source: trunk/src/Scantable.cpp@ 2737

Last change on this file since 2737 was 2737, checked in by WataruKawasaki, 12 years ago

New Development: No

JIRA Issue: Yes CAS-4794

Ready for Test: No

Interface Changes: No

What Interface Changed:

Test Programs:

Put in Release Notes: No

Module(s): sd

Description:


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 142.3 KB
RevLine 
[805]1//
2// C++ Implementation: Scantable
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2005
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
[206]12#include <map>
[2591]13#include <sys/time.h>
[206]14
[2186]15#include <atnf/PKSIO/SrcType.h>
16
[125]17#include <casa/aips.h>
[2186]18#include <casa/iomanip.h>
[80]19#include <casa/iostream.h>
[2186]20#include <casa/OS/File.h>
[805]21#include <casa/OS/Path.h>
[2658]22#include <casa/Logging/LogIO.h>
[80]23#include <casa/Arrays/Array.h>
[2186]24#include <casa/Arrays/ArrayAccessor.h>
25#include <casa/Arrays/ArrayLogical.h>
[80]26#include <casa/Arrays/ArrayMath.h>
27#include <casa/Arrays/MaskArrMath.h>
[2186]28#include <casa/Arrays/Slice.h>
[1325]29#include <casa/Arrays/Vector.h>
[455]30#include <casa/Arrays/VectorSTLIterator.h>
[418]31#include <casa/BasicMath/Math.h>
[504]32#include <casa/BasicSL/Constants.h>
[2186]33#include <casa/Containers/RecordField.h>
34#include <casa/Logging/LogIO.h>
[286]35#include <casa/Quanta/MVAngle.h>
[2186]36#include <casa/Quanta/MVTime.h>
[902]37#include <casa/Utilities/GenSort.h>
[2]38
[2186]39#include <coordinates/Coordinates/CoordinateUtil.h>
[2]40
[1325]41// needed to avoid error in .tcc
42#include <measures/Measures/MCDirection.h>
43//
44#include <measures/Measures/MDirection.h>
[2186]45#include <measures/Measures/MEpoch.h>
[80]46#include <measures/Measures/MFrequency.h>
[2186]47#include <measures/Measures/MeasRef.h>
48#include <measures/Measures/MeasTable.h>
49#include <measures/TableMeasures/ScalarMeasColumn.h>
50#include <measures/TableMeasures/TableMeasDesc.h>
[805]51#include <measures/TableMeasures/TableMeasRefDesc.h>
52#include <measures/TableMeasures/TableMeasValueDesc.h>
[2]53
[2186]54#include <tables/Tables/ArrColDesc.h>
55#include <tables/Tables/ExprNode.h>
56#include <tables/Tables/ScaColDesc.h>
57#include <tables/Tables/SetupNewTab.h>
58#include <tables/Tables/TableCopy.h>
59#include <tables/Tables/TableDesc.h>
60#include <tables/Tables/TableIter.h>
61#include <tables/Tables/TableParse.h>
62#include <tables/Tables/TableRecord.h>
63#include <tables/Tables/TableRow.h>
64#include <tables/Tables/TableVector.h>
65
66#include "MathUtils.h"
67#include "STAttr.h"
[2737]68#include "STBaselineTable.h"
[2186]69#include "STLineFinder.h"
70#include "STPolCircular.h"
[896]71#include "STPolLinear.h"
[913]72#include "STPolStokes.h"
[2321]73#include "STUpgrade.h"
[2666]74#include "STFitter.h"
[2186]75#include "Scantable.h"
[2]76
[2462]77#define debug 1
78
[125]79using namespace casa;
[2]80
[805]81namespace asap {
82
[896]83std::map<std::string, STPol::STPolFactory *> Scantable::factories_;
84
85void Scantable::initFactories() {
86 if ( factories_.empty() ) {
87 Scantable::factories_["linear"] = &STPolLinear::myFactory;
[1323]88 Scantable::factories_["circular"] = &STPolCircular::myFactory;
[913]89 Scantable::factories_["stokes"] = &STPolStokes::myFactory;
[896]90 }
91}
92
[805]93Scantable::Scantable(Table::TableType ttype) :
[852]94 type_(ttype)
[206]95{
[896]96 initFactories();
[805]97 setupMainTable();
[2346]98 freqTable_ = STFrequencies(*this);
99 table_.rwKeywordSet().defineTable("FREQUENCIES", freqTable_.table());
[852]100 weatherTable_ = STWeather(*this);
[805]101 table_.rwKeywordSet().defineTable("WEATHER", weatherTable_.table());
[852]102 focusTable_ = STFocus(*this);
[805]103 table_.rwKeywordSet().defineTable("FOCUS", focusTable_.table());
[852]104 tcalTable_ = STTcal(*this);
[805]105 table_.rwKeywordSet().defineTable("TCAL", tcalTable_.table());
[852]106 moleculeTable_ = STMolecules(*this);
[805]107 table_.rwKeywordSet().defineTable("MOLECULES", moleculeTable_.table());
[860]108 historyTable_ = STHistory(*this);
109 table_.rwKeywordSet().defineTable("HISTORY", historyTable_.table());
[959]110 fitTable_ = STFit(*this);
111 table_.rwKeywordSet().defineTable("FIT", fitTable_.table());
[1881]112 table_.tableInfo().setType( "Scantable" ) ;
[805]113 originalTable_ = table_;
[322]114 attach();
[18]115}
[206]116
[805]117Scantable::Scantable(const std::string& name, Table::TableType ttype) :
[852]118 type_(ttype)
[206]119{
[896]120 initFactories();
[1819]121
[865]122 Table tab(name, Table::Update);
[1009]123 uInt version = tab.keywordSet().asuInt("VERSION");
[483]124 if (version != version_) {
[2321]125 STUpgrade upgrader(version_);
[2162]126 LogIO os( LogOrigin( "Scantable" ) ) ;
127 os << LogIO::WARN
[2321]128 << name << " data format version " << version
129 << " is deprecated" << endl
130 << "Running upgrade."<< endl
[2162]131 << LogIO::POST ;
[2321]132 std::string outname = upgrader.upgrade(name);
[2332]133 if ( outname != name ) {
134 os << LogIO::WARN
135 << "Data will be loaded from " << outname << " instead of "
136 << name << LogIO::POST ;
137 tab = Table(outname, Table::Update ) ;
138 }
[483]139 }
[1009]140 if ( type_ == Table::Memory ) {
[852]141 table_ = tab.copyToMemoryTable(generateName());
[1009]142 } else {
[805]143 table_ = tab;
[1009]144 }
[1881]145 table_.tableInfo().setType( "Scantable" ) ;
[1009]146
[859]147 attachSubtables();
[805]148 originalTable_ = table_;
[329]149 attach();
[2]150}
[1819]151/*
152Scantable::Scantable(const std::string& name, Table::TableType ttype) :
153 type_(ttype)
154{
155 initFactories();
156 Table tab(name, Table::Update);
157 uInt version = tab.keywordSet().asuInt("VERSION");
158 if (version != version_) {
159 throw(AipsError("Unsupported version of ASAP file."));
160 }
161 if ( type_ == Table::Memory ) {
162 table_ = tab.copyToMemoryTable(generateName());
163 } else {
164 table_ = tab;
165 }
[2]166
[1819]167 attachSubtables();
168 originalTable_ = table_;
169 attach();
170}
171*/
172
[2658]173Scantable::Scantable( const Scantable& other, bool clear )
[206]174{
[805]175 // with or without data
[859]176 String newname = String(generateName());
[865]177 type_ = other.table_.tableType();
[859]178 if ( other.table_.tableType() == Table::Memory ) {
179 if ( clear ) {
180 table_ = TableCopy::makeEmptyMemoryTable(newname,
181 other.table_, True);
182 } else
183 table_ = other.table_.copyToMemoryTable(newname);
[16]184 } else {
[915]185 other.table_.deepCopy(newname, Table::New, False,
186 other.table_.endianFormat(),
[865]187 Bool(clear));
188 table_ = Table(newname, Table::Update);
189 table_.markForDelete();
190 }
[1881]191 table_.tableInfo().setType( "Scantable" ) ;
[1111]192 /// @todo reindex SCANNO, recompute nbeam, nif, npol
[915]193 if ( clear ) copySubtables(other);
[859]194 attachSubtables();
[805]195 originalTable_ = table_;
[322]196 attach();
[2]197}
198
[865]199void Scantable::copySubtables(const Scantable& other) {
200 Table t = table_.rwKeywordSet().asTable("FREQUENCIES");
[2346]201 TableCopy::copyRows(t, other.freqTable_.table());
[865]202 t = table_.rwKeywordSet().asTable("FOCUS");
203 TableCopy::copyRows(t, other.focusTable_.table());
204 t = table_.rwKeywordSet().asTable("WEATHER");
205 TableCopy::copyRows(t, other.weatherTable_.table());
206 t = table_.rwKeywordSet().asTable("TCAL");
207 TableCopy::copyRows(t, other.tcalTable_.table());
208 t = table_.rwKeywordSet().asTable("MOLECULES");
209 TableCopy::copyRows(t, other.moleculeTable_.table());
210 t = table_.rwKeywordSet().asTable("HISTORY");
211 TableCopy::copyRows(t, other.historyTable_.table());
[972]212 t = table_.rwKeywordSet().asTable("FIT");
213 TableCopy::copyRows(t, other.fitTable_.table());
[865]214}
215
[859]216void Scantable::attachSubtables()
217{
[2346]218 freqTable_ = STFrequencies(table_);
[859]219 focusTable_ = STFocus(table_);
220 weatherTable_ = STWeather(table_);
221 tcalTable_ = STTcal(table_);
222 moleculeTable_ = STMolecules(table_);
[860]223 historyTable_ = STHistory(table_);
[972]224 fitTable_ = STFit(table_);
[859]225}
226
[805]227Scantable::~Scantable()
[206]228{
[2]229}
230
[805]231void Scantable::setupMainTable()
[206]232{
[805]233 TableDesc td("", "1", TableDesc::Scratch);
234 td.comment() = "An ASAP Scantable";
[1009]235 td.rwKeywordSet().define("VERSION", uInt(version_));
[2]236
[805]237 // n Cycles
238 td.addColumn(ScalarColumnDesc<uInt>("SCANNO"));
239 // new index every nBeam x nIF x nPol
240 td.addColumn(ScalarColumnDesc<uInt>("CYCLENO"));
[2]241
[805]242 td.addColumn(ScalarColumnDesc<uInt>("BEAMNO"));
243 td.addColumn(ScalarColumnDesc<uInt>("IFNO"));
[972]244 // linear, circular, stokes
[805]245 td.rwKeywordSet().define("POLTYPE", String("linear"));
246 td.addColumn(ScalarColumnDesc<uInt>("POLNO"));
[138]247
[805]248 td.addColumn(ScalarColumnDesc<uInt>("FREQ_ID"));
249 td.addColumn(ScalarColumnDesc<uInt>("MOLECULE_ID"));
[80]250
[1819]251 ScalarColumnDesc<Int> refbeamnoColumn("REFBEAMNO");
252 refbeamnoColumn.setDefault(Int(-1));
253 td.addColumn(refbeamnoColumn);
254
255 ScalarColumnDesc<uInt> flagrowColumn("FLAGROW");
256 flagrowColumn.setDefault(uInt(0));
257 td.addColumn(flagrowColumn);
258
[805]259 td.addColumn(ScalarColumnDesc<Double>("TIME"));
260 TableMeasRefDesc measRef(MEpoch::UTC); // UTC as default
261 TableMeasValueDesc measVal(td, "TIME");
262 TableMeasDesc<MEpoch> mepochCol(measVal, measRef);
263 mepochCol.write(td);
[483]264
[805]265 td.addColumn(ScalarColumnDesc<Double>("INTERVAL"));
266
[2]267 td.addColumn(ScalarColumnDesc<String>("SRCNAME"));
[805]268 // Type of source (on=0, off=1, other=-1)
[1503]269 ScalarColumnDesc<Int> stypeColumn("SRCTYPE");
270 stypeColumn.setDefault(Int(-1));
271 td.addColumn(stypeColumn);
[805]272 td.addColumn(ScalarColumnDesc<String>("FIELDNAME"));
273
274 //The actual Data Vectors
[2]275 td.addColumn(ArrayColumnDesc<Float>("SPECTRA"));
276 td.addColumn(ArrayColumnDesc<uChar>("FLAGTRA"));
[89]277 td.addColumn(ArrayColumnDesc<Float>("TSYS"));
[805]278
279 td.addColumn(ArrayColumnDesc<Double>("DIRECTION",
280 IPosition(1,2),
281 ColumnDesc::Direct));
282 TableMeasRefDesc mdirRef(MDirection::J2000); // default
283 TableMeasValueDesc tmvdMDir(td, "DIRECTION");
284 // the TableMeasDesc gives the column a type
285 TableMeasDesc<MDirection> mdirCol(tmvdMDir, mdirRef);
[987]286 // a uder set table type e.g. GALCTIC, B1950 ...
287 td.rwKeywordSet().define("DIRECTIONREF", String("J2000"));
[805]288 // writing create the measure column
289 mdirCol.write(td);
[923]290 td.addColumn(ScalarColumnDesc<Float>("AZIMUTH"));
291 td.addColumn(ScalarColumnDesc<Float>("ELEVATION"));
[1047]292 td.addColumn(ScalarColumnDesc<Float>("OPACITY"));
[105]293
[805]294 td.addColumn(ScalarColumnDesc<uInt>("TCAL_ID"));
[972]295 ScalarColumnDesc<Int> fitColumn("FIT_ID");
[973]296 fitColumn.setDefault(Int(-1));
[972]297 td.addColumn(fitColumn);
[805]298
299 td.addColumn(ScalarColumnDesc<uInt>("FOCUS_ID"));
300 td.addColumn(ScalarColumnDesc<uInt>("WEATHER_ID"));
301
[999]302 // columns which just get dragged along, as they aren't used in asap
303 td.addColumn(ScalarColumnDesc<Double>("SRCVELOCITY"));
304 td.addColumn(ArrayColumnDesc<Double>("SRCPROPERMOTION"));
305 td.addColumn(ArrayColumnDesc<Double>("SRCDIRECTION"));
306 td.addColumn(ArrayColumnDesc<Double>("SCANRATE"));
307
[805]308 td.rwKeywordSet().define("OBSMODE", String(""));
309
[418]310 // Now create Table SetUp from the description.
[859]311 SetupNewTable aNewTab(generateName(), td, Table::Scratch);
[852]312 table_ = Table(aNewTab, type_, 0);
[805]313 originalTable_ = table_;
314}
[418]315
[805]316void Scantable::attach()
[455]317{
[805]318 timeCol_.attach(table_, "TIME");
319 srcnCol_.attach(table_, "SRCNAME");
[1068]320 srctCol_.attach(table_, "SRCTYPE");
[805]321 specCol_.attach(table_, "SPECTRA");
322 flagsCol_.attach(table_, "FLAGTRA");
[865]323 tsysCol_.attach(table_, "TSYS");
[805]324 cycleCol_.attach(table_,"CYCLENO");
325 scanCol_.attach(table_, "SCANNO");
326 beamCol_.attach(table_, "BEAMNO");
[847]327 ifCol_.attach(table_, "IFNO");
328 polCol_.attach(table_, "POLNO");
[805]329 integrCol_.attach(table_, "INTERVAL");
330 azCol_.attach(table_, "AZIMUTH");
331 elCol_.attach(table_, "ELEVATION");
332 dirCol_.attach(table_, "DIRECTION");
333 fldnCol_.attach(table_, "FIELDNAME");
334 rbeamCol_.attach(table_, "REFBEAMNO");
[455]335
[1730]336 mweatheridCol_.attach(table_,"WEATHER_ID");
[805]337 mfitidCol_.attach(table_,"FIT_ID");
338 mfreqidCol_.attach(table_, "FREQ_ID");
339 mtcalidCol_.attach(table_, "TCAL_ID");
340 mfocusidCol_.attach(table_, "FOCUS_ID");
341 mmolidCol_.attach(table_, "MOLECULE_ID");
[1819]342
343 //Add auxiliary column for row-based flagging (CAS-1433 Wataru Kawasaki)
344 attachAuxColumnDef(flagrowCol_, "FLAGROW", 0);
345
[455]346}
347
[1819]348template<class T, class T2>
349void Scantable::attachAuxColumnDef(ScalarColumn<T>& col,
350 const String& colName,
351 const T2& defValue)
352{
353 try {
354 col.attach(table_, colName);
355 } catch (TableError& err) {
356 String errMesg = err.getMesg();
357 if (errMesg == "Table column " + colName + " is unknown") {
358 table_.addColumn(ScalarColumnDesc<T>(colName));
359 col.attach(table_, colName);
360 col.fillColumn(static_cast<T>(defValue));
361 } else {
362 throw;
363 }
364 } catch (...) {
365 throw;
366 }
367}
368
369template<class T, class T2>
370void Scantable::attachAuxColumnDef(ArrayColumn<T>& col,
371 const String& colName,
372 const Array<T2>& defValue)
373{
374 try {
375 col.attach(table_, colName);
376 } catch (TableError& err) {
377 String errMesg = err.getMesg();
378 if (errMesg == "Table column " + colName + " is unknown") {
379 table_.addColumn(ArrayColumnDesc<T>(colName));
380 col.attach(table_, colName);
381
382 int size = 0;
383 ArrayIterator<T2>& it = defValue.begin();
384 while (it != defValue.end()) {
385 ++size;
386 ++it;
387 }
388 IPosition ip(1, size);
389 Array<T>& arr(ip);
390 for (int i = 0; i < size; ++i)
391 arr[i] = static_cast<T>(defValue[i]);
392
393 col.fillColumn(arr);
394 } else {
395 throw;
396 }
397 } catch (...) {
398 throw;
399 }
400}
401
[901]402void Scantable::setHeader(const STHeader& sdh)
[206]403{
[18]404 table_.rwKeywordSet().define("nIF", sdh.nif);
405 table_.rwKeywordSet().define("nBeam", sdh.nbeam);
406 table_.rwKeywordSet().define("nPol", sdh.npol);
407 table_.rwKeywordSet().define("nChan", sdh.nchan);
408 table_.rwKeywordSet().define("Observer", sdh.observer);
409 table_.rwKeywordSet().define("Project", sdh.project);
410 table_.rwKeywordSet().define("Obstype", sdh.obstype);
411 table_.rwKeywordSet().define("AntennaName", sdh.antennaname);
412 table_.rwKeywordSet().define("AntennaPosition", sdh.antennaposition);
413 table_.rwKeywordSet().define("Equinox", sdh.equinox);
414 table_.rwKeywordSet().define("FreqRefFrame", sdh.freqref);
415 table_.rwKeywordSet().define("FreqRefVal", sdh.reffreq);
416 table_.rwKeywordSet().define("Bandwidth", sdh.bandwidth);
417 table_.rwKeywordSet().define("UTC", sdh.utc);
[206]418 table_.rwKeywordSet().define("FluxUnit", sdh.fluxunit);
419 table_.rwKeywordSet().define("Epoch", sdh.epoch);
[905]420 table_.rwKeywordSet().define("POLTYPE", sdh.poltype);
[50]421}
[21]422
[901]423STHeader Scantable::getHeader() const
[206]424{
[901]425 STHeader sdh;
[21]426 table_.keywordSet().get("nBeam",sdh.nbeam);
427 table_.keywordSet().get("nIF",sdh.nif);
428 table_.keywordSet().get("nPol",sdh.npol);
429 table_.keywordSet().get("nChan",sdh.nchan);
430 table_.keywordSet().get("Observer", sdh.observer);
431 table_.keywordSet().get("Project", sdh.project);
432 table_.keywordSet().get("Obstype", sdh.obstype);
433 table_.keywordSet().get("AntennaName", sdh.antennaname);
434 table_.keywordSet().get("AntennaPosition", sdh.antennaposition);
435 table_.keywordSet().get("Equinox", sdh.equinox);
436 table_.keywordSet().get("FreqRefFrame", sdh.freqref);
437 table_.keywordSet().get("FreqRefVal", sdh.reffreq);
438 table_.keywordSet().get("Bandwidth", sdh.bandwidth);
439 table_.keywordSet().get("UTC", sdh.utc);
[206]440 table_.keywordSet().get("FluxUnit", sdh.fluxunit);
441 table_.keywordSet().get("Epoch", sdh.epoch);
[905]442 table_.keywordSet().get("POLTYPE", sdh.poltype);
[21]443 return sdh;
[18]444}
[805]445
[1360]446void Scantable::setSourceType( int stype )
[1068]447{
448 if ( stype < 0 || stype > 1 )
449 throw(AipsError("Illegal sourcetype."));
450 TableVector<Int> tabvec(table_, "SRCTYPE");
451 tabvec = Int(stype);
452}
453
[845]454bool Scantable::conformant( const Scantable& other )
455{
456 return this->getHeader().conformant(other.getHeader());
457}
458
459
[50]460
[805]461std::string Scantable::formatSec(Double x) const
[206]462{
[105]463 Double xcop = x;
464 MVTime mvt(xcop/24./3600.); // make days
[365]465
[105]466 if (x < 59.95)
[281]467 return String(" ") + mvt.string(MVTime::TIME_CLEAN_NO_HM, 7)+"s";
[745]468 else if (x < 3599.95)
[281]469 return String(" ") + mvt.string(MVTime::TIME_CLEAN_NO_H,7)+" ";
470 else {
471 ostringstream oss;
472 oss << setw(2) << std::right << setprecision(1) << mvt.hour();
473 oss << ":" << mvt.string(MVTime::TIME_CLEAN_NO_H,7) << " ";
474 return String(oss);
[745]475 }
[105]476};
477
[805]478std::string Scantable::formatDirection(const MDirection& md) const
[281]479{
480 Vector<Double> t = md.getAngle(Unit(String("rad"))).getValue();
481 Int prec = 7;
482
[2575]483 String ref = md.getRefString();
[281]484 MVAngle mvLon(t[0]);
485 String sLon = mvLon.string(MVAngle::TIME,prec);
[987]486 uInt tp = md.getRef().getType();
487 if (tp == MDirection::GALACTIC ||
488 tp == MDirection::SUPERGAL ) {
489 sLon = mvLon(0.0).string(MVAngle::ANGLE_CLEAN,prec);
490 }
[281]491 MVAngle mvLat(t[1]);
492 String sLat = mvLat.string(MVAngle::ANGLE+MVAngle::DIG2,prec);
[2575]493 return ref + String(" ") + sLon + String(" ") + sLat;
[281]494}
495
496
[805]497std::string Scantable::getFluxUnit() const
[206]498{
[847]499 return table_.keywordSet().asString("FluxUnit");
[206]500}
501
[805]502void Scantable::setFluxUnit(const std::string& unit)
[218]503{
504 String tmp(unit);
505 Unit tU(tmp);
506 if (tU==Unit("K") || tU==Unit("Jy")) {
507 table_.rwKeywordSet().define(String("FluxUnit"), tmp);
508 } else {
509 throw AipsError("Illegal unit - must be compatible with Jy or K");
510 }
511}
512
[805]513void Scantable::setInstrument(const std::string& name)
[236]514{
[805]515 bool throwIt = true;
[996]516 // create an Instrument to see if this is valid
517 STAttr::convertInstrument(name, throwIt);
[236]518 String nameU(name);
519 nameU.upcase();
520 table_.rwKeywordSet().define(String("AntennaName"), nameU);
521}
522
[1189]523void Scantable::setFeedType(const std::string& feedtype)
524{
525 if ( Scantable::factories_.find(feedtype) == Scantable::factories_.end() ) {
526 std::string msg = "Illegal feed type "+ feedtype;
527 throw(casa::AipsError(msg));
528 }
529 table_.rwKeywordSet().define(String("POLTYPE"), feedtype);
530}
531
[1743]532MPosition Scantable::getAntennaPosition() const
[805]533{
534 Vector<Double> antpos;
535 table_.keywordSet().get("AntennaPosition", antpos);
536 MVPosition mvpos(antpos(0),antpos(1),antpos(2));
537 return MPosition(mvpos);
538}
[281]539
[805]540void Scantable::makePersistent(const std::string& filename)
541{
542 String inname(filename);
543 Path path(inname);
[1111]544 /// @todo reindex SCANNO, recompute nbeam, nif, npol
[805]545 inname = path.expandedName();
[2030]546 // 2011/03/04 TN
547 // We can comment out this workaround since the essential bug is
548 // fixed in casacore (r20889 in google code).
