source: trunk/src/Scantable.cpp @ 2186

Last change on this file since 2186 was 2186, checked in by WataruKawasaki, 13 years ago

New Development: Yes

JIRA Issue: Yes CAS-3149

Ready for Test: Yes

Interface Changes: Yes

What Interface Changed: scantable.*sinusoid_baseline() params

Test Programs:

Put in Release Notes: Yes

Module(s):

Description: (1) Implemented an automated sinusoidal fitting functionality

(2) FFT available with scantable.fft()
(3) fixed a bug of parsing 'edge' param used by linefinder.
(4) a function to show progress status for row-based iterations.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 95.8 KB
Line 
1//
2// C++ Implementation: Scantable
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2005
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12#include <map>
13
14#include <atnf/PKSIO/SrcType.h>
15
16#include <casa/aips.h>
17#include <casa/iomanip.h>
18#include <casa/iostream.h>
19#include <casa/OS/File.h>
20#include <casa/OS/Path.h>
21#include <casa/Arrays/Array.h>
22#include <casa/Arrays/ArrayAccessor.h>
23#include <casa/Arrays/ArrayLogical.h>
24#include <casa/Arrays/ArrayMath.h>
25#include <casa/Arrays/MaskArrMath.h>
26#include <casa/Arrays/Slice.h>
27#include <casa/Arrays/Vector.h>
28#include <casa/Arrays/VectorSTLIterator.h>
29#include <casa/BasicMath/Math.h>
30#include <casa/BasicSL/Constants.h>
31#include <casa/Containers/RecordField.h>
32#include <casa/Logging/LogIO.h>
33#include <casa/Quanta/MVAngle.h>
34#include <casa/Quanta/MVTime.h>
35#include <casa/Utilities/GenSort.h>
36
37#include <coordinates/Coordinates/CoordinateUtil.h>
38
39// needed to avoid error in .tcc
40#include <measures/Measures/MCDirection.h>
41//
42#include <measures/Measures/MDirection.h>
43#include <measures/Measures/MEpoch.h>
44#include <measures/Measures/MFrequency.h>
45#include <measures/Measures/MeasRef.h>
46#include <measures/Measures/MeasTable.h>
47#include <measures/TableMeasures/ScalarMeasColumn.h>
48#include <measures/TableMeasures/TableMeasDesc.h>
49#include <measures/TableMeasures/TableMeasRefDesc.h>
50#include <measures/TableMeasures/TableMeasValueDesc.h>
51
52#include <tables/Tables/ArrColDesc.h>
53#include <tables/Tables/ExprNode.h>
54#include <tables/Tables/ScaColDesc.h>
55#include <tables/Tables/SetupNewTab.h>
56#include <tables/Tables/TableCopy.h>
57#include <tables/Tables/TableDesc.h>
58#include <tables/Tables/TableIter.h>
59#include <tables/Tables/TableParse.h>
60#include <tables/Tables/TableRecord.h>
61#include <tables/Tables/TableRow.h>
62#include <tables/Tables/TableVector.h>
63
64#include "MathUtils.h"
65#include "STAttr.h"
66#include "STLineFinder.h"
67#include "STPolCircular.h"
68#include "STPolLinear.h"
69#include "STPolStokes.h"
70#include "Scantable.h"
71
72using namespace casa;
73
74namespace asap {
75
76std::map<std::string, STPol::STPolFactory *> Scantable::factories_;
77
78void Scantable::initFactories() {
79  if ( factories_.empty() ) {
80    Scantable::factories_["linear"] = &STPolLinear::myFactory;
81    Scantable::factories_["circular"] = &STPolCircular::myFactory;
82    Scantable::factories_["stokes"] = &STPolStokes::myFactory;
83  }
84}
85
86Scantable::Scantable(Table::TableType ttype) :
87  type_(ttype)
88{
89  initFactories();
90  setupMainTable();
91  freqTable_ = STFrequencies(*this);
92  table_.rwKeywordSet().defineTable("FREQUENCIES", freqTable_.table());
93  weatherTable_ = STWeather(*this);
94  table_.rwKeywordSet().defineTable("WEATHER", weatherTable_.table());
95  focusTable_ = STFocus(*this);
96  table_.rwKeywordSet().defineTable("FOCUS", focusTable_.table());
97  tcalTable_ = STTcal(*this);
98  table_.rwKeywordSet().defineTable("TCAL", tcalTable_.table());
99  moleculeTable_ = STMolecules(*this);
100  table_.rwKeywordSet().defineTable("MOLECULES", moleculeTable_.table());
101  historyTable_ = STHistory(*this);
102  table_.rwKeywordSet().defineTable("HISTORY", historyTable_.table());
103  fitTable_ = STFit(*this);
104  table_.rwKeywordSet().defineTable("FIT", fitTable_.table());
105  table_.tableInfo().setType( "Scantable" ) ;
106  originalTable_ = table_;
107  attach();
108}
109
110Scantable::Scantable(const std::string& name, Table::TableType ttype) :
111  type_(ttype)
112{
113  initFactories();
114
115  Table tab(name, Table::Update);
116  uInt version = tab.keywordSet().asuInt("VERSION");
117  if (version != version_) {
118    if ( version == 2 && version_ == 3 ) {
119      // run asap2to3 command
120      LogIO os( LogOrigin( "Scantable" ) ) ;
121      string command="asap2to3" ;
122      string exec=command+" in="+name ;
123      string outname=name ;
124      if ( name.at(name.length()-1) == '/' )
125        outname = outname.substr( 0, name.length()-1 ) ;
126      outname += ".asap3" ;
127      os << LogIO::WARN
128         << name << " is incompatible data format (Scantable v2)." << endl
129         << "Running " << command << " to create " << outname << ", " << endl 
130         << "which is identical to " << name << " but compatible " << endl
131         << "data format with current software version (Scantable v3)."
