ) ;
1686  os << mfitidCol_(uInt(row)) << LogIO::POST ;
[972]1687  uInt id = fitTable_.addEntry(fit, mfitidCol_(uInt(row)));
1688  mfitidCol_.put(uInt(row), id);
1689}
[915]1690
[1360]1691void Scantable::shift(int npix)
1692{
1693  Vector<uInt> fids(mfreqidCol_.getColumn());
1694  genSort( fids, Sort::Ascending,
1695           Sort::QuickSort|Sort::NoDuplicates );
1696  for (uInt i=0; i<fids.nelements(); ++i) {
[1567]1697    frequencies().shiftRefPix(npix, fids[i]);
[1360]1698  }
1699}
[987]1700
[1819]1701String Scantable::getAntennaName() const
[1391]1702{
1703  String out;
1704  table_.keywordSet().get("AntennaName", out);
[1987]1705  String::size_type pos1 = out.find("@") ;
1706  String::size_type pos2 = out.find("//") ;
1707  if ( pos2 != String::npos )
[2036]1708    out = out.substr(pos2+2,pos1-pos2-2) ;
[1987]1709  else if ( pos1 != String::npos )
1710    out = out.substr(0,pos1) ;
[1391]1711  return out;
[987]1712}
[1391]1713
[1730]1714int Scantable::checkScanInfo(const std::vector<int>& scanlist) const
[1391]1715{
1716  String tbpath;
1717  int ret = 0;
1718  if ( table_.keywordSet().isDefined("GBT_GO") ) {
1719    table_.keywordSet().get("GBT_GO", tbpath);
1720    Table t(tbpath,Table::Old);
1721    // check each scan if other scan of the pair exist
1722    int nscan = scanlist.size();
1723    for (int i = 0; i < nscan; i++) {
1724      Table subt = t( t.col("SCAN") == scanlist[i]+1 );
1725      if (subt.nrow()==0) {
[1819]1726        //cerr <<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<endl;
1727        LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1728        os <<LogIO::WARN<<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<LogIO::POST;
[1391]1729        ret = 1;
1730        break;
1731      }
1732      ROTableRow row(subt);
1733      const TableRecord& rec = row.get(0);
1734      int scan1seqn = rec.asuInt("PROCSEQN");
1735      int laston1 = rec.asuInt("LASTON");
1736      if ( rec.asuInt("PROCSIZE")==2 ) {
1737        if ( i < nscan-1 ) {
1738          Table subt2 = t( t.col("SCAN") == scanlist[i+1]+1 );
1739          if ( subt2.nrow() == 0) {
[1819]1740            LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1741
1742            //cerr<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<endl;
1743            os<<LogIO::WARN<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<LogIO::POST;
[1391]1744            ret = 1;
1745            break;
1746          }
1747          ROTableRow row2(subt2);
1748          const TableRecord& rec2 = row2.get(0);
1749          int scan2seqn = rec2.asuInt("PROCSEQN");
1750          int laston2 = rec2.asuInt("LASTON");
1751          if (scan1seqn == 1 && scan2seqn == 2) {
1752            if (laston1 == laston2) {
[1819]1753              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1754              //cerr<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1755              os<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
[1391]1756              i +=1;
1757            }
1758            else {
[1819]1759              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1760              //cerr<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1761              os<<LogIO::WARN<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
[1391]1762            }
1763          }
1764          else if (scan1seqn==2 && scan2seqn == 1) {
1765            if (laston1 == laston2) {
[1819]1766              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1767              //cerr<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<endl;
1768              os<<LogIO::WARN<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<LogIO::POST;
[1391]1769              ret = 1;
1770              break;
1771            }
1772          }
1773          else {
[1819]1774            LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1775            //cerr<<"The other scan for  "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<endl;
1776            os<<LogIO::WARN<<"The other scan for  "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<LogIO::POST;
[1391]1777            ret = 1;
1778            break;
1779          }
1780        }
1781      }
1782      else {
[1819]1783        LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1784        //cerr<<"The scan does not appear to be standard obsevation."<<endl;
1785        os<<LogIO::WARN<<"The scan does not appear to be standard obsevation."<<LogIO::POST;
[1391]1786      }
1787    //if ( i >= nscan ) break;
1788    }
1789  }
1790  else {
[1819]1791    LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1792    //cerr<<"No reference to GBT_GO table."<<endl;
1793    os<<LogIO::WARN<<"No reference to GBT_GO table."<<LogIO::POST;
[1391]1794    ret = 1;
1795  }
1796  return ret;
1797}
1798
[1730]1799std::vector<double> Scantable::getDirectionVector(int whichrow) const
[1391]1800{
1801  Vector<Double> Dir = dirCol_(whichrow).getAngle("rad").getValue();
1802  std::vector<double> dir;
1803  Dir.tovector(dir);
1804  return dir;
1805}
1806
[1819]1807void asap::Scantable::reshapeSpectrum( int nmin, int nmax )
1808  throw( casa::AipsError )
1809{
1810  // assumed that all rows have same nChan
1811  Vector<Float> arr = specCol_( 0 ) ;
1812  int nChan = arr.nelements() ;
1813
1814  // if nmin < 0 or nmax < 0, nothing to do
1815  if (  nmin < 0 ) {
1816    throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1817    }
1818  if (  nmax < 0  ) {
1819    throw( casa::indexError<int>( nmax, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1820  }
1821
1822  // if nmin > nmax, exchange values
1823  if ( nmin > nmax ) {
1824    int tmp = nmax ;
1825    nmax = nmin ;
1826    nmin = tmp ;
1827    LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1828    os << "Swap values. Applied range is ["
1829       << nmin << ", " << nmax << "]" << LogIO::POST ;
1830  }
1831
1832  // if nmin exceeds nChan, nothing to do
1833  if ( nmin >= nChan ) {
1834    throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Specified minimum exceeds nChan." ) ) ;
1835  }
1836
1837  // if nmax exceeds nChan, reset nmax to nChan
[2672]1838  if ( nmax >= nChan-1 ) {
[1819]1839    if ( nmin == 0 ) {
1840      // nothing to do
1841      LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1842      os << "Whole range is selected. Nothing to do." << LogIO::POST ;
1843      return ;
1844    }
1845    else {
1846      LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1847      os << "Specified maximum exceeds nChan. Applied range is ["
1848         << nmin << ", " << nChan-1 << "]." << LogIO::POST ;
1849      nmax = nChan - 1 ;
1850    }
1851  }
1852
1853  // reshape specCol_ and flagCol_
1854  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1855    reshapeSpectrum( nmin, nmax, irow ) ;
1856  }
1857
1858  // update FREQUENCIES subtable
1859  Double refpix ;
1860  Double refval ;
1861  Double increment ;
[2346]1862  int freqnrow = freqTable_.table().nrow() ;
[1819]1863  Vector<uInt> oldId( freqnrow ) ;
1864  Vector<uInt> newId( freqnrow ) ;
1865  for ( int irow = 0 ; irow < freqnrow ; irow++ ) {
[2346]1866    freqTable_.getEntry( refpix, refval, increment, irow ) ;
[1819]1867    /***
1868     * need to shift refpix to nmin
1869     * note that channel nmin in old index will be channel 0 in new one
1870     ***/
1871    refval = refval - ( refpix - nmin ) * increment ;
1872    refpix = 0 ;
[2346]1873    freqTable_.setEntry( refpix, refval, increment, irow ) ;
[1819]1874  }
1875
1876  // update nchan
1877  int newsize = nmax - nmin + 1 ;
1878  table_.rwKeywordSet().define( "nChan", newsize ) ;
1879
1880  // update bandwidth
1881  // assumed all spectra in the scantable have same bandwidth
1882  table_.rwKeywordSet().define( "Bandwidth", increment * newsize ) ;
1883
1884  return ;
1885}
1886
1887void asap::Scantable::reshapeSpectrum( int nmin, int nmax, int irow )
1888{
1889  // reshape specCol_ and flagCol_
1890  Vector<Float> oldspec = specCol_( irow ) ;
1891  Vector<uChar> oldflag = flagsCol_( irow ) ;
[2475]1892  Vector<Float> oldtsys = tsysCol_( irow ) ;
[1819]1893  uInt newsize = nmax - nmin + 1 ;
[2475]1894  Slice slice( nmin, newsize, 1 ) ;
1895  specCol_.put( irow, oldspec( slice ) ) ;
1896  flagsCol_.put( irow, oldflag( slice ) ) ;
1897  if ( oldspec.size() == oldtsys.size() )
1898    tsysCol_.put( irow, oldtsys( slice ) ) ;
[1819]1899
1900  return ;
1901}
1902
[2435]1903void asap::Scantable::regridSpecChannel( double dnu, int nChan )
1904{
1905  LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1906  os << "Regrid abcissa with spectral resoultion " << dnu << " " << freqTable_.getUnitString() << " with channel number " << ((nChan>0)? String(nChan) : "covering band width")<< LogIO::POST ;
1907  int freqnrow = freqTable_.table().nrow() ;
1908  Vector<bool> firstTime( freqnrow, true ) ;
1909  double oldincr, factor;
1910  uInt currId;
1911  Double refpix ;
1912  Double refval ;
1913  Double increment ;
1914  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1915    currId = mfreqidCol_(irow);
1916    vector<double> abcissa = getAbcissa( irow ) ;
1917    if (nChan < 0) {
1918      int oldsize = abcissa.size() ;
1919      double bw = (abcissa[oldsize-1]-abcissa[0]) +                     \
1920        0.5 * (abcissa[1]-abcissa[0] + abcissa[oldsize-1]-abcissa[oldsize-2]) ;
1921      nChan = int( ceil( abs(bw/dnu) ) ) ;
1922    }
1923    // actual regridding
1924    regridChannel( nChan, dnu, irow ) ;
[2433]1925
[2435]1926    // update FREQUENCIES subtable
1927    if (firstTime[currId]) {
1928      oldincr = abcissa[1]-abcissa[0] ;
1929      factor = dnu/oldincr ;
1930      firstTime[currId] = false ;
1931      freqTable_.getEntry( refpix, refval, increment, currId ) ;
[2463]1932
[2437]1933      //refval = refval - ( refpix + 0.5 * (1 - factor) ) * increment ;
[2463]1934      if (factor > 0 ) {
[2462]1935        refpix = (refpix + 0.5)/factor - 0.5;
1936      } else {
[2463]1937        refpix = (abcissa.size() - 0.5 - refpix)/abs(factor) - 0.5;
[2462]1938      }
[2435]1939      freqTable_.setEntry( refpix, refval, increment*factor, currId ) ;
[2463]1940      //os << "ID" << currId << ": channel width (Orig) = " << oldincr << " [" << freqTable_.getUnitString() << "], scale factor = " << factor << LogIO::POST ;
1941      //os << "     frequency increment (Orig) = " << increment << "-> (New) " << increment*factor << LogIO::POST ;
[2435]1942    }
1943  }
1944}
1945
[1819]1946void asap::Scantable::regridChannel( int nChan, double dnu )
1947{
1948  LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1949  os << "Regrid abcissa with channel number " << nChan << " and spectral resoultion " << dnu << "Hz." << LogIO::POST ;
1950  // assumed that all rows have same nChan
1951  Vector<Float> arr = specCol_( 0 ) ;
1952  int oldsize = arr.nelements() ;
1953
1954  // if oldsize == nChan, nothing to do
1955  if ( oldsize == nChan ) {
1956    os << "Specified channel number is same as current one. Nothing to do." << LogIO::POST ;
1957    return ;
1958  }
1959
1960  // if oldChan < nChan, unphysical operation
1961  if ( oldsize < nChan ) {
1962    os << "Unphysical operation. Nothing to do." << LogIO::POST ;
1963    return ;
1964  }
1965
[2433]1966  // change channel number for specCol_, flagCol_, and tsysCol_ (if necessary)
[1819]1967  vector<string> coordinfo = getCoordInfo() ;
1968  string oldinfo = coordinfo[0] ;
1969  coordinfo[0] = "Hz" ;
1970  setCoordInfo( coordinfo ) ;
1971  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1972    regridChannel( nChan, dnu, irow ) ;
1973  }
1974  coordinfo[0] = oldinfo ;
1975  setCoordInfo( coordinfo ) ;
1976
1977
1978  // NOTE: this method does not update metadata such as
1979  //       FREQUENCIES subtable, nChan, Bandwidth, etc.
1980
1981  return ;
1982}
1983
1984void asap::Scantable::regridChannel( int nChan, double dnu, int irow )
1985{
1986  // logging
1987  //ofstream ofs( "average.log", std::ios::out | std::ios::app ) ;
1988  //ofs << "IFNO = " << getIF( irow ) << " irow = " << irow << endl ;
1989
1990  Vector<Float> oldspec = specCol_( irow ) ;
1991  Vector<uChar> oldflag = flagsCol_( irow ) ;
[2431]1992  Vector<Float> oldtsys = tsysCol_( irow ) ;
[1819]1993  Vector<Float> newspec( nChan, 0 ) ;
[2431]1994  Vector<uChar> newflag( nChan, true ) ;
1995  Vector<Float> newtsys ;
1996  bool regridTsys = false ;
1997  if (oldtsys.size() == oldspec.size()) {
1998    regridTsys = true ;
1999    newtsys.resize(nChan,false) ;
2000    newtsys = 0 ;
2001  }
[1819]2002
2003  // regrid
2004  vector<double> abcissa = getAbcissa( irow ) ;
2005  int oldsize = abcissa.size() ;
2006  double olddnu = abcissa[1] - abcissa[0] ;
[2462]2007  //int ichan = 0 ;
[1819]2008  double wsum = 0.0 ;
[2433]2009  Vector<double> zi( nChan+1 ) ;
2010  Vector<double> yi( oldsize + 1 ) ;
[1819]2011  yi[0] = abcissa[0] - 0.5 * olddnu ;
[2431]2012  for ( int ii = 1 ; ii < oldsize ; ii++ )
[2433]2013    yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2014  yi[oldsize] = abcissa[oldsize-1] \
2015    + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
[2462]2016  //zi[0] = abcissa[0] - 0.5 * olddnu ;
2017  zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2018  for ( int ii = 1 ; ii < nChan ; ii++ )
2019    zi[ii] = zi[0] + dnu * ii ;
2020  zi[nChan] = zi[nChan-1] + dnu ;
2021  // Access zi and yi in ascending order
2022  int izs = ((dnu > 0) ? 0 : nChan ) ;
2023  int ize = ((dnu > 0) ? nChan : 0 ) ;
2024  int izincr = ((dnu > 0) ? 1 : -1 ) ;
2025  int ichan =  ((olddnu > 0) ? 0 : oldsize ) ;
2026  int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2027  int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2028  //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2029  int ii = izs ;
2030  while (ii != ize) {
2031    // always zl < zr
2032    double zl = zi[ii] ;
2033    double zr = zi[ii+izincr] ;
2034    // Need to access smaller index for the new spec, flag, and tsys.
2035    // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2036    int i = min(ii, ii+izincr) ;
2037    //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2038    int jj = ichan ;
2039    while (jj != iye) {
2040      // always yl < yr
2041      double yl = yi[jj] ;
2042      double yr = yi[jj+iyincr] ;
2043      // Need to access smaller index for the original spec, flag, and tsys.