549 table_.deepCopy(inname, Table::New);
550// // WORKAROUND !!! for Table bug
551// // Remove when fixed in casacore
552// if ( table_.tableType() == Table::Memory && !selector_.empty() ) {
553// Table tab = table_.copyToMemoryTable(generateName());
554// tab.deepCopy(inname, Table::New);
555// tab.markForDelete();
556//
557// } else {
558// table_.deepCopy(inname, Table::New);
559// }
[805]560}
561
[837]562int Scantable::nbeam( int scanno ) const
[805]563{
564 if ( scanno < 0 ) {
565 Int n;
566 table_.keywordSet().get("nBeam",n);
567 return int(n);
[105]568 } else {
[805]569 // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
[888]570 Table t = table_(table_.col("SCANNO") == scanno);
571 ROTableRow row(t);
572 const TableRecord& rec = row.get(0);
573 Table subt = t( t.col("IFNO") == Int(rec.asuInt("IFNO"))
574 && t.col("POLNO") == Int(rec.asuInt("POLNO"))
575 && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
576 ROTableVector<uInt> v(subt, "BEAMNO");
[805]577 return int(v.nelements());
[105]578 }
[805]579 return 0;
580}
[455]581
[837]582int Scantable::nif( int scanno ) const
[805]583{
584 if ( scanno < 0 ) {
585 Int n;
586 table_.keywordSet().get("nIF",n);
587 return int(n);
588 } else {
589 // take the first POLNO,BEAMNO,CYCLENO as nbeam shouldn't vary with these
[888]590 Table t = table_(table_.col("SCANNO") == scanno);
591 ROTableRow row(t);
592 const TableRecord& rec = row.get(0);
593 Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
594 && t.col("POLNO") == Int(rec.asuInt("POLNO"))
595 && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
596 if ( subt.nrow() == 0 ) return 0;
597 ROTableVector<uInt> v(subt, "IFNO");
[805]598 return int(v.nelements());
[2]599 }
[805]600 return 0;
601}
[321]602
[837]603int Scantable::npol( int scanno ) const
[805]604{
605 if ( scanno < 0 ) {
606 Int n;
607 table_.keywordSet().get("nPol",n);
608 return n;
609 } else {
610 // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
[888]611 Table t = table_(table_.col("SCANNO") == scanno);
612 ROTableRow row(t);
613 const TableRecord& rec = row.get(0);
614 Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
615 && t.col("IFNO") == Int(rec.asuInt("IFNO"))
616 && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
617 if ( subt.nrow() == 0 ) return 0;
618 ROTableVector<uInt> v(subt, "POLNO");
[805]619 return int(v.nelements());
[321]620 }
[805]621 return 0;
[2]622}
[805]623
[845]624int Scantable::ncycle( int scanno ) const
[206]625{
[805]626 if ( scanno < 0 ) {
[837]627 Block<String> cols(2);
628 cols[0] = "SCANNO";
629 cols[1] = "CYCLENO";
630 TableIterator it(table_, cols);
631 int n = 0;
632 while ( !it.pastEnd() ) {
633 ++n;
[902]634 ++it;
[837]635 }
636 return n;
[805]637 } else {
[888]638 Table t = table_(table_.col("SCANNO") == scanno);
639 ROTableRow row(t);
640 const TableRecord& rec = row.get(0);
641 Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
642 && t.col("POLNO") == Int(rec.asuInt("POLNO"))
643 && t.col("IFNO") == Int(rec.asuInt("IFNO")) );
644 if ( subt.nrow() == 0 ) return 0;
645 return int(subt.nrow());
[805]646 }
647 return 0;
[18]648}
[455]649
650
[845]651int Scantable::nrow( int scanno ) const
[805]652{
[845]653 return int(table_.nrow());
654}
655
656int Scantable::nchan( int ifno ) const
657{
658 if ( ifno < 0 ) {
[805]659 Int n;
660 table_.keywordSet().get("nChan",n);
661 return int(n);
662 } else {
[1360]663 // take the first SCANNO,POLNO,BEAMNO,CYCLENO as nbeam shouldn't
664 // vary with these
[2244]665 Table t = table_(table_.col("IFNO") == ifno, 1);
[888]666 if ( t.nrow() == 0 ) return 0;
667 ROArrayColumn<Float> v(t, "SPECTRA");
[923]668 return v.shape(0)(0);
[805]669 }
670 return 0;
[18]671}
[455]672
[1111]673int Scantable::nscan() const {
674 Vector<uInt> scannos(scanCol_.getColumn());
[1148]675 uInt nout = genSort( scannos, Sort::Ascending,
[1111]676 Sort::QuickSort|Sort::NoDuplicates );
677 return int(nout);
678}
679
[923]680int Scantable::getChannels(int whichrow) const
681{
682 return specCol_.shape(whichrow)(0);
683}
[847]684
685int Scantable::getBeam(int whichrow) const
686{
687 return beamCol_(whichrow);
688}
689
[1694]690std::vector<uint> Scantable::getNumbers(const ScalarColumn<uInt>& col) const
[1111]691{
692 Vector<uInt> nos(col.getColumn());
[1148]693 uInt n = genSort( nos, Sort::Ascending, Sort::QuickSort|Sort::NoDuplicates );
694 nos.resize(n, True);
[1111]695 std::vector<uint> stlout;
696 nos.tovector(stlout);
697 return stlout;
698}
699
[847]700int Scantable::getIF(int whichrow) const
701{
702 return ifCol_(whichrow);
703}
704
705int Scantable::getPol(int whichrow) const
706{
707 return polCol_(whichrow);
708}
709
[805]710std::string Scantable::formatTime(const MEpoch& me, bool showdate) const
711{
[1947]712 return formatTime(me, showdate, 0);
713}
714
715std::string Scantable::formatTime(const MEpoch& me, bool showdate, uInt prec) const
716{
[805]717 MVTime mvt(me.getValue());
718 if (showdate)
[1947]719 //mvt.setFormat(MVTime::YMD);
720 mvt.setFormat(MVTime::YMD, prec);
[805]721 else
[1947]722 //mvt.setFormat(MVTime::TIME);
723 mvt.setFormat(MVTime::TIME, prec);
[805]724 ostringstream oss;
725 oss << mvt;
726 return String(oss);
727}
[488]728
[805]729void Scantable::calculateAZEL()
[2658]730{
731 LogIO os( LogOrigin( "Scantable", "calculateAZEL()", WHERE ) ) ;
[805]732 MPosition mp = getAntennaPosition();
733 MEpoch::ROScalarColumn timeCol(table_, "TIME");
734 ostringstream oss;
[2658]735 oss << mp;
736 os << "Computed azimuth/elevation using " << endl
737 << String(oss) << endl;
[996]738 for (Int i=0; i<nrow(); ++i) {
[805]739 MEpoch me = timeCol(i);
[987]740 MDirection md = getDirection(i);
[2658]741 os << " Time: " << formatTime(me,False)
742 << " Direction: " << formatDirection(md)
[805]743 << endl << " => ";
744 MeasFrame frame(mp, me);
745 Vector<Double> azel =
746 MDirection::Convert(md, MDirection::Ref(MDirection::AZEL,
747 frame)
748 )().getAngle("rad").getValue();
[923]749 azCol_.put(i,Float(azel[0]));
750 elCol_.put(i,Float(azel[1]));
[2658]751 os << "azel: " << azel[0]/C::pi*180.0 << " "
752 << azel[1]/C::pi*180.0 << " (deg)" << LogIO::POST;
[16]753 }
[805]754}
[89]755
[1819]756void Scantable::clip(const Float uthres, const Float dthres, bool clipoutside, bool unflag)
757{
758 for (uInt i=0; i<table_.nrow(); ++i) {
759 Vector<uChar> flgs = flagsCol_(i);
760 srchChannelsToClip(i, uthres, dthres, clipoutside, unflag, flgs);
761 flagsCol_.put(i, flgs);
762 }
763}
764
765std::vector<bool> Scantable::getClipMask(int whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag)
766{
767 Vector<uChar> flags;
768 flagsCol_.get(uInt(whichrow), flags);
769 srchChannelsToClip(uInt(whichrow), uthres, dthres, clipoutside, unflag, flags);
770 Vector<Bool> bflag(flags.shape());
771 convertArray(bflag, flags);
772 //bflag = !bflag;
773
774 std::vector<bool> mask;
775 bflag.tovector(mask);
776 return mask;
777}
778
779void Scantable::srchChannelsToClip(uInt whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag,
780 Vector<uChar> flgs)
781{
782 Vector<Float> spcs = specCol_(whichrow);
[2348]783 uInt nchannel = spcs.nelements();
[1819]784 if (spcs.nelements() != nchannel) {
785 throw(AipsError("Data has incorrect number of channels"));
786 }
787 uChar userflag = 1 << 7;
788 if (unflag) {
789 userflag = 0 << 7;
790 }
791 if (clipoutside) {
792 for (uInt j = 0; j < nchannel; ++j) {
793 Float spc = spcs(j);
794 if ((spc >= uthres) || (spc <= dthres)) {
795 flgs(j) = userflag;
796 }
797 }
798 } else {
799 for (uInt j = 0; j < nchannel; ++j) {
800 Float spc = spcs(j);
801 if ((spc < uthres) && (spc > dthres)) {
802 flgs(j) = userflag;
803 }
804 }
805 }
806}
807
[1994]808
809void Scantable::flag( int whichrow, const std::vector<bool>& msk, bool unflag ) {
[1333]810 std::vector<bool>::const_iterator it;
811 uInt ntrue = 0;
[1994]812 if (whichrow >= int(table_.nrow()) ) {
813 throw(AipsError("Invalid row number"));
814 }
[1333]815 for (it = msk.begin(); it != msk.end(); ++it) {
816 if ( *it ) {
817 ntrue++;
818 }
819 }
[1994]820 //if ( selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
821 if ( whichrow == -1 && !unflag && selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
[1000]822 throw(AipsError("Trying to flag whole scantable."));
[1994]823 uChar userflag = 1 << 7;
824 if ( unflag ) {
825 userflag = 0 << 7;
826 }
827 if (whichrow > -1 ) {
828 applyChanFlag(uInt(whichrow), msk, userflag);
829 } else {
[1000]830 for ( uInt i=0; i<table_.nrow(); ++i) {
[1994]831 applyChanFlag(i, msk, userflag);
[1000]832 }
[1994]833 }
834}
835
836void Scantable::applyChanFlag( uInt whichrow, const std::vector<bool>& msk, uChar flagval )
837{
838 if (whichrow >= table_.nrow() ) {
839 throw( casa::indexError<int>( whichrow, "asap::Scantable::applyChanFlag: Invalid row number" ) );
840 }
841 Vector<uChar> flgs = flagsCol_(whichrow);
842 if ( msk.size() == 0 ) {
843 flgs = flagval;
844 flagsCol_.put(whichrow, flgs);
[1000]845 return;
846 }
[2348]847 if ( int(msk.size()) != nchan( getIF(whichrow) ) ) {
[1000]848 throw(AipsError("Mask has incorrect number of channels."));
849 }
[1994]850 if ( flgs.nelements() != msk.size() ) {
851 throw(AipsError("Mask has incorrect number of channels."
852 " Probably varying with IF. Please flag per IF"));
853 }
854 std::vector<bool>::const_iterator it;
855 uInt j = 0;
856 for (it = msk.begin(); it != msk.end(); ++it) {
857 if ( *it ) {
858 flgs(j) = flagval;
[1000]859 }
[1994]860 ++j;
[1000]861 }
[1994]862 flagsCol_.put(whichrow, flgs);
[865]863}
864
[1819]865void Scantable::flagRow(const std::vector<uInt>& rows, bool unflag)
866{
[2683]867 if (selector_.empty() && (rows.size() == table_.nrow()) && !unflag)
[1819]868 throw(AipsError("Trying to flag whole scantable."));
869
870 uInt rowflag = (unflag ? 0 : 1);
871 std::vector<uInt>::const_iterator it;
872 for (it = rows.begin(); it != rows.end(); ++it)
873 flagrowCol_.put(*it, rowflag);
874}
875
[805]876std::vector<bool> Scantable::getMask(int whichrow) const
877{
878 Vector<uChar> flags;
879 flagsCol_.get(uInt(whichrow), flags);
880 Vector<Bool> bflag(flags.shape());
881 convertArray(bflag, flags);
882 bflag = !bflag;
883 std::vector<bool> mask;
884 bflag.tovector(mask);
885 return mask;
886}
[89]887
[896]888std::vector<float> Scantable::getSpectrum( int whichrow,
[902]889 const std::string& poltype ) const
[805]890{
[2658]891 LogIO os( LogOrigin( "Scantable", "getSpectrum()", WHERE ) ) ;
892
[905]893 String ptype = poltype;
894 if (poltype == "" ) ptype = getPolType();
[902]895 if ( whichrow < 0 || whichrow >= nrow() )
896 throw(AipsError("Illegal row number."));
[896]897 std::vector<float> out;
[805]898 Vector<Float> arr;
[896]899 uInt requestedpol = polCol_(whichrow);
900 String basetype = getPolType();
[905]901 if ( ptype == basetype ) {
[896]902 specCol_.get(whichrow, arr);
903 } else {
[1598]904 CountedPtr<STPol> stpol(STPol::getPolClass(Scantable::factories_,
[1586]905 basetype));
[1334]906 uInt row = uInt(whichrow);
907 stpol->setSpectra(getPolMatrix(row));
[2047]908 Float fang,fhand;
[1586]909 fang = focusTable_.getTotalAngle(mfocusidCol_(row));
[1334]910 fhand = focusTable_.getFeedHand(mfocusidCol_(row));
[1586]911 stpol->setPhaseCorrections(fang, fhand);
[1334]912 arr = stpol->getSpectrum(requestedpol, ptype);
[896]913 }
[902]914 if ( arr.nelements() == 0 )
[2658]915
916 os << "Not enough polarisations present to do the conversion."
917 << LogIO::POST;
[805]918 arr.tovector(out);
919 return out;
[89]920}
[212]921
[1360]922void Scantable::setSpectrum( const std::vector<float>& spec,
[884]923 int whichrow )
924{
925 Vector<Float> spectrum(spec);
926 Vector<Float> arr;
927 specCol_.get(whichrow, arr);
928 if ( spectrum.nelements() != arr.nelements() )
[896]929 throw AipsError("The spectrum has incorrect number of channels.");
[884]930 specCol_.put(whichrow, spectrum);
931}
932
933
[805]934String Scantable::generateName()
[745]935{
[805]936 return (File::newUniqueName("./","temp")).baseName();
[212]937}
938
[805]939const casa::Table& Scantable::table( ) const
[212]940{
[805]941 return table_;
[212]942}
943
[805]944casa::Table& Scantable::table( )
[386]945{
[805]946 return table_;
[386]947}
948
[896]949std::string Scantable::getPolType() const
950{
951 return table_.keywordSet().asString("POLTYPE");
952}
953
[805]954void Scantable::unsetSelection()
[380]955{
[805]956 table_ = originalTable_;
[847]957 attach();
[805]958 selector_.reset();
[380]959}
[386]960
[805]961void Scantable::setSelection( const STSelector& selection )
[430]962{
[805]963 Table tab = const_cast<STSelector&>(selection).apply(originalTable_);
964 if ( tab.nrow() == 0 ) {
965 throw(AipsError("Selection contains no data. Not applying it."));
966 }
967 table_ = tab;
[847]968 attach();
[2084]969// tab.rwKeywordSet().define("nBeam",(Int)(getBeamNos().size())) ;
970// vector<uint> selectedIFs = getIFNos() ;
971// Int newnIF = selectedIFs.size() ;
972// tab.rwKeywordSet().define("nIF",newnIF) ;
973// if ( newnIF != 0 ) {
974// Int newnChan = 0 ;
975// for ( Int i = 0 ; i < newnIF ; i++ ) {
976// Int nChan = nchan( selectedIFs[i] ) ;
977// if ( newnChan > nChan )
978// newnChan = nChan ;
979// }
980// tab.rwKeywordSet().define("nChan",newnChan) ;
981// }
982// tab.rwKeywordSet().define("nPol",(Int)(getPolNos().size())) ;
[805]983 selector_ = selection;
[430]984}
985
[2111]986
[2163]987std::string Scantable::headerSummary()
[447]988{
[805]989 // Format header info
[2111]990// STHeader sdh;
991// sdh = getHeader();
992// sdh.print();
[805]993 ostringstream oss;
994 oss.flags(std::ios_base::left);
[2290]995 String tmp;
996 // Project
997 table_.keywordSet().get("Project", tmp);
998 oss << setw(15) << "Project:" << tmp << endl;
999 // Observation date
1000 oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1001 // Observer
1002 oss << setw(15) << "Observer:"
1003 << table_.keywordSet().asString("Observer") << endl;
1004 // Antenna Name
1005 table_.keywordSet().get("AntennaName", tmp);
1006 oss << setw(15) << "Antenna Name:" << tmp << endl;
1007 // Obs type
1008 table_.keywordSet().get("Obstype", tmp);
1009 // Records (nrow)
1010 oss << setw(15) << "Data Records:" << table_.nrow() << " rows" << endl;
1011 oss << setw(15) << "Obs. Type:" << tmp << endl;
1012 // Beams, IFs, Polarizations, and Channels
[805]1013 oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1014 << setw(15) << "IFs:" << setw(4) << nif() << endl
[896]1015 << setw(15) << "Polarisations:" << setw(4) << npol()
1016 << "(" << getPolType() << ")" << endl
[1694]1017 << setw(15) << "Channels:" << nchan() << endl;
[2290]1018 // Flux unit
1019 table_.keywordSet().get("FluxUnit", tmp);
1020 oss << setw(15) << "Flux Unit:" << tmp << endl;
1021 // Abscissa Unit
1022 oss << setw(15) << "Abscissa:" << getAbcissaLabel(0) << endl;
1023 // Selection
1024 oss << selector_.print() << endl;
1025
1026 return String(oss);
1027}
1028
1029void Scantable::summary( const std::string& filename )
1030{
1031 ostringstream oss;
1032 ofstream ofs;
1033 LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1034
1035 if (filename != "")
1036 ofs.open( filename.c_str(), ios::out );
1037
1038 oss << endl;
1039 oss << asap::SEPERATOR << endl;
1040 oss << " Scan Table Summary" << endl;
1041 oss << asap::SEPERATOR << endl;
1042
1043 // Format header info
1044 oss << headerSummary();
1045 oss << endl;
1046
1047 if (table_.nrow() <= 0){
1048 oss << asap::SEPERATOR << endl;
1049 oss << "The MAIN table is empty: there are no data!!!" << endl;
1050 oss << asap::SEPERATOR << endl;
1051
1052 ols << String(oss) << LogIO::POST;
1053 if (ofs) {
1054 ofs << String(oss) << flush;
1055 ofs.close();
1056 }
1057 return;
1058 }
1059
1060
1061
1062 // main table
1063 String dirtype = "Position ("
1064 + getDirectionRefString()
1065 + ")";
1066 oss.flags(std::ios_base::left);
1067 oss << setw(5) << "Scan"
1068 << setw(15) << "Source"
1069 << setw(35) << "Time range"
1070 << setw(2) << "" << setw(7) << "Int[s]"
1071 << setw(7) << "Record"
1072 << setw(8) << "SrcType"
1073 << setw(8) << "FreqIDs"
1074 << setw(7) << "MolIDs" << endl;
1075 oss << setw(7)<< "" << setw(6) << "Beam"
1076 << setw(23) << dirtype << endl;
1077
1078 oss << asap::SEPERATOR << endl;
1079
1080 // Flush summary and clear up the string
1081 ols << String(oss) << LogIO::POST;
1082 if (ofs) ofs << String(oss) << flush;
1083 oss.str("");
1084 oss.clear();
1085
1086
1087 // Get Freq_ID map
1088 ROScalarColumn<uInt> ftabIds(frequencies().table(), "ID");
1089 Int nfid = ftabIds.nrow();
1090 if (nfid <= 0){
1091 oss << "FREQUENCIES subtable is empty: there are no data!!!" << endl;
1092 oss << asap::SEPERATOR << endl;
1093
1094 ols << String(oss) << LogIO::POST;
1095 if (ofs) {
1096 ofs << String(oss) << flush;
1097 ofs.close();
1098 }
1099 return;
1100 }
1101 // Storages of overall IFNO, POLNO, and nchan per FREQ_ID
1102 // the orders are identical to ID in FREQ subtable
1103 Block< Vector<uInt> > ifNos(nfid), polNos(nfid);
1104 Vector<Int> fIdchans(nfid,-1);
1105 map<uInt, Int> fidMap; // (FREQ_ID, row # in FREQ subtable) pair
1106 for (Int i=0; i < nfid; i++){
1107 // fidMap[freqId] returns row number in FREQ subtable
1108 fidMap.insert(pair<uInt, Int>(ftabIds(i),i));
1109 ifNos[i] = Vector<uInt>();
1110 polNos[i] = Vector<uInt>();
1111 }
1112
1113 TableIterator iter(table_, "SCANNO");
1114
1115 // Vars for keeping track of time, freqids, molIds in a SCANNO
1116 Vector<uInt> freqids;
1117 Vector<uInt> molids;
1118 Vector<uInt> beamids(1,0);
1119 Vector<MDirection> beamDirs;
1120 Vector<Int> stypeids(1,0);
1121 Vector<String> stypestrs;
1122 Int nfreq(1);
1123 Int nmol(1);
1124 uInt nbeam(1);
1125 uInt nstype(1);
1126
1127 Double btime(0.0), etime(0.0);
1128 Double meanIntTim(0.0);
1129
1130 uInt currFreqId(0), ftabRow(0);
1131 Int iflen(0), pollen(0);
1132
1133 while (!iter.pastEnd()) {
1134 Table subt = iter.table();
1135 uInt snrow = subt.nrow();
1136 ROTableRow row(subt);
1137 const TableRecord& rec = row.get(0);
1138
1139 // relevant columns
1140 ROScalarColumn<Double> mjdCol(subt,"TIME");
1141 ROScalarColumn<Double> intervalCol(subt,"INTERVAL");
1142 MDirection::ROScalarColumn dirCol(subt,"DIRECTION");
1143
1144 ScalarColumn<uInt> freqIdCol(subt,"FREQ_ID");
1145 ScalarColumn<uInt> molIdCol(subt,"MOLECULE_ID");
1146 ROScalarColumn<uInt> beamCol(subt,"BEAMNO");
1147 ROScalarColumn<Int> stypeCol(subt,"SRCTYPE");
1148
1149 ROScalarColumn<uInt> ifNoCol(subt,"IFNO");
1150 ROScalarColumn<uInt> polNoCol(subt,"POLNO");
1151
1152
1153 // Times
1154 meanIntTim = sum(intervalCol.getColumn()) / (double) snrow;
1155 minMax(btime, etime, mjdCol.getColumn());
1156 etime += meanIntTim/C::day;
1157
1158 // MOLECULE_ID and FREQ_ID
1159 molids = getNumbers(molIdCol);
1160 molids.shape(nmol);
1161
1162 freqids = getNumbers(freqIdCol);
1163 freqids.shape(nfreq);
1164
1165 // Add first beamid, and srcNames
1166 beamids.resize(1,False);
1167 beamDirs.resize(1,False);
1168 beamids(0)=beamCol(0);
1169 beamDirs(0)=dirCol(0);
1170 nbeam = 1;
1171
1172 stypeids.resize(1,False);
1173 stypeids(0)=stypeCol(0);
1174 nstype = 1;
1175
1176 // Global listings of nchan/IFNO/POLNO per FREQ_ID
1177 currFreqId=freqIdCol(0);
1178 ftabRow = fidMap[currFreqId];
1179 // Assumes an identical number of channels per FREQ_ID
1180 if (fIdchans(ftabRow) < 0 ) {
1181 RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1182 fIdchans(ftabRow)=(*spec).shape()(0);
1183 }
1184 // Should keep ifNos and polNos form the previous SCANNO
1185 if ( !anyEQ(ifNos[ftabRow],ifNoCol(0)) ) {
1186 ifNos[ftabRow].shape(iflen);
1187 iflen++;
1188 ifNos[ftabRow].resize(iflen,True);
1189 ifNos[ftabRow](iflen-1) = ifNoCol(0);
1190 }
1191 if ( !anyEQ(polNos[ftabRow],polNoCol(0)) ) {
1192 polNos[ftabRow].shape(pollen);
1193 pollen++;
1194 polNos[ftabRow].resize(pollen,True);
1195 polNos[ftabRow](pollen-1) = polNoCol(0);
1196 }
1197
1198 for (uInt i=1; i < snrow; i++){
1199 // Need to list BEAMNO and DIRECTION in the same order
1200 if ( !anyEQ(beamids,beamCol(i)) ) {
1201 nbeam++;
1202 beamids.resize(nbeam,True);
1203 beamids(nbeam-1)=beamCol(i);
1204 beamDirs.resize(nbeam,True);
1205 beamDirs(nbeam-1)=dirCol(i);
1206 }
1207
1208 // SRCTYPE is Int (getNumber takes only uInt)
1209 if ( !anyEQ(stypeids,stypeCol(i)) ) {
1210 nstype++;
1211 stypeids.resize(nstype,True);
1212 stypeids(nstype-1)=stypeCol(i);
1213 }
1214
1215 // Global listings of nchan/IFNO/POLNO per FREQ_ID
1216 currFreqId=freqIdCol(i);
1217 ftabRow = fidMap[currFreqId];
1218 if (fIdchans(ftabRow) < 0 ) {
1219 const TableRecord& rec = row.get(i);
1220 RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1221 fIdchans(ftabRow) = (*spec).shape()(0);