132         << LogIO::POST ; 
133      int ret = system( string("which "+command+" > /dev/null 2>&1").c_str() ) ;
134      if ( ret != 0 )
135        throw(AipsError(command+" is not installed")) ;
136      os << LogIO::WARN
137         << "Data will be loaded from " << outname << " instead of "
138         << name << LogIO::POST ;
139      int tmp = system( exec.c_str() ) ;
140      (void) tmp;
141      tab = Table(outname, Table::Update ) ;
142      //os << "tab.tableName()=" << tab.tableName() << LogIO::POST ;
143    }
144    else {
145      throw(AipsError("Unsupported version of ASAP file."));
146    }
147  }
148  if ( type_ == Table::Memory ) {
149    table_ = tab.copyToMemoryTable(generateName());
150  } else {
151    table_ = tab;
152  }
153  table_.tableInfo().setType( "Scantable" ) ;
154
155  attachSubtables();
156  originalTable_ = table_;
157  attach();
158}
159/*
160Scantable::Scantable(const std::string& name, Table::TableType ttype) :
161  type_(ttype)
162{
163  initFactories();
164  Table tab(name, Table::Update);
165  uInt version = tab.keywordSet().asuInt("VERSION");
166  if (version != version_) {
167    throw(AipsError("Unsupported version of ASAP file."));
168  }
169  if ( type_ == Table::Memory ) {
170    table_ = tab.copyToMemoryTable(generateName());
171  } else {
172    table_ = tab;
173  }
174
175  attachSubtables();
176  originalTable_ = table_;
177  attach();
178}
179*/
180
181Scantable::Scantable( const Scantable& other, bool clear ):
182  Logger()
183{
184  // with or without data
185  String newname = String(generateName());
186  type_ = other.table_.tableType();
187  if ( other.table_.tableType() == Table::Memory ) {
188      if ( clear ) {
189        table_ = TableCopy::makeEmptyMemoryTable(newname,
190                                                 other.table_, True);
191      } else
192        table_ = other.table_.copyToMemoryTable(newname);
193  } else {
194      other.table_.deepCopy(newname, Table::New, False,
195                            other.table_.endianFormat(),
196                            Bool(clear));
197      table_ = Table(newname, Table::Update);
198      table_.markForDelete();
199  }
200  table_.tableInfo().setType( "Scantable" ) ;
201  /// @todo reindex SCANNO, recompute nbeam, nif, npol
202  if ( clear ) copySubtables(other);
203  attachSubtables();
204  originalTable_ = table_;
205  attach();
206}
207
208void Scantable::copySubtables(const Scantable& other) {
209  Table t = table_.rwKeywordSet().asTable("FREQUENCIES");
210  TableCopy::copyRows(t, other.freqTable_.table());
211  t = table_.rwKeywordSet().asTable("FOCUS");
212  TableCopy::copyRows(t, other.focusTable_.table());
213  t = table_.rwKeywordSet().asTable("WEATHER");
214  TableCopy::copyRows(t, other.weatherTable_.table());
215  t = table_.rwKeywordSet().asTable("TCAL");
216  TableCopy::copyRows(t, other.tcalTable_.table());
217  t = table_.rwKeywordSet().asTable("MOLECULES");
218  TableCopy::copyRows(t, other.moleculeTable_.table());
219  t = table_.rwKeywordSet().asTable("HISTORY");
220  TableCopy::copyRows(t, other.historyTable_.table());
221  t = table_.rwKeywordSet().asTable("FIT");
222  TableCopy::copyRows(t, other.fitTable_.table());
223}
224
225void Scantable::attachSubtables()
226{
227  freqTable_ = STFrequencies(table_);
228  focusTable_ = STFocus(table_);
229  weatherTable_ = STWeather(table_);
230  tcalTable_ = STTcal(table_);
231  moleculeTable_ = STMolecules(table_);
232  historyTable_ = STHistory(table_);
233  fitTable_ = STFit(table_);
234}
235
236Scantable::~Scantable()
237{
238  //cout << "~Scantable() " << this << endl;
239}
240
241void Scantable::setupMainTable()
242{
243  TableDesc td("", "1", TableDesc::Scratch);
244  td.comment() = "An ASAP Scantable";
245  td.rwKeywordSet().define("VERSION", uInt(version_));
246
247  // n Cycles
248  td.addColumn(ScalarColumnDesc<uInt>("SCANNO"));
249  // new index every nBeam x nIF x nPol
250  td.addColumn(ScalarColumnDesc<uInt>("CYCLENO"));
251
252  td.addColumn(ScalarColumnDesc<uInt>("BEAMNO"));
253  td.addColumn(ScalarColumnDesc<uInt>("IFNO"));
254  // linear, circular, stokes
255  td.rwKeywordSet().define("POLTYPE", String("linear"));
256  td.addColumn(ScalarColumnDesc<uInt>("POLNO"));
257
258  td.addColumn(ScalarColumnDesc<uInt>("FREQ_ID"));
259  td.addColumn(ScalarColumnDesc<uInt>("MOLECULE_ID"));
260
261  ScalarColumnDesc<Int> refbeamnoColumn("REFBEAMNO");
262  refbeamnoColumn.setDefault(Int(-1));
263  td.addColumn(refbeamnoColumn);
264
265  ScalarColumnDesc<uInt> flagrowColumn("FLAGROW");
266  flagrowColumn.setDefault(uInt(0));
267  td.addColumn(flagrowColumn);
268
269  td.addColumn(ScalarColumnDesc<Double>("TIME"));
270  TableMeasRefDesc measRef(MEpoch::UTC); // UTC as default
271  TableMeasValueDesc measVal(td, "TIME");
272  TableMeasDesc<MEpoch> mepochCol(measVal, measRef);
273  mepochCol.write(td);
274
275  td.addColumn(ScalarColumnDesc<Double>("INTERVAL"));
276
277  td.addColumn(ScalarColumnDesc<String>("SRCNAME"));
278  // Type of source (on=0, off=1, other=-1)
279  ScalarColumnDesc<Int> stypeColumn("SRCTYPE");
280  stypeColumn.setDefault(Int(-1));
281  td.addColumn(stypeColumn);
282  td.addColumn(ScalarColumnDesc<String>("FIELDNAME"));
283
284  //The actual Data Vectors
285  td.addColumn(ArrayColumnDesc<Float>("SPECTRA"));
286  td.addColumn(ArrayColumnDesc<uChar>("FLAGTRA"));
287  td.addColumn(ArrayColumnDesc<Float>("TSYS"));
288
289  td.addColumn(ArrayColumnDesc<Double>("DIRECTION",
290                                       IPosition(1,2),
291                                       ColumnDesc::Direct));
292  TableMeasRefDesc mdirRef(MDirection::J2000); // default
293  TableMeasValueDesc tmvdMDir(td, "DIRECTION");
294  // the TableMeasDesc gives the column a type
295  TableMeasDesc<MDirection> mdirCol(tmvdMDir, mdirRef);
296  // a uder set table type e.g. GALCTIC, B1950 ...
297  td.rwKeywordSet().define("DIRECTIONREF", String("J2000"));
298  // writing create the measure column
299  mdirCol.write(td);
300  td.addColumn(ScalarColumnDesc<Float>("AZIMUTH"));
301  td.addColumn(ScalarColumnDesc<Float>("ELEVATION"));
302  td.addColumn(ScalarColumnDesc<Float>("OPACITY"));
303
304  td.addColumn(ScalarColumnDesc<uInt>("TCAL_ID"));
305  ScalarColumnDesc<Int> fitColumn("FIT_ID");
306  fitColumn.setDefault(Int(-1));
307  td.addColumn(fitColumn);
308
309  td.addColumn(ScalarColumnDesc<uInt>("FOCUS_ID"));
310  td.addColumn(ScalarColumnDesc<uInt>("WEATHER_ID"));
311
312  // columns which just get dragged along, as they aren't used in asap
313  td.addColumn(ScalarColumnDesc<Double>("SRCVELOCITY"));
314  td.addColumn(ArrayColumnDesc<Double>("SRCPROPERMOTION"));
315  td.addColumn(ArrayColumnDesc<Double>("SRCDIRECTION"));
316  td.addColumn(ArrayColumnDesc<Double>("SCANRATE"));
317
318  td.rwKeywordSet().define("OBSMODE", String(""));
319
320  // Now create Table SetUp from the description.