2044      // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2045      int j = min(jj, jj+iyincr) ;
2046      if ( yr <= zl ) {
2047        jj += iyincr ;
2048        continue ;
[1819]2049      }
[2462]2050      else if ( yl <= zl ) {
2051        if ( yr < zr ) {
2052          if (!oldflag[j]) {
2053            newspec[i] += oldspec[j] * ( yr - zl ) ;
2054            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2055            wsum += ( yr - zl ) ;
2056          }
2057          newflag[i] = newflag[i] && oldflag[j] ;
2058        }
2059        else {
2060          if (!oldflag[j]) {
2061            newspec[i] += oldspec[j] * abs(dnu) ;
2062            if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2063            wsum += abs(dnu) ;
2064          }
2065          newflag[i] = newflag[i] && oldflag[j] ;
2066          ichan = jj ;
2067          break ;
2068        }
[2431]2069      }
[2462]2070      else if ( yl < zr ) {
2071        if ( yr <= zr ) {
2072          if (!oldflag[j]) {
2073            newspec[i] += oldspec[j] * ( yr - yl ) ;
2074            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2075            wsum += ( yr - yl ) ;
2076          }
2077          newflag[i] = newflag[i] && oldflag[j] ;
2078        }
2079        else {
2080          if (!oldflag[j]) {
2081            newspec[i] += oldspec[j] * ( zr - yl ) ;
2082            if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2083            wsum += ( zr - yl ) ;
2084          }
2085          newflag[i] = newflag[i] && oldflag[j] ;
2086          ichan = jj ;
2087          break ;
2088        }
[1819]2089      }
[2462]2090      else {
2091        ichan = jj - iyincr ;
2092        break ;
[2431]2093      }
[2462]2094      jj += iyincr ;
[1819]2095    }
[2462]2096    if ( wsum != 0.0 ) {
2097      newspec[i] /= wsum ;
2098      if (regridTsys) newtsys[i] /= wsum ;
2099    }
2100    wsum = 0.0 ;
2101    ii += izincr ;
[1819]2102  }
[2462]2103//   if ( dnu > 0.0 ) {
2104//     for ( int ii = 0 ; ii < nChan ; ii++ ) {
2105//       double zl = zi[ii] ;
2106//       double zr = zi[ii+1] ;
2107//       for ( int j = ichan ; j < oldsize ; j++ ) {
2108//         double yl = yi[j] ;
2109//         double yr = yi[j+1] ;
2110//         if ( yl <= zl ) {
2111//           if ( yr <= zl ) {
2112//             continue ;
2113//           }
2114//           else if ( yr <= zr ) {
2115//          if (!oldflag[j]) {
2116//            newspec[ii] += oldspec[j] * ( yr - zl ) ;
2117//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - zl ) ;
2118//            wsum += ( yr - zl ) ;
2119//          }
2120//          newflag[ii] = newflag[ii] && oldflag[j] ;
2121//           }
2122//           else {
2123//          if (!oldflag[j]) {
2124//            newspec[ii] += oldspec[j] * dnu ;
2125//            if (regridTsys) newtsys[ii] += oldtsys[j] * dnu ;
2126//            wsum += dnu ;
2127//          }
2128//          newflag[ii] = newflag[ii] && oldflag[j] ;
2129//             ichan = j ;
2130//             break ;
2131//           }
2132//         }
2133//         else if ( yl < zr ) {
2134//           if ( yr <= zr ) {
2135//          if (!oldflag[j]) {
2136//            newspec[ii] += oldspec[j] * ( yr - yl ) ;
2137//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - yl ) ;
2138//               wsum += ( yr - yl ) ;
2139//          }
2140//          newflag[ii] = newflag[ii] && oldflag[j] ;
2141//           }
2142//           else {
2143//          if (!oldflag[j]) {
2144//            newspec[ii] += oldspec[j] * ( zr - yl ) ;
2145//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( zr - yl ) ;
2146//            wsum += ( zr - yl ) ;
2147//          }
2148//          newflag[ii] = newflag[ii] && oldflag[j] ;
2149//             ichan = j ;
2150//             break ;
2151//           }
2152//         }
2153//         else {
2154//           ichan = j - 1 ;
2155//           break ;
2156//         }
2157//       }
2158//       if ( wsum != 0.0 ) {
2159//         newspec[ii] /= wsum ;
2160//      if (regridTsys) newtsys[ii] /= wsum ;
2161//       }
2162//       wsum = 0.0 ;
2163//     }
[1819]2164//   }
[2462]2165//   else if ( dnu < 0.0 ) {
2166//     for ( int ii = 0 ; ii < nChan ; ii++ ) {
2167//       double zl = zi[ii] ;
2168//       double zr = zi[ii+1] ;
2169//       for ( int j = ichan ; j < oldsize ; j++ ) {
2170//         double yl = yi[j] ;
2171//         double yr = yi[j+1] ;
2172//         if ( yl >= zl ) {
2173//           if ( yr >= zl ) {
2174//             continue ;
2175//           }
2176//           else if ( yr >= zr ) {
2177//          if (!oldflag[j]) {
2178//            newspec[ii] += oldspec[j] * abs( yr - zl ) ;
2179//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - zl ) ;
2180//            wsum += abs( yr - zl ) ;
2181//          }
2182//          newflag[ii] = newflag[ii] && oldflag[j] ;
2183//           }
2184//           else {
2185//          if (!oldflag[j]) {
2186//            newspec[ii] += oldspec[j] * abs( dnu ) ;
2187//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( dnu ) ;
2188//            wsum += abs( dnu ) ;
2189//          }
2190//          newflag[ii] = newflag[ii] && oldflag[j] ;
2191//             ichan = j ;
2192//             break ;
2193//           }
2194//         }
2195//         else if ( yl > zr ) {
2196//           if ( yr >= zr ) {
2197//          if (!oldflag[j]) {
2198//            newspec[ii] += oldspec[j] * abs( yr - yl ) ;
2199//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - yl ) ;
2200//            wsum += abs( yr - yl ) ;
2201//          }
2202//          newflag[ii] = newflag[ii] && oldflag[j] ;
2203//           }
2204//           else {
2205//          if (!oldflag[j]) {
2206//            newspec[ii] += oldspec[j] * abs( zr - yl ) ;
2207//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( zr - yl ) ;
2208//            wsum += abs( zr - yl ) ;
2209//          }
2210//          newflag[ii] = newflag[ii] && oldflag[j] ;
2211//             ichan = j ;
2212//             break ;
2213//           }
2214//         }
2215//         else {
2216//           ichan = j - 1 ;
2217//           break ;
2218//         }
2219//       }
2220//       if ( wsum != 0.0 ) {
2221//         newspec[ii] /= wsum ;
2222//      if (regridTsys) newtsys[ii] /= wsum ;
2223//       }
2224//       wsum = 0.0 ;
[1819]2225//     }
2226//   }
[2462]2227// //   //ofs << "olddnu = " << olddnu << ", dnu = " << dnu << endl ;
2228// //   pile += dnu ;
2229// //   wedge = olddnu * ( refChan + 1 ) ;
2230// //   while ( wedge < pile ) {
2231// //     newspec[0] += olddnu * oldspec[refChan] ;
2232// //     newflag[0] = newflag[0] || oldflag[refChan] ;
2233// //     //ofs << "channel " << refChan << " is included in new channel 0" << endl ;
2234// //     refChan++ ;
2235// //     wedge += olddnu ;
2236// //     wsum += olddnu ;
2237// //     //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2238// //   }
2239// //   frac = ( wedge - pile ) / olddnu ;
2240// //   wsum += ( 1.0 - frac ) * olddnu ;
2241// //   newspec[0] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2242// //   newflag[0] = newflag[0] || oldflag[refChan] ;
2243// //   //ofs << "channel " << refChan << " is partly included in new channel 0" << " with fraction of " << ( 1.0 - frac ) << endl ;
2244// //   //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2245// //   newspec[0] /= wsum ;
2246// //   //ofs << "newspec[0] = " << newspec[0] << endl ;
2247// //   //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
[1819]2248
[2462]2249// //   /***
2250// //    * ichan = 1 - nChan-2
2251// //    ***/
2252// //   for ( int ichan = 1 ; ichan < nChan - 1 ; ichan++ ) {
2253// //     pile += dnu ;
2254// //     newspec[ichan] += frac * olddnu * oldspec[refChan] ;
2255// //     newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2256// //     //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << frac << endl ;
2257// //     refChan++ ;
2258// //     wedge += olddnu ;
2259// //     wsum = frac * olddnu ;
2260// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2261// //     while ( wedge < pile ) {
2262// //       newspec[ichan] += olddnu * oldspec[refChan] ;
2263// //       newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2264// //       //ofs << "channel " << refChan << " is included in new channel " << ichan << endl ;
2265// //       refChan++ ;
2266// //       wedge += olddnu ;
2267// //       wsum += olddnu ;
2268// //       //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2269// //     }
2270// //     frac = ( wedge - pile ) / olddnu ;
2271// //     wsum += ( 1.0 - frac ) * olddnu ;
2272// //     newspec[ichan] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2273// //     newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2274// //     //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << ( 1.0 - frac ) << endl ;
2275// //     //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2276// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2277// //     newspec[ichan] /= wsum ;
2278// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << endl ;
2279// //   }
[1819]2280
[2462]2281// //   /***
2282// //    * ichan = nChan-1
2283// //    ***/
2284// //   // NOTE: Assumed that all spectra have the same bandwidth
2285// //   pile += dnu ;
2286// //   newspec[nChan-1] += frac * olddnu * oldspec[refChan] ;
2287// //   newflag[nChan-1] = newflag[nChan-1] || oldflag[refChan] ;
2288// //   //ofs << "channel " << refChan << " is partly included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2289// //   refChan++ ;
2290// //   wedge += olddnu ;
2291// //   wsum = frac * olddnu ;
2292// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2293// //   for ( int jchan = refChan ; jchan < oldsize ; jchan++ ) {
2294// //     newspec[nChan-1] += olddnu * oldspec[jchan] ;
2295// //     newflag[nChan-1] = newflag[nChan-1] || oldflag[jchan] ;
2296// //     wsum += olddnu ;
2297// //     //ofs << "channel " << jchan << " is included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2298// //     //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2299// //   }
2300// //   //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2301// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2302// //   newspec[nChan-1] /= wsum ;
2303// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << endl ;
[1819]2304
[2462]2305// //   // ofs.close() ;
2306
[2032]2307  specCol_.put( irow, newspec ) ;
2308  flagsCol_.put( irow, newflag ) ;
[2431]2309  if (regridTsys) tsysCol_.put( irow, newtsys );
[1819]2310
2311  return ;
2312}
2313
[2595]2314void Scantable::regridChannel( int nChan, double dnu, double fmin, int irow )
2315{
2316  Vector<Float> oldspec = specCol_( irow ) ;
2317  Vector<uChar> oldflag = flagsCol_( irow ) ;
2318  Vector<Float> oldtsys = tsysCol_( irow ) ;
2319  Vector<Float> newspec( nChan, 0 ) ;
2320  Vector<uChar> newflag( nChan, true ) ;
2321  Vector<Float> newtsys ;
2322  bool regridTsys = false ;
2323  if (oldtsys.size() == oldspec.size()) {
2324    regridTsys = true ;
2325    newtsys.resize(nChan,false) ;
2326    newtsys = 0 ;
2327  }
2328 
2329  // regrid
2330  vector<double> abcissa = getAbcissa( irow ) ;
2331  int oldsize = abcissa.size() ;
2332  double olddnu = abcissa[1] - abcissa[0] ;
2333  //int ichan = 0 ;
2334  double wsum = 0.0 ;
2335  Vector<double> zi( nChan+1 ) ;
2336  Vector<double> yi( oldsize + 1 ) ;
2337  Block<uInt> count( nChan, 0 ) ;
2338  yi[0] = abcissa[0] - 0.5 * olddnu ;
2339  for ( int ii = 1 ; ii < oldsize ; ii++ )
2340    yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2341  yi[oldsize] = abcissa[oldsize-1] \
2342    + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
2343//   cout << "olddnu=" << olddnu << ", dnu=" << dnu << " (diff=" << olddnu-dnu << ")" << endl ;
2344//   cout << "yi[0]=" << yi[0] << ", fmin=" << fmin << " (diff=" << yi[0]-fmin << ")" << endl ;
2345//   cout << "oldsize=" << oldsize << ", nChan=" << nChan << endl ;
2346
2347  // do not regrid if input parameters are almost same as current
2348  // spectral setup
2349  double dnuDiff = abs( ( dnu - olddnu ) / olddnu ) ;
2350  double oldfmin = min( yi[0], yi[oldsize] ) ;
2351  double fminDiff = abs( ( fmin - oldfmin ) / oldfmin ) ;
2352  double nChanDiff = nChan - oldsize ;
2353  double eps = 1.0e-8 ;
2354  if ( nChanDiff == 0 && dnuDiff < eps && fminDiff < eps )
2355    return ;
2356
2357  //zi[0] = abcissa[0] - 0.5 * olddnu ;
2358  //zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2359  if ( dnu > 0 )
2360    zi[0] = fmin - 0.5 * dnu ;
2361  else
2362    zi[0] = fmin + nChan * abs(dnu) ;
2363  for ( int ii = 1 ; ii < nChan ; ii++ )
2364    zi[ii] = zi[0] + dnu * ii ;
2365  zi[nChan] = zi[nChan-1] + dnu ;
2366  // Access zi and yi in ascending order
2367  int izs = ((dnu > 0) ? 0 : nChan ) ;
2368  int ize = ((dnu > 0) ? nChan : 0 ) ;
2369  int izincr = ((dnu > 0) ? 1 : -1 ) ;
2370  int ichan =  ((olddnu > 0) ? 0 : oldsize ) ;
2371  int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2372  int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2373  //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2374  int ii = izs ;
2375  while (ii != ize) {
2376    // always zl < zr
2377    double zl = zi[ii] ;
2378    double zr = zi[ii+izincr] ;
2379    // Need to access smaller index for the new spec, flag, and tsys.
2380    // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2381    int i = min(ii, ii+izincr) ;
2382    //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2383    int jj = ichan ;
2384    while (jj != iye) {
2385      // always yl < yr
2386      double yl = yi[jj] ;
2387      double yr = yi[jj+iyincr] ;
2388      // Need to access smaller index for the original spec, flag, and tsys.