1222 }
1223 if ( !anyEQ(ifNos[ftabRow],ifNoCol(i)) ) {
1224 ifNos[ftabRow].shape(iflen);
1225 iflen++;
1226 ifNos[ftabRow].resize(iflen,True);
1227 ifNos[ftabRow](iflen-1) = ifNoCol(i);
1228 }
1229 if ( !anyEQ(polNos[ftabRow],polNoCol(i)) ) {
1230 polNos[ftabRow].shape(pollen);
1231 pollen++;
1232 polNos[ftabRow].resize(pollen,True);
1233 polNos[ftabRow](pollen-1) = polNoCol(i);
1234 }
1235 } // end of row iteration
1236
1237 stypestrs.resize(nstype,False);
1238 for (uInt j=0; j < nstype; j++)
1239 stypestrs(j) = SrcType::getName(stypeids(j));
1240
1241 // Format Scan summary
1242 oss << setw(4) << std::right << rec.asuInt("SCANNO")
1243 << std::left << setw(1) << ""
1244 << setw(15) << rec.asString("SRCNAME")
1245 << setw(21) << MVTime(btime).string(MVTime::YMD,7)
1246 << setw(3) << " - " << MVTime(etime).string(MVTime::TIME,7)
1247 << setw(3) << "" << setw(6) << meanIntTim << setw(1) << ""
1248 << std::right << setw(5) << snrow << setw(2) << ""
1249 << std::left << stypestrs << setw(1) << ""
1250 << freqids << setw(1) << ""
1251 << molids << endl;
1252 // Format Beam summary
1253 for (uInt j=0; j < nbeam; j++) {
1254 oss << setw(7) << "" << setw(6) << beamids(j) << setw(1) << ""
1255 << formatDirection(beamDirs(j)) << endl;
1256 }
1257 // Flush summary every scan and clear up the string
1258 ols << String(oss) << LogIO::POST;
1259 if (ofs) ofs << String(oss) << flush;
1260 oss.str("");
1261 oss.clear();
1262
1263 ++iter;
1264 } // end of scan iteration
1265 oss << asap::SEPERATOR << endl;
1266
1267 // List FRECUENCIES Table (using STFrequencies.print may be slow)
1268 oss << "FREQUENCIES: " << nfreq << endl;
1269 oss << std::right << setw(5) << "ID" << setw(2) << ""
1270 << std::left << setw(5) << "IFNO" << setw(2) << ""
1271 << setw(8) << "Frame"
1272 << setw(16) << "RefVal"
1273 << setw(7) << "RefPix"
1274 << setw(15) << "Increment"
1275 << setw(9) << "Channels"
1276 << setw(6) << "POLNOs" << endl;
1277 Int tmplen;
1278 for (Int i=0; i < nfid; i++){
1279 // List row=i of FREQUENCIES subtable
1280 ifNos[i].shape(tmplen);
[2531]1281 if (tmplen >= 1) {
[2290]1282 oss << std::right << setw(5) << ftabIds(i) << setw(2) << ""
1283 << setw(3) << ifNos[i](0) << setw(1) << ""
1284 << std::left << setw(46) << frequencies().print(ftabIds(i))
1285 << setw(2) << ""
1286 << std::right << setw(8) << fIdchans[i] << setw(2) << ""
[2531]1287 << std::left << polNos[i];
1288 if (tmplen > 1) {
1289 oss << " (" << tmplen << " chains)";
1290 }
1291 oss << endl;
[2290]1292 }
[2531]1293
[2290]1294 }
1295 oss << asap::SEPERATOR << endl;
1296
1297 // List MOLECULES Table (currently lists all rows)
1298 oss << "MOLECULES: " << endl;
1299 if (molecules().nrow() <= 0) {
1300 oss << " MOLECULES subtable is empty: there are no data" << endl;
1301 } else {
1302 ROTableRow row(molecules().table());
1303 oss << std::right << setw(5) << "ID"
1304 << std::left << setw(3) << ""
1305 << setw(18) << "RestFreq"
1306 << setw(15) << "Name" << endl;
1307 for (Int i=0; i < molecules().nrow(); i++){
1308 const TableRecord& rec=row.get(i);
1309 oss << std::right << setw(5) << rec.asuInt("ID")
1310 << std::left << setw(3) << ""
1311 << rec.asArrayDouble("RESTFREQUENCY") << setw(1) << ""
1312 << rec.asArrayString("NAME") << endl;
1313 }
1314 }
1315 oss << asap::SEPERATOR << endl;
1316 ols << String(oss) << LogIO::POST;
1317 if (ofs) {
1318 ofs << String(oss) << flush;
1319 ofs.close();
1320 }
1321 // return String(oss);
1322}
1323
1324
1325std::string Scantable::oldheaderSummary()
1326{
1327 // Format header info
1328// STHeader sdh;
1329// sdh = getHeader();
1330// sdh.print();
1331 ostringstream oss;
1332 oss.flags(std::ios_base::left);
1333 oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1334 << setw(15) << "IFs:" << setw(4) << nif() << endl
1335 << setw(15) << "Polarisations:" << setw(4) << npol()
1336 << "(" << getPolType() << ")" << endl
1337 << setw(15) << "Channels:" << nchan() << endl;
[805]1338 String tmp;
[860]1339 oss << setw(15) << "Observer:"
1340 << table_.keywordSet().asString("Observer") << endl;
[805]1341 oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1342 table_.keywordSet().get("Project", tmp);
1343 oss << setw(15) << "Project:" << tmp << endl;
1344 table_.keywordSet().get("Obstype", tmp);
1345 oss << setw(15) << "Obs. Type:" << tmp << endl;
1346 table_.keywordSet().get("AntennaName", tmp);
1347 oss << setw(15) << "Antenna Name:" << tmp << endl;
1348 table_.keywordSet().get("FluxUnit", tmp);
1349 oss << setw(15) << "Flux Unit:" << tmp << endl;
[1819]1350 int nid = moleculeTable_.nrow();
1351 Bool firstline = True;
[805]1352 oss << setw(15) << "Rest Freqs:";
[1819]1353 for (int i=0; i<nid; i++) {
[2244]1354 Table t = table_(table_.col("MOLECULE_ID") == i, 1);
[1819]1355 if (t.nrow() > 0) {
1356 Vector<Double> vec(moleculeTable_.getRestFrequency(i));
1357 if (vec.nelements() > 0) {
1358 if (firstline) {
1359 oss << setprecision(10) << vec << " [Hz]" << endl;
1360 firstline=False;
1361 }
1362 else{
1363 oss << setw(15)<<" " << setprecision(10) << vec << " [Hz]" << endl;
1364 }
1365 } else {
1366 oss << "none" << endl;
1367 }
1368 }
[805]1369 }
[941]1370
1371 oss << setw(15) << "Abcissa:" << getAbcissaLabel(0) << endl;
[805]1372 oss << selector_.print() << endl;
[2111]1373 return String(oss);
1374}
1375
[2286]1376 //std::string Scantable::summary( const std::string& filename )
[2290]1377void Scantable::oldsummary( const std::string& filename )
[2111]1378{
1379 ostringstream oss;
[2286]1380 ofstream ofs;
1381 LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1382
1383 if (filename != "")
1384 ofs.open( filename.c_str(), ios::out );
1385
[805]1386 oss << endl;
[2111]1387 oss << asap::SEPERATOR << endl;
1388 oss << " Scan Table Summary" << endl;
1389 oss << asap::SEPERATOR << endl;
1390
1391 // Format header info
[2290]1392 oss << oldheaderSummary();
[2111]1393 oss << endl;
1394
[805]1395 // main table
1396 String dirtype = "Position ("
[987]1397 + getDirectionRefString()
[805]1398 + ")";
[2111]1399 oss.flags(std::ios_base::left);
[941]1400 oss << setw(5) << "Scan" << setw(15) << "Source"
[2005]1401 << setw(10) << "Time" << setw(18) << "Integration"
1402 << setw(15) << "Source Type" << endl;
[941]1403 oss << setw(5) << "" << setw(5) << "Beam" << setw(3) << "" << dirtype << endl;
[1694]1404 oss << setw(10) << "" << setw(3) << "IF" << setw(3) << ""
[805]1405 << setw(8) << "Frame" << setw(16)
[1694]1406 << "RefVal" << setw(10) << "RefPix" << setw(12) << "Increment"
1407 << setw(7) << "Channels"
1408 << endl;
[805]1409 oss << asap::SEPERATOR << endl;
[2286]1410
1411 // Flush summary and clear up the string
1412 ols << String(oss) << LogIO::POST;
1413 if (ofs) ofs << String(oss) << flush;
1414 oss.str("");
1415 oss.clear();
1416
[805]1417 TableIterator iter(table_, "SCANNO");
1418 while (!iter.pastEnd()) {
1419 Table subt = iter.table();
1420 ROTableRow row(subt);
1421 MEpoch::ROScalarColumn timeCol(subt,"TIME");
1422 const TableRecord& rec = row.get(0);
1423 oss << setw(4) << std::right << rec.asuInt("SCANNO")
1424 << std::left << setw(1) << ""
1425 << setw(15) << rec.asString("SRCNAME")
1426 << setw(10) << formatTime(timeCol(0), false);
1427 // count the cycles in the scan
1428 TableIterator cyciter(subt, "CYCLENO");
1429 int nint = 0;
1430 while (!cyciter.pastEnd()) {
1431 ++nint;
1432 ++cyciter;
1433 }
1434 oss << setw(3) << std::right << nint << setw(3) << " x " << std::left
[2005]1435 << setw(11) << formatSec(rec.asFloat("INTERVAL")) << setw(1) << ""
1436 << setw(15) << SrcType::getName(rec.asInt("SRCTYPE")) << endl;
[447]1437
[805]1438 TableIterator biter(subt, "BEAMNO");
1439 while (!biter.pastEnd()) {
1440 Table bsubt = biter.table();
1441 ROTableRow brow(bsubt);
1442 const TableRecord& brec = brow.get(0);
[1000]1443 uInt row0 = bsubt.rowNumbers(table_)[0];
[941]1444 oss << setw(5) << "" << setw(4) << std::right << brec.asuInt("BEAMNO")<< std::left;
[987]1445 oss << setw(4) << "" << formatDirection(getDirection(row0)) << endl;
[805]1446 TableIterator iiter(bsubt, "IFNO");
1447 while (!iiter.pastEnd()) {
1448 Table isubt = iiter.table();
1449 ROTableRow irow(isubt);
1450 const TableRecord& irec = irow.get(0);
[1694]1451 oss << setw(9) << "";
[941]1452 oss << setw(3) << std::right << irec.asuInt("IFNO") << std::left
[1694]1453 << setw(1) << "" << frequencies().print(irec.asuInt("FREQ_ID"))
1454 << setw(3) << "" << nchan(irec.asuInt("IFNO"))
[1375]1455 << endl;
[447]1456
[805]1457 ++iiter;
1458 }
1459 ++biter;
1460 }
[2286]1461 // Flush summary every scan and clear up the string
1462 ols << String(oss) << LogIO::POST;
1463 if (ofs) ofs << String(oss) << flush;
1464 oss.str("");
1465 oss.clear();
1466
[805]1467 ++iter;
[447]1468 }
[2286]1469 oss << asap::SEPERATOR << endl;
1470 ols << String(oss) << LogIO::POST;
1471 if (ofs) {
[2290]1472 ofs << String(oss) << flush;
[2286]1473 ofs.close();
1474 }
1475 // return String(oss);
[447]1476}
1477
[1947]1478// std::string Scantable::getTime(int whichrow, bool showdate) const
1479// {
1480// MEpoch::ROScalarColumn timeCol(table_, "TIME");
1481// MEpoch me;
1482// if (whichrow > -1) {
1483// me = timeCol(uInt(whichrow));
1484// } else {
1485// Double tm;
1486// table_.keywordSet().get("UTC",tm);
1487// me = MEpoch(MVEpoch(tm));
1488// }
1489// return formatTime(me, showdate);
1490// }
1491
1492std::string Scantable::getTime(int whichrow, bool showdate, uInt prec) const
[777]1493{
[805]1494 MEpoch me;
[1947]1495 me = getEpoch(whichrow);
1496 return formatTime(me, showdate, prec);
[777]1497}
[805]1498
[1411]1499MEpoch Scantable::getEpoch(int whichrow) const
1500{
1501 if (whichrow > -1) {
1502 return timeCol_(uInt(whichrow));
1503 } else {
1504 Double tm;
1505 table_.keywordSet().get("UTC",tm);
[1598]1506 return MEpoch(MVEpoch(tm));
[1411]1507 }
1508}
1509
[1068]1510std::string Scantable::getDirectionString(int whichrow) const
1511{
1512 return formatDirection(getDirection(uInt(whichrow)));
1513}
1514
[1598]1515
1516SpectralCoordinate Scantable::getSpectralCoordinate(int whichrow) const {
1517 const MPosition& mp = getAntennaPosition();
1518 const MDirection& md = getDirection(whichrow);
1519 const MEpoch& me = timeCol_(whichrow);
[1819]1520 //Double rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1521 Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
[2346]1522 return freqTable_.getSpectralCoordinate(md, mp, me, rf,
[1598]1523 mfreqidCol_(whichrow));
1524}
1525
[1360]1526std::vector< double > Scantable::getAbcissa( int whichrow ) const
[865]1527{
[1507]1528 if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal row number"));
[865]1529 std::vector<double> stlout;
1530 int nchan = specCol_(whichrow).nelements();
[2346]1531 String us = freqTable_.getUnitString();
[865]1532 if ( us == "" || us == "pixel" || us == "channel" ) {
1533 for (int i=0; i<nchan; ++i) {
1534 stlout.push_back(double(i));
1535 }
1536 return stlout;
1537 }
[1598]1538 SpectralCoordinate spc = getSpectralCoordinate(whichrow);
[865]1539 Vector<Double> pixel(nchan);
1540 Vector<Double> world;
1541 indgen(pixel);
1542 if ( Unit(us) == Unit("Hz") ) {
1543 for ( int i=0; i < nchan; ++i) {
1544 Double world;
1545 spc.toWorld(world, pixel[i]);
1546 stlout.push_back(double(world));
1547 }
1548 } else if ( Unit(us) == Unit("km/s") ) {
1549 Vector<Double> world;
1550 spc.pixelToVelocity(world, pixel);
1551 world.tovector(stlout);
1552 }
1553 return stlout;
1554}
[1360]1555void Scantable::setDirectionRefString( const std::string & refstr )
[987]1556{
1557 MDirection::Types mdt;
1558 if (refstr != "" && !MDirection::getType(mdt, refstr)) {
1559 throw(AipsError("Illegal Direction frame."));
1560 }
1561 if ( refstr == "" ) {
1562 String defaultstr = MDirection::showType(dirCol_.getMeasRef().getType());
1563 table_.rwKeywordSet().define("DIRECTIONREF", defaultstr);
1564 } else {
1565 table_.rwKeywordSet().define("DIRECTIONREF", String(refstr));
1566 }
1567}
[865]1568
[1360]1569std::string Scantable::getDirectionRefString( ) const
[987]1570{
1571 return table_.keywordSet().asString("DIRECTIONREF");
1572}
1573
1574MDirection Scantable::getDirection(int whichrow ) const
1575{
1576 String usertype = table_.keywordSet().asString("DIRECTIONREF");
1577 String type = MDirection::showType(dirCol_.getMeasRef().getType());
1578 if ( usertype != type ) {
1579 MDirection::Types mdt;
1580 if (!MDirection::getType(mdt, usertype)) {
1581 throw(AipsError("Illegal Direction frame."));
1582 }
1583 return dirCol_.convert(uInt(whichrow), mdt);
1584 } else {
1585 return dirCol_(uInt(whichrow));
1586 }
1587}
1588
[847]1589std::string Scantable::getAbcissaLabel( int whichrow ) const
1590{
[996]1591 if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal ro number"));
[847]1592 const MPosition& mp = getAntennaPosition();
[987]1593 const MDirection& md = getDirection(whichrow);
[847]1594 const MEpoch& me = timeCol_(whichrow);
[1819]1595 //const Double& rf = mmolidCol_(whichrow);
1596 const Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
[847]1597 SpectralCoordinate spc =
[2346]1598 freqTable_.getSpectralCoordinate(md, mp, me, rf, mfreqidCol_(whichrow));
[847]1599
1600 String s = "Channel";
[2346]1601 Unit u = Unit(freqTable_.getUnitString());
[847]1602 if (u == Unit("km/s")) {
[1170]1603 s = CoordinateUtil::axisLabel(spc, 0, True,True, True);
[847]1604 } else if (u == Unit("Hz")) {
1605 Vector<String> wau(1);wau = u.getName();
1606 spc.setWorldAxisUnits(wau);
[1170]1607 s = CoordinateUtil::axisLabel(spc, 0, True, True, False);
[847]1608 }
1609 return s;
1610
1611}
1612
[1819]1613/**
1614void asap::Scantable::setRestFrequencies( double rf, const std::string& name,
[1170]1615 const std::string& unit )
[1819]1616**/
1617void Scantable::setRestFrequencies( vector<double> rf, const vector<std::string>& name,
1618 const std::string& unit )
1619
[847]1620{
[923]1621 ///@todo lookup in line table to fill in name and formattedname
[847]1622 Unit u(unit);
[1819]1623 //Quantum<Double> urf(rf, u);
1624 Quantum<Vector<Double> >urf(rf, u);
1625 Vector<String> formattedname(0);
1626 //cerr<<"Scantable::setRestFrequnecies="<<urf<<endl;
1627
1628 //uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), name, "");
1629 uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), mathutil::toVectorString(name), formattedname);
[847]1630 TableVector<uInt> tabvec(table_, "MOLECULE_ID");
1631 tabvec = id;
1632}
1633
[1819]1634/**
1635void asap::Scantable::setRestFrequencies( const std::string& name )
[847]1636{
1637 throw(AipsError("setRestFrequencies( const std::string& name ) NYI"));
1638 ///@todo implement
1639}
[1819]1640**/
[2012]1641
[1819]1642void Scantable::setRestFrequencies( const vector<std::string>& name )
1643{
[2163]1644 (void) name; // suppress unused warning
[1819]1645 throw(AipsError("setRestFrequencies( const vector<std::string>& name ) NYI"));
1646 ///@todo implement
1647}
[847]1648
[1360]1649std::vector< unsigned int > Scantable::rownumbers( ) const
[852]1650{
1651 std::vector<unsigned int> stlout;
1652 Vector<uInt> vec = table_.rowNumbers();
1653 vec.tovector(stlout);
1654 return stlout;
1655}
1656
[865]1657
[1360]1658Matrix<Float> Scantable::getPolMatrix( uInt whichrow ) const
[896]1659{
1660 ROTableRow row(table_);
1661 const TableRecord& rec = row.get(whichrow);
1662 Table t =
1663 originalTable_( originalTable_.col("SCANNO") == Int(rec.asuInt("SCANNO"))
1664 && originalTable_.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1665 && originalTable_.col("IFNO") == Int(rec.asuInt("IFNO"))
1666 && originalTable_.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
1667 ROArrayColumn<Float> speccol(t, "SPECTRA");
1668 return speccol.getColumn();
1669}
[865]1670
[1360]1671std::vector< std::string > Scantable::columnNames( ) const
[902]1672{
1673 Vector<String> vec = table_.tableDesc().columnNames();
1674 return mathutil::tovectorstring(vec);
1675}
[896]1676
[1360]1677MEpoch::Types Scantable::getTimeReference( ) const
[915]1678{
1679 return MEpoch::castType(timeCol_.getMeasRef().getType());
[972]1680}
[915]1681
[1360]1682void Scantable::addFit( const STFitEntry& fit, int row )
[972]1683{
[1819]1684 //cout << mfitidCol_(uInt(row)) << endl;
1685 LogIO os( LogOrigin( "Scantable", "addFit()", WHERE ) ) ;
1686 os << mfitidCol_(uInt(row)) << LogIO::POST ;
[972]1687 uInt id = fitTable_.addEntry(fit, mfitidCol_(uInt(row)));
1688 mfitidCol_.put(uInt(row), id);
1689}
[915]1690
[1360]1691void Scantable::shift(int npix)
1692{
1693 Vector<uInt> fids(mfreqidCol_.getColumn());
1694 genSort( fids, Sort::Ascending,
1695 Sort::QuickSort|Sort::NoDuplicates );
1696 for (uInt i=0; i<fids.nelements(); ++i) {
[1567]1697 frequencies().shiftRefPix(npix, fids[i]);
[1360]1698 }
1699}
[987]1700
[1819]1701String Scantable::getAntennaName() const
[1391]1702{
1703 String out;
1704 table_.keywordSet().get("AntennaName", out);
[1987]1705 String::size_type pos1 = out.find("@") ;
1706 String::size_type pos2 = out.find("//") ;
1707 if ( pos2 != String::npos )
[2036]1708 out = out.substr(pos2+2,pos1-pos2-2) ;
[1987]1709 else if ( pos1 != String::npos )
1710 out = out.substr(0,pos1) ;
[1391]1711 return out;
[987]1712}
[1391]1713
[1730]1714int Scantable::checkScanInfo(const std::vector<int>& scanlist) const
[1391]1715{
1716 String tbpath;
1717 int ret = 0;
1718 if ( table_.keywordSet().isDefined("GBT_GO") ) {
1719 table_.keywordSet().get("GBT_GO", tbpath);
1720 Table t(tbpath,Table::Old);
1721 // check each scan if other scan of the pair exist
1722 int nscan = scanlist.size();
1723 for (int i = 0; i < nscan; i++) {
1724 Table subt = t( t.col("SCAN") == scanlist[i]+1 );
1725 if (subt.nrow()==0) {
[1819]1726 //cerr <<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<endl;
1727 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1728 os <<LogIO::WARN<<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<LogIO::POST;
[1391]1729 ret = 1;
1730 break;
1731 }
1732 ROTableRow row(subt);
1733 const TableRecord& rec = row.get(0);
1734 int scan1seqn = rec.asuInt("PROCSEQN");
1735 int laston1 = rec.asuInt("LASTON");
1736 if ( rec.asuInt("PROCSIZE")==2 ) {
1737 if ( i < nscan-1 ) {
1738 Table subt2 = t( t.col("SCAN") == scanlist[i+1]+1 );
1739 if ( subt2.nrow() == 0) {
[1819]1740 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1741
1742 //cerr<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<endl;
1743 os<<LogIO::WARN<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<LogIO::POST;
[1391]1744 ret = 1;
1745 break;
1746 }
1747 ROTableRow row2(subt2);
1748 const TableRecord& rec2 = row2.get(0);
1749 int scan2seqn = rec2.asuInt("PROCSEQN");
1750 int laston2 = rec2.asuInt("LASTON");
1751 if (scan1seqn == 1 && scan2seqn == 2) {
1752 if (laston1 == laston2) {
[1819]1753 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1754 //cerr<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1755 os<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
[1391]1756 i +=1;
1757 }
1758 else {
[1819]1759 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1760 //cerr<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1761 os<<LogIO::WARN<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
[1391]1762 }
1763 }
1764 else if (scan1seqn==2 && scan2seqn == 1) {
1765 if (laston1 == laston2) {
[1819]1766 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1767 //cerr<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<endl;
1768 os<<LogIO::WARN<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<LogIO::POST;
[1391]1769 ret = 1;
1770 break;
1771 }
1772 }
1773 else {
[1819]1774 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1775 //cerr<<"The other scan for "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<endl;
1776 os<<LogIO::WARN<<"The other scan for "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<LogIO::POST;
[1391]1777 ret = 1;
1778 break;
1779 }
1780 }
1781 }
1782 else {
[1819]1783 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1784 //cerr<<"The scan does not appear to be standard obsevation."<<endl;
1785 os<<LogIO::WARN<<"The scan does not appear to be standard obsevation."<<LogIO::POST;
[1391]1786 }
1787 //if ( i >= nscan ) break;
1788 }
1789 }
1790 else {
[1819]1791 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1792 //cerr<<"No reference to GBT_GO table."<<endl;
1793 os<<LogIO::WARN<<"No reference to GBT_GO table."<<LogIO::POST;
[1391]1794 ret = 1;
1795 }
1796 return ret;
1797}
1798
[1730]1799std::vector<double> Scantable::getDirectionVector(int whichrow) const
[1391]1800{
1801 Vector<Double> Dir = dirCol_(whichrow).getAngle("rad").getValue();
