source: trunk/src/Scantable.cpp@ 2164

Last change on this file since 2164 was 2163, checked in by Malte Marquarding, 13 years ago

Remove various compiler warnings

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 90.0 KB
RevLine 
[805]1//
2// C++ Implementation: Scantable
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2005
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
[206]12#include <map>
[1819]13#include <fstream>
[206]14
[125]15#include <casa/aips.h>
[80]16#include <casa/iostream.h>
17#include <casa/iomanip.h>
[805]18#include <casa/OS/Path.h>
19#include <casa/OS/File.h>
[80]20#include <casa/Arrays/Array.h>
21#include <casa/Arrays/ArrayMath.h>
22#include <casa/Arrays/MaskArrMath.h>
23#include <casa/Arrays/ArrayLogical.h>
24#include <casa/Arrays/ArrayAccessor.h>
[1325]25#include <casa/Arrays/Vector.h>
[455]26#include <casa/Arrays/VectorSTLIterator.h>
[1819]27#include <casa/Arrays/Slice.h>
[418]28#include <casa/BasicMath/Math.h>
[504]29#include <casa/BasicSL/Constants.h>
[286]30#include <casa/Quanta/MVAngle.h>
[805]31#include <casa/Containers/RecordField.h>
[902]32#include <casa/Utilities/GenSort.h>
[1819]33#include <casa/Logging/LogIO.h>
[2]34
[80]35#include <tables/Tables/TableParse.h>
36#include <tables/Tables/TableDesc.h>
[488]37#include <tables/Tables/TableCopy.h>
[80]38#include <tables/Tables/SetupNewTab.h>
39#include <tables/Tables/ScaColDesc.h>
40#include <tables/Tables/ArrColDesc.h>
[805]41#include <tables/Tables/TableRow.h>
42#include <tables/Tables/TableVector.h>
43#include <tables/Tables/TableIter.h>
[2]44
[80]45#include <tables/Tables/ExprNode.h>
46#include <tables/Tables/TableRecord.h>
[1325]47#include <casa/Quanta/MVTime.h>
48#include <casa/Quanta/MVAngle.h>
49#include <measures/Measures/MeasRef.h>
50#include <measures/Measures/MeasTable.h>
51// needed to avoid error in .tcc
52#include <measures/Measures/MCDirection.h>
53//
54#include <measures/Measures/MDirection.h>
[80]55#include <measures/Measures/MFrequency.h>
[805]56#include <measures/Measures/MEpoch.h>
57#include <measures/TableMeasures/TableMeasRefDesc.h>
58#include <measures/TableMeasures/TableMeasValueDesc.h>
59#include <measures/TableMeasures/TableMeasDesc.h>
60#include <measures/TableMeasures/ScalarMeasColumn.h>
[105]61#include <coordinates/Coordinates/CoordinateUtil.h>
[2]62
[2005]63#include <atnf/PKSIO/SrcType.h>
[805]64#include "Scantable.h"
[896]65#include "STPolLinear.h"
[1189]66#include "STPolCircular.h"
[913]67#include "STPolStokes.h"
[878]68#include "STAttr.h"
[2012]69#include "STLineFinder.h"
[902]70#include "MathUtils.h"
[2]71
[125]72using namespace casa;
[2]73
[805]74namespace asap {
75
[896]76std::map<std::string, STPol::STPolFactory *> Scantable::factories_;
77
78void Scantable::initFactories() {
79 if ( factories_.empty() ) {
80 Scantable::factories_["linear"] = &STPolLinear::myFactory;
[1323]81 Scantable::factories_["circular"] = &STPolCircular::myFactory;
[913]82 Scantable::factories_["stokes"] = &STPolStokes::myFactory;
[896]83 }
84}
85
[805]86Scantable::Scantable(Table::TableType ttype) :
[852]87 type_(ttype)
[206]88{
[896]89 initFactories();
[805]90 setupMainTable();
[852]91 freqTable_ = STFrequencies(*this);
[805]92 table_.rwKeywordSet().defineTable("FREQUENCIES", freqTable_.table());
[852]93 weatherTable_ = STWeather(*this);
[805]94 table_.rwKeywordSet().defineTable("WEATHER", weatherTable_.table());
[852]95 focusTable_ = STFocus(*this);
[805]96 table_.rwKeywordSet().defineTable("FOCUS", focusTable_.table());
[852]97 tcalTable_ = STTcal(*this);
[805]98 table_.rwKeywordSet().defineTable("TCAL", tcalTable_.table());
[852]99 moleculeTable_ = STMolecules(*this);
[805]100 table_.rwKeywordSet().defineTable("MOLECULES", moleculeTable_.table());
[860]101 historyTable_ = STHistory(*this);
102 table_.rwKeywordSet().defineTable("HISTORY", historyTable_.table());
[959]103 fitTable_ = STFit(*this);
104 table_.rwKeywordSet().defineTable("FIT", fitTable_.table());
[1881]105 table_.tableInfo().setType( "Scantable" ) ;
[805]106 originalTable_ = table_;
[322]107 attach();
[18]108}
[206]109
[805]110Scantable::Scantable(const std::string& name, Table::TableType ttype) :
[852]111 type_(ttype)
[206]112{
[896]113 initFactories();
[1819]114
[865]115 Table tab(name, Table::Update);
[1009]116 uInt version = tab.keywordSet().asuInt("VERSION");
[483]117 if (version != version_) {
[2162]118 if ( version == 2 && version_ == 3 ) {
119 // run asap2to3 command
120 LogIO os( LogOrigin( "Scantable" ) ) ;
121 string command="asap2to3" ;
122 string exec=command+" in="+name ;
123 string outname=name ;
124 if ( name.at(name.length()-1) == '/' )
125 outname = outname.substr( 0, name.length()-1 ) ;
126 outname += ".asap3" ;
127 os << LogIO::WARN
128 << name << " is incompatible data format (Scantable v2)." << endl
129 << "Running " << command << " to create " << outname << ", " << endl
130 << "which is identical to " << name << " but compatible " << endl
131 << "data format with current software version (Scantable v3)."
132 << LogIO::POST ;
133 int ret = system( string("which "+command+" > /dev/null 2>&1").c_str() ) ;
134 if ( ret != 0 )
135 throw(AipsError(command+" is not installed")) ;
136 os << LogIO::WARN
137 << "Data will be loaded from " << outname << " instead of "
138 << name << LogIO::POST ;
[2163]139 int tmp = system( exec.c_str() ) ;
140 (void) tmp;
[2162]141 tab = Table(outname, Table::Update ) ;
142 //os << "tab.tableName()=" << tab.tableName() << LogIO::POST ;
143 }
144 else {
145 throw(AipsError("Unsupported version of ASAP file."));
146 }
[483]147 }
[1009]148 if ( type_ == Table::Memory ) {
[852]149 table_ = tab.copyToMemoryTable(generateName());
[1009]150 } else {
[805]151 table_ = tab;
[1009]152 }
[1881]153 table_.tableInfo().setType( "Scantable" ) ;
[1009]154
[859]155 attachSubtables();
[805]156 originalTable_ = table_;
[329]157 attach();
[2]158}
[1819]159/*
160Scantable::Scantable(const std::string& name, Table::TableType ttype) :
161 type_(ttype)
162{
163 initFactories();
164 Table tab(name, Table::Update);
165 uInt version = tab.keywordSet().asuInt("VERSION");
166 if (version != version_) {
167 throw(AipsError("Unsupported version of ASAP file."));
168 }
169 if ( type_ == Table::Memory ) {
170 table_ = tab.copyToMemoryTable(generateName());
171 } else {
172 table_ = tab;
173 }
[2]174
[1819]175 attachSubtables();
176 originalTable_ = table_;
177 attach();
178}
179*/
180
[2163]181Scantable::Scantable( const Scantable& other, bool clear ):
182 Logger()
[206]183{
[805]184 // with or without data
[859]185 String newname = String(generateName());
[865]186 type_ = other.table_.tableType();
[859]187 if ( other.table_.tableType() == Table::Memory ) {
188 if ( clear ) {
189 table_ = TableCopy::makeEmptyMemoryTable(newname,
190 other.table_, True);
191 } else
192 table_ = other.table_.copyToMemoryTable(newname);
[16]193 } else {
[915]194 other.table_.deepCopy(newname, Table::New, False,
195 other.table_.endianFormat(),
[865]196 Bool(clear));
197 table_ = Table(newname, Table::Update);
198 table_.markForDelete();
199 }
[1881]200 table_.tableInfo().setType( "Scantable" ) ;
[1111]201 /// @todo reindex SCANNO, recompute nbeam, nif, npol
[915]202 if ( clear ) copySubtables(other);
[859]203 attachSubtables();
[805]204 originalTable_ = table_;
[322]205 attach();
[2]206}
207
[865]208void Scantable::copySubtables(const Scantable& other) {
209 Table t = table_.rwKeywordSet().asTable("FREQUENCIES");
210 TableCopy::copyRows(t, other.freqTable_.table());
211 t = table_.rwKeywordSet().asTable("FOCUS");
212 TableCopy::copyRows(t, other.focusTable_.table());
213 t = table_.rwKeywordSet().asTable("WEATHER");
214 TableCopy::copyRows(t, other.weatherTable_.table());
215 t = table_.rwKeywordSet().asTable("TCAL");
216 TableCopy::copyRows(t, other.tcalTable_.table());
217 t = table_.rwKeywordSet().asTable("MOLECULES");
218 TableCopy::copyRows(t, other.moleculeTable_.table());
219 t = table_.rwKeywordSet().asTable("HISTORY");
220 TableCopy::copyRows(t, other.historyTable_.table());
[972]221 t = table_.rwKeywordSet().asTable("FIT");
222 TableCopy::copyRows(t, other.fitTable_.table());
[865]223}
224
[859]225void Scantable::attachSubtables()
226{
227 freqTable_ = STFrequencies(table_);
228 focusTable_ = STFocus(table_);
229 weatherTable_ = STWeather(table_);
230 tcalTable_ = STTcal(table_);
231 moleculeTable_ = STMolecules(table_);
[860]232 historyTable_ = STHistory(table_);
[972]233 fitTable_ = STFit(table_);
[859]234}
235
[805]236Scantable::~Scantable()
[206]237{
[941]238 //cout << "~Scantable() " << this << endl;
[2]239}
240
[805]241void Scantable::setupMainTable()
[206]242{
[805]243 TableDesc td("", "1", TableDesc::Scratch);
244 td.comment() = "An ASAP Scantable";
[1009]245 td.rwKeywordSet().define("VERSION", uInt(version_));
[2]246
[805]247 // n Cycles
248 td.addColumn(ScalarColumnDesc<uInt>("SCANNO"));
249 // new index every nBeam x nIF x nPol
250 td.addColumn(ScalarColumnDesc<uInt>("CYCLENO"));
[2]251
[805]252 td.addColumn(ScalarColumnDesc<uInt>("BEAMNO"));
253 td.addColumn(ScalarColumnDesc<uInt>("IFNO"));
[972]254 // linear, circular, stokes
[805]255 td.rwKeywordSet().define("POLTYPE", String("linear"));
256 td.addColumn(ScalarColumnDesc<uInt>("POLNO"));
[138]257
[805]258 td.addColumn(ScalarColumnDesc<uInt>("FREQ_ID"));
259 td.addColumn(ScalarColumnDesc<uInt>("MOLECULE_ID"));
[80]260
[1819]261 ScalarColumnDesc<Int> refbeamnoColumn("REFBEAMNO");
262 refbeamnoColumn.setDefault(Int(-1));
263 td.addColumn(refbeamnoColumn);
264
265 ScalarColumnDesc<uInt> flagrowColumn("FLAGROW");
266 flagrowColumn.setDefault(uInt(0));
267 td.addColumn(flagrowColumn);
268
[805]269 td.addColumn(ScalarColumnDesc<Double>("TIME"));
270 TableMeasRefDesc measRef(MEpoch::UTC); // UTC as default
271 TableMeasValueDesc measVal(td, "TIME");
272 TableMeasDesc<MEpoch> mepochCol(measVal, measRef);
273 mepochCol.write(td);
[483]274
[805]275 td.addColumn(ScalarColumnDesc<Double>("INTERVAL"));
276
[2]277 td.addColumn(ScalarColumnDesc<String>("SRCNAME"));
[805]278 // Type of source (on=0, off=1, other=-1)
[1503]279 ScalarColumnDesc<Int> stypeColumn("SRCTYPE");
280 stypeColumn.setDefault(Int(-1));
281 td.addColumn(stypeColumn);
[805]282 td.addColumn(ScalarColumnDesc<String>("FIELDNAME"));
283
284 //The actual Data Vectors
[2]285 td.addColumn(ArrayColumnDesc<Float>("SPECTRA"));
286 td.addColumn(ArrayColumnDesc<uChar>("FLAGTRA"));
[89]287 td.addColumn(ArrayColumnDesc<Float>("TSYS"));
[805]288
289 td.addColumn(ArrayColumnDesc<Double>("DIRECTION",
290 IPosition(1,2),
291 ColumnDesc::Direct));
292 TableMeasRefDesc mdirRef(MDirection::J2000); // default
293 TableMeasValueDesc tmvdMDir(td, "DIRECTION");
294 // the TableMeasDesc gives the column a type
295 TableMeasDesc<MDirection> mdirCol(tmvdMDir, mdirRef);
[987]296 // a uder set table type e.g. GALCTIC, B1950 ...
297 td.rwKeywordSet().define("DIRECTIONREF", String("J2000"));
[805]298 // writing create the measure column
299 mdirCol.write(td);
[923]300 td.addColumn(ScalarColumnDesc<Float>("AZIMUTH"));
301 td.addColumn(ScalarColumnDesc<Float>("ELEVATION"));
[1047]302 td.addColumn(ScalarColumnDesc<Float>("OPACITY"));
[105]303
[805]304 td.addColumn(ScalarColumnDesc<uInt>("TCAL_ID"));
[972]305 ScalarColumnDesc<Int> fitColumn("FIT_ID");
[973]306 fitColumn.setDefault(Int(-1));
[972]307 td.addColumn(fitColumn);
[805]308
309 td.addColumn(ScalarColumnDesc<uInt>("FOCUS_ID"));
310 td.addColumn(ScalarColumnDesc<uInt>("WEATHER_ID"));
311
[999]312 // columns which just get dragged along, as they aren't used in asap
313 td.addColumn(ScalarColumnDesc<Double>("SRCVELOCITY"));
314 td.addColumn(ArrayColumnDesc<Double>("SRCPROPERMOTION"));
315 td.addColumn(ArrayColumnDesc<Double>("SRCDIRECTION"));
316 td.addColumn(ArrayColumnDesc<Double>("SCANRATE"));
317
[805]318 td.rwKeywordSet().define("OBSMODE", String(""));
319
[418]320 // Now create Table SetUp from the description.
