source: trunk/src/Scantable.cpp @ 2767

Last change on this file since 2767 was 2767, checked in by WataruKawasaki, 11 years ago

New Development: Yes

JIRA Issue: Yes CAS-4794

Ready for Test: Yes

Interface Changes: No

What Interface Changed:

Test Programs:

Put in Release Notes: No

Module(s): sd

Description: functions to apply/write STBaselineTable in which baseline parameters stored.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 168.0 KB
Line 
1//
2// C++ Implementation: Scantable
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2005
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12#include <map>
13#include <sys/time.h>
14
15#include <atnf/PKSIO/SrcType.h>
16
17#include <casa/aips.h>
18#include <casa/iomanip.h>
19#include <casa/iostream.h>
20#include <casa/OS/File.h>
21#include <casa/OS/Path.h>
22#include <casa/Logging/LogIO.h>
23#include <casa/Arrays/Array.h>
24#include <casa/Arrays/ArrayAccessor.h>
25#include <casa/Arrays/ArrayLogical.h>
26#include <casa/Arrays/ArrayMath.h>
27#include <casa/Arrays/MaskArrMath.h>
28#include <casa/Arrays/Slice.h>
29#include <casa/Arrays/Vector.h>
30#include <casa/Arrays/VectorSTLIterator.h>
31#include <casa/BasicMath/Math.h>
32#include <casa/BasicSL/Constants.h>
33#include <casa/Containers/RecordField.h>
34#include <casa/Logging/LogIO.h>
35#include <casa/Quanta/MVAngle.h>
36#include <casa/Quanta/MVTime.h>
37#include <casa/Utilities/GenSort.h>
38
39#include <coordinates/Coordinates/CoordinateUtil.h>
40
41// needed to avoid error in .tcc
42#include <measures/Measures/MCDirection.h>
43//
44#include <measures/Measures/MDirection.h>
45#include <measures/Measures/MEpoch.h>
46#include <measures/Measures/MFrequency.h>
47#include <measures/Measures/MeasRef.h>
48#include <measures/Measures/MeasTable.h>
49#include <measures/TableMeasures/ScalarMeasColumn.h>
50#include <measures/TableMeasures/TableMeasDesc.h>
51#include <measures/TableMeasures/TableMeasRefDesc.h>
52#include <measures/TableMeasures/TableMeasValueDesc.h>
53
54#include <tables/Tables/ArrColDesc.h>
55#include <tables/Tables/ExprNode.h>
56#include <tables/Tables/ScaColDesc.h>
57#include <tables/Tables/SetupNewTab.h>
58#include <tables/Tables/TableCopy.h>
59#include <tables/Tables/TableDesc.h>
60#include <tables/Tables/TableIter.h>
61#include <tables/Tables/TableParse.h>
62#include <tables/Tables/TableRecord.h>
63#include <tables/Tables/TableRow.h>
64#include <tables/Tables/TableVector.h>
65
66#include "MathUtils.h"
67#include "STAttr.h"
68#include "STBaselineTable.h"
69#include "STLineFinder.h"
70#include "STPolCircular.h"
71#include "STPolLinear.h"
72#include "STPolStokes.h"
73#include "STUpgrade.h"
74#include "STFitter.h"
75#include "Scantable.h"
76
77#define debug 1
78
79using namespace casa;
80
81namespace asap {
82
83std::map<std::string, STPol::STPolFactory *> Scantable::factories_;
84
85void Scantable::initFactories() {
86  if ( factories_.empty() ) {
87    Scantable::factories_["linear"] = &STPolLinear::myFactory;
88    Scantable::factories_["circular"] = &STPolCircular::myFactory;
89    Scantable::factories_["stokes"] = &STPolStokes::myFactory;
90  }
91}
92
93Scantable::Scantable(Table::TableType ttype) :
94  type_(ttype)
95{
96  initFactories();
97  setupMainTable();
98  freqTable_ = STFrequencies(*this);
99  table_.rwKeywordSet().defineTable("FREQUENCIES", freqTable_.table());
100  weatherTable_ = STWeather(*this);
101  table_.rwKeywordSet().defineTable("WEATHER", weatherTable_.table());
102  focusTable_ = STFocus(*this);
103  table_.rwKeywordSet().defineTable("FOCUS", focusTable_.table());
104  tcalTable_ = STTcal(*this);
105  table_.rwKeywordSet().defineTable("TCAL", tcalTable_.table());
106  moleculeTable_ = STMolecules(*this);
107  table_.rwKeywordSet().defineTable("MOLECULES", moleculeTable_.table());
108  historyTable_ = STHistory(*this);
109  table_.rwKeywordSet().defineTable("HISTORY", historyTable_.table());
110  fitTable_ = STFit(*this);
111  table_.rwKeywordSet().defineTable("FIT", fitTable_.table());
112  table_.tableInfo().setType( "Scantable" ) ;
113  originalTable_ = table_;
114  attach();
115}
116
117Scantable::Scantable(const std::string& name, Table::TableType ttype) :
118  type_(ttype)
119{
120  initFactories();
121
122  Table tab(name, Table::Update);
123  uInt version = tab.keywordSet().asuInt("VERSION");
124  if (version != version_) {
125      STUpgrade upgrader(version_);
126      LogIO os( LogOrigin( "Scantable" ) ) ;
127      os << LogIO::WARN
128         << name << " data format version " << version
129         << " is deprecated" << endl
130         << "Running upgrade."<< endl 
131         << LogIO::POST ; 
132      std::string outname = upgrader.upgrade(name);
133      if ( outname != name ) {
134        os << LogIO::WARN
135           << "Data will be loaded from " << outname << " instead of "
136           << name << LogIO::POST ;
137        tab = Table(outname, Table::Update ) ;
138      }
139  }
140  if ( type_ == Table::Memory ) {
141    table_ = tab.copyToMemoryTable(generateName());
142  } else {
143    table_ = tab;
144  }
145  table_.tableInfo().setType( "Scantable" ) ;
146
147  attachSubtables();
148  originalTable_ = table_;
149  attach();
150}
151/*
152Scantable::Scantable(const std::string& name, Table::TableType ttype) :
153  type_(ttype)
154{
155  initFactories();
156  Table tab(name, Table::Update);
157  uInt version = tab.keywordSet().asuInt("VERSION");
158  if (version != version_) {
159    throw(AipsError("Unsupported version of ASAP file."));
160  }
161  if ( type_ == Table::Memory ) {
162    table_ = tab.copyToMemoryTable(generateName());
163  } else {
164    table_ = tab;
165  }
166
167  attachSubtables();
168  originalTable_ = table_;
169  attach();
170}
171*/
172
173Scantable::Scantable( const Scantable& other, bool clear )
174{
175  // with or without data
176  String newname = String(generateName());
177  type_ = other.table_.tableType();
178  if ( other.table_.tableType() == Table::Memory ) {
179      if ( clear ) {
180        table_ = TableCopy::makeEmptyMemoryTable(newname,
181                                                 other.table_, True);
182      } else
183        table_ = other.table_.copyToMemoryTable(newname);
184  } else {
185      other.table_.deepCopy(newname, Table::New, False,
186                            other.table_.endianFormat(),
187                            Bool(clear));
188      table_ = Table(newname, Table::Update);
189      table_.markForDelete();
190  }
191  table_.tableInfo().setType( "Scantable" ) ;
192  /// @todo reindex SCANNO, recompute nbeam, nif, npol
193  if ( clear ) copySubtables(other);
194  attachSubtables();
195  originalTable_ = table_;
196  attach();
197}
198
199void Scantable::copySubtables(const Scantable& other) {
200  Table t = table_.rwKeywordSet().asTable("FREQUENCIES");
201  TableCopy::copyRows(t, other.freqTable_.table());
202  t = table_.rwKeywordSet().asTable("FOCUS");
203  TableCopy::copyRows(t, other.focusTable_.table());
204  t = table_.rwKeywordSet().asTable("WEATHER");
205  TableCopy::copyRows(t, other.weatherTable_.table());
206  t = table_.rwKeywordSet().asTable("TCAL");
207  TableCopy::copyRows(t, other.tcalTable_.table());
208  t = table_.rwKeywordSet().asTable("MOLECULES");
209  TableCopy::copyRows(t, other.moleculeTable_.table());
210  t = table_.rwKeywordSet().asTable("HISTORY");
211  TableCopy::copyRows(t, other.historyTable_.table());
212  t = table_.rwKeywordSet().asTable("FIT");
213  TableCopy::copyRows(t, other.fitTable_.table());
214}
215
216void Scantable::attachSubtables()
217{
218  freqTable_ = STFrequencies(table_);
219  focusTable_ = STFocus(table_);
220  weatherTable_ = STWeather(table_);
221  tcalTable_ = STTcal(table_);
222  moleculeTable_ = STMolecules(table_);
223  historyTable_ = STHistory(table_);
224  fitTable_ = STFit(table_);
225}
226
227Scantable::~Scantable()
228{
229}
230
231void Scantable::setupMainTable()
232{
233  TableDesc td("", "1", TableDesc::Scratch);
234  td.comment() = "An ASAP Scantable";
235  td.rwKeywordSet().define("VERSION", uInt(version_));
236
237  // n Cycles
238  td.addColumn(ScalarColumnDesc<uInt>("SCANNO"));
239  // new index every nBeam x nIF x nPol
240  td.addColumn(ScalarColumnDesc<uInt>("CYCLENO"));
241
242  td.addColumn(ScalarColumnDesc<uInt>("BEAMNO"));
243  td.addColumn(ScalarColumnDesc<uInt>("IFNO"));
244  // linear, circular, stokes
245  td.rwKeywordSet().define("POLTYPE", String("linear"));
246  td.addColumn(ScalarColumnDesc<uInt>("POLNO"));
247
248  td.addColumn(ScalarColumnDesc<uInt>("FREQ_ID"));
249  td.addColumn(ScalarColumnDesc<uInt>("MOLECULE_ID"));
250
251  ScalarColumnDesc<Int> refbeamnoColumn("REFBEAMNO");
252  refbeamnoColumn.setDefault(Int(-1));
253  td.addColumn(refbeamnoColumn);
254
255  ScalarColumnDesc<uInt> flagrowColumn("FLAGROW");
256  flagrowColumn.setDefault(uInt(0));
257  td.addColumn(flagrowColumn);
258
259  td.addColumn(ScalarColumnDesc<Double>("TIME"));
260  TableMeasRefDesc measRef(MEpoch::UTC); // UTC as default
261  TableMeasValueDesc measVal(td, "TIME");
262  TableMeasDesc<MEpoch> mepochCol(measVal, measRef);
263  mepochCol.write(td);
264
265  td.addColumn(ScalarColumnDesc<Double>("INTERVAL"));
266
267  td.addColumn(ScalarColumnDesc<String>("SRCNAME"));
268  // Type of source (on=0, off=1, other=-1)
269  ScalarColumnDesc<Int> stypeColumn("SRCTYPE");
270  stypeColumn.setDefault(Int(-1));
271  td.addColumn(stypeColumn);
272  td.addColumn(ScalarColumnDesc<String>("FIELDNAME"));
273
274  //The actual Data Vectors
275  td.addColumn(ArrayColumnDesc<Float>("SPECTRA"));
276  td.addColumn(ArrayColumnDesc<uChar>("FLAGTRA"));
277  td.addColumn(ArrayColumnDesc<Float>("TSYS"));
278
279  td.addColumn(ArrayColumnDesc<Double>("DIRECTION",
280                                       IPosition(1,2),
281                                       ColumnDesc::Direct));
282  TableMeasRefDesc mdirRef(MDirection::J2000); // default
283  TableMeasValueDesc tmvdMDir(td, "DIRECTION");
284  // the TableMeasDesc gives the column a type
285  TableMeasDesc<MDirection> mdirCol(tmvdMDir, mdirRef);
286  // a uder set table type e.g. GALCTIC, B1950 ...
287  td.rwKeywordSet().define("DIRECTIONREF", String("J2000"));
288  // writing create the measure column
289  mdirCol.write(td);
290  td.addColumn(ScalarColumnDesc<Float>("AZIMUTH"));
291  td.addColumn(ScalarColumnDesc<Float>("ELEVATION"));
292  td.addColumn(ScalarColumnDesc<Float>("OPACITY"));
293
294  td.addColumn(ScalarColumnDesc<uInt>("TCAL_ID"));
295  ScalarColumnDesc<Int> fitColumn("FIT_ID");
296  fitColumn.setDefault(Int(-1));
297  td.addColumn(fitColumn);
298
299  td.addColumn(ScalarColumnDesc<uInt>("FOCUS_ID"));
300  td.addColumn(ScalarColumnDesc<uInt>("WEATHER_ID"));
301
302  // columns which just get dragged along, as they aren't used in asap
303  td.addColumn(ScalarColumnDesc<Double>("SRCVELOCITY"));
304  td.addColumn(ArrayColumnDesc<Double>("SRCPROPERMOTION"));
305  td.addColumn(ArrayColumnDesc<Double>("SRCDIRECTION"));
306  td.addColumn(ArrayColumnDesc<Double>("SCANRATE"));
307
308  td.rwKeywordSet().define("OBSMODE", String(""));
309
310  // Now create Table SetUp from the description.
311  SetupNewTable aNewTab(generateName(), td, Table::Scratch);
312  table_ = Table(aNewTab, type_, 0);
313  originalTable_ = table_;
314}
315
316void Scantable::attach()
317{
318  timeCol_.attach(table_, "TIME");
319  srcnCol_.attach(table_, "SRCNAME");
320  srctCol_.attach(table_, "SRCTYPE");
321  specCol_.attach(table_, "SPECTRA");
322  flagsCol_.attach(table_, "FLAGTRA");
323  tsysCol_.attach(table_, "TSYS");
324  cycleCol_.attach(table_,"CYCLENO");
325  scanCol_.attach(table_, "SCANNO");
326  beamCol_.attach(table_, "BEAMNO");
327  ifCol_.attach(table_, "IFNO");
328  polCol_.attach(table_, "POLNO");
329  integrCol_.attach(table_, "INTERVAL");
330  azCol_.attach(table_, "AZIMUTH");
331  elCol_.attach(table_, "ELEVATION");
332  dirCol_.attach(table_, "DIRECTION");
333  fldnCol_.attach(table_, "FIELDNAME");
334  rbeamCol_.attach(table_, "REFBEAMNO");
335
336  mweatheridCol_.attach(table_,"WEATHER_ID");
337  mfitidCol_.attach(table_,"FIT_ID");
338  mfreqidCol_.attach(table_, "FREQ_ID");
339  mtcalidCol_.attach(table_, "TCAL_ID");
340  mfocusidCol_.attach(table_, "FOCUS_ID");
341  mmolidCol_.attach(table_, "MOLECULE_ID");
342
343  //Add auxiliary column for row-based flagging (CAS-1433 Wataru Kawasaki)
344  attachAuxColumnDef(flagrowCol_, "FLAGROW", 0);
345
346}
347
348template<class T, class T2>
349void Scantable::attachAuxColumnDef(ScalarColumn<T>& col,
350                                   const String& colName,
351                                   const T2& defValue)
352{
353  try {
354    col.attach(table_, colName);
355  } catch (TableError& err) {
356    String errMesg = err.getMesg();
357    if (errMesg == "Table column " + colName + " is unknown") {
358      table_.addColumn(ScalarColumnDesc<T>(colName));
359      col.attach(table_, colName);
360      col.fillColumn(static_cast<T>(defValue));
361    } else {
362      throw;
363    }
364  } catch (...) {
365    throw;
366  }
367}
368
369template<class T, class T2>
370void Scantable::attachAuxColumnDef(ArrayColumn<T>& col,
371                                   const String& colName,
372                                   const Array<T2>& defValue)
373{
374  try {
375    col.attach(table_, colName);
376  } catch (TableError& err) {
377    String errMesg = err.getMesg();
378    if (errMesg == "Table column " + colName + " is unknown") {
379      table_.addColumn(ArrayColumnDesc<T>(colName));
380      col.attach(table_, colName);
381
382      int size = 0;
383      ArrayIterator<T2>& it = defValue.begin();
384      while (it != defValue.end()) {
385        ++size;
386        ++it;
387      }
388      IPosition ip(1, size);
389      Array<T>& arr(ip);
390      for (int i = 0; i < size; ++i)
391        arr[i] = static_cast<T>(defValue[i]);
392
393      col.fillColumn(arr);
394    } else {
395      throw;
396    }
397  } catch (...) {
398    throw;
399  }
400}
401
402void Scantable::setHeader(const STHeader& sdh)
403{
404  table_.rwKeywordSet().define("nIF", sdh.nif);
405  table_.rwKeywordSet().define("nBeam", sdh.nbeam);
406  table_.rwKeywordSet().define("nPol", sdh.npol);
407  table_.rwKeywordSet().define("nChan", sdh.nchan);
408  table_.rwKeywordSet().define("Observer", sdh.observer);
409  table_.rwKeywordSet().define("Project", sdh.project);
410  table_.rwKeywordSet().define("Obstype", sdh.obstype);
411  table_.rwKeywordSet().define("AntennaName", sdh.antennaname);
412  table_.rwKeywordSet().define("AntennaPosition", sdh.antennaposition);
413  table_.rwKeywordSet().define("Equinox", sdh.equinox);
414  table_.rwKeywordSet().define("FreqRefFrame", sdh.freqref);
415  table_.rwKeywordSet().define("FreqRefVal", sdh.reffreq);
416  table_.rwKeywordSet().define("Bandwidth", sdh.bandwidth);
417  table_.rwKeywordSet().define("UTC", sdh.utc);
418  table_.rwKeywordSet().define("FluxUnit", sdh.fluxunit);
419  table_.rwKeywordSet().define("Epoch", sdh.epoch);
420  table_.rwKeywordSet().define("POLTYPE", sdh.poltype);
421}
422
423STHeader Scantable::getHeader() const
424{
425  STHeader sdh;
426  table_.keywordSet().get("nBeam",sdh.nbeam);
427  table_.keywordSet().get("nIF",sdh.nif);
428  table_.keywordSet().get("nPol",sdh.npol);
429  table_.keywordSet().get("nChan",sdh.nchan);
430  table_.keywordSet().get("Observer", sdh.observer);
431  table_.keywordSet().get("Project", sdh.project);
432  table_.keywordSet().get("Obstype", sdh.obstype);
433  table_.keywordSet().get("AntennaName", sdh.antennaname);
434  table_.keywordSet().get("AntennaPosition", sdh.antennaposition);
435  table_.keywordSet().get("Equinox", sdh.equinox);
436  table_.keywordSet().get("FreqRefFrame", sdh.freqref);
437  table_.keywordSet().get("FreqRefVal", sdh.reffreq);
438  table_.keywordSet().get("Bandwidth", sdh.bandwidth);
439  table_.keywordSet().get("UTC", sdh.utc);
440  table_.keywordSet().get("FluxUnit", sdh.fluxunit);
441  table_.keywordSet().get("Epoch", sdh.epoch);
442  table_.keywordSet().get("POLTYPE", sdh.poltype);
443  return sdh;
444}
445
446void Scantable::setSourceType( int stype )
447{
448  if ( stype < 0 || stype > 1 )
449    throw(AipsError("Illegal sourcetype."));
450  TableVector<Int> tabvec(table_, "SRCTYPE");
451  tabvec = Int(stype);
452}
453
454bool Scantable::conformant( const Scantable& other )
455{
456  return this->getHeader().conformant(other.getHeader());
457}
458
459
460
461std::string Scantable::formatSec(Double x) const
462{
463  Double xcop = x;
464  MVTime mvt(xcop/24./3600.);  // make days
465
466  if (x < 59.95)
467    return  String("      ") + mvt.string(MVTime::TIME_CLEAN_NO_HM, 7)+"s";
468  else if (x < 3599.95)
469    return String("   ") + mvt.string(MVTime::TIME_CLEAN_NO_H,7)+" ";
470  else {
471    ostringstream oss;
472    oss << setw(2) << std::right << setprecision(1) << mvt.hour();
473    oss << ":" << mvt.string(MVTime::TIME_CLEAN_NO_H,7) << " ";
474    return String(oss);
475  }
476};
477
478std::string Scantable::formatDirection(const MDirection& md) const
479{
480  Vector<Double> t = md.getAngle(Unit(String("rad"))).getValue();
481  Int prec = 7;
482
483  String ref = md.getRefString();
484  MVAngle mvLon(t[0]);
485  String sLon = mvLon.string(MVAngle::TIME,prec);
486  uInt tp = md.getRef().getType();
487  if (tp == MDirection::GALACTIC ||
488      tp == MDirection::SUPERGAL ) {
489    sLon = mvLon(0.0).string(MVAngle::ANGLE_CLEAN,prec);
490  }
491  MVAngle mvLat(t[1]);
492  String sLat = mvLat.string(MVAngle::ANGLE+MVAngle::DIG2,prec);
493  return  ref + String(" ") + sLon + String(" ") + sLat;
494}
495
496
497std::string Scantable::getFluxUnit() const
498{
499  return table_.keywordSet().asString("FluxUnit");
500}
501
502void Scantable::setFluxUnit(const std::string& unit)
503{
504  String tmp(unit);
505  Unit tU(tmp);
506  if (tU==Unit("K") || tU==Unit("Jy")) {
507     table_.rwKeywordSet().define(String("FluxUnit"), tmp);
508  } else {
509     throw AipsError("Illegal unit - must be compatible with Jy or K");
510  }
511}
512
513void Scantable::setInstrument(const std::string& name)
514{
515  bool throwIt = true;
516  // create an Instrument to see if this is valid
517  STAttr::convertInstrument(name, throwIt);
518  String nameU(name);
519  nameU.upcase();
520  table_.rwKeywordSet().define(String("AntennaName"), nameU);
521}
522
523void Scantable::setFeedType(const std::string& feedtype)
524{
525  if ( Scantable::factories_.find(feedtype) ==  Scantable::factories_.end() ) {
526    std::string msg = "Illegal feed type "+ feedtype;
527    throw(casa::AipsError(msg));
528  }
529  table_.rwKeywordSet().define(String("POLTYPE"), feedtype);
530}
531
532MPosition Scantable::getAntennaPosition() const
533{
534  Vector<Double> antpos;
535  table_.keywordSet().get("AntennaPosition", antpos);
536  MVPosition mvpos(antpos(0),antpos(1),antpos(2));
537  return MPosition(mvpos);
538}
539
540void Scantable::makePersistent(const std::string& filename)
541{
542  String inname(filename);
543  Path path(inname);
544  /// @todo reindex SCANNO, recompute nbeam, nif, npol
545  inname = path.expandedName();
546  // 2011/03/04 TN
547  // We can comment out this workaround since the essential bug is
548  // fixed in casacore (r20889 in google code).