1802 std::vector<double> dir;
1803 Dir.tovector(dir);
1804 return dir;
1805}
1806
[1819]1807void asap::Scantable::reshapeSpectrum( int nmin, int nmax )
1808 throw( casa::AipsError )
1809{
1810 // assumed that all rows have same nChan
1811 Vector<Float> arr = specCol_( 0 ) ;
1812 int nChan = arr.nelements() ;
1813
1814 // if nmin < 0 or nmax < 0, nothing to do
1815 if ( nmin < 0 ) {
1816 throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1817 }
1818 if ( nmax < 0 ) {
1819 throw( casa::indexError<int>( nmax, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1820 }
1821
1822 // if nmin > nmax, exchange values
1823 if ( nmin > nmax ) {
1824 int tmp = nmax ;
1825 nmax = nmin ;
1826 nmin = tmp ;
1827 LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1828 os << "Swap values. Applied range is ["
1829 << nmin << ", " << nmax << "]" << LogIO::POST ;
1830 }
1831
1832 // if nmin exceeds nChan, nothing to do
1833 if ( nmin >= nChan ) {
1834 throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Specified minimum exceeds nChan." ) ) ;
1835 }
1836
1837 // if nmax exceeds nChan, reset nmax to nChan
[2672]1838 if ( nmax >= nChan-1 ) {
[1819]1839 if ( nmin == 0 ) {
1840 // nothing to do
1841 LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1842 os << "Whole range is selected. Nothing to do." << LogIO::POST ;
1843 return ;
1844 }
1845 else {
1846 LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1847 os << "Specified maximum exceeds nChan. Applied range is ["
1848 << nmin << ", " << nChan-1 << "]." << LogIO::POST ;
1849 nmax = nChan - 1 ;
1850 }
1851 }
1852
1853 // reshape specCol_ and flagCol_
1854 for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1855 reshapeSpectrum( nmin, nmax, irow ) ;
1856 }
1857
1858 // update FREQUENCIES subtable
1859 Double refpix ;
1860 Double refval ;
1861 Double increment ;
[2346]1862 int freqnrow = freqTable_.table().nrow() ;
[1819]1863 Vector<uInt> oldId( freqnrow ) ;
1864 Vector<uInt> newId( freqnrow ) ;
1865 for ( int irow = 0 ; irow < freqnrow ; irow++ ) {
[2346]1866 freqTable_.getEntry( refpix, refval, increment, irow ) ;
[1819]1867 /***
1868 * need to shift refpix to nmin
1869 * note that channel nmin in old index will be channel 0 in new one
1870 ***/
1871 refval = refval - ( refpix - nmin ) * increment ;
1872 refpix = 0 ;
[2346]1873 freqTable_.setEntry( refpix, refval, increment, irow ) ;
[1819]1874 }
1875
1876 // update nchan
1877 int newsize = nmax - nmin + 1 ;
1878 table_.rwKeywordSet().define( "nChan", newsize ) ;
1879
1880 // update bandwidth
1881 // assumed all spectra in the scantable have same bandwidth
1882 table_.rwKeywordSet().define( "Bandwidth", increment * newsize ) ;
1883
1884 return ;
1885}
1886
1887void asap::Scantable::reshapeSpectrum( int nmin, int nmax, int irow )
1888{
1889 // reshape specCol_ and flagCol_
1890 Vector<Float> oldspec = specCol_( irow ) ;
1891 Vector<uChar> oldflag = flagsCol_( irow ) ;
[2475]1892 Vector<Float> oldtsys = tsysCol_( irow ) ;
[1819]1893 uInt newsize = nmax - nmin + 1 ;
[2475]1894 Slice slice( nmin, newsize, 1 ) ;
1895 specCol_.put( irow, oldspec( slice ) ) ;
1896 flagsCol_.put( irow, oldflag( slice ) ) ;
1897 if ( oldspec.size() == oldtsys.size() )
1898 tsysCol_.put( irow, oldtsys( slice ) ) ;
[1819]1899
1900 return ;
1901}
1902
[2435]1903void asap::Scantable::regridSpecChannel( double dnu, int nChan )
1904{
1905 LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1906 os << "Regrid abcissa with spectral resoultion " << dnu << " " << freqTable_.getUnitString() << " with channel number " << ((nChan>0)? String(nChan) : "covering band width")<< LogIO::POST ;
1907 int freqnrow = freqTable_.table().nrow() ;
1908 Vector<bool> firstTime( freqnrow, true ) ;
1909 double oldincr, factor;
1910 uInt currId;
1911 Double refpix ;
1912 Double refval ;
1913 Double increment ;
1914 for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1915 currId = mfreqidCol_(irow);
1916 vector<double> abcissa = getAbcissa( irow ) ;
1917 if (nChan < 0) {
1918 int oldsize = abcissa.size() ;
1919 double bw = (abcissa[oldsize-1]-abcissa[0]) + \
1920 0.5 * (abcissa[1]-abcissa[0] + abcissa[oldsize-1]-abcissa[oldsize-2]) ;
1921 nChan = int( ceil( abs(bw/dnu) ) ) ;
1922 }
1923 // actual regridding
1924 regridChannel( nChan, dnu, irow ) ;
[2433]1925
[2435]1926 // update FREQUENCIES subtable
1927 if (firstTime[currId]) {
1928 oldincr = abcissa[1]-abcissa[0] ;
1929 factor = dnu/oldincr ;
1930 firstTime[currId] = false ;
1931 freqTable_.getEntry( refpix, refval, increment, currId ) ;
[2463]1932
[2437]1933 //refval = refval - ( refpix + 0.5 * (1 - factor) ) * increment ;
[2463]1934 if (factor > 0 ) {
[2462]1935 refpix = (refpix + 0.5)/factor - 0.5;
1936 } else {
[2463]1937 refpix = (abcissa.size() - 0.5 - refpix)/abs(factor) - 0.5;
[2462]1938 }
[2435]1939 freqTable_.setEntry( refpix, refval, increment*factor, currId ) ;
[2463]1940 //os << "ID" << currId << ": channel width (Orig) = " << oldincr << " [" << freqTable_.getUnitString() << "], scale factor = " << factor << LogIO::POST ;
1941 //os << " frequency increment (Orig) = " << increment << "-> (New) " << increment*factor << LogIO::POST ;
[2435]1942 }
1943 }
1944}
1945
[1819]1946void asap::Scantable::regridChannel( int nChan, double dnu )
1947{
1948 LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1949 os << "Regrid abcissa with channel number " << nChan << " and spectral resoultion " << dnu << "Hz." << LogIO::POST ;
1950 // assumed that all rows have same nChan
1951 Vector<Float> arr = specCol_( 0 ) ;
1952 int oldsize = arr.nelements() ;
1953
1954 // if oldsize == nChan, nothing to do
1955 if ( oldsize == nChan ) {
1956 os << "Specified channel number is same as current one. Nothing to do." << LogIO::POST ;
1957 return ;
1958 }
1959
1960 // if oldChan < nChan, unphysical operation
1961 if ( oldsize < nChan ) {
1962 os << "Unphysical operation. Nothing to do." << LogIO::POST ;
1963 return ;
1964 }
1965
[2433]1966 // change channel number for specCol_, flagCol_, and tsysCol_ (if necessary)
[1819]1967 vector<string> coordinfo = getCoordInfo() ;
1968 string oldinfo = coordinfo[0] ;
1969 coordinfo[0] = "Hz" ;
1970 setCoordInfo( coordinfo ) ;
1971 for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1972 regridChannel( nChan, dnu, irow ) ;
1973 }
1974 coordinfo[0] = oldinfo ;
1975 setCoordInfo( coordinfo ) ;
1976
1977
1978 // NOTE: this method does not update metadata such as
1979 // FREQUENCIES subtable, nChan, Bandwidth, etc.
1980
1981 return ;
1982}
1983
1984void asap::Scantable::regridChannel( int nChan, double dnu, int irow )
1985{
1986 // logging
1987 //ofstream ofs( "average.log", std::ios::out | std::ios::app ) ;
1988 //ofs << "IFNO = " << getIF( irow ) << " irow = " << irow << endl ;
1989
1990 Vector<Float> oldspec = specCol_( irow ) ;
1991 Vector<uChar> oldflag = flagsCol_( irow ) ;
[2431]1992 Vector<Float> oldtsys = tsysCol_( irow ) ;
[1819]1993 Vector<Float> newspec( nChan, 0 ) ;
[2431]1994 Vector<uChar> newflag( nChan, true ) ;
1995 Vector<Float> newtsys ;
1996 bool regridTsys = false ;
1997 if (oldtsys.size() == oldspec.size()) {
1998 regridTsys = true ;
1999 newtsys.resize(nChan,false) ;
2000 newtsys = 0 ;
2001 }
[1819]2002
2003 // regrid
2004 vector<double> abcissa = getAbcissa( irow ) ;
2005 int oldsize = abcissa.size() ;
2006 double olddnu = abcissa[1] - abcissa[0] ;
[2462]2007 //int ichan = 0 ;
[1819]2008 double wsum = 0.0 ;
[2433]2009 Vector<double> zi( nChan+1 ) ;
2010 Vector<double> yi( oldsize + 1 ) ;
[1819]2011 yi[0] = abcissa[0] - 0.5 * olddnu ;
[2431]2012 for ( int ii = 1 ; ii < oldsize ; ii++ )
[2433]2013 yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2014 yi[oldsize] = abcissa[oldsize-1] \
2015 + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
[2462]2016 //zi[0] = abcissa[0] - 0.5 * olddnu ;
2017 zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2018 for ( int ii = 1 ; ii < nChan ; ii++ )
2019 zi[ii] = zi[0] + dnu * ii ;
2020 zi[nChan] = zi[nChan-1] + dnu ;
2021 // Access zi and yi in ascending order
2022 int izs = ((dnu > 0) ? 0 : nChan ) ;
2023 int ize = ((dnu > 0) ? nChan : 0 ) ;
2024 int izincr = ((dnu > 0) ? 1 : -1 ) ;
2025 int ichan = ((olddnu > 0) ? 0 : oldsize ) ;
2026 int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2027 int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2028 //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2029 int ii = izs ;
2030 while (ii != ize) {
2031 // always zl < zr
2032 double zl = zi[ii] ;
2033 double zr = zi[ii+izincr] ;
2034 // Need to access smaller index for the new spec, flag, and tsys.
2035 // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2036 int i = min(ii, ii+izincr) ;
2037 //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2038 int jj = ichan ;
2039 while (jj != iye) {
2040 // always yl < yr
2041 double yl = yi[jj] ;
2042 double yr = yi[jj+iyincr] ;
2043 // Need to access smaller index for the original spec, flag, and tsys.
2044 // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2045 int j = min(jj, jj+iyincr) ;
2046 if ( yr <= zl ) {
2047 jj += iyincr ;
2048 continue ;
[1819]2049 }
[2462]2050 else if ( yl <= zl ) {
2051 if ( yr < zr ) {
2052 if (!oldflag[j]) {
2053 newspec[i] += oldspec[j] * ( yr - zl ) ;
2054 if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2055 wsum += ( yr - zl ) ;
2056 }
2057 newflag[i] = newflag[i] && oldflag[j] ;
2058 }
2059 else {
2060 if (!oldflag[j]) {
2061 newspec[i] += oldspec[j] * abs(dnu) ;
2062 if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2063 wsum += abs(dnu) ;
2064 }
2065 newflag[i] = newflag[i] && oldflag[j] ;
2066 ichan = jj ;
2067 break ;
2068 }
[2431]2069 }
[2462]2070 else if ( yl < zr ) {
2071 if ( yr <= zr ) {
2072 if (!oldflag[j]) {
2073 newspec[i] += oldspec[j] * ( yr - yl ) ;
2074 if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2075 wsum += ( yr - yl ) ;
2076 }
2077 newflag[i] = newflag[i] && oldflag[j] ;
2078 }
2079 else {
2080 if (!oldflag[j]) {
2081 newspec[i] += oldspec[j] * ( zr - yl ) ;
2082 if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2083 wsum += ( zr - yl ) ;
2084 }
2085 newflag[i] = newflag[i] && oldflag[j] ;
2086 ichan = jj ;
2087 break ;
2088 }
[1819]2089 }
[2462]2090 else {
2091 ichan = jj - iyincr ;
2092 break ;
[2431]2093 }
[2462]2094 jj += iyincr ;
[1819]2095 }
[2462]2096 if ( wsum != 0.0 ) {
2097 newspec[i] /= wsum ;
2098 if (regridTsys) newtsys[i] /= wsum ;
2099 }
2100 wsum = 0.0 ;
2101 ii += izincr ;
[1819]2102 }
[2462]2103// if ( dnu > 0.0 ) {
2104// for ( int ii = 0 ; ii < nChan ; ii++ ) {
2105// double zl = zi[ii] ;
2106// double zr = zi[ii+1] ;
2107// for ( int j = ichan ; j < oldsize ; j++ ) {
2108// double yl = yi[j] ;
2109// double yr = yi[j+1] ;
2110// if ( yl <= zl ) {
2111// if ( yr <= zl ) {
2112// continue ;
2113// }
2114// else if ( yr <= zr ) {
2115// if (!oldflag[j]) {
2116// newspec[ii] += oldspec[j] * ( yr - zl ) ;
2117// if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - zl ) ;
2118// wsum += ( yr - zl ) ;
2119// }
2120// newflag[ii] = newflag[ii] && oldflag[j] ;
2121// }
2122// else {
2123// if (!oldflag[j]) {
2124// newspec[ii] += oldspec[j] * dnu ;
2125// if (regridTsys) newtsys[ii] += oldtsys[j] * dnu ;
2126// wsum += dnu ;
2127// }
2128// newflag[ii] = newflag[ii] && oldflag[j] ;
2129// ichan = j ;
2130// break ;
2131// }
2132// }
2133// else if ( yl < zr ) {
2134// if ( yr <= zr ) {
2135// if (!oldflag[j]) {
2136// newspec[ii] += oldspec[j] * ( yr - yl ) ;
2137// if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - yl ) ;
2138// wsum += ( yr - yl ) ;
2139// }
2140// newflag[ii] = newflag[ii] && oldflag[j] ;
2141// }
2142// else {
2143// if (!oldflag[j]) {
2144// newspec[ii] += oldspec[j] * ( zr - yl ) ;
2145// if (regridTsys) newtsys[ii] += oldtsys[j] * ( zr - yl ) ;
2146// wsum += ( zr - yl ) ;
2147// }
2148// newflag[ii] = newflag[ii] && oldflag[j] ;
2149// ichan = j ;
2150// break ;
2151// }
2152// }
2153// else {
2154// ichan = j - 1 ;
2155// break ;
2156// }
2157// }
2158// if ( wsum != 0.0 ) {
2159// newspec[ii] /= wsum ;
2160// if (regridTsys) newtsys[ii] /= wsum ;
2161// }
2162// wsum = 0.0 ;
2163// }
[1819]2164// }
[2462]2165// else if ( dnu < 0.0 ) {
2166// for ( int ii = 0 ; ii < nChan ; ii++ ) {
2167// double zl = zi[ii] ;
2168// double zr = zi[ii+1] ;
2169// for ( int j = ichan ; j < oldsize ; j++ ) {
2170// double yl = yi[j] ;
2171// double yr = yi[j+1] ;
2172// if ( yl >= zl ) {
2173// if ( yr >= zl ) {
2174// continue ;
2175// }
2176// else if ( yr >= zr ) {
2177// if (!oldflag[j]) {
2178// newspec[ii] += oldspec[j] * abs( yr - zl ) ;
2179// if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - zl ) ;
2180// wsum += abs( yr - zl ) ;
2181// }
2182// newflag[ii] = newflag[ii] && oldflag[j] ;
2183// }
2184// else {
2185// if (!oldflag[j]) {
2186// newspec[ii] += oldspec[j] * abs( dnu ) ;
2187// if (regridTsys) newtsys[ii] += oldtsys[j] * abs( dnu ) ;
2188// wsum += abs( dnu ) ;
2189// }
2190// newflag[ii] = newflag[ii] && oldflag[j] ;
2191// ichan = j ;
2192// break ;
2193// }
2194// }
2195// else if ( yl > zr ) {
2196// if ( yr >= zr ) {
2197// if (!oldflag[j]) {
2198// newspec[ii] += oldspec[j] * abs( yr - yl ) ;
2199// if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - yl ) ;
2200// wsum += abs( yr - yl ) ;
2201// }
2202// newflag[ii] = newflag[ii] && oldflag[j] ;
2203// }
2204// else {
2205// if (!oldflag[j]) {
2206// newspec[ii] += oldspec[j] * abs( zr - yl ) ;
2207// if (regridTsys) newtsys[ii] += oldtsys[j] * abs( zr - yl ) ;
2208// wsum += abs( zr - yl ) ;
2209// }
2210// newflag[ii] = newflag[ii] && oldflag[j] ;
2211// ichan = j ;
2212// break ;
2213// }
2214// }
2215// else {
2216// ichan = j - 1 ;
2217// break ;
2218// }
2219// }
2220// if ( wsum != 0.0 ) {
2221// newspec[ii] /= wsum ;
2222// if (regridTsys) newtsys[ii] /= wsum ;
2223// }
2224// wsum = 0.0 ;
[1819]2225// }
2226// }
[2462]2227// // //ofs << "olddnu = " << olddnu << ", dnu = " << dnu << endl ;
2228// // pile += dnu ;
2229// // wedge = olddnu * ( refChan + 1 ) ;
2230// // while ( wedge < pile ) {
2231// // newspec[0] += olddnu * oldspec[refChan] ;
2232// // newflag[0] = newflag[0] || oldflag[refChan] ;
2233// // //ofs << "channel " << refChan << " is included in new channel 0" << endl ;
2234// // refChan++ ;
2235// // wedge += olddnu ;
2236// // wsum += olddnu ;
2237// // //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2238// // }
2239// // frac = ( wedge - pile ) / olddnu ;
2240// // wsum += ( 1.0 - frac ) * olddnu ;
2241// // newspec[0] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2242// // newflag[0] = newflag[0] || oldflag[refChan] ;
2243// // //ofs << "channel " << refChan << " is partly included in new channel 0" << " with fraction of " << ( 1.0 - frac ) << endl ;
2244// // //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2245// // newspec[0] /= wsum ;
2246// // //ofs << "newspec[0] = " << newspec[0] << endl ;
2247// // //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
[1819]2248
[2462]2249// // /***
2250// // * ichan = 1 - nChan-2
2251// // ***/
2252// // for ( int ichan = 1 ; ichan < nChan - 1 ; ichan++ ) {
2253// // pile += dnu ;
2254// // newspec[ichan] += frac * olddnu * oldspec[refChan] ;
2255// // newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2256// // //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << frac << endl ;
2257// // refChan++ ;
2258// // wedge += olddnu ;
2259// // wsum = frac * olddnu ;
2260// // //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2261// // while ( wedge < pile ) {
2262// // newspec[ichan] += olddnu * oldspec[refChan] ;
2263// // newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2264// // //ofs << "channel " << refChan << " is included in new channel " << ichan << endl ;
2265// // refChan++ ;
2266// // wedge += olddnu ;
2267// // wsum += olddnu ;
2268// // //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2269// // }
2270// // frac = ( wedge - pile ) / olddnu ;
2271// // wsum += ( 1.0 - frac ) * olddnu ;
2272// // newspec[ichan] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2273// // newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2274// // //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << ( 1.0 - frac ) << endl ;
2275// // //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2276// // //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2277// // newspec[ichan] /= wsum ;
2278// // //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << endl ;
2279// // }
[1819]2280
[2462]2281// // /***
2282// // * ichan = nChan-1
2283// // ***/
2284// // // NOTE: Assumed that all spectra have the same bandwidth
2285// // pile += dnu ;
2286// // newspec[nChan-1] += frac * olddnu * oldspec[refChan] ;
2287// // newflag[nChan-1] = newflag[nChan-1] || oldflag[refChan] ;
2288// // //ofs << "channel " << refChan << " is partly included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2289// // refChan++ ;
2290// // wedge += olddnu ;
2291// // wsum = frac * olddnu ;
2292// // //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2293// // for ( int jchan = refChan ; jchan < oldsize ; jchan++ ) {
2294// // newspec[nChan-1] += olddnu * oldspec[jchan] ;
2295// // newflag[nChan-1] = newflag[nChan-1] || oldflag[jchan] ;
2296// // wsum += olddnu ;
2297// // //ofs << "channel " << jchan << " is included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2298// // //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2299// // }
2300// // //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2301// // //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2302// // newspec[nChan-1] /= wsum ;
2303// // //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << endl ;
[1819]2304
[2462]2305// // // ofs.close() ;
2306
[2032]2307 specCol_.put( irow, newspec ) ;
2308 flagsCol_.put( irow, newflag ) ;
[2431]2309 if (regridTsys) tsysCol_.put( irow, newtsys );
[1819]2310
2311 return ;
2312}
2313
[2595]2314void Scantable::regridChannel( int nChan, double dnu, double fmin, int irow )
2315{
2316 Vector<Float> oldspec = specCol_( irow ) ;
2317 Vector<uChar> oldflag = flagsCol_( irow ) ;
2318 Vector<Float> oldtsys = tsysCol_( irow ) ;
2319 Vector<Float> newspec( nChan, 0 ) ;
2320 Vector<uChar> newflag( nChan, true ) ;
2321 Vector<Float> newtsys ;
2322 bool regridTsys = false ;
2323 if (oldtsys.size() == oldspec.size()) {
2324 regridTsys = true ;
2325 newtsys.resize(nChan,false) ;
2326 newtsys = 0 ;
2327 }
2328
2329 // regrid
2330 vector<double> abcissa = getAbcissa( irow ) ;
2331 int oldsize = abcissa.size() ;
2332 double olddnu = abcissa[1] - abcissa[0] ;
2333 //int ichan = 0 ;
2334 double wsum = 0.0 ;
2335 Vector<double> zi( nChan+1 ) ;
2336 Vector<double> yi( oldsize + 1 ) ;
2337 Block<uInt> count( nChan, 0 ) ;
2338 yi[0] = abcissa[0] - 0.5 * olddnu ;
2339 for ( int ii = 1 ; ii < oldsize ; ii++ )
2340 yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2341 yi[oldsize] = abcissa[oldsize-1] \
2342 + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
2343// cout << "olddnu=" << olddnu << ", dnu=" << dnu << " (diff=" << olddnu-dnu << ")" << endl ;
2344// cout << "yi[0]=" << yi[0] << ", fmin=" << fmin << " (diff=" << yi[0]-fmin << ")" << endl ;
2345// cout << "oldsize=" << oldsize << ", nChan=" << nChan << endl ;
2346
2347 // do not regrid if input parameters are almost same as current
2348 // spectral setup
2349 double dnuDiff = abs( ( dnu - olddnu ) / olddnu ) ;
2350 double oldfmin = min( yi[0], yi[oldsize] ) ;
2351 double fminDiff = abs( ( fmin - oldfmin ) / oldfmin ) ;
2352 double nChanDiff = nChan - oldsize ;
2353 double eps = 1.0e-8 ;
2354 if ( nChanDiff == 0 && dnuDiff < eps && fminDiff < eps )
2355 return ;
2356
2357 //zi[0] = abcissa[0] - 0.5 * olddnu ;
2358 //zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2359 if ( dnu > 0 )
2360 zi[0] = fmin - 0.5 * dnu ;
2361 else
2362 zi[0] = fmin + nChan * abs(dnu) ;
2363 for ( int ii = 1 ; ii < nChan ; ii++ )
2364 zi[ii] = zi[0] + dnu * ii ;
2365 zi[nChan] = zi[nChan-1] + dnu ;
2366 // Access zi and yi in ascending order
2367 int izs = ((dnu > 0) ? 0 : nChan ) ;
2368 int ize = ((dnu > 0) ? nChan : 0 ) ;
2369 int izincr = ((dnu > 0) ? 1 : -1 ) ;
2370 int ichan = ((olddnu > 0) ? 0 : oldsize ) ;
2371 int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2372 int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2373 //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2374 int ii = izs ;
2375 while (ii != ize) {
2376 // always zl < zr
2377 double zl = zi[ii] ;
2378 double zr = zi[ii+izincr] ;
2379 // Need to access smaller index for the new spec, flag, and tsys.