[859]321 SetupNewTable aNewTab(generateName(), td, Table::Scratch);
[852]322 table_ = Table(aNewTab, type_, 0);
[805]323 originalTable_ = table_;
324}
[418]325
[805]326void Scantable::attach()
[455]327{
[805]328 timeCol_.attach(table_, "TIME");
329 srcnCol_.attach(table_, "SRCNAME");
[1068]330 srctCol_.attach(table_, "SRCTYPE");
[805]331 specCol_.attach(table_, "SPECTRA");
332 flagsCol_.attach(table_, "FLAGTRA");
[865]333 tsysCol_.attach(table_, "TSYS");
[805]334 cycleCol_.attach(table_,"CYCLENO");
335 scanCol_.attach(table_, "SCANNO");
336 beamCol_.attach(table_, "BEAMNO");
[847]337 ifCol_.attach(table_, "IFNO");
338 polCol_.attach(table_, "POLNO");
[805]339 integrCol_.attach(table_, "INTERVAL");
340 azCol_.attach(table_, "AZIMUTH");
341 elCol_.attach(table_, "ELEVATION");
342 dirCol_.attach(table_, "DIRECTION");
343 fldnCol_.attach(table_, "FIELDNAME");
344 rbeamCol_.attach(table_, "REFBEAMNO");
[455]345
[1730]346 mweatheridCol_.attach(table_,"WEATHER_ID");
[805]347 mfitidCol_.attach(table_,"FIT_ID");
348 mfreqidCol_.attach(table_, "FREQ_ID");
349 mtcalidCol_.attach(table_, "TCAL_ID");
350 mfocusidCol_.attach(table_, "FOCUS_ID");
351 mmolidCol_.attach(table_, "MOLECULE_ID");
[1819]352
353 //Add auxiliary column for row-based flagging (CAS-1433 Wataru Kawasaki)
354 attachAuxColumnDef(flagrowCol_, "FLAGROW", 0);
355
[455]356}
357
[1819]358template<class T, class T2>
359void Scantable::attachAuxColumnDef(ScalarColumn<T>& col,
360 const String& colName,
361 const T2& defValue)
362{
363 try {
364 col.attach(table_, colName);
365 } catch (TableError& err) {
366 String errMesg = err.getMesg();
367 if (errMesg == "Table column " + colName + " is unknown") {
368 table_.addColumn(ScalarColumnDesc<T>(colName));
369 col.attach(table_, colName);
370 col.fillColumn(static_cast<T>(defValue));
371 } else {
372 throw;
373 }
374 } catch (...) {
375 throw;
376 }
377}
378
379template<class T, class T2>
380void Scantable::attachAuxColumnDef(ArrayColumn<T>& col,
381 const String& colName,
382 const Array<T2>& defValue)
383{
384 try {
385 col.attach(table_, colName);
386 } catch (TableError& err) {
387 String errMesg = err.getMesg();
388 if (errMesg == "Table column " + colName + " is unknown") {
389 table_.addColumn(ArrayColumnDesc<T>(colName));
390 col.attach(table_, colName);
391
392 int size = 0;
393 ArrayIterator<T2>& it = defValue.begin();
394 while (it != defValue.end()) {
395 ++size;
396 ++it;
397 }
398 IPosition ip(1, size);
399 Array<T>& arr(ip);
400 for (int i = 0; i < size; ++i)
401 arr[i] = static_cast<T>(defValue[i]);
402
403 col.fillColumn(arr);
404 } else {
405 throw;
406 }
407 } catch (...) {
408 throw;
409 }
410}
411
[901]412void Scantable::setHeader(const STHeader& sdh)
[206]413{
[18]414 table_.rwKeywordSet().define("nIF", sdh.nif);
415 table_.rwKeywordSet().define("nBeam", sdh.nbeam);
416 table_.rwKeywordSet().define("nPol", sdh.npol);
417 table_.rwKeywordSet().define("nChan", sdh.nchan);
418 table_.rwKeywordSet().define("Observer", sdh.observer);
419 table_.rwKeywordSet().define("Project", sdh.project);
420 table_.rwKeywordSet().define("Obstype", sdh.obstype);
421 table_.rwKeywordSet().define("AntennaName", sdh.antennaname);
422 table_.rwKeywordSet().define("AntennaPosition", sdh.antennaposition);
423 table_.rwKeywordSet().define("Equinox", sdh.equinox);
424 table_.rwKeywordSet().define("FreqRefFrame", sdh.freqref);
425 table_.rwKeywordSet().define("FreqRefVal", sdh.reffreq);
426 table_.rwKeywordSet().define("Bandwidth", sdh.bandwidth);
427 table_.rwKeywordSet().define("UTC", sdh.utc);
[206]428 table_.rwKeywordSet().define("FluxUnit", sdh.fluxunit);
429 table_.rwKeywordSet().define("Epoch", sdh.epoch);
[905]430 table_.rwKeywordSet().define("POLTYPE", sdh.poltype);
[50]431}
[21]432
[901]433STHeader Scantable::getHeader() const
[206]434{
[901]435 STHeader sdh;
[21]436 table_.keywordSet().get("nBeam",sdh.nbeam);
437 table_.keywordSet().get("nIF",sdh.nif);
438 table_.keywordSet().get("nPol",sdh.npol);
439 table_.keywordSet().get("nChan",sdh.nchan);
440 table_.keywordSet().get("Observer", sdh.observer);
441 table_.keywordSet().get("Project", sdh.project);
442 table_.keywordSet().get("Obstype", sdh.obstype);
443 table_.keywordSet().get("AntennaName", sdh.antennaname);
444 table_.keywordSet().get("AntennaPosition", sdh.antennaposition);
445 table_.keywordSet().get("Equinox", sdh.equinox);
446 table_.keywordSet().get("FreqRefFrame", sdh.freqref);
447 table_.keywordSet().get("FreqRefVal", sdh.reffreq);
448 table_.keywordSet().get("Bandwidth", sdh.bandwidth);
449 table_.keywordSet().get("UTC", sdh.utc);
[206]450 table_.keywordSet().get("FluxUnit", sdh.fluxunit);
451 table_.keywordSet().get("Epoch", sdh.epoch);
[905]452 table_.keywordSet().get("POLTYPE", sdh.poltype);
[21]453 return sdh;
[18]454}
[805]455
[1360]456void Scantable::setSourceType( int stype )
[1068]457{
458 if ( stype < 0 || stype > 1 )
459 throw(AipsError("Illegal sourcetype."));
460 TableVector<Int> tabvec(table_, "SRCTYPE");
461 tabvec = Int(stype);
462}
463
[845]464bool Scantable::conformant( const Scantable& other )
465{
466 return this->getHeader().conformant(other.getHeader());
467}
468
469
[50]470
[805]471std::string Scantable::formatSec(Double x) const
[206]472{
[105]473 Double xcop = x;
474 MVTime mvt(xcop/24./3600.); // make days
[365]475
[105]476 if (x < 59.95)
[281]477 return String(" ") + mvt.string(MVTime::TIME_CLEAN_NO_HM, 7)+"s";
[745]478 else if (x < 3599.95)
[281]479 return String(" ") + mvt.string(MVTime::TIME_CLEAN_NO_H,7)+" ";
480 else {
481 ostringstream oss;
482 oss << setw(2) << std::right << setprecision(1) << mvt.hour();
483 oss << ":" << mvt.string(MVTime::TIME_CLEAN_NO_H,7) << " ";
484 return String(oss);
[745]485 }
[105]486};
487
[805]488std::string Scantable::formatDirection(const MDirection& md) const
[281]489{
490 Vector<Double> t = md.getAngle(Unit(String("rad"))).getValue();
491 Int prec = 7;
492
493 MVAngle mvLon(t[0]);
494 String sLon = mvLon.string(MVAngle::TIME,prec);
[987]495 uInt tp = md.getRef().getType();
496 if (tp == MDirection::GALACTIC ||
497 tp == MDirection::SUPERGAL ) {
498 sLon = mvLon(0.0).string(MVAngle::ANGLE_CLEAN,prec);
499 }
[281]500 MVAngle mvLat(t[1]);
501 String sLat = mvLat.string(MVAngle::ANGLE+MVAngle::DIG2,prec);
[380]502 return sLon + String(" ") + sLat;
[281]503}
504
505
[805]506std::string Scantable::getFluxUnit() const
[206]507{
[847]508 return table_.keywordSet().asString("FluxUnit");
[206]509}
510
[805]511void Scantable::setFluxUnit(const std::string& unit)
[218]512{
513 String tmp(unit);
514 Unit tU(tmp);
515 if (tU==Unit("K") || tU==Unit("Jy")) {
516 table_.rwKeywordSet().define(String("FluxUnit"), tmp);
517 } else {
518 throw AipsError("Illegal unit - must be compatible with Jy or K");
519 }
520}
521
[805]522void Scantable::setInstrument(const std::string& name)
[236]523{
[805]524 bool throwIt = true;
[996]525 // create an Instrument to see if this is valid
526 STAttr::convertInstrument(name, throwIt);
[236]527 String nameU(name);
528 nameU.upcase();
529 table_.rwKeywordSet().define(String("AntennaName"), nameU);
530}
531
[1189]532void Scantable::setFeedType(const std::string& feedtype)
533{
534 if ( Scantable::factories_.find(feedtype) == Scantable::factories_.end() ) {
535 std::string msg = "Illegal feed type "+ feedtype;
536 throw(casa::AipsError(msg));
537 }
538 table_.rwKeywordSet().define(String("POLTYPE"), feedtype);
539}
540
[1743]541MPosition Scantable::getAntennaPosition() const
[805]542{
543 Vector<Double> antpos;
544 table_.keywordSet().get("AntennaPosition", antpos);
545 MVPosition mvpos(antpos(0),antpos(1),antpos(2));
546 return MPosition(mvpos);
547}
[281]548
[805]549void Scantable::makePersistent(const std::string& filename)
550{
551 String inname(filename);
552 Path path(inname);
[1111]553 /// @todo reindex SCANNO, recompute nbeam, nif, npol
[805]554 inname = path.expandedName();
[2030]555 // 2011/03/04 TN
556 // We can comment out this workaround since the essential bug is
557 // fixed in casacore (r20889 in google code).
558 table_.deepCopy(inname, Table::New);
559// // WORKAROUND !!! for Table bug
560// // Remove when fixed in casacore
561// if ( table_.tableType() == Table::Memory && !selector_.empty() ) {
562// Table tab = table_.copyToMemoryTable(generateName());
563// tab.deepCopy(inname, Table::New);
564// tab.markForDelete();
565//
566// } else {
567// table_.deepCopy(inname, Table::New);
568// }
[805]569}
570
[837]571int Scantable::nbeam( int scanno ) const
[805]572{
573 if ( scanno < 0 ) {
574 Int n;
575 table_.keywordSet().get("nBeam",n);
576 return int(n);
[105]577 } else {
[805]578 // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
[888]579 Table t = table_(table_.col("SCANNO") == scanno);
580 ROTableRow row(t);
581 const TableRecord& rec = row.get(0);
582 Table subt = t( t.col("IFNO") == Int(rec.asuInt("IFNO"))
583 && t.col("POLNO") == Int(rec.asuInt("POLNO"))
584 && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
585 ROTableVector<uInt> v(subt, "BEAMNO");
[805]586 return int(v.nelements());
[105]587 }
[805]588 return 0;
589}
[455]590
[837]591int Scantable::nif( int scanno ) const
[805]592{
593 if ( scanno < 0 ) {
594 Int n;
595 table_.keywordSet().get("nIF",n);
596 return int(n);
597 } else {
598 // take the first POLNO,BEAMNO,CYCLENO as nbeam shouldn't vary with these
[888]599 Table t = table_(table_.col("SCANNO") == scanno);
600 ROTableRow row(t);
601 const TableRecord& rec = row.get(0);
602 Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
603 && t.col("POLNO") == Int(rec.asuInt("POLNO"))
604 && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
605 if ( subt.nrow() == 0 ) return 0;
606 ROTableVector<uInt> v(subt, "IFNO");
[805]607 return int(v.nelements());
[2]608 }
[805]609 return 0;
610}
[321]611
[837]612int Scantable::npol( int scanno ) const
[805]613{
614 if ( scanno < 0 ) {
615 Int n;
616 table_.keywordSet().get("nPol",n);
617 return n;
618 } else {
619 // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
[888]620 Table t = table_(table_.col("SCANNO") == scanno);
621 ROTableRow row(t);
622 const TableRecord& rec = row.get(0);
623 Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
624 && t.col("IFNO") == Int(rec.asuInt("IFNO"))
625 && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
626 if ( subt.nrow() == 0 ) return 0;
627 ROTableVector<uInt> v(subt, "POLNO");
[805]628 return int(v.nelements());
[321]629 }
[805]630 return 0;
[2]631}
[805]632
[845]633int Scantable::ncycle( int scanno ) const
[206]634{
[805]635 if ( scanno < 0 ) {
[837]636 Block<String> cols(2);
637 cols[0] = "SCANNO";
638 cols[1] = "CYCLENO";
639 TableIterator it(table_, cols);
640 int n = 0;
641 while ( !it.pastEnd() ) {
642 ++n;
[902]643 ++it;
[837]644 }
645 return n;
[805]646 } else {
[888]647 Table t = table_(table_.col("SCANNO") == scanno);
648 ROTableRow row(t);
649 const TableRecord& rec = row.get(0);
650 Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
651 && t.col("POLNO") == Int(rec.asuInt("POLNO"))
652 && t.col("IFNO") == Int(rec.asuInt("IFNO")) );
653 if ( subt.nrow() == 0 ) return 0;
654 return int(subt.nrow());
[805]655 }
656 return 0;
[18]657}
[455]658
659
[845]660int Scantable::nrow( int scanno ) const
[805]661{
[845]662 return int(table_.nrow());
663}
664
665int Scantable::nchan( int ifno ) const
666{
667 if ( ifno < 0 ) {
[805]668 Int n;
669 table_.keywordSet().get("nChan",n);
670 return int(n);
671 } else {
[1360]672 // take the first SCANNO,POLNO,BEAMNO,CYCLENO as nbeam shouldn't
673 // vary with these
[888]674 Table t = table_(table_.col("IFNO") == ifno);
675 if ( t.nrow() == 0 ) return 0;
676 ROArrayColumn<Float> v(t, "SPECTRA");
[923]677 return v.shape(0)(0);
[805]678 }
679 return 0;
[18]680}
[455]681
[1111]682int Scantable::nscan() const {
683 Vector<uInt> scannos(scanCol_.getColumn());
[1148]684 uInt nout = genSort( scannos, Sort::Ascending,
[1111]685 Sort::QuickSort|Sort::NoDuplicates );
686 return int(nout);
687}
688
[923]689int Scantable::getChannels(int whichrow) const
690{
691 return specCol_.shape(whichrow)(0);
692}
[847]693
694int Scantable::getBeam(int whichrow) const
695{
696 return beamCol_(whichrow);
697}
698
[1694]699std::vector<uint> Scantable::getNumbers(const ScalarColumn<uInt>& col) const
[1111]700{
701 Vector<uInt> nos(col.getColumn());