549  table_.deepCopy(inname, Table::New);
550//   // WORKAROUND !!! for Table bug
551//   // Remove when fixed in casacore
552//   if ( table_.tableType() == Table::Memory  && !selector_.empty() ) {
553//     Table tab = table_.copyToMemoryTable(generateName());
554//     tab.deepCopy(inname, Table::New);
555//     tab.markForDelete();
556//
557//   } else {
558//     table_.deepCopy(inname, Table::New);
559//   }
560}
561
562int Scantable::nbeam( int scanno ) const
563{
564  if ( scanno < 0 ) {
565    Int n;
566    table_.keywordSet().get("nBeam",n);
567    return int(n);
568  } else {
569    // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
570    Table t = table_(table_.col("SCANNO") == scanno);
571    ROTableRow row(t);
572    const TableRecord& rec = row.get(0);
573    Table subt = t( t.col("IFNO") == Int(rec.asuInt("IFNO"))
574                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
575                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
576    ROTableVector<uInt> v(subt, "BEAMNO");
577    return int(v.nelements());
578  }
579  return 0;
580}
581
582int Scantable::nif( int scanno ) const
583{
584  if ( scanno < 0 ) {
585    Int n;
586    table_.keywordSet().get("nIF",n);
587    return int(n);
588  } else {
589    // take the first POLNO,BEAMNO,CYCLENO as nbeam shouldn't vary with these
590    Table t = table_(table_.col("SCANNO") == scanno);
591    ROTableRow row(t);
592    const TableRecord& rec = row.get(0);
593    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
594                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
595                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
596    if ( subt.nrow() == 0 ) return 0;
597    ROTableVector<uInt> v(subt, "IFNO");
598    return int(v.nelements());
599  }
600  return 0;
601}
602
603int Scantable::npol( int scanno ) const
604{
605  if ( scanno < 0 ) {
606    Int n;
607    table_.keywordSet().get("nPol",n);
608    return n;
609  } else {
610    // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
611    Table t = table_(table_.col("SCANNO") == scanno);
612    ROTableRow row(t);
613    const TableRecord& rec = row.get(0);
614    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
615                    && t.col("IFNO") == Int(rec.asuInt("IFNO"))
616                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
617    if ( subt.nrow() == 0 ) return 0;
618    ROTableVector<uInt> v(subt, "POLNO");
619    return int(v.nelements());
620  }
621  return 0;
622}
623
624int Scantable::ncycle( int scanno ) const
625{
626  if ( scanno < 0 ) {
627    Block<String> cols(2);
628    cols[0] = "SCANNO";
629    cols[1] = "CYCLENO";
630    TableIterator it(table_, cols);
631    int n = 0;
632    while ( !it.pastEnd() ) {
633      ++n;
634      ++it;
635    }
636    return n;
637  } else {
638    Table t = table_(table_.col("SCANNO") == scanno);
639    ROTableRow row(t);
640    const TableRecord& rec = row.get(0);
641    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
642                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
643                    && t.col("IFNO") == Int(rec.asuInt("IFNO")) );
644    if ( subt.nrow() == 0 ) return 0;
645    return int(subt.nrow());
646  }
647  return 0;
648}
649
650
651int Scantable::nrow( int scanno ) const
652{
653  return int(table_.nrow());
654}
655
656int Scantable::nchan( int ifno ) const
657{
658  if ( ifno < 0 ) {
659    Int n;
660    table_.keywordSet().get("nChan",n);
661    return int(n);
662  } else {
663    // take the first SCANNO,POLNO,BEAMNO,CYCLENO as nbeam shouldn't
664    // vary with these
665    Table t = table_(table_.col("IFNO") == ifno, 1);
666    if ( t.nrow() == 0 ) return 0;
667    ROArrayColumn<Float> v(t, "SPECTRA");
668    return v.shape(0)(0);
669  }
670  return 0;
671}
672
673int Scantable::nscan() const {
674  Vector<uInt> scannos(scanCol_.getColumn());
675  uInt nout = genSort( scannos, Sort::Ascending,
676                       Sort::QuickSort|Sort::NoDuplicates );
677  return int(nout);
678}
679
680int Scantable::getChannels(int whichrow) const
681{
682  return specCol_.shape(whichrow)(0);
683}
684
685int Scantable::getBeam(int whichrow) const
686{
687  return beamCol_(whichrow);
688}
689
690std::vector<uint> Scantable::getNumbers(const ScalarColumn<uInt>& col) const
691{
692  Vector<uInt> nos(col.getColumn());
693  uInt n = genSort( nos, Sort::Ascending, Sort::QuickSort|Sort::NoDuplicates );
694  nos.resize(n, True);
695  std::vector<uint> stlout;
696  nos.tovector(stlout);
697  return stlout;
698}
699
700int Scantable::getIF(int whichrow) const
701{
702  return ifCol_(whichrow);
703}
704
705int Scantable::getPol(int whichrow) const
706{
707  return polCol_(whichrow);
708}
709
710std::string Scantable::formatTime(const MEpoch& me, bool showdate) const
711{
712  return formatTime(me, showdate, 0);
713}
714
715std::string Scantable::formatTime(const MEpoch& me, bool showdate, uInt prec) const
716{
717  MVTime mvt(me.getValue());
718  if (showdate)
719    //mvt.setFormat(MVTime::YMD);
720    mvt.setFormat(MVTime::YMD, prec);
721  else
722    //mvt.setFormat(MVTime::TIME);
723    mvt.setFormat(MVTime::TIME, prec);
724  ostringstream oss;
725  oss << mvt;
726  return String(oss);
727}
728
729void Scantable::calculateAZEL()
730
731  LogIO os( LogOrigin( "Scantable", "calculateAZEL()", WHERE ) ) ;
732  MPosition mp = getAntennaPosition();
733  MEpoch::ROScalarColumn timeCol(table_, "TIME");
734  ostringstream oss;
735  oss << mp;
736  os << "Computed azimuth/elevation using " << endl
737     << String(oss) << endl;
738  for (Int i=0; i<nrow(); ++i) {
739    MEpoch me = timeCol(i);
740    MDirection md = getDirection(i);
741    os  << " Time: " << formatTime(me,False)
742        << " Direction: " << formatDirection(md)
743         << endl << "     => ";
744    MeasFrame frame(mp, me);
745    Vector<Double> azel =
746        MDirection::Convert(md, MDirection::Ref(MDirection::AZEL,
747                                                frame)
748                            )().getAngle("rad").getValue();
749    azCol_.put(i,Float(azel[0]));
750    elCol_.put(i,Float(azel[1]));
751    os << "azel: " << azel[0]/C::pi*180.0 << " "
752       << azel[1]/C::pi*180.0 << " (deg)" << LogIO::POST;
753  }
754}
755
756void Scantable::clip(const Float uthres, const Float dthres, bool clipoutside, bool unflag)
757{
758  for (uInt i=0; i<table_.nrow(); ++i) {
759    Vector<uChar> flgs = flagsCol_(i);
760    srchChannelsToClip(i, uthres, dthres, clipoutside, unflag, flgs);
761    flagsCol_.put(i, flgs);
762  }
763}
764
765std::vector<bool> Scantable::getClipMask(int whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag)
766{
767  Vector<uChar> flags;
768  flagsCol_.get(uInt(whichrow), flags);
769  srchChannelsToClip(uInt(whichrow), uthres, dthres, clipoutside, unflag, flags);
770  Vector<Bool> bflag(flags.shape());
771  convertArray(bflag, flags);
772  //bflag = !bflag;
773
774  std::vector<bool> mask;
775  bflag.tovector(mask);
776  return mask;
777}
778
779void Scantable::srchChannelsToClip(uInt whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag,
780                                   Vector<uChar> flgs)
781{
782    Vector<Float> spcs = specCol_(whichrow);
783    uInt nchannel = spcs.nelements();
784    if (spcs.nelements() != nchannel) {
785      throw(AipsError("Data has incorrect number of channels"));
786    }
787    uChar userflag = 1 << 7;
788    if (unflag) {
789      userflag = 0 << 7;
790    }
791    if (clipoutside) {
792      for (uInt j = 0; j < nchannel; ++j) {
793        Float spc = spcs(j);
794        if ((spc >= uthres) || (spc <= dthres)) {
795          flgs(j) = userflag;
796        }
797      }
798    } else {
799      for (uInt j = 0; j < nchannel; ++j) {
800        Float spc = spcs(j);
801        if ((spc < uthres) && (spc > dthres)) {
802          flgs(j) = userflag;
803        }
804      }
805    }
806}
807
808
809void Scantable::flag( int whichrow, const std::vector<bool>& msk, bool unflag ) {
810  std::vector<bool>::const_iterator it;
811  uInt ntrue = 0;
812  if (whichrow >= int(table_.nrow()) ) {
813    throw(AipsError("Invalid row number"));
814  }
815  for (it = msk.begin(); it != msk.end(); ++it) {
816    if ( *it ) {
817      ntrue++;
818    }
819  }
820  //if ( selector_.empty()  && (msk.size() == 0 || msk.size() == ntrue) )
821  if ( whichrow == -1 && !unflag && selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
822    throw(AipsError("Trying to flag whole scantable."));
823  uChar userflag = 1 << 7;
824  if ( unflag ) {
825    userflag = 0 << 7;
826  }
827  if (whichrow > -1 ) {
828    applyChanFlag(uInt(whichrow), msk, userflag);
829  } else {
830    for ( uInt i=0; i<table_.nrow(); ++i) {
831      applyChanFlag(i, msk, userflag);
832    }
833  }
834}
835
836void Scantable::applyChanFlag( uInt whichrow, const std::vector<bool>& msk, uChar flagval )
837{
838  if (whichrow >= table_.nrow() ) {
839    throw( casa::indexError<int>( whichrow, "asap::Scantable::applyChanFlag: Invalid row number" ) );
840  }
841  Vector<uChar> flgs = flagsCol_(whichrow);
842  if ( msk.size() == 0 ) {
843    flgs = flagval;
844    flagsCol_.put(whichrow, flgs);
845    return;
846  }
847  if ( int(msk.size()) != nchan( getIF(whichrow) ) ) {
848    throw(AipsError("Mask has incorrect number of channels."));
849  }
850  if ( flgs.nelements() != msk.size() ) {
851    throw(AipsError("Mask has incorrect number of channels."
852                    " Probably varying with IF. Please flag per IF"));
853  }
854  std::vector<bool>::const_iterator it;
855  uInt j = 0;
856  for (it = msk.begin(); it != msk.end(); ++it) {
857    if ( *it ) {
858      flgs(j) = flagval;
859    }
860    ++j;
861  }
862  flagsCol_.put(whichrow, flgs);
863}
864
865void Scantable::flagRow(const std::vector<uInt>& rows, bool unflag)
866{
867  if (selector_.empty() && (rows.size() == table_.nrow()) && !unflag)
868    throw(AipsError("Trying to flag whole scantable."));
869
870  uInt rowflag = (unflag ? 0 : 1);
871  std::vector<uInt>::const_iterator it;
872  for (it = rows.begin(); it != rows.end(); ++it)
873    flagrowCol_.put(*it, rowflag);
874}
875
876std::vector<bool> Scantable::getMask(int whichrow) const
877{
878  Vector<uChar> flags;
879  flagsCol_.get(uInt(whichrow), flags);
880  Vector<Bool> bflag(flags.shape());
881  convertArray(bflag, flags);
882  bflag = !bflag;
883  std::vector<bool> mask;
884  bflag.tovector(mask);
885  return mask;
886}
887
888std::vector<float> Scantable::getSpectrum( int whichrow,
889                                           const std::string& poltype ) const
890{
891  LogIO os( LogOrigin( "Scantable", "getSpectrum()", WHERE ) ) ;
892
893  String ptype = poltype;
894  if (poltype == "" ) ptype = getPolType();
895  if ( whichrow  < 0 || whichrow >= nrow() )
896    throw(AipsError("Illegal row number."));
897  std::vector<float> out;
898  Vector<Float> arr;
899  uInt requestedpol = polCol_(whichrow);
900  String basetype = getPolType();
901  if ( ptype == basetype ) {
902    specCol_.get(whichrow, arr);
903  } else {
904    CountedPtr<STPol> stpol(STPol::getPolClass(Scantable::factories_,
905                                               basetype));
906    uInt row = uInt(whichrow);
907    stpol->setSpectra(getPolMatrix(row));
908    Float fang,fhand;
909    fang = focusTable_.getTotalAngle(mfocusidCol_(row));
910    fhand = focusTable_.getFeedHand(mfocusidCol_(row));
911    stpol->setPhaseCorrections(fang, fhand);
912    arr = stpol->getSpectrum(requestedpol, ptype);
913  }
914  if ( arr.nelements() == 0 )
915   
916    os << "Not enough polarisations present to do the conversion."
917       << LogIO::POST;
918  arr.tovector(out);
919  return out;
920}
921
922void Scantable::setSpectrum( const std::vector<float>& spec,
923                                   int whichrow )
924{
925  Vector<Float> spectrum(spec);
926  Vector<Float> arr;
927  specCol_.get(whichrow, arr);
928  if ( spectrum.nelements() != arr.nelements() )
929    throw AipsError("The spectrum has incorrect number of channels.");
930  specCol_.put(whichrow, spectrum);
931}
932
933
934String Scantable::generateName()
935{
936  return (File::newUniqueName("./","temp")).baseName();
937}
938
939const casa::Table& Scantable::table( ) const
940{
941  return table_;
942}
943
944casa::Table& Scantable::table( )
945{
946  return table_;
947}
948
949std::string Scantable::getPolType() const
950{
951  return table_.keywordSet().asString("POLTYPE");
952}
953
954void Scantable::unsetSelection()
955{
956  table_ = originalTable_;
957  attach();
958  selector_.reset();
959}
960
961void Scantable::setSelection( const STSelector& selection )
962{
963  Table tab = const_cast<STSelector&>(selection).apply(originalTable_);
964  if ( tab.nrow() == 0 ) {
965    throw(AipsError("Selection contains no data. Not applying it."));
966  }
967  table_ = tab;
968  attach();
969//   tab.rwKeywordSet().define("nBeam",(Int)(getBeamNos().size())) ;
970//   vector<uint> selectedIFs = getIFNos() ;
971//   Int newnIF = selectedIFs.size() ;
972//   tab.rwKeywordSet().define("nIF",newnIF) ;
973//   if ( newnIF != 0 ) {
974//     Int newnChan = 0 ;
975//     for ( Int i = 0 ; i < newnIF ; i++ ) {
976//       Int nChan = nchan( selectedIFs[i] ) ;
977//       if ( newnChan > nChan )
978//         newnChan = nChan ;
979//     }
980//     tab.rwKeywordSet().define("nChan",newnChan) ;
981//   }
982//   tab.rwKeywordSet().define("nPol",(Int)(getPolNos().size())) ;
983  selector_ = selection;
984}
985
986
987std::string Scantable::headerSummary()
988{
989  // Format header info
990//   STHeader sdh;
991//   sdh = getHeader();
992//   sdh.print();
993  ostringstream oss;
994  oss.flags(std::ios_base::left);
995  String tmp;
996  // Project
997  table_.keywordSet().get("Project", tmp);
998  oss << setw(15) << "Project:" << tmp << endl;
999  // Observation date
1000  oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1001  // Observer
1002  oss << setw(15) << "Observer:"
1003      << table_.keywordSet().asString("Observer") << endl;
1004  // Antenna Name
1005  table_.keywordSet().get("AntennaName", tmp);
1006  oss << setw(15) << "Antenna Name:" << tmp << endl;
1007  // Obs type
1008  table_.keywordSet().get("Obstype", tmp);
1009  // Records (nrow)
1010  oss << setw(15) << "Data Records:" << table_.nrow() << " rows" << endl;
1011  oss << setw(15) << "Obs. Type:" << tmp << endl;
1012  // Beams, IFs, Polarizations, and Channels
1013  oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1014      << setw(15) << "IFs:" << setw(4) << nif() << endl
1015      << setw(15) << "Polarisations:" << setw(4) << npol()
1016      << "(" << getPolType() << ")" << endl
1017      << setw(15) << "Channels:" << nchan() << endl;
1018  // Flux unit
1019  table_.keywordSet().get("FluxUnit", tmp);
1020  oss << setw(15) << "Flux Unit:" << tmp << endl;
1021  // Abscissa Unit
1022  oss << setw(15) << "Abscissa:" << getAbcissaLabel(0) << endl;
1023  // Selection
1024  oss << selector_.print() << endl;
1025
1026  return String(oss);
1027}
1028
1029void Scantable::summary( const std::string& filename )
1030{
1031  ostringstream oss;
1032  ofstream ofs;
1033  LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1034
1035  if (filename != "")
1036    ofs.open( filename.c_str(),  ios::out );
1037
1038  oss << endl;
1039  oss << asap::SEPERATOR << endl;
1040  oss << " Scan Table Summary" << endl;
1041  oss << asap::SEPERATOR << endl;
1042
1043  // Format header info
1044  oss << headerSummary();
1045  oss << endl;
1046
1047  if (table_.nrow() <= 0){
1048    oss << asap::SEPERATOR << endl;
1049    oss << "The MAIN table is empty: there are no data!!!" << endl;
1050    oss << asap::SEPERATOR << endl;
1051
1052    ols << String(oss) << LogIO::POST;
1053    if (ofs) {
1054      ofs << String(oss) << flush;
1055      ofs.close();
1056    }
1057    return;
1058  }
1059
1060
1061
1062  // main table
1063  String dirtype = "Position ("
1064                  + getDirectionRefString()
1065                  + ")";
1066  oss.flags(std::ios_base::left);
1067  oss << setw(5) << "Scan"
1068      << setw(15) << "Source"
1069      << setw(35) << "Time range"
1070      << setw(2) << "" << setw(7) << "Int[s]"
1071      << setw(7) << "Record"
1072      << setw(8) << "SrcType"
1073      << setw(8) << "FreqIDs"
1074      << setw(7) << "MolIDs" << endl;
1075  oss << setw(7)<< "" << setw(6) << "Beam"
1076      << setw(23) << dirtype << endl;
1077
1078  oss << asap::SEPERATOR << endl;
1079
1080  // Flush summary and clear up the string
1081  ols << String(oss) << LogIO::POST;
1082  if (ofs) ofs << String(oss) << flush;
1083  oss.str("");
1084  oss.clear();
1085
1086
1087  // Get Freq_ID map
1088  ROScalarColumn<uInt> ftabIds(frequencies().table(), "ID");
1089  Int nfid = ftabIds.nrow();
1090  if (nfid <= 0){
1091    oss << "FREQUENCIES subtable is empty: there are no data!!!" << endl;
1092    oss << asap::SEPERATOR << endl;
1093
1094    ols << String(oss) << LogIO::POST;
1095    if (ofs) {
1096      ofs << String(oss) << flush;
1097      ofs.close();
1098    }
1099    return;
1100  }
1101  // Storages of overall IFNO, POLNO, and nchan per FREQ_ID
1102  // the orders are identical to ID in FREQ subtable
1103  Block< Vector<uInt> > ifNos(nfid), polNos(nfid);
1104  Vector<Int> fIdchans(nfid,-1);
1105  map<uInt, Int> fidMap;  // (FREQ_ID, row # in FREQ subtable) pair
1106  for (Int i=0; i < nfid; i++){
1107   // fidMap[freqId] returns row number in FREQ subtable
1108   fidMap.insert(pair<uInt, Int>(ftabIds(i),i));
1109   ifNos[i] = Vector<uInt>();
1110   polNos[i] = Vector<uInt>();
1111  }
1112
1113  TableIterator iter(table_, "SCANNO");
1114
1115  // Vars for keeping track of time, freqids, molIds in a SCANNO
1116  Vector<uInt> freqids;
1117  Vector<uInt> molids;
1118  Vector<uInt> beamids(1,0);
1119  Vector<MDirection> beamDirs;
1120  Vector<Int> stypeids(1,0);
1121  Vector<String> stypestrs;
1122  Int nfreq(1);
1123  Int nmol(1);
1124  uInt nbeam(1);
1125  uInt nstype(1);
1126
1127  Double btime(0.0), etime(0.0);
1128  Double meanIntTim(0.0);
1129
1130  uInt currFreqId(0), ftabRow(0);
1131  Int iflen(0), pollen(0);
1132
1133  while (!iter.pastEnd()) {
1134    Table subt = iter.table();
1135    uInt snrow = subt.nrow();
1136    ROTableRow row(subt);
1137    const TableRecord& rec = row.get(0);
1138
1139    // relevant columns
1140    ROScalarColumn<Double> mjdCol(subt,"TIME");
1141    ROScalarColumn<Double> intervalCol(subt,"INTERVAL");
1142    MDirection::ROScalarColumn dirCol(subt,"DIRECTION");
1143
1144    ScalarColumn<uInt> freqIdCol(subt,"FREQ_ID");
1145    ScalarColumn<uInt> molIdCol(subt,"MOLECULE_ID");
1146    ROScalarColumn<uInt> beamCol(subt,"BEAMNO");
1147    ROScalarColumn<Int> stypeCol(subt,"SRCTYPE");
1148
1149    ROScalarColumn<uInt> ifNoCol(subt,"IFNO");
1150    ROScalarColumn<uInt> polNoCol(subt,"POLNO");
1151
1152
1153    // Times
1154    meanIntTim = sum(intervalCol.getColumn()) / (double) snrow;
1155    minMax(btime, etime, mjdCol.getColumn());
1156    etime += meanIntTim/C::day;
1157
1158    // MOLECULE_ID and FREQ_ID
1159    molids = getNumbers(molIdCol);
1160    molids.shape(nmol);
1161
1162    freqids = getNumbers(freqIdCol);
1163    freqids.shape(nfreq);
1164
1165    // Add first beamid, and srcNames
1166    beamids.resize(1,False);
1167    beamDirs.resize(1,False);
1168    beamids(0)=beamCol(0);
1169    beamDirs(0)=dirCol(0);
1170    nbeam = 1;
1171
1172    stypeids.resize(1,False);
1173    stypeids(0)=stypeCol(0);
1174    nstype = 1;
1175
1176    // Global listings of nchan/IFNO/POLNO per FREQ_ID
1177    currFreqId=freqIdCol(0);
1178    ftabRow = fidMap[currFreqId];
1179    // Assumes an identical number of channels per FREQ_ID
1180    if (fIdchans(ftabRow) < 0 ) {
1181      RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1182      fIdchans(ftabRow)=(*spec).shape()(0);
1183    }
1184    // Should keep ifNos and polNos form the previous SCANNO
1185    if ( !anyEQ(ifNos[ftabRow],ifNoCol(0)) ) {
1186      ifNos[ftabRow].shape(iflen);
1187      iflen++;
1188      ifNos[ftabRow].resize(iflen,True);
1189      ifNos[ftabRow](iflen-1) = ifNoCol(0);
1190    }
1191    if ( !anyEQ(polNos[ftabRow],polNoCol(0)) ) {
1192      polNos[ftabRow].shape(pollen);
1193      pollen++;
1194      polNos[ftabRow].resize(pollen,True);
1195      polNos[ftabRow](pollen-1) = polNoCol(0);
1196    }
1197
1198    for (uInt i=1; i < snrow; i++){
1199      // Need to list BEAMNO and DIRECTION in the same order
1200      if ( !anyEQ(beamids,beamCol(i)) ) {
1201        nbeam++;
1202        beamids.resize(nbeam,True);
1203        beamids(nbeam-1)=beamCol(i);
1204        beamDirs.resize(nbeam,True);
1205        beamDirs(nbeam-1)=dirCol(i);
1206      }
1207
1208      // SRCTYPE is Int (getNumber takes only uInt)
1209      if ( !anyEQ(stypeids,stypeCol(i)) ) {
1210        nstype++;
1211        stypeids.resize(nstype,True);
1212        stypeids(nstype-1)=stypeCol(i);
1213      }
1214
1215      // Global listings of nchan/IFNO/POLNO per FREQ_ID
1216      currFreqId=freqIdCol(i);
1217      ftabRow = fidMap[currFreqId];
1218      if (fIdchans(ftabRow) < 0 ) {
1219        const TableRecord& rec = row.get(i);
1220        RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1221        fIdchans(ftabRow) = (*spec).shape()(0);
1222      }
1223      if ( !anyEQ(ifNos[ftabRow],ifNoCol(i)) ) {
1224        ifNos[ftabRow].shape(iflen);
1225        iflen++;
1226        ifNos[ftabRow].resize(iflen,True);
1227        ifNos[ftabRow](iflen-1) = ifNoCol(i);
1228      }
1229      if ( !anyEQ(polNos[ftabRow],polNoCol(i)) ) {
1230        polNos[ftabRow].shape(pollen);
1231        pollen++;
1232        polNos[ftabRow].resize(pollen,True);
1233        polNos[ftabRow](pollen-1) = polNoCol(i);
1234      }
1235    } // end of row iteration
1236
1237    stypestrs.resize(nstype,False);
1238    for (uInt j=0; j < nstype; j++)
1239      stypestrs(j) = SrcType::getName(stypeids(j));
1240
1241    // Format Scan summary
1242    oss << setw(4) << std::right << rec.asuInt("SCANNO")
1243        << std::left << setw(1) << ""
1244        << setw(15) << rec.asString("SRCNAME")
1245        << setw(21) << MVTime(btime).string(MVTime::YMD,7)
1246        << setw(3) << " - " << MVTime(etime).string(MVTime::TIME,7)
1247        << setw(3) << "" << setw(6) << meanIntTim << setw(1) << ""
1248        << std::right << setw(5) << snrow << setw(2) << ""
1249        << std::left << stypestrs << setw(1) << ""
1250        << freqids << setw(1) << ""
1251        << molids  << endl;
1252    // Format Beam summary
1253    for (uInt j=0; j < nbeam; j++) {
1254      oss << setw(7) << "" << setw(6) << beamids(j) << setw(1) << ""
1255          << formatDirection(beamDirs(j)) << endl;
1256    }
1257    // Flush summary every scan and clear up the string
1258    ols << String(oss) << LogIO::POST;
1259    if (ofs) ofs << String(oss) << flush;
1260    oss.str("");
1261    oss.clear();
1262
1263    ++iter;
1264  } // end of scan iteration
1265  oss << asap::SEPERATOR << endl;
1266 
1267  // List FRECUENCIES Table (using STFrequencies.print may be slow)
1268  oss << "FREQUENCIES: " << nfreq << endl;
1269  oss << std::right << setw(5) << "ID" << setw(2) << ""
1270      << std::left  << setw(5) << "IFNO" << setw(2) << ""
1271      << setw(8) << "Frame"
1272      << setw(16) << "RefVal"
1273      << setw(7) << "RefPix"
1274      << setw(15) << "Increment"
1275      << setw(9) << "Channels"
1276      << setw(6) << "POLNOs" << endl;
1277  Int tmplen;
1278  for (Int i=0; i < nfid; i++){
1279    // List row=i of FREQUENCIES subtable
1280    ifNos[i].shape(tmplen);
1281    if (tmplen >= 1) {
1282      oss << std::right << setw(5) << ftabIds(i) << setw(2) << ""
1283          << setw(3) << ifNos[i](0) << setw(1) << ""
1284          << std::left << setw(46) << frequencies().print(ftabIds(i))
1285          << setw(2) << ""
1286          << std::right << setw(8) << fIdchans[i] << setw(2) << ""
1287          << std::left << polNos[i];
1288      if (tmplen > 1) {
1289        oss  << " (" << tmplen << " chains)";
1290      }
1291      oss << endl;
1292    }
1293   
1294  }
1295  oss << asap::SEPERATOR << endl;
1296
1297  // List MOLECULES Table (currently lists all rows)
1298  oss << "MOLECULES: " << endl;
1299  if (molecules().nrow() <= 0) {
1300    oss << "   MOLECULES subtable is empty: there are no data" << endl;
1301  } else {
1302    ROTableRow row(molecules().table());
1303    oss << std::right << setw(5) << "ID"
1304        << std::left << setw(3) << ""
1305        << setw(18) << "RestFreq"
1306        << setw(15) << "Name" << endl;
1307    for (Int i=0; i < molecules().nrow(); i++){
1308      const TableRecord& rec=row.get(i);
1309      oss << std::right << setw(5) << rec.asuInt("ID")
1310          << std::left << setw(3) << ""
1311          << rec.asArrayDouble("RESTFREQUENCY") << setw(1) << ""
1312          << rec.asArrayString("NAME") << endl;
1313    }
1314  }
1315  oss << asap::SEPERATOR << endl;
1316  ols << String(oss) << LogIO::POST;
1317  if (ofs) {
1318    ofs << String(oss) << flush;
1319    ofs.close();
1320  }
1321  //  return String(oss);
1322}
1323
1324
1325std::string Scantable::oldheaderSummary()
1326{
1327  // Format header info
1328//   STHeader sdh;
1329//   sdh = getHeader();
1330//   sdh.print();
1331  ostringstream oss;
1332  oss.flags(std::ios_base::left);
1333  oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1334      << setw(15) << "IFs:" << setw(4) << nif() << endl
1335      << setw(15) << "Polarisations:" << setw(4) << npol()
1336      << "(" << getPolType() << ")" << endl
1337      << setw(15) << "Channels:" << nchan() << endl;
1338  String tmp;
1339  oss << setw(15) << "Observer:"
1340      << table_.keywordSet().asString("Observer") << endl;
1341  oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1342  table_.keywordSet().get("Project", tmp);
1343  oss << setw(15) << "Project:" << tmp << endl;
1344  table_.keywordSet().get("Obstype", tmp);