2380 // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2381 int i = min(ii, ii+izincr) ;
2382 //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2383 int jj = ichan ;
2384 while (jj != iye) {
2385 // always yl < yr
2386 double yl = yi[jj] ;
2387 double yr = yi[jj+iyincr] ;
2388 // Need to access smaller index for the original spec, flag, and tsys.
2389 // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2390 int j = min(jj, jj+iyincr) ;
2391 if ( yr <= zl ) {
2392 jj += iyincr ;
2393 continue ;
2394 }
2395 else if ( yl <= zl ) {
2396 if ( yr < zr ) {
2397 if (!oldflag[j]) {
2398 newspec[i] += oldspec[j] * ( yr - zl ) ;
2399 if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2400 wsum += ( yr - zl ) ;
2401 count[i]++ ;
2402 }
2403 newflag[i] = newflag[i] && oldflag[j] ;
2404 }
2405 else {
2406 if (!oldflag[j]) {
2407 newspec[i] += oldspec[j] * abs(dnu) ;
2408 if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2409 wsum += abs(dnu) ;
2410 count[i]++ ;
2411 }
2412 newflag[i] = newflag[i] && oldflag[j] ;
2413 ichan = jj ;
2414 break ;
2415 }
2416 }
2417 else if ( yl < zr ) {
2418 if ( yr <= zr ) {
2419 if (!oldflag[j]) {
2420 newspec[i] += oldspec[j] * ( yr - yl ) ;
2421 if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2422 wsum += ( yr - yl ) ;
2423 count[i]++ ;
2424 }
2425 newflag[i] = newflag[i] && oldflag[j] ;
2426 }
2427 else {
2428 if (!oldflag[j]) {
2429 newspec[i] += oldspec[j] * ( zr - yl ) ;
2430 if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2431 wsum += ( zr - yl ) ;
2432 count[i]++ ;
2433 }
2434 newflag[i] = newflag[i] && oldflag[j] ;
2435 ichan = jj ;
2436 break ;
2437 }
2438 }
2439 else {
2440 //ichan = jj - iyincr ;
2441 break ;
2442 }
2443 jj += iyincr ;
2444 }
2445 if ( wsum != 0.0 ) {
2446 newspec[i] /= wsum ;
2447 if (regridTsys) newtsys[i] /= wsum ;
2448 }
2449 wsum = 0.0 ;
2450 ii += izincr ;
2451 }
2452
2453 // flag out channels without data
2454 // this is tentative since there is no specific definition
2455 // on bit flag...
2456 uChar noData = 1 << 7 ;
2457 for ( Int i = 0 ; i < nChan ; i++ ) {
2458 if ( count[i] == 0 )
2459 newflag[i] = noData ;
2460 }
2461
2462 specCol_.put( irow, newspec ) ;
2463 flagsCol_.put( irow, newflag ) ;
2464 if (regridTsys) tsysCol_.put( irow, newtsys );
2465
2466 return ;
2467}
2468
[1730]2469std::vector<float> Scantable::getWeather(int whichrow) const
2470{
2471 std::vector<float> out(5);
2472 //Float temperature, pressure, humidity, windspeed, windaz;
2473 weatherTable_.getEntry(out[0], out[1], out[2], out[3], out[4],
2474 mweatheridCol_(uInt(whichrow)));
2475
2476
2477 return out;
[1391]2478}
[1730]2479
[2047]2480bool Scantable::getFlagtraFast(uInt whichrow)
[1907]2481{
2482 uChar flag;
2483 Vector<uChar> flags;
[2047]2484 flagsCol_.get(whichrow, flags);
[2012]2485 flag = flags[0];
[2047]2486 for (uInt i = 1; i < flags.size(); ++i) {
[2012]2487 flag &= flags[i];
2488 }
2489 return ((flag >> 7) == 1);
2490}
2491
[2277]2492void Scantable::polyBaseline(const std::vector<bool>& mask, int order, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
[2047]2493{
[2193]2494 try {
2495 ofstream ofs;
2496 String coordInfo = "";
2497 bool hasSameNchan = true;
2498 bool outTextFile = false;
[2641]2499 bool csvFormat = false;
[2047]2500
[2193]2501 if (blfile != "") {
[2641]2502 csvFormat = (blfile.substr(0, 1) == "T");
2503 ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
[2193]2504 if (ofs) outTextFile = true;
2505 }
[2047]2506
[2193]2507 if (outLogger || outTextFile) {
2508 coordInfo = getCoordInfo()[0];
2509 if (coordInfo == "") coordInfo = "channel";
2510 hasSameNchan = hasSameNchanOverIFs();
2511 }
[2047]2512
[2193]2513 Fitter fitter = Fitter();
2514 fitter.setExpression("poly", order);
2515 //fitter.setIterClipping(thresClip, nIterClip);
[2047]2516
[2193]2517 int nRow = nrow();
2518 std::vector<bool> chanMask;
2519 bool showProgress;
2520 int minNRow;
2521 parseProgressInfo(progressInfo, showProgress, minNRow);
[2047]2522
[2193]2523 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2524 chanMask = getCompositeChanMask(whichrow, mask);
2525 fitBaseline(chanMask, whichrow, fitter);
2526 setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
[2641]2527 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "polyBaseline()", fitter);
[2193]2528 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
2529 }
2530
2531 if (outTextFile) ofs.close();
2532
2533 } catch (...) {
2534 throw;
[2047]2535 }
2536}
2537
[2189]2538void Scantable::autoPolyBaseline(const std::vector<bool>& mask, int order, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
[2047]2539{
[2193]2540 try {
2541 ofstream ofs;
2542 String coordInfo = "";
2543 bool hasSameNchan = true;
2544 bool outTextFile = false;
[2641]2545 bool csvFormat = false;
[2047]2546
[2193]2547 if (blfile != "") {
[2641]2548 csvFormat = (blfile.substr(0, 1) == "T");
2549 ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
[2193]2550 if (ofs) outTextFile = true;
2551 }
[2047]2552
[2193]2553 if (outLogger || outTextFile) {
2554 coordInfo = getCoordInfo()[0];
2555 if (coordInfo == "") coordInfo = "channel";
2556 hasSameNchan = hasSameNchanOverIFs();
2557 }
[2047]2558
[2193]2559 Fitter fitter = Fitter();
2560 fitter.setExpression("poly", order);
2561 //fitter.setIterClipping(thresClip, nIterClip);
[2047]2562
[2193]2563 int nRow = nrow();
2564 std::vector<bool> chanMask;
2565 int minEdgeSize = getIFNos().size()*2;
2566 STLineFinder lineFinder = STLineFinder();
2567 lineFinder.setOptions(threshold, 3, chanAvgLimit);
[2047]2568
[2193]2569 bool showProgress;
2570 int minNRow;
2571 parseProgressInfo(progressInfo, showProgress, minNRow);
[2189]2572
[2193]2573 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
[2047]2574
[2193]2575 //-------------------------------------------------------
2576 //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
2577 //-------------------------------------------------------
2578 int edgeSize = edge.size();
2579 std::vector<int> currentEdge;
2580 if (edgeSize >= 2) {
2581 int idx = 0;
2582 if (edgeSize > 2) {
2583 if (edgeSize < minEdgeSize) {
2584 throw(AipsError("Length of edge element info is less than that of IFs"));
2585 }
2586 idx = 2 * getIF(whichrow);
[2047]2587 }
[2193]2588 currentEdge.push_back(edge[idx]);
2589 currentEdge.push_back(edge[idx+1]);
2590 } else {
2591 throw(AipsError("Wrong length of edge element"));
[2047]2592 }
[2193]2593 lineFinder.setData(getSpectrum(whichrow));
2594 lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
2595 chanMask = lineFinder.getMask();
2596 //-------------------------------------------------------
2597
2598 fitBaseline(chanMask, whichrow, fitter);
2599 setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
2600
[2641]2601 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoPolyBaseline()", fitter);
[2193]2602 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
[2047]2603 }
2604
[2193]2605 if (outTextFile) ofs.close();
[2047]2606
[2193]2607 } catch (...) {
2608 throw;
[2047]2609 }
2610}
2611
[2645]2612void Scantable::chebyshevBaseline(const std::vector<bool>& mask, int order, float thresClip, int nIterClip, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
2613{
2614 try {
2615 ofstream ofs;
2616 String coordInfo = "";
2617 bool hasSameNchan = true;
2618 bool outTextFile = false;
2619 bool csvFormat = false;
2620
2621 if (blfile != "") {
2622 csvFormat = (blfile.substr(0, 1) == "T");
2623 ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
2624 if (ofs) outTextFile = true;
2625 }
2626
2627 if (outLogger || outTextFile) {
2628 coordInfo = getCoordInfo()[0];
2629 if (coordInfo == "") coordInfo = "channel";
2630 hasSameNchan = hasSameNchanOverIFs();
2631 }
2632
2633 bool showProgress;
2634 int minNRow;
2635 parseProgressInfo(progressInfo, showProgress, minNRow);
2636
2637 int nRow = nrow();
2638 std::vector<bool> chanMask;
2639
[2737]2640 std::vector<float> sect(0);
2641 std::vector<bool> finalChanMask;
2642 float rms;
2643
2644 //---
2645 bool outBaselineParamTable = true;
2646 STBaselineTable* bt = new STBaselineTable(*this);
2647 //---
2648
[2645]2649 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2650 std::vector<float> sp = getSpectrum(whichrow);
2651 chanMask = getCompositeChanMask(whichrow, mask);
2652 std::vector<float> params(order+1);
2653 int nClipped = 0;
[2737]2654 std::vector<float> res = doChebyshevFitting(sp, chanMask, order, params, finalChanMask, rms, nClipped, thresClip, nIterClip, getResidual);
[2645]2655
[2737]2656 //---
2657 if (outBaselineParamTable) {
2658 bt->appenddata(uInt(getScan(whichrow)), uInt(getCycle(whichrow)), uInt(getBeam(whichrow)), uInt(getIF(whichrow)), uInt(getPol(whichrow)),
2659 uInt(0),
2660 Double(0.0), // <-- Double(getTime(whichrow, false)),
2661 uInt(nchan(whichrow)), STBaselineFunc::Chebyshev,
2662 uInt(order), uInt(nIterClip), Float(thresClip), Vector<Float>(sect), Vector<Float>(params),
2663 Vector<Float>(params), // <-- Vector<Float>(finalChanMask),
2664 Float(rms));
2665 } else {
2666 setSpectrum(res, whichrow);
2667 }
2668 //---
2669
[2645]2670 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "chebyshevBaseline()", params, nClipped);
2671 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
2672 }
2673
[2737]2674 //---
2675 if (outBaselineParamTable) {
2676 bt->save("chebyparamtable");
2677 }
2678 //---
2679 delete bt;
2680
[2645]2681 if (outTextFile) ofs.close();
2682
2683 } catch (...) {
2684 throw;
2685 }
2686}
2687
[2713]2688double Scantable::calculateModelSelectionCriteria(const std::string& valname, const std::string& blfunc, int order, const std::vector<bool>& inMask, int whichrow, bool useLineFinder, const std::vector<int>& edge, float threshold, int chanAvgLimit)
2689{
2690 if (useLineFinder) {
2691 int minEdgeSize = getIFNos().size()*2;
2692
2693
2694 int edgeSize = edge.size();
2695 std::vector<int> currentEdge;
2696 if (edgeSize >= 2) {
2697 int idx = 0;
2698 if (edgeSize > 2) {
2699 if (edgeSize < minEdgeSize) {
2700 throw(AipsError("Length of edge element info is less than that of IFs"));
2701 }
2702 idx = 2 * getIF(whichrow);
2703 }
2704 currentEdge.push_back(edge[idx]);
2705 currentEdge.push_back(edge[idx+1]);
2706 } else {
2707 throw(AipsError("Wrong length of edge element"));
2708 }
2709
2710 STLineFinder lineFinder = STLineFinder();
2711 std::vector<float> sp = getSpectrum(whichrow);
2712 lineFinder.setData(sp);
2713 lineFinder.setOptions(threshold, 3, chanAvgLimit);
2714 lineFinder.findLines(getCompositeChanMask(whichrow, inMask), currentEdge, whichrow);
2715 std::vector<bool> chanMask = lineFinder.getMask();
2716
2717 return doCalculateModelSelectionCriteria(valname, sp, chanMask, blfunc, order);
2718
2719 } else {
2720 return doCalculateModelSelectionCriteria(valname, getSpectrum(whichrow), getCompositeChanMask(whichrow, inMask), blfunc, order);
2721 }
2722
2723}
2724
2725double Scantable::doCalculateModelSelectionCriteria(const std::string& valname, const std::vector<float>& spec, const std::vector<bool>& mask, const std::string& blfunc, int order)
2726{
2727 int nparam;
2728 std::vector<float> params;
[2737]2729 std::vector<bool> finalChanMask;
2730 float rms;
[2713]2731 int nClipped = 0;
2732 float thresClip = 0.0;
2733 int nIterClip = 0;
2734 std::vector<float> res;
2735 if (blfunc == "chebyshev") {
2736 nparam = order + 1;
[2737]2737 res = doChebyshevFitting(spec, mask, order, params, finalChanMask, rms, nClipped, thresClip, nIterClip, true);
[2713]2738 } else if (blfunc == "sinusoid") {
2739 std::vector<int> nWaves;
2740 nWaves.clear();
2741 for (int i = 0; i <= order; ++i) {
2742 nWaves.push_back(i);
2743 }
2744 nparam = 2*order + 1; // order = nwave
2745 res = doSinusoidFitting(spec, mask, nWaves, params, nClipped, thresClip, nIterClip, true);
2746 } else if (blfunc == "cspline") {
2747 std::vector<int> pieceEdges(order+1); //order = npiece
2748 nparam = order + 3;
2749 params.resize(4*order);
2750 res = doCubicSplineFitting(spec, mask, order, pieceEdges, params, nClipped, thresClip, nIterClip, true);
2751 } else {
2752 throw(AipsError("blfunc must be chebyshev, cspline or sinusoid."));
2753 }
2754
2755 double msq = 0.0;
2756 int nusedchan = 0;
2757 int nChan = res.size();
2758 for (int i = 0; i < nChan; ++i) {
2759 if (mask[i]) {
2760 msq += (double)res[i]*(double)res[i];
2761 nusedchan++;
2762 }
2763 }
2764 if (nusedchan == 0) {
2765 throw(AipsError("all channels masked."));
2766 }
2767 msq /= (double)nusedchan;
2768
2769 nparam++; //add 1 for sigma of Gaussian distribution
2770 const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
2771
2772 if (valname.find("aic") == 0) {
2773 // Original Akaike Information Criterion (AIC)
2774 double aic = nusedchan * (log(2.0 * PI * msq) + 1.0) + 2.0 * nparam;
2775
2776 // Corrected AIC by Sugiura(1978)
2777 if (valname == "aicc") {
2778 if (nusedchan - nparam - 1 <= 0) {
2779 throw(AipsError("channel size is too small to calculate AICc."));
2780 }
2781 aic += 2.0*nparam*(nparam + 1)/(double)(nusedchan - nparam - 1);
2782 }
2783
2784 return aic;
2785
2786 } else if (valname == "bic") {
2787 // Bayesian Information Criterion (BIC)
2788 double bic = nusedchan * log(msq) + nparam * log((double)nusedchan);
2789 return bic;
2790
2791 } else if (valname == "gcv") {
2792 // Generalised Cross Validation
2793 double x = 1.0 - (double)nparam / (double)nusedchan;
2794 double gcv = msq / (x * x);
2795 return gcv;
2796
2797 } else {
2798 throw(AipsError("valname must be aic, aicc, bic or gcv."));
2799 }
2800}
2801
[2645]2802void Scantable::autoChebyshevBaseline(const std::vector<bool>& mask, int order, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
2803{
2804 try {
2805 ofstream ofs;
2806 String coordInfo = "";
2807 bool hasSameNchan = true;
2808 bool outTextFile = false;
2809 bool csvFormat = false;
2810
2811 if (blfile != "") {
2812 csvFormat = (blfile.substr(0, 1) == "T");
2813 ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
2814 if (ofs) outTextFile = true;
2815 }
2816
2817 if (outLogger || outTextFile) {
2818 coordInfo = getCoordInfo()[0];
2819 if (coordInfo == "") coordInfo = "channel";
2820 hasSameNchan = hasSameNchanOverIFs();
2821 }
2822
2823 int nRow = nrow();
2824 std::vector<bool> chanMask;
2825 int minEdgeSize = getIFNos().size()*2;
2826 STLineFinder lineFinder = STLineFinder();
2827 lineFinder.setOptions(threshold, 3, chanAvgLimit);
2828
2829 bool showProgress;
2830 int minNRow;
2831 parseProgressInfo(progressInfo, showProgress, minNRow);
2832
[2737]2833 std::vector<bool> finalChanMask;
2834 float rms;
2835
[2645]2836 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2837 std::vector<float> sp = getSpectrum(whichrow);
2838
2839 //-------------------------------------------------------
2840 //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
2841 //-------------------------------------------------------
2842 int edgeSize = edge.size();
2843 std::vector<int> currentEdge;
2844 if (edgeSize >= 2) {
2845 int idx = 0;
2846 if (edgeSize > 2) {
2847 if (edgeSize < minEdgeSize) {
2848 throw(AipsError("Length of edge element info is less than that of IFs"));
2849 }
2850 idx = 2 * getIF(whichrow);
2851 }
2852 currentEdge.push_back(edge[idx]);
2853 currentEdge.push_back(edge[idx+1]);
2854 } else {
2855 throw(AipsError("Wrong length of edge element"));
2856 }
2857 //lineFinder.setData(getSpectrum(whichrow));
2858 lineFinder.setData(sp);
2859 lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
2860 chanMask = lineFinder.getMask();
2861 //-------------------------------------------------------
2862
2863
2864 //fitBaseline(chanMask, whichrow, fitter);
2865 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
2866 std::vector<float> params(order+1);
2867 int nClipped = 0;
[2737]2868 std::vector<float> res = doChebyshevFitting(sp, chanMask, order, params, finalChanMask, rms, nClipped, thresClip, nIterClip, getResidual);
[2645]2869 setSpectrum(res, whichrow);
2870
2871 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoChebyshevBaseline()", params, nClipped);
2872 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
2873 }
2874
2875 if (outTextFile) ofs.close();
2876
2877 } catch (...) {
2878 throw;
2879 }
2880}
2881
2882 /*
2883double Scantable::getChebyshevPolynomial(int n, double x) {
2884 if ((x < -1.0)||(x > 1.0)) {
2885 throw(AipsError("out of definition range (-1 <= x <= 1)."));
2886 } else if (n < 0) {
2887 throw(AipsError("the order must be zero or positive."));
2888 } else if (n == 0) {
2889 return 1.0;
2890 } else if (n == 1) {
2891 return x;
2892 } else {
2893 return 2.0*x*getChebyshevPolynomial(n-1, x) - getChebyshevPolynomial(n-2, x);
2894 }
2895}
2896 */
2897double Scantable::getChebyshevPolynomial(int n, double x) {
2898 if ((x < -1.0)||(x > 1.0)) {
2899 throw(AipsError("out of definition range (-1 <= x <= 1)."));
[2713]2900 } else if (x == 1.0) {
2901 return 1.0;
2902 } else if (x == 0.0) {
2903 double res;
2904 if (n%2 == 0) {
2905 if (n%4 == 0) {
2906 res = 1.0;
2907 } else {
2908 res = -1.0;
2909 }
2910 } else {
2911 res = 0.0;
2912 }
2913 return res;
2914 } else if (x == -1.0) {
2915 double res = (n%2 == 0 ? 1.0 : -1.0);
2916 return res;
[2645]2917 } else if (n < 0) {
2918 throw(AipsError("the order must be zero or positive."));
2919 } else if (n == 0) {
2920 return 1.0;
2921 } else if (n == 1) {
2922 return x;
2923 } else {
2924 double res = 0.0;
2925 for (int m = 0; m <= n/2; ++m) {
2926 double c = 1.0;
2927 if (m > 0) {
2928 for (int i = 1; i <= m; ++i) {
2929 c *= (double)(n-2*m+i)/(double)i;
2930 }
2931 }
[2713]2932 res += (m%2 == 0 ? 1.0 : -1.0)*(double)n/(double)(n-m)*pow(2.0*x, (double)(n-2*m))/2.0*c;
[2645]2933 }
2934 return res;
2935 }
2936}
2937
[2737]2938std::vector<float> Scantable::doChebyshevFitting(const std::vector<float>& data, const std::vector<bool>& mask, int order, std::vector<float>& params, std::vector<bool>& finalMask, float& rms, int& nClipped, float thresClip, int nIterClip, bool getResidual)
[2645]2939{
2940 if (data.size() != mask.size()) {
2941 throw(AipsError("data and mask sizes are not identical"));
2942 }
2943 if (order < 0) {
2944 throw(AipsError("maximum order of Chebyshev polynomial must not be negative."));
2945 }
2946
2947 int nChan = data.size();
[2737]2948
2949 finalMask.clear();
2950 finalMask.resize(nChan);
2951
[2645]2952 std::vector<int> maskArray;
2953 std::vector<int> x;
2954 for (int i = 0; i < nChan; ++i) {
2955 maskArray.push_back(mask[i] ? 1 : 0);
2956 if (mask[i]) {
2957 x.push_back(i);
2958 }
[2737]2959 finalMask[i] = mask[i];
[2645]2960 }
2961
2962 int initNData = x.size();
2963
2964 int nData = initNData;
2965 int nDOF = order + 1; //number of parameters to solve.