[1148]702 uInt n = genSort( nos, Sort::Ascending, Sort::QuickSort|Sort::NoDuplicates );
703 nos.resize(n, True);
[1111]704 std::vector<uint> stlout;
705 nos.tovector(stlout);
706 return stlout;
707}
708
[847]709int Scantable::getIF(int whichrow) const
710{
711 return ifCol_(whichrow);
712}
713
714int Scantable::getPol(int whichrow) const
715{
716 return polCol_(whichrow);
717}
718
[805]719std::string Scantable::formatTime(const MEpoch& me, bool showdate) const
720{
[1947]721 return formatTime(me, showdate, 0);
722}
723
724std::string Scantable::formatTime(const MEpoch& me, bool showdate, uInt prec) const
725{
[805]726 MVTime mvt(me.getValue());
727 if (showdate)
[1947]728 //mvt.setFormat(MVTime::YMD);
729 mvt.setFormat(MVTime::YMD, prec);
[805]730 else
[1947]731 //mvt.setFormat(MVTime::TIME);
732 mvt.setFormat(MVTime::TIME, prec);
[805]733 ostringstream oss;
734 oss << mvt;
735 return String(oss);
736}
[488]737
[805]738void Scantable::calculateAZEL()
739{
740 MPosition mp = getAntennaPosition();
741 MEpoch::ROScalarColumn timeCol(table_, "TIME");
742 ostringstream oss;
743 oss << "Computed azimuth/elevation using " << endl
744 << mp << endl;
[996]745 for (Int i=0; i<nrow(); ++i) {
[805]746 MEpoch me = timeCol(i);
[987]747 MDirection md = getDirection(i);
[805]748 oss << " Time: " << formatTime(me,False) << " Direction: " << formatDirection(md)
749 << endl << " => ";
750 MeasFrame frame(mp, me);
751 Vector<Double> azel =
752 MDirection::Convert(md, MDirection::Ref(MDirection::AZEL,
753 frame)
754 )().getAngle("rad").getValue();
[923]755 azCol_.put(i,Float(azel[0]));
756 elCol_.put(i,Float(azel[1]));
[805]757 oss << "azel: " << azel[0]/C::pi*180.0 << " "
758 << azel[1]/C::pi*180.0 << " (deg)" << endl;
[16]759 }
[805]760 pushLog(String(oss));
761}
[89]762
[1819]763void Scantable::clip(const Float uthres, const Float dthres, bool clipoutside, bool unflag)
764{
765 for (uInt i=0; i<table_.nrow(); ++i) {
766 Vector<uChar> flgs = flagsCol_(i);
767 srchChannelsToClip(i, uthres, dthres, clipoutside, unflag, flgs);
768 flagsCol_.put(i, flgs);
769 }
770}
771
772std::vector<bool> Scantable::getClipMask(int whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag)
773{
774 Vector<uChar> flags;
775 flagsCol_.get(uInt(whichrow), flags);
776 srchChannelsToClip(uInt(whichrow), uthres, dthres, clipoutside, unflag, flags);
777 Vector<Bool> bflag(flags.shape());
778 convertArray(bflag, flags);
779 //bflag = !bflag;
780
781 std::vector<bool> mask;
782 bflag.tovector(mask);
783 return mask;
784}
785
786void Scantable::srchChannelsToClip(uInt whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag,
787 Vector<uChar> flgs)
788{
789 Vector<Float> spcs = specCol_(whichrow);
790 uInt nchannel = nchan();
791 if (spcs.nelements() != nchannel) {
792 throw(AipsError("Data has incorrect number of channels"));
793 }
794 uChar userflag = 1 << 7;
795 if (unflag) {
796 userflag = 0 << 7;
797 }
798 if (clipoutside) {
799 for (uInt j = 0; j < nchannel; ++j) {
800 Float spc = spcs(j);
801 if ((spc >= uthres) || (spc <= dthres)) {
802 flgs(j) = userflag;
803 }
804 }
805 } else {
806 for (uInt j = 0; j < nchannel; ++j) {
807 Float spc = spcs(j);
808 if ((spc < uthres) && (spc > dthres)) {
809 flgs(j) = userflag;
810 }
811 }
812 }
813}
814
[1994]815
816void Scantable::flag( int whichrow, const std::vector<bool>& msk, bool unflag ) {
[1333]817 std::vector<bool>::const_iterator it;
818 uInt ntrue = 0;
[1994]819 if (whichrow >= int(table_.nrow()) ) {
820 throw(AipsError("Invalid row number"));
821 }
[1333]822 for (it = msk.begin(); it != msk.end(); ++it) {
823 if ( *it ) {
824 ntrue++;
825 }
826 }
[1994]827 //if ( selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
828 if ( whichrow == -1 && !unflag && selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
[1000]829 throw(AipsError("Trying to flag whole scantable."));
[1994]830 uChar userflag = 1 << 7;
831 if ( unflag ) {
832 userflag = 0 << 7;
833 }
834 if (whichrow > -1 ) {
835 applyChanFlag(uInt(whichrow), msk, userflag);
836 } else {
[1000]837 for ( uInt i=0; i<table_.nrow(); ++i) {
[1994]838 applyChanFlag(i, msk, userflag);
[1000]839 }
[1994]840 }
841}
842
843void Scantable::applyChanFlag( uInt whichrow, const std::vector<bool>& msk, uChar flagval )
844{
845 if (whichrow >= table_.nrow() ) {
846 throw( casa::indexError<int>( whichrow, "asap::Scantable::applyChanFlag: Invalid row number" ) );
847 }
848 Vector<uChar> flgs = flagsCol_(whichrow);
849 if ( msk.size() == 0 ) {
850 flgs = flagval;
851 flagsCol_.put(whichrow, flgs);
[1000]852 return;
853 }
854 if ( int(msk.size()) != nchan() ) {
855 throw(AipsError("Mask has incorrect number of channels."));
856 }
[1994]857 if ( flgs.nelements() != msk.size() ) {
858 throw(AipsError("Mask has incorrect number of channels."
859 " Probably varying with IF. Please flag per IF"));
860 }
861 std::vector<bool>::const_iterator it;
862 uInt j = 0;
863 for (it = msk.begin(); it != msk.end(); ++it) {
864 if ( *it ) {
865 flgs(j) = flagval;
[1000]866 }
[1994]867 ++j;
[1000]868 }
[1994]869 flagsCol_.put(whichrow, flgs);
[865]870}
871
[1819]872void Scantable::flagRow(const std::vector<uInt>& rows, bool unflag)
873{
874 if ( selector_.empty() && (rows.size() == table_.nrow()) )
875 throw(AipsError("Trying to flag whole scantable."));
876
877 uInt rowflag = (unflag ? 0 : 1);
878 std::vector<uInt>::const_iterator it;
879 for (it = rows.begin(); it != rows.end(); ++it)
880 flagrowCol_.put(*it, rowflag);
881}
882
[805]883std::vector<bool> Scantable::getMask(int whichrow) const
884{
885 Vector<uChar> flags;
886 flagsCol_.get(uInt(whichrow), flags);
887 Vector<Bool> bflag(flags.shape());
888 convertArray(bflag, flags);
889 bflag = !bflag;
890 std::vector<bool> mask;
891 bflag.tovector(mask);
892 return mask;
893}
[89]894
[896]895std::vector<float> Scantable::getSpectrum( int whichrow,
[902]896 const std::string& poltype ) const
[805]897{
[905]898 String ptype = poltype;
899 if (poltype == "" ) ptype = getPolType();
[902]900 if ( whichrow < 0 || whichrow >= nrow() )
901 throw(AipsError("Illegal row number."));
[896]902 std::vector<float> out;
[805]903 Vector<Float> arr;
[896]904 uInt requestedpol = polCol_(whichrow);
905 String basetype = getPolType();
[905]906 if ( ptype == basetype ) {
[896]907 specCol_.get(whichrow, arr);
908 } else {
[1598]909 CountedPtr<STPol> stpol(STPol::getPolClass(Scantable::factories_,
[1586]910 basetype));
[1334]911 uInt row = uInt(whichrow);
912 stpol->setSpectra(getPolMatrix(row));
[2047]913 Float fang,fhand;
[1586]914 fang = focusTable_.getTotalAngle(mfocusidCol_(row));
[1334]915 fhand = focusTable_.getFeedHand(mfocusidCol_(row));
[1586]916 stpol->setPhaseCorrections(fang, fhand);
[1334]917 arr = stpol->getSpectrum(requestedpol, ptype);
[896]918 }
[902]919 if ( arr.nelements() == 0 )
920 pushLog("Not enough polarisations present to do the conversion.");
[805]921 arr.tovector(out);
922 return out;
[89]923}
[212]924
[1360]925void Scantable::setSpectrum( const std::vector<float>& spec,
[884]926 int whichrow )
927{
928 Vector<Float> spectrum(spec);
929 Vector<Float> arr;
930 specCol_.get(whichrow, arr);
931 if ( spectrum.nelements() != arr.nelements() )
[896]932 throw AipsError("The spectrum has incorrect number of channels.");
[884]933 specCol_.put(whichrow, spectrum);
934}
935
936
[805]937String Scantable::generateName()
[745]938{
[805]939 return (File::newUniqueName("./","temp")).baseName();
[212]940}
941
[805]942const casa::Table& Scantable::table( ) const
[212]943{
[805]944 return table_;
[212]945}
946
[805]947casa::Table& Scantable::table( )
[386]948{
[805]949 return table_;
[386]950}
951
[896]952std::string Scantable::getPolType() const
953{
954 return table_.keywordSet().asString("POLTYPE");
955}
956
[805]957void Scantable::unsetSelection()
[380]958{
[805]959 table_ = originalTable_;
[847]960 attach();
[805]961 selector_.reset();
[380]962}
[386]963
[805]964void Scantable::setSelection( const STSelector& selection )
[430]965{
[805]966 Table tab = const_cast<STSelector&>(selection).apply(originalTable_);
967 if ( tab.nrow() == 0 ) {
968 throw(AipsError("Selection contains no data. Not applying it."));
969 }
970 table_ = tab;
[847]971 attach();
[2084]972// tab.rwKeywordSet().define("nBeam",(Int)(getBeamNos().size())) ;
973// vector<uint> selectedIFs = getIFNos() ;
974// Int newnIF = selectedIFs.size() ;
975// tab.rwKeywordSet().define("nIF",newnIF) ;
976// if ( newnIF != 0 ) {
977// Int newnChan = 0 ;
978// for ( Int i = 0 ; i < newnIF ; i++ ) {
979// Int nChan = nchan( selectedIFs[i] ) ;
980// if ( newnChan > nChan )
981// newnChan = nChan ;
982// }
983// tab.rwKeywordSet().define("nChan",newnChan) ;
984// }
985// tab.rwKeywordSet().define("nPol",(Int)(getPolNos().size())) ;
[805]986 selector_ = selection;
[430]987}
988
[2111]989
[2163]990std::string Scantable::headerSummary()
[447]991{
[805]992 // Format header info
[2111]993// STHeader sdh;
994// sdh = getHeader();
995// sdh.print();
[805]996 ostringstream oss;
997 oss.flags(std::ios_base::left);
998 oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
999 << setw(15) << "IFs:" << setw(4) << nif() << endl
[896]1000 << setw(15) << "Polarisations:" << setw(4) << npol()
1001 << "(" << getPolType() << ")" << endl
[1694]1002 << setw(15) << "Channels:" << nchan() << endl;
[805]1003 String tmp;
[860]1004 oss << setw(15) << "Observer:"
1005 << table_.keywordSet().asString("Observer") << endl;
[805]1006 oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1007 table_.keywordSet().get("Project", tmp);
1008 oss << setw(15) << "Project:" << tmp << endl;
1009 table_.keywordSet().get("Obstype", tmp);
1010 oss << setw(15) << "Obs. Type:" << tmp << endl;
1011 table_.keywordSet().get("AntennaName", tmp);
1012 oss << setw(15) << "Antenna Name:" << tmp << endl;
1013 table_.keywordSet().get("FluxUnit", tmp);
1014 oss << setw(15) << "Flux Unit:" << tmp << endl;
[1819]1015 //Vector<Double> vec(moleculeTable_.getRestFrequencies());
1016 int nid = moleculeTable_.nrow();
1017 Bool firstline = True;
[805]1018 oss << setw(15) << "Rest Freqs:";
[1819]1019 for (int i=0; i<nid; i++) {
1020 Table t = table_(table_.col("MOLECULE_ID") == i);
1021 if (t.nrow() > 0) {
1022 Vector<Double> vec(moleculeTable_.getRestFrequency(i));
1023 if (vec.nelements() > 0) {
1024 if (firstline) {
1025 oss << setprecision(10) << vec << " [Hz]" << endl;
1026 firstline=False;
1027 }
1028 else{
1029 oss << setw(15)<<" " << setprecision(10) << vec << " [Hz]" << endl;
1030 }
1031 } else {
1032 oss << "none" << endl;
1033 }
1034 }
[805]1035 }
[941]1036
1037 oss << setw(15) << "Abcissa:" << getAbcissaLabel(0) << endl;
[805]1038 oss << selector_.print() << endl;
[2111]1039 return String(oss);
1040}
1041
[2163]1042std::string Scantable::summary()
[2111]1043{
1044 ostringstream oss;
[805]1045 oss << endl;
[2111]1046 oss << asap::SEPERATOR << endl;
1047 oss << " Scan Table Summary" << endl;
1048 oss << asap::SEPERATOR << endl;
1049
1050 // Format header info
[2163]1051 oss << headerSummary();
[2111]1052 oss << endl;
1053
[805]1054 // main table
1055 String dirtype = "Position ("
[987]1056 + getDirectionRefString()
[805]1057 + ")";
[2111]1058 oss.flags(std::ios_base::left);
[941]1059 oss << setw(5) << "Scan" << setw(15) << "Source"
[2005]1060 << setw(10) << "Time" << setw(18) << "Integration"
1061 << setw(15) << "Source Type" << endl;
[941]1062 oss << setw(5) << "" << setw(5) << "Beam" << setw(3) << "" << dirtype << endl;
[1694]1063 oss << setw(10) << "" << setw(3) << "IF" << setw(3) << ""
[805]1064 << setw(8) << "Frame" << setw(16)
[1694]1065 << "RefVal" << setw(10) << "RefPix" << setw(12) << "Increment"
1066 << setw(7) << "Channels"
1067 << endl;
[805]1068 oss << asap::SEPERATOR << endl;
1069 TableIterator iter(table_, "SCANNO");
1070 while (!iter.pastEnd()) {
1071 Table subt = iter.table();
1072 ROTableRow row(subt);
1073 MEpoch::ROScalarColumn timeCol(subt,"TIME");
1074 const TableRecord& rec = row.get(0);
1075 oss << setw(4) << std::right << rec.asuInt("SCANNO")
1076 << std::left << setw(1) << ""
1077 << setw(15) << rec.asString("SRCNAME")
1078 << setw(10) << formatTime(timeCol(0), false);
1079 // count the cycles in the scan
1080 TableIterator cyciter(subt, "CYCLENO");
1081 int nint = 0;
1082 while (!cyciter.pastEnd()) {
1083 ++nint;
1084 ++cyciter;
1085 }
1086 oss << setw(3) << std::right << nint << setw(3) << " x " << std::left