2389      // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2390      int j = min(jj, jj+iyincr) ;
2391      if ( yr <= zl ) {
2392        jj += iyincr ;
2393        continue ;
2394      }
2395      else if ( yl <= zl ) {
2396        if ( yr < zr ) {
2397          if (!oldflag[j]) {
2398            newspec[i] += oldspec[j] * ( yr - zl ) ;
2399            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2400            wsum += ( yr - zl ) ;
2401            count[i]++ ;
2402          }
2403          newflag[i] = newflag[i] && oldflag[j] ;
2404        }
2405        else {
2406          if (!oldflag[j]) {
2407            newspec[i] += oldspec[j] * abs(dnu) ;
2408            if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2409            wsum += abs(dnu) ;
2410            count[i]++ ;
2411          }
2412          newflag[i] = newflag[i] && oldflag[j] ;
2413          ichan = jj ;
2414          break ;
2415        }
2416      }
2417      else if ( yl < zr ) {
2418        if ( yr <= zr ) {
2419          if (!oldflag[j]) {
2420            newspec[i] += oldspec[j] * ( yr - yl ) ;
2421            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2422            wsum += ( yr - yl ) ;
2423            count[i]++ ;
2424          }
2425          newflag[i] = newflag[i] && oldflag[j] ;
2426        }
2427        else {
2428          if (!oldflag[j]) {
2429            newspec[i] += oldspec[j] * ( zr - yl ) ;
2430            if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2431            wsum += ( zr - yl ) ;
2432            count[i]++ ;
2433          }
2434          newflag[i] = newflag[i] && oldflag[j] ;
2435          ichan = jj ;
2436          break ;
2437        }
2438      }
2439      else {
2440        //ichan = jj - iyincr ;
2441        break ;
2442      }
2443      jj += iyincr ;
2444    }
2445    if ( wsum != 0.0 ) {
2446      newspec[i] /= wsum ;
2447      if (regridTsys) newtsys[i] /= wsum ;
2448    }
2449    wsum = 0.0 ;
2450    ii += izincr ;
2451  }
2452
2453  // flag out channels without data
2454  // this is tentative since there is no specific definition
2455  // on bit flag...
2456  uChar noData = 1 << 7 ;
2457  for ( Int i = 0 ; i < nChan ; i++ ) {
2458    if ( count[i] == 0 )
2459      newflag[i] = noData ;
2460  }
2461
2462  specCol_.put( irow, newspec ) ;
2463  flagsCol_.put( irow, newflag ) ;
2464  if (regridTsys) tsysCol_.put( irow, newtsys );
2465
2466  return ;
2467}
2468
[1730]2469std::vector<float> Scantable::getWeather(int whichrow) const
2470{
2471  std::vector<float> out(5);
2472  //Float temperature, pressure, humidity, windspeed, windaz;
2473  weatherTable_.getEntry(out[0], out[1], out[2], out[3], out[4],
2474                         mweatheridCol_(uInt(whichrow)));
2475
2476
2477  return out;
[1391]2478}
[1730]2479
[2047]2480bool Scantable::getFlagtraFast(uInt whichrow)
[1907]2481{
2482  uChar flag;
2483  Vector<uChar> flags;
[2047]2484  flagsCol_.get(whichrow, flags);
[2012]2485  flag = flags[0];
[2047]2486  for (uInt i = 1; i < flags.size(); ++i) {
[2012]2487    flag &= flags[i];
2488  }
2489  return ((flag >> 7) == 1);
2490}
2491
[2277]2492void Scantable::polyBaseline(const std::vector<bool>& mask, int order, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
[2047]2493{
[2193]2494  try {
2495    ofstream ofs;
2496    String coordInfo = "";
2497    bool hasSameNchan = true;
2498    bool outTextFile = false;
[2641]2499    bool csvFormat = false;
[2047]2500
[2193]2501    if (blfile != "") {
[2641]2502      csvFormat = (blfile.substr(0, 1) == "T");
2503      ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
[2193]2504      if (ofs) outTextFile = true;
2505    }
[2047]2506
[2193]2507    if (outLogger || outTextFile) {
2508      coordInfo = getCoordInfo()[0];
2509      if (coordInfo == "") coordInfo = "channel";
2510      hasSameNchan = hasSameNchanOverIFs();
2511    }
[2047]2512
[2193]2513    Fitter fitter = Fitter();
2514    fitter.setExpression("poly", order);
2515    //fitter.setIterClipping(thresClip, nIterClip);
[2047]2516
[2193]2517    int nRow = nrow();
2518    std::vector<bool> chanMask;
2519    bool showProgress;
2520    int minNRow;
2521    parseProgressInfo(progressInfo, showProgress, minNRow);
[2047]2522
[2193]2523    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2524      chanMask = getCompositeChanMask(whichrow, mask);
2525      fitBaseline(chanMask, whichrow, fitter);
2526      setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
[2641]2527      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "polyBaseline()", fitter);
[2193]2528      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
2529    }
2530
2531    if (outTextFile) ofs.close();
2532
2533  } catch (...) {
2534    throw;
[2047]2535  }
2536}
2537
[2189]2538void Scantable::autoPolyBaseline(const std::vector<bool>& mask, int order, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
[2047]2539{
[2193]2540  try {
2541    ofstream ofs;
2542    String coordInfo = "";
2543    bool hasSameNchan = true;
2544    bool outTextFile = false;
[2641]2545    bool csvFormat = false;
[2047]2546
[2193]2547    if (blfile != "") {
[2641]2548      csvFormat = (blfile.substr(0, 1) == "T");
2549      ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
[2193]2550      if (ofs) outTextFile = true;
2551    }
[2047]2552
[2193]2553    if (outLogger || outTextFile) {
2554      coordInfo = getCoordInfo()[0];
2555      if (coordInfo == "") coordInfo = "channel";
2556      hasSameNchan = hasSameNchanOverIFs();
2557    }
[2047]2558
[2193]2559    Fitter fitter = Fitter();
2560    fitter.setExpression("poly", order);
2561    //fitter.setIterClipping(thresClip, nIterClip);
[2047]2562
[2193]2563    int nRow = nrow();
2564    std::vector<bool> chanMask;
2565    int minEdgeSize = getIFNos().size()*2;
2566    STLineFinder lineFinder = STLineFinder();
2567    lineFinder.setOptions(threshold, 3, chanAvgLimit);
[2047]2568
[2193]2569    bool showProgress;
2570    int minNRow;
2571    parseProgressInfo(progressInfo, showProgress, minNRow);
[2189]2572
[2193]2573    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
[2047]2574
[2193]2575      //-------------------------------------------------------
2576      //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
2577      //-------------------------------------------------------
2578      int edgeSize = edge.size();
2579      std::vector<int> currentEdge;
2580      if (edgeSize >= 2) {
2581        int idx = 0;
2582        if (edgeSize > 2) {
2583          if (edgeSize < minEdgeSize) {
2584            throw(AipsError("Length of edge element info is less than that of IFs"));
2585          }
2586          idx = 2 * getIF(whichrow);
[2047]2587        }
[2193]2588        currentEdge.push_back(edge[idx]);
2589        currentEdge.push_back(edge[idx+1]);
2590      } else {
2591        throw(AipsError("Wrong length of edge element"));
[2047]2592      }
[2193]2593      lineFinder.setData(getSpectrum(whichrow));
2594      lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
2595      chanMask = lineFinder.getMask();
2596      //-------------------------------------------------------
2597
2598      fitBaseline(chanMask, whichrow, fitter);
2599      setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
2600
[2641]2601      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoPolyBaseline()", fitter);
[2193]2602      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
[2047]2603    }
2604
[2193]2605    if (outTextFile) ofs.close();
[2047]2606
[2193]2607  } catch (...) {
2608    throw;
[2047]2609  }
2610}
2611
[2645]2612void Scantable::chebyshevBaseline(const std::vector<bool>& mask, int order, float thresClip, int nIterClip, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
2613{
2614  try {
2615    ofstream ofs;
2616    String coordInfo = "";
2617    bool hasSameNchan = true;
2618    bool outTextFile = false;
2619    bool csvFormat = false;
2620
2621    if (blfile != "") {
2622      csvFormat = (blfile.substr(0, 1) == "T");
2623      ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
2624      if (ofs) outTextFile = true;
2625    }
2626
2627    if (outLogger || outTextFile) {
2628      coordInfo = getCoordInfo()[0];
2629      if (coordInfo == "") coordInfo = "channel";
2630      hasSameNchan = hasSameNchanOverIFs();
2631    }
2632
2633    bool showProgress;
2634    int minNRow;
2635    parseProgressInfo(progressInfo, showProgress, minNRow);
2636
2637    int nRow = nrow();
2638    std::vector<bool> chanMask;
[2737]2639    std::vector<bool> finalChanMask;
2640    float rms;
2641
2642    //---
[2740]2643    bool outBaselineParamTable = false;
[2737]2644    STBaselineTable* bt = new STBaselineTable(*this);
2645    //---
2646
[2645]2647    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2648      std::vector<float> sp = getSpectrum(whichrow);
2649      chanMask = getCompositeChanMask(whichrow, mask);
2650      std::vector<float> params(order+1);
2651      int nClipped = 0;
[2737]2652      std::vector<float> res = doChebyshevFitting(sp, chanMask, order, params, finalChanMask, rms, nClipped, thresClip, nIterClip, getResidual);
[2645]2653
[2737]2654      //---
2655      if (outBaselineParamTable) {
2656        bt->appenddata(uInt(getScan(whichrow)), uInt(getCycle(whichrow)), uInt(getBeam(whichrow)), uInt(getIF(whichrow)), uInt(getPol(whichrow)),
2657                       uInt(0),
2658                       Double(0.0), // <-- Double(getTime(whichrow, false)),
[2740]2659                       uInt(nchan(whichrow)),
2660                       STBaselineFunc::Chebyshev,
2661                       Vector<uInt>(1), // ==> MUST BE Vector<uInt> containing 'order'.
2662                       Vector<Float>(), // ==> for ffpar. ** dummy **
2663                       uInt(nIterClip),
2664                       Float(thresClip),
2665                       Vector<uInt>(5), // <-- Vector<uInt>(finalChanMask),
2666                       Vector<Float>(params),
[2737]2667                       Float(rms));
2668      } else {
2669        setSpectrum(res, whichrow);
2670      }
2671      //---
2672
[2645]2673      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "chebyshevBaseline()", params, nClipped);
2674      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
2675    }
2676   
[2737]2677    //---
2678    if (outBaselineParamTable) {
2679      bt->save("chebyparamtable");
2680    }
2681    //---
2682    delete bt;
2683
[2645]2684    if (outTextFile) ofs.close();
2685
2686  } catch (...) {
2687    throw;
2688  }
2689}
2690
[2713]2691double Scantable::calculateModelSelectionCriteria(const std::string& valname, const std::string& blfunc, int order, const std::vector<bool>& inMask, int whichrow, bool useLineFinder, const std::vector<int>& edge, float threshold, int chanAvgLimit)
2692{
2693  if (useLineFinder) {
2694    int minEdgeSize = getIFNos().size()*2;
2695
2696
2697    int edgeSize = edge.size();
2698    std::vector<int> currentEdge;
2699    if (edgeSize >= 2) {
2700      int idx = 0;
2701      if (edgeSize > 2) {
2702        if (edgeSize < minEdgeSize) {
2703          throw(AipsError("Length of edge element info is less than that of IFs"));
2704        }
2705        idx = 2 * getIF(whichrow);
2706      }
2707      currentEdge.push_back(edge[idx]);
2708      currentEdge.push_back(edge[idx+1]);
2709    } else {
2710      throw(AipsError("Wrong length of edge element"));
2711    }
2712
2713    STLineFinder lineFinder = STLineFinder();
2714    std::vector<float> sp = getSpectrum(whichrow);
2715    lineFinder.setData(sp);
2716    lineFinder.setOptions(threshold, 3, chanAvgLimit);
2717    lineFinder.findLines(getCompositeChanMask(whichrow, inMask), currentEdge, whichrow);
2718    std::vector<bool> chanMask = lineFinder.getMask();
2719   
2720    return doCalculateModelSelectionCriteria(valname, sp, chanMask, blfunc, order);
2721
2722  } else {
2723    return doCalculateModelSelectionCriteria(valname, getSpectrum(whichrow), getCompositeChanMask(whichrow, inMask), blfunc, order);
2724  }
2725
2726}
2727
2728double Scantable::doCalculateModelSelectionCriteria(const std::string& valname, const std::vector<float>& spec, const std::vector<bool>& mask, const std::string& blfunc, int order)
2729{
2730  int nparam;
2731  std::vector<float> params;
[2737]2732  std::vector<bool> finalChanMask;
2733  float rms;
[2713]2734  int nClipped = 0;
2735  float thresClip = 0.0;
2736  int nIterClip = 0;
2737  std::vector<float> res;
2738  if (blfunc == "chebyshev") {
2739    nparam = order + 1;
[2737]2740    res = doChebyshevFitting(spec, mask, order, params, finalChanMask, rms, nClipped, thresClip, nIterClip, true);
