source: trunk/src/Scantable.cpp @ 2713

Last change on this file since 2713 was 2713, checked in by WataruKawasaki, 11 years ago

New Development: Yes

JIRA Issue: Yes CAS-3618

Ready for Test: Yes

Interface Changes: No

What Interface Changed:

Test Programs:

Put in Release Notes: No

Module(s): sd

Description: new method for scantable to calculate AIC, AICc, BIC and GCV.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 141.2 KB
Line 
1//
2// C++ Implementation: Scantable
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2005
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12#include <map>
13#include <sys/time.h>
14
15#include <atnf/PKSIO/SrcType.h>
16
17#include <casa/aips.h>
18#include <casa/iomanip.h>
19#include <casa/iostream.h>
20#include <casa/OS/File.h>
21#include <casa/OS/Path.h>
22#include <casa/Logging/LogIO.h>
23#include <casa/Arrays/Array.h>
24#include <casa/Arrays/ArrayAccessor.h>
25#include <casa/Arrays/ArrayLogical.h>
26#include <casa/Arrays/ArrayMath.h>
27#include <casa/Arrays/MaskArrMath.h>
28#include <casa/Arrays/Slice.h>
29#include <casa/Arrays/Vector.h>
30#include <casa/Arrays/VectorSTLIterator.h>
31#include <casa/BasicMath/Math.h>
32#include <casa/BasicSL/Constants.h>
33#include <casa/Containers/RecordField.h>
34#include <casa/Logging/LogIO.h>
35#include <casa/Quanta/MVAngle.h>
36#include <casa/Quanta/MVTime.h>
37#include <casa/Utilities/GenSort.h>
38
39#include <coordinates/Coordinates/CoordinateUtil.h>
40
41// needed to avoid error in .tcc
42#include <measures/Measures/MCDirection.h>
43//
44#include <measures/Measures/MDirection.h>
45#include <measures/Measures/MEpoch.h>
46#include <measures/Measures/MFrequency.h>
47#include <measures/Measures/MeasRef.h>
48#include <measures/Measures/MeasTable.h>
49#include <measures/TableMeasures/ScalarMeasColumn.h>
50#include <measures/TableMeasures/TableMeasDesc.h>
51#include <measures/TableMeasures/TableMeasRefDesc.h>
52#include <measures/TableMeasures/TableMeasValueDesc.h>
53
54#include <tables/Tables/ArrColDesc.h>
55#include <tables/Tables/ExprNode.h>
56#include <tables/Tables/ScaColDesc.h>
57#include <tables/Tables/SetupNewTab.h>
58#include <tables/Tables/TableCopy.h>
59#include <tables/Tables/TableDesc.h>
60#include <tables/Tables/TableIter.h>
61#include <tables/Tables/TableParse.h>
62#include <tables/Tables/TableRecord.h>
63#include <tables/Tables/TableRow.h>
64#include <tables/Tables/TableVector.h>
65
66#include "MathUtils.h"
67#include "STAttr.h"
68#include "STLineFinder.h"
69#include "STPolCircular.h"
70#include "STPolLinear.h"
71#include "STPolStokes.h"
72#include "STUpgrade.h"
73#include "STFitter.h"
74#include "Scantable.h"
75
76#define debug 1
77
78using namespace casa;
79
80namespace asap {
81
82std::map<std::string, STPol::STPolFactory *> Scantable::factories_;
83
84void Scantable::initFactories() {
85  if ( factories_.empty() ) {
86    Scantable::factories_["linear"] = &STPolLinear::myFactory;
87    Scantable::factories_["circular"] = &STPolCircular::myFactory;
88    Scantable::factories_["stokes"] = &STPolStokes::myFactory;
89  }
90}
91
92Scantable::Scantable(Table::TableType ttype) :
93  type_(ttype)
94{
95  initFactories();
96  setupMainTable();
97  freqTable_ = STFrequencies(*this);
98  table_.rwKeywordSet().defineTable("FREQUENCIES", freqTable_.table());
99  weatherTable_ = STWeather(*this);
100  table_.rwKeywordSet().defineTable("WEATHER", weatherTable_.table());
101  focusTable_ = STFocus(*this);
102  table_.rwKeywordSet().defineTable("FOCUS", focusTable_.table());
103  tcalTable_ = STTcal(*this);
104  table_.rwKeywordSet().defineTable("TCAL", tcalTable_.table());
105  moleculeTable_ = STMolecules(*this);
106  table_.rwKeywordSet().defineTable("MOLECULES", moleculeTable_.table());
107  historyTable_ = STHistory(*this);
108  table_.rwKeywordSet().defineTable("HISTORY", historyTable_.table());
109  fitTable_ = STFit(*this);
110  table_.rwKeywordSet().defineTable("FIT", fitTable_.table());
111  table_.tableInfo().setType( "Scantable" ) ;
112  originalTable_ = table_;
113  attach();
114}
115
116Scantable::Scantable(const std::string& name, Table::TableType ttype) :
117  type_(ttype)
118{
119  initFactories();
120
121  Table tab(name, Table::Update);
122  uInt version = tab.keywordSet().asuInt("VERSION");
123  if (version != version_) {
124      STUpgrade upgrader(version_);
125      LogIO os( LogOrigin( "Scantable" ) ) ;
126      os << LogIO::WARN
127         << name << " data format version " << version
128         << " is deprecated" << endl
129         << "Running upgrade."<< endl 
130         << LogIO::POST ; 
131      std::string outname = upgrader.upgrade(name);
132      if ( outname != name ) {
133        os << LogIO::WARN
134           << "Data will be loaded from " << outname << " instead of "
135           << name << LogIO::POST ;
136        tab = Table(outname, Table::Update ) ;
137      }
138  }
139  if ( type_ == Table::Memory ) {
140    table_ = tab.copyToMemoryTable(generateName());
141  } else {
142    table_ = tab;
143  }
144  table_.tableInfo().setType( "Scantable" ) ;
145
146  attachSubtables();
147  originalTable_ = table_;
148  attach();
149}
150/*
151Scantable::Scantable(const std::string& name, Table::TableType ttype) :
152  type_(ttype)
153{
154  initFactories();
155  Table tab(name, Table::Update);
156  uInt version = tab.keywordSet().asuInt("VERSION");
157  if (version != version_) {
158    throw(AipsError("Unsupported version of ASAP file."));
159  }
160  if ( type_ == Table::Memory ) {
161    table_ = tab.copyToMemoryTable(generateName());
162  } else {
163    table_ = tab;
164  }
165
166  attachSubtables();
167  originalTable_ = table_;
168  attach();
169}
170*/
171
172Scantable::Scantable( const Scantable& other, bool clear )
173{
174  // with or without data
175  String newname = String(generateName());
176  type_ = other.table_.tableType();
177  if ( other.table_.tableType() == Table::Memory ) {
178      if ( clear ) {
179        table_ = TableCopy::makeEmptyMemoryTable(newname,
180                                                 other.table_, True);
181      } else
182        table_ = other.table_.copyToMemoryTable(newname);
183  } else {
184      other.table_.deepCopy(newname, Table::New, False,
185                            other.table_.endianFormat(),
186                            Bool(clear));
187      table_ = Table(newname, Table::Update);
188      table_.markForDelete();
189  }
190  table_.tableInfo().setType( "Scantable" ) ;
191  /// @todo reindex SCANNO, recompute nbeam, nif, npol
192  if ( clear ) copySubtables(other);
193  attachSubtables();
194  originalTable_ = table_;
195  attach();
196}
197
198void Scantable::copySubtables(const Scantable& other) {
199  Table t = table_.rwKeywordSet().asTable("FREQUENCIES");
200  TableCopy::copyRows(t, other.freqTable_.table());
201  t = table_.rwKeywordSet().asTable("FOCUS");
202  TableCopy::copyRows(t, other.focusTable_.table());
203  t = table_.rwKeywordSet().asTable("WEATHER");
204  TableCopy::copyRows(t, other.weatherTable_.table());
205  t = table_.rwKeywordSet().asTable("TCAL");
206  TableCopy::copyRows(t, other.tcalTable_.table());
207  t = table_.rwKeywordSet().asTable("MOLECULES");
208  TableCopy::copyRows(t, other.moleculeTable_.table());
209  t = table_.rwKeywordSet().asTable("HISTORY");
210  TableCopy::copyRows(t, other.historyTable_.table());
211  t = table_.rwKeywordSet().asTable("FIT");
212  TableCopy::copyRows(t, other.fitTable_.table());
213}
214
215void Scantable::attachSubtables()
216{
217  freqTable_ = STFrequencies(table_);
218  focusTable_ = STFocus(table_);
219  weatherTable_ = STWeather(table_);
220  tcalTable_ = STTcal(table_);
221  moleculeTable_ = STMolecules(table_);
222  historyTable_ = STHistory(table_);
223  fitTable_ = STFit(table_);
224}
225
226Scantable::~Scantable()
227{
228}
229
230void Scantable::setupMainTable()
231{
232  TableDesc td("", "1", TableDesc::Scratch);
233  td.comment() = "An ASAP Scantable";
234  td.rwKeywordSet().define("VERSION", uInt(version_));
235
236  // n Cycles
237  td.addColumn(ScalarColumnDesc<uInt>("SCANNO"));
238  // new index every nBeam x nIF x nPol
239  td.addColumn(ScalarColumnDesc<uInt>("CYCLENO"));
240
241  td.addColumn(ScalarColumnDesc<uInt>("BEAMNO"));
242  td.addColumn(ScalarColumnDesc<uInt>("IFNO"));
243  // linear, circular, stokes
244  td.rwKeywordSet().define("POLTYPE", String("linear"));
245  td.addColumn(ScalarColumnDesc<uInt>("POLNO"));
246
247  td.addColumn(ScalarColumnDesc<uInt>("FREQ_ID"));
248  td.addColumn(ScalarColumnDesc<uInt>("MOLECULE_ID"));
249
250  ScalarColumnDesc<Int> refbeamnoColumn("REFBEAMNO");
251  refbeamnoColumn.setDefault(Int(-1));
252  td.addColumn(refbeamnoColumn);
253
254  ScalarColumnDesc<uInt> flagrowColumn("FLAGROW");
255  flagrowColumn.setDefault(uInt(0));
256  td.addColumn(flagrowColumn);
257
258  td.addColumn(ScalarColumnDesc<Double>("TIME"));
259  TableMeasRefDesc measRef(MEpoch::UTC); // UTC as default
260  TableMeasValueDesc measVal(td, "TIME");
261  TableMeasDesc<MEpoch> mepochCol(measVal, measRef);
262  mepochCol.write(td);
263
264  td.addColumn(ScalarColumnDesc<Double>("INTERVAL"));
265
266  td.addColumn(ScalarColumnDesc<String>("SRCNAME"));
267  // Type of source (on=0, off=1, other=-1)
268  ScalarColumnDesc<Int> stypeColumn("SRCTYPE");
269  stypeColumn.setDefault(Int(-1));
270  td.addColumn(stypeColumn);
271  td.addColumn(ScalarColumnDesc<String>("FIELDNAME"));
272
273  //The actual Data Vectors
274  td.addColumn(ArrayColumnDesc<Float>("SPECTRA"));
275  td.addColumn(ArrayColumnDesc<uChar>("FLAGTRA"));
276  td.addColumn(ArrayColumnDesc<Float>("TSYS"));
277
278  td.addColumn(ArrayColumnDesc<Double>("DIRECTION",
279                                       IPosition(1,2),
280                                       ColumnDesc::Direct));
281  TableMeasRefDesc mdirRef(MDirection::J2000); // default
282  TableMeasValueDesc tmvdMDir(td, "DIRECTION");
283  // the TableMeasDesc gives the column a type
284  TableMeasDesc<MDirection> mdirCol(tmvdMDir, mdirRef);
285  // a uder set table type e.g. GALCTIC, B1950 ...
286  td.rwKeywordSet().define("DIRECTIONREF", String("J2000"));
287  // writing create the measure column
288  mdirCol.write(td);
289  td.addColumn(ScalarColumnDesc<Float>("AZIMUTH"));
290  td.addColumn(ScalarColumnDesc<Float>("ELEVATION"));
291  td.addColumn(ScalarColumnDesc<Float>("OPACITY"));
292
293  td.addColumn(ScalarColumnDesc<uInt>("TCAL_ID"));
294  ScalarColumnDesc<Int> fitColumn("FIT_ID");
295  fitColumn.setDefault(Int(-1));
296  td.addColumn(fitColumn);
297
298  td.addColumn(ScalarColumnDesc<uInt>("FOCUS_ID"));
299  td.addColumn(ScalarColumnDesc<uInt>("WEATHER_ID"));
300
301  // columns which just get dragged along, as they aren't used in asap
302  td.addColumn(ScalarColumnDesc<Double>("SRCVELOCITY"));
303  td.addColumn(ArrayColumnDesc<Double>("SRCPROPERMOTION"));
304  td.addColumn(ArrayColumnDesc<Double>("SRCDIRECTION"));
305  td.addColumn(ArrayColumnDesc<Double>("SCANRATE"));
306
307  td.rwKeywordSet().define("OBSMODE", String(""));
308
309  // Now create Table SetUp from the description.
310  SetupNewTable aNewTab(generateName(), td, Table::Scratch);
311  table_ = Table(aNewTab, type_, 0);
312  originalTable_ = table_;
313}
314
315void Scantable::attach()
316{
317  timeCol_.attach(table_, "TIME");
318  srcnCol_.attach(table_, "SRCNAME");
319  srctCol_.attach(table_, "SRCTYPE");
320  specCol_.attach(table_, "SPECTRA");
321  flagsCol_.attach(table_, "FLAGTRA");
322  tsysCol_.attach(table_, "TSYS");
323  cycleCol_.attach(table_,"CYCLENO");
324  scanCol_.attach(table_, "SCANNO");
325  beamCol_.attach(table_, "BEAMNO");
326  ifCol_.attach(table_, "IFNO");
327  polCol_.attach(table_, "POLNO");
328  integrCol_.attach(table_, "INTERVAL");
329  azCol_.attach(table_, "AZIMUTH");
330  elCol_.attach(table_, "ELEVATION");
331  dirCol_.attach(table_, "DIRECTION");
332  fldnCol_.attach(table_, "FIELDNAME");
333  rbeamCol_.attach(table_, "REFBEAMNO");
334
335  mweatheridCol_.attach(table_,"WEATHER_ID");
336  mfitidCol_.attach(table_,"FIT_ID");
337  mfreqidCol_.attach(table_, "FREQ_ID");
338  mtcalidCol_.attach(table_, "TCAL_ID");
339  mfocusidCol_.attach(table_, "FOCUS_ID");
340  mmolidCol_.attach(table_, "MOLECULE_ID");
341
342  //Add auxiliary column for row-based flagging (CAS-1433 Wataru Kawasaki)
343  attachAuxColumnDef(flagrowCol_, "FLAGROW", 0);
344
345}
346
347template<class T, class T2>
348void Scantable::attachAuxColumnDef(ScalarColumn<T>& col,
349                                   const String& colName,
350                                   const T2& defValue)
351{
352  try {
353    col.attach(table_, colName);
354  } catch (TableError& err) {
355    String errMesg = err.getMesg();
356    if (errMesg == "Table column " + colName + " is unknown") {
357      table_.addColumn(ScalarColumnDesc<T>(colName));
358      col.attach(table_, colName);
359      col.fillColumn(static_cast<T>(defValue));
360    } else {
361      throw;
362    }
363  } catch (...) {
364    throw;
365  }
366}
367
368template<class T, class T2>
369void Scantable::attachAuxColumnDef(ArrayColumn<T>& col,
370                                   const String& colName,
371                                   const Array<T2>& defValue)
372{
373  try {
374    col.attach(table_, colName);
375  } catch (TableError& err) {
376    String errMesg = err.getMesg();
377    if (errMesg == "Table column " + colName + " is unknown") {
378      table_.addColumn(ArrayColumnDesc<T>(colName));
379      col.attach(table_, colName);
380
381      int size = 0;
382      ArrayIterator<T2>& it = defValue.begin();
383      while (it != defValue.end()) {
384        ++size;
385        ++it;
386      }
387      IPosition ip(1, size);
388      Array<T>& arr(ip);
389      for (int i = 0; i < size; ++i)
390        arr[i] = static_cast<T>(defValue[i]);
391
392      col.fillColumn(arr);
393    } else {
394      throw;
395    }
396  } catch (...) {
397    throw;
398  }
399}
400
401void Scantable::setHeader(const STHeader& sdh)
402{
403  table_.rwKeywordSet().define("nIF", sdh.nif);
404  table_.rwKeywordSet().define("nBeam", sdh.nbeam);
405  table_.rwKeywordSet().define("nPol", sdh.npol);
406  table_.rwKeywordSet().define("nChan", sdh.nchan);
407  table_.rwKeywordSet().define("Observer", sdh.observer);
408  table_.rwKeywordSet().define("Project", sdh.project);
409  table_.rwKeywordSet().define("Obstype", sdh.obstype);
410  table_.rwKeywordSet().define("AntennaName", sdh.antennaname);
411  table_.rwKeywordSet().define("AntennaPosition", sdh.antennaposition);
412  table_.rwKeywordSet().define("Equinox", sdh.equinox);
413  table_.rwKeywordSet().define("FreqRefFrame", sdh.freqref);
414  table_.rwKeywordSet().define("FreqRefVal", sdh.reffreq);
415  table_.rwKeywordSet().define("Bandwidth", sdh.bandwidth);
416  table_.rwKeywordSet().define("UTC", sdh.utc);
417  table_.rwKeywordSet().define("FluxUnit", sdh.fluxunit);
418  table_.rwKeywordSet().define("Epoch", sdh.epoch);
419  table_.rwKeywordSet().define("POLTYPE", sdh.poltype);
420}
421
422STHeader Scantable::getHeader() const
423{
424  STHeader sdh;
425  table_.keywordSet().get("nBeam",sdh.nbeam);
426  table_.keywordSet().get("nIF",sdh.nif);
427  table_.keywordSet().get("nPol",sdh.npol);
428  table_.keywordSet().get("nChan",sdh.nchan);
429  table_.keywordSet().get("Observer", sdh.observer);
430  table_.keywordSet().get("Project", sdh.project);
431  table_.keywordSet().get("Obstype", sdh.obstype);
432  table_.keywordSet().get("AntennaName", sdh.antennaname);
433  table_.keywordSet().get("AntennaPosition", sdh.antennaposition);
434  table_.keywordSet().get("Equinox", sdh.equinox);
435  table_.keywordSet().get("FreqRefFrame", sdh.freqref);
436  table_.keywordSet().get("FreqRefVal", sdh.reffreq);
437  table_.keywordSet().get("Bandwidth", sdh.bandwidth);
438  table_.keywordSet().get("UTC", sdh.utc);
439  table_.keywordSet().get("FluxUnit", sdh.fluxunit);
440  table_.keywordSet().get("Epoch", sdh.epoch);
441  table_.keywordSet().get("POLTYPE", sdh.poltype);
442  return sdh;
443}
444
445void Scantable::setSourceType( int stype )
446{
447  if ( stype < 0 || stype > 1 )
448    throw(AipsError("Illegal sourcetype."));
449  TableVector<Int> tabvec(table_, "SRCTYPE");
450  tabvec = Int(stype);
451}
452
453bool Scantable::conformant( const Scantable& other )
454{
455  return this->getHeader().conformant(other.getHeader());
456}
457
458
459
460std::string Scantable::formatSec(Double x) const
461{
462  Double xcop = x;
463  MVTime mvt(xcop/24./3600.);  // make days
464
465  if (x < 59.95)
466    return  String("      ") + mvt.string(MVTime::TIME_CLEAN_NO_HM, 7)+"s";
467  else if (x < 3599.95)
468    return String("   ") + mvt.string(MVTime::TIME_CLEAN_NO_H,7)+" ";
469  else {
470    ostringstream oss;
471    oss << setw(2) << std::right << setprecision(1) << mvt.hour();
472    oss << ":" << mvt.string(MVTime::TIME_CLEAN_NO_H,7) << " ";
473    return String(oss);
474  }
475};
476
477std::string Scantable::formatDirection(const MDirection& md) const
478{
479  Vector<Double> t = md.getAngle(Unit(String("rad"))).getValue();
480  Int prec = 7;
481
482  String ref = md.getRefString();
483  MVAngle mvLon(t[0]);
484  String sLon = mvLon.string(MVAngle::TIME,prec);
485  uInt tp = md.getRef().getType();
486  if (tp == MDirection::GALACTIC ||
487      tp == MDirection::SUPERGAL ) {
488    sLon = mvLon(0.0).string(MVAngle::ANGLE_CLEAN,prec);
489  }
490  MVAngle mvLat(t[1]);
491  String sLat = mvLat.string(MVAngle::ANGLE+MVAngle::DIG2,prec);
492  return  ref + String(" ") + sLon + String(" ") + sLat;
493}
494
495
496std::string Scantable::getFluxUnit() const
497{
498  return table_.keywordSet().asString("FluxUnit");
499}
500
501void Scantable::setFluxUnit(const std::string& unit)
502{
503  String tmp(unit);
504  Unit tU(tmp);
505  if (tU==Unit("K") || tU==Unit("Jy")) {
506     table_.rwKeywordSet().define(String("FluxUnit"), tmp);
507  } else {
508     throw AipsError("Illegal unit - must be compatible with Jy or K");
509  }
510}
511
512void Scantable::setInstrument(const std::string& name)
513{
514  bool throwIt = true;
515  // create an Instrument to see if this is valid
516  STAttr::convertInstrument(name, throwIt);
517  String nameU(name);
518  nameU.upcase();
519  table_.rwKeywordSet().define(String("AntennaName"), nameU);
520}
521
522void Scantable::setFeedType(const std::string& feedtype)
523{
524  if ( Scantable::factories_.find(feedtype) ==  Scantable::factories_.end() ) {
525    std::string msg = "Illegal feed type "+ feedtype;
526    throw(casa::AipsError(msg));
527  }
528  table_.rwKeywordSet().define(String("POLTYPE"), feedtype);
529}
530
531MPosition Scantable::getAntennaPosition() const
532{
533  Vector<Double> antpos;
534  table_.keywordSet().get("AntennaPosition", antpos);
535  MVPosition mvpos(antpos(0),antpos(1),antpos(2));
536  return MPosition(mvpos);
537}
538
539void Scantable::makePersistent(const std::string& filename)
540{
541  String inname(filename);
542  Path path(inname);
543  /// @todo reindex SCANNO, recompute nbeam, nif, npol
544  inname = path.expandedName();
545  // 2011/03/04 TN
546  // We can comment out this workaround since the essential bug is
547  // fixed in casacore (r20889 in google code).