1345  oss << setw(15) << "Obs. Type:" << tmp << endl;
1346  table_.keywordSet().get("AntennaName", tmp);
1347  oss << setw(15) << "Antenna Name:" << tmp << endl;
1348  table_.keywordSet().get("FluxUnit", tmp);
1349  oss << setw(15) << "Flux Unit:" << tmp << endl;
1350  int nid = moleculeTable_.nrow();
1351  Bool firstline = True;
1352  oss << setw(15) << "Rest Freqs:";
1353  for (int i=0; i<nid; i++) {
1354    Table t = table_(table_.col("MOLECULE_ID") == i, 1);
1355      if (t.nrow() >  0) {
1356          Vector<Double> vec(moleculeTable_.getRestFrequency(i));
1357          if (vec.nelements() > 0) {
1358               if (firstline) {
1359                   oss << setprecision(10) << vec << " [Hz]" << endl;
1360                   firstline=False;
1361               }
1362               else{
1363                   oss << setw(15)<<" " << setprecision(10) << vec << " [Hz]" << endl;
1364               }
1365          } else {
1366              oss << "none" << endl;
1367          }
1368      }
1369  }
1370
1371  oss << setw(15) << "Abcissa:" << getAbcissaLabel(0) << endl;
1372  oss << selector_.print() << endl;
1373  return String(oss);
1374}
1375
1376  //std::string Scantable::summary( const std::string& filename )
1377void Scantable::oldsummary( const std::string& filename )
1378{
1379  ostringstream oss;
1380  ofstream ofs;
1381  LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1382
1383  if (filename != "")
1384    ofs.open( filename.c_str(),  ios::out );
1385
1386  oss << endl;
1387  oss << asap::SEPERATOR << endl;
1388  oss << " Scan Table Summary" << endl;
1389  oss << asap::SEPERATOR << endl;
1390
1391  // Format header info
1392  oss << oldheaderSummary();
1393  oss << endl;
1394
1395  // main table
1396  String dirtype = "Position ("
1397                  + getDirectionRefString()
1398                  + ")";
1399  oss.flags(std::ios_base::left);
1400  oss << setw(5) << "Scan" << setw(15) << "Source"
1401      << setw(10) << "Time" << setw(18) << "Integration"
1402      << setw(15) << "Source Type" << endl;
1403  oss << setw(5) << "" << setw(5) << "Beam" << setw(3) << "" << dirtype << endl;
1404  oss << setw(10) << "" << setw(3) << "IF" << setw(3) << ""
1405      << setw(8) << "Frame" << setw(16)
1406      << "RefVal" << setw(10) << "RefPix" << setw(12) << "Increment"
1407      << setw(7) << "Channels"
1408      << endl;
1409  oss << asap::SEPERATOR << endl;
1410
1411  // Flush summary and clear up the string
1412  ols << String(oss) << LogIO::POST;
1413  if (ofs) ofs << String(oss) << flush;
1414  oss.str("");
1415  oss.clear();
1416
1417  TableIterator iter(table_, "SCANNO");
1418  while (!iter.pastEnd()) {
1419    Table subt = iter.table();
1420    ROTableRow row(subt);
1421    MEpoch::ROScalarColumn timeCol(subt,"TIME");
1422    const TableRecord& rec = row.get(0);
1423    oss << setw(4) << std::right << rec.asuInt("SCANNO")
1424        << std::left << setw(1) << ""
1425        << setw(15) << rec.asString("SRCNAME")
1426        << setw(10) << formatTime(timeCol(0), false);
1427    // count the cycles in the scan
1428    TableIterator cyciter(subt, "CYCLENO");
1429    int nint = 0;
1430    while (!cyciter.pastEnd()) {
1431      ++nint;
1432      ++cyciter;
1433    }
1434    oss << setw(3) << std::right << nint  << setw(3) << " x " << std::left
1435        << setw(11) <<  formatSec(rec.asFloat("INTERVAL")) << setw(1) << ""
1436        << setw(15) << SrcType::getName(rec.asInt("SRCTYPE")) << endl;
1437
1438    TableIterator biter(subt, "BEAMNO");
1439    while (!biter.pastEnd()) {
1440      Table bsubt = biter.table();
1441      ROTableRow brow(bsubt);
1442      const TableRecord& brec = brow.get(0);
1443      uInt row0 = bsubt.rowNumbers(table_)[0];
1444      oss << setw(5) << "" <<  setw(4) << std::right << brec.asuInt("BEAMNO")<< std::left;
1445      oss  << setw(4) << ""  << formatDirection(getDirection(row0)) << endl;
1446      TableIterator iiter(bsubt, "IFNO");
1447      while (!iiter.pastEnd()) {
1448        Table isubt = iiter.table();
1449        ROTableRow irow(isubt);
1450        const TableRecord& irec = irow.get(0);
1451        oss << setw(9) << "";
1452        oss << setw(3) << std::right << irec.asuInt("IFNO") << std::left
1453            << setw(1) << "" << frequencies().print(irec.asuInt("FREQ_ID"))
1454            << setw(3) << "" << nchan(irec.asuInt("IFNO"))
1455            << endl;
1456
1457        ++iiter;
1458      }
1459      ++biter;
1460    }
1461    // Flush summary every scan and clear up the string
1462    ols << String(oss) << LogIO::POST;
1463    if (ofs) ofs << String(oss) << flush;
1464    oss.str("");
1465    oss.clear();
1466
1467    ++iter;
1468  }
1469  oss << asap::SEPERATOR << endl;
1470  ols << String(oss) << LogIO::POST;
1471  if (ofs) {
1472    ofs << String(oss) << flush;
1473    ofs.close();
1474  }
1475  //  return String(oss);
1476}
1477
1478// std::string Scantable::getTime(int whichrow, bool showdate) const
1479// {
1480//   MEpoch::ROScalarColumn timeCol(table_, "TIME");
1481//   MEpoch me;
1482//   if (whichrow > -1) {
1483//     me = timeCol(uInt(whichrow));
1484//   } else {
1485//     Double tm;
1486//     table_.keywordSet().get("UTC",tm);
1487//     me = MEpoch(MVEpoch(tm));
1488//   }
1489//   return formatTime(me, showdate);
1490// }
1491
1492std::string Scantable::getTime(int whichrow, bool showdate, uInt prec) const
1493{
1494  MEpoch me;
1495  me = getEpoch(whichrow);
1496  return formatTime(me, showdate, prec);
1497}
1498
1499MEpoch Scantable::getEpoch(int whichrow) const
1500{
1501  if (whichrow > -1) {
1502    return timeCol_(uInt(whichrow));
1503  } else {
1504    Double tm;
1505    table_.keywordSet().get("UTC",tm);
1506    return MEpoch(MVEpoch(tm));
1507  }
1508}
1509
1510std::string Scantable::getDirectionString(int whichrow) const
1511{
1512  return formatDirection(getDirection(uInt(whichrow)));
1513}
1514
1515
1516SpectralCoordinate Scantable::getSpectralCoordinate(int whichrow) const {
1517  const MPosition& mp = getAntennaPosition();
1518  const MDirection& md = getDirection(whichrow);
1519  const MEpoch& me = timeCol_(whichrow);
1520  //Double rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1521  Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1522  return freqTable_.getSpectralCoordinate(md, mp, me, rf,
1523                                          mfreqidCol_(whichrow));
1524}
1525
1526std::vector< double > Scantable::getAbcissa( int whichrow ) const
1527{
1528  if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal row number"));
1529  std::vector<double> stlout;
1530  int nchan = specCol_(whichrow).nelements();
1531  String us = freqTable_.getUnitString();
1532  if ( us == "" || us == "pixel" || us == "channel" ) {
1533    for (int i=0; i<nchan; ++i) {
1534      stlout.push_back(double(i));
1535    }
1536    return stlout;
1537  }
1538  SpectralCoordinate spc = getSpectralCoordinate(whichrow);
1539  Vector<Double> pixel(nchan);
1540  Vector<Double> world;
1541  indgen(pixel);
1542  if ( Unit(us) == Unit("Hz") ) {
1543    for ( int i=0; i < nchan; ++i) {
1544      Double world;
1545      spc.toWorld(world, pixel[i]);
1546      stlout.push_back(double(world));
1547    }
1548  } else if ( Unit(us) == Unit("km/s") ) {
1549    Vector<Double> world;
1550    spc.pixelToVelocity(world, pixel);
1551    world.tovector(stlout);
1552  }
1553  return stlout;
1554}
1555void Scantable::setDirectionRefString( const std::string & refstr )
1556{
1557  MDirection::Types mdt;
1558  if (refstr != "" && !MDirection::getType(mdt, refstr)) {
1559    throw(AipsError("Illegal Direction frame."));
1560  }
1561  if ( refstr == "" ) {
1562    String defaultstr = MDirection::showType(dirCol_.getMeasRef().getType());
1563    table_.rwKeywordSet().define("DIRECTIONREF", defaultstr);
1564  } else {
1565    table_.rwKeywordSet().define("DIRECTIONREF", String(refstr));
1566  }
1567}
1568
1569std::string Scantable::getDirectionRefString( ) const
1570{
1571  return table_.keywordSet().asString("DIRECTIONREF");
1572}
1573
1574MDirection Scantable::getDirection(int whichrow ) const
1575{
1576  String usertype = table_.keywordSet().asString("DIRECTIONREF");
1577  String type = MDirection::showType(dirCol_.getMeasRef().getType());
1578  if ( usertype != type ) {
1579    MDirection::Types mdt;
1580    if (!MDirection::getType(mdt, usertype)) {
1581      throw(AipsError("Illegal Direction frame."));
1582    }
1583    return dirCol_.convert(uInt(whichrow), mdt);
1584  } else {
1585    return dirCol_(uInt(whichrow));
1586  }
1587}
1588
1589std::string Scantable::getAbcissaLabel( int whichrow ) const
1590{
1591  if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal ro number"));
1592  const MPosition& mp = getAntennaPosition();
1593  const MDirection& md = getDirection(whichrow);
1594  const MEpoch& me = timeCol_(whichrow);
1595  //const Double& rf = mmolidCol_(whichrow);
1596  const Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1597  SpectralCoordinate spc =
1598    freqTable_.getSpectralCoordinate(md, mp, me, rf, mfreqidCol_(whichrow));
1599
1600  String s = "Channel";
1601  Unit u = Unit(freqTable_.getUnitString());
1602  if (u == Unit("km/s")) {
1603    s = CoordinateUtil::axisLabel(spc, 0, True,True,  True);
1604  } else if (u == Unit("Hz")) {
1605    Vector<String> wau(1);wau = u.getName();
1606    spc.setWorldAxisUnits(wau);
1607    s = CoordinateUtil::axisLabel(spc, 0, True, True, False);
1608  }
1609  return s;
1610
1611}
1612
1613/**
1614void asap::Scantable::setRestFrequencies( double rf, const std::string& name,
1615                                          const std::string& unit )
1616**/
1617void Scantable::setRestFrequencies( vector<double> rf, const vector<std::string>& name,
1618                                          const std::string& unit )
1619
1620{
1621  ///@todo lookup in line table to fill in name and formattedname
1622  Unit u(unit);
1623  //Quantum<Double> urf(rf, u);
1624  Quantum<Vector<Double> >urf(rf, u);
1625  Vector<String> formattedname(0);
1626  //cerr<<"Scantable::setRestFrequnecies="<<urf<<endl;
1627
1628  //uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), name, "");
1629  uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), mathutil::toVectorString(name), formattedname);
1630  TableVector<uInt> tabvec(table_, "MOLECULE_ID");
1631  tabvec = id;
1632}
1633
1634/**
1635void asap::Scantable::setRestFrequencies( const std::string& name )
1636{
1637  throw(AipsError("setRestFrequencies( const std::string& name ) NYI"));
1638  ///@todo implement
1639}
1640**/
1641
1642void Scantable::setRestFrequencies( const vector<std::string>& name )
1643{
1644  (void) name; // suppress unused warning
1645  throw(AipsError("setRestFrequencies( const vector<std::string>& name ) NYI"));
1646  ///@todo implement
1647}
1648
1649std::vector< unsigned int > Scantable::rownumbers( ) const
1650{
1651  std::vector<unsigned int> stlout;
1652  Vector<uInt> vec = table_.rowNumbers();
1653  vec.tovector(stlout);
1654  return stlout;
1655}
1656
1657
1658Matrix<Float> Scantable::getPolMatrix( uInt whichrow ) const
1659{
1660  ROTableRow row(table_);
1661  const TableRecord& rec = row.get(whichrow);
1662  Table t =
1663    originalTable_( originalTable_.col("SCANNO") == Int(rec.asuInt("SCANNO"))
1664                    && originalTable_.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1665                    && originalTable_.col("IFNO") == Int(rec.asuInt("IFNO"))
1666                    && originalTable_.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
1667  ROArrayColumn<Float> speccol(t, "SPECTRA");
1668  return speccol.getColumn();
1669}
1670
1671std::vector< std::string > Scantable::columnNames( ) const
1672{
1673  Vector<String> vec = table_.tableDesc().columnNames();
1674  return mathutil::tovectorstring(vec);
1675}
1676
1677MEpoch::Types Scantable::getTimeReference( ) const
1678{
1679  return MEpoch::castType(timeCol_.getMeasRef().getType());
1680}
1681
1682void Scantable::addFit( const STFitEntry& fit, int row )
1683{
1684  //cout << mfitidCol_(uInt(row)) << endl;
1685  LogIO os( LogOrigin( "Scantable", "addFit()", WHERE ) ) ;
1686  os << mfitidCol_(uInt(row)) << LogIO::POST ;
1687  uInt id = fitTable_.addEntry(fit, mfitidCol_(uInt(row)));
1688  mfitidCol_.put(uInt(row), id);
1689}
1690
1691void Scantable::shift(int npix)
1692{
1693  Vector<uInt> fids(mfreqidCol_.getColumn());
1694  genSort( fids, Sort::Ascending,
1695           Sort::QuickSort|Sort::NoDuplicates );
1696  for (uInt i=0; i<fids.nelements(); ++i) {
1697    frequencies().shiftRefPix(npix, fids[i]);
1698  }
1699}
1700
1701String Scantable::getAntennaName() const
1702{
1703  String out;
1704  table_.keywordSet().get("AntennaName", out);
1705  String::size_type pos1 = out.find("@") ;
1706  String::size_type pos2 = out.find("//") ;
1707  if ( pos2 != String::npos )
1708    out = out.substr(pos2+2,pos1-pos2-2) ;
1709  else if ( pos1 != String::npos )
1710    out = out.substr(0,pos1) ;
1711  return out;
1712}
1713
1714int Scantable::checkScanInfo(const std::vector<int>& scanlist) const
1715{
1716  String tbpath;
1717  int ret = 0;
1718  if ( table_.keywordSet().isDefined("GBT_GO") ) {
1719    table_.keywordSet().get("GBT_GO", tbpath);
1720    Table t(tbpath,Table::Old);
1721    // check each scan if other scan of the pair exist
1722    int nscan = scanlist.size();
1723    for (int i = 0; i < nscan; i++) {
1724      Table subt = t( t.col("SCAN") == scanlist[i]+1 );
1725      if (subt.nrow()==0) {
1726        //cerr <<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<endl;
1727        LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1728        os <<LogIO::WARN<<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<LogIO::POST;
1729        ret = 1;
1730        break;
1731      }
1732      ROTableRow row(subt);
1733      const TableRecord& rec = row.get(0);
1734      int scan1seqn = rec.asuInt("PROCSEQN");
1735      int laston1 = rec.asuInt("LASTON");
1736      if ( rec.asuInt("PROCSIZE")==2 ) {
1737        if ( i < nscan-1 ) {
1738          Table subt2 = t( t.col("SCAN") == scanlist[i+1]+1 );
1739          if ( subt2.nrow() == 0) {
1740            LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1741
1742            //cerr<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<endl;
1743            os<<LogIO::WARN<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<LogIO::POST;
1744            ret = 1;
1745            break;
1746          }
1747          ROTableRow row2(subt2);
1748          const TableRecord& rec2 = row2.get(0);
1749          int scan2seqn = rec2.asuInt("PROCSEQN");
1750          int laston2 = rec2.asuInt("LASTON");
1751          if (scan1seqn == 1 && scan2seqn == 2) {
1752            if (laston1 == laston2) {
1753              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1754              //cerr<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1755              os<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1756              i +=1;
1757            }
1758            else {
1759              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1760              //cerr<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1761              os<<LogIO::WARN<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1762            }
1763          }
1764          else if (scan1seqn==2 && scan2seqn == 1) {
1765            if (laston1 == laston2) {
1766              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1767              //cerr<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<endl;
1768              os<<LogIO::WARN<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<LogIO::POST;
1769              ret = 1;
1770              break;
1771            }
1772          }
1773          else {
1774            LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1775            //cerr<<"The other scan for  "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<endl;
1776            os<<LogIO::WARN<<"The other scan for  "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<LogIO::POST;
1777            ret = 1;
1778            break;
1779          }
1780        }
1781      }
1782      else {
1783        LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1784        //cerr<<"The scan does not appear to be standard obsevation."<<endl;
1785        os<<LogIO::WARN<<"The scan does not appear to be standard obsevation."<<LogIO::POST;
1786      }
1787    //if ( i >= nscan ) break;
1788    }
1789  }
1790  else {
1791    LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1792    //cerr<<"No reference to GBT_GO table."<<endl;
1793    os<<LogIO::WARN<<"No reference to GBT_GO table."<<LogIO::POST;
1794    ret = 1;
1795  }
1796  return ret;
1797}
1798
1799std::vector<double> Scantable::getDirectionVector(int whichrow) const
1800{
1801  Vector<Double> Dir = dirCol_(whichrow).getAngle("rad").getValue();
1802  std::vector<double> dir;
1803  Dir.tovector(dir);
1804  return dir;
1805}
1806
1807void asap::Scantable::reshapeSpectrum( int nmin, int nmax )
1808  throw( casa::AipsError )
1809{
1810  // assumed that all rows have same nChan
1811  Vector<Float> arr = specCol_( 0 ) ;
1812  int nChan = arr.nelements() ;
1813
1814  // if nmin < 0 or nmax < 0, nothing to do
1815  if (  nmin < 0 ) {
1816    throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1817    }
1818  if (  nmax < 0  ) {
1819    throw( casa::indexError<int>( nmax, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1820  }
1821
1822  // if nmin > nmax, exchange values
1823  if ( nmin > nmax ) {
1824    int tmp = nmax ;
1825    nmax = nmin ;
1826    nmin = tmp ;
1827    LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1828    os << "Swap values. Applied range is ["
1829       << nmin << ", " << nmax << "]" << LogIO::POST ;
1830  }
1831
1832  // if nmin exceeds nChan, nothing to do
1833  if ( nmin >= nChan ) {
1834    throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Specified minimum exceeds nChan." ) ) ;
1835  }
1836
1837  // if nmax exceeds nChan, reset nmax to nChan
1838  if ( nmax >= nChan-1 ) {
1839    if ( nmin == 0 ) {
1840      // nothing to do
1841      LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1842      os << "Whole range is selected. Nothing to do." << LogIO::POST ;
1843      return ;
1844    }
1845    else {
1846      LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1847      os << "Specified maximum exceeds nChan. Applied range is ["
1848         << nmin << ", " << nChan-1 << "]." << LogIO::POST ;
1849      nmax = nChan - 1 ;
1850    }
1851  }
1852
1853  // reshape specCol_ and flagCol_
1854  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1855    reshapeSpectrum( nmin, nmax, irow ) ;
1856  }
1857
1858  // update FREQUENCIES subtable
1859  Double refpix ;
1860  Double refval ;
1861  Double increment ;
1862  int freqnrow = freqTable_.table().nrow() ;
1863  Vector<uInt> oldId( freqnrow ) ;
1864  Vector<uInt> newId( freqnrow ) ;
1865  for ( int irow = 0 ; irow < freqnrow ; irow++ ) {
1866    freqTable_.getEntry( refpix, refval, increment, irow ) ;
1867    /***
1868     * need to shift refpix to nmin
1869     * note that channel nmin in old index will be channel 0 in new one
1870     ***/
1871    refval = refval - ( refpix - nmin ) * increment ;
1872    refpix = 0 ;
1873    freqTable_.setEntry( refpix, refval, increment, irow ) ;
1874  }
1875
1876  // update nchan
1877  int newsize = nmax - nmin + 1 ;
1878  table_.rwKeywordSet().define( "nChan", newsize ) ;
1879
1880  // update bandwidth
1881  // assumed all spectra in the scantable have same bandwidth
1882  table_.rwKeywordSet().define( "Bandwidth", increment * newsize ) ;
1883
1884  return ;
1885}
1886
1887void asap::Scantable::reshapeSpectrum( int nmin, int nmax, int irow )
1888{
1889  // reshape specCol_ and flagCol_
1890  Vector<Float> oldspec = specCol_( irow ) ;
1891  Vector<uChar> oldflag = flagsCol_( irow ) ;
1892  Vector<Float> oldtsys = tsysCol_( irow ) ;
1893  uInt newsize = nmax - nmin + 1 ;
1894  Slice slice( nmin, newsize, 1 ) ;
1895  specCol_.put( irow, oldspec( slice ) ) ;
1896  flagsCol_.put( irow, oldflag( slice ) ) ;
1897  if ( oldspec.size() == oldtsys.size() )
1898    tsysCol_.put( irow, oldtsys( slice ) ) ;
1899
1900  return ;
1901}
1902
1903void asap::Scantable::regridSpecChannel( double dnu, int nChan )
1904{
1905  LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1906  os << "Regrid abcissa with spectral resoultion " << dnu << " " << freqTable_.getUnitString() << " with channel number " << ((nChan>0)? String(nChan) : "covering band width")<< LogIO::POST ;
1907  int freqnrow = freqTable_.table().nrow() ;
1908  Vector<bool> firstTime( freqnrow, true ) ;
1909  double oldincr, factor;
1910  uInt currId;
1911  Double refpix ;
1912  Double refval ;
1913  Double increment ;
1914  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1915    currId = mfreqidCol_(irow);
1916    vector<double> abcissa = getAbcissa( irow ) ;
1917    if (nChan < 0) {
1918      int oldsize = abcissa.size() ;
1919      double bw = (abcissa[oldsize-1]-abcissa[0]) +                     \
1920        0.5 * (abcissa[1]-abcissa[0] + abcissa[oldsize-1]-abcissa[oldsize-2]) ;
1921      nChan = int( ceil( abs(bw/dnu) ) ) ;
1922    }
1923    // actual regridding
1924    regridChannel( nChan, dnu, irow ) ;
1925
1926    // update FREQUENCIES subtable
1927    if (firstTime[currId]) {
1928      oldincr = abcissa[1]-abcissa[0] ;
1929      factor = dnu/oldincr ;
1930      firstTime[currId] = false ;
1931      freqTable_.getEntry( refpix, refval, increment, currId ) ;
1932
1933      //refval = refval - ( refpix + 0.5 * (1 - factor) ) * increment ;
1934      if (factor > 0 ) {
1935        refpix = (refpix + 0.5)/factor - 0.5;
1936      } else {
1937        refpix = (abcissa.size() - 0.5 - refpix)/abs(factor) - 0.5;
1938      }
1939      freqTable_.setEntry( refpix, refval, increment*factor, currId ) ;
1940      //os << "ID" << currId << ": channel width (Orig) = " << oldincr << " [" << freqTable_.getUnitString() << "], scale factor = " << factor << LogIO::POST ;
1941      //os << "     frequency increment (Orig) = " << increment << "-> (New) " << increment*factor << LogIO::POST ;
1942    }
1943  }
1944}
1945
1946void asap::Scantable::regridChannel( int nChan, double dnu )
1947{
1948  LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1949  os << "Regrid abcissa with channel number " << nChan << " and spectral resoultion " << dnu << "Hz." << LogIO::POST ;
1950  // assumed that all rows have same nChan
1951  Vector<Float> arr = specCol_( 0 ) ;
1952  int oldsize = arr.nelements() ;
1953
1954  // if oldsize == nChan, nothing to do
1955  if ( oldsize == nChan ) {
1956    os << "Specified channel number is same as current one. Nothing to do." << LogIO::POST ;
1957    return ;
1958  }
1959
1960  // if oldChan < nChan, unphysical operation
1961  if ( oldsize < nChan ) {
1962    os << "Unphysical operation. Nothing to do." << LogIO::POST ;
1963    return ;
1964  }
1965
1966  // change channel number for specCol_, flagCol_, and tsysCol_ (if necessary)
1967  vector<string> coordinfo = getCoordInfo() ;
1968  string oldinfo = coordinfo[0] ;
1969  coordinfo[0] = "Hz" ;
1970  setCoordInfo( coordinfo ) ;
1971  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1972    regridChannel( nChan, dnu, irow ) ;
1973  }
1974  coordinfo[0] = oldinfo ;
1975  setCoordInfo( coordinfo ) ;
1976
1977
1978  // NOTE: this method does not update metadata such as
1979  //       FREQUENCIES subtable, nChan, Bandwidth, etc.
1980
1981  return ;
1982}
1983
1984void asap::Scantable::regridChannel( int nChan, double dnu, int irow )
1985{
1986  // logging
1987  //ofstream ofs( "average.log", std::ios::out | std::ios::app ) ;
1988  //ofs << "IFNO = " << getIF( irow ) << " irow = " << irow << endl ;
1989
1990  Vector<Float> oldspec = specCol_( irow ) ;
1991  Vector<uChar> oldflag = flagsCol_( irow ) ;
1992  Vector<Float> oldtsys = tsysCol_( irow ) ;
1993  Vector<Float> newspec( nChan, 0 ) ;
1994  Vector<uChar> newflag( nChan, true ) ;
1995  Vector<Float> newtsys ;
1996  bool regridTsys = false ;
1997  if (oldtsys.size() == oldspec.size()) {
1998    regridTsys = true ;
1999    newtsys.resize(nChan,false) ;
2000    newtsys = 0 ;
2001  }
2002
2003  // regrid
2004  vector<double> abcissa = getAbcissa( irow ) ;
2005  int oldsize = abcissa.size() ;
2006  double olddnu = abcissa[1] - abcissa[0] ;
2007  //int ichan = 0 ;
2008  double wsum = 0.0 ;
2009  Vector<double> zi( nChan+1 ) ;
2010  Vector<double> yi( oldsize + 1 ) ;
2011  yi[0] = abcissa[0] - 0.5 * olddnu ;
2012  for ( int ii = 1 ; ii < oldsize ; ii++ )
2013    yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2014  yi[oldsize] = abcissa[oldsize-1] \
2015    + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
2016  //zi[0] = abcissa[0] - 0.5 * olddnu ;
2017  zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2018  for ( int ii = 1 ; ii < nChan ; ii++ )
2019    zi[ii] = zi[0] + dnu * ii ;
2020  zi[nChan] = zi[nChan-1] + dnu ;
2021  // Access zi and yi in ascending order
2022  int izs = ((dnu > 0) ? 0 : nChan ) ;
2023  int ize = ((dnu > 0) ? nChan : 0 ) ;
2024  int izincr = ((dnu > 0) ? 1 : -1 ) ;
2025  int ichan =  ((olddnu > 0) ? 0 : oldsize ) ;
2026  int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2027  int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2028  //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2029  int ii = izs ;
2030  while (ii != ize) {
2031    // always zl < zr
2032    double zl = zi[ii] ;
2033    double zr = zi[ii+izincr] ;
2034    // Need to access smaller index for the new spec, flag, and tsys.
2035    // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2036    int i = min(ii, ii+izincr) ;
2037    //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2038    int jj = ichan ;
2039    while (jj != iye) {
2040      // always yl < yr
2041      double yl = yi[jj] ;
2042      double yr = yi[jj+iyincr] ;
2043      // Need to access smaller index for the original spec, flag, and tsys.