[2713]2741  } else if (blfunc == "sinusoid") {
2742    std::vector<int> nWaves;
2743    nWaves.clear();
2744    for (int i = 0; i <= order; ++i) {
2745      nWaves.push_back(i);
2746    }
2747    nparam = 2*order + 1;  // order = nwave
2748    res = doSinusoidFitting(spec, mask, nWaves, params, nClipped, thresClip, nIterClip, true);
2749  } else if (blfunc == "cspline") {
2750    std::vector<int> pieceEdges(order+1);  //order = npiece
2751    nparam = order + 3;
2752    params.resize(4*order);
2753    res = doCubicSplineFitting(spec, mask, order, pieceEdges, params, nClipped, thresClip, nIterClip, true);
2754  } else {
2755    throw(AipsError("blfunc must be chebyshev, cspline or sinusoid."));
2756  }
2757
2758  double msq = 0.0;
2759  int nusedchan = 0;
2760  int nChan = res.size();
2761  for (int i = 0; i < nChan; ++i) {
2762    if (mask[i]) {
2763      msq += (double)res[i]*(double)res[i];
2764      nusedchan++;
2765    }
2766  }
2767  if (nusedchan == 0) {
2768    throw(AipsError("all channels masked."));
2769  }
2770  msq /= (double)nusedchan;
2771
2772  nparam++;  //add 1 for sigma of Gaussian distribution
2773  const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
2774
2775  if (valname.find("aic") == 0) {
2776    // Original Akaike Information Criterion (AIC)
2777    double aic = nusedchan * (log(2.0 * PI * msq) + 1.0) + 2.0 * nparam;
2778
2779    // Corrected AIC by Sugiura(1978)
2780    if (valname == "aicc") {
2781      if (nusedchan - nparam - 1 <= 0) {
2782        throw(AipsError("channel size is too small to calculate AICc."));
2783      }
2784      aic += 2.0*nparam*(nparam + 1)/(double)(nusedchan - nparam - 1);
2785    }
2786
2787    return aic;
2788
2789  } else if (valname == "bic") {
2790    // Bayesian Information Criterion (BIC)
2791    double bic = nusedchan * log(msq) + nparam * log((double)nusedchan);
2792    return bic;
2793
2794  } else if (valname == "gcv") {
2795    // Generalised Cross Validation
2796    double x = 1.0 - (double)nparam / (double)nusedchan;
2797    double gcv = msq / (x * x);
2798    return gcv;
2799
2800  } else {
2801    throw(AipsError("valname must be aic, aicc, bic or gcv."));
2802  }
2803}
2804
[2645]2805void Scantable::autoChebyshevBaseline(const std::vector<bool>& mask, int order, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
2806{
2807  try {
2808    ofstream ofs;
2809    String coordInfo = "";
2810    bool hasSameNchan = true;
2811    bool outTextFile = false;
2812    bool csvFormat = false;
2813
2814    if (blfile != "") {
2815      csvFormat = (blfile.substr(0, 1) == "T");
2816      ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
2817      if (ofs) outTextFile = true;
2818    }
2819
2820    if (outLogger || outTextFile) {
2821      coordInfo = getCoordInfo()[0];
2822      if (coordInfo == "") coordInfo = "channel";
2823      hasSameNchan = hasSameNchanOverIFs();
2824    }
2825
2826    int nRow = nrow();
2827    std::vector<bool> chanMask;
2828    int minEdgeSize = getIFNos().size()*2;
2829    STLineFinder lineFinder = STLineFinder();
2830    lineFinder.setOptions(threshold, 3, chanAvgLimit);
2831
2832    bool showProgress;
2833    int minNRow;
2834    parseProgressInfo(progressInfo, showProgress, minNRow);
2835
[2737]2836    std::vector<bool> finalChanMask;
2837    float rms;
2838
[2645]2839    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2840      std::vector<float> sp = getSpectrum(whichrow);
2841
2842      //-------------------------------------------------------
2843      //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
2844      //-------------------------------------------------------
2845      int edgeSize = edge.size();
2846      std::vector<int> currentEdge;
2847      if (edgeSize >= 2) {
2848        int idx = 0;
2849        if (edgeSize > 2) {
2850          if (edgeSize < minEdgeSize) {
2851            throw(AipsError("Length of edge element info is less than that of IFs"));
2852          }
2853          idx = 2 * getIF(whichrow);
2854        }
2855        currentEdge.push_back(edge[idx]);
2856        currentEdge.push_back(edge[idx+1]);
2857      } else {
2858        throw(AipsError("Wrong length of edge element"));
2859      }
2860      //lineFinder.setData(getSpectrum(whichrow));
2861      lineFinder.setData(sp);
2862      lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
2863      chanMask = lineFinder.getMask();
2864      //-------------------------------------------------------
2865
2866
2867      //fitBaseline(chanMask, whichrow, fitter);
2868      //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
2869      std::vector<float> params(order+1);
2870      int nClipped = 0;
[2737]2871      std::vector<float> res = doChebyshevFitting(sp, chanMask, order, params, finalChanMask, rms, nClipped, thresClip, nIterClip, getResidual);
[2645]2872      setSpectrum(res, whichrow);
2873
2874      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoChebyshevBaseline()", params, nClipped);
2875      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
2876    }
2877
2878    if (outTextFile) ofs.close();
2879
2880  } catch (...) {
2881    throw;
2882  }
2883}
2884
2885  /*
2886double Scantable::getChebyshevPolynomial(int n, double x) {
2887  if ((x < -1.0)||(x > 1.0)) {
2888    throw(AipsError("out of definition range (-1 <= x <= 1)."));
2889  } else if (n < 0) {
2890    throw(AipsError("the order must be zero or positive."));
2891  } else if (n == 0) {
2892    return 1.0;
2893  } else if (n == 1) {
2894    return x;
2895  } else {
2896    return 2.0*x*getChebyshevPolynomial(n-1, x) - getChebyshevPolynomial(n-2, x);
2897  }
2898}
2899  */
2900double Scantable::getChebyshevPolynomial(int n, double x) {
2901  if ((x < -1.0)||(x > 1.0)) {
2902    throw(AipsError("out of definition range (-1 <= x <= 1)."));
[2713]2903  } else if (x == 1.0) {
2904    return 1.0;
2905  } else if (x == 0.0) {
2906    double res;
2907    if (n%2 == 0) {
2908      if (n%4 == 0) {
2909        res = 1.0;
2910      } else {
2911        res = -1.0;
2912      }
2913    } else {
2914      res = 0.0;
2915    }
2916    return res;
2917  } else if (x == -1.0) {
2918    double res = (n%2 == 0 ? 1.0 : -1.0);
2919    return res;
[2645]2920  } else if (n < 0) {
2921    throw(AipsError("the order must be zero or positive."));
2922  } else if (n == 0) {
2923    return 1.0;
2924  } else if (n == 1) {
2925    return x;
2926  } else {
2927    double res = 0.0;
2928    for (int m = 0; m <= n/2; ++m) {
2929      double c = 1.0;
2930      if (m > 0) {
2931        for (int i = 1; i <= m; ++i) {
2932          c *= (double)(n-2*m+i)/(double)i;
2933        }
2934      }
[2713]2935      res += (m%2 == 0 ? 1.0 : -1.0)*(double)n/(double)(n-m)*pow(2.0*x, (double)(n-2*m))/2.0*c;
[2645]2936    }
2937    return res;
2938  }
2939}
2940
[2737]2941std::vector<float> Scantable::doChebyshevFitting(const std::vector<float>& data, const std::vector<bool>& mask, int order, std::vector<float>& params, std::vector<bool>& finalMask, float& rms, int& nClipped, float thresClip, int nIterClip, bool getResidual)
[2645]2942{
2943  if (data.size() != mask.size()) {
2944    throw(AipsError("data and mask sizes are not identical"));
2945  }
2946  if (order < 0) {
2947    throw(AipsError("maximum order of Chebyshev polynomial must not be negative."));
2948  }
2949
2950  int nChan = data.size();
[2737]2951
2952  finalMask.clear();
2953  finalMask.resize(nChan);
2954
[2645]2955  std::vector<int> maskArray;
2956  std::vector<int> x;
2957  for (int i = 0; i < nChan; ++i) {
2958    maskArray.push_back(mask[i] ? 1 : 0);
2959    if (mask[i]) {
2960      x.push_back(i);
2961    }
[2737]2962    finalMask[i] = mask[i];
[2645]2963  }
2964
2965  int initNData = x.size();
2966
2967  int nData = initNData;
2968  int nDOF = order + 1;  //number of parameters to solve.
2969
2970  // xArray : contains elemental values for computing the least-square matrix.
2971  //          xArray.size() is nDOF and xArray[*].size() is nChan.
2972  //          Each xArray element are as follows:
2973  //          xArray[0]   = {T0(-1), T0(2/(nChan-1)-1), T0(4/(nChan-1)-1), ..., T0(1)},
2974  //          xArray[n-1] = ...,
2975  //          xArray[n]   = {Tn(-1), Tn(2/(nChan-1)-1), Tn(4/(nChan-1)-1), ..., Tn(1)}
2976  //          where (0 <= n <= order),
2977  std::vector<std::vector<double> > xArray;
2978  for (int i = 0; i < nDOF; ++i) {
2979    double xFactor = 2.0/(double)(nChan - 1);
2980    std::vector<double> xs;
2981    xs.clear();
2982    for (int j = 0; j < nChan; ++j) {
2983      xs.push_back(getChebyshevPolynomial(i, xFactor*(double)j-1.0));
2984    }
2985    xArray.push_back(xs);
2986  }
2987
2988  std::vector<double> z1, r1, residual;
2989  for (int i = 0; i < nChan; ++i) {
2990    z1.push_back((double)data[i]);
2991    r1.push_back(0.0);
2992    residual.push_back(0.0);
2993  }
2994
2995  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
2996    // xMatrix : horizontal concatenation of
2997    //           the least-sq. matrix (left) and an
2998    //           identity matrix (right).
2999    // the right part is used to calculate the inverse matrix of the left part.
3000    double xMatrix[nDOF][2*nDOF];
3001    double zMatrix[nDOF];
3002    for (int i = 0; i < nDOF; ++i) {
3003      for (int j = 0; j < 2*nDOF; ++j) {
3004        xMatrix[i][j] = 0.0;
3005      }
3006      xMatrix[i][nDOF+i] = 1.0;
3007      zMatrix[i] = 0.0;
3008    }
3009
3010    int nUseData = 0;
3011    for (int k = 0; k < nChan; ++k) {
3012      if (maskArray[k] == 0) continue;
3013
3014      for (int i = 0; i < nDOF; ++i) {
3015        for (int j = i; j < nDOF; ++j) {
3016          xMatrix[i][j] += xArray[i][k] * xArray[j][k];
3017        }
3018        zMatrix[i] += z1[k] * xArray[i][k];
3019      }
3020
3021      nUseData++;
3022    }
3023
3024    if (nUseData < 1) {
3025        throw(AipsError("all channels clipped or masked. can't execute fitting anymore."));     
3026    }
3027
3028    for (int i = 0; i < nDOF; ++i) {
3029      for (int j = 0; j < i; ++j) {
3030        xMatrix[i][j] = xMatrix[j][i];
3031      }
3032    }
3033
3034    std::vector<double> invDiag;
3035    for (int i = 0; i < nDOF; ++i) {
3036      invDiag.push_back(1.0/xMatrix[i][i]);
3037      for (int j = 0; j < nDOF; ++j) {
3038        xMatrix[i][j] *= invDiag[i];
3039      }
3040    }
3041
3042    for (int k = 0; k < nDOF; ++k) {
3043      for (int i = 0; i < nDOF; ++i) {
3044        if (i != k) {
3045          double factor1 = xMatrix[k][k];
3046          double factor2 = xMatrix[i][k];
3047          for (int j = k; j < 2*nDOF; ++j) {
3048            xMatrix[i][j] *= factor1;
3049            xMatrix[i][j] -= xMatrix[k][j]*factor2;
3050            xMatrix[i][j] /= factor1;
3051          }
3052        }
3053      }
3054      double xDiag = xMatrix[k][k];
3055      for (int j = k; j < 2*nDOF; ++j) {
3056        xMatrix[k][j] /= xDiag;
3057      }
3058    }
3059   
3060    for (int i = 0; i < nDOF; ++i) {
3061      for (int j = 0; j < nDOF; ++j) {
3062        xMatrix[i][nDOF+j] *= invDiag[j];
3063      }
3064    }
3065    //compute a vector y which consists of the coefficients of the sinusoids forming the
3066    //best-fit curves (a0,s1,c1,s2,c2,...), where a0 is constant and s* and c* are of sine
3067    //and cosine functions, respectively.
3068    std::vector<double> y;
3069    params.clear();
3070    for (int i = 0; i < nDOF; ++i) {
3071      y.push_back(0.0);
3072      for (int j = 0; j < nDOF; ++j) {
3073        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
3074      }
3075      params.push_back(y[i]);
3076    }
3077
3078    for (int i = 0; i < nChan; ++i) {
3079      r1[i] = y[0];
3080      for (int j = 1; j < nDOF; ++j) {
3081        r1[i] += y[j]*xArray[j][i];
3082      }
3083      residual[i] = z1[i] - r1[i];
3084    }
3085
[2737]3086    double stdDev = 0.0;
3087    for (int i = 0; i < nChan; ++i) {
3088      stdDev += residual[i]*residual[i]*(double)maskArray[i];
3089    }
3090    stdDev = sqrt(stdDev/(double)nData);
3091    rms = (float)stdDev;
3092
[2645]3093    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
3094      break;
3095    } else {
[2737]3096
[2645]3097      double thres = stdDev * thresClip;
3098      int newNData = 0;
3099      for (int i = 0; i < nChan; ++i) {
3100        if (abs(residual[i]) >= thres) {
3101          maskArray[i] = 0;
[2737]3102          finalMask[i] = false;
[2645]3103        }
3104        if (maskArray[i] > 0) {
3105          newNData++;
3106        }
3107      }
3108      if (newNData == nData) {
3109        break; //no more flag to add. iteration stops.