548  table_.deepCopy(inname, Table::New);
549//   // WORKAROUND !!! for Table bug
550//   // Remove when fixed in casacore
551//   if ( table_.tableType() == Table::Memory  && !selector_.empty() ) {
552//     Table tab = table_.copyToMemoryTable(generateName());
553//     tab.deepCopy(inname, Table::New);
554//     tab.markForDelete();
555//
556//   } else {
557//     table_.deepCopy(inname, Table::New);
558//   }
559}
560
561int Scantable::nbeam( int scanno ) const
562{
563  if ( scanno < 0 ) {
564    Int n;
565    table_.keywordSet().get("nBeam",n);
566    return int(n);
567  } else {
568    // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
569    Table t = table_(table_.col("SCANNO") == scanno);
570    ROTableRow row(t);
571    const TableRecord& rec = row.get(0);
572    Table subt = t( t.col("IFNO") == Int(rec.asuInt("IFNO"))
573                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
574                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
575    ROTableVector<uInt> v(subt, "BEAMNO");
576    return int(v.nelements());
577  }
578  return 0;
579}
580
581int Scantable::nif( int scanno ) const
582{
583  if ( scanno < 0 ) {
584    Int n;
585    table_.keywordSet().get("nIF",n);
586    return int(n);
587  } else {
588    // take the first POLNO,BEAMNO,CYCLENO as nbeam shouldn't vary with these
589    Table t = table_(table_.col("SCANNO") == scanno);
590    ROTableRow row(t);
591    const TableRecord& rec = row.get(0);
592    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
593                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
594                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
595    if ( subt.nrow() == 0 ) return 0;
596    ROTableVector<uInt> v(subt, "IFNO");
597    return int(v.nelements());
598  }
599  return 0;
600}
601
602int Scantable::npol( int scanno ) const
603{
604  if ( scanno < 0 ) {
605    Int n;
606    table_.keywordSet().get("nPol",n);
607    return n;
608  } else {
609    // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
610    Table t = table_(table_.col("SCANNO") == scanno);
611    ROTableRow row(t);
612    const TableRecord& rec = row.get(0);
613    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
614                    && t.col("IFNO") == Int(rec.asuInt("IFNO"))
615                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
616    if ( subt.nrow() == 0 ) return 0;
617    ROTableVector<uInt> v(subt, "POLNO");
618    return int(v.nelements());
619  }
620  return 0;
621}
622
623int Scantable::ncycle( int scanno ) const
624{
625  if ( scanno < 0 ) {
626    Block<String> cols(2);
627    cols[0] = "SCANNO";
628    cols[1] = "CYCLENO";
629    TableIterator it(table_, cols);
630    int n = 0;
631    while ( !it.pastEnd() ) {
632      ++n;
633      ++it;
634    }
635    return n;
636  } else {
637    Table t = table_(table_.col("SCANNO") == scanno);
638    ROTableRow row(t);
639    const TableRecord& rec = row.get(0);
640    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
641                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
642                    && t.col("IFNO") == Int(rec.asuInt("IFNO")) );
643    if ( subt.nrow() == 0 ) return 0;
644    return int(subt.nrow());
645  }
646  return 0;
647}
648
649
650int Scantable::nrow( int scanno ) const
651{
652  return int(table_.nrow());
653}
654
655int Scantable::nchan( int ifno ) const
656{
657  if ( ifno < 0 ) {
658    Int n;
659    table_.keywordSet().get("nChan",n);
660    return int(n);
661  } else {
662    // take the first SCANNO,POLNO,BEAMNO,CYCLENO as nbeam shouldn't
663    // vary with these
664    Table t = table_(table_.col("IFNO") == ifno, 1);
665    if ( t.nrow() == 0 ) return 0;
666    ROArrayColumn<Float> v(t, "SPECTRA");
667    return v.shape(0)(0);
668  }
669  return 0;
670}
671
672int Scantable::nscan() const {
673  Vector<uInt> scannos(scanCol_.getColumn());
674  uInt nout = genSort( scannos, Sort::Ascending,
675                       Sort::QuickSort|Sort::NoDuplicates );
676  return int(nout);
677}
678
679int Scantable::getChannels(int whichrow) const
680{
681  return specCol_.shape(whichrow)(0);
682}
683
684int Scantable::getBeam(int whichrow) const
685{
686  return beamCol_(whichrow);
687}
688
689std::vector<uint> Scantable::getNumbers(const ScalarColumn<uInt>& col) const
690{
691  Vector<uInt> nos(col.getColumn());
692  uInt n = genSort( nos, Sort::Ascending, Sort::QuickSort|Sort::NoDuplicates );
693  nos.resize(n, True);
694  std::vector<uint> stlout;
695  nos.tovector(stlout);
696  return stlout;
697}
698
699int Scantable::getIF(int whichrow) const
700{
701  return ifCol_(whichrow);
702}
703
704int Scantable::getPol(int whichrow) const
705{
706  return polCol_(whichrow);
707}
708
709std::string Scantable::formatTime(const MEpoch& me, bool showdate) const
710{
711  return formatTime(me, showdate, 0);
712}
713
714std::string Scantable::formatTime(const MEpoch& me, bool showdate, uInt prec) const
715{
716  MVTime mvt(me.getValue());
717  if (showdate)
718    //mvt.setFormat(MVTime::YMD);
719    mvt.setFormat(MVTime::YMD, prec);
720  else
721    //mvt.setFormat(MVTime::TIME);
722    mvt.setFormat(MVTime::TIME, prec);
723  ostringstream oss;
724  oss << mvt;
725  return String(oss);
726}
727
728void Scantable::calculateAZEL()
729
730  LogIO os( LogOrigin( "Scantable", "calculateAZEL()", WHERE ) ) ;
731  MPosition mp = getAntennaPosition();
732  MEpoch::ROScalarColumn timeCol(table_, "TIME");
733  ostringstream oss;
734  oss << mp;
735  os << "Computed azimuth/elevation using " << endl
736     << String(oss) << endl;
737  for (Int i=0; i<nrow(); ++i) {
738    MEpoch me = timeCol(i);
739    MDirection md = getDirection(i);
740    os  << " Time: " << formatTime(me,False)
741        << " Direction: " << formatDirection(md)
742         << endl << "     => ";
743    MeasFrame frame(mp, me);
744    Vector<Double> azel =
745        MDirection::Convert(md, MDirection::Ref(MDirection::AZEL,
746                                                frame)
747                            )().getAngle("rad").getValue();
748    azCol_.put(i,Float(azel[0]));
749    elCol_.put(i,Float(azel[1]));
750    os << "azel: " << azel[0]/C::pi*180.0 << " "
751       << azel[1]/C::pi*180.0 << " (deg)" << LogIO::POST;
752  }
753}
754
755void Scantable::clip(const Float uthres, const Float dthres, bool clipoutside, bool unflag)
756{
757  for (uInt i=0; i<table_.nrow(); ++i) {
758    Vector<uChar> flgs = flagsCol_(i);
759    srchChannelsToClip(i, uthres, dthres, clipoutside, unflag, flgs);
760    flagsCol_.put(i, flgs);
761  }
762}
763
764std::vector<bool> Scantable::getClipMask(int whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag)
765{
766  Vector<uChar> flags;
767  flagsCol_.get(uInt(whichrow), flags);
768  srchChannelsToClip(uInt(whichrow), uthres, dthres, clipoutside, unflag, flags);
769  Vector<Bool> bflag(flags.shape());
770  convertArray(bflag, flags);
771  //bflag = !bflag;
772
773  std::vector<bool> mask;
774  bflag.tovector(mask);
775  return mask;
776}
777
778void Scantable::srchChannelsToClip(uInt whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag,
779                                   Vector<uChar> flgs)
780{
781    Vector<Float> spcs = specCol_(whichrow);
782    uInt nchannel = spcs.nelements();
783    if (spcs.nelements() != nchannel) {
784      throw(AipsError("Data has incorrect number of channels"));
785    }
786    uChar userflag = 1 << 7;
787    if (unflag) {
788      userflag = 0 << 7;
789    }
790    if (clipoutside) {
791      for (uInt j = 0; j < nchannel; ++j) {
792        Float spc = spcs(j);
793        if ((spc >= uthres) || (spc <= dthres)) {
794          flgs(j) = userflag;
795        }
796      }
797    } else {
798      for (uInt j = 0; j < nchannel; ++j) {
799        Float spc = spcs(j);
800        if ((spc < uthres) && (spc > dthres)) {
801          flgs(j) = userflag;
802        }
803      }
804    }
805}
806
807
808void Scantable::flag( int whichrow, const std::vector<bool>& msk, bool unflag ) {
809  std::vector<bool>::const_iterator it;
810  uInt ntrue = 0;
811  if (whichrow >= int(table_.nrow()) ) {
812    throw(AipsError("Invalid row number"));
813  }
814  for (it = msk.begin(); it != msk.end(); ++it) {
815    if ( *it ) {
816      ntrue++;
817    }
818  }
819  //if ( selector_.empty()  && (msk.size() == 0 || msk.size() == ntrue) )
820  if ( whichrow == -1 && !unflag && selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
821    throw(AipsError("Trying to flag whole scantable."));
822  uChar userflag = 1 << 7;
823  if ( unflag ) {
824    userflag = 0 << 7;
825  }
826  if (whichrow > -1 ) {
827    applyChanFlag(uInt(whichrow), msk, userflag);
828  } else {
829    for ( uInt i=0; i<table_.nrow(); ++i) {
830      applyChanFlag(i, msk, userflag);
831    }
832  }
833}
834
835void Scantable::applyChanFlag( uInt whichrow, const std::vector<bool>& msk, uChar flagval )
836{
837  if (whichrow >= table_.nrow() ) {
838    throw( casa::indexError<int>( whichrow, "asap::Scantable::applyChanFlag: Invalid row number" ) );
839  }
840  Vector<uChar> flgs = flagsCol_(whichrow);
841  if ( msk.size() == 0 ) {
842    flgs = flagval;
843    flagsCol_.put(whichrow, flgs);
844    return;
845  }
846  if ( int(msk.size()) != nchan( getIF(whichrow) ) ) {
847    throw(AipsError("Mask has incorrect number of channels."));
848  }
849  if ( flgs.nelements() != msk.size() ) {
850    throw(AipsError("Mask has incorrect number of channels."
851                    " Probably varying with IF. Please flag per IF"));
852  }
853  std::vector<bool>::const_iterator it;
854  uInt j = 0;
855  for (it = msk.begin(); it != msk.end(); ++it) {
856    if ( *it ) {
857      flgs(j) = flagval;
858    }
859    ++j;
860  }
861  flagsCol_.put(whichrow, flgs);
862}
863
864void Scantable::flagRow(const std::vector<uInt>& rows, bool unflag)
865{
866  if (selector_.empty() && (rows.size() == table_.nrow()) && !unflag)
867    throw(AipsError("Trying to flag whole scantable."));
868
869  uInt rowflag = (unflag ? 0 : 1);
870  std::vector<uInt>::const_iterator it;
871  for (it = rows.begin(); it != rows.end(); ++it)
872    flagrowCol_.put(*it, rowflag);
873}
874
875std::vector<bool> Scantable::getMask(int whichrow) const
876{
877  Vector<uChar> flags;
878  flagsCol_.get(uInt(whichrow), flags);
879  Vector<Bool> bflag(flags.shape());
880  convertArray(bflag, flags);
881  bflag = !bflag;
882  std::vector<bool> mask;
883  bflag.tovector(mask);
884  return mask;
885}
886
887std::vector<float> Scantable::getSpectrum( int whichrow,
888                                           const std::string& poltype ) const
889{
890  LogIO os( LogOrigin( "Scantable", "getSpectrum()", WHERE ) ) ;
891
892  String ptype = poltype;
893  if (poltype == "" ) ptype = getPolType();
894  if ( whichrow  < 0 || whichrow >= nrow() )
895    throw(AipsError("Illegal row number."));
896  std::vector<float> out;
897  Vector<Float> arr;
898  uInt requestedpol = polCol_(whichrow);
899  String basetype = getPolType();
900  if ( ptype == basetype ) {
901    specCol_.get(whichrow, arr);
902  } else {
903    CountedPtr<STPol> stpol(STPol::getPolClass(Scantable::factories_,
904                                               basetype));
905    uInt row = uInt(whichrow);
906    stpol->setSpectra(getPolMatrix(row));
907    Float fang,fhand;
908    fang = focusTable_.getTotalAngle(mfocusidCol_(row));
909    fhand = focusTable_.getFeedHand(mfocusidCol_(row));
910    stpol->setPhaseCorrections(fang, fhand);
911    arr = stpol->getSpectrum(requestedpol, ptype);
912  }
913  if ( arr.nelements() == 0 )
914   
915    os << "Not enough polarisations present to do the conversion."
916       << LogIO::POST;
917  arr.tovector(out);
918  return out;
919}
920
921void Scantable::setSpectrum( const std::vector<float>& spec,
922                                   int whichrow )
923{
924  Vector<Float> spectrum(spec);
925  Vector<Float> arr;
926  specCol_.get(whichrow, arr);
927  if ( spectrum.nelements() != arr.nelements() )
928    throw AipsError("The spectrum has incorrect number of channels.");
929  specCol_.put(whichrow, spectrum);
930}
931
932
933String Scantable::generateName()
934{
935  return (File::newUniqueName("./","temp")).baseName();
936}
937
938const casa::Table& Scantable::table( ) const
939{
940  return table_;
941}
942
943casa::Table& Scantable::table( )
944{
945  return table_;
946}
947
948std::string Scantable::getPolType() const
949{
950  return table_.keywordSet().asString("POLTYPE");
951}
952
953void Scantable::unsetSelection()
954{
955  table_ = originalTable_;
956  attach();
957  selector_.reset();
958}
959
960void Scantable::setSelection( const STSelector& selection )
961{
962  Table tab = const_cast<STSelector&>(selection).apply(originalTable_);
963  if ( tab.nrow() == 0 ) {
964    throw(AipsError("Selection contains no data. Not applying it."));
965  }
966  table_ = tab;
967  attach();
968//   tab.rwKeywordSet().define("nBeam",(Int)(getBeamNos().size())) ;
969//   vector<uint> selectedIFs = getIFNos() ;
970//   Int newnIF = selectedIFs.size() ;
971//   tab.rwKeywordSet().define("nIF",newnIF) ;
972//   if ( newnIF != 0 ) {
973//     Int newnChan = 0 ;
974//     for ( Int i = 0 ; i < newnIF ; i++ ) {
975//       Int nChan = nchan( selectedIFs[i] ) ;
976//       if ( newnChan > nChan )
977//         newnChan = nChan ;
978//     }
979//     tab.rwKeywordSet().define("nChan",newnChan) ;
980//   }
981//   tab.rwKeywordSet().define("nPol",(Int)(getPolNos().size())) ;
982  selector_ = selection;
983}
984
985
986std::string Scantable::headerSummary()
987{
988  // Format header info
989//   STHeader sdh;
990//   sdh = getHeader();
991//   sdh.print();
992  ostringstream oss;
993  oss.flags(std::ios_base::left);
994  String tmp;
995  // Project
996  table_.keywordSet().get("Project", tmp);
997  oss << setw(15) << "Project:" << tmp << endl;
998  // Observation date
999  oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1000  // Observer
1001  oss << setw(15) << "Observer:"
1002      << table_.keywordSet().asString("Observer") << endl;
1003  // Antenna Name
1004  table_.keywordSet().get("AntennaName", tmp);
1005  oss << setw(15) << "Antenna Name:" << tmp << endl;
1006  // Obs type
1007  table_.keywordSet().get("Obstype", tmp);
1008  // Records (nrow)
1009  oss << setw(15) << "Data Records:" << table_.nrow() << " rows" << endl;
1010  oss << setw(15) << "Obs. Type:" << tmp << endl;
1011  // Beams, IFs, Polarizations, and Channels
1012  oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1013      << setw(15) << "IFs:" << setw(4) << nif() << endl
1014      << setw(15) << "Polarisations:" << setw(4) << npol()
1015      << "(" << getPolType() << ")" << endl
1016      << setw(15) << "Channels:" << nchan() << endl;
1017  // Flux unit
1018  table_.keywordSet().get("FluxUnit", tmp);
1019  oss << setw(15) << "Flux Unit:" << tmp << endl;
1020  // Abscissa Unit
1021  oss << setw(15) << "Abscissa:" << getAbcissaLabel(0) << endl;
1022  // Selection
1023  oss << selector_.print() << endl;
1024
1025  return String(oss);
1026}
1027
1028void Scantable::summary( const std::string& filename )
1029{
1030  ostringstream oss;
1031  ofstream ofs;
1032  LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1033
1034  if (filename != "")
1035    ofs.open( filename.c_str(),  ios::out );
1036
1037  oss << endl;
1038  oss << asap::SEPERATOR << endl;
1039  oss << " Scan Table Summary" << endl;
1040  oss << asap::SEPERATOR << endl;
1041
1042  // Format header info
1043  oss << headerSummary();
1044  oss << endl;
1045
1046  if (table_.nrow() <= 0){
1047    oss << asap::SEPERATOR << endl;
1048    oss << "The MAIN table is empty: there are no data!!!" << endl;
1049    oss << asap::SEPERATOR << endl;
1050
1051    ols << String(oss) << LogIO::POST;
1052    if (ofs) {
1053      ofs << String(oss) << flush;
1054      ofs.close();
1055    }
1056    return;
1057  }
1058
1059
1060
1061  // main table
1062  String dirtype = "Position ("
1063                  + getDirectionRefString()
1064                  + ")";
1065  oss.flags(std::ios_base::left);
1066  oss << setw(5) << "Scan"
1067      << setw(15) << "Source"
1068      << setw(35) << "Time range"
1069      << setw(2) << "" << setw(7) << "Int[s]"
1070      << setw(7) << "Record"
1071      << setw(8) << "SrcType"
1072      << setw(8) << "FreqIDs"
1073      << setw(7) << "MolIDs" << endl;
1074  oss << setw(7)<< "" << setw(6) << "Beam"
1075      << setw(23) << dirtype << endl;
1076
1077  oss << asap::SEPERATOR << endl;
1078
1079  // Flush summary and clear up the string
1080  ols << String(oss) << LogIO::POST;
1081  if (ofs) ofs << String(oss) << flush;
1082  oss.str("");
1083  oss.clear();
1084
1085
1086  // Get Freq_ID map
1087  ROScalarColumn<uInt> ftabIds(frequencies().table(), "ID");
1088  Int nfid = ftabIds.nrow();
1089  if (nfid <= 0){
1090    oss << "FREQUENCIES subtable is empty: there are no data!!!" << endl;
1091    oss << asap::SEPERATOR << endl;
1092
1093    ols << String(oss) << LogIO::POST;
1094    if (ofs) {
1095      ofs << String(oss) << flush;
1096      ofs.close();
1097    }
1098    return;
1099  }
1100  // Storages of overall IFNO, POLNO, and nchan per FREQ_ID
1101  // the orders are identical to ID in FREQ subtable
1102  Block< Vector<uInt> > ifNos(nfid), polNos(nfid);
1103  Vector<Int> fIdchans(nfid,-1);
1104  map<uInt, Int> fidMap;  // (FREQ_ID, row # in FREQ subtable) pair
1105  for (Int i=0; i < nfid; i++){
1106   // fidMap[freqId] returns row number in FREQ subtable
1107   fidMap.insert(pair<uInt, Int>(ftabIds(i),i));
1108   ifNos[i] = Vector<uInt>();
1109   polNos[i] = Vector<uInt>();
1110  }
1111
1112  TableIterator iter(table_, "SCANNO");
1113
1114  // Vars for keeping track of time, freqids, molIds in a SCANNO
1115  Vector<uInt> freqids;
1116  Vector<uInt> molids;
1117  Vector<uInt> beamids(1,0);
1118  Vector<MDirection> beamDirs;
1119  Vector<Int> stypeids(1,0);
1120  Vector<String> stypestrs;
1121  Int nfreq(1);
1122  Int nmol(1);
1123  uInt nbeam(1);
1124  uInt nstype(1);
1125
1126  Double btime(0.0), etime(0.0);
1127  Double meanIntTim(0.0);
1128
1129  uInt currFreqId(0), ftabRow(0);
1130  Int iflen(0), pollen(0);
1131
1132  while (!iter.pastEnd()) {
1133    Table subt = iter.table();
1134    uInt snrow = subt.nrow();
1135    ROTableRow row(subt);
1136    const TableRecord& rec = row.get(0);
1137
1138    // relevant columns
1139    ROScalarColumn<Double> mjdCol(subt,"TIME");
1140    ROScalarColumn<Double> intervalCol(subt,"INTERVAL");
1141    MDirection::ROScalarColumn dirCol(subt,"DIRECTION");
1142
1143    ScalarColumn<uInt> freqIdCol(subt,"FREQ_ID");
1144    ScalarColumn<uInt> molIdCol(subt,"MOLECULE_ID");
1145    ROScalarColumn<uInt> beamCol(subt,"BEAMNO");
1146    ROScalarColumn<Int> stypeCol(subt,"SRCTYPE");
1147
1148    ROScalarColumn<uInt> ifNoCol(subt,"IFNO");
1149    ROScalarColumn<uInt> polNoCol(subt,"POLNO");
1150
1151
1152    // Times
1153    meanIntTim = sum(intervalCol.getColumn()) / (double) snrow;
1154    minMax(btime, etime, mjdCol.getColumn());
1155    etime += meanIntTim/C::day;
1156
1157    // MOLECULE_ID and FREQ_ID
1158    molids = getNumbers(molIdCol);
1159    molids.shape(nmol);
1160
1161    freqids = getNumbers(freqIdCol);
1162    freqids.shape(nfreq);
1163
1164    // Add first beamid, and srcNames
1165    beamids.resize(1,False);
1166    beamDirs.resize(1,False);
1167    beamids(0)=beamCol(0);
1168    beamDirs(0)=dirCol(0);
1169    nbeam = 1;
1170
1171    stypeids.resize(1,False);
1172    stypeids(0)=stypeCol(0);
1173    nstype = 1;
1174
1175    // Global listings of nchan/IFNO/POLNO per FREQ_ID
1176    currFreqId=freqIdCol(0);
1177    ftabRow = fidMap[currFreqId];
1178    // Assumes an identical number of channels per FREQ_ID
1179    if (fIdchans(ftabRow) < 0 ) {
1180      RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1181      fIdchans(ftabRow)=(*spec).shape()(0);
1182    }
1183    // Should keep ifNos and polNos form the previous SCANNO
1184    if ( !anyEQ(ifNos[ftabRow],ifNoCol(0)) ) {
1185      ifNos[ftabRow].shape(iflen);
1186      iflen++;
1187      ifNos[ftabRow].resize(iflen,True);
1188      ifNos[ftabRow](iflen-1) = ifNoCol(0);
1189    }
1190    if ( !anyEQ(polNos[ftabRow],polNoCol(0)) ) {
1191      polNos[ftabRow].shape(pollen);
1192      pollen++;
1193      polNos[ftabRow].resize(pollen,True);
1194      polNos[ftabRow](pollen-1) = polNoCol(0);
1195    }
1196
1197    for (uInt i=1; i < snrow; i++){
1198      // Need to list BEAMNO and DIRECTION in the same order
1199      if ( !anyEQ(beamids,beamCol(i)) ) {
1200        nbeam++;
1201        beamids.resize(nbeam,True);
1202        beamids(nbeam-1)=beamCol(i);
1203        beamDirs.resize(nbeam,True);
1204        beamDirs(nbeam-1)=dirCol(i);
1205      }
1206
1207      // SRCTYPE is Int (getNumber takes only uInt)
1208      if ( !anyEQ(stypeids,stypeCol(i)) ) {
1209        nstype++;
1210        stypeids.resize(nstype,True);
1211        stypeids(nstype-1)=stypeCol(i);
1212      }
1213
1214      // Global listings of nchan/IFNO/POLNO per FREQ_ID
1215      currFreqId=freqIdCol(i);
1216      ftabRow = fidMap[currFreqId];
1217      if (fIdchans(ftabRow) < 0 ) {
1218        const TableRecord& rec = row.get(i);
1219        RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1220        fIdchans(ftabRow) = (*spec).shape()(0);
1221      }
1222      if ( !anyEQ(ifNos[ftabRow],ifNoCol(i)) ) {
1223        ifNos[ftabRow].shape(iflen);
1224        iflen++;
1225        ifNos[ftabRow].resize(iflen,True);
1226        ifNos[ftabRow](iflen-1) = ifNoCol(i);
1227      }
1228      if ( !anyEQ(polNos[ftabRow],polNoCol(i)) ) {
1229        polNos[ftabRow].shape(pollen);
1230        pollen++;
1231        polNos[ftabRow].resize(pollen,True);