[2005]1087 << setw(11) << formatSec(rec.asFloat("INTERVAL")) << setw(1) << ""
1088 << setw(15) << SrcType::getName(rec.asInt("SRCTYPE")) << endl;
[447]1089
[805]1090 TableIterator biter(subt, "BEAMNO");
1091 while (!biter.pastEnd()) {
1092 Table bsubt = biter.table();
1093 ROTableRow brow(bsubt);
1094 const TableRecord& brec = brow.get(0);
[1000]1095 uInt row0 = bsubt.rowNumbers(table_)[0];
[941]1096 oss << setw(5) << "" << setw(4) << std::right << brec.asuInt("BEAMNO")<< std::left;
[987]1097 oss << setw(4) << "" << formatDirection(getDirection(row0)) << endl;
[805]1098 TableIterator iiter(bsubt, "IFNO");
1099 while (!iiter.pastEnd()) {
1100 Table isubt = iiter.table();
1101 ROTableRow irow(isubt);
1102 const TableRecord& irec = irow.get(0);
[1694]1103 oss << setw(9) << "";
[941]1104 oss << setw(3) << std::right << irec.asuInt("IFNO") << std::left
[1694]1105 << setw(1) << "" << frequencies().print(irec.asuInt("FREQ_ID"))
1106 << setw(3) << "" << nchan(irec.asuInt("IFNO"))
[1375]1107 << endl;
[447]1108
[805]1109 ++iiter;
1110 }
1111 ++biter;
1112 }
1113 ++iter;
[447]1114 }
[805]1115 return String(oss);
[447]1116}
1117
[1947]1118// std::string Scantable::getTime(int whichrow, bool showdate) const
1119// {
1120// MEpoch::ROScalarColumn timeCol(table_, "TIME");
1121// MEpoch me;
1122// if (whichrow > -1) {
1123// me = timeCol(uInt(whichrow));
1124// } else {
1125// Double tm;
1126// table_.keywordSet().get("UTC",tm);
1127// me = MEpoch(MVEpoch(tm));
1128// }
1129// return formatTime(me, showdate);
1130// }
1131
1132std::string Scantable::getTime(int whichrow, bool showdate, uInt prec) const
[777]1133{
[805]1134 MEpoch me;
[1947]1135 me = getEpoch(whichrow);
1136 return formatTime(me, showdate, prec);
[777]1137}
[805]1138
[1411]1139MEpoch Scantable::getEpoch(int whichrow) const
1140{
1141 if (whichrow > -1) {
1142 return timeCol_(uInt(whichrow));
1143 } else {
1144 Double tm;
1145 table_.keywordSet().get("UTC",tm);
[1598]1146 return MEpoch(MVEpoch(tm));
[1411]1147 }
1148}
1149
[1068]1150std::string Scantable::getDirectionString(int whichrow) const
1151{
1152 return formatDirection(getDirection(uInt(whichrow)));
1153}
1154
[1598]1155
1156SpectralCoordinate Scantable::getSpectralCoordinate(int whichrow) const {
1157 const MPosition& mp = getAntennaPosition();
1158 const MDirection& md = getDirection(whichrow);
1159 const MEpoch& me = timeCol_(whichrow);
[1819]1160 //Double rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1161 Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
[1598]1162 return freqTable_.getSpectralCoordinate(md, mp, me, rf,
1163 mfreqidCol_(whichrow));
1164}
1165
[1360]1166std::vector< double > Scantable::getAbcissa( int whichrow ) const
[865]1167{
[1507]1168 if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal row number"));
[865]1169 std::vector<double> stlout;
1170 int nchan = specCol_(whichrow).nelements();
1171 String us = freqTable_.getUnitString();
1172 if ( us == "" || us == "pixel" || us == "channel" ) {
1173 for (int i=0; i<nchan; ++i) {
1174 stlout.push_back(double(i));
1175 }
1176 return stlout;
1177 }
[1598]1178 SpectralCoordinate spc = getSpectralCoordinate(whichrow);
[865]1179 Vector<Double> pixel(nchan);
1180 Vector<Double> world;
1181 indgen(pixel);
1182 if ( Unit(us) == Unit("Hz") ) {
1183 for ( int i=0; i < nchan; ++i) {
1184 Double world;
1185 spc.toWorld(world, pixel[i]);
1186 stlout.push_back(double(world));
1187 }
1188 } else if ( Unit(us) == Unit("km/s") ) {
1189 Vector<Double> world;
1190 spc.pixelToVelocity(world, pixel);
1191 world.tovector(stlout);
1192 }
1193 return stlout;
1194}
[1360]1195void Scantable::setDirectionRefString( const std::string & refstr )
[987]1196{
1197 MDirection::Types mdt;
1198 if (refstr != "" && !MDirection::getType(mdt, refstr)) {
1199 throw(AipsError("Illegal Direction frame."));
1200 }
1201 if ( refstr == "" ) {
1202 String defaultstr = MDirection::showType(dirCol_.getMeasRef().getType());
1203 table_.rwKeywordSet().define("DIRECTIONREF", defaultstr);
1204 } else {
1205 table_.rwKeywordSet().define("DIRECTIONREF", String(refstr));
1206 }
1207}
[865]1208
[1360]1209std::string Scantable::getDirectionRefString( ) const
[987]1210{
1211 return table_.keywordSet().asString("DIRECTIONREF");
1212}
1213
1214MDirection Scantable::getDirection(int whichrow ) const
1215{
1216 String usertype = table_.keywordSet().asString("DIRECTIONREF");
1217 String type = MDirection::showType(dirCol_.getMeasRef().getType());
1218 if ( usertype != type ) {
1219 MDirection::Types mdt;
1220 if (!MDirection::getType(mdt, usertype)) {
1221 throw(AipsError("Illegal Direction frame."));
1222 }
1223 return dirCol_.convert(uInt(whichrow), mdt);
1224 } else {
1225 return dirCol_(uInt(whichrow));
1226 }
1227}
1228
[847]1229std::string Scantable::getAbcissaLabel( int whichrow ) const
1230{
[996]1231 if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal ro number"));
[847]1232 const MPosition& mp = getAntennaPosition();
[987]1233 const MDirection& md = getDirection(whichrow);
[847]1234 const MEpoch& me = timeCol_(whichrow);
[1819]1235 //const Double& rf = mmolidCol_(whichrow);
1236 const Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
[847]1237 SpectralCoordinate spc =
1238 freqTable_.getSpectralCoordinate(md, mp, me, rf, mfreqidCol_(whichrow));
1239
1240 String s = "Channel";
1241 Unit u = Unit(freqTable_.getUnitString());
1242 if (u == Unit("km/s")) {
[1170]1243 s = CoordinateUtil::axisLabel(spc, 0, True,True, True);
[847]1244 } else if (u == Unit("Hz")) {
1245 Vector<String> wau(1);wau = u.getName();
1246 spc.setWorldAxisUnits(wau);
[1170]1247 s = CoordinateUtil::axisLabel(spc, 0, True, True, False);
[847]1248 }
1249 return s;
1250
1251}
1252
[1819]1253/**
1254void asap::Scantable::setRestFrequencies( double rf, const std::string& name,
[1170]1255 const std::string& unit )
[1819]1256**/
1257void Scantable::setRestFrequencies( vector<double> rf, const vector<std::string>& name,
1258 const std::string& unit )
1259
[847]1260{
[923]1261 ///@todo lookup in line table to fill in name and formattedname
[847]1262 Unit u(unit);
[1819]1263 //Quantum<Double> urf(rf, u);
1264 Quantum<Vector<Double> >urf(rf, u);
1265 Vector<String> formattedname(0);
1266 //cerr<<"Scantable::setRestFrequnecies="<<urf<<endl;
1267
1268 //uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), name, "");
1269 uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), mathutil::toVectorString(name), formattedname);
[847]1270 TableVector<uInt> tabvec(table_, "MOLECULE_ID");
1271 tabvec = id;
1272}
1273
[1819]1274/**
1275void asap::Scantable::setRestFrequencies( const std::string& name )
[847]1276{
1277 throw(AipsError("setRestFrequencies( const std::string& name ) NYI"));
1278 ///@todo implement
1279}
[1819]1280**/
[2012]1281
[1819]1282void Scantable::setRestFrequencies( const vector<std::string>& name )
1283{
[2163]1284 (void) name; // suppress unused warning
[1819]1285 throw(AipsError("setRestFrequencies( const vector<std::string>& name ) NYI"));
1286 ///@todo implement
1287}
[847]1288
[1360]1289std::vector< unsigned int > Scantable::rownumbers( ) const
[852]1290{
1291 std::vector<unsigned int> stlout;
1292 Vector<uInt> vec = table_.rowNumbers();
1293 vec.tovector(stlout);
1294 return stlout;
1295}
1296
[865]1297
[1360]1298Matrix<Float> Scantable::getPolMatrix( uInt whichrow ) const
[896]1299{
1300 ROTableRow row(table_);
1301 const TableRecord& rec = row.get(whichrow);
1302 Table t =
1303 originalTable_( originalTable_.col("SCANNO") == Int(rec.asuInt("SCANNO"))
1304 && originalTable_.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1305 && originalTable_.col("IFNO") == Int(rec.asuInt("IFNO"))
1306 && originalTable_.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
1307 ROArrayColumn<Float> speccol(t, "SPECTRA");
1308 return speccol.getColumn();
1309}
[865]1310
[1360]1311std::vector< std::string > Scantable::columnNames( ) const
[902]1312{
1313 Vector<String> vec = table_.tableDesc().columnNames();
1314 return mathutil::tovectorstring(vec);
1315}
[896]1316
[1360]1317MEpoch::Types Scantable::getTimeReference( ) const
[915]1318{
1319 return MEpoch::castType(timeCol_.getMeasRef().getType());
[972]1320}
[915]1321
[1360]1322void Scantable::addFit( const STFitEntry& fit, int row )
[972]1323{
[1819]1324 //cout << mfitidCol_(uInt(row)) << endl;
1325 LogIO os( LogOrigin( "Scantable", "addFit()", WHERE ) ) ;
1326 os << mfitidCol_(uInt(row)) << LogIO::POST ;
[972]1327 uInt id = fitTable_.addEntry(fit, mfitidCol_(uInt(row)));
1328 mfitidCol_.put(uInt(row), id);
1329}
[915]1330
[1360]1331void Scantable::shift(int npix)
1332{
1333 Vector<uInt> fids(mfreqidCol_.getColumn());
1334 genSort( fids, Sort::Ascending,
1335 Sort::QuickSort|Sort::NoDuplicates );
1336 for (uInt i=0; i<fids.nelements(); ++i) {
[1567]1337 frequencies().shiftRefPix(npix, fids[i]);
[1360]1338 }
1339}
[987]1340
[1819]1341String Scantable::getAntennaName() const
[1391]1342{
1343 String out;
1344 table_.keywordSet().get("AntennaName", out);
[1987]1345 String::size_type pos1 = out.find("@") ;
1346 String::size_type pos2 = out.find("//") ;
1347 if ( pos2 != String::npos )
[2036]1348 out = out.substr(pos2+2,pos1-pos2-2) ;
[1987]1349 else if ( pos1 != String::npos )
1350 out = out.substr(0,pos1) ;
[1391]1351 return out;
[987]1352}
[1391]1353
[1730]1354int Scantable::checkScanInfo(const std::vector<int>& scanlist) const
[1391]1355{
1356 String tbpath;
1357 int ret = 0;
1358 if ( table_.keywordSet().isDefined("GBT_GO") ) {
1359 table_.keywordSet().get("GBT_GO", tbpath);
1360 Table t(tbpath,Table::Old);
1361 // check each scan if other scan of the pair exist
1362 int nscan = scanlist.size();
1363 for (int i = 0; i < nscan; i++) {
1364 Table subt = t( t.col("SCAN") == scanlist[i]+1 );
1365 if (subt.nrow()==0) {
[1819]1366 //cerr <<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<endl;
1367 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1368 os <<LogIO::WARN<<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<LogIO::POST;
[1391]1369 ret = 1;
1370 break;
1371 }
1372 ROTableRow row(subt);
1373 const TableRecord& rec = row.get(0);
1374 int scan1seqn = rec.asuInt("PROCSEQN");
1375 int laston1 = rec.asuInt("LASTON");
1376 if ( rec.asuInt("PROCSIZE")==2 ) {
1377 if ( i < nscan-1 ) {
1378 Table subt2 = t( t.col("SCAN") == scanlist[i+1]+1 );
1379 if ( subt2.nrow() == 0) {
[1819]1380 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1381
1382 //cerr<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<endl;
1383 os<<LogIO::WARN<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<LogIO::POST;
[1391]1384 ret = 1;
1385 break;
1386 }
1387 ROTableRow row2(subt2);
1388 const TableRecord& rec2 = row2.get(0);
1389 int scan2seqn = rec2.asuInt("PROCSEQN");
1390 int laston2 = rec2.asuInt("LASTON");
1391 if (scan1seqn == 1 && scan2seqn == 2) {
1392 if (laston1 == laston2) {
[1819]1393 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1394 //cerr<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1395 os<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
[1391]1396 i +=1;
1397 }
1398 else {
[1819]1399 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1400 //cerr<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1401 os<<LogIO::WARN<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
[1391]1402 }
1403 }
1404 else if (scan1seqn==2 && scan2seqn == 1) {
1405 if (laston1 == laston2) {
[1819]1406 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1407 //cerr<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<endl;
1408 os<<LogIO::WARN<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<LogIO::POST;
[1391]1409 ret = 1;
1410 break;
1411 }
1412 }
1413 else {
[1819]1414 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1415 //cerr<<"The other scan for "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<endl;
1416 os<<LogIO::WARN<<"The other scan for "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<LogIO::POST;
[1391]1417 ret = 1;
1418 break;
1419 }
1420 }
1421 }
1422 else {
[1819]1423 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1424 //cerr<<"The scan does not appear to be standard obsevation."<<endl;
1425 os<<LogIO::WARN<<"The scan does not appear to be standard obsevation."<<LogIO::POST;
[1391]1426 }
1427 //if ( i >= nscan ) break;
1428 }
1429 }
1430 else {