321  SetupNewTable aNewTab(generateName(), td, Table::Scratch);
322  table_ = Table(aNewTab, type_, 0);
323  originalTable_ = table_;
324}
325
326void Scantable::attach()
327{
328  timeCol_.attach(table_, "TIME");
329  srcnCol_.attach(table_, "SRCNAME");
330  srctCol_.attach(table_, "SRCTYPE");
331  specCol_.attach(table_, "SPECTRA");
332  flagsCol_.attach(table_, "FLAGTRA");
333  tsysCol_.attach(table_, "TSYS");
334  cycleCol_.attach(table_,"CYCLENO");
335  scanCol_.attach(table_, "SCANNO");
336  beamCol_.attach(table_, "BEAMNO");
337  ifCol_.attach(table_, "IFNO");
338  polCol_.attach(table_, "POLNO");
339  integrCol_.attach(table_, "INTERVAL");
340  azCol_.attach(table_, "AZIMUTH");
341  elCol_.attach(table_, "ELEVATION");
342  dirCol_.attach(table_, "DIRECTION");
343  fldnCol_.attach(table_, "FIELDNAME");
344  rbeamCol_.attach(table_, "REFBEAMNO");
345
346  mweatheridCol_.attach(table_,"WEATHER_ID");
347  mfitidCol_.attach(table_,"FIT_ID");
348  mfreqidCol_.attach(table_, "FREQ_ID");
349  mtcalidCol_.attach(table_, "TCAL_ID");
350  mfocusidCol_.attach(table_, "FOCUS_ID");
351  mmolidCol_.attach(table_, "MOLECULE_ID");
352
353  //Add auxiliary column for row-based flagging (CAS-1433 Wataru Kawasaki)
354  attachAuxColumnDef(flagrowCol_, "FLAGROW", 0);
355
356}
357
358template<class T, class T2>
359void Scantable::attachAuxColumnDef(ScalarColumn<T>& col,
360                                   const String& colName,
361                                   const T2& defValue)
362{
363  try {
364    col.attach(table_, colName);
365  } catch (TableError& err) {
366    String errMesg = err.getMesg();
367    if (errMesg == "Table column " + colName + " is unknown") {
368      table_.addColumn(ScalarColumnDesc<T>(colName));
369      col.attach(table_, colName);
370      col.fillColumn(static_cast<T>(defValue));
371    } else {
372      throw;
373    }
374  } catch (...) {
375    throw;
376  }
377}
378
379template<class T, class T2>
380void Scantable::attachAuxColumnDef(ArrayColumn<T>& col,
381                                   const String& colName,
382                                   const Array<T2>& defValue)
383{
384  try {
385    col.attach(table_, colName);
386  } catch (TableError& err) {
387    String errMesg = err.getMesg();
388    if (errMesg == "Table column " + colName + " is unknown") {
389      table_.addColumn(ArrayColumnDesc<T>(colName));
390      col.attach(table_, colName);
391
392      int size = 0;
393      ArrayIterator<T2>& it = defValue.begin();
394      while (it != defValue.end()) {
395        ++size;
396        ++it;
397      }
398      IPosition ip(1, size);
399      Array<T>& arr(ip);
400      for (int i = 0; i < size; ++i)
401        arr[i] = static_cast<T>(defValue[i]);
402
403      col.fillColumn(arr);
404    } else {
405      throw;
406    }
407  } catch (...) {
408    throw;
409  }
410}
411
412void Scantable::setHeader(const STHeader& sdh)
413{
414  table_.rwKeywordSet().define("nIF", sdh.nif);
415  table_.rwKeywordSet().define("nBeam", sdh.nbeam);
416  table_.rwKeywordSet().define("nPol", sdh.npol);
417  table_.rwKeywordSet().define("nChan", sdh.nchan);
418  table_.rwKeywordSet().define("Observer", sdh.observer);
419  table_.rwKeywordSet().define("Project", sdh.project);
420  table_.rwKeywordSet().define("Obstype", sdh.obstype);
421  table_.rwKeywordSet().define("AntennaName", sdh.antennaname);
422  table_.rwKeywordSet().define("AntennaPosition", sdh.antennaposition);
423  table_.rwKeywordSet().define("Equinox", sdh.equinox);
424  table_.rwKeywordSet().define("FreqRefFrame", sdh.freqref);
425  table_.rwKeywordSet().define("FreqRefVal", sdh.reffreq);
426  table_.rwKeywordSet().define("Bandwidth", sdh.bandwidth);
427  table_.rwKeywordSet().define("UTC", sdh.utc);
428  table_.rwKeywordSet().define("FluxUnit", sdh.fluxunit);
429  table_.rwKeywordSet().define("Epoch", sdh.epoch);
430  table_.rwKeywordSet().define("POLTYPE", sdh.poltype);
431}
432
433STHeader Scantable::getHeader() const
434{
435  STHeader sdh;
436  table_.keywordSet().get("nBeam",sdh.nbeam);
437  table_.keywordSet().get("nIF",sdh.nif);
438  table_.keywordSet().get("nPol",sdh.npol);
439  table_.keywordSet().get("nChan",sdh.nchan);
440  table_.keywordSet().get("Observer", sdh.observer);
441  table_.keywordSet().get("Project", sdh.project);
442  table_.keywordSet().get("Obstype", sdh.obstype);
443  table_.keywordSet().get("AntennaName", sdh.antennaname);
444  table_.keywordSet().get("AntennaPosition", sdh.antennaposition);
445  table_.keywordSet().get("Equinox", sdh.equinox);
446  table_.keywordSet().get("FreqRefFrame", sdh.freqref);
447  table_.keywordSet().get("FreqRefVal", sdh.reffreq);
448  table_.keywordSet().get("Bandwidth", sdh.bandwidth);
449  table_.keywordSet().get("UTC", sdh.utc);
450  table_.keywordSet().get("FluxUnit", sdh.fluxunit);
451  table_.keywordSet().get("Epoch", sdh.epoch);
452  table_.keywordSet().get("POLTYPE", sdh.poltype);
453  return sdh;
454}
455
456void Scantable::setSourceType( int stype )
457{
458  if ( stype < 0 || stype > 1 )
459    throw(AipsError("Illegal sourcetype."));
460  TableVector<Int> tabvec(table_, "SRCTYPE");
461  tabvec = Int(stype);
462}
463
464bool Scantable::conformant( const Scantable& other )
465{
466  return this->getHeader().conformant(other.getHeader());
467}
468
469
470
471std::string Scantable::formatSec(Double x) const
472{
473  Double xcop = x;
474  MVTime mvt(xcop/24./3600.);  // make days
475
476  if (x < 59.95)
477    return  String("      ") + mvt.string(MVTime::TIME_CLEAN_NO_HM, 7)+"s";
478  else if (x < 3599.95)
479    return String("   ") + mvt.string(MVTime::TIME_CLEAN_NO_H,7)+" ";
480  else {
481    ostringstream oss;
482    oss << setw(2) << std::right << setprecision(1) << mvt.hour();
483    oss << ":" << mvt.string(MVTime::TIME_CLEAN_NO_H,7) << " ";
484    return String(oss);
485  }
486};
487
488std::string Scantable::formatDirection(const MDirection& md) const
489{
490  Vector<Double> t = md.getAngle(Unit(String("rad"))).getValue();
491  Int prec = 7;
492
493  MVAngle mvLon(t[0]);
494  String sLon = mvLon.string(MVAngle::TIME,prec);
495  uInt tp = md.getRef().getType();
496  if (tp == MDirection::GALACTIC ||
497      tp == MDirection::SUPERGAL ) {
498    sLon = mvLon(0.0).string(MVAngle::ANGLE_CLEAN,prec);
499  }
500  MVAngle mvLat(t[1]);
501  String sLat = mvLat.string(MVAngle::ANGLE+MVAngle::DIG2,prec);
502  return sLon + String(" ") + sLat;
503}
504
505
506std::string Scantable::getFluxUnit() const
507{
508  return table_.keywordSet().asString("FluxUnit");
509}
510
511void Scantable::setFluxUnit(const std::string& unit)
512{
513  String tmp(unit);
514  Unit tU(tmp);
515  if (tU==Unit("K") || tU==Unit("Jy")) {
516     table_.rwKeywordSet().define(String("FluxUnit"), tmp);
517  } else {
518     throw AipsError("Illegal unit - must be compatible with Jy or K");
519  }
520}
521
522void Scantable::setInstrument(const std::string& name)
523{
524  bool throwIt = true;
525  // create an Instrument to see if this is valid
526  STAttr::convertInstrument(name, throwIt);
527  String nameU(name);
528  nameU.upcase();
529  table_.rwKeywordSet().define(String("AntennaName"), nameU);
530}
531
532void Scantable::setFeedType(const std::string& feedtype)
533{
534  if ( Scantable::factories_.find(feedtype) ==  Scantable::factories_.end() ) {
535    std::string msg = "Illegal feed type "+ feedtype;
536    throw(casa::AipsError(msg));
537  }
538  table_.rwKeywordSet().define(String("POLTYPE"), feedtype);
539}
540
541MPosition Scantable::getAntennaPosition() const
542{
543  Vector<Double> antpos;
544  table_.keywordSet().get("AntennaPosition", antpos);
545  MVPosition mvpos(antpos(0),antpos(1),antpos(2));
546  return MPosition(mvpos);
547}
548
549void Scantable::makePersistent(const std::string& filename)
550{
551  String inname(filename);
552  Path path(inname);
553  /// @todo reindex SCANNO, recompute nbeam, nif, npol
554  inname = path.expandedName();
555  // 2011/03/04 TN
556  // We can comment out this workaround since the essential bug is
557  // fixed in casacore (r20889 in google code).