1232        polNos[ftabRow](pollen-1) = polNoCol(i);
1233      }
1234    } // end of row iteration
1235
1236    stypestrs.resize(nstype,False);
1237    for (uInt j=0; j < nstype; j++)
1238      stypestrs(j) = SrcType::getName(stypeids(j));
1239
1240    // Format Scan summary
1241    oss << setw(4) << std::right << rec.asuInt("SCANNO")
1242        << std::left << setw(1) << ""
1243        << setw(15) << rec.asString("SRCNAME")
1244        << setw(21) << MVTime(btime).string(MVTime::YMD,7)
1245        << setw(3) << " - " << MVTime(etime).string(MVTime::TIME,7)
1246        << setw(3) << "" << setw(6) << meanIntTim << setw(1) << ""
1247        << std::right << setw(5) << snrow << setw(2) << ""
1248        << std::left << stypestrs << setw(1) << ""
1249        << freqids << setw(1) << ""
1250        << molids  << endl;
1251    // Format Beam summary
1252    for (uInt j=0; j < nbeam; j++) {
1253      oss << setw(7) << "" << setw(6) << beamids(j) << setw(1) << ""
1254          << formatDirection(beamDirs(j)) << endl;
1255    }
1256    // Flush summary every scan and clear up the string
1257    ols << String(oss) << LogIO::POST;
1258    if (ofs) ofs << String(oss) << flush;
1259    oss.str("");
1260    oss.clear();
1261
1262    ++iter;
1263  } // end of scan iteration
1264  oss << asap::SEPERATOR << endl;
1265 
1266  // List FRECUENCIES Table (using STFrequencies.print may be slow)
1267  oss << "FREQUENCIES: " << nfreq << endl;
1268  oss << std::right << setw(5) << "ID" << setw(2) << ""
1269      << std::left  << setw(5) << "IFNO" << setw(2) << ""
1270      << setw(8) << "Frame"
1271      << setw(16) << "RefVal"
1272      << setw(7) << "RefPix"
1273      << setw(15) << "Increment"
1274      << setw(9) << "Channels"
1275      << setw(6) << "POLNOs" << endl;
1276  Int tmplen;
1277  for (Int i=0; i < nfid; i++){
1278    // List row=i of FREQUENCIES subtable
1279    ifNos[i].shape(tmplen);
1280    if (tmplen >= 1) {
1281      oss << std::right << setw(5) << ftabIds(i) << setw(2) << ""
1282          << setw(3) << ifNos[i](0) << setw(1) << ""
1283          << std::left << setw(46) << frequencies().print(ftabIds(i))
1284          << setw(2) << ""
1285          << std::right << setw(8) << fIdchans[i] << setw(2) << ""
1286          << std::left << polNos[i];
1287      if (tmplen > 1) {
1288        oss  << " (" << tmplen << " chains)";
1289      }
1290      oss << endl;
1291    }
1292   
1293  }
1294  oss << asap::SEPERATOR << endl;
1295
1296  // List MOLECULES Table (currently lists all rows)
1297  oss << "MOLECULES: " << endl;
1298  if (molecules().nrow() <= 0) {
1299    oss << "   MOLECULES subtable is empty: there are no data" << endl;
1300  } else {
1301    ROTableRow row(molecules().table());
1302    oss << std::right << setw(5) << "ID"
1303        << std::left << setw(3) << ""
1304        << setw(18) << "RestFreq"
1305        << setw(15) << "Name" << endl;
1306    for (Int i=0; i < molecules().nrow(); i++){
1307      const TableRecord& rec=row.get(i);
1308      oss << std::right << setw(5) << rec.asuInt("ID")
1309          << std::left << setw(3) << ""
1310          << rec.asArrayDouble("RESTFREQUENCY") << setw(1) << ""
1311          << rec.asArrayString("NAME") << endl;
1312    }
1313  }
1314  oss << asap::SEPERATOR << endl;
1315  ols << String(oss) << LogIO::POST;
1316  if (ofs) {
1317    ofs << String(oss) << flush;
1318    ofs.close();
1319  }
1320  //  return String(oss);
1321}
1322
1323
1324std::string Scantable::oldheaderSummary()
1325{
1326  // Format header info
1327//   STHeader sdh;
1328//   sdh = getHeader();
1329//   sdh.print();
1330  ostringstream oss;
1331  oss.flags(std::ios_base::left);
1332  oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1333      << setw(15) << "IFs:" << setw(4) << nif() << endl
1334      << setw(15) << "Polarisations:" << setw(4) << npol()
1335      << "(" << getPolType() << ")" << endl
1336      << setw(15) << "Channels:" << nchan() << endl;
1337  String tmp;
1338  oss << setw(15) << "Observer:"
1339      << table_.keywordSet().asString("Observer") << endl;
1340  oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1341  table_.keywordSet().get("Project", tmp);
1342  oss << setw(15) << "Project:" << tmp << endl;
1343  table_.keywordSet().get("Obstype", tmp);
1344  oss << setw(15) << "Obs. Type:" << tmp << endl;
1345  table_.keywordSet().get("AntennaName", tmp);
1346  oss << setw(15) << "Antenna Name:" << tmp << endl;
1347  table_.keywordSet().get("FluxUnit", tmp);
1348  oss << setw(15) << "Flux Unit:" << tmp << endl;
1349  int nid = moleculeTable_.nrow();
1350  Bool firstline = True;
1351  oss << setw(15) << "Rest Freqs:";
1352  for (int i=0; i<nid; i++) {
1353    Table t = table_(table_.col("MOLECULE_ID") == i, 1);
1354      if (t.nrow() >  0) {
1355          Vector<Double> vec(moleculeTable_.getRestFrequency(i));
1356          if (vec.nelements() > 0) {
1357               if (firstline) {
1358                   oss << setprecision(10) << vec << " [Hz]" << endl;
1359                   firstline=False;
1360               }
1361               else{
1362                   oss << setw(15)<<" " << setprecision(10) << vec << " [Hz]" << endl;
1363               }
1364          } else {
1365              oss << "none" << endl;
1366          }
1367      }
1368  }
1369
1370  oss << setw(15) << "Abcissa:" << getAbcissaLabel(0) << endl;
1371  oss << selector_.print() << endl;
1372  return String(oss);
1373}
1374
1375  //std::string Scantable::summary( const std::string& filename )
1376void Scantable::oldsummary( const std::string& filename )
1377{
1378  ostringstream oss;
1379  ofstream ofs;
1380  LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1381
1382  if (filename != "")
1383    ofs.open( filename.c_str(),  ios::out );
1384
1385  oss << endl;
1386  oss << asap::SEPERATOR << endl;
1387  oss << " Scan Table Summary" << endl;
1388  oss << asap::SEPERATOR << endl;
1389
1390  // Format header info
1391  oss << oldheaderSummary();
1392  oss << endl;
1393
1394  // main table
1395  String dirtype = "Position ("
1396                  + getDirectionRefString()
1397                  + ")";
1398  oss.flags(std::ios_base::left);
1399  oss << setw(5) << "Scan" << setw(15) << "Source"
1400      << setw(10) << "Time" << setw(18) << "Integration"
1401      << setw(15) << "Source Type" << endl;
1402  oss << setw(5) << "" << setw(5) << "Beam" << setw(3) << "" << dirtype << endl;
1403  oss << setw(10) << "" << setw(3) << "IF" << setw(3) << ""
1404      << setw(8) << "Frame" << setw(16)
1405      << "RefVal" << setw(10) << "RefPix" << setw(12) << "Increment"
1406      << setw(7) << "Channels"
1407      << endl;
1408  oss << asap::SEPERATOR << endl;
1409
1410  // Flush summary and clear up the string
1411  ols << String(oss) << LogIO::POST;
1412  if (ofs) ofs << String(oss) << flush;
1413  oss.str("");
1414  oss.clear();
1415
1416  TableIterator iter(table_, "SCANNO");
1417  while (!iter.pastEnd()) {
1418    Table subt = iter.table();
1419    ROTableRow row(subt);
1420    MEpoch::ROScalarColumn timeCol(subt,"TIME");
1421    const TableRecord& rec = row.get(0);
1422    oss << setw(4) << std::right << rec.asuInt("SCANNO")
1423        << std::left << setw(1) << ""
1424        << setw(15) << rec.asString("SRCNAME")
1425        << setw(10) << formatTime(timeCol(0), false);
1426    // count the cycles in the scan
1427    TableIterator cyciter(subt, "CYCLENO");
1428    int nint = 0;
1429    while (!cyciter.pastEnd()) {
1430      ++nint;
1431      ++cyciter;
1432    }
1433    oss << setw(3) << std::right << nint  << setw(3) << " x " << std::left
1434        << setw(11) <<  formatSec(rec.asFloat("INTERVAL")) << setw(1) << ""
1435        << setw(15) << SrcType::getName(rec.asInt("SRCTYPE")) << endl;
1436
1437    TableIterator biter(subt, "BEAMNO");
1438    while (!biter.pastEnd()) {
1439      Table bsubt = biter.table();
1440      ROTableRow brow(bsubt);
1441      const TableRecord& brec = brow.get(0);
1442      uInt row0 = bsubt.rowNumbers(table_)[0];
1443      oss << setw(5) << "" <<  setw(4) << std::right << brec.asuInt("BEAMNO")<< std::left;
1444      oss  << setw(4) << ""  << formatDirection(getDirection(row0)) << endl;
1445      TableIterator iiter(bsubt, "IFNO");
1446      while (!iiter.pastEnd()) {
1447        Table isubt = iiter.table();
1448        ROTableRow irow(isubt);
1449        const TableRecord& irec = irow.get(0);
1450        oss << setw(9) << "";
1451        oss << setw(3) << std::right << irec.asuInt("IFNO") << std::left
1452            << setw(1) << "" << frequencies().print(irec.asuInt("FREQ_ID"))
1453            << setw(3) << "" << nchan(irec.asuInt("IFNO"))
1454            << endl;
1455
1456        ++iiter;
1457      }
1458      ++biter;
1459    }
1460    // Flush summary every scan and clear up the string
1461    ols << String(oss) << LogIO::POST;
1462    if (ofs) ofs << String(oss) << flush;
1463    oss.str("");
1464    oss.clear();
1465
1466    ++iter;
1467  }
1468  oss << asap::SEPERATOR << endl;
1469  ols << String(oss) << LogIO::POST;
1470  if (ofs) {
1471    ofs << String(oss) << flush;
1472    ofs.close();
1473  }
1474  //  return String(oss);
1475}
1476
1477// std::string Scantable::getTime(int whichrow, bool showdate) const
1478// {
1479//   MEpoch::ROScalarColumn timeCol(table_, "TIME");
1480//   MEpoch me;
1481//   if (whichrow > -1) {
1482//     me = timeCol(uInt(whichrow));
1483//   } else {
1484//     Double tm;
1485//     table_.keywordSet().get("UTC",tm);
1486//     me = MEpoch(MVEpoch(tm));
1487//   }
1488//   return formatTime(me, showdate);
1489// }
1490
1491std::string Scantable::getTime(int whichrow, bool showdate, uInt prec) const
1492{
1493  MEpoch me;
1494  me = getEpoch(whichrow);
1495  return formatTime(me, showdate, prec);
1496}
1497
1498MEpoch Scantable::getEpoch(int whichrow) const
1499{
1500  if (whichrow > -1) {
1501    return timeCol_(uInt(whichrow));
1502  } else {
1503    Double tm;
1504    table_.keywordSet().get("UTC",tm);
1505    return MEpoch(MVEpoch(tm));
1506  }
1507}
1508
1509std::string Scantable::getDirectionString(int whichrow) const
1510{
1511  return formatDirection(getDirection(uInt(whichrow)));
1512}
1513
1514
1515SpectralCoordinate Scantable::getSpectralCoordinate(int whichrow) const {
1516  const MPosition& mp = getAntennaPosition();
1517  const MDirection& md = getDirection(whichrow);
1518  const MEpoch& me = timeCol_(whichrow);
1519  //Double rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1520  Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1521  return freqTable_.getSpectralCoordinate(md, mp, me, rf,
1522                                          mfreqidCol_(whichrow));
1523}
1524
1525std::vector< double > Scantable::getAbcissa( int whichrow ) const
1526{
1527  if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal row number"));
1528  std::vector<double> stlout;
1529  int nchan = specCol_(whichrow).nelements();
1530  String us = freqTable_.getUnitString();
1531  if ( us == "" || us == "pixel" || us == "channel" ) {
1532    for (int i=0; i<nchan; ++i) {
1533      stlout.push_back(double(i));
1534    }
1535    return stlout;
1536  }
1537  SpectralCoordinate spc = getSpectralCoordinate(whichrow);
1538  Vector<Double> pixel(nchan);
1539  Vector<Double> world;
1540  indgen(pixel);
1541  if ( Unit(us) == Unit("Hz") ) {
1542    for ( int i=0; i < nchan; ++i) {
1543      Double world;
1544      spc.toWorld(world, pixel[i]);
1545      stlout.push_back(double(world));
1546    }
1547  } else if ( Unit(us) == Unit("km/s") ) {
1548    Vector<Double> world;
1549    spc.pixelToVelocity(world, pixel);
1550    world.tovector(stlout);
1551  }
1552  return stlout;
1553}
1554void Scantable::setDirectionRefString( const std::string & refstr )
1555{
1556  MDirection::Types mdt;
1557  if (refstr != "" && !MDirection::getType(mdt, refstr)) {
1558    throw(AipsError("Illegal Direction frame."));
1559  }
1560  if ( refstr == "" ) {
1561    String defaultstr = MDirection::showType(dirCol_.getMeasRef().getType());
1562    table_.rwKeywordSet().define("DIRECTIONREF", defaultstr);
1563  } else {
1564    table_.rwKeywordSet().define("DIRECTIONREF", String(refstr));
1565  }
1566}
1567
1568std::string Scantable::getDirectionRefString( ) const
1569{
1570  return table_.keywordSet().asString("DIRECTIONREF");
1571}
1572
1573MDirection Scantable::getDirection(int whichrow ) const
1574{
1575  String usertype = table_.keywordSet().asString("DIRECTIONREF");
1576  String type = MDirection::showType(dirCol_.getMeasRef().getType());
1577  if ( usertype != type ) {
1578    MDirection::Types mdt;
1579    if (!MDirection::getType(mdt, usertype)) {
1580      throw(AipsError("Illegal Direction frame."));
1581    }
1582    return dirCol_.convert(uInt(whichrow), mdt);
1583  } else {
1584    return dirCol_(uInt(whichrow));
1585  }
1586}
1587
1588std::string Scantable::getAbcissaLabel( int whichrow ) const
1589{
1590  if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal ro number"));
1591  const MPosition& mp = getAntennaPosition();
1592  const MDirection& md = getDirection(whichrow);
1593  const MEpoch& me = timeCol_(whichrow);
1594  //const Double& rf = mmolidCol_(whichrow);
1595  const Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1596  SpectralCoordinate spc =
1597    freqTable_.getSpectralCoordinate(md, mp, me, rf, mfreqidCol_(whichrow));
1598
1599  String s = "Channel";
1600  Unit u = Unit(freqTable_.getUnitString());
1601  if (u == Unit("km/s")) {
1602    s = CoordinateUtil::axisLabel(spc, 0, True,True,  True);
1603  } else if (u == Unit("Hz")) {
1604    Vector<String> wau(1);wau = u.getName();
1605    spc.setWorldAxisUnits(wau);
1606    s = CoordinateUtil::axisLabel(spc, 0, True, True, False);
1607  }
1608  return s;
1609
1610}
1611
1612/**
1613void asap::Scantable::setRestFrequencies( double rf, const std::string& name,
1614                                          const std::string& unit )
1615**/
1616void Scantable::setRestFrequencies( vector<double> rf, const vector<std::string>& name,
1617                                          const std::string& unit )
1618
1619{
1620  ///@todo lookup in line table to fill in name and formattedname
1621  Unit u(unit);
1622  //Quantum<Double> urf(rf, u);
1623  Quantum<Vector<Double> >urf(rf, u);
1624  Vector<String> formattedname(0);
1625  //cerr<<"Scantable::setRestFrequnecies="<<urf<<endl;
1626
1627  //uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), name, "");
1628  uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), mathutil::toVectorString(name), formattedname);
1629  TableVector<uInt> tabvec(table_, "MOLECULE_ID");
1630  tabvec = id;
1631}
1632
1633/**
1634void asap::Scantable::setRestFrequencies( const std::string& name )
1635{
1636  throw(AipsError("setRestFrequencies( const std::string& name ) NYI"));
1637  ///@todo implement
1638}
1639**/
1640
1641void Scantable::setRestFrequencies( const vector<std::string>& name )
1642{
1643  (void) name; // suppress unused warning
1644  throw(AipsError("setRestFrequencies( const vector<std::string>& name ) NYI"));
1645  ///@todo implement
1646}
1647
1648std::vector< unsigned int > Scantable::rownumbers( ) const
1649{
1650  std::vector<unsigned int> stlout;
1651  Vector<uInt> vec = table_.rowNumbers();
1652  vec.tovector(stlout);
1653  return stlout;
1654}
1655
1656
1657Matrix<Float> Scantable::getPolMatrix( uInt whichrow ) const
1658{
1659  ROTableRow row(table_);
1660  const TableRecord& rec = row.get(whichrow);
1661  Table t =
1662    originalTable_( originalTable_.col("SCANNO") == Int(rec.asuInt("SCANNO"))
1663                    && originalTable_.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1664                    && originalTable_.col("IFNO") == Int(rec.asuInt("IFNO"))
1665                    && originalTable_.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
1666  ROArrayColumn<Float> speccol(t, "SPECTRA");
1667  return speccol.getColumn();
1668}
1669
1670std::vector< std::string > Scantable::columnNames( ) const
1671{
1672  Vector<String> vec = table_.tableDesc().columnNames();
1673  return mathutil::tovectorstring(vec);
1674}
1675
1676MEpoch::Types Scantable::getTimeReference( ) const
1677{
1678  return MEpoch::castType(timeCol_.getMeasRef().getType());
1679}
1680
1681void Scantable::addFit( const STFitEntry& fit, int row )
1682{
1683  //cout << mfitidCol_(uInt(row)) << endl;
1684  LogIO os( LogOrigin( "Scantable", "addFit()", WHERE ) ) ;
1685  os << mfitidCol_(uInt(row)) << LogIO::POST ;
1686  uInt id = fitTable_.addEntry(fit, mfitidCol_(uInt(row)));
1687  mfitidCol_.put(uInt(row), id);
1688}
1689
1690void Scantable::shift(int npix)
1691{
1692  Vector<uInt> fids(mfreqidCol_.getColumn());
1693  genSort( fids, Sort::Ascending,
1694           Sort::QuickSort|Sort::NoDuplicates );
1695  for (uInt i=0; i<fids.nelements(); ++i) {
1696    frequencies().shiftRefPix(npix, fids[i]);
1697  }
1698}
1699
1700String Scantable::getAntennaName() const
1701{
1702  String out;
1703  table_.keywordSet().get("AntennaName", out);
1704  String::size_type pos1 = out.find("@") ;
1705  String::size_type pos2 = out.find("//") ;
1706  if ( pos2 != String::npos )
1707    out = out.substr(pos2+2,pos1-pos2-2) ;
1708  else if ( pos1 != String::npos )
1709    out = out.substr(0,pos1) ;
1710  return out;
1711}
1712
1713int Scantable::checkScanInfo(const std::vector<int>& scanlist) const
1714{
1715  String tbpath;
1716  int ret = 0;
1717  if ( table_.keywordSet().isDefined("GBT_GO") ) {
1718    table_.keywordSet().get("GBT_GO", tbpath);
1719    Table t(tbpath,Table::Old);
1720    // check each scan if other scan of the pair exist
1721    int nscan = scanlist.size();
1722    for (int i = 0; i < nscan; i++) {
1723      Table subt = t( t.col("SCAN") == scanlist[i]+1 );
1724      if (subt.nrow()==0) {
1725        //cerr <<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<endl;
1726        LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1727        os <<LogIO::WARN<<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<LogIO::POST;
1728        ret = 1;
1729        break;
1730      }
1731      ROTableRow row(subt);
1732      const TableRecord& rec = row.get(0);
1733      int scan1seqn = rec.asuInt("PROCSEQN");
1734      int laston1 = rec.asuInt("LASTON");
1735      if ( rec.asuInt("PROCSIZE")==2 ) {
1736        if ( i < nscan-1 ) {
1737          Table subt2 = t( t.col("SCAN") == scanlist[i+1]+1 );
1738          if ( subt2.nrow() == 0) {
1739            LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1740
1741            //cerr<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<endl;
1742            os<<LogIO::WARN<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<LogIO::POST;
1743            ret = 1;
1744            break;
1745          }
1746          ROTableRow row2(subt2);
1747          const TableRecord& rec2 = row2.get(0);
1748          int scan2seqn = rec2.asuInt("PROCSEQN");
1749          int laston2 = rec2.asuInt("LASTON");
1750          if (scan1seqn == 1 && scan2seqn == 2) {
1751            if (laston1 == laston2) {
1752              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1753              //cerr<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1754              os<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1755              i +=1;
1756            }
1757            else {
1758              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1759              //cerr<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1760              os<<LogIO::WARN<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1761            }
1762          }
1763          else if (scan1seqn==2 && scan2seqn == 1) {
1764            if (laston1 == laston2) {
1765              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1766              //cerr<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<endl;
1767              os<<LogIO::WARN<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<LogIO::POST;
1768              ret = 1;
1769              break;
1770            }
1771          }
1772          else {
1773            LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1774            //cerr<<"The other scan for  "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<endl;
1775            os<<LogIO::WARN<<"The other scan for  "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<LogIO::POST;
1776            ret = 1;
1777            break;
1778          }
1779        }
1780      }
1781      else {
1782        LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1783        //cerr<<"The scan does not appear to be standard obsevation."<<endl;
1784        os<<LogIO::WARN<<"The scan does not appear to be standard obsevation."<<LogIO::POST;
1785      }
1786    //if ( i >= nscan ) break;
1787    }
1788  }
1789  else {
1790    LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1791    //cerr<<"No reference to GBT_GO table."<<endl;
1792    os<<LogIO::WARN<<"No reference to GBT_GO table."<<LogIO::POST;
1793    ret = 1;
1794  }
1795  return ret;
1796}
1797
1798std::vector<double> Scantable::getDirectionVector(int whichrow) const
1799{
1800  Vector<Double> Dir = dirCol_(whichrow).getAngle("rad").getValue();
1801  std::vector<double> dir;
1802  Dir.tovector(dir);
1803  return dir;
1804}
1805
1806void asap::Scantable::reshapeSpectrum( int nmin, int nmax )
1807  throw( casa::AipsError )
1808{
1809  // assumed that all rows have same nChan
1810  Vector<Float> arr = specCol_( 0 ) ;
1811  int nChan = arr.nelements() ;
1812
1813  // if nmin < 0 or nmax < 0, nothing to do
1814  if (  nmin < 0 ) {
1815    throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1816    }
1817  if (  nmax < 0  ) {
1818    throw( casa::indexError<int>( nmax, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1819  }
1820