2044      // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2045      int j = min(jj, jj+iyincr) ;
2046      if ( yr <= zl ) {
2047        jj += iyincr ;
2048        continue ;
2049      }
2050      else if ( yl <= zl ) {
2051        if ( yr < zr ) {
2052          if (!oldflag[j]) {
2053            newspec[i] += oldspec[j] * ( yr - zl ) ;
2054            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2055            wsum += ( yr - zl ) ;
2056          }
2057          newflag[i] = newflag[i] && oldflag[j] ;
2058        }
2059        else {
2060          if (!oldflag[j]) {
2061            newspec[i] += oldspec[j] * abs(dnu) ;
2062            if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2063            wsum += abs(dnu) ;
2064          }
2065          newflag[i] = newflag[i] && oldflag[j] ;
2066          ichan = jj ;
2067          break ;
2068        }
2069      }
2070      else if ( yl < zr ) {
2071        if ( yr <= zr ) {
2072          if (!oldflag[j]) {
2073            newspec[i] += oldspec[j] * ( yr - yl ) ;
2074            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2075            wsum += ( yr - yl ) ;
2076          }
2077          newflag[i] = newflag[i] && oldflag[j] ;
2078        }
2079        else {
2080          if (!oldflag[j]) {
2081            newspec[i] += oldspec[j] * ( zr - yl ) ;
2082            if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2083            wsum += ( zr - yl ) ;
2084          }
2085          newflag[i] = newflag[i] && oldflag[j] ;
2086          ichan = jj ;
2087          break ;
2088        }
2089      }
2090      else {
2091        ichan = jj - iyincr ;
2092        break ;
2093      }
2094      jj += iyincr ;
2095    }
2096    if ( wsum != 0.0 ) {
2097      newspec[i] /= wsum ;
2098      if (regridTsys) newtsys[i] /= wsum ;
2099    }
2100    wsum = 0.0 ;
2101    ii += izincr ;
2102  }
2103//   if ( dnu > 0.0 ) {
2104//     for ( int ii = 0 ; ii < nChan ; ii++ ) {
2105//       double zl = zi[ii] ;
2106//       double zr = zi[ii+1] ;
2107//       for ( int j = ichan ; j < oldsize ; j++ ) {
2108//         double yl = yi[j] ;
2109//         double yr = yi[j+1] ;
2110//         if ( yl <= zl ) {
2111//           if ( yr <= zl ) {
2112//             continue ;
2113//           }
2114//           else if ( yr <= zr ) {
2115//          if (!oldflag[j]) {
2116//            newspec[ii] += oldspec[j] * ( yr - zl ) ;
2117//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - zl ) ;
2118//            wsum += ( yr - zl ) ;
2119//          }
2120//          newflag[ii] = newflag[ii] && oldflag[j] ;
2121//           }
2122//           else {
2123//          if (!oldflag[j]) {
2124//            newspec[ii] += oldspec[j] * dnu ;
2125//            if (regridTsys) newtsys[ii] += oldtsys[j] * dnu ;
2126//            wsum += dnu ;
2127//          }
2128//          newflag[ii] = newflag[ii] && oldflag[j] ;
2129//             ichan = j ;
2130//             break ;
2131//           }
2132//         }
2133//         else if ( yl < zr ) {
2134//           if ( yr <= zr ) {
2135//          if (!oldflag[j]) {
2136//            newspec[ii] += oldspec[j] * ( yr - yl ) ;
2137//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - yl ) ;
2138//               wsum += ( yr - yl ) ;
2139//          }
2140//          newflag[ii] = newflag[ii] && oldflag[j] ;
2141//           }
2142//           else {
2143//          if (!oldflag[j]) {
2144//            newspec[ii] += oldspec[j] * ( zr - yl ) ;
2145//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( zr - yl ) ;
2146//            wsum += ( zr - yl ) ;
2147//          }
2148//          newflag[ii] = newflag[ii] && oldflag[j] ;
2149//             ichan = j ;
2150//             break ;
2151//           }
2152//         }
2153//         else {
2154//           ichan = j - 1 ;
2155//           break ;
2156//         }
2157//       }
2158//       if ( wsum != 0.0 ) {
2159//         newspec[ii] /= wsum ;
2160//      if (regridTsys) newtsys[ii] /= wsum ;
2161//       }
2162//       wsum = 0.0 ;
2163//     }
2164//   }
2165//   else if ( dnu < 0.0 ) {
2166//     for ( int ii = 0 ; ii < nChan ; ii++ ) {
2167//       double zl = zi[ii] ;
2168//       double zr = zi[ii+1] ;
2169//       for ( int j = ichan ; j < oldsize ; j++ ) {
2170//         double yl = yi[j] ;
2171//         double yr = yi[j+1] ;
2172//         if ( yl >= zl ) {
2173//           if ( yr >= zl ) {
2174//             continue ;
2175//           }
2176//           else if ( yr >= zr ) {
2177//          if (!oldflag[j]) {
2178//            newspec[ii] += oldspec[j] * abs( yr - zl ) ;
2179//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - zl ) ;
2180//            wsum += abs( yr - zl ) ;
2181//          }
2182//          newflag[ii] = newflag[ii] && oldflag[j] ;
2183//           }
2184//           else {
2185//          if (!oldflag[j]) {
2186//            newspec[ii] += oldspec[j] * abs( dnu ) ;
2187//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( dnu ) ;
2188//            wsum += abs( dnu ) ;
2189//          }
2190//          newflag[ii] = newflag[ii] && oldflag[j] ;
2191//             ichan = j ;
2192//             break ;
2193//           }
2194//         }
2195//         else if ( yl > zr ) {
2196//           if ( yr >= zr ) {
2197//          if (!oldflag[j]) {
2198//            newspec[ii] += oldspec[j] * abs( yr - yl ) ;
2199//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - yl ) ;
2200//            wsum += abs( yr - yl ) ;
2201//          }
2202//          newflag[ii] = newflag[ii] && oldflag[j] ;
2203//           }
2204//           else {
2205//          if (!oldflag[j]) {
2206//            newspec[ii] += oldspec[j] * abs( zr - yl ) ;
2207//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( zr - yl ) ;
2208//            wsum += abs( zr - yl ) ;
2209//          }
2210//          newflag[ii] = newflag[ii] && oldflag[j] ;
2211//             ichan = j ;
2212//             break ;
2213//           }
2214//         }
2215//         else {
2216//           ichan = j - 1 ;
2217//           break ;
2218//         }
2219//       }
2220//       if ( wsum != 0.0 ) {
2221//         newspec[ii] /= wsum ;
2222//      if (regridTsys) newtsys[ii] /= wsum ;
2223//       }
2224//       wsum = 0.0 ;
2225//     }
2226//   }
2227// //   //ofs << "olddnu = " << olddnu << ", dnu = " << dnu << endl ;
2228// //   pile += dnu ;
2229// //   wedge = olddnu * ( refChan + 1 ) ;
2230// //   while ( wedge < pile ) {
2231// //     newspec[0] += olddnu * oldspec[refChan] ;
2232// //     newflag[0] = newflag[0] || oldflag[refChan] ;
2233// //     //ofs << "channel " << refChan << " is included in new channel 0" << endl ;
2234// //     refChan++ ;
2235// //     wedge += olddnu ;
2236// //     wsum += olddnu ;
2237// //     //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2238// //   }
2239// //   frac = ( wedge - pile ) / olddnu ;
2240// //   wsum += ( 1.0 - frac ) * olddnu ;
2241// //   newspec[0] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2242// //   newflag[0] = newflag[0] || oldflag[refChan] ;
2243// //   //ofs << "channel " << refChan << " is partly included in new channel 0" << " with fraction of " << ( 1.0 - frac ) << endl ;
2244// //   //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2245// //   newspec[0] /= wsum ;
2246// //   //ofs << "newspec[0] = " << newspec[0] << endl ;
2247// //   //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2248
2249// //   /***
2250// //    * ichan = 1 - nChan-2
2251// //    ***/
2252// //   for ( int ichan = 1 ; ichan < nChan - 1 ; ichan++ ) {
2253// //     pile += dnu ;
2254// //     newspec[ichan] += frac * olddnu * oldspec[refChan] ;
2255// //     newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2256// //     //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << frac << endl ;
2257// //     refChan++ ;
2258// //     wedge += olddnu ;
2259// //     wsum = frac * olddnu ;
2260// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2261// //     while ( wedge < pile ) {
2262// //       newspec[ichan] += olddnu * oldspec[refChan] ;
2263// //       newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2264// //       //ofs << "channel " << refChan << " is included in new channel " << ichan << endl ;
2265// //       refChan++ ;
2266// //       wedge += olddnu ;
2267// //       wsum += olddnu ;
2268// //       //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2269// //     }
2270// //     frac = ( wedge - pile ) / olddnu ;
2271// //     wsum += ( 1.0 - frac ) * olddnu ;
2272// //     newspec[ichan] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2273// //     newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2274// //     //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << ( 1.0 - frac ) << endl ;
2275// //     //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2276// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2277// //     newspec[ichan] /= wsum ;
2278// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << endl ;
2279// //   }
2280
2281// //   /***
2282// //    * ichan = nChan-1
2283// //    ***/
2284// //   // NOTE: Assumed that all spectra have the same bandwidth
2285// //   pile += dnu ;
2286// //   newspec[nChan-1] += frac * olddnu * oldspec[refChan] ;
2287// //   newflag[nChan-1] = newflag[nChan-1] || oldflag[refChan] ;
2288// //   //ofs << "channel " << refChan << " is partly included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2289// //   refChan++ ;
2290// //   wedge += olddnu ;
2291// //   wsum = frac * olddnu ;
2292// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2293// //   for ( int jchan = refChan ; jchan < oldsize ; jchan++ ) {
2294// //     newspec[nChan-1] += olddnu * oldspec[jchan] ;
2295// //     newflag[nChan-1] = newflag[nChan-1] || oldflag[jchan] ;
2296// //     wsum += olddnu ;
2297// //     //ofs << "channel " << jchan << " is included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2298// //     //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2299// //   }
2300// //   //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2301// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2302// //   newspec[nChan-1] /= wsum ;
2303// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << endl ;
2304
2305// //   // ofs.close() ;
2306
2307  specCol_.put( irow, newspec ) ;
2308  flagsCol_.put( irow, newflag ) ;
2309  if (regridTsys) tsysCol_.put( irow, newtsys );
2310
2311  return ;
2312}
2313
2314void Scantable::regridChannel( int nChan, double dnu, double fmin, int irow )
2315{
2316  Vector<Float> oldspec = specCol_( irow ) ;
2317  Vector<uChar> oldflag = flagsCol_( irow ) ;
2318  Vector<Float> oldtsys = tsysCol_( irow ) ;
2319  Vector<Float> newspec( nChan, 0 ) ;
2320  Vector<uChar> newflag( nChan, true ) ;
2321  Vector<Float> newtsys ;
2322  bool regridTsys = false ;
2323  if (oldtsys.size() == oldspec.size()) {
2324    regridTsys = true ;
2325    newtsys.resize(nChan,false) ;
2326    newtsys = 0 ;
2327  }
2328 
2329  // regrid
2330  vector<double> abcissa = getAbcissa( irow ) ;
2331  int oldsize = abcissa.size() ;
2332  double olddnu = abcissa[1] - abcissa[0] ;
2333  //int ichan = 0 ;
2334  double wsum = 0.0 ;
2335  Vector<double> zi( nChan+1 ) ;
2336  Vector<double> yi( oldsize + 1 ) ;
2337  Block<uInt> count( nChan, 0 ) ;
2338  yi[0] = abcissa[0] - 0.5 * olddnu ;
2339  for ( int ii = 1 ; ii < oldsize ; ii++ )
2340    yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2341  yi[oldsize] = abcissa[oldsize-1] \
2342    + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
2343//   cout << "olddnu=" << olddnu << ", dnu=" << dnu << " (diff=" << olddnu-dnu << ")" << endl ;
2344//   cout << "yi[0]=" << yi[0] << ", fmin=" << fmin << " (diff=" << yi[0]-fmin << ")" << endl ;
2345//   cout << "oldsize=" << oldsize << ", nChan=" << nChan << endl ;
2346
2347  // do not regrid if input parameters are almost same as current
2348  // spectral setup
2349  double dnuDiff = abs( ( dnu - olddnu ) / olddnu ) ;
2350  double oldfmin = min( yi[0], yi[oldsize] ) ;
2351  double fminDiff = abs( ( fmin - oldfmin ) / oldfmin ) ;
2352  double nChanDiff = nChan - oldsize ;
2353  double eps = 1.0e-8 ;
2354  if ( nChanDiff == 0 && dnuDiff < eps && fminDiff < eps )
2355    return ;
2356
2357  //zi[0] = abcissa[0] - 0.5 * olddnu ;
2358  //zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2359  if ( dnu > 0 )
2360    zi[0] = fmin - 0.5 * dnu ;
2361  else
2362    zi[0] = fmin + nChan * abs(dnu) ;
2363  for ( int ii = 1 ; ii < nChan ; ii++ )
2364    zi[ii] = zi[0] + dnu * ii ;
2365  zi[nChan] = zi[nChan-1] + dnu ;
2366  // Access zi and yi in ascending order
2367  int izs = ((dnu > 0) ? 0 : nChan ) ;
2368  int ize = ((dnu > 0) ? nChan : 0 ) ;
2369  int izincr = ((dnu > 0) ? 1 : -1 ) ;
2370  int ichan =  ((olddnu > 0) ? 0 : oldsize ) ;
2371  int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2372  int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2373  //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2374  int ii = izs ;
2375  while (ii != ize) {
2376    // always zl < zr
2377    double zl = zi[ii] ;
2378    double zr = zi[ii+izincr] ;
2379    // Need to access smaller index for the new spec, flag, and tsys.
2380    // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2381    int i = min(ii, ii+izincr) ;
2382    //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2383    int jj = ichan ;
2384    while (jj != iye) {
2385      // always yl < yr
2386      double yl = yi[jj] ;
2387      double yr = yi[jj+iyincr] ;
2388      // Need to access smaller index for the original spec, flag, and tsys.
2389      // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2390      int j = min(jj, jj+iyincr) ;
2391      if ( yr <= zl ) {
2392        jj += iyincr ;
2393        continue ;
2394      }
2395      else if ( yl <= zl ) {
2396        if ( yr < zr ) {
2397          if (!oldflag[j]) {
2398            newspec[i] += oldspec[j] * ( yr - zl ) ;
2399            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2400            wsum += ( yr - zl ) ;
2401            count[i]++ ;
2402          }
2403          newflag[i] = newflag[i] && oldflag[j] ;
2404        }
2405        else {
2406          if (!oldflag[j]) {
2407            newspec[i] += oldspec[j] * abs(dnu) ;
2408            if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2409            wsum += abs(dnu) ;
2410            count[i]++ ;
2411          }
2412          newflag[i] = newflag[i] && oldflag[j] ;
2413          ichan = jj ;
2414          break ;
2415        }
2416      }
2417      else if ( yl < zr ) {
2418        if ( yr <= zr ) {
2419          if (!oldflag[j]) {
2420            newspec[i] += oldspec[j] * ( yr - yl ) ;
2421            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2422            wsum += ( yr - yl ) ;
2423            count[i]++ ;
2424          }
2425          newflag[i] = newflag[i] && oldflag[j] ;
2426        }
2427        else {
2428          if (!oldflag[j]) {
2429            newspec[i] += oldspec[j] * ( zr - yl ) ;
2430            if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2431            wsum += ( zr - yl ) ;
2432            count[i]++ ;
2433          }
2434          newflag[i] = newflag[i] && oldflag[j] ;
2435          ichan = jj ;
2436          break ;
2437        }
2438      }
2439      else {
2440        //ichan = jj - iyincr ;
2441        break ;
2442      }
2443      jj += iyincr ;
2444    }
2445    if ( wsum != 0.0 ) {
2446      newspec[i] /= wsum ;
2447      if (regridTsys) newtsys[i] /= wsum ;
2448    }
2449    wsum = 0.0 ;
2450    ii += izincr ;
2451  }
2452
2453  // flag out channels without data
2454  // this is tentative since there is no specific definition
2455  // on bit flag...
2456  uChar noData = 1 << 7 ;
2457  for ( Int i = 0 ; i < nChan ; i++ ) {
2458    if ( count[i] == 0 )
2459      newflag[i] = noData ;
2460  }
2461
2462  specCol_.put( irow, newspec ) ;
2463  flagsCol_.put( irow, newflag ) ;
2464  if (regridTsys) tsysCol_.put( irow, newtsys );
2465
2466  return ;
2467}
2468
2469std::vector<float> Scantable::getWeather(int whichrow) const
2470{
2471  std::vector<float> out(5);
2472  //Float temperature, pressure, humidity, windspeed, windaz;
2473  weatherTable_.getEntry(out[0], out[1], out[2], out[3], out[4],
2474                         mweatheridCol_(uInt(whichrow)));
2475
2476
2477  return out;
2478}
2479
2480bool Scantable::getFlagtraFast(uInt whichrow)
2481{
2482  uChar flag;
2483  Vector<uChar> flags;
2484  flagsCol_.get(whichrow, flags);
2485  flag = flags[0];
2486  for (uInt i = 1; i < flags.size(); ++i) {
2487    flag &= flags[i];
2488  }
2489  return ((flag >> 7) == 1);
2490}
2491
2492std::vector<std::string> Scantable::applyBaselineTable(const std::string& bltable, const std::string& outbltable, const bool outbltableexists, const bool overwrite)
2493{
2494  STBaselineTable* btin = new STBaselineTable(bltable);
2495
2496  Vector<Bool> applyCol = btin->getApply();
2497  int nRowBl = applyCol.size();
2498  if (nRowBl != nrow()) {
2499    throw(AipsError("Scantable and bltable have different number of rows."));
2500  }
2501
2502  std::vector<std::string> res;
2503  res.clear();
2504
2505  bool outBaselineTable = ((outbltable != "") && (!outbltableexists || overwrite));
2506  bool bltableidentical = (bltable == outbltable);
2507  STBaselineTable* btout = new STBaselineTable(*this);
2508  ROScalarColumn<Double> *tcol = new ROScalarColumn<Double>(table_, "TIME");
2509  Vector<Double> timeSecCol = tcol->getColumn();
2510
2511  for (int whichrow = 0; whichrow < nRowBl; ++whichrow) {
2512    if (applyCol[whichrow]) {
2513      std::vector<float> spec = getSpectrum(whichrow);
2514
2515      //--channel mask--  maybe the following choices should be available
2516      std::vector<bool> mask = btin->getMask(whichrow);  //use mask_bltable only (default)
2517      //std::vector<bool> mask = getMask(whichrow);    // or mask_scantable only
2518      //std::vector<bool> mask = getCompositeChanMask(whichrow, btin->getMask(whichrow)); // or mask_scantable && mask_bltable
2519
2520      STBaselineFunc::FuncName ftype = btin->getFunctionName(whichrow);
2521      std::vector<int> fpar = btin->getFuncParam(whichrow);
2522      std::vector<float> params;
2523      float rms;
2524      std::vector<float> resfit = doApplyBaselineTable(spec, mask, ftype, fpar, params, rms);
2525
2526      setSpectrum(resfit, whichrow);
2527
2528      res.push_back(packFittingResults(whichrow, params, rms));
2529
2530      if (outBaselineTable) {
2531        Vector<Int> fparam(fpar.size());
2532        for (uInt j = 0; j < fparam.size(); ++j) {
2533          fparam[j] = (Int)fpar[j];
2534        }
2535        std::vector<int> maskList0;
2536        maskList0.clear();
2537        for (uInt j = 0; j < mask.size(); ++j) {
2538          if (mask[j]) {
2539            if ((j == 0)||(j == mask.size()-1)) {
2540              maskList0.push_back(j);
2541            } else {
2542              if ((mask[j])&&(!mask[j-1])) {
2543                maskList0.push_back(j);
2544              }
2545              if ((mask[j])&&(!mask[j+1])) {
2546                maskList0.push_back(j);
2547              }
2548            }
2549          }
2550        }
2551        Vector<uInt> maskList(maskList0.size());
2552        for (uInt j = 0; j < maskList0.size(); ++j) {
2553          maskList[j] = (uInt)maskList0[j];
2554        }
2555
2556        if (outbltableexists) {
2557          if (overwrite) {
2558            if (bltableidentical) {
2559              btin->setresult(uInt(whichrow), Vector<Float>(params), Float(rms));
2560            } else {
2561              btout->setresult(uInt(whichrow), Vector<Float>(params), Float(rms));
2562            }
2563          }
2564        } else {
2565          btout->appenddata(uInt(getScan(whichrow)), uInt(getCycle(whichrow)),
2566                            uInt(getBeam(whichrow)), uInt(getIF(whichrow)), uInt(getPol(whichrow)),
2567                            uInt(0), timeSecCol[whichrow], Bool(true), ftype, fparam,
2568                            Vector<Float>(), maskList, Vector<Float>(params),
2569                            Float(rms), uInt(spec.size()), Float(3.0), uInt(0),
2570                            Float(0.0), uInt(0), Vector<uInt>());
2571        }
2572      }
2573    }
2574  }
2575
2576  if (outBaselineTable) {
2577    if (bltableidentical) {
2578      btin->save(outbltable);
2579    } else {
2580      btout->save(outbltable);
2581    }
2582  }
2583  delete btin;
2584  delete btout;
2585
2586  return res;
2587}
2588
2589std::vector<std::string> Scantable::subBaseline(const std::vector<std::string>& blInfoList, const std::string& outbltable, const bool outbltableexists, const bool overwrite)
2590{
2591  int nRowBl = blInfoList.size();
2592  int nRowSt = nrow();
2593
2594  std::vector<std::string> res;
2595  res.clear();
2596
2597  bool outBaselineTable = ((outbltable != "") && (!outbltableexists || overwrite));
2598  if ((outbltable != "") && outbltableexists && !overwrite) {
2599    throw(AipsError("Cannot overwrite bltable. Set overwrite=True."));
2600  }
2601
2602  STBaselineTable* bt = new STBaselineTable(*this);
2603  ROScalarColumn<Double> *tcol = new ROScalarColumn<Double>(table_, "TIME");
2604  Vector<Double> timeSecCol = tcol->getColumn();
2605
2606  if (outBaselineTable && !outbltableexists) {
2607    for (int i = 0; i < nRowSt; ++i) {
2608      bt->appendbasedata(getScan(i), getCycle(i), getBeam(i), getIF(i), getPol(i),
2609                         0, timeSecCol[i]);
2610      bt->setApply(i, false);
2611    }
2612  }
2613
2614  for (int i = 0; i < nRowBl; ++i) {
2615    int irow;
2616    STBaselineFunc::FuncName ftype;
2617    std::vector<bool> mask;
2618    std::vector<int> fpar;
2619    float clipth;
2620    int clipn;
2621    bool uself;
2622    float lfth;
2623    std::vector<int> lfedge;
2624    int lfavg;
2625    parseBlInfo(blInfoList[i], irow, ftype, fpar, mask, clipth, clipn, uself, lfth, lfedge, lfavg);
2626
2627    if (irow < nRowSt) {
2628      std::vector<float> spec = getSpectrum(irow);
2629      std::vector<float> params;
2630      float rms;
2631      std::vector<bool> finalmask;
2632
2633      std::vector<float> resfit = doSubtractBaseline(spec, mask, ftype, fpar, params, rms, finalmask, clipth, clipn, uself, irow, lfth, lfedge, lfavg);
2634      setSpectrum(resfit, irow);
2635      res.push_back(packFittingResults(irow, params, rms));
2636
2637      if (outBaselineTable) {
2638        Vector<Int> fparam(fpar.size());
2639        for (uInt j = 0; j < fparam.size(); ++j) {
2640          fparam[j] = (Int)fpar[j];
2641        }
2642        std::vector<int> maskList0;
2643        maskList0.clear();
2644        for (uInt j = 0; j < finalmask.size(); ++j) {
2645          if (finalmask[j]) {
2646            if ((j == 0)||(j == finalmask.size()-1)) {
2647              maskList0.push_back(j);
2648            } else {
2649              if ((finalmask[j])&&(!finalmask[j-1])) {
2650                maskList0.push_back(j);
2651              }
2652              if ((finalmask[j])&&(!finalmask[j+1])) {
2653                maskList0.push_back(j);
2654              }
2655            }
2656          }
2657        }
2658        Vector<uInt> maskList(maskList0.size());
2659        for (uInt j = 0; j < maskList0.size(); ++j) {
2660          maskList[j] = (uInt)maskList0[j];
2661        }
2662
2663        bt->setdata(uInt(irow),
2664                    uInt(getScan(irow)), uInt(getCycle(irow)),
2665                    uInt(getBeam(irow)), uInt(getIF(irow)), uInt(getPol(irow)),
2666                    uInt(0), timeSecCol[irow], Bool(true), ftype, fparam,
2667                    Vector<Float>(), maskList, Vector<Float>(params),
2668                    Float(rms), uInt(spec.size()), Float(clipth), uInt(clipn),
2669                    Float(0.0), uInt(0), Vector<uInt>());
2670      }
2671
2672    }
2673  }
2674
2675  if (outBaselineTable) {
2676    bt->save(outbltable);
2677  }
2678  delete bt;
2679
2680  return res;
2681}
2682
2683std::vector<float> Scantable::doApplyBaselineTable(std::vector<float>& spec, std::vector<bool>& mask, const STBaselineFunc::FuncName ftype, std::vector<int>& fpar, std::vector<float>& params, float&rms)
2684{
2685  std::vector<bool> finalmask;
2686  std::vector<int> lfedge;
2687  return doSubtractBaseline(spec, mask, ftype, fpar, params, rms, finalmask, 0.0, 0, false, 0, 0.0, lfedge, 0);
2688}
2689
2690  std::vector<float> Scantable::doSubtractBaseline(std::vector<float>& spec, std::vector<bool>& mask, const STBaselineFunc::FuncName ftype, std::vector<int>& fpar, std::vector<float>& params, float&rms, std::vector<bool>& finalmask, float clipth, int clipn, bool uself, int irow, float lfth, std::vector<int>& lfedge, int lfavg)
2691{
2692  //---replace mask with (mask AND mask_linefinder).
2693  if (uself) {
2694    STLineFinder lineFinder = STLineFinder();
2695    lineFinder.setOptions(lfth, 3, lfavg);
2696
2697    int minEdgeSize = getIFNos().size()*2;
2698    int edgeSize = lfedge.size();
2699    std::vector<int> currentEdge;
2700    currentEdge.clear();
2701    if (edgeSize >= 2) {
2702      int idx = 0;
2703      if (edgeSize > 2) {
2704        if (edgeSize < minEdgeSize) {
2705          throw(AipsError("Length of edge element info is less than that of IFs"));
2706        }
2707        idx = 2 * getIF(irow);
2708      }
2709      currentEdge.push_back(lfedge[idx]);
2710      currentEdge.push_back(lfedge[idx+1]);
2711    } else {
2712      throw(AipsError("Wrong length of edge element"));
2713    }
2714    lineFinder.setData(spec);
2715    lineFinder.findLines(getCompositeChanMask(irow, mask), currentEdge, irow);
2716
2717    std::vector<bool> lfcompmask = lineFinder.getMask();
2718    mask.clear();
2719    mask.resize(lfcompmask.size());
2720    for (uInt i = 0; i < mask.size(); ++i) {
2721      mask[i] = lfcompmask[i];
2722    }
2723  }
2724  //---
2725
2726  std::vector<float> res;
2727  if (ftype == STBaselineFunc::Polynomial) {
2728    res = doPolynomialFitting(spec, mask, fpar[0], params, rms, finalmask, clipth, clipn);
2729  } else if (ftype == STBaselineFunc::Chebyshev) {
2730    res = doChebyshevFitting(spec, mask, fpar[0], params, rms, finalmask, clipth, clipn);
2731  } else if (ftype == STBaselineFunc::CSpline) {
2732    if (fpar.size() > 1) { // reading from baseline table in which pieceEdges are already calculated and stored.