558  table_.deepCopy(inname, Table::New);
559//   // WORKAROUND !!! for Table bug
560//   // Remove when fixed in casacore
561//   if ( table_.tableType() == Table::Memory  && !selector_.empty() ) {
562//     Table tab = table_.copyToMemoryTable(generateName());
563//     tab.deepCopy(inname, Table::New);
564//     tab.markForDelete();
565//
566//   } else {
567//     table_.deepCopy(inname, Table::New);
568//   }
569}
570
571int Scantable::nbeam( int scanno ) const
572{
573  if ( scanno < 0 ) {
574    Int n;
575    table_.keywordSet().get("nBeam",n);
576    return int(n);
577  } else {
578    // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
579    Table t = table_(table_.col("SCANNO") == scanno);
580    ROTableRow row(t);
581    const TableRecord& rec = row.get(0);
582    Table subt = t( t.col("IFNO") == Int(rec.asuInt("IFNO"))
583                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
584                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
585    ROTableVector<uInt> v(subt, "BEAMNO");
586    return int(v.nelements());
587  }
588  return 0;
589}
590
591int Scantable::nif( int scanno ) const
592{
593  if ( scanno < 0 ) {
594    Int n;
595    table_.keywordSet().get("nIF",n);
596    return int(n);
597  } else {
598    // take the first POLNO,BEAMNO,CYCLENO as nbeam shouldn't vary with these
599    Table t = table_(table_.col("SCANNO") == scanno);
600    ROTableRow row(t);
601    const TableRecord& rec = row.get(0);
602    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
603                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
604                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
605    if ( subt.nrow() == 0 ) return 0;
606    ROTableVector<uInt> v(subt, "IFNO");
607    return int(v.nelements());
608  }
609  return 0;
610}
611
612int Scantable::npol( int scanno ) const
613{
614  if ( scanno < 0 ) {
615    Int n;
616    table_.keywordSet().get("nPol",n);
617    return n;
618  } else {
619    // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
620    Table t = table_(table_.col("SCANNO") == scanno);
621    ROTableRow row(t);
622    const TableRecord& rec = row.get(0);
623    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
624                    && t.col("IFNO") == Int(rec.asuInt("IFNO"))
625                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
626    if ( subt.nrow() == 0 ) return 0;
627    ROTableVector<uInt> v(subt, "POLNO");
628    return int(v.nelements());
629  }
630  return 0;
631}
632
633int Scantable::ncycle( int scanno ) const
634{
635  if ( scanno < 0 ) {
636    Block<String> cols(2);
637    cols[0] = "SCANNO";
638    cols[1] = "CYCLENO";
639    TableIterator it(table_, cols);
640    int n = 0;
641    while ( !it.pastEnd() ) {
642      ++n;
643      ++it;
644    }
645    return n;
646  } else {
647    Table t = table_(table_.col("SCANNO") == scanno);
648    ROTableRow row(t);
649    const TableRecord& rec = row.get(0);
650    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
651                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
652                    && t.col("IFNO") == Int(rec.asuInt("IFNO")) );
653    if ( subt.nrow() == 0 ) return 0;
654    return int(subt.nrow());
655  }
656  return 0;
657}
658
659
660int Scantable::nrow( int scanno ) const
661{
662  return int(table_.nrow());
663}
664
665int Scantable::nchan( int ifno ) const
666{
667  if ( ifno < 0 ) {
668    Int n;
669    table_.keywordSet().get("nChan",n);
670    return int(n);
671  } else {
672    // take the first SCANNO,POLNO,BEAMNO,CYCLENO as nbeam shouldn't
673    // vary with these
674    Table t = table_(table_.col("IFNO") == ifno);
675    if ( t.nrow() == 0 ) return 0;
676    ROArrayColumn<Float> v(t, "SPECTRA");
677    return v.shape(0)(0);
678  }
679  return 0;
680}
681
682int Scantable::nscan() const {
683  Vector<uInt> scannos(scanCol_.getColumn());
684  uInt nout = genSort( scannos, Sort::Ascending,
685                       Sort::QuickSort|Sort::NoDuplicates );
686  return int(nout);
687}
688
689int Scantable::getChannels(int whichrow) const
690{
691  return specCol_.shape(whichrow)(0);
692}
693
694int Scantable::getBeam(int whichrow) const
695{
696  return beamCol_(whichrow);
697}
698
699std::vector<uint> Scantable::getNumbers(const ScalarColumn<uInt>& col) const
700{
701  Vector<uInt> nos(col.getColumn());
702  uInt n = genSort( nos, Sort::Ascending, Sort::QuickSort|Sort::NoDuplicates );
703  nos.resize(n, True);
704  std::vector<uint> stlout;
705  nos.tovector(stlout);
706  return stlout;
707}
708
709int Scantable::getIF(int whichrow) const
710{
711  return ifCol_(whichrow);
712}
713
714int Scantable::getPol(int whichrow) const
715{
716  return polCol_(whichrow);
717}
718
719std::string Scantable::formatTime(const MEpoch& me, bool showdate) const
720{
721  return formatTime(me, showdate, 0);
722}
723
724std::string Scantable::formatTime(const MEpoch& me, bool showdate, uInt prec) const
725{
726  MVTime mvt(me.getValue());
727  if (showdate)
728    //mvt.setFormat(MVTime::YMD);
729    mvt.setFormat(MVTime::YMD, prec);
730  else
731    //mvt.setFormat(MVTime::TIME);
732    mvt.setFormat(MVTime::TIME, prec);
733  ostringstream oss;
734  oss << mvt;
735  return String(oss);
736}
737
738void Scantable::calculateAZEL()
739{
740  MPosition mp = getAntennaPosition();
741  MEpoch::ROScalarColumn timeCol(table_, "TIME");
742  ostringstream oss;
743  oss << "Computed azimuth/elevation using " << endl
744      << mp << endl;
745  for (Int i=0; i<nrow(); ++i) {
746    MEpoch me = timeCol(i);
747    MDirection md = getDirection(i);
748    oss  << " Time: " << formatTime(me,False) << " Direction: " << formatDirection(md)
749         << endl << "     => ";
750    MeasFrame frame(mp, me);
751    Vector<Double> azel =
752        MDirection::Convert(md, MDirection::Ref(MDirection::AZEL,
753                                                frame)
754                            )().getAngle("rad").getValue();
755    azCol_.put(i,Float(azel[0]));
756    elCol_.put(i,Float(azel[1]));
757    oss << "azel: " << azel[0]/C::pi*180.0 << " "
758        << azel[1]/C::pi*180.0 << " (deg)" << endl;
759  }
760  pushLog(String(oss));
761}
762
763void Scantable::clip(const Float uthres, const Float dthres, bool clipoutside, bool unflag)
764{
765  for (uInt i=0; i<table_.nrow(); ++i) {
766    Vector<uChar> flgs = flagsCol_(i);
767    srchChannelsToClip(i, uthres, dthres, clipoutside, unflag, flgs);
768    flagsCol_.put(i, flgs);
769  }
770}
771
772std::vector<bool> Scantable::getClipMask(int whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag)
773{
774  Vector<uChar> flags;
775  flagsCol_.get(uInt(whichrow), flags);