2966
2967 // xArray : contains elemental values for computing the least-square matrix.
2968 // xArray.size() is nDOF and xArray[*].size() is nChan.
2969 // Each xArray element are as follows:
2970 // xArray[0] = {T0(-1), T0(2/(nChan-1)-1), T0(4/(nChan-1)-1), ..., T0(1)},
2971 // xArray[n-1] = ...,
2972 // xArray[n] = {Tn(-1), Tn(2/(nChan-1)-1), Tn(4/(nChan-1)-1), ..., Tn(1)}
2973 // where (0 <= n <= order),
2974 std::vector<std::vector<double> > xArray;
2975 for (int i = 0; i < nDOF; ++i) {
2976 double xFactor = 2.0/(double)(nChan - 1);
2977 std::vector<double> xs;
2978 xs.clear();
2979 for (int j = 0; j < nChan; ++j) {
2980 xs.push_back(getChebyshevPolynomial(i, xFactor*(double)j-1.0));
2981 }
2982 xArray.push_back(xs);
2983 }
2984
2985 std::vector<double> z1, r1, residual;
2986 for (int i = 0; i < nChan; ++i) {
2987 z1.push_back((double)data[i]);
2988 r1.push_back(0.0);
2989 residual.push_back(0.0);
2990 }
2991
2992 for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
2993 // xMatrix : horizontal concatenation of
2994 // the least-sq. matrix (left) and an
2995 // identity matrix (right).
2996 // the right part is used to calculate the inverse matrix of the left part.
2997 double xMatrix[nDOF][2*nDOF];
2998 double zMatrix[nDOF];
2999 for (int i = 0; i < nDOF; ++i) {
3000 for (int j = 0; j < 2*nDOF; ++j) {
3001 xMatrix[i][j] = 0.0;
3002 }
3003 xMatrix[i][nDOF+i] = 1.0;
3004 zMatrix[i] = 0.0;
3005 }
3006
3007 int nUseData = 0;
3008 for (int k = 0; k < nChan; ++k) {
3009 if (maskArray[k] == 0) continue;
3010
3011 for (int i = 0; i < nDOF; ++i) {
3012 for (int j = i; j < nDOF; ++j) {
3013 xMatrix[i][j] += xArray[i][k] * xArray[j][k];
3014 }
3015 zMatrix[i] += z1[k] * xArray[i][k];
3016 }
3017
3018 nUseData++;
3019 }
3020
3021 if (nUseData < 1) {
3022 throw(AipsError("all channels clipped or masked. can't execute fitting anymore."));
3023 }
3024
3025 for (int i = 0; i < nDOF; ++i) {
3026 for (int j = 0; j < i; ++j) {
3027 xMatrix[i][j] = xMatrix[j][i];
3028 }
3029 }
3030
3031 std::vector<double> invDiag;
3032 for (int i = 0; i < nDOF; ++i) {
3033 invDiag.push_back(1.0/xMatrix[i][i]);
3034 for (int j = 0; j < nDOF; ++j) {
3035 xMatrix[i][j] *= invDiag[i];
3036 }
3037 }
3038
3039 for (int k = 0; k < nDOF; ++k) {
3040 for (int i = 0; i < nDOF; ++i) {
3041 if (i != k) {
3042 double factor1 = xMatrix[k][k];
3043 double factor2 = xMatrix[i][k];
3044 for (int j = k; j < 2*nDOF; ++j) {
3045 xMatrix[i][j] *= factor1;
3046 xMatrix[i][j] -= xMatrix[k][j]*factor2;
3047 xMatrix[i][j] /= factor1;
3048 }
3049 }
3050 }
3051 double xDiag = xMatrix[k][k];
3052 for (int j = k; j < 2*nDOF; ++j) {
3053 xMatrix[k][j] /= xDiag;
3054 }
3055 }
3056
3057 for (int i = 0; i < nDOF; ++i) {
3058 for (int j = 0; j < nDOF; ++j) {
3059 xMatrix[i][nDOF+j] *= invDiag[j];
3060 }
3061 }
3062 //compute a vector y which consists of the coefficients of the sinusoids forming the
3063 //best-fit curves (a0,s1,c1,s2,c2,...), where a0 is constant and s* and c* are of sine
3064 //and cosine functions, respectively.
3065 std::vector<double> y;
3066 params.clear();
3067 for (int i = 0; i < nDOF; ++i) {
3068 y.push_back(0.0);
3069 for (int j = 0; j < nDOF; ++j) {
3070 y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
3071 }
3072 params.push_back(y[i]);
3073 }
3074
3075 for (int i = 0; i < nChan; ++i) {
3076 r1[i] = y[0];
3077 for (int j = 1; j < nDOF; ++j) {
3078 r1[i] += y[j]*xArray[j][i];
3079 }
3080 residual[i] = z1[i] - r1[i];
3081 }
3082
[2737]3083 double stdDev = 0.0;
3084 for (int i = 0; i < nChan; ++i) {
3085 stdDev += residual[i]*residual[i]*(double)maskArray[i];
3086 }
3087 stdDev = sqrt(stdDev/(double)nData);
3088 rms = (float)stdDev;
3089
[2645]3090 if ((nClip == nIterClip) || (thresClip <= 0.0)) {
3091 break;
3092 } else {
[2737]3093
[2645]3094 double thres = stdDev * thresClip;
3095 int newNData = 0;
3096 for (int i = 0; i < nChan; ++i) {
3097 if (abs(residual[i]) >= thres) {
3098 maskArray[i] = 0;
[2737]3099 finalMask[i] = false;
[2645]3100 }
3101 if (maskArray[i] > 0) {
3102 newNData++;
3103 }
3104 }
3105 if (newNData == nData) {
3106 break; //no more flag to add. iteration stops.
3107 } else {
3108 nData = newNData;
3109 }
[2737]3110
[2645]3111 }
3112 }
3113
3114 nClipped = initNData - nData;
3115
3116 std::vector<float> result;
3117 if (getResidual) {
3118 for (int i = 0; i < nChan; ++i) {
3119 result.push_back((float)residual[i]);
3120 }
3121 } else {
3122 for (int i = 0; i < nChan; ++i) {
3123 result.push_back((float)r1[i]);
3124 }
3125 }
3126
3127 return result;
3128}
3129
[2189]3130void Scantable::cubicSplineBaseline(const std::vector<bool>& mask, int nPiece, float thresClip, int nIterClip, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
[2081]3131{
[2641]3132 /*************
[2591]3133 double totTimeStart, totTimeEnd, blTimeStart, blTimeEnd, ioTimeStart, ioTimeEnd, msTimeStart, msTimeEnd, seTimeStart, seTimeEnd, otTimeStart, otTimeEnd, prTimeStart, prTimeEnd;
3134 double elapseMs = 0.0;
3135 double elapseSe = 0.0;
3136 double elapseOt = 0.0;
3137 double elapsePr = 0.0;
3138 double elapseBl = 0.0;
3139 double elapseIo = 0.0;
3140 totTimeStart = mathutil::gettimeofday_sec();
[2641]3141 *************/
[2591]3142
[2193]3143 try {
3144 ofstream ofs;
3145 String coordInfo = "";
3146 bool hasSameNchan = true;
3147 bool outTextFile = false;
[2641]3148 bool csvFormat = false;
[2012]3149
[2193]3150 if (blfile != "") {
[2641]3151 csvFormat = (blfile.substr(0, 1) == "T");
3152 ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
[2193]3153 if (ofs) outTextFile = true;
3154 }
[2012]3155
[2193]3156 if (outLogger || outTextFile) {
3157 coordInfo = getCoordInfo()[0];
3158 if (coordInfo == "") coordInfo = "channel";
3159 hasSameNchan = hasSameNchanOverIFs();
3160 }
[2012]3161
[2193]3162 //Fitter fitter = Fitter();
3163 //fitter.setExpression("cspline", nPiece);
3164 //fitter.setIterClipping(thresClip, nIterClip);
[2012]3165
[2193]3166 bool showProgress;
3167 int minNRow;
3168 parseProgressInfo(progressInfo, showProgress, minNRow);
[2012]3169
[2344]3170 int nRow = nrow();
3171 std::vector<bool> chanMask;
3172
3173 //--------------------------------
[2193]3174 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
[2641]3175 /******************
[2591]3176 ioTimeStart = mathutil::gettimeofday_sec();
[2641]3177 **/
[2591]3178 std::vector<float> sp = getSpectrum(whichrow);
[2641]3179 /**
[2591]3180 ioTimeEnd = mathutil::gettimeofday_sec();
3181 elapseIo += (double)(ioTimeEnd - ioTimeStart);
3182 msTimeStart = mathutil::gettimeofday_sec();
[2641]3183 ******************/
[2591]3184
[2193]3185 chanMask = getCompositeChanMask(whichrow, mask);
[2591]3186
[2641]3187 /**
[2591]3188 msTimeEnd = mathutil::gettimeofday_sec();
3189 elapseMs += (double)(msTimeEnd - msTimeStart);
3190 blTimeStart = mathutil::gettimeofday_sec();
[2641]3191 **/
[2591]3192
[2193]3193 //fitBaseline(chanMask, whichrow, fitter);
3194 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
[2344]3195 std::vector<int> pieceEdges(nPiece+1);
3196 std::vector<float> params(nPiece*4);
[2193]3197 int nClipped = 0;
[2591]3198 std::vector<float> res = doCubicSplineFitting(sp, chanMask, nPiece, pieceEdges, params, nClipped, thresClip, nIterClip, getResidual);
3199
[2641]3200 /**
[2591]3201 blTimeEnd = mathutil::gettimeofday_sec();
3202 elapseBl += (double)(blTimeEnd - blTimeStart);
3203 seTimeStart = mathutil::gettimeofday_sec();
[2641]3204 **/
[2591]3205
3206
[2193]3207 setSpectrum(res, whichrow);
3208 //
[2012]3209
[2641]3210 /**
[2591]3211 seTimeEnd = mathutil::gettimeofday_sec();
3212 elapseSe += (double)(seTimeEnd - seTimeStart);
3213 otTimeStart = mathutil::gettimeofday_sec();
[2641]3214 **/
[2591]3215
[2641]3216 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "cubicSplineBaseline()", pieceEdges, params, nClipped);
[2591]3217
[2641]3218 /**
[2591]3219 otTimeEnd = mathutil::gettimeofday_sec();
3220 elapseOt += (double)(otTimeEnd - otTimeStart);
3221 prTimeStart = mathutil::gettimeofday_sec();
[2641]3222 **/
[2591]3223
[2193]3224 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
[2591]3225
[2641]3226 /******************
[2591]3227 prTimeEnd = mathutil::gettimeofday_sec();
3228 elapsePr += (double)(prTimeEnd - prTimeStart);
[2641]3229 ******************/
[2193]3230 }
[2344]3231 //--------------------------------
3232
[2193]3233 if (outTextFile) ofs.close();
3234
3235 } catch (...) {
3236 throw;
[2012]3237 }
[2641]3238 /***************
[2591]3239 totTimeEnd = mathutil::gettimeofday_sec();
3240 std::cout << "io : " << elapseIo << " (sec.)" << endl;
3241 std::cout << "ms : " << elapseMs << " (sec.)" << endl;
3242 std::cout << "bl : " << elapseBl << " (sec.)" << endl;
3243 std::cout << "se : " << elapseSe << " (sec.)" << endl;
3244 std::cout << "ot : " << elapseOt << " (sec.)" << endl;
3245 std::cout << "pr : " << elapsePr << " (sec.)" << endl;
3246 std::cout << "total : " << (double)(totTimeEnd - totTimeStart) << " (sec.)" << endl;
[2641]3247 ***************/
[2012]3248}
3249
[2189]3250void Scantable::autoCubicSplineBaseline(const std::vector<bool>& mask, int nPiece, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
[2012]3251{
[2193]3252 try {
3253 ofstream ofs;
3254 String coordInfo = "";
3255 bool hasSameNchan = true;
3256 bool outTextFile = false;
[2641]3257 bool csvFormat = false;
[2012]3258
[2193]3259 if (blfile != "") {
[2641]3260 csvFormat = (blfile.substr(0, 1) == "T");
3261 ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
[2193]3262 if (ofs) outTextFile = true;
3263 }
[2012]3264
[2193]3265 if (outLogger || outTextFile) {
3266 coordInfo = getCoordInfo()[0];
3267 if (coordInfo == "") coordInfo = "channel";
3268 hasSameNchan = hasSameNchanOverIFs();
3269 }
[2012]3270
[2193]3271 //Fitter fitter = Fitter();
3272 //fitter.setExpression("cspline", nPiece);
3273 //fitter.setIterClipping(thresClip, nIterClip);
[2012]3274
[2193]3275 int nRow = nrow();
3276 std::vector<bool> chanMask;
3277 int minEdgeSize = getIFNos().size()*2;
3278 STLineFinder lineFinder = STLineFinder();
3279 lineFinder.setOptions(threshold, 3, chanAvgLimit);
[2012]3280
[2193]3281 bool showProgress;
3282 int minNRow;
3283 parseProgressInfo(progressInfo, showProgress, minNRow);
[2189]3284
[2193]3285 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
[2591]3286 std::vector<float> sp = getSpectrum(whichrow);
[2012]3287
[2193]3288 //-------------------------------------------------------
3289 //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
3290 //-------------------------------------------------------
3291 int edgeSize = edge.size();
3292 std::vector<int> currentEdge;
3293 if (edgeSize >= 2) {
3294 int idx = 0;
3295 if (edgeSize > 2) {
3296 if (edgeSize < minEdgeSize) {
3297 throw(AipsError("Length of edge element info is less than that of IFs"));
3298 }
3299 idx = 2 * getIF(whichrow);
[2012]3300 }
[2193]3301 currentEdge.push_back(edge[idx]);
3302 currentEdge.push_back(edge[idx+1]);
3303 } else {
3304 throw(AipsError("Wrong length of edge element"));
[2012]3305 }
[2641]3306 //lineFinder.setData(getSpectrum(whichrow));
3307 lineFinder.setData(sp);
[2193]3308 lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
3309 chanMask = lineFinder.getMask();
3310 //-------------------------------------------------------
3311
3312
3313 //fitBaseline(chanMask, whichrow, fitter);
3314 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
[2344]3315 std::vector<int> pieceEdges(nPiece+1);
3316 std::vector<float> params(nPiece*4);
[2193]3317 int nClipped = 0;
[2591]3318 std::vector<float> res = doCubicSplineFitting(sp, chanMask, nPiece, pieceEdges, params, nClipped, thresClip, nIterClip, getResidual);
[2193]3319 setSpectrum(res, whichrow);
3320 //
3321
[2641]3322 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoCubicSplineBaseline()", pieceEdges, params, nClipped);
[2193]3323 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
[1907]3324 }
[2012]3325
[2193]3326 if (outTextFile) ofs.close();
[2012]3327
[2193]3328 } catch (...) {
3329 throw;
[2012]3330 }
[1730]3331}
[1907]3332
[2193]3333std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data, const std::vector<bool>& mask, int nPiece, std::vector<int>& idxEdge, std::vector<float>& params, int& nClipped, float thresClip, int nIterClip, bool getResidual)
[2081]3334{
3335 if (data.size() != mask.size()) {
3336 throw(AipsError("data and mask sizes are not identical"));
3337 }
[2012]3338 if (nPiece < 1) {
[2094]3339 throw(AipsError("number of the sections must be one or more"));
[2012]3340 }
3341
3342 int nChan = data.size();
[2344]3343 std::vector<int> maskArray(nChan);
3344 std::vector<int> x(nChan);
3345 int j = 0;
[2012]3346 for (int i = 0; i < nChan; ++i) {
[2344]3347 maskArray[i] = mask[i] ? 1 : 0;
[2012]3348 if (mask[i]) {
[2344]3349 x[j] = i;
3350 j++;
[2012]3351 }
3352 }
[2344]3353 int initNData = j;
[2012]3354
[2193]3355 if (initNData < nPiece) {
3356 throw(AipsError("too few non-flagged channels"));
3357 }
[2081]3358
3359 int nElement = (int)(floor(floor((double)(initNData/nPiece))+0.5));
[2344]3360 std::vector<double> invEdge(nPiece-1);
3361 idxEdge[0] = x[0];
[2012]3362 for (int i = 1; i < nPiece; ++i) {
[2047]3363 int valX = x[nElement*i];
[2344]3364 idxEdge[i] = valX;
3365 invEdge[i-1] = 1.0/(double)valX;
[2012]3366 }
[2344]3367 idxEdge[nPiece] = x[initNData-1]+1;
[2064]3368
[2081]3369 int nData = initNData;
3370 int nDOF = nPiece + 3; //number of parameters to solve, namely, 4+(nPiece-1).
3371
[2344]3372 std::vector<double> x1(nChan), x2(nChan), x3(nChan);
3373 std::vector<double> z1(nChan), x1z1(nChan), x2z1(nChan), x3z1(nChan);
3374 std::vector<double> r1(nChan), residual(nChan);
[2012]3375 for (int i = 0; i < nChan; ++i) {
[2064]3376 double di = (double)i;
3377 double dD = (double)data[i];
[2344]3378 x1[i] = di;
3379 x2[i] = di*di;
3380 x3[i] = di*di*di;
3381 z1[i] = dD;
3382 x1z1[i] = dD*di;
3383 x2z1[i] = dD*di*di;
3384 x3z1[i] = dD*di*di*di;
3385 r1[i] = 0.0;
3386 residual[i] = 0.0;
[2012]3387 }
3388
3389 for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
[2064]3390 // xMatrix : horizontal concatenation of
3391 // the least-sq. matrix (left) and an
3392 // identity matrix (right).
3393 // the right part is used to calculate the inverse matrix of the left part.
[2012]3394 double xMatrix[nDOF][2*nDOF];
3395 double zMatrix[nDOF];
3396 for (int i = 0; i < nDOF; ++i) {
3397 for (int j = 0; j < 2*nDOF; ++j) {
3398 xMatrix[i][j] = 0.0;
3399 }
3400 xMatrix[i][nDOF+i] = 1.0;
3401 zMatrix[i] = 0.0;
3402 }
3403
3404 for (int n = 0; n < nPiece; ++n) {
[2193]3405 int nUseDataInPiece = 0;
[2064]3406 for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
3407
[2012]3408 if (maskArray[i] == 0) continue;
[2064]3409
[2012]3410 xMatrix[0][0] += 1.0;
[2064]3411 xMatrix[0][1] += x1[i];
3412 xMatrix[0][2] += x2[i];
3413 xMatrix[0][3] += x3[i];
3414 xMatrix[1][1] += x2[i];
3415 xMatrix[1][2] += x3[i];
3416 xMatrix[1][3] += x2[i]*x2[i];
3417 xMatrix[2][2] += x2[i]*x2[i];
3418 xMatrix[2][3] += x3[i]*x2[i];
3419 xMatrix[3][3] += x3[i]*x3[i];
[2012]3420 zMatrix[0] += z1[i];
[2064]3421 zMatrix[1] += x1z1[i];
3422 zMatrix[2] += x2z1[i];
3423 zMatrix[3] += x3z1[i];
3424
[2012]3425 for (int j = 0; j < n; ++j) {
[2064]3426 double q = 1.0 - x1[i]*invEdge[j];
[2012]3427 q = q*q*q;
3428 xMatrix[0][j+4] += q;
[2064]3429 xMatrix[1][j+4] += q*x1[i];
3430 xMatrix[2][j+4] += q*x2[i];
3431 xMatrix[3][j+4] += q*x3[i];
[2012]3432 for (int k = 0; k < j; ++k) {
[2064]3433 double r = 1.0 - x1[i]*invEdge[k];
[2012]3434 r = r*r*r;
3435 xMatrix[k+4][j+4] += r*q;
3436 }
3437 xMatrix[j+4][j+4] += q*q;
3438 zMatrix[j+4] += q*z1[i];
3439 }
[2064]3440
[2193]3441 nUseDataInPiece++;
[2012]3442 }
[2193]3443
3444 if (nUseDataInPiece < 1) {
3445 std::vector<string> suffixOfPieceNumber(4);
3446 suffixOfPieceNumber[0] = "th";
3447 suffixOfPieceNumber[1] = "st";
3448 suffixOfPieceNumber[2] = "nd";
3449 suffixOfPieceNumber[3] = "rd";
3450 int idxNoDataPiece = (n % 10 <= 3) ? n : 0;
3451 ostringstream oss;
3452 oss << "all channels clipped or masked in " << n << suffixOfPieceNumber[idxNoDataPiece];
3453 oss << " piece of the spectrum. can't execute fitting anymore.";
3454 throw(AipsError(String(oss)));
3455 }
[2012]3456 }
3457
3458 for (int i = 0; i < nDOF; ++i) {
3459 for (int j = 0; j < i; ++j) {
3460 xMatrix[i][j] = xMatrix[j][i];
3461 }
3462 }
3463
[2344]3464 std::vector<double> invDiag(nDOF);
[2012]3465 for (int i = 0; i < nDOF; ++i) {
[2344]3466 invDiag[i] = 1.0/xMatrix[i][i];
[2012]3467 for (int j = 0; j < nDOF; ++j) {
3468 xMatrix[i][j] *= invDiag[i];
3469 }
3470 }
3471
3472 for (int k = 0; k < nDOF; ++k) {
3473 for (int i = 0; i < nDOF; ++i) {
3474 if (i != k) {
3475 double factor1 = xMatrix[k][k];
3476 double factor2 = xMatrix[i][k];
3477 for (int j = k; j < 2*nDOF; ++j) {
3478 xMatrix[i][j] *= factor1;
3479 xMatrix[i][j] -= xMatrix[k][j]*factor2;
3480 xMatrix[i][j] /= factor1;
3481 }
3482 }
3483 }
3484 double xDiag = xMatrix[k][k];
3485 for (int j = k; j < 2*nDOF; ++j) {
3486 xMatrix[k][j] /= xDiag;
3487 }
3488 }
3489
3490 for (int i = 0; i < nDOF; ++i) {
3491 for (int j = 0; j < nDOF; ++j) {
3492 xMatrix[i][nDOF+j] *= invDiag[j];
3493 }
3494 }
3495 //compute a vector y which consists of the coefficients of the best-fit spline curves
3496 //(a0,a1,a2,a3(,b3,c3,...)), namely, the ones for the leftmost piece and the ones of
3497 //cubic terms for the other pieces (in case nPiece>1).