[1819]1431 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1432 //cerr<<"No reference to GBT_GO table."<<endl;
1433 os<<LogIO::WARN<<"No reference to GBT_GO table."<<LogIO::POST;
[1391]1434 ret = 1;
1435 }
1436 return ret;
1437}
1438
[1730]1439std::vector<double> Scantable::getDirectionVector(int whichrow) const
[1391]1440{
1441 Vector<Double> Dir = dirCol_(whichrow).getAngle("rad").getValue();
1442 std::vector<double> dir;
1443 Dir.tovector(dir);
1444 return dir;
1445}
1446
[1819]1447void asap::Scantable::reshapeSpectrum( int nmin, int nmax )
1448 throw( casa::AipsError )
1449{
1450 // assumed that all rows have same nChan
1451 Vector<Float> arr = specCol_( 0 ) ;
1452 int nChan = arr.nelements() ;
1453
1454 // if nmin < 0 or nmax < 0, nothing to do
1455 if ( nmin < 0 ) {
1456 throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1457 }
1458 if ( nmax < 0 ) {
1459 throw( casa::indexError<int>( nmax, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1460 }
1461
1462 // if nmin > nmax, exchange values
1463 if ( nmin > nmax ) {
1464 int tmp = nmax ;
1465 nmax = nmin ;
1466 nmin = tmp ;
1467 LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1468 os << "Swap values. Applied range is ["
1469 << nmin << ", " << nmax << "]" << LogIO::POST ;
1470 }
1471
1472 // if nmin exceeds nChan, nothing to do
1473 if ( nmin >= nChan ) {
1474 throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Specified minimum exceeds nChan." ) ) ;
1475 }
1476
1477 // if nmax exceeds nChan, reset nmax to nChan
1478 if ( nmax >= nChan ) {
1479 if ( nmin == 0 ) {
1480 // nothing to do
1481 LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1482 os << "Whole range is selected. Nothing to do." << LogIO::POST ;
1483 return ;
1484 }
1485 else {
1486 LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1487 os << "Specified maximum exceeds nChan. Applied range is ["
1488 << nmin << ", " << nChan-1 << "]." << LogIO::POST ;
1489 nmax = nChan - 1 ;
1490 }
1491 }
1492
1493 // reshape specCol_ and flagCol_
1494 for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1495 reshapeSpectrum( nmin, nmax, irow ) ;
1496 }
1497
1498 // update FREQUENCIES subtable
1499 Double refpix ;
1500 Double refval ;
1501 Double increment ;
1502 int freqnrow = freqTable_.table().nrow() ;
1503 Vector<uInt> oldId( freqnrow ) ;
1504 Vector<uInt> newId( freqnrow ) ;
1505 for ( int irow = 0 ; irow < freqnrow ; irow++ ) {
1506 freqTable_.getEntry( refpix, refval, increment, irow ) ;
1507 /***
1508 * need to shift refpix to nmin
1509 * note that channel nmin in old index will be channel 0 in new one
1510 ***/
1511 refval = refval - ( refpix - nmin ) * increment ;
1512 refpix = 0 ;
1513 freqTable_.setEntry( refpix, refval, increment, irow ) ;
1514 }
1515
1516 // update nchan
1517 int newsize = nmax - nmin + 1 ;
1518 table_.rwKeywordSet().define( "nChan", newsize ) ;
1519
1520 // update bandwidth
1521 // assumed all spectra in the scantable have same bandwidth
1522 table_.rwKeywordSet().define( "Bandwidth", increment * newsize ) ;
1523
1524 return ;
1525}
1526
1527void asap::Scantable::reshapeSpectrum( int nmin, int nmax, int irow )
1528{
1529 // reshape specCol_ and flagCol_
1530 Vector<Float> oldspec = specCol_( irow ) ;
1531 Vector<uChar> oldflag = flagsCol_( irow ) ;
1532 uInt newsize = nmax - nmin + 1 ;
1533 specCol_.put( irow, oldspec( Slice( nmin, newsize, 1 ) ) ) ;
1534 flagsCol_.put( irow, oldflag( Slice( nmin, newsize, 1 ) ) ) ;
1535
1536 return ;
1537}
1538
1539void asap::Scantable::regridChannel( int nChan, double dnu )
1540{
1541 LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1542 os << "Regrid abcissa with channel number " << nChan << " and spectral resoultion " << dnu << "Hz." << LogIO::POST ;
1543 // assumed that all rows have same nChan
1544 Vector<Float> arr = specCol_( 0 ) ;
1545 int oldsize = arr.nelements() ;
1546
1547 // if oldsize == nChan, nothing to do
1548 if ( oldsize == nChan ) {
1549 os << "Specified channel number is same as current one. Nothing to do." << LogIO::POST ;
1550 return ;
1551 }
1552
1553 // if oldChan < nChan, unphysical operation
1554 if ( oldsize < nChan ) {
1555 os << "Unphysical operation. Nothing to do." << LogIO::POST ;
1556 return ;
1557 }
1558
1559 // change channel number for specCol_ and flagCol_
1560 Vector<Float> newspec( nChan, 0 ) ;
1561 Vector<uChar> newflag( nChan, false ) ;
1562 vector<string> coordinfo = getCoordInfo() ;
1563 string oldinfo = coordinfo[0] ;
1564 coordinfo[0] = "Hz" ;
1565 setCoordInfo( coordinfo ) ;
1566 for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1567 regridChannel( nChan, dnu, irow ) ;
1568 }
1569 coordinfo[0] = oldinfo ;
1570 setCoordInfo( coordinfo ) ;
1571
1572
1573 // NOTE: this method does not update metadata such as
1574 // FREQUENCIES subtable, nChan, Bandwidth, etc.
1575
1576 return ;
1577}
1578
1579void asap::Scantable::regridChannel( int nChan, double dnu, int irow )
1580{
1581 // logging
1582 //ofstream ofs( "average.log", std::ios::out | std::ios::app ) ;
1583 //ofs << "IFNO = " << getIF( irow ) << " irow = " << irow << endl ;
1584
1585 Vector<Float> oldspec = specCol_( irow ) ;
1586 Vector<uChar> oldflag = flagsCol_( irow ) ;
1587 Vector<Float> newspec( nChan, 0 ) ;
1588 Vector<uChar> newflag( nChan, false ) ;
1589
1590 // regrid
1591 vector<double> abcissa = getAbcissa( irow ) ;
1592 int oldsize = abcissa.size() ;
1593 double olddnu = abcissa[1] - abcissa[0] ;
1594 //int refChan = 0 ;
1595 //double frac = 0.0 ;
1596 //double wedge = 0.0 ;
1597 //double pile = 0.0 ;
1598 int ichan = 0 ;
1599 double wsum = 0.0 ;
1600 Vector<Float> zi( nChan+1 ) ;
1601 Vector<Float> yi( oldsize + 1 ) ;
[2133]1602 zi[0] = abcissa[0] - 0.5 * olddnu ;
1603 zi[1] = zi[1] + dnu ;
[1819]1604 for ( int ii = 2 ; ii < nChan ; ii++ )
[2133]1605 zi[ii] = zi[0] + dnu * ii ;
1606 zi[nChan] = zi[nChan-1] + dnu ;
[1819]1607 yi[0] = abcissa[0] - 0.5 * olddnu ;
1608 yi[1] = abcissa[1] + 0.5 * olddnu ;
1609 for ( int ii = 2 ; ii < oldsize ; ii++ )
1610 yi[ii] = abcissa[ii-1] + olddnu ;
1611 yi[oldsize] = abcissa[oldsize-1] + 0.5 * olddnu ;
1612 if ( dnu > 0.0 ) {
1613 for ( int ii = 0 ; ii < nChan ; ii++ ) {
1614 double zl = zi[ii] ;
1615 double zr = zi[ii+1] ;
1616 for ( int j = ichan ; j < oldsize ; j++ ) {
1617 double yl = yi[j] ;
1618 double yr = yi[j+1] ;
1619 if ( yl <= zl ) {
1620 if ( yr <= zl ) {
1621 continue ;
1622 }
1623 else if ( yr <= zr ) {
1624 newspec[ii] += oldspec[j] * ( yr - zl ) ;
1625 newflag[ii] = newflag[ii] || oldflag[j] ;
1626 wsum += ( yr - zl ) ;
1627 }
1628 else {
1629 newspec[ii] += oldspec[j] * dnu ;
1630 newflag[ii] = newflag[ii] || oldflag[j] ;
1631 wsum += dnu ;
1632 ichan = j ;
1633 break ;
1634 }
1635 }
1636 else if ( yl < zr ) {
1637 if ( yr <= zr ) {
1638 newspec[ii] += oldspec[j] * ( yr - yl ) ;
1639 newflag[ii] = newflag[ii] || oldflag[j] ;
1640 wsum += ( yr - yl ) ;
1641 }
1642 else {
1643 newspec[ii] += oldspec[j] * ( zr - yl ) ;
1644 newflag[ii] = newflag[ii] || oldflag[j] ;
1645 wsum += ( zr - yl ) ;
1646 ichan = j ;
1647 break ;
1648 }
1649 }
1650 else {
1651 ichan = j - 1 ;
1652 break ;
1653 }
1654 }
[2133]1655 if ( wsum != 0.0 )
1656 newspec[ii] /= wsum ;
[1819]1657 wsum = 0.0 ;
1658 }
1659 }
1660 else if ( dnu < 0.0 ) {
1661 for ( int ii = 0 ; ii < nChan ; ii++ ) {
1662 double zl = zi[ii] ;
1663 double zr = zi[ii+1] ;
1664 for ( int j = ichan ; j < oldsize ; j++ ) {
1665 double yl = yi[j] ;
1666 double yr = yi[j+1] ;
1667 if ( yl >= zl ) {
1668 if ( yr >= zl ) {
1669 continue ;
1670 }
1671 else if ( yr >= zr ) {
1672 newspec[ii] += oldspec[j] * abs( yr - zl ) ;
1673 newflag[ii] = newflag[ii] || oldflag[j] ;
1674 wsum += abs( yr - zl ) ;
1675 }
1676 else {
1677 newspec[ii] += oldspec[j] * abs( dnu ) ;
1678 newflag[ii] = newflag[ii] || oldflag[j] ;
1679 wsum += abs( dnu ) ;
1680 ichan = j ;
1681 break ;
1682 }
1683 }
1684 else if ( yl > zr ) {
1685 if ( yr >= zr ) {
1686 newspec[ii] += oldspec[j] * abs( yr - yl ) ;
1687 newflag[ii] = newflag[ii] || oldflag[j] ;
1688 wsum += abs( yr - yl ) ;
1689 }
1690 else {
1691 newspec[ii] += oldspec[j] * abs( zr - yl ) ;
1692 newflag[ii] = newflag[ii] || oldflag[j] ;
1693 wsum += abs( zr - yl ) ;
1694 ichan = j ;
1695 break ;
1696 }
1697 }
1698 else {
1699 ichan = j - 1 ;
1700 break ;
1701 }
1702 }
[2133]1703 if ( wsum != 0.0 )
1704 newspec[ii] /= wsum ;
[1819]1705 wsum = 0.0 ;
1706 }
1707 }
1708// * ichan = 0
1709// ***/
1710// //ofs << "olddnu = " << olddnu << ", dnu = " << dnu << endl ;
1711// pile += dnu ;
1712// wedge = olddnu * ( refChan + 1 ) ;
1713// while ( wedge < pile ) {
1714// newspec[0] += olddnu * oldspec[refChan] ;
1715// newflag[0] = newflag[0] || oldflag[refChan] ;
1716// //ofs << "channel " << refChan << " is included in new channel 0" << endl ;
1717// refChan++ ;
1718// wedge += olddnu ;
1719// wsum += olddnu ;
1720// //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
1721// }
1722// frac = ( wedge - pile ) / olddnu ;
1723// wsum += ( 1.0 - frac ) * olddnu ;
1724// newspec[0] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
1725// newflag[0] = newflag[0] || oldflag[refChan] ;
1726// //ofs << "channel " << refChan << " is partly included in new channel 0" << " with fraction of " << ( 1.0 - frac ) << endl ;
1727// //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
1728// newspec[0] /= wsum ;
1729// //ofs << "newspec[0] = " << newspec[0] << endl ;
1730// //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
1731
1732// /***
1733// * ichan = 1 - nChan-2
1734// ***/
1735// for ( int ichan = 1 ; ichan < nChan - 1 ; ichan++ ) {
1736// pile += dnu ;
1737// newspec[ichan] += frac * olddnu * oldspec[refChan] ;
1738// newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
1739// //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << frac << endl ;
1740// refChan++ ;
1741// wedge += olddnu ;
1742// wsum = frac * olddnu ;
1743// //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
1744// while ( wedge < pile ) {
1745// newspec[ichan] += olddnu * oldspec[refChan] ;
1746// newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
1747// //ofs << "channel " << refChan << " is included in new channel " << ichan << endl ;
1748// refChan++ ;
1749// wedge += olddnu ;
1750// wsum += olddnu ;
1751// //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
1752// }
1753// frac = ( wedge - pile ) / olddnu ;
1754// wsum += ( 1.0 - frac ) * olddnu ;
1755// newspec[ichan] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
1756// newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
1757// //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << ( 1.0 - frac ) << endl ;
1758// //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
1759// //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
1760// newspec[ichan] /= wsum ;
1761// //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << endl ;
1762// }
1763
1764// /***
1765// * ichan = nChan-1
1766// ***/
1767// // NOTE: Assumed that all spectra have the same bandwidth
1768// pile += dnu ;
1769// newspec[nChan-1] += frac * olddnu * oldspec[refChan] ;
1770// newflag[nChan-1] = newflag[nChan-1] || oldflag[refChan] ;
1771// //ofs << "channel " << refChan << " is partly included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
1772// refChan++ ;
1773// wedge += olddnu ;
1774// wsum = frac * olddnu ;
1775// //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
1776// for ( int jchan = refChan ; jchan < oldsize ; jchan++ ) {
1777// newspec[nChan-1] += olddnu * oldspec[jchan] ;
1778// newflag[nChan-1] = newflag[nChan-1] || oldflag[jchan] ;
1779// wsum += olddnu ;
1780// //ofs << "channel " << jchan << " is included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
1781// //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
1782// }
1783// //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
1784// //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
1785// newspec[nChan-1] /= wsum ;
1786// //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << endl ;
1787
1788// // ofs.close() ;
1789
[2032]1790 specCol_.put( irow, newspec ) ;
1791 flagsCol_.put( irow, newflag ) ;
[1819]1792
1793 return ;
1794}
1795
[1730]1796std::vector<float> Scantable::getWeather(int whichrow) const
1797{
1798 std::vector<float> out(5);
1799 //Float temperature, pressure, humidity, windspeed, windaz;
1800 weatherTable_.getEntry(out[0], out[1], out[2], out[3], out[4],