1821  // if nmin > nmax, exchange values
1822  if ( nmin > nmax ) {
1823    int tmp = nmax ;
1824    nmax = nmin ;
1825    nmin = tmp ;
1826    LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1827    os << "Swap values. Applied range is ["
1828       << nmin << ", " << nmax << "]" << LogIO::POST ;
1829  }
1830
1831  // if nmin exceeds nChan, nothing to do
1832  if ( nmin >= nChan ) {
1833    throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Specified minimum exceeds nChan." ) ) ;
1834  }
1835
1836  // if nmax exceeds nChan, reset nmax to nChan
1837  if ( nmax >= nChan-1 ) {
1838    if ( nmin == 0 ) {
1839      // nothing to do
1840      LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1841      os << "Whole range is selected. Nothing to do." << LogIO::POST ;
1842      return ;
1843    }
1844    else {
1845      LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1846      os << "Specified maximum exceeds nChan. Applied range is ["
1847         << nmin << ", " << nChan-1 << "]." << LogIO::POST ;
1848      nmax = nChan - 1 ;
1849    }
1850  }
1851
1852  // reshape specCol_ and flagCol_
1853  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1854    reshapeSpectrum( nmin, nmax, irow ) ;
1855  }
1856
1857  // update FREQUENCIES subtable
1858  Double refpix ;
1859  Double refval ;
1860  Double increment ;
1861  int freqnrow = freqTable_.table().nrow() ;
1862  Vector<uInt> oldId( freqnrow ) ;
1863  Vector<uInt> newId( freqnrow ) ;
1864  for ( int irow = 0 ; irow < freqnrow ; irow++ ) {
1865    freqTable_.getEntry( refpix, refval, increment, irow ) ;
1866    /***
1867     * need to shift refpix to nmin
1868     * note that channel nmin in old index will be channel 0 in new one
1869     ***/
1870    refval = refval - ( refpix - nmin ) * increment ;
1871    refpix = 0 ;
1872    freqTable_.setEntry( refpix, refval, increment, irow ) ;
1873  }
1874
1875  // update nchan
1876  int newsize = nmax - nmin + 1 ;
1877  table_.rwKeywordSet().define( "nChan", newsize ) ;
1878
1879  // update bandwidth
1880  // assumed all spectra in the scantable have same bandwidth
1881  table_.rwKeywordSet().define( "Bandwidth", increment * newsize ) ;
1882
1883  return ;
1884}
1885
1886void asap::Scantable::reshapeSpectrum( int nmin, int nmax, int irow )
1887{
1888  // reshape specCol_ and flagCol_
1889  Vector<Float> oldspec = specCol_( irow ) ;
1890  Vector<uChar> oldflag = flagsCol_( irow ) ;
1891  Vector<Float> oldtsys = tsysCol_( irow ) ;
1892  uInt newsize = nmax - nmin + 1 ;
1893  Slice slice( nmin, newsize, 1 ) ;
1894  specCol_.put( irow, oldspec( slice ) ) ;
1895  flagsCol_.put( irow, oldflag( slice ) ) ;
1896  if ( oldspec.size() == oldtsys.size() )
1897    tsysCol_.put( irow, oldtsys( slice ) ) ;
1898
1899  return ;
1900}
1901
1902void asap::Scantable::regridSpecChannel( double dnu, int nChan )
1903{
1904  LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1905  os << "Regrid abcissa with spectral resoultion " << dnu << " " << freqTable_.getUnitString() << " with channel number " << ((nChan>0)? String(nChan) : "covering band width")<< LogIO::POST ;
1906  int freqnrow = freqTable_.table().nrow() ;
1907  Vector<bool> firstTime( freqnrow, true ) ;
1908  double oldincr, factor;
1909  uInt currId;
1910  Double refpix ;
1911  Double refval ;
1912  Double increment ;
1913  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1914    currId = mfreqidCol_(irow);
1915    vector<double> abcissa = getAbcissa( irow ) ;
1916    if (nChan < 0) {
1917      int oldsize = abcissa.size() ;
1918      double bw = (abcissa[oldsize-1]-abcissa[0]) +                     \
1919        0.5 * (abcissa[1]-abcissa[0] + abcissa[oldsize-1]-abcissa[oldsize-2]) ;
1920      nChan = int( ceil( abs(bw/dnu) ) ) ;
1921    }
1922    // actual regridding
1923    regridChannel( nChan, dnu, irow ) ;
1924
1925    // update FREQUENCIES subtable
1926    if (firstTime[currId]) {
1927      oldincr = abcissa[1]-abcissa[0] ;
1928      factor = dnu/oldincr ;
1929      firstTime[currId] = false ;
1930      freqTable_.getEntry( refpix, refval, increment, currId ) ;
1931
1932      //refval = refval - ( refpix + 0.5 * (1 - factor) ) * increment ;
1933      if (factor > 0 ) {
1934        refpix = (refpix + 0.5)/factor - 0.5;
1935      } else {
1936        refpix = (abcissa.size() - 0.5 - refpix)/abs(factor) - 0.5;
1937      }
1938      freqTable_.setEntry( refpix, refval, increment*factor, currId ) ;
1939      //os << "ID" << currId << ": channel width (Orig) = " << oldincr << " [" << freqTable_.getUnitString() << "], scale factor = " << factor << LogIO::POST ;
1940      //os << "     frequency increment (Orig) = " << increment << "-> (New) " << increment*factor << LogIO::POST ;
1941    }
1942  }
1943}
1944
1945void asap::Scantable::regridChannel( int nChan, double dnu )
1946{
1947  LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1948  os << "Regrid abcissa with channel number " << nChan << " and spectral resoultion " << dnu << "Hz." << LogIO::POST ;
1949  // assumed that all rows have same nChan
1950  Vector<Float> arr = specCol_( 0 ) ;
1951  int oldsize = arr.nelements() ;
1952
1953  // if oldsize == nChan, nothing to do
1954  if ( oldsize == nChan ) {
1955    os << "Specified channel number is same as current one. Nothing to do." << LogIO::POST ;
1956    return ;
1957  }
1958
1959  // if oldChan < nChan, unphysical operation
1960  if ( oldsize < nChan ) {
1961    os << "Unphysical operation. Nothing to do." << LogIO::POST ;
1962    return ;
1963  }
1964
1965  // change channel number for specCol_, flagCol_, and tsysCol_ (if necessary)
1966  vector<string> coordinfo = getCoordInfo() ;
1967  string oldinfo = coordinfo[0] ;
1968  coordinfo[0] = "Hz" ;
1969  setCoordInfo( coordinfo ) ;
1970  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1971    regridChannel( nChan, dnu, irow ) ;
1972  }
1973  coordinfo[0] = oldinfo ;
1974  setCoordInfo( coordinfo ) ;
1975
1976
1977  // NOTE: this method does not update metadata such as
1978  //       FREQUENCIES subtable, nChan, Bandwidth, etc.
1979
1980  return ;
1981}
1982
1983void asap::Scantable::regridChannel( int nChan, double dnu, int irow )
1984{
1985  // logging
1986  //ofstream ofs( "average.log", std::ios::out | std::ios::app ) ;
1987  //ofs << "IFNO = " << getIF( irow ) << " irow = " << irow << endl ;
1988
1989  Vector<Float> oldspec = specCol_( irow ) ;
1990  Vector<uChar> oldflag = flagsCol_( irow ) ;
1991  Vector<Float> oldtsys = tsysCol_( irow ) ;
1992  Vector<Float> newspec( nChan, 0 ) ;
1993  Vector<uChar> newflag( nChan, true ) ;
1994  Vector<Float> newtsys ;
1995  bool regridTsys = false ;
1996  if (oldtsys.size() == oldspec.size()) {
1997    regridTsys = true ;
1998    newtsys.resize(nChan,false) ;
1999    newtsys = 0 ;
2000  }
2001
2002  // regrid
2003  vector<double> abcissa = getAbcissa( irow ) ;
2004  int oldsize = abcissa.size() ;
2005  double olddnu = abcissa[1] - abcissa[0] ;
2006  //int ichan = 0 ;
2007  double wsum = 0.0 ;
2008  Vector<double> zi( nChan+1 ) ;
2009  Vector<double> yi( oldsize + 1 ) ;
2010  yi[0] = abcissa[0] - 0.5 * olddnu ;
2011  for ( int ii = 1 ; ii < oldsize ; ii++ )
2012    yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2013  yi[oldsize] = abcissa[oldsize-1] \
2014    + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
2015  //zi[0] = abcissa[0] - 0.5 * olddnu ;
2016  zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2017  for ( int ii = 1 ; ii < nChan ; ii++ )
2018    zi[ii] = zi[0] + dnu * ii ;
2019  zi[nChan] = zi[nChan-1] + dnu ;
2020  // Access zi and yi in ascending order
2021  int izs = ((dnu > 0) ? 0 : nChan ) ;
2022  int ize = ((dnu > 0) ? nChan : 0 ) ;
2023  int izincr = ((dnu > 0) ? 1 : -1 ) ;
2024  int ichan =  ((olddnu > 0) ? 0 : oldsize ) ;
2025  int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2026  int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2027  //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2028  int ii = izs ;
2029  while (ii != ize) {
2030    // always zl < zr
2031    double zl = zi[ii] ;
2032    double zr = zi[ii+izincr] ;
2033    // Need to access smaller index for the new spec, flag, and tsys.
2034    // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2035    int i = min(ii, ii+izincr) ;
2036    //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2037    int jj = ichan ;
2038    while (jj != iye) {
2039      // always yl < yr
2040      double yl = yi[jj] ;
2041      double yr = yi[jj+iyincr] ;
2042      // Need to access smaller index for the original spec, flag, and tsys.
2043      // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2044      int j = min(jj, jj+iyincr) ;
2045      if ( yr <= zl ) {
2046        jj += iyincr ;
2047        continue ;
2048      }
2049      else if ( yl <= zl ) {
2050        if ( yr < zr ) {
2051          if (!oldflag[j]) {
2052            newspec[i] += oldspec[j] * ( yr - zl ) ;
2053            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2054            wsum += ( yr - zl ) ;
2055          }
2056          newflag[i] = newflag[i] && oldflag[j] ;
2057        }
2058        else {
2059          if (!oldflag[j]) {
2060            newspec[i] += oldspec[j] * abs(dnu) ;
2061            if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2062            wsum += abs(dnu) ;
2063          }
2064          newflag[i] = newflag[i] && oldflag[j] ;
2065          ichan = jj ;
2066          break ;
2067        }
2068      }
2069      else if ( yl < zr ) {
2070        if ( yr <= zr ) {
2071          if (!oldflag[j]) {
2072            newspec[i] += oldspec[j] * ( yr - yl ) ;
2073            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2074            wsum += ( yr - yl ) ;
2075          }
2076          newflag[i] = newflag[i] && oldflag[j] ;
2077        }
2078        else {
2079          if (!oldflag[j]) {
2080            newspec[i] += oldspec[j] * ( zr - yl ) ;
2081            if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2082            wsum += ( zr - yl ) ;
2083          }
2084          newflag[i] = newflag[i] && oldflag[j] ;
2085          ichan = jj ;
2086          break ;
2087        }
2088      }
2089      else {
2090        ichan = jj - iyincr ;
2091        break ;
2092      }
2093      jj += iyincr ;
2094    }
2095    if ( wsum != 0.0 ) {
2096      newspec[i] /= wsum ;
2097      if (regridTsys) newtsys[i] /= wsum ;
2098    }
2099    wsum = 0.0 ;
2100    ii += izincr ;
2101  }
2102//   if ( dnu > 0.0 ) {
2103//     for ( int ii = 0 ; ii < nChan ; ii++ ) {
2104//       double zl = zi[ii] ;
2105//       double zr = zi[ii+1] ;
2106//       for ( int j = ichan ; j < oldsize ; j++ ) {
2107//         double yl = yi[j] ;
2108//         double yr = yi[j+1] ;
2109//         if ( yl <= zl ) {
2110//           if ( yr <= zl ) {
2111//             continue ;
2112//           }
2113//           else if ( yr <= zr ) {
2114//          if (!oldflag[j]) {
2115//            newspec[ii] += oldspec[j] * ( yr - zl ) ;
2116//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - zl ) ;
2117//            wsum += ( yr - zl ) ;
2118//          }
2119//          newflag[ii] = newflag[ii] && oldflag[j] ;
2120//           }
2121//           else {
2122//          if (!oldflag[j]) {
2123//            newspec[ii] += oldspec[j] * dnu ;
2124//            if (regridTsys) newtsys[ii] += oldtsys[j] * dnu ;
2125//            wsum += dnu ;
2126//          }
2127//          newflag[ii] = newflag[ii] && oldflag[j] ;
2128//             ichan = j ;
2129//             break ;
2130//           }
2131//         }
2132//         else if ( yl < zr ) {
2133//           if ( yr <= zr ) {
2134//          if (!oldflag[j]) {
2135//            newspec[ii] += oldspec[j] * ( yr - yl ) ;
2136//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - yl ) ;
2137//               wsum += ( yr - yl ) ;
2138//          }
2139//          newflag[ii] = newflag[ii] && oldflag[j] ;
2140//           }
2141//           else {
2142//          if (!oldflag[j]) {
2143//            newspec[ii] += oldspec[j] * ( zr - yl ) ;
2144//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( zr - yl ) ;
2145//            wsum += ( zr - yl ) ;
2146//          }
2147//          newflag[ii] = newflag[ii] && oldflag[j] ;
2148//             ichan = j ;
2149//             break ;
2150//           }
2151//         }
2152//         else {
2153//           ichan = j - 1 ;
2154//           break ;
2155//         }
2156//       }
2157//       if ( wsum != 0.0 ) {
2158//         newspec[ii] /= wsum ;
2159//      if (regridTsys) newtsys[ii] /= wsum ;
2160//       }
2161//       wsum = 0.0 ;
2162//     }
2163//   }
2164//   else if ( dnu < 0.0 ) {
2165//     for ( int ii = 0 ; ii < nChan ; ii++ ) {
2166//       double zl = zi[ii] ;
2167//       double zr = zi[ii+1] ;
2168//       for ( int j = ichan ; j < oldsize ; j++ ) {
2169//         double yl = yi[j] ;
2170//         double yr = yi[j+1] ;
2171//         if ( yl >= zl ) {
2172//           if ( yr >= zl ) {
2173//             continue ;
2174//           }
2175//           else if ( yr >= zr ) {
2176//          if (!oldflag[j]) {
2177//            newspec[ii] += oldspec[j] * abs( yr - zl ) ;
2178//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - zl ) ;
2179//            wsum += abs( yr - zl ) ;
2180//          }
2181//          newflag[ii] = newflag[ii] && oldflag[j] ;
2182//           }
2183//           else {
2184//          if (!oldflag[j]) {
2185//            newspec[ii] += oldspec[j] * abs( dnu ) ;
2186//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( dnu ) ;
2187//            wsum += abs( dnu ) ;
2188//          }
2189//          newflag[ii] = newflag[ii] && oldflag[j] ;
2190//             ichan = j ;
2191//             break ;
2192//           }
2193//         }
2194//         else if ( yl > zr ) {
2195//           if ( yr >= zr ) {
2196//          if (!oldflag[j]) {
2197//            newspec[ii] += oldspec[j] * abs( yr - yl ) ;
2198//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - yl ) ;
2199//            wsum += abs( yr - yl ) ;
2200//          }
2201//          newflag[ii] = newflag[ii] && oldflag[j] ;
2202//           }
2203//           else {
2204//          if (!oldflag[j]) {
2205//            newspec[ii] += oldspec[j] * abs( zr - yl ) ;
2206//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( zr - yl ) ;
2207//            wsum += abs( zr - yl ) ;
2208//          }
2209//          newflag[ii] = newflag[ii] && oldflag[j] ;
2210//             ichan = j ;
2211//             break ;
2212//           }
2213//         }
2214//         else {
2215//           ichan = j - 1 ;
2216//           break ;
2217//         }
2218//       }
2219//       if ( wsum != 0.0 ) {
2220//         newspec[ii] /= wsum ;
2221//      if (regridTsys) newtsys[ii] /= wsum ;
2222//       }
2223//       wsum = 0.0 ;
2224//     }
2225//   }
2226// //   //ofs << "olddnu = " << olddnu << ", dnu = " << dnu << endl ;
2227// //   pile += dnu ;
2228// //   wedge = olddnu * ( refChan + 1 ) ;
2229// //   while ( wedge < pile ) {
2230// //     newspec[0] += olddnu * oldspec[refChan] ;
2231// //     newflag[0] = newflag[0] || oldflag[refChan] ;
2232// //     //ofs << "channel " << refChan << " is included in new channel 0" << endl ;
2233// //     refChan++ ;
2234// //     wedge += olddnu ;
2235// //     wsum += olddnu ;
2236// //     //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2237// //   }
2238// //   frac = ( wedge - pile ) / olddnu ;
2239// //   wsum += ( 1.0 - frac ) * olddnu ;
2240// //   newspec[0] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2241// //   newflag[0] = newflag[0] || oldflag[refChan] ;
2242// //   //ofs << "channel " << refChan << " is partly included in new channel 0" << " with fraction of " << ( 1.0 - frac ) << endl ;
2243// //   //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2244// //   newspec[0] /= wsum ;
2245// //   //ofs << "newspec[0] = " << newspec[0] << endl ;
2246// //   //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2247
2248// //   /***
2249// //    * ichan = 1 - nChan-2
2250// //    ***/
2251// //   for ( int ichan = 1 ; ichan < nChan - 1 ; ichan++ ) {
2252// //     pile += dnu ;
2253// //     newspec[ichan] += frac * olddnu * oldspec[refChan] ;
2254// //     newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2255// //     //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << frac << endl ;
2256// //     refChan++ ;
2257// //     wedge += olddnu ;
2258// //     wsum = frac * olddnu ;
2259// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2260// //     while ( wedge < pile ) {
2261// //       newspec[ichan] += olddnu * oldspec[refChan] ;
2262// //       newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2263// //       //ofs << "channel " << refChan << " is included in new channel " << ichan << endl ;
2264// //       refChan++ ;
2265// //       wedge += olddnu ;
2266// //       wsum += olddnu ;
2267// //       //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2268// //     }
2269// //     frac = ( wedge - pile ) / olddnu ;
2270// //     wsum += ( 1.0 - frac ) * olddnu ;
2271// //     newspec[ichan] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2272// //     newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2273// //     //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << ( 1.0 - frac ) << endl ;
2274// //     //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2275// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2276// //     newspec[ichan] /= wsum ;
2277// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << endl ;
2278// //   }
2279
2280// //   /***
2281// //    * ichan = nChan-1
2282// //    ***/
2283// //   // NOTE: Assumed that all spectra have the same bandwidth
2284// //   pile += dnu ;
2285// //   newspec[nChan-1] += frac * olddnu * oldspec[refChan] ;
2286// //   newflag[nChan-1] = newflag[nChan-1] || oldflag[refChan] ;
2287// //   //ofs << "channel " << refChan << " is partly included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2288// //   refChan++ ;
2289// //   wedge += olddnu ;
2290// //   wsum = frac * olddnu ;
2291// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2292// //   for ( int jchan = refChan ; jchan < oldsize ; jchan++ ) {
2293// //     newspec[nChan-1] += olddnu * oldspec[jchan] ;
2294// //     newflag[nChan-1] = newflag[nChan-1] || oldflag[jchan] ;
2295// //     wsum += olddnu ;
2296// //     //ofs << "channel " << jchan << " is included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2297// //     //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2298// //   }
2299// //   //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2300// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2301// //   newspec[nChan-1] /= wsum ;
2302// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << endl ;
2303
2304// //   // ofs.close() ;
2305
2306  specCol_.put( irow, newspec ) ;
2307  flagsCol_.put( irow, newflag ) ;
2308  if (regridTsys) tsysCol_.put( irow, newtsys );
2309
2310  return ;
2311}
2312
2313void Scantable::regridChannel( int nChan, double dnu, double fmin, int irow )
2314{
2315  Vector<Float> oldspec = specCol_( irow ) ;
2316  Vector<uChar> oldflag = flagsCol_( irow ) ;
2317  Vector<Float> oldtsys = tsysCol_( irow ) ;
2318  Vector<Float> newspec( nChan, 0 ) ;
2319  Vector<uChar> newflag( nChan, true ) ;
2320  Vector<Float> newtsys ;
2321  bool regridTsys = false ;
2322  if (oldtsys.size() == oldspec.size()) {
2323    regridTsys = true ;
2324    newtsys.resize(nChan,false) ;
2325    newtsys = 0 ;
2326  }
2327 
2328  // regrid
2329  vector<double> abcissa = getAbcissa( irow ) ;
2330  int oldsize = abcissa.size() ;
2331  double olddnu = abcissa[1] - abcissa[0] ;
2332  //int ichan = 0 ;
2333  double wsum = 0.0 ;
2334  Vector<double> zi( nChan+1 ) ;
2335  Vector<double> yi( oldsize + 1 ) ;
2336  Block<uInt> count( nChan, 0 ) ;
2337  yi[0] = abcissa[0] - 0.5 * olddnu ;
2338  for ( int ii = 1 ; ii < oldsize ; ii++ )
2339    yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2340  yi[oldsize] = abcissa[oldsize-1] \
2341    + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
2342//   cout << "olddnu=" << olddnu << ", dnu=" << dnu << " (diff=" << olddnu-dnu << ")" << endl ;
2343//   cout << "yi[0]=" << yi[0] << ", fmin=" << fmin << " (diff=" << yi[0]-fmin << ")" << endl ;
2344//   cout << "oldsize=" << oldsize << ", nChan=" << nChan << endl ;
2345
2346  // do not regrid if input parameters are almost same as current
2347  // spectral setup
2348  double dnuDiff = abs( ( dnu - olddnu ) / olddnu ) ;
2349  double oldfmin = min( yi[0], yi[oldsize] ) ;
2350  double fminDiff = abs( ( fmin - oldfmin ) / oldfmin ) ;
2351  double nChanDiff = nChan - oldsize ;
2352  double eps = 1.0e-8 ;
2353  if ( nChanDiff == 0 && dnuDiff < eps && fminDiff < eps )
2354    return ;
2355
2356  //zi[0] = abcissa[0] - 0.5 * olddnu ;
2357  //zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2358  if ( dnu > 0 )
2359    zi[0] = fmin - 0.5 * dnu ;
2360  else
2361    zi[0] = fmin + nChan * abs(dnu) ;
2362  for ( int ii = 1 ; ii < nChan ; ii++ )
2363    zi[ii] = zi[0] + dnu * ii ;
2364  zi[nChan] = zi[nChan-1] + dnu ;
2365  // Access zi and yi in ascending order
2366  int izs = ((dnu > 0) ? 0 : nChan ) ;
2367  int ize = ((dnu > 0) ? nChan : 0 ) ;
2368  int izincr = ((dnu > 0) ? 1 : -1 ) ;
2369  int ichan =  ((olddnu > 0) ? 0 : oldsize ) ;
2370  int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2371  int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2372  //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2373  int ii = izs ;
2374  while (ii != ize) {
2375    // always zl < zr
2376    double zl = zi[ii] ;
2377    double zr = zi[ii+izincr] ;
2378    // Need to access smaller index for the new spec, flag, and tsys.