2733      res = doCubicSplineFitting(spec, mask, fpar, params, rms, finalmask, clipth, clipn);
2734    } else {               // usual cspline fitting by giving nPiece only. fpar will be replaced with pieceEdges.
2735      res = doCubicSplineFitting(spec, mask, fpar[0], fpar, params, rms, finalmask, clipth, clipn);
2736    }
2737  } else if (ftype == STBaselineFunc::Sinusoid) {
2738    res = doSinusoidFitting(spec, mask, fpar, params, rms, finalmask, clipth, clipn);
2739  }
2740
2741  return res;
2742}
2743
2744std::string Scantable::packFittingResults(const int irow, const std::vector<float>& params, const float rms)
2745{
2746  // returned value: "irow:params[0],params[1],..,params[n-1]:rms"
2747  ostringstream os;
2748  os << irow << ':';
2749  for (uInt i = 0; i < params.size(); ++i) {
2750    if (i > 0) {
2751      os << ',';
2752    }
2753    os << params[i];
2754  }
2755  os << ':' << rms;
2756
2757  return os.str();
2758}
2759
2760void Scantable::parseBlInfo(const std::string& blInfo, int& irow, STBaselineFunc::FuncName& ftype, std::vector<int>& fpar, std::vector<bool>& mask, float& thresClip, int& nIterClip, bool& useLineFinder, float& thresLF, std::vector<int>& edgeLF, int& avgLF)
2761{
2762  // The baseline info to be parsed must be column-delimited string like
2763  // "0:chebyshev:5:3,5,169,174,485,487" where the elements are
2764  // row number, funcType, funcOrder, maskList, clipThreshold, clipNIter,
2765  // useLineFinder, lfThreshold, lfEdge and lfChanAvgLimit.
2766
2767  std::vector<string> res = splitToStringList(blInfo, ':');
2768  if (res.size() < 4) {
2769    throw(AipsError("baseline info has bad format")) ;
2770  }
2771
2772  string ftype0, fpar0, masklist0, uself0, edge0;
2773  std::vector<int> masklist;
2774
2775  stringstream ss;
2776  ss << res[0];
2777  ss >> irow;
2778  ss.clear(); ss.str("");
2779
2780  ss << res[1];
2781  ss >> ftype0;
2782  if (ftype0 == "poly") {
2783    ftype = STBaselineFunc::Polynomial;
2784  } else if (ftype0 == "cspline") {
2785    ftype = STBaselineFunc::CSpline;
2786  } else if (ftype0 == "sinusoid") {
2787    ftype = STBaselineFunc::Sinusoid;
2788  } else if (ftype0 == "chebyshev") {
2789    ftype = STBaselineFunc::Chebyshev;
2790  } else {
2791    throw(AipsError("invalid function type."));
2792  }
2793  ss.clear(); ss.str("");
2794
2795  ss << res[2];
2796  ss >> fpar0;
2797  fpar = splitToIntList(fpar0, ',');
2798  ss.clear(); ss.str("");
2799
2800  ss << res[3];
2801  ss >> masklist0;
2802  mask = getMaskFromMaskList(nchan(getIF(irow)), splitToIntList(masklist0, ','));
2803
2804  ss << res[4];
2805  ss >> thresClip;
2806  ss.clear(); ss.str("");
2807
2808  ss << res[5];
2809  ss >> nIterClip;
2810  ss.clear(); ss.str("");
2811
2812  ss << res[6];
2813  ss >> uself0;
2814  if (uself0 == "true") {
2815    useLineFinder = true;
2816  } else {
2817    useLineFinder = false;
2818  }
2819  ss.clear(); ss.str("");
2820
2821  if (useLineFinder) {
2822    ss << res[7];
2823    ss >> thresLF;
2824    ss.clear(); ss.str("");
2825
2826    ss << res[8];
2827    ss >> edge0;
2828    edgeLF = splitToIntList(edge0, ',');
2829    ss.clear(); ss.str("");
2830
2831    ss << res[9];
2832    ss >> avgLF;
2833    ss.clear(); ss.str("");
2834  }
2835
2836}
2837
2838std::vector<int> Scantable::splitToIntList(const std::string& s, const char delim)
2839{
2840  istringstream iss(s);
2841  string tmp;
2842  int tmpi;
2843  std::vector<int> res;
2844  stringstream ss;
2845  while (getline(iss, tmp, delim)) {
2846    ss << tmp;
2847    ss >> tmpi;
2848    res.push_back(tmpi);
2849    ss.clear(); ss.str("");
2850  }
2851
2852  return res;
2853}
2854
2855std::vector<string> Scantable::splitToStringList(const std::string& s, const char delim)
2856{
2857  istringstream iss(s);
2858  std::string tmp;
2859  std::vector<string> res;
2860  while (getline(iss, tmp, delim)) {
2861    res.push_back(tmp);
2862  }
2863
2864  return res;
2865}
2866
2867std::vector<bool> Scantable::getMaskFromMaskList(const int nchan, const std::vector<int>& masklist)
2868{
2869  if (masklist.size() % 2 != 0) {
2870    throw(AipsError("masklist must have even number of elements."));
2871  }
2872
2873  std::vector<bool> res(nchan);
2874
2875  for (int i = 0; i < nchan; ++i) {
2876    res[i] = false;
2877  }
2878  for (uInt j = 0; j < masklist.size(); j += 2) {
2879    for (int i = masklist[j]; i <= masklist[j+1]; ++i) {
2880      res[i] = true;
2881    }
2882  }
2883
2884  return res;
2885}
2886
2887void Scantable::polyBaseline(const std::vector<bool>& mask, int order, float thresClip, int nIterClip, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile, const std::string& bltable)
2888{
2889  /****
2890  double TimeStart = mathutil::gettimeofday_sec();
2891  ****/
2892
2893  try {
2894    ofstream ofs;
2895    String coordInfo = "";
2896    bool hasSameNchan = true;
2897    bool outTextFile = false;
2898    bool csvFormat = false;
2899
2900    if (blfile != "") {
2901      csvFormat = (blfile.substr(0, 1) == "T");
2902      ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
2903      if (ofs) outTextFile = true;
2904    }
2905
2906    if (outLogger || outTextFile) {
2907      coordInfo = getCoordInfo()[0];
2908      if (coordInfo == "") coordInfo = "channel";
2909      hasSameNchan = hasSameNchanOverIFs();
2910    }
2911
2912    bool showProgress;
2913    int minNRow;
2914    parseProgressInfo(progressInfo, showProgress, minNRow);
2915
2916    int nRow = nrow();
2917    std::vector<bool> chanMask;
2918    std::vector<bool> finalChanMask;
2919    float rms;
2920
2921    //---
2922    bool outBaselintTable = (bltable != "");
2923    STBaselineTable* bt = new STBaselineTable(*this);
2924    ROScalarColumn<Double> *tcol = new ROScalarColumn<Double>(table_, "TIME");
2925    Vector<Double> timeSecCol = tcol->getColumn();
2926    //---
2927
2928    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2929      std::vector<float> sp = getSpectrum(whichrow);
2930      chanMask = getCompositeChanMask(whichrow, mask);
2931      std::vector<float> params(order+1);
2932      int nClipped = 0;
2933      std::vector<float> res = doPolynomialFitting(sp, chanMask, order, params, rms, finalChanMask, nClipped, thresClip, nIterClip, getResidual);
2934
2935      //---
2936      if (outBaselintTable) {
2937        Vector<Int> fparam(1);
2938        fparam[0] = order;
2939        std::vector<int> finalMaskList0;
2940        finalMaskList0.clear();
2941        for (uInt i = 0; i < finalChanMask.size(); ++i) {
2942          if (finalChanMask[i]) {
2943            if ((i == 0)||(i == finalChanMask.size()-1)) {
2944              finalMaskList0.push_back(i);
2945            } else {
2946              if ((finalChanMask[i])&&(!finalChanMask[i-1])) {
2947                finalMaskList0.push_back(i);
2948              }
2949              if ((finalChanMask[i])&&(!finalChanMask[i+1])) {
2950                finalMaskList0.push_back(i);
2951              }
2952            }
2953          }
2954        }
2955        Vector<uInt> finalMaskList(finalMaskList0.size());
2956        for (uInt i = 0; i < finalMaskList0.size(); ++i) {
2957          finalMaskList[i] = (uInt)finalMaskList0[i];
2958        }
2959
2960        bt->appenddata(uInt(getScan(whichrow)), uInt(getCycle(whichrow)), uInt(getBeam(whichrow)), uInt(getIF(whichrow)), uInt(getPol(whichrow)),
2961                       uInt(0),
2962                       timeSecCol[whichrow],
2963                       Bool(true),
2964                       STBaselineFunc::Polynomial,
2965                       fparam,
2966                       Vector<Float>(),
2967                       finalMaskList,
2968                       Vector<Float>(params),
2969                       Float(rms),
2970                       uInt(sp.size()),
2971                       Float(thresClip),
2972                       uInt(nIterClip),
2973                       Float(0.0),
2974                       uInt(0),
2975                       Vector<uInt>());
2976      } else {
2977        setSpectrum(res, whichrow);
2978      }
2979      //---
2980
2981      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "chebyshevBaseline()", params, nClipped);
2982      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
2983    }
2984   
2985    //---
2986    if (outBaselintTable) {
2987      bt->save(bltable);
2988    }
2989    //---
2990    delete bt;
2991
2992    if (outTextFile) ofs.close();
2993
2994  } catch (...) {
2995    throw;
2996  }
2997
2998  /****
2999  double TimeEnd = mathutil::gettimeofday_sec();
3000  double elapse1 = TimeEnd - TimeStart;
3001  std::cout << "poly-new   : " << elapse1 << " (sec.)" << endl;
3002  ****/
3003}
3004
3005void Scantable::autoPolyBaseline(const std::vector<bool>& mask, int order, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile, const std::string& bltable)
3006{
3007  try {
3008    ofstream ofs;
3009    String coordInfo = "";
3010    bool hasSameNchan = true;
3011    bool outTextFile = false;
3012    bool csvFormat = false;
3013
3014    if (blfile != "") {
3015      csvFormat = (blfile.substr(0, 1) == "T");
3016      ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
3017      if (ofs) outTextFile = true;
3018    }
3019
3020    if (outLogger || outTextFile) {
3021      coordInfo = getCoordInfo()[0];
3022      if (coordInfo == "") coordInfo = "channel";
3023      hasSameNchan = hasSameNchanOverIFs();
3024    }
3025
3026    bool showProgress;
3027    int minNRow;
3028    parseProgressInfo(progressInfo, showProgress, minNRow);
3029
3030    int minEdgeSize = getIFNos().size()*2;
3031    STLineFinder lineFinder = STLineFinder();
3032    lineFinder.setOptions(threshold, 3, chanAvgLimit);
3033
3034    int nRow = nrow();
3035    std::vector<bool> chanMask;
3036    std::vector<bool> finalChanMask;
3037    float rms;
3038
3039    //---
3040    bool outBaselintTable = (bltable != "");
3041    STBaselineTable* bt = new STBaselineTable(*this);
3042    ROScalarColumn<Double> *tcol = new ROScalarColumn<Double>(table_, "TIME");
3043    Vector<Double> timeSecCol = tcol->getColumn();
3044    //---
3045
3046    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3047      std::vector<float> sp = getSpectrum(whichrow);
3048      //-- composote given channel mask and flagtra --------
3049      int edgeSize = edge.size();
3050      std::vector<int> currentEdge;
3051      currentEdge.clear();
3052      if (edgeSize >= 2) {
3053        int idx = 0;
3054        if (edgeSize > 2) {
3055          if (edgeSize < minEdgeSize) {
3056            throw(AipsError("Length of edge element info is less than that of IFs"));
3057          }
3058          idx = 2 * getIF(whichrow);
3059        }
3060        currentEdge.push_back(edge[idx]);
3061        currentEdge.push_back(edge[idx+1]);
3062      } else {
3063        throw(AipsError("Wrong length of edge element"));
3064      }
3065      lineFinder.setData(sp);
3066      lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
3067      chanMask = lineFinder.getMask();
3068      //-- composote given channel mask and flagtra END --------
3069
3070      std::vector<float> params(order+1);
3071      int nClipped = 0;
3072      std::vector<float> res = doPolynomialFitting(sp, chanMask, order, params, rms, finalChanMask, nClipped, thresClip, nIterClip, getResidual);
3073
3074      if (outBaselintTable) {
3075        Vector<Int> fparam(1);
3076        fparam[0] = order;
3077        std::vector<int> finalMaskList0;
3078        finalMaskList0.clear();
3079        for (uInt i = 0; i < finalChanMask.size(); ++i) {
3080          if (finalChanMask[i]) {
3081            if ((i == 0)||(i == finalChanMask.size()-1)) {
3082              finalMaskList0.push_back(i);
3083            } else {
3084              if ((finalChanMask[i])&&(!finalChanMask[i-1])) {
3085                finalMaskList0.push_back(i);
3086              }
3087              if ((finalChanMask[i])&&(!finalChanMask[i+1])) {
3088                finalMaskList0.push_back(i);
3089              }
3090            }
3091          }
3092        }
3093        Vector<uInt> finalMaskList(finalMaskList0.size());
3094        for (uInt i = 0; i < finalMaskList0.size(); ++i) {
3095          finalMaskList[i] = (uInt)finalMaskList0[i];
3096        }
3097
3098        Vector<uInt> cEdge(currentEdge.size());
3099        for (uInt i = 0; i < currentEdge.size(); ++i) {
3100          cEdge[i] = currentEdge[i];
3101        }
3102
3103        bt->appenddata(uInt(getScan(whichrow)), uInt(getCycle(whichrow)), uInt(getBeam(whichrow)), uInt(getIF(whichrow)), uInt(getPol(whichrow)),
3104                       uInt(0),
3105                       timeSecCol[whichrow],
3106                       Bool(true),
3107                       STBaselineFunc::Polynomial,
3108                       fparam,
3109                       Vector<Float>(),
3110                       finalMaskList,
3111                       Vector<Float>(params),
3112                       Float(rms),
3113                       uInt(sp.size()),
3114                       Float(thresClip),
3115                       uInt(nIterClip),
3116                       Float(threshold),
3117                       uInt(chanAvgLimit),
3118                       cEdge);
3119      } else {
3120        setSpectrum(res, whichrow);
3121      }
3122
3123      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoChebyshevBaseline()", params, nClipped);
3124      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3125    }
3126
3127    //---
3128    if (outBaselintTable) {
3129      bt->save(bltable);
3130    }
3131    //---
3132    delete bt;
3133
3134    if (outTextFile) ofs.close();
3135
3136  } catch (...) {
3137    throw;
3138  }
3139}
3140
3141void Scantable::chebyshevBaseline(const std::vector<bool>& mask, int order, float thresClip, int nIterClip, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile, const std::string& bltable)
3142{
3143  //
3144  double TimeStart = mathutil::gettimeofday_sec();
3145  //
3146
3147  try {
3148    ofstream ofs;
3149    String coordInfo = "";
3150    bool hasSameNchan = true;
3151    bool outTextFile = false;
3152    bool csvFormat = false;
3153
3154    if (blfile != "") {
3155      csvFormat = (blfile.substr(0, 1) == "T");
3156      ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
3157      if (ofs) outTextFile = true;
3158    }
3159
3160    if (outLogger || outTextFile) {
3161      coordInfo = getCoordInfo()[0];
3162      if (coordInfo == "") coordInfo = "channel";
3163      hasSameNchan = hasSameNchanOverIFs();
3164    }
3165
3166    bool showProgress;
3167    int minNRow;
3168    parseProgressInfo(progressInfo, showProgress, minNRow);
3169
3170    int nRow = nrow();
3171    std::vector<bool> chanMask;
3172    std::vector<bool> finalChanMask;
3173    float rms;
3174
3175    //---
3176    bool outBaselintTable = (bltable != "");
3177    STBaselineTable* bt = new STBaselineTable(*this);
3178    ROScalarColumn<Double> *tcol = new ROScalarColumn<Double>(table_, "TIME");
3179    Vector<Double> timeSecCol = tcol->getColumn();
3180    //---
3181
3182    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3183      std::vector<float> sp = getSpectrum(whichrow);
3184      chanMask = getCompositeChanMask(whichrow, mask);
3185      std::vector<float> params(order+1);
3186      int nClipped = 0;
3187      std::vector<float> res = doChebyshevFitting(sp, chanMask, order, params, rms, finalChanMask, nClipped, thresClip, nIterClip, getResidual);
3188
3189      //---
3190      if (outBaselintTable) {
3191        Vector<Int> fparam(1);
3192        fparam[0] = order;
3193        std::vector<int> finalMaskList0;
3194        finalMaskList0.clear();
3195        for (uInt i = 0; i < finalChanMask.size(); ++i) {
3196          if (finalChanMask[i]) {
3197            if ((i == 0)||(i == finalChanMask.size()-1)) {
3198              finalMaskList0.push_back(i);
3199            } else {
3200              if ((finalChanMask[i])&&(!finalChanMask[i-1])) {
3201                finalMaskList0.push_back(i);
3202              }
3203              if ((finalChanMask[i])&&(!finalChanMask[i+1])) {
3204                finalMaskList0.push_back(i);
3205              }
3206            }
3207          }
3208        }
3209        Vector<uInt> finalMaskList(finalMaskList0.size());
3210        for (uInt i = 0; i < finalMaskList0.size(); ++i) {
3211          finalMaskList[i] = (uInt)finalMaskList0[i];
3212        }
3213
3214        bt->appenddata(uInt(getScan(whichrow)), uInt(getCycle(whichrow)), uInt(getBeam(whichrow)), uInt(getIF(whichrow)), uInt(getPol(whichrow)),
3215                       uInt(0),
3216                       timeSecCol[whichrow],
3217                       Bool(true),
3218                       STBaselineFunc::Chebyshev,
3219                       fparam,
3220                       Vector<Float>(),
3221                       finalMaskList,
3222                       Vector<Float>(params),
3223                       Float(rms),
3224                       uInt(sp.size()),
3225                       Float(thresClip),
3226                       uInt(nIterClip),
3227                       Float(0.0),
3228                       uInt(0),
3229                       Vector<uInt>());
3230      } else {
3231        setSpectrum(res, whichrow);
3232      }
3233      //---
3234
3235      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "chebyshevBaseline()", params, nClipped);
3236      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3237    }
3238   
3239    //---
3240    if (outBaselintTable) {
3241      bt->save(bltable);
3242    }
3243    //---
3244    delete bt;
3245
3246    if (outTextFile) ofs.close();
3247
3248  } catch (...) {
3249    throw;
3250  }
3251
3252  double TimeEnd = mathutil::gettimeofday_sec();
3253  double elapse1 = TimeEnd - TimeStart;
3254  std::cout << "cheby   : " << elapse1 << " (sec.)" << endl;
3255}
3256
3257void Scantable::autoChebyshevBaseline(const std::vector<bool>& mask, int order, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile, const std::string& bltable)
3258{
3259  try {
3260    ofstream ofs;
3261    String coordInfo = "";
3262    bool hasSameNchan = true;
3263    bool outTextFile = false;
3264    bool csvFormat = false;
3265
3266    if (blfile != "") {
3267      csvFormat = (blfile.substr(0, 1) == "T");
3268      ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
3269      if (ofs) outTextFile = true;
3270    }
3271
3272    if (outLogger || outTextFile) {
3273      coordInfo = getCoordInfo()[0];
3274      if (coordInfo == "") coordInfo = "channel";
3275      hasSameNchan = hasSameNchanOverIFs();
3276    }
3277
3278    bool showProgress;
3279    int minNRow;
3280    parseProgressInfo(progressInfo, showProgress, minNRow);
3281
3282    int minEdgeSize = getIFNos().size()*2;
3283    STLineFinder lineFinder = STLineFinder();
3284    lineFinder.setOptions(threshold, 3, chanAvgLimit);
3285
3286    int nRow = nrow();
3287    std::vector<bool> chanMask;
3288    std::vector<bool> finalChanMask;
3289    float rms;
3290
3291    //---
3292    bool outBaselintTable = (bltable != "");
3293    STBaselineTable* bt = new STBaselineTable(*this);
3294    ROScalarColumn<Double> *tcol = new ROScalarColumn<Double>(table_, "TIME");
3295    Vector<Double> timeSecCol = tcol->getColumn();
3296    //---
3297
3298    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3299      std::vector<float> sp = getSpectrum(whichrow);
3300      //-- composote given channel mask and flagtra --------
3301      int edgeSize = edge.size();
3302      std::vector<int> currentEdge;
3303      currentEdge.clear();
3304      if (edgeSize >= 2) {
3305        int idx = 0;
3306        if (edgeSize > 2) {
3307          if (edgeSize < minEdgeSize) {
3308            throw(AipsError("Length of edge element info is less than that of IFs"));
3309          }
3310          idx = 2 * getIF(whichrow);
3311        }
3312        currentEdge.push_back(edge[idx]);
3313        currentEdge.push_back(edge[idx+1]);
3314      } else {
3315        throw(AipsError("Wrong length of edge element"));
3316      }
3317      lineFinder.setData(sp);
3318      lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
3319      chanMask = lineFinder.getMask();
3320      //-- composote given channel mask and flagtra END --------
3321
3322      std::vector<float> params(order+1);
3323      int nClipped = 0;
3324      std::vector<float> res = doChebyshevFitting(sp, chanMask, order, params, rms, finalChanMask, nClipped, thresClip, nIterClip, getResidual);
3325
3326      if (outBaselintTable) {
3327        Vector<Int> fparam(1);
3328        fparam[0] = order;
3329        std::vector<int> finalMaskList0;
3330        finalMaskList0.clear();
3331        for (uInt i = 0; i < finalChanMask.size(); ++i) {
3332          if (finalChanMask[i]) {
3333            if ((i == 0)||(i == finalChanMask.size()-1)) {
3334              finalMaskList0.push_back(i);
3335            } else {
3336              if ((finalChanMask[i])&&(!finalChanMask[i-1])) {
3337                finalMaskList0.push_back(i);
3338              }
3339              if ((finalChanMask[i])&&(!finalChanMask[i+1])) {
3340                finalMaskList0.push_back(i);
3341              }
3342            }
3343          }
3344        }
3345        Vector<uInt> finalMaskList(finalMaskList0.size());
3346        for (uInt i = 0; i < finalMaskList0.size(); ++i) {
3347          finalMaskList[i] = (uInt)finalMaskList0[i];
3348        }
3349
3350        Vector<uInt> cEdge(currentEdge.size());
3351        for (uInt i = 0; i < currentEdge.size(); ++i) {
3352          cEdge[i] = currentEdge[i];
3353        }
3354
3355        bt->appenddata(uInt(getScan(whichrow)), uInt(getCycle(whichrow)), uInt(getBeam(whichrow)), uInt(getIF(whichrow)), uInt(getPol(whichrow)),
3356                       uInt(0),
3357                       timeSecCol[whichrow],
3358                       Bool(true),
3359                       STBaselineFunc::Chebyshev,
3360                       fparam,
3361                       Vector<Float>(),
3362                       finalMaskList,
3363                       Vector<Float>(params),
3364                       Float(rms),
3365                       uInt(sp.size()),
3366                       Float(thresClip),
3367                       uInt(nIterClip),
3368                       Float(threshold),
3369                       uInt(chanAvgLimit),
3370                       cEdge);
3371      } else {
3372        setSpectrum(res, whichrow);
3373      }
3374
3375      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoChebyshevBaseline()", params, nClipped);
3376      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3377    }
3378
3379    //---
3380    if (outBaselintTable) {
3381      bt->save(bltable);
3382    }
3383    //---
3384    delete bt;
3385
3386    if (outTextFile) ofs.close();
3387
3388  } catch (...) {
3389    throw;
3390  }
3391}
3392
3393double Scantable::calculateModelSelectionCriteria(const std::string& valname, const std::string& blfunc, int order, const std::vector<bool>& inMask, int whichrow, bool useLineFinder, const std::vector<int>& edge, float threshold, int chanAvgLimit)
3394{
3395  std::vector<float> sp = getSpectrum(whichrow);
3396  std::vector<bool> chanMask;
3397  chanMask.clear();
3398
3399  if (useLineFinder) {
3400    int minEdgeSize = getIFNos().size()*2;
3401
3402    int edgeSize = edge.size();
3403    std::vector<int> currentEdge;
3404    currentEdge.clear();
3405    if (edgeSize >= 2) {
3406      int idx = 0;
3407      if (edgeSize > 2) {
3408        if (edgeSize < minEdgeSize) {
3409          throw(AipsError("Length of edge element info is less than that of IFs"));
3410        }
3411        idx = 2 * getIF(whichrow);
3412      }
3413      currentEdge.push_back(edge[idx]);
3414      currentEdge.push_back(edge[idx+1]);
3415    } else {
3416      throw(AipsError("Wrong length of edge element"));
3417    }
3418
3419    STLineFinder lineFinder = STLineFinder();
3420    lineFinder.setData(sp);
3421    lineFinder.setOptions(threshold, 3, chanAvgLimit);
3422    lineFinder.findLines(getCompositeChanMask(whichrow, inMask), currentEdge, whichrow);
3423    chanMask = lineFinder.getMask();
3424
3425  } else {
3426
3427    chanMask = getCompositeChanMask(whichrow, inMask);
3428  }
3429
3430  return doCalculateModelSelectionCriteria(valname, sp, chanMask, blfunc, order);
3431}
3432
3433double Scantable::doCalculateModelSelectionCriteria(const std::string& valname, const std::vector<float>& spec, const std::vector<bool>& mask, const std::string& blfunc, int order)
3434{
3435  int nparam;
3436  std::vector<float> params;
3437  std::vector<bool> finalChanMask;
3438  float rms;
3439  int nClipped = 0;
3440  std::vector<float> res;
3441  if (blfunc == "poly") {
3442    nparam = order + 1;
3443    res = doPolynomialFitting(spec, mask, order, params, rms, finalChanMask, nClipped);
3444  } else if (blfunc == "chebyshev") {
3445    nparam = order + 1;
3446    res = doChebyshevFitting(spec, mask, order, params, rms, finalChanMask, nClipped);
3447  } else if (blfunc == "cspline") {
3448    std::vector<int> pieceEdges;//(order+1);  //order = npiece
3449    nparam = order + 3;
3450    //params.resize(4*order);
3451    res = doCubicSplineFitting(spec, mask, order, false, pieceEdges, params, rms, finalChanMask, nClipped);
3452  } else if (blfunc == "sinusoid") {
3453    std::vector<int> nWaves;
3454    nWaves.clear();
3455    for (int i = 0; i <= order; ++i) {
3456      nWaves.push_back(i);
3457    }
3458    nparam = 2*order + 1;  // order = nwave
3459    res = doSinusoidFitting(spec, mask, nWaves, params, rms, finalChanMask, nClipped);
3460  } else {
3461    throw(AipsError("blfunc must be poly, chebyshev, cspline or sinusoid."));
3462  }
3463
3464  double msq = 0.0;
3465  int nusedchan = 0;
3466  int nChan = res.size();
3467  for (int i = 0; i < nChan; ++i) {
3468    if (mask[i]) {
3469      msq += (double)res[i]*(double)res[i];
3470      nusedchan++;
3471    }
3472  }
3473  if (nusedchan == 0) {
3474    throw(AipsError("all channels masked."));
3475  }
3476  msq /= (double)nusedchan;
3477
3478  nparam++;  //add 1 for sigma of Gaussian distribution
3479  const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
3480
3481  if (valname.find("aic") == 0) {
3482    // Original Akaike Information Criterion (AIC)
3483    double aic = nusedchan * (log(2.0 * PI * msq) + 1.0) + 2.0 * nparam;
3484
3485    // Corrected AIC by Sugiura(1978) (AICc)
3486    if (valname == "aicc") {
3487      if (nusedchan - nparam - 1 <= 0) {
3488        throw(AipsError("channel size is too small to calculate AICc."));
3489      }
3490      aic += 2.0*nparam*(nparam + 1)/(double)(nusedchan - nparam - 1);
3491    }
3492
3493    return aic;
3494
3495  } else if (valname == "bic") {
3496    // Bayesian Information Criterion (BIC)
3497    double bic = nusedchan * log(msq) + nparam * log((double)nusedchan);
3498    return bic;
3499
3500  } else if (valname == "gcv") {
3501    // Generalised Cross Validation
3502    double x = 1.0 - (double)nparam / (double)nusedchan;
3503    double gcv = msq / (x * x);
3504    return gcv;
3505
3506  } else {
3507    throw(AipsError("valname must be aic, aicc, bic or gcv."));
3508  }
3509}
3510
3511double Scantable::getNormalPolynomial(int n, double x) {
3512  if (n == 0) {
3513    return 1.0;
3514  } else if (n > 0) {
3515    double res = 1.0;
3516    for (int i = 0; i < n; ++i) {
3517      res *= x;
3518    }
3519    return res;
3520  } else {
3521    if (x == 0.0) {
3522      throw(AipsError("infinity result: x=0 given for negative power."));
3523    } else {
3524      return pow(x, (double)n);
3525    }
3526  }
3527}
3528
3529double Scantable::getChebyshevPolynomial(int n, double x) {
3530  if ((x < -1.0)||(x > 1.0)) {
3531    throw(AipsError("out of definition range (-1 <= x <= 1)."));
3532  } else if (x == 1.0) {
3533    return 1.0;
3534  } else if (x == 0.0) {
3535    double res;
3536    if (n%2 == 0) {
3537      if (n%4 == 0) {
3538        res = 1.0;
3539      } else {
3540        res = -1.0;
3541      }
3542    } else {
3543      res = 0.0;
3544    }
3545    return res;
3546  } else if (x == -1.0) {
3547    double res = (n%2 == 0 ? 1.0 : -1.0);
3548    return res;
3549  } else if (n < 0) {
3550    throw(AipsError("the order must be zero or positive."));
3551  } else if (n == 0) {
3552    return 1.0;
3553  } else if (n == 1) {
3554    return x;
3555  } else {
3556    double res = 0.0;
3557    for (int m = 0; m <= n/2; ++m) {
3558      double c = 1.0;
3559      if (m > 0) {
3560        for (int i = 1; i <= m; ++i) {
3561          c *= (double)(n-2*m+i)/(double)i;
3562        }
3563      }
3564      res += (m%2 == 0 ? 1.0 : -1.0)*(double)n/(double)(n-m)*pow(2.0*x, (double)(n-2*m))/2.0*c;
3565    }
3566    return res;
3567  }
3568}
3569
3570std::vector<float> Scantable::doPolynomialFitting(const std::vector<float>& data, const std::vector<bool>& mask, int order, std::vector<float>& params, float& rms, std::vector<bool>& finalmask, float clipth, int clipn)
3571{
3572  int nClipped = 0;
3573  return doPolynomialFitting(data, mask, order, params, rms, finalmask, nClipped, clipth, clipn);
3574}
3575
3576std::vector<float> Scantable::doPolynomialFitting(const std::vector<float>& data, const std::vector<bool>& mask, int order, std::vector<float>& params, float& rms, std::vector<bool>& finalMask, int& nClipped, float thresClip, int nIterClip, bool getResidual)
3577{
3578  return doLeastSquareFitting(data, mask, &Scantable::getNormalPolynomial, order, params, rms, finalMask, nClipped, thresClip, nIterClip, getResidual);
3579}
3580
3581std::vector<float> Scantable::doChebyshevFitting(const std::vector<float>& data, const std::vector<bool>& mask, int order, std::vector<float>& params, float& rms, std::vector<bool>& finalmask, float clipth, int clipn)
3582{
3583  int nClipped = 0;
3584  return doChebyshevFitting(data, mask, order, params, rms, finalmask, nClipped, clipth, clipn);
3585}
3586
3587std::vector<float> Scantable::doChebyshevFitting(const std::vector<float>& data, const std::vector<bool>& mask, int order, std::vector<float>& params, float& rms, std::vector<bool>& finalMask, int& nClipped, float thresClip, int nIterClip, bool getResidual)
3588{
3589  return doLeastSquareFitting(data, mask, &Scantable::getChebyshevPolynomial, order, params, rms, finalMask, nClipped, thresClip, nIterClip, getResidual);
3590}
3591
3592std::vector<float> Scantable::doLeastSquareFitting(const std::vector<float>& data, const std::vector<bool>& mask, double (Scantable::*pfunc)(int, double), int order, std::vector<float>& params, float& rms, std::vector<bool>& finalMask, int& nClipped, float thresClip, int nIterClip, bool getResidual)
3593{
3594  if (data.size() != mask.size()) {
3595    throw(AipsError("data and mask sizes are not identical"));
3596  }
3597  if (order < 0) {
3598    throw(AipsError("maximum order of polynomial must not be negative."));
3599  }
3600
3601  int nChan = data.size();
3602
3603  finalMask.clear();
3604  finalMask.resize(nChan);
3605
3606  std::vector<int> maskArray;
3607  std::vector<int> x;
3608  for (int i = 0; i < nChan; ++i) {
3609    maskArray.push_back(mask[i] ? 1 : 0);
3610    if (mask[i]) {
3611      x.push_back(i);
3612    }
3613    finalMask[i] = mask[i];
3614  }
3615
3616  int initNData = x.size();
3617
3618  int nData = initNData;
3619  int nDOF = order + 1;  //number of parameters to solve.