1801 mweatheridCol_(uInt(whichrow)));
1802
1803
1804 return out;
[1391]1805}
[1730]1806
[2047]1807bool Scantable::getFlagtraFast(uInt whichrow)
[1907]1808{
1809 uChar flag;
1810 Vector<uChar> flags;
[2047]1811 flagsCol_.get(whichrow, flags);
[2012]1812 flag = flags[0];
[2047]1813 for (uInt i = 1; i < flags.size(); ++i) {
[2012]1814 flag &= flags[i];
1815 }
1816 return ((flag >> 7) == 1);
1817}
1818
[2094]1819void Scantable::polyBaseline(const std::vector<bool>& mask, int order, bool getResidual, bool outLogger, const std::string& blfile)
[2047]1820{
1821 ofstream ofs;
[2081]1822 String coordInfo = "";
[2047]1823 bool hasSameNchan = true;
1824 bool outTextFile = false;
1825
1826 if (blfile != "") {
1827 ofs.open(blfile.c_str(), ios::out | ios::app);
1828 if (ofs) outTextFile = true;
1829 }
1830
1831 if (outLogger || outTextFile) {
1832 coordInfo = getCoordInfo()[0];
1833 if (coordInfo == "") coordInfo = "channel";
1834 hasSameNchan = hasSameNchanOverIFs();
1835 }
1836
1837 Fitter fitter = Fitter();
1838 fitter.setExpression("poly", order);
[2081]1839 //fitter.setIterClipping(thresClip, nIterClip);
[2047]1840
1841 int nRow = nrow();
1842 std::vector<bool> chanMask;
1843
1844 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
1845 chanMask = getCompositeChanMask(whichrow, mask);
1846 fitBaseline(chanMask, whichrow, fitter);
[2094]1847 setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
[2047]1848 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "polyBaseline()", fitter);
1849 }
1850
1851 if (outTextFile) ofs.close();
1852}
1853
[2094]1854void Scantable::autoPolyBaseline(const std::vector<bool>& mask, int order, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, bool outLogger, const std::string& blfile)
[2047]1855{
1856 ofstream ofs;
[2081]1857 String coordInfo = "";
[2047]1858 bool hasSameNchan = true;
1859 bool outTextFile = false;
1860
1861 if (blfile != "") {
1862 ofs.open(blfile.c_str(), ios::out | ios::app);
1863 if (ofs) outTextFile = true;
1864 }
1865
1866 if (outLogger || outTextFile) {
1867 coordInfo = getCoordInfo()[0];
1868 if (coordInfo == "") coordInfo = "channel";
1869 hasSameNchan = hasSameNchanOverIFs();
1870 }
1871
1872 Fitter fitter = Fitter();
1873 fitter.setExpression("poly", order);
[2081]1874 //fitter.setIterClipping(thresClip, nIterClip);
[2047]1875
1876 int nRow = nrow();
1877 std::vector<bool> chanMask;
1878 int minEdgeSize = getIFNos().size()*2;
1879 STLineFinder lineFinder = STLineFinder();
1880 lineFinder.setOptions(threshold, 3, chanAvgLimit);
1881
1882 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
1883
1884 //-------------------------------------------------------
1885 //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
1886 //-------------------------------------------------------
1887 int edgeSize = edge.size();
1888 std::vector<int> currentEdge;
1889 if (edgeSize >= 2) {
1890 int idx = 0;
1891 if (edgeSize > 2) {
1892 if (edgeSize < minEdgeSize) {
1893 throw(AipsError("Length of edge element info is less than that of IFs"));
1894 }
1895 idx = 2 * getIF(whichrow);
1896 }
1897 currentEdge.push_back(edge[idx]);
1898 currentEdge.push_back(edge[idx+1]);
1899 } else {
1900 throw(AipsError("Wrong length of edge element"));
1901 }
1902 lineFinder.setData(getSpectrum(whichrow));
1903 lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
1904 chanMask = lineFinder.getMask();
1905 //-------------------------------------------------------
1906
1907 fitBaseline(chanMask, whichrow, fitter);
[2094]1908 setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
[2047]1909
1910 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoPolyBaseline()", fitter);
1911 }
1912
1913 if (outTextFile) ofs.close();
1914}
1915
[2094]1916void Scantable::cubicSplineBaseline(const std::vector<bool>& mask, int nPiece, float thresClip, int nIterClip, bool getResidual, bool outLogger, const std::string& blfile)
[2081]1917{
[2012]1918 ofstream ofs;
[2081]1919 String coordInfo = "";
[2047]1920 bool hasSameNchan = true;
[2012]1921 bool outTextFile = false;
1922
1923 if (blfile != "") {
1924 ofs.open(blfile.c_str(), ios::out | ios::app);
1925 if (ofs) outTextFile = true;
1926 }
1927
1928 if (outLogger || outTextFile) {
1929 coordInfo = getCoordInfo()[0];
1930 if (coordInfo == "") coordInfo = "channel";
1931 hasSameNchan = hasSameNchanOverIFs();
1932 }
1933
1934 //Fitter fitter = Fitter();
[2047]1935 //fitter.setExpression("cspline", nPiece);
[2081]1936 //fitter.setIterClipping(thresClip, nIterClip);
[2012]1937
1938 int nRow = nrow();
1939 std::vector<bool> chanMask;
1940
1941 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
1942 chanMask = getCompositeChanMask(whichrow, mask);
[2081]1943 //fitBaseline(chanMask, whichrow, fitter);
[2094]1944 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
[2081]1945 std::vector<int> pieceEdges;
[2012]1946 std::vector<float> params;
[2094]1947 std::vector<float> res = doCubicSplineFitting(getSpectrum(whichrow), chanMask, nPiece, pieceEdges, params, thresClip, nIterClip, getResidual);
[2012]1948 setSpectrum(res, whichrow);
[2047]1949 //
[2012]1950
[2081]1951 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "cubicSplineBaseline()", pieceEdges, params);
[2012]1952 }
1953
1954 if (outTextFile) ofs.close();
1955}
1956
[2094]1957void Scantable::autoCubicSplineBaseline(const std::vector<bool>& mask, int nPiece, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, bool outLogger, const std::string& blfile)
[2012]1958{
1959 ofstream ofs;
[2081]1960 String coordInfo = "";
[2047]1961 bool hasSameNchan = true;
[2012]1962 bool outTextFile = false;
1963
1964 if (blfile != "") {
1965 ofs.open(blfile.c_str(), ios::out | ios::app);
1966 if (ofs) outTextFile = true;
1967 }
1968
1969 if (outLogger || outTextFile) {
1970 coordInfo = getCoordInfo()[0];
1971 if (coordInfo == "") coordInfo = "channel";
1972 hasSameNchan = hasSameNchanOverIFs();
1973 }
1974
1975 //Fitter fitter = Fitter();
[2047]1976 //fitter.setExpression("cspline", nPiece);
[2081]1977 //fitter.setIterClipping(thresClip, nIterClip);
[2012]1978
1979 int nRow = nrow();
1980 std::vector<bool> chanMask;
1981 int minEdgeSize = getIFNos().size()*2;
1982 STLineFinder lineFinder = STLineFinder();
1983 lineFinder.setOptions(threshold, 3, chanAvgLimit);
1984
1985 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
1986
1987 //-------------------------------------------------------
1988 //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
1989 //-------------------------------------------------------
1990 int edgeSize = edge.size();
1991 std::vector<int> currentEdge;
1992 if (edgeSize >= 2) {
1993 int idx = 0;
1994 if (edgeSize > 2) {
1995 if (edgeSize < minEdgeSize) {
1996 throw(AipsError("Length of edge element info is less than that of IFs"));
1997 }
1998 idx = 2 * getIF(whichrow);
1999 }
2000 currentEdge.push_back(edge[idx]);
2001 currentEdge.push_back(edge[idx+1]);
2002 } else {
2003 throw(AipsError("Wrong length of edge element"));
[1907]2004 }
[2012]2005 lineFinder.setData(getSpectrum(whichrow));
2006 lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
2007 chanMask = lineFinder.getMask();
2008 //-------------------------------------------------------
2009
2010
[2081]2011 //fitBaseline(chanMask, whichrow, fitter);
[2094]2012 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
[2081]2013 std::vector<int> pieceEdges;
[2012]2014 std::vector<float> params;
[2094]2015 std::vector<float> res = doCubicSplineFitting(getSpectrum(whichrow), chanMask, nPiece, pieceEdges, params, thresClip, nIterClip, getResidual);
[2012]2016 setSpectrum(res, whichrow);
[2047]2017 //
[2012]2018
[2081]2019 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoCubicSplineBaseline()", pieceEdges, params);
[2012]2020 }
2021
2022 if (outTextFile) ofs.close();
[1730]2023}
[1907]2024
[2081]2025std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data, const std::vector<bool>& mask, int nPiece, std::vector<int>& idxEdge, std::vector<float>& params, float thresClip, int nIterClip, bool getResidual)
2026{
2027 if (data.size() != mask.size()) {
2028 throw(AipsError("data and mask sizes are not identical"));
2029 }
[2012]2030 if (nPiece < 1) {
[2094]2031 throw(AipsError("number of the sections must be one or more"));
[2012]2032 }
2033
2034 int nChan = data.size();
2035 std::vector<int> maskArray;
2036 std::vector<int> x;
2037 for (int i = 0; i < nChan; ++i) {
2038 maskArray.push_back(mask[i] ? 1 : 0);
2039 if (mask[i]) {
2040 x.push_back(i);
2041 }
2042 }
2043
[2081]2044 int initNData = x.size();
2045
2046 int nElement = (int)(floor(floor((double)(initNData/nPiece))+0.5));
[2064]2047 std::vector<double> invEdge;
2048 idxEdge.clear();
2049 idxEdge.push_back(x[0]);
[2012]2050 for (int i = 1; i < nPiece; ++i) {
[2047]2051 int valX = x[nElement*i];
[2064]2052 idxEdge.push_back(valX);
2053 invEdge.push_back(1.0/(double)valX);
[2012]2054 }
[2064]2055 idxEdge.push_back(x[x.size()-1]+1);
2056
[2081]2057 int nData = initNData;
2058 int nDOF = nPiece + 3; //number of parameters to solve, namely, 4+(nPiece-1).
2059
2060 std::vector<double> x1, x2, x3, z1, x1z1, x2z1, x3z1, r1, residual;
[2012]2061 for (int i = 0; i < nChan; ++i) {
[2064]2062 double di = (double)i;
2063 double dD = (double)data[i];
2064 x1.push_back(di);
2065 x2.push_back(di*di);
2066 x3.push_back(di*di*di);
2067 z1.push_back(dD);
2068 x1z1.push_back(dD*di);
2069 x2z1.push_back(dD*di*di);
2070 x3z1.push_back(dD*di*di*di);
[2012]2071 r1.push_back(0.0);
[2081]2072 residual.push_back(0.0);
[2012]2073 }
2074
2075 for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
[2064]2076 // xMatrix : horizontal concatenation of
2077 // the least-sq. matrix (left) and an
2078 // identity matrix (right).
2079 // the right part is used to calculate the inverse matrix of the left part.
[2012]2080 double xMatrix[nDOF][2*nDOF];
2081 double zMatrix[nDOF];
2082 for (int i = 0; i < nDOF; ++i) {
2083 for (int j = 0; j < 2*nDOF; ++j) {
2084 xMatrix[i][j] = 0.0;
2085 }
2086 xMatrix[i][nDOF+i] = 1.0;
2087 zMatrix[i] = 0.0;
2088 }
2089
2090 for (int n = 0; n < nPiece; ++n) {
[2064]2091 for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
2092
[2012]2093 if (maskArray[i] == 0) continue;
[2064]2094
[2012]2095 xMatrix[0][0] += 1.0;
[2064]2096 xMatrix[0][1] += x1[i];
2097 xMatrix[0][2] += x2[i];
2098 xMatrix[0][3] += x3[i];
2099 xMatrix[1][1] += x2[i];
2100 xMatrix[1][2] += x3[i];
2101 xMatrix[1][3] += x2[i]*x2[i];
2102 xMatrix[2][2] += x2[i]*x2[i];
2103 xMatrix[2][3] += x3[i]*x2[i];
2104 xMatrix[3][3] += x3[i]*x3[i];
[2012]2105 zMatrix[0] += z1[i];
[2064]2106 zMatrix[1] += x1z1[i];
2107 zMatrix[2] += x2z1[i];
2108 zMatrix[3] += x3z1[i];
2109
[2012]2110 for (int j = 0; j < n; ++j) {
[2064]2111 double q = 1.0 - x1[i]*invEdge[j];
[2012]2112 q = q*q*q;
2113 xMatrix[0][j+4] += q;
[2064]2114 xMatrix[1][j+4] += q*x1[i];
2115 xMatrix[2][j+4] += q*x2[i];
2116 xMatrix[3][j+4] += q*x3[i];
[2012]2117 for (int k = 0; k < j; ++k) {
[2064]2118 double r = 1.0 - x1[i]*invEdge[k];
[2012]2119 r = r*r*r;
2120 xMatrix[k+4][j+4] += r*q;
2121 }
2122 xMatrix[j+4][j+4] += q*q;
2123 zMatrix[j+4] += q*z1[i];
2124 }
[2064]2125
[2012]2126 }
2127 }
2128
2129 for (int i = 0; i < nDOF; ++i) {
2130 for (int j = 0; j < i; ++j) {
2131 xMatrix[i][j] = xMatrix[j][i];
2132 }
2133 }
2134
2135 std::vector<double> invDiag;
2136 for (int i = 0; i < nDOF; ++i) {
2137 invDiag.push_back(1.0/xMatrix[i][i]);
2138 for (int j = 0; j < nDOF; ++j) {
2139 xMatrix[i][j] *= invDiag[i];
2140 }
2141 }
2142
2143 for (int k = 0; k < nDOF; ++k) {
2144 for (int i = 0; i < nDOF; ++i) {
2145 if (i != k) {
2146 double factor1 = xMatrix[k][k];
2147 double factor2 = xMatrix[i][k];
2148 for (int j = k; j < 2*nDOF; ++j) {
2149 xMatrix[i][j] *= factor1;
2150 xMatrix[i][j] -= xMatrix[k][j]*factor2;
2151 xMatrix[i][j] /= factor1;
2152 }
2153 }
2154 }
2155 double xDiag = xMatrix[k][k];
2156 for (int j = k; j < 2*nDOF; ++j) {
2157 xMatrix[k][j] /= xDiag;
2158 }
2159 }
2160
2161 for (int i = 0; i < nDOF; ++i) {
2162 for (int j = 0; j < nDOF; ++j) {
2163 xMatrix[i][nDOF+j] *= invDiag[j];
2164 }
2165 }
2166 //compute a vector y which consists of the coefficients of the best-fit spline curves
2167 //(a0,a1,a2,a3(,b3,c3,...)), namely, the ones for the leftmost piece and the ones of
2168 //cubic terms for the other pieces (in case nPiece>1).