776  srchChannelsToClip(uInt(whichrow), uthres, dthres, clipoutside, unflag, flags);
777  Vector<Bool> bflag(flags.shape());
778  convertArray(bflag, flags);
779  //bflag = !bflag;
780
781  std::vector<bool> mask;
782  bflag.tovector(mask);
783  return mask;
784}
785
786void Scantable::srchChannelsToClip(uInt whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag,
787                                   Vector<uChar> flgs)
788{
789    Vector<Float> spcs = specCol_(whichrow);
790    uInt nchannel = nchan();
791    if (spcs.nelements() != nchannel) {
792      throw(AipsError("Data has incorrect number of channels"));
793    }
794    uChar userflag = 1 << 7;
795    if (unflag) {
796      userflag = 0 << 7;
797    }
798    if (clipoutside) {
799      for (uInt j = 0; j < nchannel; ++j) {
800        Float spc = spcs(j);
801        if ((spc >= uthres) || (spc <= dthres)) {
802          flgs(j) = userflag;
803        }
804      }
805    } else {
806      for (uInt j = 0; j < nchannel; ++j) {
807        Float spc = spcs(j);
808        if ((spc < uthres) && (spc > dthres)) {
809          flgs(j) = userflag;
810        }
811      }
812    }
813}
814
815
816void Scantable::flag( int whichrow, const std::vector<bool>& msk, bool unflag ) {
817  std::vector<bool>::const_iterator it;
818  uInt ntrue = 0;
819  if (whichrow >= int(table_.nrow()) ) {
820    throw(AipsError("Invalid row number"));
821  }
822  for (it = msk.begin(); it != msk.end(); ++it) {
823    if ( *it ) {
824      ntrue++;
825    }
826  }
827  //if ( selector_.empty()  && (msk.size() == 0 || msk.size() == ntrue) )
828  if ( whichrow == -1 && !unflag && selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
829    throw(AipsError("Trying to flag whole scantable."));
830  uChar userflag = 1 << 7;
831  if ( unflag ) {
832    userflag = 0 << 7;
833  }
834  if (whichrow > -1 ) {
835    applyChanFlag(uInt(whichrow), msk, userflag);
836  } else {
837    for ( uInt i=0; i<table_.nrow(); ++i) {
838      applyChanFlag(i, msk, userflag);
839    }
840  }
841}
842
843void Scantable::applyChanFlag( uInt whichrow, const std::vector<bool>& msk, uChar flagval )
844{
845  if (whichrow >= table_.nrow() ) {
846    throw( casa::indexError<int>( whichrow, "asap::Scantable::applyChanFlag: Invalid row number" ) );
847  }
848  Vector<uChar> flgs = flagsCol_(whichrow);
849  if ( msk.size() == 0 ) {
850    flgs = flagval;
851    flagsCol_.put(whichrow, flgs);
852    return;
853  }
854  if ( int(msk.size()) != nchan() ) {
855    throw(AipsError("Mask has incorrect number of channels."));
856  }
857  if ( flgs.nelements() != msk.size() ) {
858    throw(AipsError("Mask has incorrect number of channels."
859                    " Probably varying with IF. Please flag per IF"));
860  }
861  std::vector<bool>::const_iterator it;
862  uInt j = 0;
863  for (it = msk.begin(); it != msk.end(); ++it) {
864    if ( *it ) {
865      flgs(j) = flagval;
866    }
867    ++j;
868  }
869  flagsCol_.put(whichrow, flgs);
870}
871
872void Scantable::flagRow(const std::vector<uInt>& rows, bool unflag)
873{
874  if ( selector_.empty() && (rows.size() == table_.nrow()) )
875    throw(AipsError("Trying to flag whole scantable."));
876
877  uInt rowflag = (unflag ? 0 : 1);
878  std::vector<uInt>::const_iterator it;
879  for (it = rows.begin(); it != rows.end(); ++it)
880    flagrowCol_.put(*it, rowflag);
881}
882
883std::vector<bool> Scantable::getMask(int whichrow) const
884{
885  Vector<uChar> flags;
886  flagsCol_.get(uInt(whichrow), flags);
887  Vector<Bool> bflag(flags.shape());
888  convertArray(bflag, flags);
889  bflag = !bflag;
890  std::vector<bool> mask;
891  bflag.tovector(mask);
892  return mask;
893}
894
895std::vector<float> Scantable::getSpectrum( int whichrow,
896                                           const std::string& poltype ) const
897{
898  String ptype = poltype;
899  if (poltype == "" ) ptype = getPolType();
900  if ( whichrow  < 0 || whichrow >= nrow() )
901    throw(AipsError("Illegal row number."));
902  std::vector<float> out;
903  Vector<Float> arr;
904  uInt requestedpol = polCol_(whichrow);
905  String basetype = getPolType();
906  if ( ptype == basetype ) {
907    specCol_.get(whichrow, arr);
908  } else {
909    CountedPtr<STPol> stpol(STPol::getPolClass(Scantable::factories_,
910                                               basetype));
911    uInt row = uInt(whichrow);
912    stpol->setSpectra(getPolMatrix(row));
913    Float fang,fhand;
914    fang = focusTable_.getTotalAngle(mfocusidCol_(row));
915    fhand = focusTable_.getFeedHand(mfocusidCol_(row));
916    stpol->setPhaseCorrections(fang, fhand);
917    arr = stpol->getSpectrum(requestedpol, ptype);
918  }
919  if ( arr.nelements() == 0 )
920    pushLog("Not enough polarisations present to do the conversion.");
921  arr.tovector(out);
922  return out;
923}
924
925void Scantable::setSpectrum( const std::vector<float>& spec,
926                                   int whichrow )
927{
928  Vector<Float> spectrum(spec);
929  Vector<Float> arr;
930  specCol_.get(whichrow, arr);
931  if ( spectrum.nelements() != arr.nelements() )
932    throw AipsError("The spectrum has incorrect number of channels.");
933  specCol_.put(whichrow, spectrum);
934}
935
936
937String Scantable::generateName()
938{
939  return (File::newUniqueName("./","temp")).baseName();
940}
941
942const casa::Table& Scantable::table( ) const
943{
944  return table_;
945}
946
947casa::Table& Scantable::table( )
948{
949  return table_;
950}
951
952std::string Scantable::getPolType() const
953{
954  return table_.keywordSet().asString("POLTYPE");
955}
956
957void Scantable::unsetSelection()
958{
959  table_ = originalTable_;
960  attach();
961  selector_.reset();
962}
963
964void Scantable::setSelection( const STSelector& selection )
965{
966  Table tab = const_cast<STSelector&>(selection).apply(originalTable_);
967  if ( tab.nrow() == 0 ) {
968    throw(AipsError("Selection contains no data. Not applying it."));
969  }
970  table_ = tab;
971  attach();
972//   tab.rwKeywordSet().define("nBeam",(Int)(getBeamNos().size())) ;
973//   vector<uint> selectedIFs = getIFNos() ;
974//   Int newnIF = selectedIFs.size() ;
975//   tab.rwKeywordSet().define("nIF",newnIF) ;
976//   if ( newnIF != 0 ) {
977//     Int newnChan = 0 ;
978//     for ( Int i = 0 ; i < newnIF ; i++ ) {
979//       Int nChan = nchan( selectedIFs[i] ) ;
980//       if ( newnChan > nChan )
981//         newnChan = nChan ;
982//     }
983//     tab.rwKeywordSet().define("nChan",newnChan) ;
984//   }
985//   tab.rwKeywordSet().define("nPol",(Int)(getPolNos().size())) ;
986  selector_ = selection;
987}
988
989
990std::string Scantable::headerSummary()