3620
3621  // xArray : contains elemental values for computing the least-square matrix.
3622  //          xArray.size() is nDOF and xArray[*].size() is nChan.
3623  //          Each xArray element are as follows:
3624  //
3625  //          (for normal polynomials)
3626  //          xArray[0]   = {1.0,   1.0,   1.0,   ..., 1.0},
3627  //          xArray[1]   = {0.0,   1.0,   2.0,   ..., (nChan-1)}
3628  //          xArray[n-1] = ...,
3629  //          xArray[n]   = {0.0^n, 1.0^n, 2.0^n, ..., (nChan-1)^n}
3630  //          where (0 <= n <= order)
3631  //
3632  //          (for Chebyshev polynomials)
3633  //          xArray[0]   = {T0(-1), T0(2/(nChan-1)-1), T0(4/(nChan-1)-1), ..., T0(1)},
3634  //          xArray[n-1] = ...,
3635  //          xArray[n]   = {Tn(-1), Tn(2/(nChan-1)-1), Tn(4/(nChan-1)-1), ..., Tn(1)}
3636  //          where (0 <= n <= order),
3637  std::vector<std::vector<double> > xArray;
3638  double xFactor, xShift;
3639  if (pfunc == &Scantable::getChebyshevPolynomial) {
3640    xFactor = 2.0/(double)(nChan - 1);
3641    xShift  = -1.0;
3642  } else {
3643    xFactor = 1.0;
3644    xShift  = 0.0;
3645  }
3646  for (int i = 0; i < nDOF; ++i) {
3647    std::vector<double> xs;
3648    xs.clear();
3649    for (int j = 0; j < nChan; ++j) {
3650      xs.push_back((this->*pfunc)(i, xFactor*(double)j + xShift));
3651    }
3652    xArray.push_back(xs);
3653  }
3654
3655  std::vector<double> z1, r1, residual;
3656  for (int i = 0; i < nChan; ++i) {
3657    z1.push_back((double)data[i]);
3658    r1.push_back(0.0);
3659    residual.push_back(0.0);
3660  }
3661
3662  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
3663    // xMatrix : horizontal concatenation of
3664    //           the least-sq. matrix (left) and an
3665    //           identity matrix (right).
3666    // the right part is used to calculate the inverse matrix of the left part.
3667    double xMatrix[nDOF][2*nDOF];
3668    double zMatrix[nDOF];
3669    for (int i = 0; i < nDOF; ++i) {
3670      for (int j = 0; j < 2*nDOF; ++j) {
3671        xMatrix[i][j] = 0.0;
3672      }
3673      xMatrix[i][nDOF+i] = 1.0;
3674      zMatrix[i] = 0.0;
3675    }
3676
3677    int nUseData = 0;
3678    for (int k = 0; k < nChan; ++k) {
3679      if (maskArray[k] == 0) continue;
3680
3681      for (int i = 0; i < nDOF; ++i) {
3682        for (int j = i; j < nDOF; ++j) {
3683          xMatrix[i][j] += xArray[i][k] * xArray[j][k];
3684        }
3685        zMatrix[i] += z1[k] * xArray[i][k];
3686      }
3687
3688      nUseData++;
3689    }
3690
3691    if (nUseData < 1) {
3692        throw(AipsError("all channels clipped or masked. can't execute fitting anymore."));     
3693    }
3694
3695    for (int i = 0; i < nDOF; ++i) {
3696      for (int j = 0; j < i; ++j) {
3697        xMatrix[i][j] = xMatrix[j][i];
3698      }
3699    }
3700
3701    std::vector<double> invDiag;
3702    for (int i = 0; i < nDOF; ++i) {
3703      invDiag.push_back(1.0/xMatrix[i][i]);
3704      for (int j = 0; j < nDOF; ++j) {
3705        xMatrix[i][j] *= invDiag[i];
3706      }
3707    }
3708
3709    for (int k = 0; k < nDOF; ++k) {
3710      for (int i = 0; i < nDOF; ++i) {
3711        if (i != k) {
3712          double factor1 = xMatrix[k][k];
3713          double factor2 = xMatrix[i][k];
3714          for (int j = k; j < 2*nDOF; ++j) {
3715            xMatrix[i][j] *= factor1;
3716            xMatrix[i][j] -= xMatrix[k][j]*factor2;
3717            xMatrix[i][j] /= factor1;
3718          }
3719        }
3720      }
3721      double xDiag = xMatrix[k][k];
3722      for (int j = k; j < 2*nDOF; ++j) {
3723        xMatrix[k][j] /= xDiag;
3724      }
3725    }
3726   
3727    for (int i = 0; i < nDOF; ++i) {
3728      for (int j = 0; j < nDOF; ++j) {
3729        xMatrix[i][nDOF+j] *= invDiag[j];
3730      }
3731    }
3732    //compute a vector y which consists of the coefficients of Chebyshev polynomials.
3733    std::vector<double> y;
3734    params.clear();
3735    for (int i = 0; i < nDOF; ++i) {
3736      y.push_back(0.0);
3737      for (int j = 0; j < nDOF; ++j) {
3738        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
3739      }
3740      params.push_back(y[i]);
3741    }
3742
3743    for (int i = 0; i < nChan; ++i) {
3744      r1[i] = y[0];
3745      for (int j = 1; j < nDOF; ++j) {
3746        r1[i] += y[j]*xArray[j][i];
3747      }
3748      residual[i] = z1[i] - r1[i];
3749    }
3750
3751    double stdDev = 0.0;
3752    for (int i = 0; i < nChan; ++i) {
3753      stdDev += residual[i]*residual[i]*(double)maskArray[i];
3754    }
3755    stdDev = sqrt(stdDev/(double)nData);
3756    rms = (float)stdDev;
3757
3758    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
3759      break;
3760    } else {
3761
3762      double thres = stdDev * thresClip;
3763      int newNData = 0;
3764      for (int i = 0; i < nChan; ++i) {
3765        if (abs(residual[i]) >= thres) {
3766          maskArray[i] = 0;
3767          finalMask[i] = false;
3768        }
3769        if (maskArray[i] > 0) {
3770          newNData++;
3771        }
3772      }
3773      if (newNData == nData) {
3774        break; //no more flag to add. iteration stops.
3775      } else {
3776        nData = newNData;
3777      }
3778
3779    }
3780  }
3781
3782  nClipped = initNData - nData;
3783
3784  std::vector<float> result;
3785  result.clear();
3786  if (getResidual) {
3787    for (int i = 0; i < nChan; ++i) {
3788      result.push_back((float)residual[i]);
3789    }
3790  } else {
3791    for (int i = 0; i < nChan; ++i) {
3792      result.push_back((float)r1[i]);
3793    }
3794  }
3795
3796  return result;
3797}
3798
3799void Scantable::cubicSplineBaseline(const std::vector<bool>& mask, int nPiece, float thresClip, int nIterClip, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile, const std::string& bltable)
3800{
3801  try {
3802    ofstream ofs;
3803    String coordInfo = "";
3804    bool hasSameNchan = true;
3805    bool outTextFile = false;
3806    bool csvFormat = false;
3807
3808    if (blfile != "") {
3809      csvFormat = (blfile.substr(0, 1) == "T");
3810      ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
3811      if (ofs) outTextFile = true;
3812    }
3813
3814    if (outLogger || outTextFile) {
3815      coordInfo = getCoordInfo()[0];
3816      if (coordInfo == "") coordInfo = "channel";
3817      hasSameNchan = hasSameNchanOverIFs();
3818    }
3819
3820    bool showProgress;
3821    int minNRow;
3822    parseProgressInfo(progressInfo, showProgress, minNRow);
3823
3824    int nRow = nrow();
3825    std::vector<bool> chanMask;
3826    std::vector<bool> finalChanMask;
3827    float rms;
3828
3829    //---
3830    bool outBaselintTable = (bltable != "");
3831    STBaselineTable* bt = new STBaselineTable(*this);
3832    ROScalarColumn<Double> *tcol = new ROScalarColumn<Double>(table_, "TIME");
3833    Vector<Double> timeSecCol = tcol->getColumn();
3834    //---
3835
3836
3837    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3838      std::vector<float> sp = getSpectrum(whichrow);
3839      chanMask = getCompositeChanMask(whichrow, mask);
3840      std::vector<int> pieceEdges;//(nPiece+1);
3841      std::vector<float> params;//(nPiece*4);
3842      int nClipped = 0;
3843      std::vector<float> res = doCubicSplineFitting(sp, chanMask, nPiece, false, pieceEdges, params, rms, finalChanMask, nClipped, thresClip, nIterClip, getResidual);
3844
3845      //---
3846      if (outBaselintTable) {
3847        Vector<Int> fparam(nPiece);
3848        for (uInt i = 0; i < fparam.size(); ++i) {
3849          fparam[i] = pieceEdges[i];
3850        }
3851        std::vector<int> finalMaskList0;
3852        finalMaskList0.clear();
3853        for (uInt i = 0; i < finalChanMask.size(); ++i) {
3854          if (finalChanMask[i]) {
3855            if ((i == 0)||(i == finalChanMask.size()-1)) {
3856              finalMaskList0.push_back(i);
3857            } else {
3858              if ((finalChanMask[i])&&(!finalChanMask[i-1])) {
3859                finalMaskList0.push_back(i);
3860              }
3861              if ((finalChanMask[i])&&(!finalChanMask[i+1])) {
3862                finalMaskList0.push_back(i);
3863              }
3864            }
3865          }
3866        }
3867        Vector<uInt> finalMaskList(finalMaskList0.size());
3868        for (uInt i = 0; i < finalMaskList0.size(); ++i) {
3869          finalMaskList[i] = (uInt)finalMaskList0[i];
3870        }
3871
3872        bt->appenddata(uInt(getScan(whichrow)), uInt(getCycle(whichrow)), uInt(getBeam(whichrow)), uInt(getIF(whichrow)), uInt(getPol(whichrow)),
3873                       uInt(0),
3874                       timeSecCol[whichrow],
3875                       Bool(true),
3876                       STBaselineFunc::CSpline,
3877                       fparam,
3878                       Vector<Float>(),
3879                       finalMaskList,
3880                       Vector<Float>(params),
3881                       Float(rms),
3882                       uInt(sp.size()),
3883                       Float(thresClip),
3884                       uInt(nIterClip),
3885                       Float(0.0),
3886                       uInt(0),
3887                       Vector<uInt>());
3888      } else {
3889        setSpectrum(res, whichrow);
3890      }
3891      //---
3892
3893      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "cubicSplineBaseline()", pieceEdges, params, nClipped);
3894      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3895    }
3896   
3897    //---
3898    if (outBaselintTable) {
3899      bt->save(bltable);
3900    }
3901    //---
3902    delete bt;
3903
3904    if (outTextFile) ofs.close();
3905
3906  } catch (...) {
3907    throw;
3908  }
3909}
3910
3911void Scantable::autoCubicSplineBaseline(const std::vector<bool>& mask, int nPiece, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile, const std::string& bltable)
3912{
3913  try {
3914    ofstream ofs;
3915    String coordInfo = "";
3916    bool hasSameNchan = true;
3917    bool outTextFile = false;
3918    bool csvFormat = false;
3919
3920    if (blfile != "") {
3921      csvFormat = (blfile.substr(0, 1) == "T");
3922      ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
3923      if (ofs) outTextFile = true;
3924    }
3925
3926    if (outLogger || outTextFile) {
3927      coordInfo = getCoordInfo()[0];
3928      if (coordInfo == "") coordInfo = "channel";
3929      hasSameNchan = hasSameNchanOverIFs();
3930    }
3931
3932    bool showProgress;
3933    int minNRow;
3934    parseProgressInfo(progressInfo, showProgress, minNRow);
3935
3936    int minEdgeSize = getIFNos().size()*2;
3937    STLineFinder lineFinder = STLineFinder();
3938    lineFinder.setOptions(threshold, 3, chanAvgLimit);
3939
3940    int nRow = nrow();
3941    std::vector<bool> chanMask;
3942    std::vector<bool> finalChanMask;
3943    float rms;
3944
3945    //---
3946    bool outBaselintTable = (bltable != "");
3947    STBaselineTable* bt = new STBaselineTable(*this);
3948    ROScalarColumn<Double> *tcol = new ROScalarColumn<Double>(table_, "TIME");
3949    Vector<Double> timeSecCol = tcol->getColumn();
3950    //---
3951
3952    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3953      std::vector<float> sp = getSpectrum(whichrow);
3954      //-- composote given channel mask and flagtra --------
3955      int edgeSize = edge.size();
3956      std::vector<int> currentEdge;
3957      currentEdge.clear();
3958      if (edgeSize >= 2) {
3959        int idx = 0;
3960        if (edgeSize > 2) {
3961          if (edgeSize < minEdgeSize) {
3962            throw(AipsError("Length of edge element info is less than that of IFs"));
3963          }
3964          idx = 2 * getIF(whichrow);
3965        }
3966        currentEdge.push_back(edge[idx]);
3967        currentEdge.push_back(edge[idx+1]);
3968      } else {
3969        throw(AipsError("Wrong length of edge element"));
3970      }
3971      lineFinder.setData(sp);
3972      lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
3973      chanMask = lineFinder.getMask();
3974      //-- composote given channel mask and flagtra END --------
3975
3976      std::vector<int> pieceEdges;//(nPiece+1);
3977      std::vector<float> params;//(nPiece*4);
3978      int nClipped = 0;
3979      std::vector<float> res = doCubicSplineFitting(sp, chanMask, nPiece, false, pieceEdges, params, rms, finalChanMask, nClipped, thresClip, nIterClip, getResidual);
3980
3981      if (outBaselintTable) {
3982        Vector<Int> fparam(nPiece);
3983        for (uInt i = 0; i < fparam.size(); ++i) {
3984          fparam[i] = pieceEdges[i];
3985        }
3986        std::vector<int> finalMaskList0;
3987        finalMaskList0.clear();
3988        for (uInt i = 0; i < finalChanMask.size(); ++i) {
3989          if (finalChanMask[i]) {
3990            if ((i == 0)||(i == finalChanMask.size()-1)) {
3991              finalMaskList0.push_back(i);
3992            } else {
3993              if ((finalChanMask[i])&&(!finalChanMask[i-1])) {
3994                finalMaskList0.push_back(i);
3995              }
3996              if ((finalChanMask[i])&&(!finalChanMask[i+1])) {
3997                finalMaskList0.push_back(i);
3998              }
3999            }
4000          }
4001        }
4002        Vector<uInt> finalMaskList(finalMaskList0.size());
4003        for (uInt i = 0; i < finalMaskList0.size(); ++i) {
4004          finalMaskList[i] = (uInt)finalMaskList0[i];
4005        }
4006
4007        Vector<uInt> cEdge(currentEdge.size());
4008        for (uInt i = 0; i < currentEdge.size(); ++i) {
4009          cEdge[i] = currentEdge[i];
4010        }
4011
4012        bt->appenddata(uInt(getScan(whichrow)), uInt(getCycle(whichrow)), uInt(getBeam(whichrow)), uInt(getIF(whichrow)), uInt(getPol(whichrow)),
4013                       uInt(0),
4014                       timeSecCol[whichrow],
4015                       Bool(true),
4016                       STBaselineFunc::CSpline,
4017                       fparam,
4018                       Vector<Float>(),
4019                       finalMaskList,
4020                       Vector<Float>(params),
4021                       Float(rms),
4022                       uInt(sp.size()),
4023                       Float(thresClip),
4024                       uInt(nIterClip),
4025                       Float(threshold),
4026                       uInt(chanAvgLimit),
4027                       cEdge);
4028      } else {
4029        setSpectrum(res, whichrow);
4030      }
4031
4032      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoCubicSplineBaseline()", pieceEdges, params, nClipped);
4033      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
4034    }
4035
4036    //---
4037    if (outBaselintTable) {
4038      bt->save(bltable);
4039    }
4040    //---
4041    delete bt;
4042
4043    if (outTextFile) ofs.close();
4044
4045  } catch (...) {
4046    throw;
4047  }
4048}
4049
4050std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data, const std::vector<bool>& mask, std::vector<int>& idxEdge, std::vector<float>& params, float& rms, std::vector<bool>& finalmask, float clipth, int clipn)
4051{
4052  int nClipped = 0;
4053  return doCubicSplineFitting(data, mask, idxEdge.size()-1, true, idxEdge, params, rms, finalmask, nClipped, clipth, clipn);
4054}
4055
4056std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data, const std::vector<bool>& mask, int nPiece, std::vector<int>& idxEdge, std::vector<float>& params, float& rms, std::vector<bool>& finalmask, float clipth, int clipn)
4057{
4058  int nClipped = 0;
4059  return doCubicSplineFitting(data, mask, nPiece, false, idxEdge, params, rms, finalmask, nClipped, clipth, clipn);
4060}
4061
4062std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data, const std::vector<bool>& mask, int nPiece, bool useGivenPieceBoundary, std::vector<int>& idxEdge, std::vector<float>& params, float& rms, std::vector<bool>& finalMask, int& nClipped, float thresClip, int nIterClip, bool getResidual)
4063{
4064  if (data.size() != mask.size()) {
4065    throw(AipsError("data and mask sizes are not identical"));
4066  }
4067  if (nPiece < 1) {
4068    throw(AipsError("number of the sections must be one or more"));
4069  }
4070
4071  int nChan = data.size();
4072
4073  finalMask.clear();
4074  finalMask.resize(nChan);
4075
4076  std::vector<int> maskArray(nChan);
4077  std::vector<int> x(nChan);
4078  int j = 0;
4079  for (int i = 0; i < nChan; ++i) {
4080    maskArray[i] = mask[i] ? 1 : 0;
4081    if (mask[i]) {
4082      x[j] = i;
4083      j++;
4084    }
4085    finalMask[i] = mask[i];
4086  }
4087  int initNData = j;
4088
4089  if (initNData < nPiece) {
4090    throw(AipsError("too few non-flagged channels"));
4091  }
4092
4093  int nElement = (int)(floor(floor((double)(initNData/nPiece))+0.5));
4094  std::vector<double> invEdge(nPiece-1);
4095
4096  if (useGivenPieceBoundary) {
4097    if ((int)idxEdge.size() != nPiece+1) {
4098      throw(AipsError("pieceEdge.size() must be equal to nPiece+1."));
4099    }
4100  } else {
4101    idxEdge.clear();
4102    idxEdge.resize(nPiece+1);
4103    idxEdge[0] = x[0];
4104  }
4105  for (int i = 1; i < nPiece; ++i) {
4106    int valX = x[nElement*i];
4107    if (!useGivenPieceBoundary) {
4108      idxEdge[i] = valX;
4109    }
4110    invEdge[i-1] = 1.0/(double)valX;
4111  }
4112  if (!useGivenPieceBoundary) {
4113    idxEdge[nPiece] = x[initNData-1]+1;
4114  }
4115
4116  params.clear();
4117  params.resize(nPiece*4);
4118
4119  int nData = initNData;
4120  int nDOF = nPiece + 3;  //number of parameters to solve, namely, 4+(nPiece-1).
4121
4122  std::vector<double> x1(nChan), x2(nChan), x3(nChan);
4123  std::vector<double> z1(nChan), x1z1(nChan), x2z1(nChan), x3z1(nChan);
4124  std::vector<double> r1(nChan), residual(nChan);
4125  for (int i = 0; i < nChan; ++i) {
4126    double di = (double)i;
4127    double dD = (double)data[i];
4128    x1[i]   = di;
4129    x2[i]   = di*di;
4130    x3[i]   = di*di*di;
4131    z1[i]   = dD;
4132    x1z1[i] = dD*di;
4133    x2z1[i] = dD*di*di;
4134    x3z1[i] = dD*di*di*di;
4135    r1[i]   = 0.0;
4136    residual[i] = 0.0;
4137  }
4138
4139  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
4140    // xMatrix : horizontal concatenation of
4141    //           the least-sq. matrix (left) and an
4142    //           identity matrix (right).
4143    // the right part is used to calculate the inverse matrix of the left part.