2169 std::vector<double> y;
[2058]2170 y.clear();
[2012]2171 for (int i = 0; i < nDOF; ++i) {
2172 y.push_back(0.0);
2173 for (int j = 0; j < nDOF; ++j) {
2174 y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
2175 }
2176 }
2177
2178 double a0 = y[0];
2179 double a1 = y[1];
2180 double a2 = y[2];
2181 double a3 = y[3];
2182 params.clear();
2183
2184 for (int n = 0; n < nPiece; ++n) {
[2064]2185 for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
2186 r1[i] = a0 + a1*x1[i] + a2*x2[i] + a3*x3[i];
[2081]2187 residual[i] = z1[i] - r1[i];
[2012]2188 }
2189 params.push_back(a0);
2190 params.push_back(a1);
2191 params.push_back(a2);
2192 params.push_back(a3);
2193
2194 if (n == nPiece-1) break;
2195
2196 double d = y[4+n];
[2064]2197 double iE = invEdge[n];
2198 a0 += d;
2199 a1 -= 3.0*d*iE;
2200 a2 += 3.0*d*iE*iE;
2201 a3 -= d*iE*iE*iE;
[2012]2202 }
2203
2204 if ((nClip == nIterClip) || (thresClip <= 0.0)) {
2205 break;
2206 } else {
2207 double stdDev = 0.0;
2208 for (int i = 0; i < nChan; ++i) {
[2081]2209 stdDev += residual[i]*residual[i]*(double)maskArray[i];
[2012]2210 }
2211 stdDev = sqrt(stdDev/(double)nData);
2212
2213 double thres = stdDev * thresClip;
2214 int newNData = 0;
2215 for (int i = 0; i < nChan; ++i) {
[2081]2216 if (abs(residual[i]) >= thres) {
[2012]2217 maskArray[i] = 0;
2218 }
2219 if (maskArray[i] > 0) {
2220 newNData++;
2221 }
2222 }
[2081]2223 if (newNData == nData) {
[2064]2224 break; //no more flag to add. iteration stops.
[2012]2225 } else {
[2081]2226 nData = newNData;
[2012]2227 }
2228 }
2229 }
2230
[2058]2231 std::vector<float> result;
2232 if (getResidual) {
2233 for (int i = 0; i < nChan; ++i) {
[2081]2234 result.push_back((float)residual[i]);
[2058]2235 }
2236 } else {
2237 for (int i = 0; i < nChan; ++i) {
2238 result.push_back((float)r1[i]);
2239 }
[2012]2240 }
2241
[2058]2242 return result;
[2012]2243}
2244
[2081]2245void Scantable::sinusoidBaseline(const std::vector<bool>& mask, const std::vector<int>& nWaves, float maxWaveLength, float thresClip, int nIterClip, bool getResidual, bool outLogger, const std::string& blfile)
2246{
[2012]2247 ofstream ofs;
[2081]2248 String coordInfo = "";
[2047]2249 bool hasSameNchan = true;
[2012]2250 bool outTextFile = false;
2251
2252 if (blfile != "") {
2253 ofs.open(blfile.c_str(), ios::out | ios::app);
2254 if (ofs) outTextFile = true;
2255 }
2256
2257 if (outLogger || outTextFile) {
2258 coordInfo = getCoordInfo()[0];
2259 if (coordInfo == "") coordInfo = "channel";
2260 hasSameNchan = hasSameNchanOverIFs();
2261 }
2262
[2047]2263 //Fitter fitter = Fitter();
[2081]2264 //fitter.setExpression("sinusoid", nWaves);
2265 //fitter.setIterClipping(thresClip, nIterClip);
[2012]2266
2267 int nRow = nrow();
2268 std::vector<bool> chanMask;
2269
2270 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2271 chanMask = getCompositeChanMask(whichrow, mask);
[2081]2272 //fitBaseline(chanMask, whichrow, fitter);
[2094]2273 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
[2047]2274 std::vector<float> params;
[2081]2275 std::vector<float> res = doSinusoidFitting(getSpectrum(whichrow), chanMask, nWaves, maxWaveLength, params, thresClip, nIterClip, getResidual);
[2047]2276 setSpectrum(res, whichrow);
2277 //
[2012]2278
[2081]2279 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "sinusoidBaseline()", params);
[1931]2280 }
[2012]2281
2282 if (outTextFile) ofs.close();
[1907]2283}
2284
[2081]2285void Scantable::autoSinusoidBaseline(const std::vector<bool>& mask, const std::vector<int>& nWaves, float maxWaveLength, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, bool outLogger, const std::string& blfile)
[2012]2286{
2287 ofstream ofs;
[2081]2288 String coordInfo = "";
[2047]2289 bool hasSameNchan = true;
[2012]2290 bool outTextFile = false;
2291
2292 if (blfile != "") {
2293 ofs.open(blfile.c_str(), ios::out | ios::app);
2294 if (ofs) outTextFile = true;
2295 }
2296
2297 if (outLogger || outTextFile) {
2298 coordInfo = getCoordInfo()[0];
2299 if (coordInfo == "") coordInfo = "channel";
2300 hasSameNchan = hasSameNchanOverIFs();
2301 }
2302
[2047]2303 //Fitter fitter = Fitter();
[2081]2304 //fitter.setExpression("sinusoid", nWaves);
2305 //fitter.setIterClipping(thresClip, nIterClip);
[2012]2306
2307 int nRow = nrow();
2308 std::vector<bool> chanMask;
2309 int minEdgeSize = getIFNos().size()*2;
2310 STLineFinder lineFinder = STLineFinder();
2311 lineFinder.setOptions(threshold, 3, chanAvgLimit);
2312
2313 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2314
2315 //-------------------------------------------------------
2316 //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
2317 //-------------------------------------------------------
2318 int edgeSize = edge.size();
2319 std::vector<int> currentEdge;
2320 if (edgeSize >= 2) {
2321 int idx = 0;
2322 if (edgeSize > 2) {
2323 if (edgeSize < minEdgeSize) {
2324 throw(AipsError("Length of edge element info is less than that of IFs"));
2325 }
2326 idx = 2 * getIF(whichrow);
2327 }
2328 currentEdge.push_back(edge[idx]);
2329 currentEdge.push_back(edge[idx+1]);
2330 } else {
2331 throw(AipsError("Wrong length of edge element"));
2332 }
2333 lineFinder.setData(getSpectrum(whichrow));
2334 lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
2335 chanMask = lineFinder.getMask();
2336 //-------------------------------------------------------
2337
2338
[2081]2339 //fitBaseline(chanMask, whichrow, fitter);
[2094]2340 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
[2047]2341 std::vector<float> params;
[2081]2342 std::vector<float> res = doSinusoidFitting(getSpectrum(whichrow), chanMask, nWaves, maxWaveLength, params, thresClip, nIterClip, getResidual);
[2047]2343 setSpectrum(res, whichrow);
2344 //
[2012]2345
[2081]2346 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoSinusoidBaseline()", params);
[2047]2347 }
[2012]2348
[2047]2349 if (outTextFile) ofs.close();
2350}
2351
[2081]2352std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data, const std::vector<bool>& mask, const std::vector<int>& waveNumbers, float maxWaveLength, std::vector<float>& params, float thresClip, int nIterClip, bool getResidual)
2353{
[2047]2354 if (data.size() != mask.size()) {
[2081]2355 throw(AipsError("data and mask sizes are not identical"));
[2047]2356 }
[2081]2357 if (data.size() < 2) {
2358 throw(AipsError("data size is too short"));
2359 }
2360 if (waveNumbers.size() == 0) {
2361 throw(AipsError("missing wave number info"));
2362 }
2363 std::vector<int> nWaves; // sorted and uniqued array of wave numbers
2364 nWaves.reserve(waveNumbers.size());
2365 copy(waveNumbers.begin(), waveNumbers.end(), back_inserter(nWaves));
2366 sort(nWaves.begin(), nWaves.end());
2367 std::vector<int>::iterator end_it = unique(nWaves.begin(), nWaves.end());
2368 nWaves.erase(end_it, nWaves.end());
2369
2370 int minNWaves = nWaves[0];
2371 if (minNWaves < 0) {
[2058]2372 throw(AipsError("wave number must be positive or zero (i.e. constant)"));
2373 }
[2081]2374 bool hasConstantTerm = (minNWaves == 0);
[2047]2375
2376 int nChan = data.size();
2377 std::vector<int> maskArray;
2378 std::vector<int> x;
2379 for (int i = 0; i < nChan; ++i) {
2380 maskArray.push_back(mask[i] ? 1 : 0);
2381 if (mask[i]) {
2382 x.push_back(i);
2383 }
2384 }
2385
[2081]2386 int initNData = x.size();
[2047]2387
[2081]2388 int nData = initNData;
2389 int nDOF = nWaves.size() * 2 - (hasConstantTerm ? 1 : 0); //number of parameters to solve.
2390
2391 const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
[2094]2392 double baseXFactor = 2.0*PI/(double)maxWaveLength/(double)(nChan-1); //the denominator (nChan-1) should be changed to (xdata[nChan-1]-xdata[0]) for accepting x-values given in velocity or frequency when this function is moved to fitter. (2011/03/30 WK)
[2081]2393
2394 // xArray : contains elemental values for computing the least-square matrix.
2395 // xArray.size() is nDOF and xArray[*].size() is nChan.
2396 // Each xArray element are as follows:
2397 // xArray[0] = {1.0, 1.0, 1.0, ..., 1.0},
2398 // xArray[2n-1] = {sin(nPI/L*x[0]), sin(nPI/L*x[1]), ..., sin(nPI/L*x[nChan])},
2399 // xArray[2n] = {cos(nPI/L*x[0]), cos(nPI/L*x[1]), ..., cos(nPI/L*x[nChan])},
2400 // where (1 <= n <= nMaxWavesInSW),
2401 // or,
2402 // xArray[2n-1] = {sin(wn[n]PI/L*x[0]), sin(wn[n]PI/L*x[1]), ..., sin(wn[n]PI/L*x[nChan])},
2403 // xArray[2n] = {cos(wn[n]PI/L*x[0]), cos(wn[n]PI/L*x[1]), ..., cos(wn[n]PI/L*x[nChan])},
2404 // where wn[n] denotes waveNumbers[n] (1 <= n <= waveNumbers.size()).
2405 std::vector<std::vector<double> > xArray;
2406 if (hasConstantTerm) {
2407 std::vector<double> xu;
2408 for (int j = 0; j < nChan; ++j) {
2409 xu.push_back(1.0);
2410 }
2411 xArray.push_back(xu);
2412 }
2413 for (uInt i = (hasConstantTerm ? 1 : 0); i < nWaves.size(); ++i) {
2414 double xFactor = baseXFactor*(double)nWaves[i];
2415 std::vector<double> xs, xc;
2416 xs.clear();
2417 xc.clear();
2418 for (int j = 0; j < nChan; ++j) {
2419 xs.push_back(sin(xFactor*(double)j));
2420 xc.push_back(cos(xFactor*(double)j));
2421 }
2422 xArray.push_back(xs);
2423 xArray.push_back(xc);
2424 }
2425
2426 std::vector<double> z1, r1, residual;
[2047]2427 for (int i = 0; i < nChan; ++i) {
[2081]2428 z1.push_back((double)data[i]);
[2047]2429 r1.push_back(0.0);
[2081]2430 residual.push_back(0.0);
[2047]2431 }
2432
2433 for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
[2081]2434 // xMatrix : horizontal concatenation of
2435 // the least-sq. matrix (left) and an
2436 // identity matrix (right).
2437 // the right part is used to calculate the inverse matrix of the left part.
[2047]2438 double xMatrix[nDOF][2*nDOF];
2439 double zMatrix[nDOF];
2440 for (int i = 0; i < nDOF; ++i) {
2441 for (int j = 0; j < 2*nDOF; ++j) {
2442 xMatrix[i][j] = 0.0;
[2012]2443 }
[2047]2444 xMatrix[i][nDOF+i] = 1.0;
2445 zMatrix[i] = 0.0;
2446 }
2447
[2081]2448 for (int k = 0; k < nChan; ++k) {
2449 if (maskArray[k] == 0) continue;
2450
2451 for (int i = 0; i < nDOF; ++i) {
2452 for (int j = i; j < nDOF; ++j) {
2453 xMatrix[i][j] += xArray[i][k] * xArray[j][k];
2454 }
2455 zMatrix[i] += z1[k] * xArray[i][k];
2456 }
[2047]2457 }
2458
2459 for (int i = 0; i < nDOF; ++i) {
2460 for (int j = 0; j < i; ++j) {
2461 xMatrix[i][j] = xMatrix[j][i];
[2012]2462 }
2463 }
2464
[2047]2465 std::vector<double> invDiag;
2466 for (int i = 0; i < nDOF; ++i) {
2467 invDiag.push_back(1.0/xMatrix[i][i]);
2468 for (int j = 0; j < nDOF; ++j) {
2469 xMatrix[i][j] *= invDiag[i];
2470 }
2471 }
2472
2473 for (int k = 0; k < nDOF; ++k) {
2474 for (int i = 0; i < nDOF; ++i) {
2475 if (i != k) {
2476 double factor1 = xMatrix[k][k];
2477 double factor2 = xMatrix[i][k];
2478 for (int j = k; j < 2*nDOF; ++j) {
2479 xMatrix[i][j] *= factor1;
2480 xMatrix[i][j] -= xMatrix[k][j]*factor2;
2481 xMatrix[i][j] /= factor1;
2482 }
2483 }
2484 }
2485 double xDiag = xMatrix[k][k];
2486 for (int j = k; j < 2*nDOF; ++j) {
2487 xMatrix[k][j] /= xDiag;
2488 }
2489 }
2490
2491 for (int i = 0; i < nDOF; ++i) {
2492 for (int j = 0; j < nDOF; ++j) {
2493 xMatrix[i][nDOF+j] *= invDiag[j];
2494 }
2495 }
2496 //compute a vector y which consists of the coefficients of the sinusoids forming the
[2081]2497 //best-fit curves (a0,s1,c1,s2,c2,...), where a0 is constant and s* and c* are of sine
2498 //and cosine functions, respectively.
[2047]2499 std::vector<double> y;
[2081]2500 params.clear();
[2047]2501 for (int i = 0; i < nDOF; ++i) {
2502 y.push_back(0.0);
2503 for (int j = 0; j < nDOF; ++j) {
2504 y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
2505 }
[2081]2506 params.push_back(y[i]);
[2047]2507 }
2508
2509 for (int i = 0; i < nChan; ++i) {
[2081]2510 r1[i] = y[0];
2511 for (int j = 1; j < nDOF; ++j) {
2512 r1[i] += y[j]*xArray[j][i];
2513 }
2514 residual[i] = z1[i] - r1[i];
[2047]2515 }
2516
2517 if ((nClip == nIterClip) || (thresClip <= 0.0)) {
2518 break;
2519 } else {
2520 double stdDev = 0.0;
2521 for (int i = 0; i < nChan; ++i) {
[2081]2522 stdDev += residual[i]*residual[i]*(double)maskArray[i];
[2047]2523 }
2524 stdDev = sqrt(stdDev/(double)nData);
2525
2526 double thres = stdDev * thresClip;
2527 int newNData = 0;
2528 for (int i = 0; i < nChan; ++i) {
[2081]2529 if (abs(residual[i]) >= thres) {
[2047]2530 maskArray[i] = 0;
2531 }
2532 if (maskArray[i] > 0) {
2533 newNData++;
2534 }
2535 }
[2081]2536 if (newNData == nData) {
2537 break; //no more flag to add. iteration stops.