3110      } else {
3111        nData = newNData;
3112      }
[2737]3113
[2645]3114    }
3115  }
3116
3117  nClipped = initNData - nData;
3118
3119  std::vector<float> result;
3120  if (getResidual) {
3121    for (int i = 0; i < nChan; ++i) {
3122      result.push_back((float)residual[i]);
3123    }
3124  } else {
3125    for (int i = 0; i < nChan; ++i) {
3126      result.push_back((float)r1[i]);
3127    }
3128  }
3129
3130  return result;
3131}
3132
[2189]3133void Scantable::cubicSplineBaseline(const std::vector<bool>& mask, int nPiece, float thresClip, int nIterClip, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
[2081]3134{
[2641]3135  /*************
[2591]3136  double totTimeStart, totTimeEnd, blTimeStart, blTimeEnd, ioTimeStart, ioTimeEnd, msTimeStart, msTimeEnd, seTimeStart, seTimeEnd, otTimeStart, otTimeEnd, prTimeStart, prTimeEnd;
3137  double elapseMs = 0.0;
3138  double elapseSe = 0.0;
3139  double elapseOt = 0.0;
3140  double elapsePr = 0.0;
3141  double elapseBl = 0.0;
3142  double elapseIo = 0.0;
3143  totTimeStart = mathutil::gettimeofday_sec();
[2641]3144  *************/
[2591]3145
[2193]3146  try {
3147    ofstream ofs;
3148    String coordInfo = "";
3149    bool hasSameNchan = true;
3150    bool outTextFile = false;
[2641]3151    bool csvFormat = false;
[2012]3152
[2193]3153    if (blfile != "") {
[2641]3154      csvFormat = (blfile.substr(0, 1) == "T");
3155      ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
[2193]3156      if (ofs) outTextFile = true;
3157    }
[2012]3158
[2193]3159    if (outLogger || outTextFile) {
3160      coordInfo = getCoordInfo()[0];
3161      if (coordInfo == "") coordInfo = "channel";
3162      hasSameNchan = hasSameNchanOverIFs();
3163    }
[2012]3164
[2193]3165    //Fitter fitter = Fitter();
3166    //fitter.setExpression("cspline", nPiece);
3167    //fitter.setIterClipping(thresClip, nIterClip);
[2012]3168
[2193]3169    bool showProgress;
3170    int minNRow;
3171    parseProgressInfo(progressInfo, showProgress, minNRow);
[2012]3172
[2344]3173    int nRow = nrow();
3174    std::vector<bool> chanMask;
3175
3176    //--------------------------------
[2193]3177    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
[2641]3178      /******************
[2591]3179      ioTimeStart = mathutil::gettimeofday_sec();
[2641]3180      **/
[2591]3181      std::vector<float> sp = getSpectrum(whichrow);
[2641]3182      /**
[2591]3183      ioTimeEnd = mathutil::gettimeofday_sec();
3184      elapseIo += (double)(ioTimeEnd - ioTimeStart);
3185      msTimeStart = mathutil::gettimeofday_sec();
[2641]3186      ******************/
[2591]3187
[2193]3188      chanMask = getCompositeChanMask(whichrow, mask);
[2591]3189
[2641]3190      /**
[2591]3191      msTimeEnd = mathutil::gettimeofday_sec();
3192      elapseMs += (double)(msTimeEnd - msTimeStart);
3193      blTimeStart = mathutil::gettimeofday_sec();
[2641]3194      **/
[2591]3195
[2193]3196      //fitBaseline(chanMask, whichrow, fitter);
3197      //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
[2344]3198      std::vector<int> pieceEdges(nPiece+1);
3199      std::vector<float> params(nPiece*4);
[2193]3200      int nClipped = 0;
[2591]3201      std::vector<float> res = doCubicSplineFitting(sp, chanMask, nPiece, pieceEdges, params, nClipped, thresClip, nIterClip, getResidual);
3202
[2641]3203      /**
[2591]3204      blTimeEnd = mathutil::gettimeofday_sec();
3205      elapseBl += (double)(blTimeEnd - blTimeStart);
3206      seTimeStart = mathutil::gettimeofday_sec();
[2641]3207      **/
[2591]3208
3209
[2193]3210      setSpectrum(res, whichrow);
3211      //
[2012]3212
[2641]3213      /**
[2591]3214      seTimeEnd = mathutil::gettimeofday_sec();
3215      elapseSe += (double)(seTimeEnd - seTimeStart);
3216      otTimeStart = mathutil::gettimeofday_sec();
[2641]3217      **/
[2591]3218
[2641]3219      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "cubicSplineBaseline()", pieceEdges, params, nClipped);
[2591]3220
[2641]3221      /**
[2591]3222      otTimeEnd = mathutil::gettimeofday_sec();
3223      elapseOt += (double)(otTimeEnd - otTimeStart);
3224      prTimeStart = mathutil::gettimeofday_sec();
[2641]3225      **/
[2591]3226
[2193]3227      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
[2591]3228
[2641]3229      /******************
[2591]3230      prTimeEnd = mathutil::gettimeofday_sec();
3231      elapsePr += (double)(prTimeEnd - prTimeStart);
[2641]3232      ******************/
[2193]3233    }
[2344]3234    //--------------------------------
3235   
[2193]3236    if (outTextFile) ofs.close();
3237
3238  } catch (...) {
3239    throw;
[2012]3240  }
[2641]3241  /***************
[2591]3242  totTimeEnd = mathutil::gettimeofday_sec();
3243  std::cout << "io    : " << elapseIo << " (sec.)" << endl;
3244  std::cout << "ms    : " << elapseMs << " (sec.)" << endl;
3245  std::cout << "bl    : " << elapseBl << " (sec.)" << endl;
3246  std::cout << "se    : " << elapseSe << " (sec.)" << endl;
3247  std::cout << "ot    : " << elapseOt << " (sec.)" << endl;
3248  std::cout << "pr    : " << elapsePr << " (sec.)" << endl;
3249  std::cout << "total : " << (double)(totTimeEnd - totTimeStart) << " (sec.)" << endl;
[2641]3250  ***************/
[2012]3251}
3252
[2189]3253void Scantable::autoCubicSplineBaseline(const std::vector<bool>& mask, int nPiece, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
[2012]3254{
[2193]3255  try {
3256    ofstream ofs;
3257    String coordInfo = "";
3258    bool hasSameNchan = true;
3259    bool outTextFile = false;
[2641]3260    bool csvFormat = false;
[2012]3261
[2193]3262    if (blfile != "") {
[2641]3263      csvFormat = (blfile.substr(0, 1) == "T");
3264      ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
[2193]3265      if (ofs) outTextFile = true;
3266    }
[2012]3267
[2193]3268    if (outLogger || outTextFile) {
3269      coordInfo = getCoordInfo()[0];
3270      if (coordInfo == "") coordInfo = "channel";
3271      hasSameNchan = hasSameNchanOverIFs();
3272    }
[2012]3273
[2193]3274    //Fitter fitter = Fitter();
3275    //fitter.setExpression("cspline", nPiece);
3276    //fitter.setIterClipping(thresClip, nIterClip);
[2012]3277
[2193]3278    int nRow = nrow();
3279    std::vector<bool> chanMask;
3280    int minEdgeSize = getIFNos().size()*2;
3281    STLineFinder lineFinder = STLineFinder();
3282    lineFinder.setOptions(threshold, 3, chanAvgLimit);
[2012]3283
[2193]3284    bool showProgress;
3285    int minNRow;
3286    parseProgressInfo(progressInfo, showProgress, minNRow);
[2189]3287
[2193]3288    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
[2591]3289      std::vector<float> sp = getSpectrum(whichrow);
[2012]3290
[2193]3291      //-------------------------------------------------------
3292      //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
3293      //-------------------------------------------------------
3294      int edgeSize = edge.size();
3295      std::vector<int> currentEdge;
3296      if (edgeSize >= 2) {
3297        int idx = 0;
3298        if (edgeSize > 2) {
3299          if (edgeSize < minEdgeSize) {
3300            throw(AipsError("Length of edge element info is less than that of IFs"));
3301          }
3302          idx = 2 * getIF(whichrow);
[2012]3303        }
[2193]3304        currentEdge.push_back(edge[idx]);
3305        currentEdge.push_back(edge[idx+1]);
3306      } else {
3307        throw(AipsError("Wrong length of edge element"));
[2012]3308      }
[2641]3309      //lineFinder.setData(getSpectrum(whichrow));
3310      lineFinder.setData(sp);
[2193]3311      lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
3312      chanMask = lineFinder.getMask();
3313      //-------------------------------------------------------
3314
3315
3316      //fitBaseline(chanMask, whichrow, fitter);
3317      //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
[2344]3318      std::vector<int> pieceEdges(nPiece+1);
3319      std::vector<float> params(nPiece*4);
[2193]3320      int nClipped = 0;
[2591]3321      std::vector<float> res = doCubicSplineFitting(sp, chanMask, nPiece, pieceEdges, params, nClipped, thresClip, nIterClip, getResidual);
[2193]3322      setSpectrum(res, whichrow);
3323      //
3324
[2641]3325      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoCubicSplineBaseline()", pieceEdges, params, nClipped);
[2193]3326      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
[1907]3327    }
[2012]3328
[2193]3329    if (outTextFile) ofs.close();
[2012]3330
[2193]3331  } catch (...) {
3332    throw;
[2012]3333  }
[1730]3334}
[1907]3335
[2193]3336std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data, const std::vector<bool>& mask, int nPiece, std::vector<int>& idxEdge, std::vector<float>& params, int& nClipped, float thresClip, int nIterClip, bool getResidual)
[2081]3337{
3338  if (data.size() != mask.size()) {
3339    throw(AipsError("data and mask sizes are not identical"));
3340  }
[2012]3341  if (nPiece < 1) {
[2094]3342    throw(AipsError("number of the sections must be one or more"));
[2012]3343  }
3344
3345  int nChan = data.size();
[2344]3346  std::vector<int> maskArray(nChan);
3347  std::vector<int> x(nChan);
3348  int j = 0;
[2012]3349  for (int i = 0; i < nChan; ++i) {
[2344]3350    maskArray[i] = mask[i] ? 1 : 0;
[2012]3351    if (mask[i]) {
[2344]3352      x[j] = i;
3353      j++;
[2012]3354    }
3355  }
[2344]3356  int initNData = j;
[2012]3357
[2193]3358  if (initNData < nPiece) {
3359    throw(AipsError("too few non-flagged channels"));
3360  }
[2081]3361
3362  int nElement = (int)(floor(floor((double)(initNData/nPiece))+0.5));
[2344]3363  std::vector<double> invEdge(nPiece-1);
3364  idxEdge[0] = x[0];
[2012]3365  for (int i = 1; i < nPiece; ++i) {
[2047]3366    int valX = x[nElement*i];
[2344]3367    idxEdge[i] = valX;
3368    invEdge[i-1] = 1.0/(double)valX;
[2012]3369  }
[2344]3370  idxEdge[nPiece] = x[initNData-1]+1;
[2064]3371
[2081]3372  int nData = initNData;
3373  int nDOF = nPiece + 3;  //number of parameters to solve, namely, 4+(nPiece-1).
3374
[2344]3375  std::vector<double> x1(nChan), x2(nChan), x3(nChan);
3376  std::vector<double> z1(nChan), x1z1(nChan), x2z1(nChan), x3z1(nChan);
3377  std::vector<double> r1(nChan), residual(nChan);
[2012]3378  for (int i = 0; i < nChan; ++i) {
[2064]3379    double di = (double)i;
3380    double dD = (double)data[i];
[2344]3381    x1[i]   = di;
3382    x2[i]   = di*di;
3383    x3[i]   = di*di*di;
3384    z1[i]   = dD;
3385    x1z1[i] = dD*di;
3386    x2z1[i] = dD*di*di;
3387    x3z1[i] = dD*di*di*di;
3388    r1[i]   = 0.0;
3389    residual[i] = 0.0;
[2012]3390  }
3391
3392  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
[2064]3393    // xMatrix : horizontal concatenation of
3394    //           the least-sq. matrix (left) and an
3395    //           identity matrix (right).
3396    // the right part is used to calculate the inverse matrix of the left part.
[2012]3397    double xMatrix[nDOF][2*nDOF];
3398    double zMatrix[nDOF];
3399    for (int i = 0; i < nDOF; ++i) {
3400      for (int j = 0; j < 2*nDOF; ++j) {
3401        xMatrix[i][j] = 0.0;
3402      }
3403      xMatrix[i][nDOF+i] = 1.0;
3404      zMatrix[i] = 0.0;
3405    }
3406
3407    for (int n = 0; n < nPiece; ++n) {
[2193]3408      int nUseDataInPiece = 0;
[2064]3409      for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
3410
[2012]3411        if (maskArray[i] == 0) continue;
[2064]3412
[2012]3413        xMatrix[0][0] += 1.0;
[2064]3414        xMatrix[0][1] += x1[i];
3415        xMatrix[0][2] += x2[i];
3416        xMatrix[0][3] += x3[i];
3417        xMatrix[1][1] += x2[i];
3418        xMatrix[1][2] += x3[i];
3419        xMatrix[1][3] += x2[i]*x2[i];
3420        xMatrix[2][2] += x2[i]*x2[i];
3421        xMatrix[2][3] += x3[i]*x2[i];
3422        xMatrix[3][3] += x3[i]*x3[i];
[2012]3423        zMatrix[0] += z1[i];
[2064]3424        zMatrix[1] += x1z1[i];
3425        zMatrix[2] += x2z1[i];
3426        zMatrix[3] += x3z1[i];
3427
[2012]3428        for (int j = 0; j < n; ++j) {
[2064]3429          double q = 1.0 - x1[i]*invEdge[j];
[2012]3430          q = q*q*q;
3431          xMatrix[0][j+4] += q;
[2064]3432          xMatrix[1][j+4] += q*x1[i];
3433          xMatrix[2][j+4] += q*x2[i];
3434          xMatrix[3][j+4] += q*x3[i];
[2012]3435          for (int k = 0; k < j; ++k) {
[2064]3436            double r = 1.0 - x1[i]*invEdge[k];
[2012]3437            r = r*r*r;
3438            xMatrix[k+4][j+4] += r*q;
3439          }
3440          xMatrix[j+4][j+4] += q*q;
3441          zMatrix[j+4] += q*z1[i];
3442        }
[2064]3443
[2193]3444        nUseDataInPiece++;
[2012]3445      }
[2193]3446
3447      if (nUseDataInPiece < 1) {
3448        std::vector<string> suffixOfPieceNumber(4);
3449        suffixOfPieceNumber[0] = "th";
3450        suffixOfPieceNumber[1] = "st";
3451        suffixOfPieceNumber[2] = "nd";
3452        suffixOfPieceNumber[3] = "rd";
3453        int idxNoDataPiece = (n % 10 <= 3) ? n : 0;
3454        ostringstream oss;
3455        oss << "all channels clipped or masked in " << n << suffixOfPieceNumber[idxNoDataPiece];
3456        oss << " piece of the spectrum. can't execute fitting anymore.";
3457        throw(AipsError(String(oss)));
3458      }
[2012]3459    }
3460
3461    for (int i = 0; i < nDOF; ++i) {
3462      for (int j = 0; j < i; ++j) {
3463        xMatrix[i][j] = xMatrix[j][i];
3464      }
3465    }
3466
[2344]3467    std::vector<double> invDiag(nDOF);
[2012]3468    for (int i = 0; i < nDOF; ++i) {
[2344]3469      invDiag[i] = 1.0/xMatrix[i][i];
[2012]3470      for (int j = 0; j < nDOF; ++j) {
3471        xMatrix[i][j] *= invDiag[i];
3472      }
3473    }
3474
3475    for (int k = 0; k < nDOF; ++k) {
3476      for (int i = 0; i < nDOF; ++i) {
3477        if (i != k) {
3478          double factor1 = xMatrix[k][k];
3479          double factor2 = xMatrix[i][k];
3480          for (int j = k; j < 2*nDOF; ++j) {
3481            xMatrix[i][j] *= factor1;
3482            xMatrix[i][j] -= xMatrix[k][j]*factor2;
3483            xMatrix[i][j] /= factor1;
3484          }
3485        }
3486      }
3487      double xDiag = xMatrix[k][k];
3488      for (int j = k; j < 2*nDOF; ++j) {
3489        xMatrix[k][j] /= xDiag;
3490      }
3491    }
3492   
3493    for (int i = 0; i < nDOF; ++i) {
3494      for (int j = 0; j < nDOF; ++j) {
3495        xMatrix[i][nDOF+j] *= invDiag[j];
3496      }
3497    }
3498    //compute a vector y which consists of the coefficients of the best-fit spline curves
3499    //(a0,a1,a2,a3(,b3,c3,...)), namely, the ones for the leftmost piece and the ones of
3500    //cubic terms for the other pieces (in case nPiece>1).
[2344]3501    std::vector<double> y(nDOF);
[2012]3502    for (int i = 0; i < nDOF; ++i) {
[2344]3503      y[i] = 0.0;
[2012]3504      for (int j = 0; j < nDOF; ++j) {
3505        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
3506      }
3507    }
3508
3509    double a0 = y[0];
3510    double a1 = y[1];
3511    double a2 = y[2];
3512    double a3 = y[3];
3513
[2344]3514    int j = 0;
[2012]3515    for (int n = 0; n < nPiece; ++n) {
[2064]3516      for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
3517        r1[i] = a0 + a1*x1[i] + a2*x2[i] + a3*x3[i];
[2012]3518      }
[2344]3519      params[j]   = a0;
3520      params[j+1] = a1;
3521      params[j+2] = a2;
3522      params[j+3] = a3;
3523      j += 4;
[2012]3524
3525      if (n == nPiece-1) break;
3526
3527      double d = y[4+n];
[2064]3528      double iE = invEdge[n];
3529      a0 +=     d;
3530      a1 -= 3.0*d*iE;
3531      a2 += 3.0*d*iE*iE;
3532      a3 -=     d*iE*iE*iE;
[2012]3533    }
3534
[2344]3535    //subtract constant value for masked regions at the edge of spectrum
3536    if (idxEdge[0] > 0) {
3537      int n = idxEdge[0];
3538      for (int i = 0; i < idxEdge[0]; ++i) {
3539        //--cubic extrapolate--
3540        //r1[i] = params[0] + params[1]*x1[i] + params[2]*x2[i] + params[3]*x3[i];
3541        //--linear extrapolate--
3542        //r1[i] = (r1[n+1] - r1[n])/(x1[n+1] - x1[n])*(x1[i] - x1[n]) + r1[n];
3543        //--constant--
3544        r1[i] = r1[n];
3545      }
3546    }
3547    if (idxEdge[nPiece] < nChan) {
3548      int n = idxEdge[nPiece]-1;
3549      for (int i = idxEdge[nPiece]; i < nChan; ++i) {
3550        //--cubic extrapolate--
3551        //int m = 4*(nPiece-1);
3552        //r1[i] = params[m] + params[m+1]*x1[i] + params[m+2]*x2[i] + params[m+3]*x3[i];
3553        //--linear extrapolate--
3554        //r1[i] = (r1[n-1] - r1[n])/(x1[n-1] - x1[n])*(x1[i] - x1[n]) + r1[n];
3555        //--constant--
3556        r1[i] = r1[n];
3557      }
3558    }
3559
3560    for (int i = 0; i < nChan; ++i) {
3561      residual[i] = z1[i] - r1[i];
3562    }
3563
[2012]3564    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
3565      break;
3566    } else {
3567      double stdDev = 0.0;
3568      for (int i = 0; i < nChan; ++i) {
[2081]3569        stdDev += residual[i]*residual[i]*(double)maskArray[i];
[2012]3570      }
3571      stdDev = sqrt(stdDev/(double)nData);
3572     
3573      double thres = stdDev * thresClip;
3574      int newNData = 0;
3575      for (int i = 0; i < nChan; ++i) {
[2081]3576        if (abs(residual[i]) >= thres) {
[2012]3577          maskArray[i] = 0;
3578        }
3579        if (maskArray[i] > 0) {
3580          newNData++;
3581        }
3582      }
[2081]3583      if (newNData == nData) {
[2064]3584        break; //no more flag to add. iteration stops.