991{
992  // Format header info
993//   STHeader sdh;
994//   sdh = getHeader();
995//   sdh.print();
996  ostringstream oss;
997  oss.flags(std::ios_base::left);
998  oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
999      << setw(15) << "IFs:" << setw(4) << nif() << endl
1000      << setw(15) << "Polarisations:" << setw(4) << npol()
1001      << "(" << getPolType() << ")" << endl
1002      << setw(15) << "Channels:" << nchan() << endl;
1003  String tmp;
1004  oss << setw(15) << "Observer:"
1005      << table_.keywordSet().asString("Observer") << endl;
1006  oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1007  table_.keywordSet().get("Project", tmp);
1008  oss << setw(15) << "Project:" << tmp << endl;
1009  table_.keywordSet().get("Obstype", tmp);
1010  oss << setw(15) << "Obs. Type:" << tmp << endl;
1011  table_.keywordSet().get("AntennaName", tmp);
1012  oss << setw(15) << "Antenna Name:" << tmp << endl;
1013  table_.keywordSet().get("FluxUnit", tmp);
1014  oss << setw(15) << "Flux Unit:" << tmp << endl;
1015  //Vector<Double> vec(moleculeTable_.getRestFrequencies());
1016  int nid = moleculeTable_.nrow();
1017  Bool firstline = True;
1018  oss << setw(15) << "Rest Freqs:";
1019  for (int i=0; i<nid; i++) {
1020      Table t = table_(table_.col("MOLECULE_ID") == i);
1021      if (t.nrow() >  0) {
1022          Vector<Double> vec(moleculeTable_.getRestFrequency(i));
1023          if (vec.nelements() > 0) {
1024               if (firstline) {
1025                   oss << setprecision(10) << vec << " [Hz]" << endl;
1026                   firstline=False;
1027               }
1028               else{
1029                   oss << setw(15)<<" " << setprecision(10) << vec << " [Hz]" << endl;
1030               }
1031          } else {
1032              oss << "none" << endl;
1033          }
1034      }
1035  }
1036
1037  oss << setw(15) << "Abcissa:" << getAbcissaLabel(0) << endl;
1038  oss << selector_.print() << endl;
1039  return String(oss);
1040}
1041
1042std::string Scantable::summary()
1043{
1044  ostringstream oss;
1045  oss << endl;
1046  oss << asap::SEPERATOR << endl;
1047  oss << " Scan Table Summary" << endl;
1048  oss << asap::SEPERATOR << endl;
1049
1050  // Format header info
1051  oss << headerSummary();
1052  oss << endl;
1053
1054  // main table
1055  String dirtype = "Position ("
1056                  + getDirectionRefString()
1057                  + ")";
1058  oss.flags(std::ios_base::left);
1059  oss << setw(5) << "Scan" << setw(15) << "Source"
1060      << setw(10) << "Time" << setw(18) << "Integration"
1061      << setw(15) << "Source Type" << endl;
1062  oss << setw(5) << "" << setw(5) << "Beam" << setw(3) << "" << dirtype << endl;
1063  oss << setw(10) << "" << setw(3) << "IF" << setw(3) << ""
1064      << setw(8) << "Frame" << setw(16)
1065      << "RefVal" << setw(10) << "RefPix" << setw(12) << "Increment"
1066      << setw(7) << "Channels"
1067      << endl;
1068  oss << asap::SEPERATOR << endl;
1069  TableIterator iter(table_, "SCANNO");
1070  while (!iter.pastEnd()) {
1071    Table subt = iter.table();
1072    ROTableRow row(subt);
1073    MEpoch::ROScalarColumn timeCol(subt,"TIME");
1074    const TableRecord& rec = row.get(0);
1075    oss << setw(4) << std::right << rec.asuInt("SCANNO")
1076        << std::left << setw(1) << ""
1077        << setw(15) << rec.asString("SRCNAME")
1078        << setw(10) << formatTime(timeCol(0), false);
1079    // count the cycles in the scan
1080    TableIterator cyciter(subt, "CYCLENO");
1081    int nint = 0;
1082    while (!cyciter.pastEnd()) {
1083      ++nint;
1084      ++cyciter;
1085    }
1086    oss << setw(3) << std::right << nint  << setw(3) << " x " << std::left
1087        << setw(11) <<  formatSec(rec.asFloat("INTERVAL")) << setw(1) << ""
1088        << setw(15) << SrcType::getName(rec.asInt("SRCTYPE")) << endl;
1089
1090    TableIterator biter(subt, "BEAMNO");
1091    while (!biter.pastEnd()) {
1092      Table bsubt = biter.table();
1093      ROTableRow brow(bsubt);
1094      const TableRecord& brec = brow.get(0);
1095      uInt row0 = bsubt.rowNumbers(table_)[0];
1096      oss << setw(5) << "" <<  setw(4) << std::right << brec.asuInt("BEAMNO")<< std::left;
1097      oss  << setw(4) << ""  << formatDirection(getDirection(row0)) << endl;
1098      TableIterator iiter(bsubt, "IFNO");
1099      while (!iiter.pastEnd()) {
1100        Table isubt = iiter.table();
1101        ROTableRow irow(isubt);
1102        const TableRecord& irec = irow.get(0);
1103        oss << setw(9) << "";
1104        oss << setw(3) << std::right << irec.asuInt("IFNO") << std::left
1105            << setw(1) << "" << frequencies().print(irec.asuInt("FREQ_ID"))
1106            << setw(3) << "" << nchan(irec.asuInt("IFNO"))
1107            << endl;
1108
1109        ++iiter;
1110      }
1111      ++biter;
1112    }
1113    ++iter;
1114  }
1115  return String(oss);
1116}
1117
1118// std::string Scantable::getTime(int whichrow, bool showdate) const
1119// {
1120//   MEpoch::ROScalarColumn timeCol(table_, "TIME");
1121//   MEpoch me;
1122//   if (whichrow > -1) {
1123//     me = timeCol(uInt(whichrow));
1124//   } else {
1125//     Double tm;
1126//     table_.keywordSet().get("UTC",tm);
1127//     me = MEpoch(MVEpoch(tm));
1128//   }
1129//   return formatTime(me, showdate);
1130// }
1131
1132std::string Scantable::getTime(int whichrow, bool showdate, uInt prec) const
1133{
1134  MEpoch me;
1135  me = getEpoch(whichrow);
1136  return formatTime(me, showdate, prec);
1137}
1138
1139MEpoch Scantable::getEpoch(int whichrow) const
1140{
1141  if (whichrow > -1) {
1142    return timeCol_(uInt(whichrow));
1143  } else {
1144    Double tm;
1145    table_.keywordSet().get("UTC",tm);
1146    return MEpoch(MVEpoch(tm));
1147  }
1148}
1149
1150std::string Scantable::getDirectionString(int whichrow) const
1151{
1152  return formatDirection(getDirection(uInt(whichrow)));
1153}
1154
1155
1156SpectralCoordinate Scantable::getSpectralCoordinate(int whichrow) const {
1157  const MPosition& mp = getAntennaPosition();
1158  const MDirection& md = getDirection(whichrow);
1159  const MEpoch& me = timeCol_(whichrow);
1160  //Double rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1161  Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1162  return freqTable_.getSpectralCoordinate(md, mp, me, rf,
1163                                          mfreqidCol_(whichrow));
1164}
1165
1166std::vector< double > Scantable::getAbcissa( int whichrow ) const
1167{
1168  if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal row number"));
1169  std::vector<double> stlout;
1170  int nchan = specCol_(whichrow).nelements();