4144
4145    double xMatrix[nDOF][2*nDOF];
4146    double zMatrix[nDOF];
4147    for (int i = 0; i < nDOF; ++i) {
4148      for (int j = 0; j < 2*nDOF; ++j) {
4149        xMatrix[i][j] = 0.0;
4150      }
4151      xMatrix[i][nDOF+i] = 1.0;
4152      zMatrix[i] = 0.0;
4153    }
4154
4155    for (int n = 0; n < nPiece; ++n) {
4156      int nUseDataInPiece = 0;
4157      for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
4158
4159        if (maskArray[i] == 0) continue;
4160
4161        xMatrix[0][0] += 1.0;
4162        xMatrix[0][1] += x1[i];
4163        xMatrix[0][2] += x2[i];
4164        xMatrix[0][3] += x3[i];
4165        xMatrix[1][1] += x2[i];
4166        xMatrix[1][2] += x3[i];
4167        xMatrix[1][3] += x2[i]*x2[i];
4168        xMatrix[2][2] += x2[i]*x2[i];
4169        xMatrix[2][3] += x3[i]*x2[i];
4170        xMatrix[3][3] += x3[i]*x3[i];
4171        zMatrix[0] += z1[i];
4172        zMatrix[1] += x1z1[i];
4173        zMatrix[2] += x2z1[i];
4174        zMatrix[3] += x3z1[i];
4175
4176        for (int j = 0; j < n; ++j) {
4177          double q = 1.0 - x1[i]*invEdge[j];
4178          q = q*q*q;
4179          xMatrix[0][j+4] += q;
4180          xMatrix[1][j+4] += q*x1[i];
4181          xMatrix[2][j+4] += q*x2[i];
4182          xMatrix[3][j+4] += q*x3[i];
4183          for (int k = 0; k < j; ++k) {
4184            double r = 1.0 - x1[i]*invEdge[k];
4185            r = r*r*r;
4186            xMatrix[k+4][j+4] += r*q;
4187          }
4188          xMatrix[j+4][j+4] += q*q;
4189          zMatrix[j+4] += q*z1[i];
4190        }
4191
4192        nUseDataInPiece++;
4193      }
4194
4195      if (nUseDataInPiece < 1) {
4196        std::vector<string> suffixOfPieceNumber(4);
4197        suffixOfPieceNumber[0] = "th";
4198        suffixOfPieceNumber[1] = "st";
4199        suffixOfPieceNumber[2] = "nd";
4200        suffixOfPieceNumber[3] = "rd";
4201        int idxNoDataPiece = (n % 10 <= 3) ? n : 0;
4202        ostringstream oss;
4203        oss << "all channels clipped or masked in " << n << suffixOfPieceNumber[idxNoDataPiece];
4204        oss << " piece of the spectrum. can't execute fitting anymore.";
4205        throw(AipsError(String(oss)));
4206      }
4207    }
4208
4209    for (int i = 0; i < nDOF; ++i) {
4210      for (int j = 0; j < i; ++j) {
4211        xMatrix[i][j] = xMatrix[j][i];
4212      }
4213    }
4214
4215    std::vector<double> invDiag(nDOF);
4216    for (int i = 0; i < nDOF; ++i) {
4217      invDiag[i] = 1.0/xMatrix[i][i];
4218      for (int j = 0; j < nDOF; ++j) {
4219        xMatrix[i][j] *= invDiag[i];
4220      }
4221    }
4222
4223    for (int k = 0; k < nDOF; ++k) {
4224      for (int i = 0; i < nDOF; ++i) {
4225        if (i != k) {
4226          double factor1 = xMatrix[k][k];
4227          double factor2 = xMatrix[i][k];
4228          for (int j = k; j < 2*nDOF; ++j) {
4229            xMatrix[i][j] *= factor1;
4230            xMatrix[i][j] -= xMatrix[k][j]*factor2;
4231            xMatrix[i][j] /= factor1;
4232          }
4233        }
4234      }
4235      double xDiag = xMatrix[k][k];
4236      for (int j = k; j < 2*nDOF; ++j) {
4237        xMatrix[k][j] /= xDiag;
4238      }
4239    }
4240   
4241    for (int i = 0; i < nDOF; ++i) {
4242      for (int j = 0; j < nDOF; ++j) {
4243        xMatrix[i][nDOF+j] *= invDiag[j];
4244      }
4245    }
4246
4247    //compute a vector y which consists of the coefficients of the best-fit spline curves
4248    //(a0,a1,a2,a3(,b3,c3,...)), namely, the ones for the leftmost piece and the ones of
4249    //cubic terms for the other pieces (in case nPiece>1).
4250    std::vector<double> y(nDOF);
4251    for (int i = 0; i < nDOF; ++i) {
4252      y[i] = 0.0;
4253      for (int j = 0; j < nDOF; ++j) {
4254        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
4255      }
4256    }
4257
4258    double a0 = y[0];
4259    double a1 = y[1];
4260    double a2 = y[2];
4261    double a3 = y[3];
4262
4263    int j = 0;
4264    for (int n = 0; n < nPiece; ++n) {
4265      for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
4266        r1[i] = a0 + a1*x1[i] + a2*x2[i] + a3*x3[i];
4267      }
4268      params[j]   = a0;
4269      params[j+1] = a1;
4270      params[j+2] = a2;
4271      params[j+3] = a3;
4272      j += 4;
4273
4274      if (n == nPiece-1) break;
4275
4276      double d = y[4+n];
4277      double iE = invEdge[n];
4278      a0 +=     d;
4279      a1 -= 3.0*d*iE;
4280      a2 += 3.0*d*iE*iE;
4281      a3 -=     d*iE*iE*iE;
4282    }
4283
4284    //subtract constant value for masked regions at the edge of spectrum
4285    if (idxEdge[0] > 0) {
4286      int n = idxEdge[0];
4287      for (int i = 0; i < idxEdge[0]; ++i) {
4288        //--cubic extrapolate--
4289        //r1[i] = params[0] + params[1]*x1[i] + params[2]*x2[i] + params[3]*x3[i];
4290        //--linear extrapolate--
4291        //r1[i] = (r1[n+1] - r1[n])/(x1[n+1] - x1[n])*(x1[i] - x1[n]) + r1[n];
4292        //--constant--
4293        r1[i] = r1[n];
4294      }
4295    }
4296
4297    if (idxEdge[nPiece] < nChan) {
4298      int n = idxEdge[nPiece]-1;
4299      for (int i = idxEdge[nPiece]; i < nChan; ++i) {
4300        //--cubic extrapolate--
4301        //int m = 4*(nPiece-1);
4302        //r1[i] = params[m] + params[m+1]*x1[i] + params[m+2]*x2[i] + params[m+3]*x3[i];
4303        //--linear extrapolate--
4304        //r1[i] = (r1[n-1] - r1[n])/(x1[n-1] - x1[n])*(x1[i] - x1[n]) + r1[n];
4305        //--constant--
4306        r1[i] = r1[n];
4307      }
4308    }
4309
4310    for (int i = 0; i < nChan; ++i) {
4311      residual[i] = z1[i] - r1[i];
4312    }
4313
4314    double stdDev = 0.0;
4315    for (int i = 0; i < nChan; ++i) {
4316      stdDev += residual[i]*residual[i]*(double)maskArray[i];
4317    }
4318    stdDev = sqrt(stdDev/(double)nData);
4319    rms = (float)stdDev;
4320
4321    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
4322      break;
4323    } else {
4324     
4325      double thres = stdDev * thresClip;
4326      int newNData = 0;
4327      for (int i = 0; i < nChan; ++i) {
4328        if (abs(residual[i]) >= thres) {
4329          maskArray[i] = 0;
4330          finalMask[i] = false;
4331        }
4332        if (maskArray[i] > 0) {
4333          newNData++;
4334        }
4335      }
4336      if (newNData == nData) {
4337        break; //no more flag to add. iteration stops.
4338      } else {
4339        nData = newNData;
4340      }
4341
4342    }
4343  }
4344
4345  nClipped = initNData - nData;
4346
4347  std::vector<float> result(nChan);
4348  if (getResidual) {
4349    for (int i = 0; i < nChan; ++i) {
4350      result[i] = (float)residual[i];
4351    }
4352  } else {
4353    for (int i = 0; i < nChan; ++i) {
4354      result[i] = (float)r1[i];
4355    }
4356  }
4357
4358  return result;
4359}
4360
4361void Scantable::selectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const std::string& fftInfo, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves)
4362//void Scantable::selectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves)
4363{
4364  bool applyFFT;
4365  std::string fftMethod;
4366  std::string fftThresh;
4367
4368  nWaves.clear();
4369
4370  parseFFTInfo(fftInfo, applyFFT, fftMethod, fftThresh);
4371  if (applyFFT) {
4372    string fftThAttr;
4373    float fftThSigma;
4374    int fftThTop;
4375    parseThresholdExpression(fftThresh, fftThAttr, fftThSigma, fftThTop);
4376    doSelectWaveNumbers(whichrow, chanMask, fftMethod, fftThSigma, fftThTop, fftThAttr, nWaves);
4377  }
4378
4379  addAuxWaveNumbers(whichrow, addNWaves, rejectNWaves, nWaves);
4380}
4381
4382void Scantable::parseFFTInfo(const std::string& fftInfo, bool& applyFFT, std::string& fftMethod, std::string& fftThresh)
4383{
4384  istringstream iss(fftInfo);
4385  std::string tmp;
4386  std::vector<string> res;
4387  while (getline(iss, tmp, ',')) {
4388    res.push_back(tmp);
4389  }
4390  if (res.size() < 3) {
4391    throw(AipsError("wrong value in 'fftinfo' parameter")) ;
4392  }
4393  applyFFT = (res[0] == "true");
4394  fftMethod = res[1];
4395  fftThresh = res[2];
4396}
4397
4398void Scantable::parseThresholdExpression(const std::string& fftThresh, std::string& fftThAttr, float& fftThSigma, int& fftThTop)
4399{
4400  uInt idxSigma = fftThresh.find("sigma");
4401  uInt idxTop   = fftThresh.find("top");
4402
4403  if (idxSigma == fftThresh.size() - 5) {
4404    std::istringstream is(fftThresh.substr(0, fftThresh.size() - 5));
4405    is >> fftThSigma;
4406    fftThAttr = "sigma";
4407  } else if (idxTop == 0) {
4408    std::istringstream is(fftThresh.substr(3));
4409    is >> fftThTop;
4410    fftThAttr = "top";
4411  } else {
4412    bool isNumber = true;
4413    for (uInt i = 0; i < fftThresh.size()-1; ++i) {
4414      char ch = (fftThresh.substr(i, 1).c_str())[0];
4415      if (!(isdigit(ch) || (fftThresh.substr(i, 1) == "."))) {
4416        isNumber = false;
4417        break;
4418      }
4419    }
4420    if (isNumber) {
4421      std::istringstream is(fftThresh);
4422      is >> fftThSigma;
4423      fftThAttr = "sigma";
4424    } else {
4425      throw(AipsError("fftthresh has a wrong value"));
4426    }
4427  }
4428}
4429
4430void Scantable::doSelectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const std::string& fftMethod, const float fftThSigma, const int fftThTop, const std::string& fftThAttr, std::vector<int>& nWaves)
4431{
4432  std::vector<float> fspec;
4433  if (fftMethod == "fft") {
4434    fspec = execFFT(whichrow, chanMask, false, true);
4435  //} else if (fftMethod == "lsp") {
4436  //  fspec = lombScarglePeriodogram(whichrow);
4437  }
4438
4439  if (fftThAttr == "sigma") {
4440    float mean  = 0.0;
4441    float mean2 = 0.0;
4442    for (uInt i = 0; i < fspec.size(); ++i) {
4443      mean  += fspec[i];
4444      mean2 += fspec[i]*fspec[i];
4445    }
4446    mean  /= float(fspec.size());
4447    mean2 /= float(fspec.size());
4448    float thres = mean + fftThSigma * float(sqrt(mean2 - mean*mean));
4449
4450    for (uInt i = 0; i < fspec.size(); ++i) {
4451      if (fspec[i] >= thres) {
4452        nWaves.push_back(i);
4453      }
4454    }
4455
4456  } else if (fftThAttr == "top") {
4457    for (int i = 0; i < fftThTop; ++i) {
4458      float max = 0.0;
4459      int maxIdx = 0;
4460      for (uInt j = 0; j < fspec.size(); ++j) {
4461        if (fspec[j] > max) {
4462          max = fspec[j];
4463          maxIdx = j;
4464        }
4465      }
4466      nWaves.push_back(maxIdx);
4467      fspec[maxIdx] = 0.0;
4468    }
4469
4470  }
4471
4472  if (nWaves.size() > 1) {
4473    sort(nWaves.begin(), nWaves.end());
4474  }
4475}
4476
4477void Scantable::addAuxWaveNumbers(const int whichrow, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves)
4478{
4479  std::vector<int> tempAddNWaves, tempRejectNWaves;
4480  tempAddNWaves.clear();
4481  tempRejectNWaves.clear();
4482
4483  for (uInt i = 0; i < addNWaves.size(); ++i) {
4484    tempAddNWaves.push_back(addNWaves[i]);
4485  }
4486  if ((tempAddNWaves.size() == 2) && (tempAddNWaves[1] == -999)) {
4487    setWaveNumberListUptoNyquistFreq(whichrow, tempAddNWaves);
4488  }
4489
4490  for (uInt i = 0; i < rejectNWaves.size(); ++i) {
4491    tempRejectNWaves.push_back(rejectNWaves[i]);
4492  }
4493  if ((tempRejectNWaves.size() == 2) && (tempRejectNWaves[1] == -999)) {
4494    setWaveNumberListUptoNyquistFreq(whichrow, tempRejectNWaves);
4495  }
4496
4497  for (uInt i = 0; i < tempAddNWaves.size(); ++i) {
4498    bool found = false;
4499    for (uInt j = 0; j < nWaves.size(); ++j) {
4500      if (nWaves[j] == tempAddNWaves[i]) {
4501        found = true;
4502        break;
4503      }
4504    }
4505    if (!found) nWaves.push_back(tempAddNWaves[i]);
4506  }
4507
4508  for (uInt i = 0; i < tempRejectNWaves.size(); ++i) {
4509    for (std::vector<int>::iterator j = nWaves.begin(); j != nWaves.end(); ) {
4510      if (*j == tempRejectNWaves[i]) {
4511        j = nWaves.erase(j);
4512      } else {
4513        ++j;
4514      }
4515    }
4516  }
4517
4518  if (nWaves.size() > 1) {
4519    sort(nWaves.begin(), nWaves.end());
4520    unique(nWaves.begin(), nWaves.end());
4521  }
4522}
4523
4524void Scantable::setWaveNumberListUptoNyquistFreq(const int whichrow, std::vector<int>& nWaves)
4525{
4526  int val = nWaves[0];
4527  int nyquistFreq = nchan(getIF(whichrow))/2+1;
4528  nWaves.clear();
4529  if (val > nyquistFreq) {  // for safety, at least nWaves contains a constant; CAS-3759
4530    nWaves.push_back(0);
4531  }
4532  while (val <= nyquistFreq) {
4533    nWaves.push_back(val);
4534    val++;
4535  }
4536}
4537
4538void Scantable::sinusoidBaseline(const std::vector<bool>& mask, const std::string& fftInfo, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, float thresClip, int nIterClip, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile, const std::string& bltable)
4539{
4540  try {
4541    ofstream ofs;
4542    String coordInfo = "";
4543    bool hasSameNchan = true;
4544    bool outTextFile = false;
4545    bool csvFormat = false;
4546
4547    if (blfile != "") {
4548      csvFormat = (blfile.substr(0, 1) == "T");
4549      ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
4550      if (ofs) outTextFile = true;
4551    }
4552
4553    if (outLogger || outTextFile) {
4554      coordInfo = getCoordInfo()[0];
4555      if (coordInfo == "") coordInfo = "channel";
4556      hasSameNchan = hasSameNchanOverIFs();
4557    }
4558
4559    bool showProgress;
4560    int minNRow;
4561    parseProgressInfo(progressInfo, showProgress, minNRow);
4562
4563    int nRow = nrow();
4564    std::vector<bool> chanMask;
4565    std::vector<int> nWaves;
4566    std::vector<bool> finalChanMask;
4567    float rms;
4568
4569    //---
4570    bool outBaselintTable = (bltable != "");
4571    STBaselineTable* bt = new STBaselineTable(*this);
4572    ROScalarColumn<Double> *tcol = new ROScalarColumn<Double>(table_, "TIME");
4573    Vector<Double> timeSecCol = tcol->getColumn();
4574    //---
4575
4576    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
4577      std::vector<float> sp = getSpectrum(whichrow);
4578      chanMask = getCompositeChanMask(whichrow, mask);
4579      selectWaveNumbers(whichrow, chanMask, fftInfo, addNWaves, rejectNWaves, nWaves);
4580
4581      std::vector<float> params;
4582      int nClipped = 0;
4583      std::vector<float> res = doSinusoidFitting(sp, chanMask, nWaves, params, rms, finalChanMask, nClipped, thresClip, nIterClip, getResidual);
4584
4585      //---
4586      if (outBaselintTable) {
4587        uInt nparam = nWaves.size();
4588        Vector<Int> fparam(nparam);
4589        for (uInt i = 0; i < nparam; ++i) {
4590          fparam[i] = nWaves[i];
4591        }
4592        std::vector<int> finalMaskList0;
4593        finalMaskList0.clear();
4594        for (uInt i = 0; i < finalChanMask.size(); ++i) {
4595          if (finalChanMask[i]) {
4596            if ((i == 0)||(i == finalChanMask.size()-1)) {
4597              finalMaskList0.push_back(i);
4598            } else {
4599              if ((finalChanMask[i])&&(!finalChanMask[i-1])) {
4600                finalMaskList0.push_back(i);
4601              }
4602              if ((finalChanMask[i])&&(!finalChanMask[i+1])) {
4603                finalMaskList0.push_back(i);
4604              }
4605            }
4606          }
4607        }
4608        Vector<uInt> finalMaskList(finalMaskList0.size());
4609        for (uInt i = 0; i < finalMaskList0.size(); ++i) {
4610          finalMaskList[i] = (uInt)finalMaskList0[i];
4611        }
4612
4613        bt->appenddata(uInt(getScan(whichrow)), uInt(getCycle(whichrow)), uInt(getBeam(whichrow)), uInt(getIF(whichrow)), uInt(getPol(whichrow)),
4614                       uInt(0),
4615                       timeSecCol[whichrow],
4616                       Bool(true),
4617                       STBaselineFunc::Sinusoid,
4618                       fparam,
4619                       Vector<Float>(),
4620                       finalMaskList,
4621                       Vector<Float>(params),
4622                       Float(rms),
4623                       uInt(sp.size()),
4624                       Float(thresClip),
4625                       uInt(nIterClip),
4626                       Float(0.0),
4627                       uInt(0),
4628                       Vector<uInt>());
4629      } else {
4630        setSpectrum(res, whichrow);
4631      }
4632      //---
4633
4634      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "sinusoidBaseline()", params, nClipped);
4635      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
4636    }
4637
4638    //---
4639    if (outBaselintTable) {
4640      bt->save(bltable);
4641    }
4642    //---
4643    delete bt;
4644
4645    if (outTextFile) ofs.close();
4646
4647  } catch (...) {
4648    throw;
4649  }
4650}
4651
4652void Scantable::autoSinusoidBaseline(const std::vector<bool>& mask, const std::string& fftInfo, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile, const std::string& bltable)
4653//void Scantable::autoSinusoidBaseline(const std::vector<bool>& mask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile, const std::string& bltable)
4654{
4655  try {
4656    ofstream ofs;
4657    String coordInfo = "";
4658    bool hasSameNchan = true;
4659    bool outTextFile = false;
4660    bool csvFormat = false;
4661
4662    if (blfile != "") {
4663      csvFormat = (blfile.substr(0, 1) == "T");
4664      ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
4665      if (ofs) outTextFile = true;
4666    }
4667
4668    if (outLogger || outTextFile) {
4669      coordInfo = getCoordInfo()[0];
4670      if (coordInfo == "") coordInfo = "channel";
4671      hasSameNchan = hasSameNchanOverIFs();
4672    }
4673
4674    bool showProgress;
4675    int minNRow;
4676    parseProgressInfo(progressInfo, showProgress, minNRow);
4677
4678    int minEdgeSize = getIFNos().size()*2;
4679    STLineFinder lineFinder = STLineFinder();
4680    lineFinder.setOptions(threshold, 3, chanAvgLimit);
4681
4682    int nRow = nrow();
4683    std::vector<bool> chanMask;
4684    std::vector<int> nWaves;
4685    std::vector<bool> finalChanMask;
4686    float rms;
4687
4688    //---
4689    bool outBaselintTable = (bltable != "");
4690    STBaselineTable* bt = new STBaselineTable(*this);
4691    ROScalarColumn<Double> *tcol = new ROScalarColumn<Double>(table_, "TIME");
4692    Vector<Double> timeSecCol = tcol->getColumn();
4693    //---
4694
4695    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
4696      std::vector<float> sp = getSpectrum(whichrow);
4697      //-- composote given channel mask and flagtra --------
4698      int edgeSize = edge.size();
4699      std::vector<int> currentEdge;
4700      currentEdge.clear();
4701      if (edgeSize >= 2) {
4702        int idx = 0;
4703        if (edgeSize > 2) {
4704          if (edgeSize < minEdgeSize) {
4705            throw(AipsError("Length of edge element info is less than that of IFs"));
4706          }
4707          idx = 2 * getIF(whichrow);
4708        }
4709        currentEdge.push_back(edge[idx]);
4710        currentEdge.push_back(edge[idx+1]);
4711      } else {
4712        throw(AipsError("Wrong length of edge element"));
4713      }
4714      lineFinder.setData(sp);
4715      lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
4716      chanMask = lineFinder.getMask();
4717      //-- composote given channel mask and flagtra END --------
4718      selectWaveNumbers(whichrow, chanMask, fftInfo, addNWaves, rejectNWaves, nWaves);
4719
4720      std::vector<float> params;
4721      int nClipped = 0;
4722      std::vector<float> res = doSinusoidFitting(sp, chanMask, nWaves, params, rms, finalChanMask, nClipped, thresClip, nIterClip, getResidual);
4723
4724      //---
4725      if (outBaselintTable) {
4726        uInt nparam = nWaves.size();
4727        Vector<Int> fparam(nparam);
4728        for (uInt i = 0; i < nparam; ++i) {
4729          fparam[i] = nWaves[i];
4730        }
4731        std::vector<int> finalMaskList0;
4732        finalMaskList0.clear();
4733        for (uInt i = 0; i < finalChanMask.size(); ++i) {
4734          if (finalChanMask[i]) {
4735            if ((i == 0)||(i == finalChanMask.size()-1)) {
4736              finalMaskList0.push_back(i);
4737            } else {
4738              if ((finalChanMask[i])&&(!finalChanMask[i-1])) {
4739                finalMaskList0.push_back(i);
4740              }
4741              if ((finalChanMask[i])&&(!finalChanMask[i+1])) {
4742                finalMaskList0.push_back(i);
4743              }
4744            }
4745          }
4746        }
4747        Vector<uInt> finalMaskList(finalMaskList0.size());
4748        for (uInt i = 0; i < finalMaskList0.size(); ++i) {
4749          finalMaskList[i] = (uInt)finalMaskList0[i];
4750        }
4751
4752        Vector<uInt> cEdge(currentEdge.size());
4753        for (uInt i = 0; i < currentEdge.size(); ++i) {
4754          cEdge[i] = currentEdge[i];
4755        }
4756
4757        bt->appenddata(uInt(getScan(whichrow)), uInt(getCycle(whichrow)), uInt(getBeam(whichrow)), uInt(getIF(whichrow)), uInt(getPol(whichrow)),
4758                       uInt(0),
4759                       timeSecCol[whichrow],
4760                       Bool(true),
4761                       STBaselineFunc::Sinusoid,
4762                       fparam,
4763                       Vector<Float>(),
4764                       finalMaskList,
4765                       Vector<Float>(params),
4766                       Float(rms),
4767                       uInt(sp.size()),
4768                       Float(thresClip),
4769                       uInt(nIterClip),
4770                       Float(threshold),
4771                       uInt(chanAvgLimit),
4772                       cEdge);
4773      } else {
4774        setSpectrum(res, whichrow);
4775      }
4776      //---
4777
4778      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoSinusoidBaseline()", params, nClipped);
4779      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
4780    }
4781
4782    //---
4783    if (outBaselintTable) {
4784      bt->save(bltable);
4785    }
4786    //---
4787    delete bt;
4788
4789    if (outTextFile) ofs.close();
4790
4791  } catch (...) {
4792    throw;
4793  }
4794}
4795
4796std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data, const std::vector<bool>& mask, const std::vector<int>& waveNumbers, std::vector<float>& params, float& rms, std::vector<bool>& finalmask, float clipth, int clipn)
4797{
4798  int nClipped = 0;
4799  return doSinusoidFitting(data, mask, waveNumbers, params, rms, finalmask, nClipped, clipth, clipn);
4800}
4801
4802std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data, const std::vector<bool>& mask, const std::vector<int>& waveNumbers, std::vector<float>& params, float& rms, std::vector<bool>& finalMask, int& nClipped, float thresClip, int nIterClip, bool getResidual)
4803{
4804  if (data.size() != mask.size()) {
4805    throw(AipsError("data and mask sizes are not identical"));
4806  }
4807  if (data.size() < 2) {
4808    throw(AipsError("data size is too short"));
4809  }
4810  if (waveNumbers.size() == 0) {
4811    throw(AipsError("no wave numbers given"));
4812  }
4813  std::vector<int> nWaves;  // sorted and uniqued array of wave numbers
4814  nWaves.reserve(waveNumbers.size());
4815  copy(waveNumbers.begin(), waveNumbers.end(), back_inserter(nWaves));
4816  sort(nWaves.begin(), nWaves.end());
4817  std::vector<int>::iterator end_it = unique(nWaves.begin(), nWaves.end());
4818  nWaves.erase(end_it, nWaves.end());
4819
4820  int minNWaves = nWaves[0];
4821  if (minNWaves < 0) {
4822    throw(AipsError("wave number must be positive or zero (i.e. constant)"));
4823  }
4824  bool hasConstantTerm = (minNWaves == 0);
4825
4826  int nChan = data.size();
4827
4828  finalMask.clear();
4829  finalMask.resize(nChan);
4830
4831  std::vector<int> maskArray;
4832  std::vector<int> x;
4833  for (int i = 0; i < nChan; ++i) {
4834    maskArray.push_back(mask[i] ? 1 : 0);
4835    if (mask[i]) {
4836      x.push_back(i);
4837    }
4838    finalMask[i] = mask[i];
4839  }
4840
4841  int initNData = x.size();
4842
4843  int nData = initNData;
4844  int nDOF = nWaves.size() * 2 - (hasConstantTerm ? 1 : 0);  //number of parameters to solve.
4845
4846  const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
4847  double baseXFactor = 2.0*PI/(double)(nChan-1);  //the denominator (nChan-1) should be changed to (xdata[nChan-1]-xdata[0]) for accepting x-values given in velocity or frequency when this function is moved to fitter. (2011/03/30 WK)
4848
4849  // xArray : contains elemental values for computing the least-square matrix.
4850  //          xArray.size() is nDOF and xArray[*].size() is nChan.