[2047]2538 } else {
[2081]2539 nData = newNData;
[2047]2540 }
2541 }
[2012]2542 }
2543
[2058]2544 std::vector<float> result;
2545 if (getResidual) {
2546 for (int i = 0; i < nChan; ++i) {
[2081]2547 result.push_back((float)residual[i]);
[2058]2548 }
2549 } else {
2550 for (int i = 0; i < nChan; ++i) {
2551 result.push_back((float)r1[i]);
2552 }
[2047]2553 }
2554
[2058]2555 return result;
[2012]2556}
2557
[2047]2558void Scantable::fitBaseline(const std::vector<bool>& mask, int whichrow, Fitter& fitter)
2559{
[2081]2560 std::vector<double> dAbcissa = getAbcissa(whichrow);
2561 std::vector<float> abcissa;
2562 for (uInt i = 0; i < dAbcissa.size(); ++i) {
2563 abcissa.push_back((float)dAbcissa[i]);
[2047]2564 }
2565 std::vector<float> spec = getSpectrum(whichrow);
[2012]2566
[2081]2567 fitter.setData(abcissa, spec, mask);
[2047]2568 fitter.lfit();
2569}
2570
2571std::vector<bool> Scantable::getCompositeChanMask(int whichrow, const std::vector<bool>& inMask)
2572{
2573 std::vector<bool> chanMask = getMask(whichrow);
2574 uInt chanMaskSize = chanMask.size();
2575 if (chanMaskSize != inMask.size()) {
2576 throw(AipsError("different mask sizes"));
2577 }
2578 for (uInt i = 0; i < chanMaskSize; ++i) {
2579 chanMask[i] = chanMask[i] && inMask[i];
2580 }
2581
2582 return chanMask;
2583}
2584
2585/*
2586std::vector<bool> Scantable::getCompositeChanMask(int whichrow, const std::vector<bool>& inMask, const std::vector<int>& edge, const int minEdgeSize, STLineFinder& lineFinder)
2587{
2588 int edgeSize = edge.size();
2589 std::vector<int> currentEdge;
2590 if (edgeSize >= 2) {
2591 int idx = 0;
2592 if (edgeSize > 2) {
2593 if (edgeSize < minEdgeSize) {
2594 throw(AipsError("Length of edge element info is less than that of IFs"));
2595 }
2596 idx = 2 * getIF(whichrow);
2597 }
2598 currentEdge.push_back(edge[idx]);
2599 currentEdge.push_back(edge[idx+1]);
2600 } else {
2601 throw(AipsError("Wrong length of edge element"));
2602 }
2603
2604 lineFinder.setData(getSpectrum(whichrow));
2605 lineFinder.findLines(getCompositeChanMask(whichrow, inMask), currentEdge, whichrow);
2606
2607 return lineFinder.getMask();
2608}
2609*/
2610
2611/* for poly. the variations of outputFittingResult() should be merged into one eventually (2011/3/10 WK) */
2612void Scantable::outputFittingResult(bool outLogger, bool outTextFile, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, Fitter& fitter) {
2613 if (outLogger || outTextFile) {
2614 std::vector<float> params = fitter.getParameters();
2615 std::vector<bool> fixed = fitter.getFixedParameters();
2616 float rms = getRms(chanMask, whichrow);
2617 String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
2618
2619 if (outLogger) {
2620 LogIO ols(LogOrigin("Scantable", funcName, WHERE));
2621 ols << formatBaselineParams(params, fixed, rms, masklist, whichrow, false) << LogIO::POST ;
2622 }
2623 if (outTextFile) {
2624 ofs << formatBaselineParams(params, fixed, rms, masklist, whichrow, true) << flush;
2625 }
2626 }
2627}
2628
2629/* for cspline. will be merged once cspline is available in fitter (2011/3/10 WK) */
[2081]2630void Scantable::outputFittingResult(bool outLogger, bool outTextFile, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, const std::vector<int>& edge, const std::vector<float>& params) {
[2047]2631 if (outLogger || outTextFile) {
2632 float rms = getRms(chanMask, whichrow);
2633 String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
[2081]2634 std::vector<bool> fixed;
2635 fixed.clear();
[2047]2636
2637 if (outLogger) {
2638 LogIO ols(LogOrigin("Scantable", funcName, WHERE));
[2064]2639 ols << formatPiecewiseBaselineParams(edge, params, fixed, rms, masklist, whichrow, false) << LogIO::POST ;
[2047]2640 }
2641 if (outTextFile) {
[2064]2642 ofs << formatPiecewiseBaselineParams(edge, params, fixed, rms, masklist, whichrow, true) << flush;
[2047]2643 }
2644 }
2645}
2646
2647/* for sinusoid. will be merged once sinusoid is available in fitter (2011/3/10 WK) */
[2081]2648void Scantable::outputFittingResult(bool outLogger, bool outTextFile, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, const std::vector<float>& params) {
[2047]2649 if (outLogger || outTextFile) {
2650 float rms = getRms(chanMask, whichrow);
2651 String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
[2081]2652 std::vector<bool> fixed;
2653 fixed.clear();
[2047]2654
2655 if (outLogger) {
2656 LogIO ols(LogOrigin("Scantable", funcName, WHERE));
2657 ols << formatBaselineParams(params, fixed, rms, masklist, whichrow, false) << LogIO::POST ;
2658 }
2659 if (outTextFile) {
2660 ofs << formatBaselineParams(params, fixed, rms, masklist, whichrow, true) << flush;
2661 }
2662 }
2663}
2664
[2012]2665float Scantable::getRms(const std::vector<bool>& mask, int whichrow) {
2666 Vector<Float> spec;
2667 specCol_.get(whichrow, spec);
2668
2669 float mean = 0.0;
2670 float smean = 0.0;
2671 int n = 0;
[2047]2672 for (uInt i = 0; i < spec.nelements(); ++i) {
[2012]2673 if (mask[i]) {
2674 mean += spec[i];
2675 smean += spec[i]*spec[i];
2676 n++;
2677 }
2678 }
2679
2680 mean /= (float)n;
2681 smean /= (float)n;
2682
2683 return sqrt(smean - mean*mean);
2684}
2685
2686
[2163]2687std::string Scantable::formatBaselineParamsHeader(int whichrow,
2688 const std::string& masklist,
2689 bool verbose) const
[2012]2690{
2691 ostringstream oss;
2692
2693 if (verbose) {
2694 oss << " Scan[" << getScan(whichrow) << "]";
2695 oss << " Beam[" << getBeam(whichrow) << "]";
2696 oss << " IF[" << getIF(whichrow) << "]";
2697 oss << " Pol[" << getPol(whichrow) << "]";
2698 oss << " Cycle[" << getCycle(whichrow) << "]: " << endl;
2699 oss << "Fitter range = " << masklist << endl;
2700 oss << "Baseline parameters" << endl;
2701 oss << flush;
2702 }
2703
2704 return String(oss);
2705}
2706
2707std::string Scantable::formatBaselineParamsFooter(float rms, bool verbose) const
2708{
2709 ostringstream oss;
2710
2711 if (verbose) {
2712 oss << "Results of baseline fit" << endl;
2713 oss << " rms = " << setprecision(6) << rms << endl;
[2094]2714 for (int i = 0; i < 60; ++i) {
2715 oss << "-";
2716 }
[2131]2717 oss << endl;
[2094]2718 oss << flush;
[2012]2719 }
2720
2721 return String(oss);
2722}
2723
[2163]2724 std::string Scantable::formatBaselineParams(const std::vector<float>& params,
2725 const std::vector<bool>& fixed,
2726 float rms,
2727 const std::string& masklist,
2728 int whichrow,
2729 bool verbose,
2730 int start, int count,
2731 bool resetparamid) const
[2047]2732{
[2064]2733 int nParam = (int)(params.size());
[2047]2734
[2064]2735 if (nParam < 1) {
2736 return(" Not fitted");
2737 } else {
2738
2739 ostringstream oss;
2740 oss << formatBaselineParamsHeader(whichrow, masklist, verbose);
2741
2742 if (start < 0) start = 0;
2743 if (count < 0) count = nParam;
2744 int end = start + count;
2745 if (end > nParam) end = nParam;
2746 int paramidoffset = (resetparamid) ? (-start) : 0;
2747
2748 for (int i = start; i < end; ++i) {
2749 if (i > start) {
[2047]2750 oss << ",";
2751 }
[2064]2752 std::string sFix = ((fixed.size() > 0) && (fixed[i]) && verbose) ? "(fixed)" : "";
2753 oss << " p" << (i+paramidoffset) << sFix << "= " << right << setw(13) << setprecision(6) << params[i];
[2047]2754 }
[2064]2755
2756 oss << endl;
2757 oss << formatBaselineParamsFooter(rms, verbose);
2758
2759 return String(oss);
[2047]2760 }
2761
2762}
2763
[2012]2764std::string Scantable::formatPiecewiseBaselineParams(const std::vector<int>& ranges, const std::vector<float>& params, const std::vector<bool>& fixed, float rms, const std::string& masklist, int whichrow, bool verbose) const
2765{
[2064]2766 int nOutParam = (int)(params.size());
2767 int nPiece = (int)(ranges.size()) - 1;
[2012]2768
[2064]2769 if (nOutParam < 1) {
2770 return(" Not fitted");
2771 } else if (nPiece < 0) {
2772 return formatBaselineParams(params, fixed, rms, masklist, whichrow, verbose);
2773 } else if (nPiece < 1) {
2774 return(" Bad count of the piece edge info");
2775 } else if (nOutParam % nPiece != 0) {
2776 return(" Bad count of the output baseline parameters");
2777 } else {
2778
2779 int nParam = nOutParam / nPiece;
2780
2781 ostringstream oss;
2782 oss << formatBaselineParamsHeader(whichrow, masklist, verbose);
2783
2784 stringstream ss;
2785 ss << ranges[nPiece] << flush;
2786 int wRange = ss.str().size() * 2 + 5;
2787
2788 for (int i = 0; i < nPiece; ++i) {
[2047]2789 ss.str("");
[2064]2790 ss << " [" << ranges[i] << "," << (ranges[i+1]-1) << "]";
2791 oss << left << setw(wRange) << ss.str();
2792 oss << formatBaselineParams(params, fixed, rms, masklist, whichrow, false, i*nParam, nParam, true);
[2012]2793 }
[2064]2794
2795 oss << formatBaselineParamsFooter(rms, verbose);
2796
2797 return String(oss);
[2012]2798 }
2799
2800}
2801
[2047]2802bool Scantable::hasSameNchanOverIFs()
[2012]2803{
[2047]2804 int nIF = nif(-1);
2805 int nCh;
2806 int totalPositiveNChan = 0;
2807 int nPositiveNChan = 0;
[2012]2808
[2047]2809 for (int i = 0; i < nIF; ++i) {
2810 nCh = nchan(i);
2811 if (nCh > 0) {
2812 totalPositiveNChan += nCh;
2813 nPositiveNChan++;
[2012]2814 }
2815 }
2816
[2047]2817 return (totalPositiveNChan == (nPositiveNChan * nchan(0)));
[2012]2818}
2819
[2047]2820std::string Scantable::getMaskRangeList(const std::vector<bool>& mask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, bool verbose)
[2012]2821{
2822 if (mask.size() < 2) {
2823 throw(AipsError("The mask elements should be > 1"));
2824 }
[2047]2825 int IF = getIF(whichrow);
2826 if (mask.size() != (uInt)nchan(IF)) {
[2012]2827 throw(AipsError("Number of channels in scantable != number of mask elements"));
2828 }
2829
[2047]2830 if (verbose) {
[2012]2831 LogIO logOs(LogOrigin("Scantable", "getMaskRangeList()", WHERE));
2832 logOs << LogIO::WARN << "The current mask window unit is " << coordInfo;
2833 if (!hasSameNchan) {
[2047]2834 logOs << endl << "This mask is only valid for IF=" << IF;
[2012]2835 }
2836 logOs << LogIO::POST;
2837 }
2838
2839 std::vector<double> abcissa = getAbcissa(whichrow);
[2047]2840 std::vector<int> edge = getMaskEdgeIndices(mask);
2841
[2012]2842 ostringstream oss;
2843 oss.setf(ios::fixed);
2844 oss << setprecision(1) << "[";
[2047]2845 for (uInt i = 0; i < edge.size(); i+=2) {
[2012]2846 if (i > 0) oss << ",";
[2047]2847 oss << "[" << (float)abcissa[edge[i]] << "," << (float)abcissa[edge[i+1]] << "]";
[2012]2848 }
2849 oss << "]" << flush;
2850
2851 return String(oss);
2852}
2853
[2047]2854std::vector<int> Scantable::getMaskEdgeIndices(const std::vector<bool>& mask)
[2012]2855{
[2047]2856 if (mask.size() < 2) {
2857 throw(AipsError("The mask elements should be > 1"));
[2012]2858 }
2859
[2047]2860 std::vector<int> out, startIndices, endIndices;
2861 int maskSize = mask.size();
[2012]2862
[2047]2863 startIndices.clear();
2864 endIndices.clear();
2865
2866 if (mask[0]) {
2867 startIndices.push_back(0);
[2012]2868 }
[2047]2869 for (int i = 1; i < maskSize; ++i) {
2870 if ((!mask[i-1]) && mask[i]) {
2871 startIndices.push_back(i);
2872 } else if (mask[i-1] && (!mask[i])) {
2873 endIndices.push_back(i-1);
2874 }
[2012]2875 }
[2047]2876 if (mask[maskSize-1]) {
2877 endIndices.push_back(maskSize-1);
2878 }
[2012]2879
[2047]2880 if (startIndices.size() != endIndices.size()) {
2881 throw(AipsError("Inconsistent Mask Size: bad data?"));
2882 }
2883 for (uInt i = 0; i < startIndices.size(); ++i) {
2884 if (startIndices[i] > endIndices[i]) {
2885 throw(AipsError("Mask start index > mask end index"));
[2012]2886 }
2887 }
2888
[2047]2889 out.clear();
2890 for (uInt i = 0; i < startIndices.size(); ++i) {
2891 out.push_back(startIndices[i]);
2892 out.push_back(endIndices[i]);
2893 }
2894
[2012]2895 return out;
2896}
2897
[2161]2898vector<float> Scantable::getTsysSpectrum( int whichrow ) const
2899{
2900 Vector<Float> tsys( tsysCol_(whichrow) ) ;
2901 vector<float> stlTsys ;
2902 tsys.tovector( stlTsys ) ;
2903 return stlTsys ;
2904}
[2012]2905
2906/*
[1931]2907STFitEntry Scantable::polyBaseline(const std::vector<bool>& mask, int order, int rowno)
[1907]2908{
2909 Fitter fitter = Fitter();
[2012]2910 fitter.setExpression("poly", order);
2911
2912 std::vector<bool> fmask = getMask(rowno);
2913 if (fmask.size() != mask.size()) {
2914 throw(AipsError("different mask sizes"));
2915 }
2916 for (int i = 0; i < fmask.size(); ++i) {
2917 fmask[i] = fmask[i] && mask[i];
2918 }
2919
2920 fitBaseline(fmask, rowno, fitter);
[1907]2921 setSpectrum(fitter.getResidual(), rowno);
[1931]2922 return fitter.getFitEntry();
[1907]2923}
[2012]2924*/
[1907]2925
2926}
[1819]2927//namespace asap
Note: See TracBrowser for help on using the repository browser.