2379    // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2380    int i = min(ii, ii+izincr) ;
2381    //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2382    int jj = ichan ;
2383    while (jj != iye) {
2384      // always yl < yr
2385      double yl = yi[jj] ;
2386      double yr = yi[jj+iyincr] ;
2387      // Need to access smaller index for the original spec, flag, and tsys.
2388      // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2389      int j = min(jj, jj+iyincr) ;
2390      if ( yr <= zl ) {
2391        jj += iyincr ;
2392        continue ;
2393      }
2394      else if ( yl <= zl ) {
2395        if ( yr < zr ) {
2396          if (!oldflag[j]) {
2397            newspec[i] += oldspec[j] * ( yr - zl ) ;
2398            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2399            wsum += ( yr - zl ) ;
2400            count[i]++ ;
2401          }
2402          newflag[i] = newflag[i] && oldflag[j] ;
2403        }
2404        else {
2405          if (!oldflag[j]) {
2406            newspec[i] += oldspec[j] * abs(dnu) ;
2407            if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2408            wsum += abs(dnu) ;
2409            count[i]++ ;
2410          }
2411          newflag[i] = newflag[i] && oldflag[j] ;
2412          ichan = jj ;
2413          break ;
2414        }
2415      }
2416      else if ( yl < zr ) {
2417        if ( yr <= zr ) {
2418          if (!oldflag[j]) {
2419            newspec[i] += oldspec[j] * ( yr - yl ) ;
2420            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2421            wsum += ( yr - yl ) ;
2422            count[i]++ ;
2423          }
2424          newflag[i] = newflag[i] && oldflag[j] ;
2425        }
2426        else {
2427          if (!oldflag[j]) {
2428            newspec[i] += oldspec[j] * ( zr - yl ) ;
2429            if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2430            wsum += ( zr - yl ) ;
2431            count[i]++ ;
2432          }
2433          newflag[i] = newflag[i] && oldflag[j] ;
2434          ichan = jj ;
2435          break ;
2436        }
2437      }
2438      else {
2439        //ichan = jj - iyincr ;
2440        break ;
2441      }
2442      jj += iyincr ;
2443    }
2444    if ( wsum != 0.0 ) {
2445      newspec[i] /= wsum ;
2446      if (regridTsys) newtsys[i] /= wsum ;
2447    }
2448    wsum = 0.0 ;
2449    ii += izincr ;
2450  }
2451
2452  // flag out channels without data
2453  // this is tentative since there is no specific definition
2454  // on bit flag...
2455  uChar noData = 1 << 7 ;
2456  for ( Int i = 0 ; i < nChan ; i++ ) {
2457    if ( count[i] == 0 )
2458      newflag[i] = noData ;
2459  }
2460
2461  specCol_.put( irow, newspec ) ;
2462  flagsCol_.put( irow, newflag ) ;
2463  if (regridTsys) tsysCol_.put( irow, newtsys );
2464
2465  return ;
2466}
2467
2468std::vector<float> Scantable::getWeather(int whichrow) const
2469{
2470  std::vector<float> out(5);
2471  //Float temperature, pressure, humidity, windspeed, windaz;
2472  weatherTable_.getEntry(out[0], out[1], out[2], out[3], out[4],
2473                         mweatheridCol_(uInt(whichrow)));
2474
2475
2476  return out;
2477}
2478
2479bool Scantable::getFlagtraFast(uInt whichrow)
2480{
2481  uChar flag;
2482  Vector<uChar> flags;
2483  flagsCol_.get(whichrow, flags);
2484  flag = flags[0];
2485  for (uInt i = 1; i < flags.size(); ++i) {
2486    flag &= flags[i];
2487  }
2488  return ((flag >> 7) == 1);
2489}
2490
2491void Scantable::polyBaseline(const std::vector<bool>& mask, int order, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
2492{
2493  try {
2494    ofstream ofs;
2495    String coordInfo = "";
2496    bool hasSameNchan = true;
2497    bool outTextFile = false;
2498    bool csvFormat = false;
2499
2500    if (blfile != "") {
2501      csvFormat = (blfile.substr(0, 1) == "T");
2502      ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
2503      if (ofs) outTextFile = true;
2504    }
2505
2506    if (outLogger || outTextFile) {
2507      coordInfo = getCoordInfo()[0];
2508      if (coordInfo == "") coordInfo = "channel";
2509      hasSameNchan = hasSameNchanOverIFs();
2510    }
2511
2512    Fitter fitter = Fitter();
2513    fitter.setExpression("poly", order);
2514    //fitter.setIterClipping(thresClip, nIterClip);
2515
2516    int nRow = nrow();
2517    std::vector<bool> chanMask;
2518    bool showProgress;
2519    int minNRow;
2520    parseProgressInfo(progressInfo, showProgress, minNRow);
2521
2522    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2523      chanMask = getCompositeChanMask(whichrow, mask);
2524      fitBaseline(chanMask, whichrow, fitter);
2525      setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
2526      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "polyBaseline()", fitter);
2527      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
2528    }
2529
2530    if (outTextFile) ofs.close();
2531
2532  } catch (...) {
2533    throw;
2534  }
2535}
2536
2537void Scantable::autoPolyBaseline(const std::vector<bool>& mask, int order, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
2538{
2539  try {
2540    ofstream ofs;
2541    String coordInfo = "";
2542    bool hasSameNchan = true;
2543    bool outTextFile = false;
2544    bool csvFormat = false;
2545
2546    if (blfile != "") {
2547      csvFormat = (blfile.substr(0, 1) == "T");
2548      ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
2549      if (ofs) outTextFile = true;
2550    }
2551
2552    if (outLogger || outTextFile) {
2553      coordInfo = getCoordInfo()[0];
2554      if (coordInfo == "") coordInfo = "channel";
2555      hasSameNchan = hasSameNchanOverIFs();
2556    }
2557
2558    Fitter fitter = Fitter();
2559    fitter.setExpression("poly", order);
2560    //fitter.setIterClipping(thresClip, nIterClip);
2561
2562    int nRow = nrow();
2563    std::vector<bool> chanMask;
2564    int minEdgeSize = getIFNos().size()*2;
2565    STLineFinder lineFinder = STLineFinder();
2566    lineFinder.setOptions(threshold, 3, chanAvgLimit);
2567
2568    bool showProgress;
2569    int minNRow;
2570    parseProgressInfo(progressInfo, showProgress, minNRow);
2571
2572    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2573
2574      //-------------------------------------------------------
2575      //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
2576      //-------------------------------------------------------
2577      int edgeSize = edge.size();
2578      std::vector<int> currentEdge;
2579      if (edgeSize >= 2) {
2580        int idx = 0;
2581        if (edgeSize > 2) {
2582          if (edgeSize < minEdgeSize) {
2583            throw(AipsError("Length of edge element info is less than that of IFs"));
2584          }
2585          idx = 2 * getIF(whichrow);
2586        }
2587        currentEdge.push_back(edge[idx]);
2588        currentEdge.push_back(edge[idx+1]);
2589      } else {
2590        throw(AipsError("Wrong length of edge element"));
2591      }
2592      lineFinder.setData(getSpectrum(whichrow));
2593      lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
2594      chanMask = lineFinder.getMask();
2595      //-------------------------------------------------------
2596
2597      fitBaseline(chanMask, whichrow, fitter);
2598      setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
2599
2600      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoPolyBaseline()", fitter);
2601      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
2602    }
2603
2604    if (outTextFile) ofs.close();
2605
2606  } catch (...) {
2607    throw;
2608  }
2609}
2610
2611void Scantable::chebyshevBaseline(const std::vector<bool>& mask, int order, float thresClip, int nIterClip, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
2612{
2613  try {
2614    ofstream ofs;
2615    String coordInfo = "";
2616    bool hasSameNchan = true;
2617    bool outTextFile = false;
2618    bool csvFormat = false;
2619
2620    if (blfile != "") {
2621      csvFormat = (blfile.substr(0, 1) == "T");
2622      ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
2623      if (ofs) outTextFile = true;
2624    }
2625
2626    if (outLogger || outTextFile) {
2627      coordInfo = getCoordInfo()[0];
2628      if (coordInfo == "") coordInfo = "channel";
2629      hasSameNchan = hasSameNchanOverIFs();
2630    }
2631
2632    bool showProgress;
2633    int minNRow;
2634    parseProgressInfo(progressInfo, showProgress, minNRow);
2635
2636    int nRow = nrow();
2637    std::vector<bool> chanMask;
2638
2639    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2640      std::vector<float> sp = getSpectrum(whichrow);
2641      chanMask = getCompositeChanMask(whichrow, mask);
2642      std::vector<float> params(order+1);
2643      int nClipped = 0;
2644      std::vector<float> res = doChebyshevFitting(sp, chanMask, order, params, nClipped, thresClip, nIterClip, getResidual);
2645
2646      setSpectrum(res, whichrow);
2647      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "chebyshevBaseline()", params, nClipped);
2648      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
2649    }
2650   
2651    if (outTextFile) ofs.close();
2652
2653  } catch (...) {
2654    throw;
2655  }
2656}
2657
2658double Scantable::calculateModelSelectionCriteria(const std::string& valname, const std::string& blfunc, int order, const std::vector<bool>& inMask, int whichrow, bool useLineFinder, const std::vector<int>& edge, float threshold, int chanAvgLimit)
2659{
2660  if (useLineFinder) {
2661    int minEdgeSize = getIFNos().size()*2;
2662
2663
2664    int edgeSize = edge.size();
2665    std::vector<int> currentEdge;
2666    if (edgeSize >= 2) {
2667      int idx = 0;
2668      if (edgeSize > 2) {
2669        if (edgeSize < minEdgeSize) {
2670          throw(AipsError("Length of edge element info is less than that of IFs"));
2671        }
2672        idx = 2 * getIF(whichrow);
2673      }
2674      currentEdge.push_back(edge[idx]);
2675      currentEdge.push_back(edge[idx+1]);
2676    } else {
2677      throw(AipsError("Wrong length of edge element"));
2678    }
2679
2680    STLineFinder lineFinder = STLineFinder();
2681    std::vector<float> sp = getSpectrum(whichrow);
2682    lineFinder.setData(sp);
2683    lineFinder.setOptions(threshold, 3, chanAvgLimit);
2684    lineFinder.findLines(getCompositeChanMask(whichrow, inMask), currentEdge, whichrow);
2685    std::vector<bool> chanMask = lineFinder.getMask();
2686   
2687    return doCalculateModelSelectionCriteria(valname, sp, chanMask, blfunc, order);
2688
2689  } else {
2690    return doCalculateModelSelectionCriteria(valname, getSpectrum(whichrow), getCompositeChanMask(whichrow, inMask), blfunc, order);
2691  }
2692
2693}
2694
2695double Scantable::doCalculateModelSelectionCriteria(const std::string& valname, const std::vector<float>& spec, const std::vector<bool>& mask, const std::string& blfunc, int order)
2696{
2697  int nparam;
2698  std::vector<float> params;
2699  int nClipped = 0;
2700  float thresClip = 0.0;
2701  int nIterClip = 0;
2702  std::vector<float> res;
2703  if (blfunc == "chebyshev") {
2704    nparam = order + 1;
2705    res = doChebyshevFitting(spec, mask, order, params, nClipped, thresClip, nIterClip, true);
2706  } else if (blfunc == "sinusoid") {
2707    std::vector<int> nWaves;
2708    nWaves.clear();
2709    for (int i = 0; i <= order; ++i) {
2710      nWaves.push_back(i);
2711    }
2712    nparam = 2*order + 1;  // order = nwave
2713    res = doSinusoidFitting(spec, mask, nWaves, params, nClipped, thresClip, nIterClip, true);
2714  } else if (blfunc == "cspline") {
2715    std::vector<int> pieceEdges(order+1);  //order = npiece
2716    nparam = order + 3;
2717    params.resize(4*order);
2718    res = doCubicSplineFitting(spec, mask, order, pieceEdges, params, nClipped, thresClip, nIterClip, true);
2719  } else {
2720    throw(AipsError("blfunc must be chebyshev, cspline or sinusoid."));
2721  }
2722
2723  double msq = 0.0;
2724  int nusedchan = 0;
2725  int nChan = res.size();
2726  for (int i = 0; i < nChan; ++i) {
2727    if (mask[i]) {
2728      msq += (double)res[i]*(double)res[i];
2729      nusedchan++;
2730    }
2731  }
2732  if (nusedchan == 0) {
2733    throw(AipsError("all channels masked."));
2734  }
2735  msq /= (double)nusedchan;
2736
2737  nparam++;  //add 1 for sigma of Gaussian distribution
2738  const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
2739
2740  if (valname.find("aic") == 0) {
2741    // Original Akaike Information Criterion (AIC)
2742    double aic = nusedchan * (log(2.0 * PI * msq) + 1.0) + 2.0 * nparam;
2743
2744    // Corrected AIC by Sugiura(1978)
2745    if (valname == "aicc") {
2746      if (nusedchan - nparam - 1 <= 0) {
2747        throw(AipsError("channel size is too small to calculate AICc."));
2748      }
2749      aic += 2.0*nparam*(nparam + 1)/(double)(nusedchan - nparam - 1);
2750    }
2751
2752    return aic;
2753
2754  } else if (valname == "bic") {
2755    // Bayesian Information Criterion (BIC)
2756    double bic = nusedchan * log(msq) + nparam * log((double)nusedchan);
2757    return bic;
2758
2759  } else if (valname == "gcv") {
2760    // Generalised Cross Validation
2761    double x = 1.0 - (double)nparam / (double)nusedchan;
2762    double gcv = msq / (x * x);
2763    return gcv;
2764
2765  } else {
2766    throw(AipsError("valname must be aic, aicc, bic or gcv."));
2767  }
2768}
2769
2770void Scantable::autoChebyshevBaseline(const std::vector<bool>& mask, int order, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
2771{
2772  try {
2773    ofstream ofs;
2774    String coordInfo = "";
2775    bool hasSameNchan = true;
2776    bool outTextFile = false;
2777    bool csvFormat = false;
2778
2779    if (blfile != "") {
2780      csvFormat = (blfile.substr(0, 1) == "T");
2781      ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
2782      if (ofs) outTextFile = true;
2783    }
2784
2785    if (outLogger || outTextFile) {
2786      coordInfo = getCoordInfo()[0];
2787      if (coordInfo == "") coordInfo = "channel";
2788      hasSameNchan = hasSameNchanOverIFs();
2789    }
2790
2791    int nRow = nrow();
2792    std::vector<bool> chanMask;
2793    int minEdgeSize = getIFNos().size()*2;
2794    STLineFinder lineFinder = STLineFinder();
2795    lineFinder.setOptions(threshold, 3, chanAvgLimit);
2796
2797    bool showProgress;
2798    int minNRow;
2799    parseProgressInfo(progressInfo, showProgress, minNRow);
2800
2801    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2802      std::vector<float> sp = getSpectrum(whichrow);
2803
2804      //-------------------------------------------------------
2805      //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
2806      //-------------------------------------------------------
2807      int edgeSize = edge.size();
2808      std::vector<int> currentEdge;
2809      if (edgeSize >= 2) {
2810        int idx = 0;
2811        if (edgeSize > 2) {
2812          if (edgeSize < minEdgeSize) {
2813            throw(AipsError("Length of edge element info is less than that of IFs"));
2814          }
2815          idx = 2 * getIF(whichrow);
2816        }
2817        currentEdge.push_back(edge[idx]);
2818        currentEdge.push_back(edge[idx+1]);
2819      } else {
2820        throw(AipsError("Wrong length of edge element"));
2821      }
2822      //lineFinder.setData(getSpectrum(whichrow));
2823      lineFinder.setData(sp);
2824      lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
2825      chanMask = lineFinder.getMask();
2826      //-------------------------------------------------------
2827
2828
2829      //fitBaseline(chanMask, whichrow, fitter);
2830      //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
2831      std::vector<float> params(order+1);
2832      int nClipped = 0;
2833      std::vector<float> res = doChebyshevFitting(sp, chanMask, order, params, nClipped, thresClip, nIterClip, getResidual);
2834      setSpectrum(res, whichrow);
2835
2836      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoChebyshevBaseline()", params, nClipped);
2837      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
2838    }
2839
2840    if (outTextFile) ofs.close();
2841
2842  } catch (...) {
2843    throw;
2844  }
2845}
2846
2847  /*
2848double Scantable::getChebyshevPolynomial(int n, double x) {
2849  if ((x < -1.0)||(x > 1.0)) {
2850    throw(AipsError("out of definition range (-1 <= x <= 1)."));
2851  } else if (n < 0) {
2852    throw(AipsError("the order must be zero or positive."));
2853  } else if (n == 0) {
2854    return 1.0;
2855  } else if (n == 1) {
2856    return x;
2857  } else {
2858    return 2.0*x*getChebyshevPolynomial(n-1, x) - getChebyshevPolynomial(n-2, x);
2859  }
2860}
2861  */
2862double Scantable::getChebyshevPolynomial(int n, double x) {
2863  if ((x < -1.0)||(x > 1.0)) {
2864    throw(AipsError("out of definition range (-1 <= x <= 1)."));
2865  } else if (x == 1.0) {
2866    return 1.0;
2867  } else if (x == 0.0) {
2868    double res;
2869    if (n%2 == 0) {
2870      if (n%4 == 0) {
2871        res = 1.0;
2872      } else {
2873        res = -1.0;
2874      }
2875    } else {
2876      res = 0.0;
2877    }
2878    return res;
2879  } else if (x == -1.0) {
2880    double res = (n%2 == 0 ? 1.0 : -1.0);
2881    return res;
2882  } else if (n < 0) {
2883    throw(AipsError("the order must be zero or positive."));
2884  } else if (n == 0) {
2885    return 1.0;
2886  } else if (n == 1) {
2887    return x;
2888  } else {
2889    double res = 0.0;
2890    for (int m = 0; m <= n/2; ++m) {
2891      double c = 1.0;
2892      if (m > 0) {
2893        for (int i = 1; i <= m; ++i) {
2894          c *= (double)(n-2*m+i)/(double)i;
2895        }
2896      }
2897      res += (m%2 == 0 ? 1.0 : -1.0)*(double)n/(double)(n-m)*pow(2.0*x, (double)(n-2*m))/2.0*c;
2898    }
2899    return res;
2900  }
2901}
2902
2903std::vector<float> Scantable::doChebyshevFitting(const std::vector<float>& data, const std::vector<bool>& mask, int order, std::vector<float>& params, int& nClipped, float thresClip, int nIterClip, bool getResidual)
2904{
2905  if (data.size() != mask.size()) {
2906    throw(AipsError("data and mask sizes are not identical"));
2907  }
2908  if (order < 0) {
2909    throw(AipsError("maximum order of Chebyshev polynomial must not be negative."));
2910  }
2911
2912  int nChan = data.size();
2913  std::vector<int> maskArray;
2914  std::vector<int> x;
2915  for (int i = 0; i < nChan; ++i) {
2916    maskArray.push_back(mask[i] ? 1 : 0);
2917    if (mask[i]) {
2918      x.push_back(i);
2919    }
2920  }
2921
2922  int initNData = x.size();
2923
2924  int nData = initNData;
2925  int nDOF = order + 1;  //number of parameters to solve.