[2012]3585      } else {
[2081]3586        nData = newNData;
[2012]3587      }
3588    }
3589  }
3590
[2193]3591  nClipped = initNData - nData;
3592
[2344]3593  std::vector<float> result(nChan);
[2058]3594  if (getResidual) {
3595    for (int i = 0; i < nChan; ++i) {
[2344]3596      result[i] = (float)residual[i];
[2058]3597    }
3598  } else {
3599    for (int i = 0; i < nChan; ++i) {
[2344]3600      result[i] = (float)r1[i];
[2058]3601    }
[2012]3602  }
3603
[2058]3604  return result;
[2012]3605}
3606
[2344]3607void Scantable::selectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves)
[2081]3608{
[2186]3609  nWaves.clear();
3610
3611  if (applyFFT) {
3612    string fftThAttr;
3613    float fftThSigma;
3614    int fftThTop;
3615    parseThresholdExpression(fftThresh, fftThAttr, fftThSigma, fftThTop);
3616    doSelectWaveNumbers(whichrow, chanMask, fftMethod, fftThSigma, fftThTop, fftThAttr, nWaves);
3617  }
3618
[2411]3619  addAuxWaveNumbers(whichrow, addNWaves, rejectNWaves, nWaves);
[2186]3620}
3621
3622void Scantable::parseThresholdExpression(const std::string& fftThresh, std::string& fftThAttr, float& fftThSigma, int& fftThTop)
3623{
3624  uInt idxSigma = fftThresh.find("sigma");
3625  uInt idxTop   = fftThresh.find("top");
3626
3627  if (idxSigma == fftThresh.size() - 5) {
3628    std::istringstream is(fftThresh.substr(0, fftThresh.size() - 5));
3629    is >> fftThSigma;
3630    fftThAttr = "sigma";
3631  } else if (idxTop == 0) {
3632    std::istringstream is(fftThresh.substr(3));
3633    is >> fftThTop;
3634    fftThAttr = "top";
3635  } else {
3636    bool isNumber = true;
3637    for (uInt i = 0; i < fftThresh.size()-1; ++i) {
3638      char ch = (fftThresh.substr(i, 1).c_str())[0];
3639      if (!(isdigit(ch) || (fftThresh.substr(i, 1) == "."))) {
3640        isNumber = false;
3641        break;
3642      }
3643    }
3644    if (isNumber) {
3645      std::istringstream is(fftThresh);
3646      is >> fftThSigma;
3647      fftThAttr = "sigma";
3648    } else {
3649      throw(AipsError("fftthresh has a wrong value"));
3650    }
3651  }
3652}
3653
3654void Scantable::doSelectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const std::string& fftMethod, const float fftThSigma, const int fftThTop, const std::string& fftThAttr, std::vector<int>& nWaves)
3655{
3656  std::vector<float> fspec;
3657  if (fftMethod == "fft") {
3658    fspec = execFFT(whichrow, chanMask, false, true);
3659  //} else if (fftMethod == "lsp") {
3660  //  fspec = lombScarglePeriodogram(whichrow);
3661  }
3662
3663  if (fftThAttr == "sigma") {
3664    float mean  = 0.0;
3665    float mean2 = 0.0;
3666    for (uInt i = 0; i < fspec.size(); ++i) {
3667      mean  += fspec[i];
3668      mean2 += fspec[i]*fspec[i];
3669    }
3670    mean  /= float(fspec.size());
3671    mean2 /= float(fspec.size());
3672    float thres = mean + fftThSigma * float(sqrt(mean2 - mean*mean));
3673
3674    for (uInt i = 0; i < fspec.size(); ++i) {
3675      if (fspec[i] >= thres) {
3676        nWaves.push_back(i);
3677      }
3678    }
3679
3680  } else if (fftThAttr == "top") {
3681    for (int i = 0; i < fftThTop; ++i) {
3682      float max = 0.0;
3683      int maxIdx = 0;
3684      for (uInt j = 0; j < fspec.size(); ++j) {
3685        if (fspec[j] > max) {
3686          max = fspec[j];
3687          maxIdx = j;
3688        }
3689      }
3690      nWaves.push_back(maxIdx);
3691      fspec[maxIdx] = 0.0;
3692    }
3693
3694  }
3695
3696  if (nWaves.size() > 1) {
3697    sort(nWaves.begin(), nWaves.end());
3698  }
3699}
3700
[2411]3701void Scantable::addAuxWaveNumbers(const int whichrow, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves)
[2186]3702{
[2411]3703  std::vector<int> tempAddNWaves, tempRejectNWaves;
[2186]3704  for (uInt i = 0; i < addNWaves.size(); ++i) {
[2411]3705    tempAddNWaves.push_back(addNWaves[i]);
3706  }
3707  if ((tempAddNWaves.size() == 2) && (tempAddNWaves[1] == -999)) {
3708    setWaveNumberListUptoNyquistFreq(whichrow, tempAddNWaves);
3709  }
3710
3711  for (uInt i = 0; i < rejectNWaves.size(); ++i) {
3712    tempRejectNWaves.push_back(rejectNWaves[i]);
3713  }
3714  if ((tempRejectNWaves.size() == 2) && (tempRejectNWaves[1] == -999)) {
3715    setWaveNumberListUptoNyquistFreq(whichrow, tempRejectNWaves);
3716  }
3717
3718  for (uInt i = 0; i < tempAddNWaves.size(); ++i) {
[2186]3719    bool found = false;
3720    for (uInt j = 0; j < nWaves.size(); ++j) {
[2411]3721      if (nWaves[j] == tempAddNWaves[i]) {
[2186]3722        found = true;
3723        break;
3724      }
3725    }
[2411]3726    if (!found) nWaves.push_back(tempAddNWaves[i]);
[2186]3727  }
3728
[2411]3729  for (uInt i = 0; i < tempRejectNWaves.size(); ++i) {
[2186]3730    for (std::vector<int>::iterator j = nWaves.begin(); j != nWaves.end(); ) {
[2411]3731      if (*j == tempRejectNWaves[i]) {
[2186]3732        j = nWaves.erase(j);
3733      } else {
3734        ++j;
3735      }
3736    }
3737  }
3738
3739  if (nWaves.size() > 1) {
3740    sort(nWaves.begin(), nWaves.end());
3741    unique(nWaves.begin(), nWaves.end());
3742  }
3743}
3744
[2411]3745void Scantable::setWaveNumberListUptoNyquistFreq(const int whichrow, std::vector<int>& nWaves)
3746{
3747  if ((nWaves.size() == 2)&&(nWaves[1] == -999)) {
3748    int val = nWaves[0];
3749    int nyquistFreq = nchan(getIF(whichrow))/2+1;
3750    nWaves.clear();
3751    if (val > nyquistFreq) {  // for safety, at least nWaves contains a constant; CAS-3759
3752      nWaves.push_back(0);
3753    }
3754    while (val <= nyquistFreq) {
3755      nWaves.push_back(val);
3756      val++;
3757    }
3758  }
3759}
3760
[2189]3761void Scantable::sinusoidBaseline(const std::vector<bool>& mask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, float thresClip, int nIterClip, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
[2186]3762{
[2193]3763  try {
3764    ofstream ofs;
3765    String coordInfo = "";
3766    bool hasSameNchan = true;
3767    bool outTextFile = false;
[2641]3768    bool csvFormat = false;
[2012]3769
[2193]3770    if (blfile != "") {
[2641]3771      csvFormat = (blfile.substr(0, 1) == "T");
3772      ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
[2193]3773      if (ofs) outTextFile = true;
3774    }
[2012]3775
[2193]3776    if (outLogger || outTextFile) {
3777      coordInfo = getCoordInfo()[0];
3778      if (coordInfo == "") coordInfo = "channel";
3779      hasSameNchan = hasSameNchanOverIFs();
3780    }
[2012]3781
[2193]3782    //Fitter fitter = Fitter();
3783    //fitter.setExpression("sinusoid", nWaves);
3784    //fitter.setIterClipping(thresClip, nIterClip);
[2012]3785
[2193]3786    int nRow = nrow();
3787    std::vector<bool> chanMask;
3788    std::vector<int> nWaves;
[2012]3789
[2193]3790    bool showProgress;
3791    int minNRow;
3792    parseProgressInfo(progressInfo, showProgress, minNRow);
[2189]3793
[2193]3794    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3795      chanMask = getCompositeChanMask(whichrow, mask);
3796      selectWaveNumbers(whichrow, chanMask, applyFFT, fftMethod, fftThresh, addNWaves, rejectNWaves, nWaves);
[2186]3797
[2193]3798      //FOR DEBUGGING------------
[2411]3799      /*
[2193]3800      if (whichrow < 0) {// == nRow -1) {
3801        cout << "+++ i=" << setw(3) << whichrow << ", IF=" << setw(2) << getIF(whichrow);
3802        if (applyFFT) {
[2186]3803          cout << "[ ";
3804          for (uInt j = 0; j < nWaves.size(); ++j) {
3805            cout << nWaves[j] << ", ";
3806          }
3807          cout << " ]    " << endl;
[2193]3808        }
3809        cout << flush;
[2186]3810      }
[2411]3811      */
[2193]3812      //-------------------------
3813
3814      //fitBaseline(chanMask, whichrow, fitter);
3815      //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
3816      std::vector<float> params;
3817      int nClipped = 0;
3818      std::vector<float> res = doSinusoidFitting(getSpectrum(whichrow), chanMask, nWaves, params, nClipped, thresClip, nIterClip, getResidual);
3819      setSpectrum(res, whichrow);
3820      //
3821
[2641]3822      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "sinusoidBaseline()", params, nClipped);
[2193]3823      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
[2186]3824    }
3825
[2193]3826    if (outTextFile) ofs.close();
[2012]3827
[2193]3828  } catch (...) {
3829    throw;
[1931]3830  }
[1907]3831}
3832
[2189]3833void Scantable::autoSinusoidBaseline(const std::vector<bool>& mask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
[2012]3834{
[2193]3835  try {
3836    ofstream ofs;
3837    String coordInfo = "";
3838    bool hasSameNchan = true;
3839    bool outTextFile = false;
[2641]3840    bool csvFormat = false;
[2012]3841
[2193]3842    if (blfile != "") {
[2641]3843      csvFormat = (blfile.substr(0, 1) == "T");
3844      ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
[2193]3845      if (ofs) outTextFile = true;
3846    }
[2012]3847
[2193]3848    if (outLogger || outTextFile) {
3849      coordInfo = getCoordInfo()[0];
3850      if (coordInfo == "") coordInfo = "channel";
3851      hasSameNchan = hasSameNchanOverIFs();
3852    }
[2012]3853
[2193]3854    //Fitter fitter = Fitter();
3855    //fitter.setExpression("sinusoid", nWaves);
3856    //fitter.setIterClipping(thresClip, nIterClip);
[2012]3857
[2193]3858    int nRow = nrow();
3859    std::vector<bool> chanMask;
3860    std::vector<int> nWaves;
[2186]3861
[2193]3862    int minEdgeSize = getIFNos().size()*2;
3863    STLineFinder lineFinder = STLineFinder();
3864    lineFinder.setOptions(threshold, 3, chanAvgLimit);
[2012]3865
[2193]3866    bool showProgress;
3867    int minNRow;
3868    parseProgressInfo(progressInfo, showProgress, minNRow);
[2189]3869
[2193]3870    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
[2012]3871
[2193]3872      //-------------------------------------------------------
3873      //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
3874      //-------------------------------------------------------
3875      int edgeSize = edge.size();
3876      std::vector<int> currentEdge;
3877      if (edgeSize >= 2) {
3878        int idx = 0;
3879        if (edgeSize > 2) {
3880          if (edgeSize < minEdgeSize) {
3881            throw(AipsError("Length of edge element info is less than that of IFs"));
3882          }
3883          idx = 2 * getIF(whichrow);
[2012]3884        }
[2193]3885        currentEdge.push_back(edge[idx]);
3886        currentEdge.push_back(edge[idx+1]);
3887      } else {
3888        throw(AipsError("Wrong length of edge element"));
[2012]3889      }
[2193]3890      lineFinder.setData(getSpectrum(whichrow));
3891      lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
3892      chanMask = lineFinder.getMask();
3893      //-------------------------------------------------------
3894
3895      selectWaveNumbers(whichrow, chanMask, applyFFT, fftMethod, fftThresh, addNWaves, rejectNWaves, nWaves);
3896
3897      //fitBaseline(chanMask, whichrow, fitter);
3898      //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
3899      std::vector<float> params;
3900      int nClipped = 0;
3901      std::vector<float> res = doSinusoidFitting(getSpectrum(whichrow), chanMask, nWaves, params, nClipped, thresClip, nIterClip, getResidual);
3902      setSpectrum(res, whichrow);
3903      //
3904
[2641]3905      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoSinusoidBaseline()", params, nClipped);
[2193]3906      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
[2012]3907    }
3908
[2193]3909    if (outTextFile) ofs.close();
[2012]3910
[2193]3911  } catch (...) {
3912    throw;
[2047]3913  }
3914}
3915
[2193]3916std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data, const std::vector<bool>& mask, const std::vector<int>& waveNumbers, std::vector<float>& params, int& nClipped, float thresClip, int nIterClip, bool getResidual)
[2081]3917{
[2047]3918  if (data.size() != mask.size()) {
[2081]3919    throw(AipsError("data and mask sizes are not identical"));
[2047]3920  }
[2081]3921  if (data.size() < 2) {
3922    throw(AipsError("data size is too short"));
3923  }
3924  if (waveNumbers.size() == 0) {
[2186]3925    throw(AipsError("no wave numbers given"));
[2081]3926  }
3927  std::vector<int> nWaves;  // sorted and uniqued array of wave numbers
3928  nWaves.reserve(waveNumbers.size());
3929  copy(waveNumbers.begin(), waveNumbers.end(), back_inserter(nWaves));
3930  sort(nWaves.begin(), nWaves.end());
3931  std::vector<int>::iterator end_it = unique(nWaves.begin(), nWaves.end());
3932  nWaves.erase(end_it, nWaves.end());
3933
3934  int minNWaves = nWaves[0];
3935  if (minNWaves < 0) {
[2058]3936    throw(AipsError("wave number must be positive or zero (i.e. constant)"));
3937  }
[2081]3938  bool hasConstantTerm = (minNWaves == 0);
[2047]3939
3940  int nChan = data.size();
3941  std::vector<int> maskArray;
3942  std::vector<int> x;
3943  for (int i = 0; i < nChan; ++i) {
3944    maskArray.push_back(mask[i] ? 1 : 0);
3945    if (mask[i]) {
3946      x.push_back(i);
3947    }
3948  }
3949
[2081]3950  int initNData = x.size();
[2047]3951
[2081]3952  int nData = initNData;
3953  int nDOF = nWaves.size() * 2 - (hasConstantTerm ? 1 : 0);  //number of parameters to solve.