[2344]3498 std::vector<double> y(nDOF);
[2012]3499 for (int i = 0; i < nDOF; ++i) {
[2344]3500 y[i] = 0.0;
[2012]3501 for (int j = 0; j < nDOF; ++j) {
3502 y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
3503 }
3504 }
3505
3506 double a0 = y[0];
3507 double a1 = y[1];
3508 double a2 = y[2];
3509 double a3 = y[3];
3510
[2344]3511 int j = 0;
[2012]3512 for (int n = 0; n < nPiece; ++n) {
[2064]3513 for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
3514 r1[i] = a0 + a1*x1[i] + a2*x2[i] + a3*x3[i];
[2012]3515 }
[2344]3516 params[j] = a0;
3517 params[j+1] = a1;
3518 params[j+2] = a2;
3519 params[j+3] = a3;
3520 j += 4;
[2012]3521
3522 if (n == nPiece-1) break;
3523
3524 double d = y[4+n];
[2064]3525 double iE = invEdge[n];
3526 a0 += d;
3527 a1 -= 3.0*d*iE;
3528 a2 += 3.0*d*iE*iE;
3529 a3 -= d*iE*iE*iE;
[2012]3530 }
3531
[2344]3532 //subtract constant value for masked regions at the edge of spectrum
3533 if (idxEdge[0] > 0) {
3534 int n = idxEdge[0];
3535 for (int i = 0; i < idxEdge[0]; ++i) {
3536 //--cubic extrapolate--
3537 //r1[i] = params[0] + params[1]*x1[i] + params[2]*x2[i] + params[3]*x3[i];
3538 //--linear extrapolate--
3539 //r1[i] = (r1[n+1] - r1[n])/(x1[n+1] - x1[n])*(x1[i] - x1[n]) + r1[n];
3540 //--constant--
3541 r1[i] = r1[n];
3542 }
3543 }
3544 if (idxEdge[nPiece] < nChan) {
3545 int n = idxEdge[nPiece]-1;
3546 for (int i = idxEdge[nPiece]; i < nChan; ++i) {
3547 //--cubic extrapolate--
3548 //int m = 4*(nPiece-1);
3549 //r1[i] = params[m] + params[m+1]*x1[i] + params[m+2]*x2[i] + params[m+3]*x3[i];
3550 //--linear extrapolate--
3551 //r1[i] = (r1[n-1] - r1[n])/(x1[n-1] - x1[n])*(x1[i] - x1[n]) + r1[n];
3552 //--constant--
3553 r1[i] = r1[n];
3554 }
3555 }
3556
3557 for (int i = 0; i < nChan; ++i) {
3558 residual[i] = z1[i] - r1[i];
3559 }
3560
[2012]3561 if ((nClip == nIterClip) || (thresClip <= 0.0)) {
3562 break;
3563 } else {
3564 double stdDev = 0.0;
3565 for (int i = 0; i < nChan; ++i) {
[2081]3566 stdDev += residual[i]*residual[i]*(double)maskArray[i];
[2012]3567 }
3568 stdDev = sqrt(stdDev/(double)nData);
3569
3570 double thres = stdDev * thresClip;
3571 int newNData = 0;
3572 for (int i = 0; i < nChan; ++i) {
[2081]3573 if (abs(residual[i]) >= thres) {
[2012]3574 maskArray[i] = 0;
3575 }
3576 if (maskArray[i] > 0) {
3577 newNData++;
3578 }
3579 }
[2081]3580 if (newNData == nData) {
[2064]3581 break; //no more flag to add. iteration stops.
[2012]3582 } else {
[2081]3583 nData = newNData;
[2012]3584 }
3585 }
3586 }
3587
[2193]3588 nClipped = initNData - nData;
3589
[2344]3590 std::vector<float> result(nChan);
[2058]3591 if (getResidual) {
3592 for (int i = 0; i < nChan; ++i) {
[2344]3593 result[i] = (float)residual[i];
[2058]3594 }
3595 } else {
3596 for (int i = 0; i < nChan; ++i) {
[2344]3597 result[i] = (float)r1[i];
[2058]3598 }
[2012]3599 }
3600
[2058]3601 return result;
[2012]3602}
3603
[2344]3604void Scantable::selectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves)
[2081]3605{
[2186]3606 nWaves.clear();
3607
3608 if (applyFFT) {
3609 string fftThAttr;
3610 float fftThSigma;
3611 int fftThTop;
3612 parseThresholdExpression(fftThresh, fftThAttr, fftThSigma, fftThTop);
3613 doSelectWaveNumbers(whichrow, chanMask, fftMethod, fftThSigma, fftThTop, fftThAttr, nWaves);
3614 }
3615
[2411]3616 addAuxWaveNumbers(whichrow, addNWaves, rejectNWaves, nWaves);
[2186]3617}
3618
3619void Scantable::parseThresholdExpression(const std::string& fftThresh, std::string& fftThAttr, float& fftThSigma, int& fftThTop)
3620{
3621 uInt idxSigma = fftThresh.find("sigma");
3622 uInt idxTop = fftThresh.find("top");
3623
3624 if (idxSigma == fftThresh.size() - 5) {
3625 std::istringstream is(fftThresh.substr(0, fftThresh.size() - 5));
3626 is >> fftThSigma;
3627 fftThAttr = "sigma";
3628 } else if (idxTop == 0) {
3629 std::istringstream is(fftThresh.substr(3));
3630 is >> fftThTop;
3631 fftThAttr = "top";
3632 } else {
3633 bool isNumber = true;
3634 for (uInt i = 0; i < fftThresh.size()-1; ++i) {
3635 char ch = (fftThresh.substr(i, 1).c_str())[0];
3636 if (!(isdigit(ch) || (fftThresh.substr(i, 1) == "."))) {
3637 isNumber = false;
3638 break;
3639 }
3640 }
3641 if (isNumber) {
3642 std::istringstream is(fftThresh);
3643 is >> fftThSigma;
3644 fftThAttr = "sigma";
3645 } else {
3646 throw(AipsError("fftthresh has a wrong value"));
3647 }
3648 }
3649}
3650
3651void Scantable::doSelectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const std::string& fftMethod, const float fftThSigma, const int fftThTop, const std::string& fftThAttr, std::vector<int>& nWaves)
3652{
3653 std::vector<float> fspec;
3654 if (fftMethod == "fft") {
3655 fspec = execFFT(whichrow, chanMask, false, true);
3656 //} else if (fftMethod == "lsp") {
3657 // fspec = lombScarglePeriodogram(whichrow);
3658 }
3659
3660 if (fftThAttr == "sigma") {
3661 float mean = 0.0;
3662 float mean2 = 0.0;
3663 for (uInt i = 0; i < fspec.size(); ++i) {
3664 mean += fspec[i];
3665 mean2 += fspec[i]*fspec[i];
3666 }
3667 mean /= float(fspec.size());
3668 mean2 /= float(fspec.size());
3669 float thres = mean + fftThSigma * float(sqrt(mean2 - mean*mean));
3670
3671 for (uInt i = 0; i < fspec.size(); ++i) {
3672 if (fspec[i] >= thres) {
3673 nWaves.push_back(i);
3674 }
3675 }
3676
3677 } else if (fftThAttr == "top") {
3678 for (int i = 0; i < fftThTop; ++i) {
3679 float max = 0.0;
3680 int maxIdx = 0;
3681 for (uInt j = 0; j < fspec.size(); ++j) {
3682 if (fspec[j] > max) {
3683 max = fspec[j];
3684 maxIdx = j;
3685 }
3686 }
3687 nWaves.push_back(maxIdx);
3688 fspec[maxIdx] = 0.0;
3689 }
3690
3691 }
3692
3693 if (nWaves.size() > 1) {
3694 sort(nWaves.begin(), nWaves.end());
3695 }
3696}
3697
[2411]3698void Scantable::addAuxWaveNumbers(const int whichrow, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves)
[2186]3699{
[2411]3700 std::vector<int> tempAddNWaves, tempRejectNWaves;
[2186]3701 for (uInt i = 0; i < addNWaves.size(); ++i) {
[2411]3702 tempAddNWaves.push_back(addNWaves[i]);
3703 }
3704 if ((tempAddNWaves.size() == 2) && (tempAddNWaves[1] == -999)) {
3705 setWaveNumberListUptoNyquistFreq(whichrow, tempAddNWaves);
3706 }
3707
3708 for (uInt i = 0; i < rejectNWaves.size(); ++i) {
3709 tempRejectNWaves.push_back(rejectNWaves[i]);
3710 }
3711 if ((tempRejectNWaves.size() == 2) && (tempRejectNWaves[1] == -999)) {
3712 setWaveNumberListUptoNyquistFreq(whichrow, tempRejectNWaves);
3713 }
3714
3715 for (uInt i = 0; i < tempAddNWaves.size(); ++i) {
[2186]3716 bool found = false;
3717 for (uInt j = 0; j < nWaves.size(); ++j) {
[2411]3718 if (nWaves[j] == tempAddNWaves[i]) {
[2186]3719 found = true;
3720 break;
3721 }
3722 }
[2411]3723 if (!found) nWaves.push_back(tempAddNWaves[i]);
[2186]3724 }
3725
[2411]3726 for (uInt i = 0; i < tempRejectNWaves.size(); ++i) {
[2186]3727 for (std::vector<int>::iterator j = nWaves.begin(); j != nWaves.end(); ) {
[2411]3728 if (*j == tempRejectNWaves[i]) {
[2186]3729 j = nWaves.erase(j);
3730 } else {
3731 ++j;
3732 }
3733 }
3734 }
3735
3736 if (nWaves.size() > 1) {
3737 sort(nWaves.begin(), nWaves.end());
3738 unique(nWaves.begin(), nWaves.end());
3739 }
3740}
3741
[2411]3742void Scantable::setWaveNumberListUptoNyquistFreq(const int whichrow, std::vector<int>& nWaves)
3743{
3744 if ((nWaves.size() == 2)&&(nWaves[1] == -999)) {
3745 int val = nWaves[0];
3746 int nyquistFreq = nchan(getIF(whichrow))/2+1;
3747 nWaves.clear();
3748 if (val > nyquistFreq) { // for safety, at least nWaves contains a constant; CAS-3759
3749 nWaves.push_back(0);
3750 }
3751 while (val <= nyquistFreq) {
3752 nWaves.push_back(val);
3753 val++;
3754 }
3755 }
3756}
3757
[2189]3758void Scantable::sinusoidBaseline(const std::vector<bool>& mask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, float thresClip, int nIterClip, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
[2186]3759{
[2193]3760 try {
3761 ofstream ofs;
3762 String coordInfo = "";
3763 bool hasSameNchan = true;
3764 bool outTextFile = false;
[2641]3765 bool csvFormat = false;
[2012]3766
[2193]3767 if (blfile != "") {
[2641]3768 csvFormat = (blfile.substr(0, 1) == "T");
3769 ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
[2193]3770 if (ofs) outTextFile = true;
3771 }
[2012]3772
[2193]3773 if (outLogger || outTextFile) {
3774 coordInfo = getCoordInfo()[0];
3775 if (coordInfo == "") coordInfo = "channel";
3776 hasSameNchan = hasSameNchanOverIFs();
3777 }
[2012]3778
[2193]3779 //Fitter fitter = Fitter();
3780 //fitter.setExpression("sinusoid", nWaves);
3781 //fitter.setIterClipping(thresClip, nIterClip);
[2012]3782
[2193]3783 int nRow = nrow();
3784 std::vector<bool> chanMask;
3785 std::vector<int> nWaves;
[2012]3786
[2193]3787 bool showProgress;
3788 int minNRow;
3789 parseProgressInfo(progressInfo, showProgress, minNRow);
[2189]3790
[2193]3791 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3792 chanMask = getCompositeChanMask(whichrow, mask);
3793 selectWaveNumbers(whichrow, chanMask, applyFFT, fftMethod, fftThresh, addNWaves, rejectNWaves, nWaves);
[2186]3794
[2193]3795 //FOR DEBUGGING------------
[2411]3796 /*
[2193]3797 if (whichrow < 0) {// == nRow -1) {
3798 cout << "+++ i=" << setw(3) << whichrow << ", IF=" << setw(2) << getIF(whichrow);
3799 if (applyFFT) {
[2186]3800 cout << "[ ";
3801 for (uInt j = 0; j < nWaves.size(); ++j) {
3802 cout << nWaves[j] << ", ";
3803 }
3804 cout << " ] " << endl;
[2193]3805 }
3806 cout << flush;
[2186]3807 }
[2411]3808 */
[2193]3809 //-------------------------
3810
3811 //fitBaseline(chanMask, whichrow, fitter);
3812 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
3813 std::vector<float> params;
3814 int nClipped = 0;
3815 std::vector<float> res = doSinusoidFitting(getSpectrum(whichrow), chanMask, nWaves, params, nClipped, thresClip, nIterClip, getResidual);
3816 setSpectrum(res, whichrow);
3817 //
3818
[2641]3819 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "sinusoidBaseline()", params, nClipped);
[2193]3820 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
[2186]3821 }
3822
[2193]3823 if (outTextFile) ofs.close();
[2012]3824
[2193]3825 } catch (...) {
3826 throw;
[1931]3827 }
[1907]3828}
3829
[2189]3830void Scantable::autoSinusoidBaseline(const std::vector<bool>& mask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
[2012]3831{
[2193]3832 try {
3833 ofstream ofs;
3834 String coordInfo = "";
3835 bool hasSameNchan = true;
3836 bool outTextFile = false;
[2641]3837 bool csvFormat = false;
[2012]3838
[2193]3839 if (blfile != "") {
[2641]3840 csvFormat = (blfile.substr(0, 1) == "T");
3841 ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
[2193]3842 if (ofs) outTextFile = true;
3843 }
[2012]3844
[2193]3845 if (outLogger || outTextFile) {
3846 coordInfo = getCoordInfo()[0];
3847 if (coordInfo == "") coordInfo = "channel";
3848 hasSameNchan = hasSameNchanOverIFs();
3849 }
[2012]3850
[2193]3851 //Fitter fitter = Fitter();
3852 //fitter.setExpression("sinusoid", nWaves);
3853 //fitter.setIterClipping(thresClip, nIterClip);
[2012]3854
[2193]3855 int nRow = nrow();
3856 std::vector<bool> chanMask;
3857 std::vector<int> nWaves;
[2186]3858
[2193]3859 int minEdgeSize = getIFNos().size()*2;
3860 STLineFinder lineFinder = STLineFinder();
3861 lineFinder.setOptions(threshold, 3, chanAvgLimit);
[2012]3862
[2193]3863 bool showProgress;
3864 int minNRow;
3865 parseProgressInfo(progressInfo, showProgress, minNRow);
[2189]3866
[2193]3867 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
[2012]3868
[2193]3869 //-------------------------------------------------------
3870 //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
3871 //-------------------------------------------------------
3872 int edgeSize = edge.size();
3873 std::vector<int> currentEdge;
3874 if (edgeSize >= 2) {
3875 int idx = 0;
3876 if (edgeSize > 2) {
3877 if (edgeSize < minEdgeSize) {
3878 throw(AipsError("Length of edge element info is less than that of IFs"));
3879 }
3880 idx = 2 * getIF(whichrow);
[2012]3881 }
[2193]3882 currentEdge.push_back(edge[idx]);
3883 currentEdge.push_back(edge[idx+1]);
3884 } else {
3885 throw(AipsError("Wrong length of edge element"));
[2012]3886 }
[2193]3887 lineFinder.setData(getSpectrum(whichrow));
3888 lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
3889 chanMask = lineFinder.getMask();
3890 //-------------------------------------------------------
3891
3892 selectWaveNumbers(whichrow, chanMask, applyFFT, fftMethod, fftThresh, addNWaves, rejectNWaves, nWaves);
3893
3894 //fitBaseline(chanMask, whichrow, fitter);
3895 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
3896 std::vector<float> params;
3897 int nClipped = 0;
3898 std::vector<float> res = doSinusoidFitting(getSpectrum(whichrow), chanMask, nWaves, params, nClipped, thresClip, nIterClip, getResidual);
3899 setSpectrum(res, whichrow);
3900 //
3901
[2641]3902 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoSinusoidBaseline()", params, nClipped);
[2193]3903 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
[2012]3904 }
3905
[2193]3906 if (outTextFile) ofs.close();
[2012]3907
[2193]3908 } catch (...) {
3909 throw;
[2047]3910 }
3911}
3912
[2193]3913std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data, const std::vector<bool>& mask, const std::vector<int>& waveNumbers, std::vector<float>& params, int& nClipped, float thresClip, int nIterClip, bool getResidual)
[2081]3914{
[2047]3915 if (data.size() != mask.size()) {
[2081]3916 throw(AipsError("data and mask sizes are not identical"));
[2047]3917 }
[2081]3918 if (data.size() < 2) {
3919 throw(AipsError("data size is too short"));
3920 }
3921 if (waveNumbers.size() == 0) {
[2186]3922 throw(AipsError("no wave numbers given"));
[2081]3923 }
3924 std::vector<int> nWaves; // sorted and uniqued array of wave numbers
3925 nWaves.reserve(waveNumbers.size());
3926 copy(waveNumbers.begin(), waveNumbers.end(), back_inserter(nWaves));
3927 sort(nWaves.begin(), nWaves.end());
3928 std::vector<int>::iterator end_it = unique(nWaves.begin(), nWaves.end());
3929 nWaves.erase(end_it, nWaves.end());
3930
3931 int minNWaves = nWaves[0];
3932 if (minNWaves < 0) {
[2058]3933 throw(AipsError("wave number must be positive or zero (i.e. constant)"));
3934 }
[2081]3935 bool hasConstantTerm = (minNWaves == 0);
[2047]3936
3937 int nChan = data.size();
3938 std::vector<int> maskArray;
3939 std::vector<int> x;
3940 for (int i = 0; i < nChan; ++i) {
3941 maskArray.push_back(mask[i] ? 1 : 0);
3942 if (mask[i]) {
3943 x.push_back(i);
3944 }
3945 }
3946
[2081]3947 int initNData = x.size();
[2047]3948
[2081]3949 int nData = initNData;
3950 int nDOF = nWaves.size() * 2 - (hasConstantTerm ? 1 : 0); //number of parameters to solve.
3951
3952 const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
[2186]3953 double baseXFactor = 2.0*PI/(double)(nChan-1); //the denominator (nChan-1) should be changed to (xdata[nChan-1]-xdata[0]) for accepting x-values given in velocity or frequency when this function is moved to fitter. (2011/03/30 WK)
[2081]3954
3955 // xArray : contains elemental values for computing the least-square matrix.
3956 // xArray.size() is nDOF and xArray[*].size() is nChan.
3957 // Each xArray element are as follows:
3958 // xArray[0] = {1.0, 1.0, 1.0, ..., 1.0},
3959 // xArray[2n-1] = {sin(nPI/L*x[0]), sin(nPI/L*x[1]), ..., sin(nPI/L*x[nChan])},
3960 // xArray[2n] = {cos(nPI/L*x[0]), cos(nPI/L*x[1]), ..., cos(nPI/L*x[nChan])},
3961 // where (1 <= n <= nMaxWavesInSW),
3962 // or,
3963 // xArray[2n-1] = {sin(wn[n]PI/L*x[0]), sin(wn[n]PI/L*x[1]), ..., sin(wn[n]PI/L*x[nChan])},
3964 // xArray[2n] = {cos(wn[n]PI/L*x[0]), cos(wn[n]PI/L*x[1]), ..., cos(wn[n]PI/L*x[nChan])},
3965 // where wn[n] denotes waveNumbers[n] (1 <= n <= waveNumbers.size()).
3966 std::vector<std::vector<double> > xArray;
3967 if (hasConstantTerm) {
3968 std::vector<double> xu;
3969 for (int j = 0; j < nChan; ++j) {
3970 xu.push_back(1.0);
3971 }
3972 xArray.push_back(xu);
3973 }
3974 for (uInt i = (hasConstantTerm ? 1 : 0); i < nWaves.size(); ++i) {
3975 double xFactor = baseXFactor*(double)nWaves[i];
3976 std::vector<double> xs, xc;
3977 xs.clear();
3978 xc.clear();
3979 for (int j = 0; j < nChan; ++j) {
3980 xs.push_back(sin(xFactor*(double)j));
3981 xc.push_back(cos(xFactor*(double)j));
3982 }
3983 xArray.push_back(xs);
3984 xArray.push_back(xc);
3985 }
3986
3987 std::vector<double> z1, r1, residual;
[2047]3988 for (int i = 0; i < nChan; ++i) {
[2081]3989 z1.push_back((double)data[i]);
[2047]3990 r1.push_back(0.0);
[2081]3991 residual.push_back(0.0);
[2047]3992 }
3993
3994 for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
[2081]3995 // xMatrix : horizontal concatenation of
3996 // the least-sq. matrix (left) and an
3997 // identity matrix (right).
3998 // the right part is used to calculate the inverse matrix of the left part.
[2047]3999 double xMatrix[nDOF][2*nDOF];
4000 double zMatrix[nDOF];
4001 for (int i = 0; i < nDOF; ++i) {
4002 for (int j = 0; j < 2*nDOF; ++j) {
4003 xMatrix[i][j] = 0.0;
[2012]4004 }
[2047]4005 xMatrix[i][nDOF+i] = 1.0;
4006 zMatrix[i] = 0.0;
4007 }
4008
[2193]4009 int nUseData = 0;
[2081]4010 for (int k = 0; k < nChan; ++k) {
4011 if (maskArray[k] == 0) continue;
4012
4013 for (int i = 0; i < nDOF; ++i) {
4014 for (int j = i; j < nDOF; ++j) {
4015 xMatrix[i][j] += xArray[i][k] * xArray[j][k];
4016 }
4017 zMatrix[i] += z1[k] * xArray[i][k];
4018 }
[2193]4019
4020 nUseData++;
[2047]4021 }
4022
[2193]4023 if (nUseData < 1) {
4024 throw(AipsError("all channels clipped or masked. can't execute fitting anymore."));
4025 }
4026
[2047]4027 for (int i = 0; i < nDOF; ++i) {
4028 for (int j = 0; j < i; ++j) {
4029 xMatrix[i][j] = xMatrix[j][i];
[2012]4030 }
4031 }
4032
[2047]4033 std::vector<double> invDiag;
4034 for (int i = 0; i < nDOF; ++i) {
4035 invDiag.push_back(1.0/xMatrix[i][i]);
4036 for (int j = 0; j < nDOF; ++j) {
4037 xMatrix[i][j] *= invDiag[i];
4038 }
4039 }
4040
4041 for (int k = 0; k < nDOF; ++k) {
4042 for (int i = 0; i < nDOF; ++i) {
4043 if (i != k) {
4044 double factor1 = xMatrix[k][k];
4045 double factor2 = xMatrix[i][k];
4046 for (int j = k; j < 2*nDOF; ++j) {
4047 xMatrix[i][j] *= factor1;
4048 xMatrix[i][j] -= xMatrix[k][j]*factor2;
4049 xMatrix[i][j] /= factor1;
4050 }
4051 }
4052 }
4053 double xDiag = xMatrix[k][k];
4054 for (int j = k; j < 2*nDOF; ++j) {
4055 xMatrix[k][j] /= xDiag;
4056 }
4057 }
4058
4059 for (int i = 0; i < nDOF; ++i) {
4060 for (int j = 0; j < nDOF; ++j) {
4061 xMatrix[i][nDOF+j] *= invDiag[j];
4062 }
4063 }
4064 //compute a vector y which consists of the coefficients of the sinusoids forming the
[2081]4065 //best-fit curves (a0,s1,c1,s2,c2,...), where a0 is constant and s* and c* are of sine
4066 //and cosine functions, respectively.