2926
2927  // xArray : contains elemental values for computing the least-square matrix.
2928  //          xArray.size() is nDOF and xArray[*].size() is nChan.
2929  //          Each xArray element are as follows:
2930  //          xArray[0]   = {T0(-1), T0(2/(nChan-1)-1), T0(4/(nChan-1)-1), ..., T0(1)},
2931  //          xArray[n-1] = ...,
2932  //          xArray[n]   = {Tn(-1), Tn(2/(nChan-1)-1), Tn(4/(nChan-1)-1), ..., Tn(1)}
2933  //          where (0 <= n <= order),
2934  std::vector<std::vector<double> > xArray;
2935  for (int i = 0; i < nDOF; ++i) {
2936    double xFactor = 2.0/(double)(nChan - 1);
2937    std::vector<double> xs;
2938    xs.clear();
2939    for (int j = 0; j < nChan; ++j) {
2940      xs.push_back(getChebyshevPolynomial(i, xFactor*(double)j-1.0));
2941    }
2942    xArray.push_back(xs);
2943  }
2944
2945  std::vector<double> z1, r1, residual;
2946  for (int i = 0; i < nChan; ++i) {
2947    z1.push_back((double)data[i]);
2948    r1.push_back(0.0);
2949    residual.push_back(0.0);
2950  }
2951
2952  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
2953    // xMatrix : horizontal concatenation of
2954    //           the least-sq. matrix (left) and an
2955    //           identity matrix (right).
2956    // the right part is used to calculate the inverse matrix of the left part.
2957    double xMatrix[nDOF][2*nDOF];
2958    double zMatrix[nDOF];
2959    for (int i = 0; i < nDOF; ++i) {
2960      for (int j = 0; j < 2*nDOF; ++j) {
2961        xMatrix[i][j] = 0.0;
2962      }
2963      xMatrix[i][nDOF+i] = 1.0;
2964      zMatrix[i] = 0.0;
2965    }
2966
2967    int nUseData = 0;
2968    for (int k = 0; k < nChan; ++k) {
2969      if (maskArray[k] == 0) continue;
2970
2971      for (int i = 0; i < nDOF; ++i) {
2972        for (int j = i; j < nDOF; ++j) {
2973          xMatrix[i][j] += xArray[i][k] * xArray[j][k];
2974        }
2975        zMatrix[i] += z1[k] * xArray[i][k];
2976      }
2977
2978      nUseData++;
2979    }
2980
2981    if (nUseData < 1) {
2982        throw(AipsError("all channels clipped or masked. can't execute fitting anymore."));     
2983    }
2984
2985    for (int i = 0; i < nDOF; ++i) {
2986      for (int j = 0; j < i; ++j) {
2987        xMatrix[i][j] = xMatrix[j][i];
2988      }
2989    }
2990
2991    std::vector<double> invDiag;
2992    for (int i = 0; i < nDOF; ++i) {
2993      invDiag.push_back(1.0/xMatrix[i][i]);
2994      for (int j = 0; j < nDOF; ++j) {
2995        xMatrix[i][j] *= invDiag[i];
2996      }
2997    }
2998
2999    for (int k = 0; k < nDOF; ++k) {
3000      for (int i = 0; i < nDOF; ++i) {
3001        if (i != k) {
3002          double factor1 = xMatrix[k][k];
3003          double factor2 = xMatrix[i][k];
3004          for (int j = k; j < 2*nDOF; ++j) {
3005            xMatrix[i][j] *= factor1;
3006            xMatrix[i][j] -= xMatrix[k][j]*factor2;
3007            xMatrix[i][j] /= factor1;
3008          }
3009        }
3010      }
3011      double xDiag = xMatrix[k][k];
3012      for (int j = k; j < 2*nDOF; ++j) {
3013        xMatrix[k][j] /= xDiag;
3014      }
3015    }
3016   
3017    for (int i = 0; i < nDOF; ++i) {
3018      for (int j = 0; j < nDOF; ++j) {
3019        xMatrix[i][nDOF+j] *= invDiag[j];
3020      }
3021    }
3022    //compute a vector y which consists of the coefficients of the sinusoids forming the
3023    //best-fit curves (a0,s1,c1,s2,c2,...), where a0 is constant and s* and c* are of sine
3024    //and cosine functions, respectively.
3025    std::vector<double> y;
3026    params.clear();
3027    for (int i = 0; i < nDOF; ++i) {
3028      y.push_back(0.0);
3029      for (int j = 0; j < nDOF; ++j) {
3030        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
3031      }
3032      params.push_back(y[i]);
3033    }
3034
3035    for (int i = 0; i < nChan; ++i) {
3036      r1[i] = y[0];
3037      for (int j = 1; j < nDOF; ++j) {
3038        r1[i] += y[j]*xArray[j][i];
3039      }
3040      residual[i] = z1[i] - r1[i];
3041    }
3042
3043    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
3044      break;
3045    } else {
3046      double stdDev = 0.0;
3047      for (int i = 0; i < nChan; ++i) {
3048        stdDev += residual[i]*residual[i]*(double)maskArray[i];
3049      }
3050      stdDev = sqrt(stdDev/(double)nData);
3051     
3052      double thres = stdDev * thresClip;
3053      int newNData = 0;
3054      for (int i = 0; i < nChan; ++i) {
3055        if (abs(residual[i]) >= thres) {
3056          maskArray[i] = 0;
3057        }
3058        if (maskArray[i] > 0) {
3059          newNData++;
3060        }
3061      }
3062      if (newNData == nData) {
3063        break; //no more flag to add. iteration stops.
3064      } else {
3065        nData = newNData;
3066      }
3067    }
3068  }
3069
3070  nClipped = initNData - nData;
3071
3072  std::vector<float> result;
3073  if (getResidual) {
3074    for (int i = 0; i < nChan; ++i) {
3075      result.push_back((float)residual[i]);
3076    }
3077  } else {
3078    for (int i = 0; i < nChan; ++i) {
3079      result.push_back((float)r1[i]);
3080    }
3081  }
3082
3083  return result;
3084}
3085
3086void Scantable::cubicSplineBaseline(const std::vector<bool>& mask, int nPiece, float thresClip, int nIterClip, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
3087{
3088  /*************
3089  double totTimeStart, totTimeEnd, blTimeStart, blTimeEnd, ioTimeStart, ioTimeEnd, msTimeStart, msTimeEnd, seTimeStart, seTimeEnd, otTimeStart, otTimeEnd, prTimeStart, prTimeEnd;
3090  double elapseMs = 0.0;
3091  double elapseSe = 0.0;
3092  double elapseOt = 0.0;
3093  double elapsePr = 0.0;
3094  double elapseBl = 0.0;
3095  double elapseIo = 0.0;
3096  totTimeStart = mathutil::gettimeofday_sec();
3097  *************/
3098
3099  try {
3100    ofstream ofs;
3101    String coordInfo = "";
3102    bool hasSameNchan = true;
3103    bool outTextFile = false;
3104    bool csvFormat = false;
3105
3106    if (blfile != "") {
3107      csvFormat = (blfile.substr(0, 1) == "T");
3108      ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
3109      if (ofs) outTextFile = true;
3110    }
3111
3112    if (outLogger || outTextFile) {
3113      coordInfo = getCoordInfo()[0];
3114      if (coordInfo == "") coordInfo = "channel";
3115      hasSameNchan = hasSameNchanOverIFs();
3116    }
3117
3118    //Fitter fitter = Fitter();
3119    //fitter.setExpression("cspline", nPiece);
3120    //fitter.setIterClipping(thresClip, nIterClip);
3121
3122    bool showProgress;
3123    int minNRow;
3124    parseProgressInfo(progressInfo, showProgress, minNRow);
3125
3126    int nRow = nrow();
3127    std::vector<bool> chanMask;
3128
3129    //--------------------------------
3130    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3131      /******************
3132      ioTimeStart = mathutil::gettimeofday_sec();
3133      **/
3134      std::vector<float> sp = getSpectrum(whichrow);
3135      /**
3136      ioTimeEnd = mathutil::gettimeofday_sec();
3137      elapseIo += (double)(ioTimeEnd - ioTimeStart);
3138      msTimeStart = mathutil::gettimeofday_sec();
3139      ******************/
3140
3141      chanMask = getCompositeChanMask(whichrow, mask);
3142
3143      /**
3144      msTimeEnd = mathutil::gettimeofday_sec();
3145      elapseMs += (double)(msTimeEnd - msTimeStart);
3146      blTimeStart = mathutil::gettimeofday_sec();
3147      **/
3148
3149      //fitBaseline(chanMask, whichrow, fitter);
3150      //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
3151      std::vector<int> pieceEdges(nPiece+1);
3152      std::vector<float> params(nPiece*4);
3153      int nClipped = 0;
3154      std::vector<float> res = doCubicSplineFitting(sp, chanMask, nPiece, pieceEdges, params, nClipped, thresClip, nIterClip, getResidual);
3155
3156      /**
3157      blTimeEnd = mathutil::gettimeofday_sec();
3158      elapseBl += (double)(blTimeEnd - blTimeStart);
3159      seTimeStart = mathutil::gettimeofday_sec();
3160      **/
3161
3162
3163      setSpectrum(res, whichrow);
3164      //
3165
3166      /**
3167      seTimeEnd = mathutil::gettimeofday_sec();
3168      elapseSe += (double)(seTimeEnd - seTimeStart);
3169      otTimeStart = mathutil::gettimeofday_sec();
3170      **/
3171
3172      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "cubicSplineBaseline()", pieceEdges, params, nClipped);
3173
3174      /**
3175      otTimeEnd = mathutil::gettimeofday_sec();
3176      elapseOt += (double)(otTimeEnd - otTimeStart);
3177      prTimeStart = mathutil::gettimeofday_sec();
3178      **/
3179
3180      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3181
3182      /******************
3183      prTimeEnd = mathutil::gettimeofday_sec();
3184      elapsePr += (double)(prTimeEnd - prTimeStart);
3185      ******************/
3186    }
3187    //--------------------------------
3188   
3189    if (outTextFile) ofs.close();
3190
3191  } catch (...) {
3192    throw;
3193  }
3194  /***************
3195  totTimeEnd = mathutil::gettimeofday_sec();
3196  std::cout << "io    : " << elapseIo << " (sec.)" << endl;
3197  std::cout << "ms    : " << elapseMs << " (sec.)" << endl;
3198  std::cout << "bl    : " << elapseBl << " (sec.)" << endl;
3199  std::cout << "se    : " << elapseSe << " (sec.)" << endl;
3200  std::cout << "ot    : " << elapseOt << " (sec.)" << endl;
3201  std::cout << "pr    : " << elapsePr << " (sec.)" << endl;
3202  std::cout << "total : " << (double)(totTimeEnd - totTimeStart) << " (sec.)" << endl;
3203  ***************/
3204}
3205
3206void Scantable::autoCubicSplineBaseline(const std::vector<bool>& mask, int nPiece, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
3207{
3208  try {
3209    ofstream ofs;
3210    String coordInfo = "";
3211    bool hasSameNchan = true;
3212    bool outTextFile = false;
3213    bool csvFormat = false;
3214
3215    if (blfile != "") {
3216      csvFormat = (blfile.substr(0, 1) == "T");
3217      ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
3218      if (ofs) outTextFile = true;
3219    }
3220
3221    if (outLogger || outTextFile) {
3222      coordInfo = getCoordInfo()[0];
3223      if (coordInfo == "") coordInfo = "channel";
3224      hasSameNchan = hasSameNchanOverIFs();
3225    }
3226
3227    //Fitter fitter = Fitter();
3228    //fitter.setExpression("cspline", nPiece);
3229    //fitter.setIterClipping(thresClip, nIterClip);
3230
3231    int nRow = nrow();
3232    std::vector<bool> chanMask;
3233    int minEdgeSize = getIFNos().size()*2;
3234    STLineFinder lineFinder = STLineFinder();
3235    lineFinder.setOptions(threshold, 3, chanAvgLimit);
3236
3237    bool showProgress;
3238    int minNRow;
3239    parseProgressInfo(progressInfo, showProgress, minNRow);
3240
3241    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3242      std::vector<float> sp = getSpectrum(whichrow);
3243
3244      //-------------------------------------------------------
3245      //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
3246      //-------------------------------------------------------
3247      int edgeSize = edge.size();
3248      std::vector<int> currentEdge;
3249      if (edgeSize >= 2) {
3250        int idx = 0;
3251        if (edgeSize > 2) {
3252          if (edgeSize < minEdgeSize) {
3253            throw(AipsError("Length of edge element info is less than that of IFs"));
3254          }
3255          idx = 2 * getIF(whichrow);
3256        }
3257        currentEdge.push_back(edge[idx]);
3258        currentEdge.push_back(edge[idx+1]);
3259      } else {
3260        throw(AipsError("Wrong length of edge element"));
3261      }
3262      //lineFinder.setData(getSpectrum(whichrow));
3263      lineFinder.setData(sp);
3264      lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
3265      chanMask = lineFinder.getMask();
3266      //-------------------------------------------------------
3267
3268
3269      //fitBaseline(chanMask, whichrow, fitter);
3270      //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
3271      std::vector<int> pieceEdges(nPiece+1);
3272      std::vector<float> params(nPiece*4);
3273      int nClipped = 0;
3274      std::vector<float> res = doCubicSplineFitting(sp, chanMask, nPiece, pieceEdges, params, nClipped, thresClip, nIterClip, getResidual);
3275      setSpectrum(res, whichrow);
3276      //
3277
3278      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoCubicSplineBaseline()", pieceEdges, params, nClipped);
3279      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3280    }
3281
3282    if (outTextFile) ofs.close();
3283
3284  } catch (...) {
3285    throw;
3286  }
3287}
3288
3289std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data, const std::vector<bool>& mask, int nPiece, std::vector<int>& idxEdge, std::vector<float>& params, int& nClipped, float thresClip, int nIterClip, bool getResidual)
3290{
3291  if (data.size() != mask.size()) {
3292    throw(AipsError("data and mask sizes are not identical"));
3293  }
3294  if (nPiece < 1) {
3295    throw(AipsError("number of the sections must be one or more"));
3296  }
3297
3298  int nChan = data.size();
3299  std::vector<int> maskArray(nChan);
3300  std::vector<int> x(nChan);
3301  int j = 0;
3302  for (int i = 0; i < nChan; ++i) {
3303    maskArray[i] = mask[i] ? 1 : 0;
3304    if (mask[i]) {
3305      x[j] = i;
3306      j++;
3307    }
3308  }
3309  int initNData = j;
3310
3311  if (initNData < nPiece) {
3312    throw(AipsError("too few non-flagged channels"));
3313  }
3314
3315  int nElement = (int)(floor(floor((double)(initNData/nPiece))+0.5));
3316  std::vector<double> invEdge(nPiece-1);
3317  idxEdge[0] = x[0];
3318  for (int i = 1; i < nPiece; ++i) {
3319    int valX = x[nElement*i];
3320    idxEdge[i] = valX;
3321    invEdge[i-1] = 1.0/(double)valX;
3322  }
3323  idxEdge[nPiece] = x[initNData-1]+1;
3324
3325  int nData = initNData;
3326  int nDOF = nPiece + 3;  //number of parameters to solve, namely, 4+(nPiece-1).
3327
3328  std::vector<double> x1(nChan), x2(nChan), x3(nChan);
3329  std::vector<double> z1(nChan), x1z1(nChan), x2z1(nChan), x3z1(nChan);
3330  std::vector<double> r1(nChan), residual(nChan);
3331  for (int i = 0; i < nChan; ++i) {
3332    double di = (double)i;
3333    double dD = (double)data[i];
3334    x1[i]   = di;
3335    x2[i]   = di*di;
3336    x3[i]   = di*di*di;
3337    z1[i]   = dD;
3338    x1z1[i] = dD*di;
3339    x2z1[i] = dD*di*di;
3340    x3z1[i] = dD*di*di*di;
3341    r1[i]   = 0.0;
3342    residual[i] = 0.0;
3343  }
3344
3345  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
3346    // xMatrix : horizontal concatenation of
3347    //           the least-sq. matrix (left) and an
3348    //           identity matrix (right).
3349    // the right part is used to calculate the inverse matrix of the left part.
3350    double xMatrix[nDOF][2*nDOF];
3351    double zMatrix[nDOF];
3352    for (int i = 0; i < nDOF; ++i) {
3353      for (int j = 0; j < 2*nDOF; ++j) {
3354        xMatrix[i][j] = 0.0;
3355      }
3356      xMatrix[i][nDOF+i] = 1.0;
3357      zMatrix[i] = 0.0;
3358    }
3359
3360    for (int n = 0; n < nPiece; ++n) {
3361      int nUseDataInPiece = 0;
3362      for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
3363
3364        if (maskArray[i] == 0) continue;
3365
3366        xMatrix[0][0] += 1.0;
3367        xMatrix[0][1] += x1[i];
3368        xMatrix[0][2] += x2[i];
3369        xMatrix[0][3] += x3[i];
3370        xMatrix[1][1] += x2[i];
3371        xMatrix[1][2] += x3[i];
3372        xMatrix[1][3] += x2[i]*x2[i];
3373        xMatrix[2][2] += x2[i]*x2[i];
3374        xMatrix[2][3] += x3[i]*x2[i];
3375        xMatrix[3][3] += x3[i]*x3[i];
3376        zMatrix[0] += z1[i];
3377        zMatrix[1] += x1z1[i];
3378        zMatrix[2] += x2z1[i];
3379        zMatrix[3] += x3z1[i];
3380
3381        for (int j = 0; j < n; ++j) {
3382          double q = 1.0 - x1[i]*invEdge[j];
3383          q = q*q*q;
3384          xMatrix[0][j+4] += q;
3385          xMatrix[1][j+4] += q*x1[i];
3386          xMatrix[2][j+4] += q*x2[i];
3387          xMatrix[3][j+4] += q*x3[i];
3388          for (int k = 0; k < j; ++k) {
3389            double r = 1.0 - x1[i]*invEdge[k];
3390            r = r*r*r;
3391            xMatrix[k+4][j+4] += r*q;
3392          }
3393          xMatrix[j+4][j+4] += q*q;
3394          zMatrix[j+4] += q*z1[i];
3395        }
3396
3397        nUseDataInPiece++;
3398      }
3399
3400      if (nUseDataInPiece < 1) {
3401        std::vector<string> suffixOfPieceNumber(4);
3402        suffixOfPieceNumber[0] = "th";
3403        suffixOfPieceNumber[1] = "st";
3404        suffixOfPieceNumber[2] = "nd";
3405        suffixOfPieceNumber[3] = "rd";
3406        int idxNoDataPiece = (n % 10 <= 3) ? n : 0;
3407        ostringstream oss;
3408        oss << "all channels clipped or masked in " << n << suffixOfPieceNumber[idxNoDataPiece];
3409        oss << " piece of the spectrum. can't execute fitting anymore.";
3410        throw(AipsError(String(oss)));
3411      }
3412    }
3413
3414    for (int i = 0; i < nDOF; ++i) {
3415      for (int j = 0; j < i; ++j) {
3416        xMatrix[i][j] = xMatrix[j][i];
3417      }
3418    }
3419
3420    std::vector<double> invDiag(nDOF);
3421    for (int i = 0; i < nDOF; ++i) {
3422      invDiag[i] = 1.0/xMatrix[i][i];
3423      for (int j = 0; j < nDOF; ++j) {
3424        xMatrix[i][j] *= invDiag[i];
3425      }
3426    }
3427
3428    for (int k = 0; k < nDOF; ++k) {
3429      for (int i = 0; i < nDOF; ++i) {
3430        if (i != k) {
3431          double factor1 = xMatrix[k][k];
3432          double factor2 = xMatrix[i][k];
3433          for (int j = k; j < 2*nDOF; ++j) {
3434            xMatrix[i][j] *= factor1;
3435            xMatrix[i][j] -= xMatrix[k][j]*factor2;
3436            xMatrix[i][j] /= factor1;
3437          }
3438        }
3439      }
3440      double xDiag = xMatrix[k][k];
3441      for (int j = k; j < 2*nDOF; ++j) {
3442        xMatrix[k][j] /= xDiag;
3443      }
3444    }
3445   
3446    for (int i = 0; i < nDOF; ++i) {
3447      for (int j = 0; j < nDOF; ++j) {
3448        xMatrix[i][nDOF+j] *= invDiag[j];
3449      }
3450    }
3451    //compute a vector y which consists of the coefficients of the best-fit spline curves
3452    //(a0,a1,a2,a3(,b3,c3,...)), namely, the ones for the leftmost piece and the ones of
3453    //cubic terms for the other pieces (in case nPiece>1).