3954
3955  const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
[2186]3956  double baseXFactor = 2.0*PI/(double)(nChan-1);  //the denominator (nChan-1) should be changed to (xdata[nChan-1]-xdata[0]) for accepting x-values given in velocity or frequency when this function is moved to fitter. (2011/03/30 WK)
[2081]3957
3958  // xArray : contains elemental values for computing the least-square matrix.
3959  //          xArray.size() is nDOF and xArray[*].size() is nChan.
3960  //          Each xArray element are as follows:
3961  //          xArray[0]    = {1.0, 1.0, 1.0, ..., 1.0},
3962  //          xArray[2n-1] = {sin(nPI/L*x[0]), sin(nPI/L*x[1]), ..., sin(nPI/L*x[nChan])},
3963  //          xArray[2n]   = {cos(nPI/L*x[0]), cos(nPI/L*x[1]), ..., cos(nPI/L*x[nChan])},
3964  //          where (1 <= n <= nMaxWavesInSW),
3965  //          or,
3966  //          xArray[2n-1] = {sin(wn[n]PI/L*x[0]), sin(wn[n]PI/L*x[1]), ..., sin(wn[n]PI/L*x[nChan])},
3967  //          xArray[2n]   = {cos(wn[n]PI/L*x[0]), cos(wn[n]PI/L*x[1]), ..., cos(wn[n]PI/L*x[nChan])},
3968  //          where wn[n] denotes waveNumbers[n] (1 <= n <= waveNumbers.size()).
3969  std::vector<std::vector<double> > xArray;
3970  if (hasConstantTerm) {
3971    std::vector<double> xu;
3972    for (int j = 0; j < nChan; ++j) {
3973      xu.push_back(1.0);
3974    }
3975    xArray.push_back(xu);
3976  }
3977  for (uInt i = (hasConstantTerm ? 1 : 0); i < nWaves.size(); ++i) {
3978    double xFactor = baseXFactor*(double)nWaves[i];
3979    std::vector<double> xs, xc;
3980    xs.clear();
3981    xc.clear();
3982    for (int j = 0; j < nChan; ++j) {
3983      xs.push_back(sin(xFactor*(double)j));
3984      xc.push_back(cos(xFactor*(double)j));
3985    }
3986    xArray.push_back(xs);
3987    xArray.push_back(xc);
3988  }
3989
3990  std::vector<double> z1, r1, residual;
[2047]3991  for (int i = 0; i < nChan; ++i) {
[2081]3992    z1.push_back((double)data[i]);
[2047]3993    r1.push_back(0.0);
[2081]3994    residual.push_back(0.0);
[2047]3995  }
3996
3997  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
[2081]3998    // xMatrix : horizontal concatenation of
3999    //           the least-sq. matrix (left) and an
4000    //           identity matrix (right).
4001    // the right part is used to calculate the inverse matrix of the left part.
[2047]4002    double xMatrix[nDOF][2*nDOF];
4003    double zMatrix[nDOF];
4004    for (int i = 0; i < nDOF; ++i) {
4005      for (int j = 0; j < 2*nDOF; ++j) {
4006        xMatrix[i][j] = 0.0;
[2012]4007      }
[2047]4008      xMatrix[i][nDOF+i] = 1.0;
4009      zMatrix[i] = 0.0;
4010    }
4011
[2193]4012    int nUseData = 0;
[2081]4013    for (int k = 0; k < nChan; ++k) {
4014      if (maskArray[k] == 0) continue;
4015
4016      for (int i = 0; i < nDOF; ++i) {
4017        for (int j = i; j < nDOF; ++j) {
4018          xMatrix[i][j] += xArray[i][k] * xArray[j][k];
4019        }
4020        zMatrix[i] += z1[k] * xArray[i][k];
4021      }
[2193]4022
4023      nUseData++;
[2047]4024    }
4025
[2193]4026    if (nUseData < 1) {
4027        throw(AipsError("all channels clipped or masked. can't execute fitting anymore."));     
4028    }
4029
[2047]4030    for (int i = 0; i < nDOF; ++i) {
4031      for (int j = 0; j < i; ++j) {
4032        xMatrix[i][j] = xMatrix[j][i];
[2012]4033      }
4034    }
4035
[2047]4036    std::vector<double> invDiag;
4037    for (int i = 0; i < nDOF; ++i) {
4038      invDiag.push_back(1.0/xMatrix[i][i]);
4039      for (int j = 0; j < nDOF; ++j) {
4040        xMatrix[i][j] *= invDiag[i];
4041      }
4042    }
4043
4044    for (int k = 0; k < nDOF; ++k) {
4045      for (int i = 0; i < nDOF; ++i) {
4046        if (i != k) {
4047          double factor1 = xMatrix[k][k];
4048          double factor2 = xMatrix[i][k];
4049          for (int j = k; j < 2*nDOF; ++j) {
4050            xMatrix[i][j] *= factor1;
4051            xMatrix[i][j] -= xMatrix[k][j]*factor2;
4052            xMatrix[i][j] /= factor1;
4053          }
4054        }
4055      }
4056      double xDiag = xMatrix[k][k];
4057      for (int j = k; j < 2*nDOF; ++j) {
4058        xMatrix[k][j] /= xDiag;
4059      }
4060    }
4061   
4062    for (int i = 0; i < nDOF; ++i) {
4063      for (int j = 0; j < nDOF; ++j) {
4064        xMatrix[i][nDOF+j] *= invDiag[j];
4065      }
4066    }
4067    //compute a vector y which consists of the coefficients of the sinusoids forming the
[2081]4068    //best-fit curves (a0,s1,c1,s2,c2,...), where a0 is constant and s* and c* are of sine
4069    //and cosine functions, respectively.
[2047]4070    std::vector<double> y;
[2081]4071    params.clear();
[2047]4072    for (int i = 0; i < nDOF; ++i) {
4073      y.push_back(0.0);
4074      for (int j = 0; j < nDOF; ++j) {
4075        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
4076      }
[2081]4077      params.push_back(y[i]);
[2047]4078    }
4079
4080    for (int i = 0; i < nChan; ++i) {
[2081]4081      r1[i] = y[0];
4082      for (int j = 1; j < nDOF; ++j) {
4083        r1[i] += y[j]*xArray[j][i];
4084      }
4085      residual[i] = z1[i] - r1[i];
[2047]4086    }
4087
4088    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
4089      break;
4090    } else {
4091      double stdDev = 0.0;
4092      for (int i = 0; i < nChan; ++i) {
[2081]4093        stdDev += residual[i]*residual[i]*(double)maskArray[i];
[2047]4094      }
4095      stdDev = sqrt(stdDev/(double)nData);
4096     
4097      double thres = stdDev * thresClip;
4098      int newNData = 0;
4099      for (int i = 0; i < nChan; ++i) {
[2081]4100        if (abs(residual[i]) >= thres) {
[2047]4101          maskArray[i] = 0;
4102        }
4103        if (maskArray[i] > 0) {
4104          newNData++;
4105        }
4106      }
[2081]4107      if (newNData == nData) {
4108        break; //no more flag to add. iteration stops.
[2047]4109      } else {
[2081]4110        nData = newNData;
[2047]4111      }
4112    }
[2012]4113  }
4114
[2193]4115  nClipped = initNData - nData;
4116
[2058]4117  std::vector<float> result;
4118  if (getResidual) {
4119    for (int i = 0; i < nChan; ++i) {
[2081]4120      result.push_back((float)residual[i]);
[2058]4121    }
4122  } else {
4123    for (int i = 0; i < nChan; ++i) {
4124      result.push_back((float)r1[i]);
4125    }
[2047]4126  }
4127
[2058]4128  return result;
[2012]4129}
4130
[2047]4131void Scantable::fitBaseline(const std::vector<bool>& mask, int whichrow, Fitter& fitter)
4132{
[2081]4133  std::vector<double> dAbcissa = getAbcissa(whichrow);
4134  std::vector<float> abcissa;
4135  for (uInt i = 0; i < dAbcissa.size(); ++i) {
4136    abcissa.push_back((float)dAbcissa[i]);
[2047]4137  }
4138  std::vector<float> spec = getSpectrum(whichrow);
[2012]4139
[2081]4140  fitter.setData(abcissa, spec, mask);
[2047]4141  fitter.lfit();
4142}
4143
4144std::vector<bool> Scantable::getCompositeChanMask(int whichrow, const std::vector<bool>& inMask)
4145{
[2591]4146  /****
4147  double ms1TimeStart, ms1TimeEnd, ms2TimeStart, ms2TimeEnd;
4148  double elapse1 = 0.0;
4149  double elapse2 = 0.0;
4150
4151  ms1TimeStart = mathutil::gettimeofday_sec();
4152  ****/
4153
[2186]4154  std::vector<bool> mask = getMask(whichrow);
[2591]4155
4156  /****
4157  ms1TimeEnd = mathutil::gettimeofday_sec();
4158  elapse1 = ms1TimeEnd - ms1TimeStart;
4159  std::cout << "ms1   : " << elapse1 << " (sec.)" << endl;
4160  ms2TimeStart = mathutil::gettimeofday_sec();
4161  ****/
4162
[2186]4163  uInt maskSize = mask.size();
[2410]4164  if (inMask.size() != 0) {
4165    if (maskSize != inMask.size()) {
4166      throw(AipsError("mask sizes are not the same."));
4167    }
4168    for (uInt i = 0; i < maskSize; ++i) {
4169      mask[i] = mask[i] && inMask[i];
4170    }
[2047]4171  }
4172
[2591]4173  /****
4174  ms2TimeEnd = mathutil::gettimeofday_sec();
4175  elapse2 = ms2TimeEnd - ms2TimeStart;
4176  std::cout << "ms2   : " << elapse2 << " (sec.)" << endl;
4177  ****/
4178
[2186]4179  return mask;
[2047]4180}
4181
4182/*
4183std::vector<bool> Scantable::getCompositeChanMask(int whichrow, const std::vector<bool>& inMask, const std::vector<int>& edge, const int minEdgeSize, STLineFinder& lineFinder)
4184{
4185  int edgeSize = edge.size();
4186  std::vector<int> currentEdge;
4187  if (edgeSize >= 2) {
4188      int idx = 0;
4189      if (edgeSize > 2) {
4190        if (edgeSize < minEdgeSize) {
4191          throw(AipsError("Length of edge element info is less than that of IFs"));
4192        }
4193        idx = 2 * getIF(whichrow);
4194      }
4195      currentEdge.push_back(edge[idx]);
4196      currentEdge.push_back(edge[idx+1]);
4197  } else {
4198    throw(AipsError("Wrong length of edge element"));
4199  }
4200
4201  lineFinder.setData(getSpectrum(whichrow));
4202  lineFinder.findLines(getCompositeChanMask(whichrow, inMask), currentEdge, whichrow);
4203
4204  return lineFinder.getMask();
4205}
4206*/
4207
4208/* for poly. the variations of outputFittingResult() should be merged into one eventually (2011/3/10 WK)  */
[2641]4209void Scantable::outputFittingResult(bool outLogger, bool outTextFile, bool csvFormat, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, Fitter& fitter)
[2186]4210{
[2047]4211  if (outLogger || outTextFile) {
4212    std::vector<float> params = fitter.getParameters();
4213    std::vector<bool>  fixed  = fitter.getFixedParameters();
4214    float rms = getRms(chanMask, whichrow);
4215    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
4216
4217    if (outLogger) {
4218      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
[2641]4219      ols << formatBaselineParams(params, fixed, rms, -1, masklist, whichrow, false, csvFormat) << LogIO::POST ;
[2047]4220    }
4221    if (outTextFile) {
[2641]4222      ofs << formatBaselineParams(params, fixed, rms, -1, masklist, whichrow, true, csvFormat) << flush;
[2047]4223    }
4224  }
4225}
4226
4227/* for cspline. will be merged once cspline is available in fitter (2011/3/10 WK) */
[2641]4228void Scantable::outputFittingResult(bool outLogger, bool outTextFile, bool csvFormat, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, const std::vector<int>& edge, const std::vector<float>& params, const int nClipped)
[2186]4229{
[2047]4230  if (outLogger || outTextFile) {
[2591]4231  /****
4232  double ms1TimeStart, ms1TimeEnd, ms2TimeStart, ms2TimeEnd;
4233  double elapse1 = 0.0;
4234  double elapse2 = 0.0;
4235
4236  ms1TimeStart = mathutil::gettimeofday_sec();
4237  ****/
4238
[2047]4239    float rms = getRms(chanMask, whichrow);
[2591]4240
4241  /****
4242  ms1TimeEnd = mathutil::gettimeofday_sec();
4243  elapse1 = ms1TimeEnd - ms1TimeStart;
4244  std::cout << "ot1   : " << elapse1 << " (sec.)" << endl;
4245  ms2TimeStart = mathutil::gettimeofday_sec();
4246  ****/
4247
[2047]4248    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
[2081]4249    std::vector<bool> fixed;
4250    fixed.clear();
[2047]4251
4252    if (outLogger) {
4253      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
[2641]4254      ols << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped, masklist, whichrow, false, csvFormat) << LogIO::POST ;
[2047]4255    }
4256    if (outTextFile) {
[2641]4257      ofs << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped, masklist, whichrow, true, csvFormat) << flush;
[2047]4258    }
[2591]4259
4260  /****
4261  ms2TimeEnd = mathutil::gettimeofday_sec();
4262  elapse2 = ms2TimeEnd - ms2TimeStart;
4263  std::cout << "ot2   : " << elapse2 << " (sec.)" << endl;
4264  ****/
4265
[2047]4266  }
4267}
4268
[2645]4269/* for chebyshev/sinusoid. will be merged once chebyshev/sinusoid is available in fitter (2011/3/10 WK) */
[2641]4270void Scantable::outputFittingResult(bool outLogger, bool outTextFile, bool csvFormat, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, const std::vector<float>& params, const int nClipped)
[2186]4271{
[2047]4272  if (outLogger || outTextFile) {
4273    float rms = getRms(chanMask, whichrow);
4274    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
[2081]4275    std::vector<bool> fixed;
4276    fixed.clear();
[2047]4277
4278    if (outLogger) {
4279      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
[2641]4280      ols << formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, false, csvFormat) << LogIO::POST ;
[2047]4281    }
4282    if (outTextFile) {
[2641]4283      ofs << formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, true, csvFormat) << flush;
[2047]4284    }
4285  }
4286}
4287
[2189]4288void Scantable::parseProgressInfo(const std::string& progressInfo, bool& showProgress, int& minNRow)
[2186]4289{
[2189]4290  int idxDelimiter = progressInfo.find(",");
4291  if (idxDelimiter < 0) {
4292    throw(AipsError("wrong value in 'showprogress' parameter")) ;
4293  }
4294  showProgress = (progressInfo.substr(0, idxDelimiter) == "true");
4295  std::istringstream is(progressInfo.substr(idxDelimiter+1));
4296  is >> minNRow;
4297}
4298