[2047]4067 std::vector<double> y;
[2081]4068 params.clear();
[2047]4069 for (int i = 0; i < nDOF; ++i) {
4070 y.push_back(0.0);
4071 for (int j = 0; j < nDOF; ++j) {
4072 y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
4073 }
[2081]4074 params.push_back(y[i]);
[2047]4075 }
4076
4077 for (int i = 0; i < nChan; ++i) {
[2081]4078 r1[i] = y[0];
4079 for (int j = 1; j < nDOF; ++j) {
4080 r1[i] += y[j]*xArray[j][i];
4081 }
4082 residual[i] = z1[i] - r1[i];
[2047]4083 }
4084
4085 if ((nClip == nIterClip) || (thresClip <= 0.0)) {
4086 break;
4087 } else {
4088 double stdDev = 0.0;
4089 for (int i = 0; i < nChan; ++i) {
[2081]4090 stdDev += residual[i]*residual[i]*(double)maskArray[i];
[2047]4091 }
4092 stdDev = sqrt(stdDev/(double)nData);
4093
4094 double thres = stdDev * thresClip;
4095 int newNData = 0;
4096 for (int i = 0; i < nChan; ++i) {
[2081]4097 if (abs(residual[i]) >= thres) {
[2047]4098 maskArray[i] = 0;
4099 }
4100 if (maskArray[i] > 0) {
4101 newNData++;
4102 }
4103 }
[2081]4104 if (newNData == nData) {
4105 break; //no more flag to add. iteration stops.
[2047]4106 } else {
[2081]4107 nData = newNData;
[2047]4108 }
4109 }
[2012]4110 }
4111
[2193]4112 nClipped = initNData - nData;
4113
[2058]4114 std::vector<float> result;
4115 if (getResidual) {
4116 for (int i = 0; i < nChan; ++i) {
[2081]4117 result.push_back((float)residual[i]);
[2058]4118 }
4119 } else {
4120 for (int i = 0; i < nChan; ++i) {
4121 result.push_back((float)r1[i]);
4122 }
[2047]4123 }
4124
[2058]4125 return result;
[2012]4126}
4127
[2047]4128void Scantable::fitBaseline(const std::vector<bool>& mask, int whichrow, Fitter& fitter)
4129{
[2081]4130 std::vector<double> dAbcissa = getAbcissa(whichrow);
4131 std::vector<float> abcissa;
4132 for (uInt i = 0; i < dAbcissa.size(); ++i) {
4133 abcissa.push_back((float)dAbcissa[i]);
[2047]4134 }
4135 std::vector<float> spec = getSpectrum(whichrow);
[2012]4136
[2081]4137 fitter.setData(abcissa, spec, mask);
[2047]4138 fitter.lfit();
4139}
4140
4141std::vector<bool> Scantable::getCompositeChanMask(int whichrow, const std::vector<bool>& inMask)
4142{
[2591]4143 /****
4144 double ms1TimeStart, ms1TimeEnd, ms2TimeStart, ms2TimeEnd;
4145 double elapse1 = 0.0;
4146 double elapse2 = 0.0;
4147
4148 ms1TimeStart = mathutil::gettimeofday_sec();
4149 ****/
4150
[2186]4151 std::vector<bool> mask = getMask(whichrow);
[2591]4152
4153 /****
4154 ms1TimeEnd = mathutil::gettimeofday_sec();
4155 elapse1 = ms1TimeEnd - ms1TimeStart;
4156 std::cout << "ms1 : " << elapse1 << " (sec.)" << endl;
4157 ms2TimeStart = mathutil::gettimeofday_sec();
4158 ****/
4159
[2186]4160 uInt maskSize = mask.size();
[2410]4161 if (inMask.size() != 0) {
4162 if (maskSize != inMask.size()) {
4163 throw(AipsError("mask sizes are not the same."));
4164 }
4165 for (uInt i = 0; i < maskSize; ++i) {
4166 mask[i] = mask[i] && inMask[i];
4167 }
[2047]4168 }
4169
[2591]4170 /****
4171 ms2TimeEnd = mathutil::gettimeofday_sec();
4172 elapse2 = ms2TimeEnd - ms2TimeStart;
4173 std::cout << "ms2 : " << elapse2 << " (sec.)" << endl;
4174 ****/
4175
[2186]4176 return mask;
[2047]4177}
4178
4179/*
4180std::vector<bool> Scantable::getCompositeChanMask(int whichrow, const std::vector<bool>& inMask, const std::vector<int>& edge, const int minEdgeSize, STLineFinder& lineFinder)
4181{
4182 int edgeSize = edge.size();
4183 std::vector<int> currentEdge;
4184 if (edgeSize >= 2) {
4185 int idx = 0;
4186 if (edgeSize > 2) {
4187 if (edgeSize < minEdgeSize) {
4188 throw(AipsError("Length of edge element info is less than that of IFs"));
4189 }
4190 idx = 2 * getIF(whichrow);
4191 }
4192 currentEdge.push_back(edge[idx]);
4193 currentEdge.push_back(edge[idx+1]);
4194 } else {
4195 throw(AipsError("Wrong length of edge element"));
4196 }
4197
4198 lineFinder.setData(getSpectrum(whichrow));
4199 lineFinder.findLines(getCompositeChanMask(whichrow, inMask), currentEdge, whichrow);
4200
4201 return lineFinder.getMask();
4202}
4203*/
4204
4205/* for poly. the variations of outputFittingResult() should be merged into one eventually (2011/3/10 WK) */
[2641]4206void Scantable::outputFittingResult(bool outLogger, bool outTextFile, bool csvFormat, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, Fitter& fitter)
[2186]4207{
[2047]4208 if (outLogger || outTextFile) {
4209 std::vector<float> params = fitter.getParameters();
4210 std::vector<bool> fixed = fitter.getFixedParameters();
4211 float rms = getRms(chanMask, whichrow);
4212 String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
4213
4214 if (outLogger) {
4215 LogIO ols(LogOrigin("Scantable", funcName, WHERE));
[2641]4216 ols << formatBaselineParams(params, fixed, rms, -1, masklist, whichrow, false, csvFormat) << LogIO::POST ;
[2047]4217 }
4218 if (outTextFile) {
[2641]4219 ofs << formatBaselineParams(params, fixed, rms, -1, masklist, whichrow, true, csvFormat) << flush;
[2047]4220 }
4221 }
4222}
4223
4224/* for cspline. will be merged once cspline is available in fitter (2011/3/10 WK) */
[2641]4225void Scantable::outputFittingResult(bool outLogger, bool outTextFile, bool csvFormat, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, const std::vector<int>& edge, const std::vector<float>& params, const int nClipped)
[2186]4226{
[2047]4227 if (outLogger || outTextFile) {
[2591]4228 /****
4229 double ms1TimeStart, ms1TimeEnd, ms2TimeStart, ms2TimeEnd;
4230 double elapse1 = 0.0;
4231 double elapse2 = 0.0;
4232
4233 ms1TimeStart = mathutil::gettimeofday_sec();
4234 ****/
4235
[2047]4236 float rms = getRms(chanMask, whichrow);
[2591]4237
4238 /****
4239 ms1TimeEnd = mathutil::gettimeofday_sec();
4240 elapse1 = ms1TimeEnd - ms1TimeStart;
4241 std::cout << "ot1 : " << elapse1 << " (sec.)" << endl;
4242 ms2TimeStart = mathutil::gettimeofday_sec();
4243 ****/
4244
[2047]4245 String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
[2081]4246 std::vector<bool> fixed;
4247 fixed.clear();
[2047]4248
4249 if (outLogger) {
4250 LogIO ols(LogOrigin("Scantable", funcName, WHERE));
[2641]4251 ols << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped, masklist, whichrow, false, csvFormat) << LogIO::POST ;
[2047]4252 }
4253 if (outTextFile) {
[2641]4254 ofs << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped, masklist, whichrow, true, csvFormat) << flush;
[2047]4255 }
[2591]4256
4257 /****
4258 ms2TimeEnd = mathutil::gettimeofday_sec();
4259 elapse2 = ms2TimeEnd - ms2TimeStart;
4260 std::cout << "ot2 : " << elapse2 << " (sec.)" << endl;
4261 ****/
4262
[2047]4263 }
4264}
4265
[2645]4266/* for chebyshev/sinusoid. will be merged once chebyshev/sinusoid is available in fitter (2011/3/10 WK) */
[2641]4267void Scantable::outputFittingResult(bool outLogger, bool outTextFile, bool csvFormat, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, const std::vector<float>& params, const int nClipped)
[2186]4268{
[2047]4269 if (outLogger || outTextFile) {
4270 float rms = getRms(chanMask, whichrow);
4271 String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
[2081]4272 std::vector<bool> fixed;
4273 fixed.clear();
[2047]4274
4275 if (outLogger) {
4276 LogIO ols(LogOrigin("Scantable", funcName, WHERE));
[2641]4277 ols << formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, false, csvFormat) << LogIO::POST ;
[2047]4278 }
4279 if (outTextFile) {
[2641]4280 ofs << formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, true, csvFormat) << flush;
[2047]4281 }
4282 }
4283}
4284
[2189]4285void Scantable::parseProgressInfo(const std::string& progressInfo, bool& showProgress, int& minNRow)
[2186]4286{
[2189]4287 int idxDelimiter = progressInfo.find(",");
4288 if (idxDelimiter < 0) {
4289 throw(AipsError("wrong value in 'showprogress' parameter")) ;
4290 }
4291 showProgress = (progressInfo.substr(0, idxDelimiter) == "true");
4292 std::istringstream is(progressInfo.substr(idxDelimiter+1));
4293 is >> minNRow;
4294}
4295
4296void Scantable::showProgressOnTerminal(const int nProcessed, const int nTotal, const bool showProgress, const int nTotalThreshold)
4297{
4298 if (showProgress && (nTotal >= nTotalThreshold)) {
[2186]4299 int nInterval = int(floor(double(nTotal)/100.0));
4300 if (nInterval == 0) nInterval++;
4301
[2193]4302 if (nProcessed % nInterval == 0) {
[2189]4303 printf("\r"); //go to the head of line
[2186]4304 printf("\x1b[31m\x1b[1m"); //set red color, highlighted
[2189]4305 printf("[%3d%%]", (int)(100.0*(double(nProcessed+1))/(double(nTotal))) );
4306 printf("\x1b[39m\x1b[0m"); //set default attributes
[2186]4307 fflush(NULL);
4308 }
[2193]4309
[2186]4310 if (nProcessed == nTotal - 1) {
4311 printf("\r\x1b[K"); //clear
4312 fflush(NULL);
4313 }
[2193]4314
[2186]4315 }
4316}
4317
4318std::vector<float> Scantable::execFFT(const int whichrow, const std::vector<bool>& inMask, bool getRealImag, bool getAmplitudeOnly)
4319{
4320 std::vector<bool> mask = getMask(whichrow);
4321
4322 if (inMask.size() > 0) {
4323 uInt maskSize = mask.size();
4324 if (maskSize != inMask.size()) {
4325 throw(AipsError("mask sizes are not the same."));
4326 }
4327 for (uInt i = 0; i < maskSize; ++i) {
4328 mask[i] = mask[i] && inMask[i];
4329 }
4330 }
4331
4332 Vector<Float> spec = getSpectrum(whichrow);
4333 mathutil::doZeroOrderInterpolation(spec, mask);
4334
4335 FFTServer<Float,Complex> ffts;
4336 Vector<Complex> fftres;
4337 ffts.fft0(fftres, spec);
4338
4339 std::vector<float> res;
4340 float norm = float(2.0/double(spec.size()));
4341
4342 if (getRealImag) {
4343 for (uInt i = 0; i < fftres.size(); ++i) {
4344 res.push_back(real(fftres[i])*norm);
4345 res.push_back(imag(fftres[i])*norm);
4346 }
4347 } else {
4348 for (uInt i = 0; i < fftres.size(); ++i) {
4349 res.push_back(abs(fftres[i])*norm);
4350 if (!getAmplitudeOnly) res.push_back(arg(fftres[i]));
4351 }
4352 }
4353
4354 return res;
4355}
4356
4357
4358float Scantable::getRms(const std::vector<bool>& mask, int whichrow)
4359{
[2591]4360 /****
[2737]4361 double ms1TimeStart, ms1TimeEnd;
[2591]4362 double elapse1 = 0.0;
4363 ms1TimeStart = mathutil::gettimeofday_sec();
4364 ****/
4365
[2012]4366 Vector<Float> spec;
4367 specCol_.get(whichrow, spec);
4368
[2591]4369 /****
4370 ms1TimeEnd = mathutil::gettimeofday_sec();
4371 elapse1 = ms1TimeEnd - ms1TimeStart;
4372 std::cout << "rm1 : " << elapse1 << " (sec.)" << endl;
4373 ****/
4374
[2737]4375 return (float)doGetRms(mask, spec);
4376}
4377
4378double Scantable::doGetRms(const std::vector<bool>& mask, const Vector<Float>& spec)
4379{
4380 double mean = 0.0;
4381 double smean = 0.0;
[2012]4382 int n = 0;
[2047]4383 for (uInt i = 0; i < spec.nelements(); ++i) {
[2012]4384 if (mask[i]) {
[2737]4385 double val = (double)spec[i];
4386 mean += val;
4387 smean += val*val;
[2012]4388 n++;
4389 }
4390 }
4391
[2737]4392 mean /= (double)n;
4393 smean /= (double)n;
[2012]4394
4395 return sqrt(smean - mean*mean);
4396}
4397
[2641]4398std::string Scantable::formatBaselineParamsHeader(int whichrow, const std::string& masklist, bool verbose, bool csvformat) const
[2012]4399{
[2641]4400 if (verbose) {
4401 ostringstream oss;
[2012]4402
[2641]4403 if (csvformat) {
4404 oss << getScan(whichrow) << ",";
4405 oss << getBeam(whichrow) << ",";
4406 oss << getIF(whichrow) << ",";
4407 oss << getPol(whichrow) << ",";
4408 oss << getCycle(whichrow) << ",";
4409 String commaReplacedMasklist = masklist;
4410 string::size_type pos = 0;
4411 while (pos = commaReplacedMasklist.find(","), pos != string::npos) {
4412 commaReplacedMasklist.replace(pos, 1, ";");
4413 pos++;
4414 }
4415 oss << commaReplacedMasklist << ",";
4416 } else {
4417 oss << " Scan[" << getScan(whichrow) << "]";
4418 oss << " Beam[" << getBeam(whichrow) << "]";
4419 oss << " IF[" << getIF(whichrow) << "]";
4420 oss << " Pol[" << getPol(whichrow) << "]";
4421 oss << " Cycle[" << getCycle(whichrow) << "]: " << endl;
4422 oss << "Fitter range = " << masklist << endl;
4423 oss << "Baseline parameters" << endl;
4424 }
[2012]4425 oss << flush;
[2641]4426
4427 return String(oss);
[2012]4428 }
4429
[2641]4430 return "";
[2012]4431}
4432
[2641]4433std::string Scantable::formatBaselineParamsFooter(float rms, int nClipped, bool verbose, bool csvformat) const
[2012]4434{
[2641]4435 if (verbose) {
4436 ostringstream oss;
[2012]4437
[2641]4438 if (csvformat) {
4439 oss << rms << ",";
4440 if (nClipped >= 0) {
4441 oss << nClipped;
4442 }
4443 } else {
4444 oss << "Results of baseline fit" << endl;
4445 oss << " rms = " << setprecision(6) << rms << endl;
4446 if (nClipped >= 0) {
4447 oss << " Number of clipped channels = " << nClipped << endl;
4448 }
4449 for (int i = 0; i < 60; ++i) {
4450 oss << "-";
4451 }
[2193]4452 }
[2131]4453 oss << endl;
[2094]4454 oss << flush;
[2641]4455
4456 return String(oss);
[2012]4457 }
4458
[2641]4459 return "";
[2012]4460}
4461
[2186]4462std::string Scantable::formatBaselineParams(const std::vector<float>& params,
4463 const std::vector<bool>& fixed,
4464 float rms,
[2193]4465 int nClipped,
[2186]4466 const std::string& masklist,
4467 int whichrow,
4468 bool verbose,
[2641]4469 bool csvformat,
[2186]4470 int start, int count,
4471 bool resetparamid) const
[2047]4472{
[2064]4473 int nParam = (int)(params.size());
[2047]4474
[2064]4475 if (nParam < 1) {
4476 return(" Not fitted");
4477 } else {
4478
4479 ostringstream oss;
[2641]4480 oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat);
[2064]4481
4482 if (start < 0) start = 0;
4483 if (count < 0) count = nParam;
4484 int end = start + count;
4485 if (end > nParam) end = nParam;
4486 int paramidoffset = (resetparamid) ? (-start) : 0;
4487
4488 for (int i = start; i < end; ++i) {
4489 if (i > start) {
[2047]4490 oss << ",";
4491 }
[2064]4492 std::string sFix = ((fixed.size() > 0) && (fixed[i]) && verbose) ? "(fixed)" : "";
[2641]4493 if (csvformat) {
4494 oss << params[i] << sFix;
4495 } else {
4496 oss << " p" << (i+paramidoffset) << sFix << "= " << right << setw(13) << setprecision(6) << params[i];
4497 }
[2047]4498 }
[2064]4499
[2641]4500 if (csvformat) {
4501 oss << ",";
[2644]4502 } else {
4503 oss << endl;
[2641]4504 }
4505 oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat);
[2064]4506
4507 return String(oss);
[2047]4508 }
4509
4510}
4511
[2641]4512std::string Scantable::formatPiecewiseBaselineParams(const std::vector<int>& ranges, const std::vector<float>& params, const std::vector<bool>& fixed, float rms, int nClipped, const std::string& masklist, int whichrow, bool verbose, bool csvformat) const
[2012]4513{
[2064]4514 int nOutParam = (int)(params.size());
4515 int nPiece = (int)(ranges.size()) - 1;
[2012]4516
[2064]4517 if (nOutParam < 1) {
4518 return(" Not fitted");
4519 } else if (nPiece < 0) {
[2641]4520 return formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, verbose, csvformat);
[2064]4521 } else if (nPiece < 1) {
4522 return(" Bad count of the piece edge info");
4523 } else if (nOutParam % nPiece != 0) {
4524 return(" Bad count of the output baseline parameters");
4525 } else {
4526
4527 int nParam = nOutParam / nPiece;
4528
4529 ostringstream oss;
[2641]4530 oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat);
[2064]4531
[2641]4532 if (csvformat) {
4533 for (int i = 0; i < nPiece; ++i) {
4534 oss << ranges[i] << "," << (ranges[i+1]-1) << ",";
4535 oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true);
4536 }
4537 } else {
4538 stringstream ss;
4539 ss << ranges[nPiece] << flush;
4540 int wRange = ss.str().size() * 2 + 5;
[2064]4541
[2641]4542 for (int i = 0; i < nPiece; ++i) {
4543 ss.str("");
4544 ss << " [" << ranges[i] << "," << (ranges[i+1]-1) << "]";
4545 oss << left << setw(wRange) << ss.str();
4546 oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true);
[2644]4547 //oss << endl;
[2641]4548 }
[2012]4549 }
[2064]4550
[2641]4551 oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat);
[2064]4552
4553 return String(oss);
[2012]4554 }
4555
4556}
4557
[2047]4558bool Scantable::hasSameNchanOverIFs()
[2012]4559{
[2047]4560 int nIF = nif(-1);
4561 int nCh;
4562 int totalPositiveNChan = 0;
4563 int nPositiveNChan = 0;
[2012]4564
[2047]4565 for (int i = 0; i < nIF; ++i) {
4566 nCh = nchan(i);
4567 if (nCh > 0) {
4568 totalPositiveNChan += nCh;
4569 nPositiveNChan++;
[2012]4570 }
4571 }
4572
[2047]4573 return (totalPositiveNChan == (nPositiveNChan * nchan(0)));
[2012]4574}
4575
[2047]4576std::string Scantable::getMaskRangeList(const std::vector<bool>& mask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, bool verbose)
[2012]4577{
[2427]4578 if (mask.size() <= 0) {
4579 throw(AipsError("The mask elements should be > 0"));
[2012]4580 }
[2047]4581 int IF = getIF(whichrow);
4582 if (mask.size() != (uInt)nchan(IF)) {
[2012]4583 throw(AipsError("Number of channels in scantable != number of mask elements"));
4584 }
4585
[2047]4586 if (verbose) {
[2012]4587 LogIO logOs(LogOrigin("Scantable", "getMaskRangeList()", WHERE));
4588 logOs << LogIO::WARN << "The current mask window unit is " << coordInfo;
4589 if (!hasSameNchan) {
[2047]4590 logOs << endl << "This mask is only valid for IF=" << IF;
[2012]4591 }
4592 logOs << LogIO::POST;
4593 }
4594
4595 std::vector<double> abcissa = getAbcissa(whichrow);
[2047]4596 std::vector<int> edge = getMaskEdgeIndices(mask);
4597
[2012]4598 ostringstream oss;
4599 oss.setf(ios::fixed);
4600 oss << setprecision(1) << "[";
[2047]4601 for (uInt i = 0; i < edge.size(); i+=2) {
[2012]4602 if (i > 0) oss << ",";
[2047]4603 oss << "[" << (float)abcissa[edge[i]] << "," << (float)abcissa[edge[i+1]] << "]";
[2012]4604 }
4605 oss << "]" << flush;
4606
4607 return String(oss);
4608}
4609
[2047]4610std::vector<int> Scantable::getMaskEdgeIndices(const std::vector<bool>& mask)
[2012]4611{
[2427]4612 if (mask.size() <= 0) {
4613 throw(AipsError("The mask elements should be > 0"));
[2012]4614 }
4615
[2047]4616 std::vector<int> out, startIndices, endIndices;
4617 int maskSize = mask.size();
[2012]4618
[2047]4619 startIndices.clear();
4620 endIndices.clear();
4621
4622 if (mask[0]) {
4623 startIndices.push_back(0);
[2012]4624 }
[2047]4625 for (int i = 1; i < maskSize; ++i) {
4626 if ((!mask[i-1]) && mask[i]) {
4627 startIndices.push_back(i);
4628 } else if (mask[i-1] && (!mask[i])) {
4629 endIndices.push_back(i-1);
4630 }
[2012]4631 }
[2047]4632 if (mask[maskSize-1]) {
4633 endIndices.push_back(maskSize-1);
4634 }
[2012]4635
[2047]4636 if (startIndices.size() != endIndices.size()) {
4637 throw(AipsError("Inconsistent Mask Size: bad data?"));
4638 }
4639 for (uInt i = 0; i < startIndices.size(); ++i) {
4640 if (startIndices[i] > endIndices[i]) {
4641 throw(AipsError("Mask start index > mask end index"));
[2012]4642 }
4643 }
4644
[2047]4645 out.clear();
4646 for (uInt i = 0; i < startIndices.size(); ++i) {
4647 out.push_back(startIndices[i]);
4648 out.push_back(endIndices[i]);
4649 }
4650
[2012]4651 return out;
4652}
4653
[2161]4654vector<float> Scantable::getTsysSpectrum( int whichrow ) const
4655{
4656 Vector<Float> tsys( tsysCol_(whichrow) ) ;
4657 vector<float> stlTsys ;
4658 tsys.tovector( stlTsys ) ;
4659 return stlTsys ;
4660}
[2012]4661
[2591]4662vector<uint> Scantable::getMoleculeIdColumnData() const
4663{
4664 Vector<uInt> molIds(mmolidCol_.getColumn());
4665 vector<uint> res;
4666 molIds.tovector(res);
4667 return res;
4668}
[2012]4669
[2591]4670void Scantable::setMoleculeIdColumnData(const std::vector<uint>& molids)
4671{
4672 Vector<uInt> molIds(molids);
4673 Vector<uInt> arr(mmolidCol_.getColumn());
4674 if ( molIds.nelements() != arr.nelements() )
4675 throw AipsError("The input data size must be the number of rows.");
4676 mmolidCol_.putColumn(molIds);
[1907]4677}
[2591]4678
4679
4680}
[1819]4681//namespace asap
Note: See TracBrowser for help on using the repository browser.