3454    std::vector<double> y(nDOF);
3455    for (int i = 0; i < nDOF; ++i) {
3456      y[i] = 0.0;
3457      for (int j = 0; j < nDOF; ++j) {
3458        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
3459      }
3460    }
3461
3462    double a0 = y[0];
3463    double a1 = y[1];
3464    double a2 = y[2];
3465    double a3 = y[3];
3466
3467    int j = 0;
3468    for (int n = 0; n < nPiece; ++n) {
3469      for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
3470        r1[i] = a0 + a1*x1[i] + a2*x2[i] + a3*x3[i];
3471      }
3472      params[j]   = a0;
3473      params[j+1] = a1;
3474      params[j+2] = a2;
3475      params[j+3] = a3;
3476      j += 4;
3477
3478      if (n == nPiece-1) break;
3479
3480      double d = y[4+n];
3481      double iE = invEdge[n];
3482      a0 +=     d;
3483      a1 -= 3.0*d*iE;
3484      a2 += 3.0*d*iE*iE;
3485      a3 -=     d*iE*iE*iE;
3486    }
3487
3488    //subtract constant value for masked regions at the edge of spectrum
3489    if (idxEdge[0] > 0) {
3490      int n = idxEdge[0];
3491      for (int i = 0; i < idxEdge[0]; ++i) {
3492        //--cubic extrapolate--
3493        //r1[i] = params[0] + params[1]*x1[i] + params[2]*x2[i] + params[3]*x3[i];
3494        //--linear extrapolate--
3495        //r1[i] = (r1[n+1] - r1[n])/(x1[n+1] - x1[n])*(x1[i] - x1[n]) + r1[n];
3496        //--constant--
3497        r1[i] = r1[n];
3498      }
3499    }
3500    if (idxEdge[nPiece] < nChan) {
3501      int n = idxEdge[nPiece]-1;
3502      for (int i = idxEdge[nPiece]; i < nChan; ++i) {
3503        //--cubic extrapolate--
3504        //int m = 4*(nPiece-1);
3505        //r1[i] = params[m] + params[m+1]*x1[i] + params[m+2]*x2[i] + params[m+3]*x3[i];
3506        //--linear extrapolate--
3507        //r1[i] = (r1[n-1] - r1[n])/(x1[n-1] - x1[n])*(x1[i] - x1[n]) + r1[n];
3508        //--constant--
3509        r1[i] = r1[n];
3510      }
3511    }
3512
3513    for (int i = 0; i < nChan; ++i) {
3514      residual[i] = z1[i] - r1[i];
3515    }
3516
3517    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
3518      break;
3519    } else {
3520      double stdDev = 0.0;
3521      for (int i = 0; i < nChan; ++i) {
3522        stdDev += residual[i]*residual[i]*(double)maskArray[i];
3523      }
3524      stdDev = sqrt(stdDev/(double)nData);
3525     
3526      double thres = stdDev * thresClip;
3527      int newNData = 0;
3528      for (int i = 0; i < nChan; ++i) {
3529        if (abs(residual[i]) >= thres) {
3530          maskArray[i] = 0;
3531        }
3532        if (maskArray[i] > 0) {
3533          newNData++;
3534        }
3535      }
3536      if (newNData == nData) {
3537        break; //no more flag to add. iteration stops.
3538      } else {
3539        nData = newNData;
3540      }
3541    }
3542  }
3543
3544  nClipped = initNData - nData;
3545
3546  std::vector<float> result(nChan);
3547  if (getResidual) {
3548    for (int i = 0; i < nChan; ++i) {
3549      result[i] = (float)residual[i];
3550    }
3551  } else {
3552    for (int i = 0; i < nChan; ++i) {
3553      result[i] = (float)r1[i];
3554    }
3555  }
3556
3557  return result;
3558}
3559
3560void Scantable::selectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves)
3561{
3562  nWaves.clear();
3563
3564  if (applyFFT) {
3565    string fftThAttr;
3566    float fftThSigma;
3567    int fftThTop;
3568    parseThresholdExpression(fftThresh, fftThAttr, fftThSigma, fftThTop);
3569    doSelectWaveNumbers(whichrow, chanMask, fftMethod, fftThSigma, fftThTop, fftThAttr, nWaves);
3570  }
3571
3572  addAuxWaveNumbers(whichrow, addNWaves, rejectNWaves, nWaves);
3573}
3574
3575void Scantable::parseThresholdExpression(const std::string& fftThresh, std::string& fftThAttr, float& fftThSigma, int& fftThTop)
3576{
3577  uInt idxSigma = fftThresh.find("sigma");
3578  uInt idxTop   = fftThresh.find("top");
3579
3580  if (idxSigma == fftThresh.size() - 5) {
3581    std::istringstream is(fftThresh.substr(0, fftThresh.size() - 5));
3582    is >> fftThSigma;
3583    fftThAttr = "sigma";
3584  } else if (idxTop == 0) {
3585    std::istringstream is(fftThresh.substr(3));
3586    is >> fftThTop;
3587    fftThAttr = "top";
3588  } else {
3589    bool isNumber = true;
3590    for (uInt i = 0; i < fftThresh.size()-1; ++i) {
3591      char ch = (fftThresh.substr(i, 1).c_str())[0];
3592      if (!(isdigit(ch) || (fftThresh.substr(i, 1) == "."))) {
3593        isNumber = false;
3594        break;
3595      }
3596    }
3597    if (isNumber) {
3598      std::istringstream is(fftThresh);
3599      is >> fftThSigma;
3600      fftThAttr = "sigma";
3601    } else {
3602      throw(AipsError("fftthresh has a wrong value"));
3603    }
3604  }
3605}
3606
3607void Scantable::doSelectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const std::string& fftMethod, const float fftThSigma, const int fftThTop, const std::string& fftThAttr, std::vector<int>& nWaves)
3608{
3609  std::vector<float> fspec;
3610  if (fftMethod == "fft") {
3611    fspec = execFFT(whichrow, chanMask, false, true);
3612  //} else if (fftMethod == "lsp") {
3613  //  fspec = lombScarglePeriodogram(whichrow);
3614  }
3615
3616  if (fftThAttr == "sigma") {
3617    float mean  = 0.0;
3618    float mean2 = 0.0;
3619    for (uInt i = 0; i < fspec.size(); ++i) {
3620      mean  += fspec[i];
3621      mean2 += fspec[i]*fspec[i];
3622    }
3623    mean  /= float(fspec.size());
3624    mean2 /= float(fspec.size());
3625    float thres = mean + fftThSigma * float(sqrt(mean2 - mean*mean));
3626
3627    for (uInt i = 0; i < fspec.size(); ++i) {
3628      if (fspec[i] >= thres) {
3629        nWaves.push_back(i);
3630      }
3631    }
3632
3633  } else if (fftThAttr == "top") {
3634    for (int i = 0; i < fftThTop; ++i) {
3635      float max = 0.0;
3636      int maxIdx = 0;
3637      for (uInt j = 0; j < fspec.size(); ++j) {
3638        if (fspec[j] > max) {
3639          max = fspec[j];
3640          maxIdx = j;
3641        }
3642      }
3643      nWaves.push_back(maxIdx);
3644      fspec[maxIdx] = 0.0;
3645    }
3646
3647  }
3648
3649  if (nWaves.size() > 1) {
3650    sort(nWaves.begin(), nWaves.end());
3651  }
3652}
3653
3654void Scantable::addAuxWaveNumbers(const int whichrow, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves)
3655{
3656  std::vector<int> tempAddNWaves, tempRejectNWaves;
3657  for (uInt i = 0; i < addNWaves.size(); ++i) {
3658    tempAddNWaves.push_back(addNWaves[i]);
3659  }
3660  if ((tempAddNWaves.size() == 2) && (tempAddNWaves[1] == -999)) {
3661    setWaveNumberListUptoNyquistFreq(whichrow, tempAddNWaves);
3662  }
3663
3664  for (uInt i = 0; i < rejectNWaves.size(); ++i) {
3665    tempRejectNWaves.push_back(rejectNWaves[i]);
3666  }
3667  if ((tempRejectNWaves.size() == 2) && (tempRejectNWaves[1] == -999)) {
3668    setWaveNumberListUptoNyquistFreq(whichrow, tempRejectNWaves);
3669  }
3670
3671  for (uInt i = 0; i < tempAddNWaves.size(); ++i) {
3672    bool found = false;
3673    for (uInt j = 0; j < nWaves.size(); ++j) {
3674      if (nWaves[j] == tempAddNWaves[i]) {
3675        found = true;
3676        break;
3677      }
3678    }
3679    if (!found) nWaves.push_back(tempAddNWaves[i]);
3680  }
3681
3682  for (uInt i = 0; i < tempRejectNWaves.size(); ++i) {
3683    for (std::vector<int>::iterator j = nWaves.begin(); j != nWaves.end(); ) {
3684      if (*j == tempRejectNWaves[i]) {
3685        j = nWaves.erase(j);
3686      } else {
3687        ++j;
3688      }
3689    }
3690  }
3691
3692  if (nWaves.size() > 1) {
3693    sort(nWaves.begin(), nWaves.end());
3694    unique(nWaves.begin(), nWaves.end());
3695  }
3696}
3697
3698void Scantable::setWaveNumberListUptoNyquistFreq(const int whichrow, std::vector<int>& nWaves)
3699{
3700  if ((nWaves.size() == 2)&&(nWaves[1] == -999)) {
3701    int val = nWaves[0];
3702    int nyquistFreq = nchan(getIF(whichrow))/2+1;
3703    nWaves.clear();
3704    if (val > nyquistFreq) {  // for safety, at least nWaves contains a constant; CAS-3759
3705      nWaves.push_back(0);
3706    }
3707    while (val <= nyquistFreq) {
3708      nWaves.push_back(val);
3709      val++;
3710    }
3711  }
3712}
3713
3714void Scantable::sinusoidBaseline(const std::vector<bool>& mask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, float thresClip, int nIterClip, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
3715{
3716  try {
3717    ofstream ofs;
3718    String coordInfo = "";
3719    bool hasSameNchan = true;
3720    bool outTextFile = false;
3721    bool csvFormat = false;
3722
3723    if (blfile != "") {
3724      csvFormat = (blfile.substr(0, 1) == "T");
3725      ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
3726      if (ofs) outTextFile = true;
3727    }
3728
3729    if (outLogger || outTextFile) {
3730      coordInfo = getCoordInfo()[0];
3731      if (coordInfo == "") coordInfo = "channel";
3732      hasSameNchan = hasSameNchanOverIFs();
3733    }
3734
3735    //Fitter fitter = Fitter();
3736    //fitter.setExpression("sinusoid", nWaves);
3737    //fitter.setIterClipping(thresClip, nIterClip);
3738
3739    int nRow = nrow();
3740    std::vector<bool> chanMask;
3741    std::vector<int> nWaves;
3742
3743    bool showProgress;
3744    int minNRow;
3745    parseProgressInfo(progressInfo, showProgress, minNRow);
3746
3747    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3748      chanMask = getCompositeChanMask(whichrow, mask);
3749      selectWaveNumbers(whichrow, chanMask, applyFFT, fftMethod, fftThresh, addNWaves, rejectNWaves, nWaves);
3750
3751      //FOR DEBUGGING------------
3752      /*
3753      if (whichrow < 0) {// == nRow -1) {
3754        cout << "+++ i=" << setw(3) << whichrow << ", IF=" << setw(2) << getIF(whichrow);
3755        if (applyFFT) {
3756          cout << "[ ";
3757          for (uInt j = 0; j < nWaves.size(); ++j) {
3758            cout << nWaves[j] << ", ";
3759          }
3760          cout << " ]    " << endl;
3761        }
3762        cout << flush;
3763      }
3764      */
3765      //-------------------------
3766
3767      //fitBaseline(chanMask, whichrow, fitter);
3768      //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
3769      std::vector<float> params;
3770      int nClipped = 0;
3771      std::vector<float> res = doSinusoidFitting(getSpectrum(whichrow), chanMask, nWaves, params, nClipped, thresClip, nIterClip, getResidual);
3772      setSpectrum(res, whichrow);
3773      //
3774
3775      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "sinusoidBaseline()", params, nClipped);
3776      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3777    }
3778
3779    if (outTextFile) ofs.close();
3780
3781  } catch (...) {
3782    throw;
3783  }
3784}
3785
3786void Scantable::autoSinusoidBaseline(const std::vector<bool>& mask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
3787{
3788  try {
3789    ofstream ofs;
3790    String coordInfo = "";
3791    bool hasSameNchan = true;
3792    bool outTextFile = false;
3793    bool csvFormat = false;
3794
3795    if (blfile != "") {
3796      csvFormat = (blfile.substr(0, 1) == "T");
3797      ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
3798      if (ofs) outTextFile = true;
3799    }
3800
3801    if (outLogger || outTextFile) {
3802      coordInfo = getCoordInfo()[0];
3803      if (coordInfo == "") coordInfo = "channel";
3804      hasSameNchan = hasSameNchanOverIFs();
3805    }
3806
3807    //Fitter fitter = Fitter();
3808    //fitter.setExpression("sinusoid", nWaves);
3809    //fitter.setIterClipping(thresClip, nIterClip);
3810
3811    int nRow = nrow();
3812    std::vector<bool> chanMask;
3813    std::vector<int> nWaves;
3814
3815    int minEdgeSize = getIFNos().size()*2;
3816    STLineFinder lineFinder = STLineFinder();
3817    lineFinder.setOptions(threshold, 3, chanAvgLimit);
3818
3819    bool showProgress;
3820    int minNRow;
3821    parseProgressInfo(progressInfo, showProgress, minNRow);
3822
3823    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3824
3825      //-------------------------------------------------------
3826      //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
3827      //-------------------------------------------------------
3828      int edgeSize = edge.size();
3829      std::vector<int> currentEdge;
3830      if (edgeSize >= 2) {
3831        int idx = 0;
3832        if (edgeSize > 2) {
3833          if (edgeSize < minEdgeSize) {
3834            throw(AipsError("Length of edge element info is less than that of IFs"));
3835          }
3836          idx = 2 * getIF(whichrow);
3837        }
3838        currentEdge.push_back(edge[idx]);
3839        currentEdge.push_back(edge[idx+1]);
3840      } else {
3841        throw(AipsError("Wrong length of edge element"));
3842      }
3843      lineFinder.setData(getSpectrum(whichrow));
3844      lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
3845      chanMask = lineFinder.getMask();
3846      //-------------------------------------------------------
3847
3848      selectWaveNumbers(whichrow, chanMask, applyFFT, fftMethod, fftThresh, addNWaves, rejectNWaves, nWaves);
3849
3850      //fitBaseline(chanMask, whichrow, fitter);
3851      //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
3852      std::vector<float> params;
3853      int nClipped = 0;
3854      std::vector<float> res = doSinusoidFitting(getSpectrum(whichrow), chanMask, nWaves, params, nClipped, thresClip, nIterClip, getResidual);
3855      setSpectrum(res, whichrow);
3856      //
3857
3858      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoSinusoidBaseline()", params, nClipped);
3859      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3860    }
3861
3862    if (outTextFile) ofs.close();
3863
3864  } catch (...) {
3865    throw;
3866  }
3867}
3868
3869std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data, const std::vector<bool>& mask, const std::vector<int>& waveNumbers, std::vector<float>& params, int& nClipped, float thresClip, int nIterClip, bool getResidual)
3870{
3871  if (data.size() != mask.size()) {
3872    throw(AipsError("data and mask sizes are not identical"));
3873  }
3874  if (data.size() < 2) {
3875    throw(AipsError("data size is too short"));
3876  }
3877  if (waveNumbers.size() == 0) {
3878    throw(AipsError("no wave numbers given"));
3879  }
3880  std::vector<int> nWaves;  // sorted and uniqued array of wave numbers
3881  nWaves.reserve(waveNumbers.size());
3882  copy(waveNumbers.begin(), waveNumbers.end(), back_inserter(nWaves));
3883  sort(nWaves.begin(), nWaves.end());
3884  std::vector<int>::iterator end_it = unique(nWaves.begin(), nWaves.end());
3885  nWaves.erase(end_it, nWaves.end());
3886
3887  int minNWaves = nWaves[0];
3888  if (minNWaves < 0) {
3889    throw(AipsError("wave number must be positive or zero (i.e. constant)"));
3890  }
3891  bool hasConstantTerm = (minNWaves == 0);
3892
3893  int nChan = data.size();
3894  std::vector<int> maskArray;
3895  std::vector<int> x;
3896  for (int i = 0; i < nChan; ++i) {
3897    maskArray.push_back(mask[i] ? 1 : 0);
3898    if (mask[i]) {
3899      x.push_back(i);
3900    }
3901  }
3902
3903  int initNData = x.size();
3904
3905  int nData = initNData;
3906  int nDOF = nWaves.size() * 2 - (hasConstantTerm ? 1 : 0);  //number of parameters to solve.
3907
3908  const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
3909  double baseXFactor = 2.0*PI/(double)(nChan-1);  //the denominator (nChan-1) should be changed to (xdata[nChan-1]-xdata[0]) for accepting x-values given in velocity or frequency when this function is moved to fitter. (2011/03/30 WK)
3910
3911  // xArray : contains elemental values for computing the least-square matrix.
3912  //          xArray.size() is nDOF and xArray[*].size() is nChan.
3913  //          Each xArray element are as follows:
3914  //          xArray[0]    = {1.0, 1.0, 1.0, ..., 1.0},
3915  //          xArray[2n-1] = {sin(nPI/L*x[0]), sin(nPI/L*x[1]), ..., sin(nPI/L*x[nChan])},
3916  //          xArray[2n]   = {cos(nPI/L*x[0]), cos(nPI/L*x[1]), ..., cos(nPI/L*x[nChan])},
3917  //          where (1 <= n <= nMaxWavesInSW),
3918  //          or,
3919  //          xArray[2n-1] = {sin(wn[n]PI/L*x[0]), sin(wn[n]PI/L*x[1]), ..., sin(wn[n]PI/L*x[nChan])},
3920  //          xArray[2n]   = {cos(wn[n]PI/L*x[0]), cos(wn[n]PI/L*x[1]), ..., cos(wn[n]PI/L*x[nChan])},
3921  //          where wn[n] denotes waveNumbers[n] (1 <= n <= waveNumbers.size()).
3922  std::vector<std::vector<double> > xArray;
3923  if (hasConstantTerm) {
3924    std::vector<double> xu;
3925    for (int j = 0; j < nChan; ++j) {
3926      xu.push_back(1.0);
3927    }
3928    xArray.push_back(xu);
3929  }
3930  for (uInt i = (hasConstantTerm ? 1 : 0); i < nWaves.size(); ++i) {
3931    double xFactor = baseXFactor*(double)nWaves[i];
3932    std::vector<double> xs, xc;
3933    xs.clear();
3934    xc.clear();
3935    for (int j = 0; j < nChan; ++j) {
3936      xs.push_back(sin(xFactor*(double)j));
3937      xc.push_back(cos(xFactor*(double)j));
3938    }
3939    xArray.push_back(xs);
3940    xArray.push_back(xc);
3941  }
3942
3943  std::vector<double> z1, r1, residual;
3944  for (int i = 0; i < nChan; ++i) {
3945    z1.push_back((double)data[i]);
3946    r1.push_back(0.0);
3947    residual.push_back(0.0);
3948  }
3949
3950  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
3951    // xMatrix : horizontal concatenation of
3952    //           the least-sq. matrix (left) and an
3953    //           identity matrix (right).
3954    // the right part is used to calculate the inverse matrix of the left part.
3955    double xMatrix[nDOF][2*nDOF];
3956    double zMatrix[nDOF];
3957    for (int i = 0; i < nDOF; ++i) {
3958      for (int j = 0; j < 2*nDOF; ++j) {
3959        xMatrix[i][j] = 0.0;
3960      }
3961      xMatrix[i][nDOF+i] = 1.0;
3962      zMatrix[i] = 0.0;
3963    }
3964
3965    int nUseData = 0;
3966    for (int k = 0; k < nChan; ++k) {
3967      if (maskArray[k] == 0) continue;
3968
3969      for (int i = 0; i < nDOF; ++i) {
3970        for (int j = i; j < nDOF; ++j) {
3971          xMatrix[i][j] += xArray[i][k] * xArray[j][k];
3972        }
3973        zMatrix[i] += z1[k] * xArray[i][k];
3974      }
3975
3976      nUseData++;
3977    }
3978
3979    if (nUseData < 1) {
3980        throw(AipsError("all channels clipped or masked. can't execute fitting anymore."));     
3981    }
3982
3983    for (int i = 0; i < nDOF; ++i) {
3984      for (int j = 0; j < i; ++j) {
3985        xMatrix[i][j] = xMatrix[j][i];
3986      }
3987    }
3988
3989    std::vector<double> invDiag;
3990    for (int i = 0; i < nDOF; ++i) {
3991      invDiag.push_back(1.0/xMatrix[i][i]);
3992      for (int j = 0; j < nDOF; ++j) {
3993        xMatrix[i][j] *= invDiag[i];
3994      }
3995    }
3996
3997    for (int k = 0; k < nDOF; ++k) {
3998      for (int i = 0; i < nDOF; ++i) {
3999        if (i != k) {
4000          double factor1 = xMatrix[k][k];
4001          double factor2 = xMatrix[i][k];
4002          for (int j = k; j < 2*nDOF; ++j) {
4003            xMatrix[i][j] *= factor1;
4004            xMatrix[i][j] -= xMatrix[k][j]*factor2;
4005            xMatrix[i][j] /= factor1;
4006          }
4007        }
4008      }
4009      double xDiag = xMatrix[k][k];
4010      for (int j = k; j < 2*nDOF; ++j) {
4011        xMatrix[k][j] /= xDiag;
4012      }
4013    }
4014   
4015    for (int i = 0; i < nDOF; ++i) {
4016      for (int j = 0; j < nDOF; ++j) {
4017        xMatrix[i][nDOF+j] *= invDiag[j];
4018      }
4019    }
4020    //compute a vector y which consists of the coefficients of the sinusoids forming the
4021    //best-fit curves (a0,s1,c1,s2,c2,...), where a0 is constant and s* and c* are of sine
4022    //and cosine functions, respectively.