4851  //          Each xArray element are as follows:
4852  //          xArray[0]    = {1.0, 1.0, 1.0, ..., 1.0},
4853  //          xArray[2n-1] = {sin(nPI/L*x[0]), sin(nPI/L*x[1]), ..., sin(nPI/L*x[nChan])},
4854  //          xArray[2n]   = {cos(nPI/L*x[0]), cos(nPI/L*x[1]), ..., cos(nPI/L*x[nChan])},
4855  //          where (1 <= n <= nMaxWavesInSW),
4856  //          or,
4857  //          xArray[2n-1] = {sin(wn[n]PI/L*x[0]), sin(wn[n]PI/L*x[1]), ..., sin(wn[n]PI/L*x[nChan])},
4858  //          xArray[2n]   = {cos(wn[n]PI/L*x[0]), cos(wn[n]PI/L*x[1]), ..., cos(wn[n]PI/L*x[nChan])},
4859  //          where wn[n] denotes waveNumbers[n] (1 <= n <= waveNumbers.size()).
4860  std::vector<std::vector<double> > xArray;
4861  if (hasConstantTerm) {
4862    std::vector<double> xu;
4863    for (int j = 0; j < nChan; ++j) {
4864      xu.push_back(1.0);
4865    }
4866    xArray.push_back(xu);
4867  }
4868  for (uInt i = (hasConstantTerm ? 1 : 0); i < nWaves.size(); ++i) {
4869    double xFactor = baseXFactor*(double)nWaves[i];
4870    std::vector<double> xs, xc;
4871    xs.clear();
4872    xc.clear();
4873    for (int j = 0; j < nChan; ++j) {
4874      xs.push_back(sin(xFactor*(double)j));
4875      xc.push_back(cos(xFactor*(double)j));
4876    }
4877    xArray.push_back(xs);
4878    xArray.push_back(xc);
4879  }
4880
4881  std::vector<double> z1, r1, residual;
4882  for (int i = 0; i < nChan; ++i) {
4883    z1.push_back((double)data[i]);
4884    r1.push_back(0.0);
4885    residual.push_back(0.0);
4886  }
4887
4888  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
4889    // xMatrix : horizontal concatenation of
4890    //           the least-sq. matrix (left) and an
4891    //           identity matrix (right).
4892    // the right part is used to calculate the inverse matrix of the left part.
4893    double xMatrix[nDOF][2*nDOF];
4894    double zMatrix[nDOF];
4895    for (int i = 0; i < nDOF; ++i) {
4896      for (int j = 0; j < 2*nDOF; ++j) {
4897        xMatrix[i][j] = 0.0;
4898      }
4899      xMatrix[i][nDOF+i] = 1.0;
4900      zMatrix[i] = 0.0;
4901    }
4902
4903    int nUseData = 0;
4904    for (int k = 0; k < nChan; ++k) {
4905      if (maskArray[k] == 0) continue;
4906
4907      for (int i = 0; i < nDOF; ++i) {
4908        for (int j = i; j < nDOF; ++j) {
4909          xMatrix[i][j] += xArray[i][k] * xArray[j][k];
4910        }
4911        zMatrix[i] += z1[k] * xArray[i][k];
4912      }
4913
4914      nUseData++;
4915    }
4916
4917    if (nUseData < 1) {
4918        throw(AipsError("all channels clipped or masked. can't execute fitting anymore."));     
4919    }
4920
4921    for (int i = 0; i < nDOF; ++i) {
4922      for (int j = 0; j < i; ++j) {
4923        xMatrix[i][j] = xMatrix[j][i];
4924      }
4925    }
4926
4927    std::vector<double> invDiag;
4928    for (int i = 0; i < nDOF; ++i) {
4929      invDiag.push_back(1.0/xMatrix[i][i]);
4930      for (int j = 0; j < nDOF; ++j) {
4931        xMatrix[i][j] *= invDiag[i];
4932      }
4933    }
4934
4935    for (int k = 0; k < nDOF; ++k) {
4936      for (int i = 0; i < nDOF; ++i) {
4937        if (i != k) {
4938          double factor1 = xMatrix[k][k];
4939          double factor2 = xMatrix[i][k];
4940          for (int j = k; j < 2*nDOF; ++j) {
4941            xMatrix[i][j] *= factor1;
4942            xMatrix[i][j] -= xMatrix[k][j]*factor2;
4943            xMatrix[i][j] /= factor1;
4944          }
4945        }
4946      }
4947      double xDiag = xMatrix[k][k];
4948      for (int j = k; j < 2*nDOF; ++j) {
4949        xMatrix[k][j] /= xDiag;
4950      }
4951    }
4952   
4953    for (int i = 0; i < nDOF; ++i) {
4954      for (int j = 0; j < nDOF; ++j) {
4955        xMatrix[i][nDOF+j] *= invDiag[j];
4956      }
4957    }
4958    //compute a vector y which consists of the coefficients of the sinusoids forming the
4959    //best-fit curves (a0,s1,c1,s2,c2,...), where a0 is constant and s* and c* are of sine
4960    //and cosine functions, respectively.
4961    std::vector<double> y;
4962    params.clear();
4963    for (int i = 0; i < nDOF; ++i) {
4964      y.push_back(0.0);
4965      for (int j = 0; j < nDOF; ++j) {
4966        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
4967      }
4968      params.push_back(y[i]);
4969    }
4970
4971    for (int i = 0; i < nChan; ++i) {
4972      r1[i] = y[0];
4973      for (int j = 1; j < nDOF; ++j) {
4974        r1[i] += y[j]*xArray[j][i];
4975      }
4976      residual[i] = z1[i] - r1[i];
4977    }
4978
4979    double stdDev = 0.0;
4980    for (int i = 0; i < nChan; ++i) {
4981      stdDev += residual[i]*residual[i]*(double)maskArray[i];
4982    }
4983    stdDev = sqrt(stdDev/(double)nData);
4984    rms = (float)stdDev;
4985
4986    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
4987      break;
4988    } else {
4989
4990      double thres = stdDev * thresClip;
4991      int newNData = 0;
4992      for (int i = 0; i < nChan; ++i) {
4993        if (abs(residual[i]) >= thres) {
4994          maskArray[i] = 0;
4995          finalMask[i] = false;
4996        }
4997        if (maskArray[i] > 0) {
4998          newNData++;
4999        }
5000      }
5001      if (newNData == nData) {
5002        break; //no more flag to add. iteration stops.
5003      } else {
5004        nData = newNData;
5005      }
5006
5007    }
5008  }
5009
5010  nClipped = initNData - nData;
5011
5012  std::vector<float> result;
5013  if (getResidual) {
5014    for (int i = 0; i < nChan; ++i) {
5015      result.push_back((float)residual[i]);
5016    }
5017  } else {
5018    for (int i = 0; i < nChan; ++i) {
5019      result.push_back((float)r1[i]);
5020    }
5021  }
5022
5023  return result;
5024}
5025
5026void Scantable::fitBaseline(const std::vector<bool>& mask, int whichrow, Fitter& fitter)
5027{
5028  std::vector<double> dAbcissa = getAbcissa(whichrow);
5029  std::vector<float> abcissa;
5030  for (uInt i = 0; i < dAbcissa.size(); ++i) {
5031    abcissa.push_back((float)dAbcissa[i]);
5032  }
5033  std::vector<float> spec = getSpectrum(whichrow);
5034
5035  fitter.setData(abcissa, spec, mask);
5036  fitter.lfit();
5037}
5038
5039std::vector<bool> Scantable::getCompositeChanMask(int whichrow, const std::vector<bool>& inMask)
5040{
5041  /****
5042  double ms1TimeStart, ms1TimeEnd, ms2TimeStart, ms2TimeEnd;
5043  double elapse1 = 0.0;
5044  double elapse2 = 0.0;
5045
5046  ms1TimeStart = mathutil::gettimeofday_sec();
5047  ****/
5048
5049  std::vector<bool> mask = getMask(whichrow);
5050
5051  /****
5052  ms1TimeEnd = mathutil::gettimeofday_sec();
5053  elapse1 = ms1TimeEnd - ms1TimeStart;
5054  std::cout << "ms1   : " << elapse1 << " (sec.)" << endl;
5055  ms2TimeStart = mathutil::gettimeofday_sec();
5056  ****/
5057
5058  uInt maskSize = mask.size();
5059  if (inMask.size() != 0) {
5060    if (maskSize != inMask.size()) {
5061      throw(AipsError("mask sizes are not the same."));
5062    }
5063    for (uInt i = 0; i < maskSize; ++i) {
5064      mask[i] = mask[i] && inMask[i];
5065    }
5066  }
5067
5068  /****
5069  ms2TimeEnd = mathutil::gettimeofday_sec();
5070  elapse2 = ms2TimeEnd - ms2TimeStart;
5071  std::cout << "ms2   : " << elapse2 << " (sec.)" << endl;
5072  ****/
5073
5074  return mask;
5075}
5076
5077/*
5078std::vector<bool> Scantable::getCompositeChanMask(int whichrow, const std::vector<bool>& inMask, const std::vector<int>& edge, const int minEdgeSize, STLineFinder& lineFinder)
5079{
5080  int edgeSize = edge.size();
5081  std::vector<int> currentEdge;
5082  if (edgeSize >= 2) {
5083      int idx = 0;
5084      if (edgeSize > 2) {
5085        if (edgeSize < minEdgeSize) {
5086          throw(AipsError("Length of edge element info is less than that of IFs"));
5087        }
5088        idx = 2 * getIF(whichrow);
5089      }
5090      currentEdge.push_back(edge[idx]);
5091      currentEdge.push_back(edge[idx+1]);
5092  } else {
5093    throw(AipsError("Wrong length of edge element"));
5094  }
5095
5096  lineFinder.setData(getSpectrum(whichrow));
5097  lineFinder.findLines(getCompositeChanMask(whichrow, inMask), currentEdge, whichrow);
5098
5099  return lineFinder.getMask();
5100}
5101*/
5102
5103/* for poly. the variations of outputFittingResult() should be merged into one eventually (2011/3/10 WK)  */
5104void Scantable::outputFittingResult(bool outLogger, bool outTextFile, bool csvFormat, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, Fitter& fitter)
5105{
5106  if (outLogger || outTextFile) {
5107    std::vector<float> params = fitter.getParameters();
5108    std::vector<bool>  fixed  = fitter.getFixedParameters();
5109    float rms = getRms(chanMask, whichrow);
5110    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
5111
5112    if (outLogger) {
5113      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
5114      ols << formatBaselineParams(params, fixed, rms, -1, masklist, whichrow, false, csvFormat) << LogIO::POST ;
5115    }
5116    if (outTextFile) {
5117      ofs << formatBaselineParams(params, fixed, rms, -1, masklist, whichrow, true, csvFormat) << flush;
5118    }
5119  }
5120}
5121
5122/* for cspline. will be merged once cspline is available in fitter (2011/3/10 WK) */
5123void Scantable::outputFittingResult(bool outLogger, bool outTextFile, bool csvFormat, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, const std::vector<int>& edge, const std::vector<float>& params, const int nClipped)
5124{
5125  if (outLogger || outTextFile) {
5126  /****
5127  double ms1TimeStart, ms1TimeEnd, ms2TimeStart, ms2TimeEnd;
5128  double elapse1 = 0.0;
5129  double elapse2 = 0.0;
5130
5131  ms1TimeStart = mathutil::gettimeofday_sec();
5132  ****/
5133
5134    float rms = getRms(chanMask, whichrow);
5135
5136  /****
5137  ms1TimeEnd = mathutil::gettimeofday_sec();
5138  elapse1 = ms1TimeEnd - ms1TimeStart;
5139  std::cout << "ot1   : " << elapse1 << " (sec.)" << endl;
5140  ms2TimeStart = mathutil::gettimeofday_sec();
5141  ****/
5142
5143    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
5144    std::vector<bool> fixed;
5145    fixed.clear();
5146
5147    if (outLogger) {
5148      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
5149      ols << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped, masklist, whichrow, false, csvFormat) << LogIO::POST ;
5150    }
5151    if (outTextFile) {
5152      ofs << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped, masklist, whichrow, true, csvFormat) << flush;
5153    }
5154
5155  /****
5156  ms2TimeEnd = mathutil::gettimeofday_sec();
5157  elapse2 = ms2TimeEnd - ms2TimeStart;
5158  std::cout << "ot2   : " << elapse2 << " (sec.)" << endl;
5159  ****/
5160
5161  }
5162}
5163
5164/* for chebyshev/sinusoid. will be merged once chebyshev/sinusoid is available in fitter (2011/3/10 WK) */
5165void Scantable::outputFittingResult(bool outLogger, bool outTextFile, bool csvFormat, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, const std::vector<float>& params, const int nClipped)
5166{
5167  if (outLogger || outTextFile) {
5168    float rms = getRms(chanMask, whichrow);
5169    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
5170    std::vector<bool> fixed;
5171    fixed.clear();
5172
5173    if (outLogger) {
5174      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
5175      ols << formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, false, csvFormat) << LogIO::POST ;
5176    }
5177    if (outTextFile) {
5178      ofs << formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, true, csvFormat) << flush;
5179    }
5180  }
5181}
5182
5183void Scantable::parseProgressInfo(const std::string& progressInfo, bool& showProgress, int& minNRow)
5184{
5185  int idxDelimiter = progressInfo.find(",");
5186  if (idxDelimiter < 0) {
5187    throw(AipsError("wrong value in 'showprogress' parameter")) ;
5188  }
5189  showProgress = (progressInfo.substr(0, idxDelimiter) == "true");
5190  std::istringstream is(progressInfo.substr(idxDelimiter+1));
5191  is >> minNRow;
5192}
5193
5194void Scantable::showProgressOnTerminal(const int nProcessed, const int nTotal, const bool showProgress, const int nTotalThreshold)
5195{
5196  if (showProgress && (nTotal >= nTotalThreshold)) {
5197    int nInterval = int(floor(double(nTotal)/100.0));
5198    if (nInterval == 0) nInterval++;
5199
5200    if (nProcessed % nInterval == 0) {
5201      printf("\r");                          //go to the head of line
5202      printf("\x1b[31m\x1b[1m");             //set red color, highlighted
5203      printf("[%3d%%]", (int)(100.0*(double(nProcessed+1))/(double(nTotal))) );
5204      printf("\x1b[39m\x1b[0m");             //set default attributes
5205      fflush(NULL);
5206    }
5207
5208    if (nProcessed == nTotal - 1) {
5209      printf("\r\x1b[K");                    //clear
5210      fflush(NULL);
5211    }
5212
5213  }
5214}
5215
5216std::vector<float> Scantable::execFFT(const int whichrow, const std::vector<bool>& inMask, bool getRealImag, bool getAmplitudeOnly)
5217{
5218  std::vector<bool>  mask = getMask(whichrow);
5219
5220  if (inMask.size() > 0) {
5221    uInt maskSize = mask.size();
5222    if (maskSize != inMask.size()) {
5223      throw(AipsError("mask sizes are not the same."));
5224    }
5225    for (uInt i = 0; i < maskSize; ++i) {
5226      mask[i] = mask[i] && inMask[i];
5227    }
5228  }
5229
5230  Vector<Float> spec = getSpectrum(whichrow);
5231  mathutil::doZeroOrderInterpolation(spec, mask);
5232
5233  FFTServer<Float,Complex> ffts;
5234  Vector<Complex> fftres;
5235  ffts.fft0(fftres, spec);
5236
5237  std::vector<float> res;
5238  float norm = float(2.0/double(spec.size()));
5239
5240  if (getRealImag) {
5241    for (uInt i = 0; i < fftres.size(); ++i) {
5242      res.push_back(real(fftres[i])*norm);
5243      res.push_back(imag(fftres[i])*norm);
5244    }
5245  } else {
5246    for (uInt i = 0; i < fftres.size(); ++i) {
5247      res.push_back(abs(fftres[i])*norm);
5248      if (!getAmplitudeOnly) res.push_back(arg(fftres[i]));
5249    }
5250  }
5251
5252  return res;
5253}
5254
5255
5256float Scantable::getRms(const std::vector<bool>& mask, int whichrow)
5257{
5258  /****
5259  double ms1TimeStart, ms1TimeEnd;
5260  double elapse1 = 0.0;
5261  ms1TimeStart = mathutil::gettimeofday_sec();
5262  ****/
5263
5264  Vector<Float> spec;
5265  specCol_.get(whichrow, spec);
5266
5267  /****
5268  ms1TimeEnd = mathutil::gettimeofday_sec();
5269  elapse1 = ms1TimeEnd - ms1TimeStart;
5270  std::cout << "rm1   : " << elapse1 << " (sec.)" << endl;
5271  ****/
5272
5273  return (float)doGetRms(mask, spec);
5274}
5275
5276double Scantable::doGetRms(const std::vector<bool>& mask, const Vector<Float>& spec)
5277{
5278  double mean = 0.0;
5279  double smean = 0.0;
5280  int n = 0;
5281  for (uInt i = 0; i < spec.nelements(); ++i) {
5282    if (mask[i]) {
5283      double val = (double)spec[i];
5284      mean += val;
5285      smean += val*val;
5286      n++;
5287    }
5288  }
5289
5290  mean /= (double)n;
5291  smean /= (double)n;
5292
5293  return sqrt(smean - mean*mean);
5294}
5295
5296std::string Scantable::formatBaselineParamsHeader(int whichrow, const std::string& masklist, bool verbose, bool csvformat) const
5297{
5298  if (verbose) {
5299    ostringstream oss;
5300
5301    if (csvformat) {
5302      oss << getScan(whichrow)  << ",";
5303      oss << getBeam(whichrow)  << ",";
5304      oss << getIF(whichrow)    << ",";
5305      oss << getPol(whichrow)   << ",";
5306      oss << getCycle(whichrow) << ",";
5307      String commaReplacedMasklist = masklist;
5308      string::size_type pos = 0;
5309      while (pos = commaReplacedMasklist.find(","), pos != string::npos) {
5310        commaReplacedMasklist.replace(pos, 1, ";");
5311        pos++;
5312      }
5313      oss << commaReplacedMasklist << ",";
5314    } else {
5315      oss <<  " Scan[" << getScan(whichrow)  << "]";
5316      oss <<  " Beam[" << getBeam(whichrow)  << "]";
5317      oss <<    " IF[" << getIF(whichrow)    << "]";
5318      oss <<   " Pol[" << getPol(whichrow)   << "]";
5319      oss << " Cycle[" << getCycle(whichrow) << "]: " << endl;
5320      oss << "Fitter range = " << masklist << endl;
5321      oss << "Baseline parameters" << endl;
5322    }
5323    oss << flush;
5324
5325    return String(oss);
5326  }
5327
5328  return "";
5329}
5330
5331std::string Scantable::formatBaselineParamsFooter(float rms, int nClipped, bool verbose, bool csvformat) const
5332{
5333  if (verbose) {
5334    ostringstream oss;
5335
5336    if (csvformat) {
5337      oss << rms << ",";
5338      if (nClipped >= 0) {
5339        oss << nClipped;
5340      }
5341    } else {
5342      oss << "Results of baseline fit" << endl;
5343      oss << "  rms = " << setprecision(6) << rms << endl;
5344      if (nClipped >= 0) {
5345        oss << "  Number of clipped channels = " << nClipped << endl;
5346      }
5347      for (int i = 0; i < 60; ++i) {
5348        oss << "-";
5349      }
5350    }
5351    oss << endl;
5352    oss << flush;
5353
5354    return String(oss);
5355  }
5356
5357  return "";
5358}
5359
5360std::string Scantable::formatBaselineParams(const std::vector<float>& params,
5361                                            const std::vector<bool>& fixed,
5362                                            float rms,
5363                                            int nClipped,
5364                                            const std::string& masklist,
5365                                            int whichrow,
5366                                            bool verbose,
5367                                            bool csvformat,
5368                                            int start, int count,
5369                                            bool resetparamid) const
5370{
5371  int nParam = (int)(params.size());
5372
5373  if (nParam < 1) {
5374    return("  Not fitted");
5375  } else {
5376
5377    ostringstream oss;
5378    oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat);
5379
5380    if (start < 0) start = 0;
5381    if (count < 0) count = nParam;
5382    int end = start + count;
5383    if (end > nParam) end = nParam;
5384    int paramidoffset = (resetparamid) ? (-start) : 0;
5385
5386    for (int i = start; i < end; ++i) {
5387      if (i > start) {
5388        oss << ",";
5389      }
5390      std::string sFix = ((fixed.size() > 0) && (fixed[i]) && verbose) ? "(fixed)" : "";
5391      if (csvformat) {
5392        oss << params[i] << sFix;
5393      } else {
5394        oss << "  p" << (i+paramidoffset) << sFix << "= " << right << setw(13) << setprecision(6) << params[i];
5395      }
5396    }
5397
5398    if (csvformat) {
5399      oss << ",";
5400    } else {
5401      oss << endl;
5402    }
5403    oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat);
5404
5405    return String(oss);
5406  }
5407
5408}
5409
5410std::string Scantable::formatPiecewiseBaselineParams(const std::vector<int>& ranges, const std::vector<float>& params, const std::vector<bool>& fixed, float rms, int nClipped, const std::string& masklist, int whichrow, bool verbose, bool csvformat) const
5411{
5412  int nOutParam = (int)(params.size());
5413  int nPiece = (int)(ranges.size()) - 1;
5414
5415  if (nOutParam < 1) {
5416    return("  Not fitted");
5417  } else if (nPiece < 0) {
5418    return formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, verbose, csvformat);
5419  } else if (nPiece < 1) {
5420    return("  Bad count of the piece edge info");
5421  } else if (nOutParam % nPiece != 0) {
5422    return("  Bad count of the output baseline parameters");
5423  } else {
5424
5425    int nParam = nOutParam / nPiece;
5426
5427    ostringstream oss;
5428    oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat);
5429
5430    if (csvformat) {
5431      for (int i = 0; i < nPiece; ++i) {
5432        oss << ranges[i] << "," << (ranges[i+1]-1) << ",";
5433        oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true);
5434      }
5435    } else {
5436      stringstream ss;
5437      ss << ranges[nPiece] << flush;
5438      int wRange = ss.str().size() * 2 + 5;
5439
5440      for (int i = 0; i < nPiece; ++i) {
5441        ss.str("");
5442        ss << "  [" << ranges[i] << "," << (ranges[i+1]-1) << "]";
5443        oss << left << setw(wRange) << ss.str();
5444        oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true);
5445        //oss << endl;
5446      }
5447    }
5448
5449    oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat);
5450
5451    return String(oss);
5452  }
5453
5454}
5455
5456bool Scantable::hasSameNchanOverIFs()
5457{
5458  int nIF = nif(-1);
5459  int nCh;
5460  int totalPositiveNChan = 0;
5461  int nPositiveNChan = 0;
5462
5463  for (int i = 0; i < nIF; ++i) {
5464    nCh = nchan(i);
5465    if (nCh > 0) {
5466      totalPositiveNChan += nCh;
5467      nPositiveNChan++;
5468    }
5469  }
5470
5471  return (totalPositiveNChan == (nPositiveNChan * nchan(0)));
5472}
5473
5474std::string Scantable::getMaskRangeList(const std::vector<bool>& mask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, bool verbose)
5475{
5476  if (mask.size() <= 0) {
5477    throw(AipsError("The mask elements should be > 0"));
5478  }
5479  int IF = getIF(whichrow);
5480  if (mask.size() != (uInt)nchan(IF)) {
5481    throw(AipsError("Number of channels in scantable != number of mask elements"));
5482  }
5483
5484  if (verbose) {
5485    LogIO logOs(LogOrigin("Scantable", "getMaskRangeList()", WHERE));
5486    logOs << LogIO::WARN << "The current mask window unit is " << coordInfo;
5487    if (!hasSameNchan) {
5488      logOs << endl << "This mask is only valid for IF=" << IF;
5489    }
5490    logOs << LogIO::POST;
5491  }
5492
5493  std::vector<double> abcissa = getAbcissa(whichrow);
5494  std::vector<int> edge = getMaskEdgeIndices(mask);
5495
5496  ostringstream oss;
5497  oss.setf(ios::fixed);
5498  oss << setprecision(1) << "[";
5499  for (uInt i = 0; i < edge.size(); i+=2) {
5500    if (i > 0) oss << ",";
5501    oss << "[" << (float)abcissa[edge[i]] << "," << (float)abcissa[edge[i+1]] << "]";
5502  }
5503  oss << "]" << flush;
5504
5505  return String(oss);
5506}
5507
5508std::vector<int> Scantable::getMaskEdgeIndices(const std::vector<bool>& mask)
5509{
5510  if (mask.size() <= 0) {
5511    throw(AipsError("The mask elements should be > 0"));
5512  }
5513
5514  std::vector<int> out, startIndices, endIndices;
5515  int maskSize = mask.size();
5516
5517  startIndices.clear();
5518  endIndices.clear();
5519
5520  if (mask[0]) {
5521    startIndices.push_back(0);
5522  }
5523  for (int i = 1; i < maskSize; ++i) {
5524    if ((!mask[i-1]) && mask[i]) {
5525      startIndices.push_back(i);
5526    } else if (mask[i-1] && (!mask[i])) {
5527      endIndices.push_back(i-1);
5528    }
5529  }
5530  if (mask[maskSize-1]) {
5531    endIndices.push_back(maskSize-1);
5532  }
5533
5534  if (startIndices.size() != endIndices.size()) {
5535    throw(AipsError("Inconsistent Mask Size: bad data?"));
5536  }
5537  for (uInt i = 0; i < startIndices.size(); ++i) {
5538    if (startIndices[i] > endIndices[i]) {
5539      throw(AipsError("Mask start index > mask end index"));
5540    }
5541  }
5542
5543  out.clear();
5544  for (uInt i = 0; i < startIndices.size(); ++i) {
5545    out.push_back(startIndices[i]);
5546    out.push_back(endIndices[i]);
5547  }
5548
5549  return out;
5550}
5551
5552vector<float> Scantable::getTsysSpectrum( int whichrow ) const
5553{
5554  Vector<Float> tsys( tsysCol_(whichrow) ) ;
5555  vector<float> stlTsys ;
5556  tsys.tovector( stlTsys ) ;
5557  return stlTsys ;
5558}
5559
5560vector<uint> Scantable::getMoleculeIdColumnData() const
5561{
5562  Vector<uInt> molIds(mmolidCol_.getColumn());
5563  vector<uint> res;
5564  molIds.tovector(res);
5565  return res;
5566}
5567
5568void Scantable::setMoleculeIdColumnData(const std::vector<uint>& molids)
5569{
5570  Vector<uInt> molIds(molids);
5571  Vector<uInt> arr(mmolidCol_.getColumn());
5572  if ( molIds.nelements() != arr.nelements() )
5573    throw AipsError("The input data size must be the number of rows.");
5574  mmolidCol_.putColumn(molIds);
5575}
5576
5577
5578}
5579//namespace asap
Note: See TracBrowser for help on using the repository browser.