1171  String us = freqTable_.getUnitString();
1172  if ( us == "" || us == "pixel" || us == "channel" ) {
1173    for (int i=0; i<nchan; ++i) {
1174      stlout.push_back(double(i));
1175    }
1176    return stlout;
1177  }
1178  SpectralCoordinate spc = getSpectralCoordinate(whichrow);
1179  Vector<Double> pixel(nchan);
1180  Vector<Double> world;
1181  indgen(pixel);
1182  if ( Unit(us) == Unit("Hz") ) {
1183    for ( int i=0; i < nchan; ++i) {
1184      Double world;
1185      spc.toWorld(world, pixel[i]);
1186      stlout.push_back(double(world));
1187    }
1188  } else if ( Unit(us) == Unit("km/s") ) {
1189    Vector<Double> world;
1190    spc.pixelToVelocity(world, pixel);
1191    world.tovector(stlout);
1192  }
1193  return stlout;
1194}
1195void Scantable::setDirectionRefString( const std::string & refstr )
1196{
1197  MDirection::Types mdt;
1198  if (refstr != "" && !MDirection::getType(mdt, refstr)) {
1199    throw(AipsError("Illegal Direction frame."));
1200  }
1201  if ( refstr == "" ) {
1202    String defaultstr = MDirection::showType(dirCol_.getMeasRef().getType());
1203    table_.rwKeywordSet().define("DIRECTIONREF", defaultstr);
1204  } else {
1205    table_.rwKeywordSet().define("DIRECTIONREF", String(refstr));
1206  }
1207}
1208
1209std::string Scantable::getDirectionRefString( ) const
1210{
1211  return table_.keywordSet().asString("DIRECTIONREF");
1212}
1213
1214MDirection Scantable::getDirection(int whichrow ) const
1215{
1216  String usertype = table_.keywordSet().asString("DIRECTIONREF");
1217  String type = MDirection::showType(dirCol_.getMeasRef().getType());
1218  if ( usertype != type ) {
1219    MDirection::Types mdt;
1220    if (!MDirection::getType(mdt, usertype)) {
1221      throw(AipsError("Illegal Direction frame."));
1222    }
1223    return dirCol_.convert(uInt(whichrow), mdt);
1224  } else {
1225    return dirCol_(uInt(whichrow));
1226  }
1227}
1228
1229std::string Scantable::getAbcissaLabel( int whichrow ) const
1230{
1231  if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal ro number"));
1232  const MPosition& mp = getAntennaPosition();
1233  const MDirection& md = getDirection(whichrow);
1234  const MEpoch& me = timeCol_(whichrow);
1235  //const Double& rf = mmolidCol_(whichrow);
1236  const Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1237  SpectralCoordinate spc =
1238    freqTable_.getSpectralCoordinate(md, mp, me, rf, mfreqidCol_(whichrow));
1239
1240  String s = "Channel";
1241  Unit u = Unit(freqTable_.getUnitString());
1242  if (u == Unit("km/s")) {
1243    s = CoordinateUtil::axisLabel(spc, 0, True,True,  True);
1244  } else if (u == Unit("Hz")) {
1245    Vector<String> wau(1);wau = u.getName();
1246    spc.setWorldAxisUnits(wau);
1247    s = CoordinateUtil::axisLabel(spc, 0, True, True, False);
1248  }
1249  return s;
1250
1251}
1252
1253/**
1254void asap::Scantable::setRestFrequencies( double rf, const std::string& name,
1255                                          const std::string& unit )
1256**/
1257void Scantable::setRestFrequencies( vector<double> rf, const vector<std::string>& name,
1258                                          const std::string& unit )
1259
1260{
1261  ///@todo lookup in line table to fill in name and formattedname
1262  Unit u(unit);
1263  //Quantum<Double> urf(rf, u);
1264  Quantum<Vector<Double> >urf(rf, u);
1265  Vector<String> formattedname(0);
1266  //cerr<<"Scantable::setRestFrequnecies="<<urf<<endl;
1267
1268  //uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), name, "");
1269  uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), mathutil::toVectorString(name), formattedname);
1270  TableVector<uInt> tabvec(table_, "MOLECULE_ID");
1271  tabvec = id;
1272}
1273
1274/**
1275void asap::Scantable::setRestFrequencies( const std::string& name )
1276{
1277  throw(AipsError("setRestFrequencies( const std::string& name ) NYI"));
1278  ///@todo implement
1279}
1280**/
1281
1282void Scantable::setRestFrequencies( const vector<std::string>& name )
1283{
1284  (void) name; // suppress unused warning
1285  throw(AipsError("setRestFrequencies( const vector<std::string>& name ) NYI"));
1286  ///@todo implement
1287}
1288
1289std::vector< unsigned int > Scantable::rownumbers( ) const
1290{
1291  std::vector<unsigned int> stlout;
1292  Vector<uInt> vec = table_.rowNumbers();
1293  vec.tovector(stlout);
1294  return stlout;
1295}
1296
1297
1298Matrix<Float> Scantable::getPolMatrix( uInt whichrow ) const
1299{
1300  ROTableRow row(table_);
1301  const TableRecord& rec = row.get(whichrow);
1302  Table t =
1303    originalTable_( originalTable_.col("SCANNO") == Int(rec.asuInt("SCANNO"))
1304                    && originalTable_.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1305                    && originalTable_.col("IFNO") == Int(rec.asuInt("IFNO"))
1306                    && originalTable_.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
1307  ROArrayColumn<Float> speccol(t, "SPECTRA");
1308  return speccol.getColumn();
1309}
1310
1311std::vector< std::string > Scantable::columnNames( ) const
1312{
1313  Vector<String> vec = table_.tableDesc().columnNames();
1314  return mathutil::tovectorstring(vec);
1315}
1316
1317MEpoch::Types Scantable::getTimeReference( ) const
1318{
1319  return MEpoch::castType(timeCol_.getMeasRef().getType());
1320}
1321
1322void Scantable::addFit( const STFitEntry& fit, int row )
1323{
1324  //cout << mfitidCol_(uInt(row)) << endl;
1325  LogIO os( LogOrigin( "Scantable", "addFit()", WHERE ) ) ;
1326  os << mfitidCol_(uInt(row)) << LogIO::POST ;
1327  uInt id = fitTable_.addEntry(fit, mfitidCol_(uInt(row)));
1328  mfitidCol_.put(uInt(row), id);
1329}
1330
1331void Scantable::shift(int npix)
1332{
1333  Vector<uInt> fids(mfreqidCol_.getColumn());
1334  genSort( fids, Sort::Ascending,
1335           Sort::QuickSort|Sort::NoDuplicates );
1336  for (uInt i=0; i<fids.nelements(); ++i) {
1337    frequencies().shiftRefPix(npix, fids[i]);
1338  }
1339}
1340
1341String Scantable::getAntennaName() const
1342{
1343  String out;
1344  table_.keywordSet().get("AntennaName", out);
1345  String::size_type pos1 = out.find("@") ;
1346  String::size_type pos2 = out.find("//") ;
1347  if ( pos2 != String::npos )
1348    out = out.substr(pos2+2,pos1-pos2-2) ;
1349  else if ( pos1 != String::npos )
1350    out = out.substr(0,pos1) ;
1351  return out;
1352}
1353
1354int Scantable::checkScanInfo(const std::vector<int>& scanlist) const
1355{
1356  String tbpath;
1357  int ret = 0;
1358  if ( table_.keywordSet().isDefined("GBT_GO") ) {
1359    table_.keywordSet().get("GBT_GO", tbpath);
1360    Table t(tbpath,Table::Old);
1361    // check each scan if other scan of the pair exist