4023    std::vector<double> y;
4024    params.clear();
4025    for (int i = 0; i < nDOF; ++i) {
4026      y.push_back(0.0);
4027      for (int j = 0; j < nDOF; ++j) {
4028        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
4029      }
4030      params.push_back(y[i]);
4031    }
4032
4033    for (int i = 0; i < nChan; ++i) {
4034      r1[i] = y[0];
4035      for (int j = 1; j < nDOF; ++j) {
4036        r1[i] += y[j]*xArray[j][i];
4037      }
4038      residual[i] = z1[i] - r1[i];
4039    }
4040
4041    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
4042      break;
4043    } else {
4044      double stdDev = 0.0;
4045      for (int i = 0; i < nChan; ++i) {
4046        stdDev += residual[i]*residual[i]*(double)maskArray[i];
4047      }
4048      stdDev = sqrt(stdDev/(double)nData);
4049     
4050      double thres = stdDev * thresClip;
4051      int newNData = 0;
4052      for (int i = 0; i < nChan; ++i) {
4053        if (abs(residual[i]) >= thres) {
4054          maskArray[i] = 0;
4055        }
4056        if (maskArray[i] > 0) {
4057          newNData++;
4058        }
4059      }
4060      if (newNData == nData) {
4061        break; //no more flag to add. iteration stops.
4062      } else {
4063        nData = newNData;
4064      }
4065    }
4066  }
4067
4068  nClipped = initNData - nData;
4069
4070  std::vector<float> result;
4071  if (getResidual) {
4072    for (int i = 0; i < nChan; ++i) {
4073      result.push_back((float)residual[i]);
4074    }
4075  } else {
4076    for (int i = 0; i < nChan; ++i) {
4077      result.push_back((float)r1[i]);
4078    }
4079  }
4080
4081  return result;
4082}
4083
4084void Scantable::fitBaseline(const std::vector<bool>& mask, int whichrow, Fitter& fitter)
4085{
4086  std::vector<double> dAbcissa = getAbcissa(whichrow);
4087  std::vector<float> abcissa;
4088  for (uInt i = 0; i < dAbcissa.size(); ++i) {
4089    abcissa.push_back((float)dAbcissa[i]);
4090  }
4091  std::vector<float> spec = getSpectrum(whichrow);
4092
4093  fitter.setData(abcissa, spec, mask);
4094  fitter.lfit();
4095}
4096
4097std::vector<bool> Scantable::getCompositeChanMask(int whichrow, const std::vector<bool>& inMask)
4098{
4099  /****
4100  double ms1TimeStart, ms1TimeEnd, ms2TimeStart, ms2TimeEnd;
4101  double elapse1 = 0.0;
4102  double elapse2 = 0.0;
4103
4104  ms1TimeStart = mathutil::gettimeofday_sec();
4105  ****/
4106
4107  std::vector<bool> mask = getMask(whichrow);
4108
4109  /****
4110  ms1TimeEnd = mathutil::gettimeofday_sec();
4111  elapse1 = ms1TimeEnd - ms1TimeStart;
4112  std::cout << "ms1   : " << elapse1 << " (sec.)" << endl;
4113  ms2TimeStart = mathutil::gettimeofday_sec();
4114  ****/
4115
4116  uInt maskSize = mask.size();
4117  if (inMask.size() != 0) {
4118    if (maskSize != inMask.size()) {
4119      throw(AipsError("mask sizes are not the same."));
4120    }
4121    for (uInt i = 0; i < maskSize; ++i) {
4122      mask[i] = mask[i] && inMask[i];
4123    }
4124  }
4125
4126  /****
4127  ms2TimeEnd = mathutil::gettimeofday_sec();
4128  elapse2 = ms2TimeEnd - ms2TimeStart;
4129  std::cout << "ms2   : " << elapse2 << " (sec.)" << endl;
4130  ****/
4131
4132  return mask;
4133}
4134
4135/*
4136std::vector<bool> Scantable::getCompositeChanMask(int whichrow, const std::vector<bool>& inMask, const std::vector<int>& edge, const int minEdgeSize, STLineFinder& lineFinder)
4137{
4138  int edgeSize = edge.size();
4139  std::vector<int> currentEdge;
4140  if (edgeSize >= 2) {
4141      int idx = 0;
4142      if (edgeSize > 2) {
4143        if (edgeSize < minEdgeSize) {
4144          throw(AipsError("Length of edge element info is less than that of IFs"));
4145        }
4146        idx = 2 * getIF(whichrow);
4147      }
4148      currentEdge.push_back(edge[idx]);
4149      currentEdge.push_back(edge[idx+1]);
4150  } else {
4151    throw(AipsError("Wrong length of edge element"));
4152  }
4153
4154  lineFinder.setData(getSpectrum(whichrow));
4155  lineFinder.findLines(getCompositeChanMask(whichrow, inMask), currentEdge, whichrow);
4156
4157  return lineFinder.getMask();
4158}
4159*/
4160
4161/* for poly. the variations of outputFittingResult() should be merged into one eventually (2011/3/10 WK)  */
4162void Scantable::outputFittingResult(bool outLogger, bool outTextFile, bool csvFormat, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, Fitter& fitter)
4163{
4164  if (outLogger || outTextFile) {
4165    std::vector<float> params = fitter.getParameters();
4166    std::vector<bool>  fixed  = fitter.getFixedParameters();
4167    float rms = getRms(chanMask, whichrow);
4168    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
4169
4170    if (outLogger) {
4171      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
4172      ols << formatBaselineParams(params, fixed, rms, -1, masklist, whichrow, false, csvFormat) << LogIO::POST ;
4173    }
4174    if (outTextFile) {
4175      ofs << formatBaselineParams(params, fixed, rms, -1, masklist, whichrow, true, csvFormat) << flush;
4176    }
4177  }
4178}
4179
4180/* for cspline. will be merged once cspline is available in fitter (2011/3/10 WK) */
4181void Scantable::outputFittingResult(bool outLogger, bool outTextFile, bool csvFormat, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, const std::vector<int>& edge, const std::vector<float>& params, const int nClipped)
4182{
4183  if (outLogger || outTextFile) {
4184  /****
4185  double ms1TimeStart, ms1TimeEnd, ms2TimeStart, ms2TimeEnd;
4186  double elapse1 = 0.0;
4187  double elapse2 = 0.0;
4188
4189  ms1TimeStart = mathutil::gettimeofday_sec();
4190  ****/
4191
4192    float rms = getRms(chanMask, whichrow);
4193
4194  /****
4195  ms1TimeEnd = mathutil::gettimeofday_sec();
4196  elapse1 = ms1TimeEnd - ms1TimeStart;
4197  std::cout << "ot1   : " << elapse1 << " (sec.)" << endl;
4198  ms2TimeStart = mathutil::gettimeofday_sec();
4199  ****/
4200
4201    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
4202    std::vector<bool> fixed;
4203    fixed.clear();
4204
4205    if (outLogger) {
4206      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
4207      ols << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped, masklist, whichrow, false, csvFormat) << LogIO::POST ;
4208    }
4209    if (outTextFile) {
4210      ofs << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped, masklist, whichrow, true, csvFormat) << flush;
4211    }
4212
4213  /****
4214  ms2TimeEnd = mathutil::gettimeofday_sec();
4215  elapse2 = ms2TimeEnd - ms2TimeStart;
4216  std::cout << "ot2   : " << elapse2 << " (sec.)" << endl;
4217  ****/
4218
4219  }
4220}
4221
4222/* for chebyshev/sinusoid. will be merged once chebyshev/sinusoid is available in fitter (2011/3/10 WK) */
4223void Scantable::outputFittingResult(bool outLogger, bool outTextFile, bool csvFormat, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, const std::vector<float>& params, const int nClipped)
4224{
4225  if (outLogger || outTextFile) {
4226    float rms = getRms(chanMask, whichrow);
4227    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
4228    std::vector<bool> fixed;
4229    fixed.clear();
4230
4231    if (outLogger) {
4232      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
4233      ols << formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, false, csvFormat) << LogIO::POST ;
4234    }
4235    if (outTextFile) {
4236      ofs << formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, true, csvFormat) << flush;
4237    }
4238  }
4239}
4240
4241void Scantable::parseProgressInfo(const std::string& progressInfo, bool& showProgress, int& minNRow)
4242{
4243  int idxDelimiter = progressInfo.find(",");
4244  if (idxDelimiter < 0) {
4245    throw(AipsError("wrong value in 'showprogress' parameter")) ;
4246  }
4247  showProgress = (progressInfo.substr(0, idxDelimiter) == "true");
4248  std::istringstream is(progressInfo.substr(idxDelimiter+1));
4249  is >> minNRow;
4250}
4251
4252void Scantable::showProgressOnTerminal(const int nProcessed, const int nTotal, const bool showProgress, const int nTotalThreshold)
4253{
4254  if (showProgress && (nTotal >= nTotalThreshold)) {
4255    int nInterval = int(floor(double(nTotal)/100.0));
4256    if (nInterval == 0) nInterval++;
4257
4258    if (nProcessed % nInterval == 0) {
4259      printf("\r");                          //go to the head of line
4260      printf("\x1b[31m\x1b[1m");             //set red color, highlighted
4261      printf("[%3d%%]", (int)(100.0*(double(nProcessed+1))/(double(nTotal))) );
4262      printf("\x1b[39m\x1b[0m");             //set default attributes
4263      fflush(NULL);
4264    }
4265
4266    if (nProcessed == nTotal - 1) {
4267      printf("\r\x1b[K");                    //clear
4268      fflush(NULL);
4269    }
4270
4271  }
4272}
4273
4274std::vector<float> Scantable::execFFT(const int whichrow, const std::vector<bool>& inMask, bool getRealImag, bool getAmplitudeOnly)
4275{
4276  std::vector<bool>  mask = getMask(whichrow);
4277
4278  if (inMask.size() > 0) {
4279    uInt maskSize = mask.size();
4280    if (maskSize != inMask.size()) {
4281      throw(AipsError("mask sizes are not the same."));
4282    }
4283    for (uInt i = 0; i < maskSize; ++i) {
4284      mask[i] = mask[i] && inMask[i];
4285    }
4286  }
4287
4288  Vector<Float> spec = getSpectrum(whichrow);
4289  mathutil::doZeroOrderInterpolation(spec, mask);
4290
4291  FFTServer<Float,Complex> ffts;
4292  Vector<Complex> fftres;
4293  ffts.fft0(fftres, spec);
4294
4295  std::vector<float> res;
4296  float norm = float(2.0/double(spec.size()));
4297
4298  if (getRealImag) {
4299    for (uInt i = 0; i < fftres.size(); ++i) {
4300      res.push_back(real(fftres[i])*norm);
4301      res.push_back(imag(fftres[i])*norm);
4302    }
4303  } else {
4304    for (uInt i = 0; i < fftres.size(); ++i) {
4305      res.push_back(abs(fftres[i])*norm);
4306      if (!getAmplitudeOnly) res.push_back(arg(fftres[i]));
4307    }
4308  }
4309
4310  return res;
4311}
4312
4313
4314float Scantable::getRms(const std::vector<bool>& mask, int whichrow)
4315{
4316  /****
4317  double ms1TimeStart, ms1TimeEnd, ms2TimeStart, ms2TimeEnd;
4318  double elapse1 = 0.0;
4319  double elapse2 = 0.0;
4320
4321  ms1TimeStart = mathutil::gettimeofday_sec();
4322  ****/
4323
4324  Vector<Float> spec;
4325
4326  specCol_.get(whichrow, spec);
4327
4328  /****
4329  ms1TimeEnd = mathutil::gettimeofday_sec();
4330  elapse1 = ms1TimeEnd - ms1TimeStart;
4331  std::cout << "rm1   : " << elapse1 << " (sec.)" << endl;
4332  ms2TimeStart = mathutil::gettimeofday_sec();
4333  ****/
4334
4335  float mean = 0.0;
4336  float smean = 0.0;
4337  int n = 0;
4338  for (uInt i = 0; i < spec.nelements(); ++i) {
4339    if (mask[i]) {
4340      mean += spec[i];
4341      smean += spec[i]*spec[i];
4342      n++;
4343    }
4344  }
4345
4346  mean /= (float)n;
4347  smean /= (float)n;
4348
4349  /****
4350  ms2TimeEnd = mathutil::gettimeofday_sec();
4351  elapse2 = ms2TimeEnd - ms2TimeStart;
4352  std::cout << "rm2   : " << elapse2 << " (sec.)" << endl;
4353  ****/
4354
4355  return sqrt(smean - mean*mean);
4356}
4357
4358
4359std::string Scantable::formatBaselineParamsHeader(int whichrow, const std::string& masklist, bool verbose, bool csvformat) const
4360{
4361  if (verbose) {
4362    ostringstream oss;
4363
4364    if (csvformat) {
4365      oss << getScan(whichrow)  << ",";
4366      oss << getBeam(whichrow)  << ",";
4367      oss << getIF(whichrow)    << ",";
4368      oss << getPol(whichrow)   << ",";
4369      oss << getCycle(whichrow) << ",";
4370      String commaReplacedMasklist = masklist;
4371      string::size_type pos = 0;
4372      while (pos = commaReplacedMasklist.find(","), pos != string::npos) {
4373        commaReplacedMasklist.replace(pos, 1, ";");
4374        pos++;
4375      }
4376      oss << commaReplacedMasklist << ",";
4377    } else {
4378      oss <<  " Scan[" << getScan(whichrow)  << "]";
4379      oss <<  " Beam[" << getBeam(whichrow)  << "]";
4380      oss <<    " IF[" << getIF(whichrow)    << "]";
4381      oss <<   " Pol[" << getPol(whichrow)   << "]";
4382      oss << " Cycle[" << getCycle(whichrow) << "]: " << endl;
4383      oss << "Fitter range = " << masklist << endl;
4384      oss << "Baseline parameters" << endl;
4385    }
4386    oss << flush;
4387
4388    return String(oss);
4389  }
4390
4391  return "";
4392}
4393
4394std::string Scantable::formatBaselineParamsFooter(float rms, int nClipped, bool verbose, bool csvformat) const
4395{
4396  if (verbose) {
4397    ostringstream oss;
4398
4399    if (csvformat) {
4400      oss << rms << ",";
4401      if (nClipped >= 0) {
4402        oss << nClipped;
4403      }
4404    } else {
4405      oss << "Results of baseline fit" << endl;
4406      oss << "  rms = " << setprecision(6) << rms << endl;
4407      if (nClipped >= 0) {
4408        oss << "  Number of clipped channels = " << nClipped << endl;
4409      }
4410      for (int i = 0; i < 60; ++i) {
4411        oss << "-";
4412      }
4413    }
4414    oss << endl;
4415    oss << flush;
4416
4417    return String(oss);
4418  }
4419
4420  return "";
4421}
4422
4423std::string Scantable::formatBaselineParams(const std::vector<float>& params,
4424                                            const std::vector<bool>& fixed,
4425                                            float rms,
4426                                            int nClipped,
4427                                            const std::string& masklist,
4428                                            int whichrow,
4429                                            bool verbose,
4430                                            bool csvformat,
4431                                            int start, int count,
4432                                            bool resetparamid) const
4433{
4434  int nParam = (int)(params.size());
4435
4436  if (nParam < 1) {
4437    return("  Not fitted");
4438  } else {
4439
4440    ostringstream oss;
4441    oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat);
4442
4443    if (start < 0) start = 0;
4444    if (count < 0) count = nParam;
4445    int end = start + count;
4446    if (end > nParam) end = nParam;
4447    int paramidoffset = (resetparamid) ? (-start) : 0;
4448
4449    for (int i = start; i < end; ++i) {
4450      if (i > start) {
4451        oss << ",";
4452      }
4453      std::string sFix = ((fixed.size() > 0) && (fixed[i]) && verbose) ? "(fixed)" : "";
4454      if (csvformat) {
4455        oss << params[i] << sFix;
4456      } else {
4457        oss << "  p" << (i+paramidoffset) << sFix << "= " << right << setw(13) << setprecision(6) << params[i];
4458      }
4459    }
4460
4461    if (csvformat) {
4462      oss << ",";
4463    } else {
4464      oss << endl;
4465    }
4466    oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat);
4467
4468    return String(oss);
4469  }
4470
4471}
4472
4473std::string Scantable::formatPiecewiseBaselineParams(const std::vector<int>& ranges, const std::vector<float>& params, const std::vector<bool>& fixed, float rms, int nClipped, const std::string& masklist, int whichrow, bool verbose, bool csvformat) const
4474{
4475  int nOutParam = (int)(params.size());
4476  int nPiece = (int)(ranges.size()) - 1;
4477
4478  if (nOutParam < 1) {
4479    return("  Not fitted");
4480  } else if (nPiece < 0) {
4481    return formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, verbose, csvformat);
4482  } else if (nPiece < 1) {
4483    return("  Bad count of the piece edge info");
4484  } else if (nOutParam % nPiece != 0) {
4485    return("  Bad count of the output baseline parameters");
4486  } else {
4487
4488    int nParam = nOutParam / nPiece;
4489
4490    ostringstream oss;
4491    oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat);
4492
4493    if (csvformat) {
4494      for (int i = 0; i < nPiece; ++i) {
4495        oss << ranges[i] << "," << (ranges[i+1]-1) << ",";
4496        oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true);
4497      }
4498    } else {
4499      stringstream ss;
4500      ss << ranges[nPiece] << flush;
4501      int wRange = ss.str().size() * 2 + 5;
4502
4503      for (int i = 0; i < nPiece; ++i) {
4504        ss.str("");
4505        ss << "  [" << ranges[i] << "," << (ranges[i+1]-1) << "]";
4506        oss << left << setw(wRange) << ss.str();
4507        oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true);
4508        //oss << endl;
4509      }
4510    }
4511
4512    oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat);
4513
4514    return String(oss);
4515  }
4516
4517}
4518
4519bool Scantable::hasSameNchanOverIFs()
4520{
4521  int nIF = nif(-1);
4522  int nCh;
4523  int totalPositiveNChan = 0;
4524  int nPositiveNChan = 0;
4525
4526  for (int i = 0; i < nIF; ++i) {
4527    nCh = nchan(i);
4528    if (nCh > 0) {
4529      totalPositiveNChan += nCh;
4530      nPositiveNChan++;
4531    }
4532  }
4533
4534  return (totalPositiveNChan == (nPositiveNChan * nchan(0)));
4535}
4536
4537std::string Scantable::getMaskRangeList(const std::vector<bool>& mask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, bool verbose)
4538{
4539  if (mask.size() <= 0) {
4540    throw(AipsError("The mask elements should be > 0"));
4541  }
4542  int IF = getIF(whichrow);
4543  if (mask.size() != (uInt)nchan(IF)) {
4544    throw(AipsError("Number of channels in scantable != number of mask elements"));
4545  }
4546
4547  if (verbose) {
4548    LogIO logOs(LogOrigin("Scantable", "getMaskRangeList()", WHERE));
4549    logOs << LogIO::WARN << "The current mask window unit is " << coordInfo;
4550    if (!hasSameNchan) {
4551      logOs << endl << "This mask is only valid for IF=" << IF;
4552    }
4553    logOs << LogIO::POST;
4554  }
4555
4556  std::vector<double> abcissa = getAbcissa(whichrow);
4557  std::vector<int> edge = getMaskEdgeIndices(mask);
4558
4559  ostringstream oss;
4560  oss.setf(ios::fixed);
4561  oss << setprecision(1) << "[";
4562  for (uInt i = 0; i < edge.size(); i+=2) {
4563    if (i > 0) oss << ",";
4564    oss << "[" << (float)abcissa[edge[i]] << "," << (float)abcissa[edge[i+1]] << "]";
4565  }
4566  oss << "]" << flush;
4567
4568  return String(oss);
4569}
4570
4571std::vector<int> Scantable::getMaskEdgeIndices(const std::vector<bool>& mask)
4572{
4573  if (mask.size() <= 0) {
4574    throw(AipsError("The mask elements should be > 0"));
4575  }
4576
4577  std::vector<int> out, startIndices, endIndices;
4578  int maskSize = mask.size();
4579
4580  startIndices.clear();
4581  endIndices.clear();
4582
4583  if (mask[0]) {
4584    startIndices.push_back(0);
4585  }
4586  for (int i = 1; i < maskSize; ++i) {
4587    if ((!mask[i-1]) && mask[i]) {
4588      startIndices.push_back(i);
4589    } else if (mask[i-1] && (!mask[i])) {
4590      endIndices.push_back(i-1);
4591    }
4592  }
4593  if (mask[maskSize-1]) {
4594    endIndices.push_back(maskSize-1);
4595  }
4596
4597  if (startIndices.size() != endIndices.size()) {
4598    throw(AipsError("Inconsistent Mask Size: bad data?"));
4599  }
4600  for (uInt i = 0; i < startIndices.size(); ++i) {
4601    if (startIndices[i] > endIndices[i]) {
4602      throw(AipsError("Mask start index > mask end index"));
4603    }
4604  }
4605
4606  out.clear();
4607  for (uInt i = 0; i < startIndices.size(); ++i) {
4608    out.push_back(startIndices[i]);
4609    out.push_back(endIndices[i]);
4610  }
4611
4612  return out;
4613}
4614
4615vector<float> Scantable::getTsysSpectrum( int whichrow ) const
4616{
4617  Vector<Float> tsys( tsysCol_(whichrow) ) ;
4618  vector<float> stlTsys ;
4619  tsys.tovector( stlTsys ) ;
4620  return stlTsys ;
4621}
4622
4623vector<uint> Scantable::getMoleculeIdColumnData() const
4624{
4625  Vector<uInt> molIds(mmolidCol_.getColumn());
4626  vector<uint> res;
4627  molIds.tovector(res);
4628  return res;
4629}
4630
4631void Scantable::setMoleculeIdColumnData(const std::vector<uint>& molids)
4632{
4633  Vector<uInt> molIds(molids);
4634  Vector<uInt> arr(mmolidCol_.getColumn());
4635  if ( molIds.nelements() != arr.nelements() )
4636    throw AipsError("The input data size must be the number of rows.");
4637  mmolidCol_.putColumn(molIds);
4638}
4639
4640
4641}
4642//namespace asap
Note: See TracBrowser for help on using the repository browser.