4299void Scantable::showProgressOnTerminal(const int nProcessed, const int nTotal, const bool showProgress, const int nTotalThreshold)
4300{
4301  if (showProgress && (nTotal >= nTotalThreshold)) {
[2186]4302    int nInterval = int(floor(double(nTotal)/100.0));
4303    if (nInterval == 0) nInterval++;
4304
[2193]4305    if (nProcessed % nInterval == 0) {
[2189]4306      printf("\r");                          //go to the head of line
[2186]4307      printf("\x1b[31m\x1b[1m");             //set red color, highlighted
[2189]4308      printf("[%3d%%]", (int)(100.0*(double(nProcessed+1))/(double(nTotal))) );
4309      printf("\x1b[39m\x1b[0m");             //set default attributes
[2186]4310      fflush(NULL);
4311    }
[2193]4312
[2186]4313    if (nProcessed == nTotal - 1) {
4314      printf("\r\x1b[K");                    //clear
4315      fflush(NULL);
4316    }
[2193]4317
[2186]4318  }
4319}
4320
4321std::vector<float> Scantable::execFFT(const int whichrow, const std::vector<bool>& inMask, bool getRealImag, bool getAmplitudeOnly)
4322{
4323  std::vector<bool>  mask = getMask(whichrow);
4324
4325  if (inMask.size() > 0) {
4326    uInt maskSize = mask.size();
4327    if (maskSize != inMask.size()) {
4328      throw(AipsError("mask sizes are not the same."));
4329    }
4330    for (uInt i = 0; i < maskSize; ++i) {
4331      mask[i] = mask[i] && inMask[i];
4332    }
4333  }
4334
4335  Vector<Float> spec = getSpectrum(whichrow);
4336  mathutil::doZeroOrderInterpolation(spec, mask);
4337
4338  FFTServer<Float,Complex> ffts;
4339  Vector<Complex> fftres;
4340  ffts.fft0(fftres, spec);
4341
4342  std::vector<float> res;
4343  float norm = float(2.0/double(spec.size()));
4344
4345  if (getRealImag) {
4346    for (uInt i = 0; i < fftres.size(); ++i) {
4347      res.push_back(real(fftres[i])*norm);
4348      res.push_back(imag(fftres[i])*norm);
4349    }
4350  } else {
4351    for (uInt i = 0; i < fftres.size(); ++i) {
4352      res.push_back(abs(fftres[i])*norm);
4353      if (!getAmplitudeOnly) res.push_back(arg(fftres[i]));
4354    }
4355  }
4356
4357  return res;
4358}
4359
4360
4361float Scantable::getRms(const std::vector<bool>& mask, int whichrow)
4362{
[2591]4363  /****
[2737]4364  double ms1TimeStart, ms1TimeEnd;
[2591]4365  double elapse1 = 0.0;
4366  ms1TimeStart = mathutil::gettimeofday_sec();
4367  ****/
4368
[2012]4369  Vector<Float> spec;
4370  specCol_.get(whichrow, spec);
4371
[2591]4372  /****
4373  ms1TimeEnd = mathutil::gettimeofday_sec();
4374  elapse1 = ms1TimeEnd - ms1TimeStart;
4375  std::cout << "rm1   : " << elapse1 << " (sec.)" << endl;
4376  ****/
4377
[2737]4378  return (float)doGetRms(mask, spec);
4379}
4380
4381double Scantable::doGetRms(const std::vector<bool>& mask, const Vector<Float>& spec)
4382{
4383  double mean = 0.0;
4384  double smean = 0.0;
[2012]4385  int n = 0;
[2047]4386  for (uInt i = 0; i < spec.nelements(); ++i) {
[2012]4387    if (mask[i]) {
[2737]4388      double val = (double)spec[i];
4389      mean += val;
4390      smean += val*val;
[2012]4391      n++;
4392    }
4393  }
4394
[2737]4395  mean /= (double)n;
4396  smean /= (double)n;
[2012]4397
4398  return sqrt(smean - mean*mean);
4399}
4400
[2641]4401std::string Scantable::formatBaselineParamsHeader(int whichrow, const std::string& masklist, bool verbose, bool csvformat) const
[2012]4402{
[2641]4403  if (verbose) {
4404    ostringstream oss;
[2012]4405
[2641]4406    if (csvformat) {
4407      oss << getScan(whichrow)  << ",";
4408      oss << getBeam(whichrow)  << ",";
4409      oss << getIF(whichrow)    << ",";
4410      oss << getPol(whichrow)   << ",";
4411      oss << getCycle(whichrow) << ",";
4412      String commaReplacedMasklist = masklist;
4413      string::size_type pos = 0;
4414      while (pos = commaReplacedMasklist.find(","), pos != string::npos) {
4415        commaReplacedMasklist.replace(pos, 1, ";");
4416        pos++;
4417      }
4418      oss << commaReplacedMasklist << ",";
4419    } else {
4420      oss <<  " Scan[" << getScan(whichrow)  << "]";
4421      oss <<  " Beam[" << getBeam(whichrow)  << "]";
4422      oss <<    " IF[" << getIF(whichrow)    << "]";
4423      oss <<   " Pol[" << getPol(whichrow)   << "]";
4424      oss << " Cycle[" << getCycle(whichrow) << "]: " << endl;
4425      oss << "Fitter range = " << masklist << endl;
4426      oss << "Baseline parameters" << endl;
4427    }
[2012]4428    oss << flush;
[2641]4429
4430    return String(oss);
[2012]4431  }
4432
[2641]4433  return "";
[2012]4434}
4435
[2641]4436std::string Scantable::formatBaselineParamsFooter(float rms, int nClipped, bool verbose, bool csvformat) const
[2012]4437{
[2641]4438  if (verbose) {
4439    ostringstream oss;
[2012]4440
[2641]4441    if (csvformat) {
4442      oss << rms << ",";
4443      if (nClipped >= 0) {
4444        oss << nClipped;
4445      }
4446    } else {
4447      oss << "Results of baseline fit" << endl;
4448      oss << "  rms = " << setprecision(6) << rms << endl;
4449      if (nClipped >= 0) {
4450        oss << "  Number of clipped channels = " << nClipped << endl;
4451      }
4452      for (int i = 0; i < 60; ++i) {
4453        oss << "-";
4454      }
[2193]4455    }
[2131]4456    oss << endl;
[2094]4457    oss << flush;
[2641]4458
4459    return String(oss);
[2012]4460  }
4461
[2641]4462  return "";
[2012]4463}
4464
[2186]4465std::string Scantable::formatBaselineParams(const std::vector<float>& params,
4466                                            const std::vector<bool>& fixed,
4467                                            float rms,
[2193]4468                                            int nClipped,
[2186]4469                                            const std::string& masklist,
4470                                            int whichrow,
4471                                            bool verbose,
[2641]4472                                            bool csvformat,
[2186]4473                                            int start, int count,
4474                                            bool resetparamid) const
[2047]4475{
[2064]4476  int nParam = (int)(params.size());
[2047]4477
[2064]4478  if (nParam < 1) {
4479    return("  Not fitted");
4480  } else {
4481
4482    ostringstream oss;
[2641]4483    oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat);
[2064]4484
4485    if (start < 0) start = 0;
4486    if (count < 0) count = nParam;
4487    int end = start + count;
4488    if (end > nParam) end = nParam;
4489    int paramidoffset = (resetparamid) ? (-start) : 0;
4490
4491    for (int i = start; i < end; ++i) {
4492      if (i > start) {
[2047]4493        oss << ",";
4494      }
[2064]4495      std::string sFix = ((fixed.size() > 0) && (fixed[i]) && verbose) ? "(fixed)" : "";
[2641]4496      if (csvformat) {
4497        oss << params[i] << sFix;
4498      } else {
4499        oss << "  p" << (i+paramidoffset) << sFix << "= " << right << setw(13) << setprecision(6) << params[i];
4500      }
[2047]4501    }
[2064]4502
[2641]4503    if (csvformat) {
4504      oss << ",";
[2644]4505    } else {
4506      oss << endl;
[2641]4507    }
4508    oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat);
[2064]4509
4510    return String(oss);
[2047]4511  }
4512
4513}
4514
[2641]4515std::string Scantable::formatPiecewiseBaselineParams(const std::vector<int>& ranges, const std::vector<float>& params, const std::vector<bool>& fixed, float rms, int nClipped, const std::string& masklist, int whichrow, bool verbose, bool csvformat) const
[2012]4516{
[2064]4517  int nOutParam = (int)(params.size());
4518  int nPiece = (int)(ranges.size()) - 1;
[2012]4519
[2064]4520  if (nOutParam < 1) {
4521    return("  Not fitted");
4522  } else if (nPiece < 0) {
[2641]4523    return formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, verbose, csvformat);
[2064]4524  } else if (nPiece < 1) {
4525    return("  Bad count of the piece edge info");
4526  } else if (nOutParam % nPiece != 0) {
4527    return("  Bad count of the output baseline parameters");
4528  } else {
4529
4530    int nParam = nOutParam / nPiece;
4531
4532    ostringstream oss;
[2641]4533    oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat);
[2064]4534
[2641]4535    if (csvformat) {
4536      for (int i = 0; i < nPiece; ++i) {
4537        oss << ranges[i] << "," << (ranges[i+1]-1) << ",";
4538        oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true);
4539      }
4540    } else {
4541      stringstream ss;
4542      ss << ranges[nPiece] << flush;
4543      int wRange = ss.str().size() * 2 + 5;
[2064]4544
[2641]4545      for (int i = 0; i < nPiece; ++i) {
4546        ss.str("");
4547        ss << "  [" << ranges[i] << "," << (ranges[i+1]-1) << "]";
4548        oss << left << setw(wRange) << ss.str();
4549        oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true);
[2644]4550        //oss << endl;
[2641]4551      }
[2012]4552    }
[2064]4553
[2641]4554    oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat);
[2064]4555
4556    return String(oss);
[2012]4557  }
4558
4559}
4560
[2047]4561bool Scantable::hasSameNchanOverIFs()
[2012]4562{
[2047]4563  int nIF = nif(-1);
4564  int nCh;
4565  int totalPositiveNChan = 0;
4566  int nPositiveNChan = 0;
[2012]4567
[2047]4568  for (int i = 0; i < nIF; ++i) {
4569    nCh = nchan(i);
4570    if (nCh > 0) {
4571      totalPositiveNChan += nCh;
4572      nPositiveNChan++;
[2012]4573    }
4574  }
4575
[2047]4576  return (totalPositiveNChan == (nPositiveNChan * nchan(0)));
[2012]4577}
4578
[2047]4579std::string Scantable::getMaskRangeList(const std::vector<bool>& mask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, bool verbose)
[2012]4580{
[2427]4581  if (mask.size() <= 0) {
4582    throw(AipsError("The mask elements should be > 0"));
[2012]4583  }
[2047]4584  int IF = getIF(whichrow);
4585  if (mask.size() != (uInt)nchan(IF)) {
[2012]4586    throw(AipsError("Number of channels in scantable != number of mask elements"));
4587  }
4588
[2047]4589  if (verbose) {
[2012]4590    LogIO logOs(LogOrigin("Scantable", "getMaskRangeList()", WHERE));
4591    logOs << LogIO::WARN << "The current mask window unit is " << coordInfo;
4592    if (!hasSameNchan) {
[2047]4593      logOs << endl << "This mask is only valid for IF=" << IF;
[2012]4594    }
4595    logOs << LogIO::POST;
4596  }
4597
4598  std::vector<double> abcissa = getAbcissa(whichrow);
[2047]4599  std::vector<int> edge = getMaskEdgeIndices(mask);
4600
[2012]4601  ostringstream oss;
4602  oss.setf(ios::fixed);
4603  oss << setprecision(1) << "[";
[2047]4604  for (uInt i = 0; i < edge.size(); i+=2) {
[2012]4605    if (i > 0) oss << ",";
[2047]4606    oss << "[" << (float)abcissa[edge[i]] << "," << (float)abcissa[edge[i+1]] << "]";
[2012]4607  }
4608  oss << "]" << flush;
4609
4610  return String(oss);
4611}
4612
[2047]4613std::vector<int> Scantable::getMaskEdgeIndices(const std::vector<bool>& mask)
[2012]4614{
[2427]4615  if (mask.size() <= 0) {
4616    throw(AipsError("The mask elements should be > 0"));
[2012]4617  }
4618
[2047]4619  std::vector<int> out, startIndices, endIndices;
4620  int maskSize = mask.size();
[2012]4621
[2047]4622  startIndices.clear();
4623  endIndices.clear();
4624
4625  if (mask[0]) {
4626    startIndices.push_back(0);
[2012]4627  }
[2047]4628  for (int i = 1; i < maskSize; ++i) {
4629    if ((!mask[i-1]) && mask[i]) {
4630      startIndices.push_back(i);
4631    } else if (mask[i-1] && (!mask[i])) {
4632      endIndices.push_back(i-1);
4633    }
[2012]4634  }
[2047]4635  if (mask[maskSize-1]) {
4636    endIndices.push_back(maskSize-1);
4637  }
[2012]4638
[2047]4639  if (startIndices.size() != endIndices.size()) {
4640    throw(AipsError("Inconsistent Mask Size: bad data?"));
4641  }
4642  for (uInt i = 0; i < startIndices.size(); ++i) {
4643    if (startIndices[i] > endIndices[i]) {
4644      throw(AipsError("Mask start index > mask end index"));
[2012]4645    }
4646  }
4647
[2047]4648  out.clear();
4649  for (uInt i = 0; i < startIndices.size(); ++i) {
4650    out.push_back(startIndices[i]);
4651    out.push_back(endIndices[i]);
4652  }
4653
[2012]4654  return out;
4655}
4656
[2161]4657vector<float> Scantable::getTsysSpectrum( int whichrow ) const
4658{
4659  Vector<Float> tsys( tsysCol_(whichrow) ) ;
4660  vector<float> stlTsys ;
4661  tsys.tovector( stlTsys ) ;
4662  return stlTsys ;
4663}
[2012]4664
[2591]4665vector<uint> Scantable::getMoleculeIdColumnData() const
4666{
4667  Vector<uInt> molIds(mmolidCol_.getColumn());
4668  vector<uint> res;
4669  molIds.tovector(res);
4670  return res;
4671}
[2012]4672
[2591]4673void Scantable::setMoleculeIdColumnData(const std::vector<uint>& molids)
4674{
4675  Vector<uInt> molIds(molids);
4676  Vector<uInt> arr(mmolidCol_.getColumn());
4677  if ( molIds.nelements() != arr.nelements() )
4678    throw AipsError("The input data size must be the number of rows.");
4679  mmolidCol_.putColumn(molIds);
[1907]4680}
[2591]4681
4682
4683}
[1819]4684//namespace asap
Note: See TracBrowser for help on using the repository browser.