1362    int nscan = scanlist.size();
1363    for (int i = 0; i < nscan; i++) {
1364      Table subt = t( t.col("SCAN") == scanlist[i]+1 );
1365      if (subt.nrow()==0) {
1366        //cerr <<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<endl;
1367        LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1368        os <<LogIO::WARN<<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<LogIO::POST;
1369        ret = 1;
1370        break;
1371      }
1372      ROTableRow row(subt);
1373      const TableRecord& rec = row.get(0);
1374      int scan1seqn = rec.asuInt("PROCSEQN");
1375      int laston1 = rec.asuInt("LASTON");
1376      if ( rec.asuInt("PROCSIZE")==2 ) {
1377        if ( i < nscan-1 ) {
1378          Table subt2 = t( t.col("SCAN") == scanlist[i+1]+1 );
1379          if ( subt2.nrow() == 0) {
1380            LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1381
1382            //cerr<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<endl;
1383            os<<LogIO::WARN<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<LogIO::POST;
1384            ret = 1;
1385            break;
1386          }
1387          ROTableRow row2(subt2);
1388          const TableRecord& rec2 = row2.get(0);
1389          int scan2seqn = rec2.asuInt("PROCSEQN");
1390          int laston2 = rec2.asuInt("LASTON");
1391          if (scan1seqn == 1 && scan2seqn == 2) {
1392            if (laston1 == laston2) {
1393              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1394              //cerr<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1395              os<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1396              i +=1;
1397            }
1398            else {
1399              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1400              //cerr<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1401              os<<LogIO::WARN<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1402            }
1403          }
1404          else if (scan1seqn==2 && scan2seqn == 1) {
1405            if (laston1 == laston2) {
1406              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1407              //cerr<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<endl;
1408              os<<LogIO::WARN<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<LogIO::POST;
1409              ret = 1;
1410              break;
1411            }
1412          }
1413          else {
1414            LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1415            //cerr<<"The other scan for  "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<endl;
1416            os<<LogIO::WARN<<"The other scan for  "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<LogIO::POST;
1417            ret = 1;
1418            break;
1419          }
1420        }
1421      }
1422      else {
1423        LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1424        //cerr<<"The scan does not appear to be standard obsevation."<<endl;
1425        os<<LogIO::WARN<<"The scan does not appear to be standard obsevation."<<LogIO::POST;
1426      }
1427    //if ( i >= nscan ) break;
1428    }
1429  }
1430  else {
1431    LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1432    //cerr<<"No reference to GBT_GO table."<<endl;
1433    os<<LogIO::WARN<<"No reference to GBT_GO table."<<LogIO::POST;
1434    ret = 1;
1435  }
1436  return ret;
1437}
1438
1439std::vector<double> Scantable::getDirectionVector(int whichrow) const
1440{
1441  Vector<Double> Dir = dirCol_(whichrow).getAngle("rad").getValue();
1442  std::vector<double> dir;
1443  Dir.tovector(dir);
1444  return dir;
1445}
1446
1447void asap::Scantable::reshapeSpectrum( int nmin, int nmax )
1448  throw( casa::AipsError )
1449{
1450  // assumed that all rows have same nChan
1451  Vector<Float> arr = specCol_( 0 ) ;
1452  int nChan = arr.nelements() ;
1453
1454  // if nmin < 0 or nmax < 0, nothing to do
1455  if (  nmin < 0 ) {
1456    throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1457    }
1458  if (  nmax < 0  ) {
1459    throw( casa::indexError<int>( nmax, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1460  }
1461
1462  // if nmin > nmax, exchange values
1463  if ( nmin > nmax ) {
1464    int tmp = nmax ;
1465    nmax = nmin ;
1466    nmin = tmp ;
1467    LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1468    os << "Swap values. Applied range is ["
1469       << nmin << ", " << nmax << "]" << LogIO::POST ;
1470  }
1471
1472  // if nmin exceeds nChan, nothing to do
1473  if ( nmin >= nChan ) {
1474    throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Specified minimum exceeds nChan." ) ) ;
1475  }
1476
1477  // if nmax exceeds nChan, reset nmax to nChan
1478  if ( nmax >= nChan ) {
1479    if ( nmin == 0 ) {
1480      // nothing to do
1481      LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1482      os << "Whole range is selected. Nothing to do." << LogIO::POST ;
1483      return ;
1484    }
1485    else {
1486      LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1487      os << "Specified maximum exceeds nChan. Applied range is ["
1488         << nmin << ", " << nChan-1 << "]." << LogIO::POST ;
1489      nmax = nChan - 1 ;
1490    }
1491  }
1492
1493  // reshape specCol_ and flagCol_
1494  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1495    reshapeSpectrum( nmin, nmax, irow ) ;
1496  }
1497
1498  // update FREQUENCIES subtable
1499  Double refpix ;
1500  Double refval ;
1501  Double increment ;
1502  int freqnrow = freqTable_.table().nrow() ;
1503  Vector<uInt> oldId( freqnrow ) ;
1504  Vector<uInt> newId( freqnrow ) ;
1505  for ( int irow = 0 ; irow < freqnrow ; irow++ ) {
1506    freqTable_.getEntry( refpix, refval, increment, irow ) ;
1507    /***
1508     * need to shift refpix to nmin
1509     * note that channel nmin in old index will be channel 0 in new one
1510     ***/
1511    refval = refval - ( refpix - nmin ) * increment ;
1512    refpix = 0 ;
1513    freqTable_.setEntry( refpix, refval, increment, irow ) ;
1514  }
1515
1516  // update nchan
1517  int newsize = nmax - nmin + 1 ;
1518  table_.rwKeywordSet().define( "nChan", newsize ) ;
1519
1520  // update bandwidth
1521  // assumed all spectra in the scantable have same bandwidth
1522  table_.rwKeywordSet().define( "Bandwidth", increment * newsize ) ;
1523
1524  return ;
1525}
1526
1527void asap::Scantable::reshapeSpectrum( int nmin, int nmax, int irow )
1528{
1529  // reshape specCol_ and flagCol_
1530  Vector<Float> oldspec = specCol_( irow ) ;
1531  Vector<uChar> oldflag = flagsCol_( irow ) ;
1532  uInt newsize = nmax - nmin + 1 ;
1533  specCol_.put( irow, oldspec( Slice( nmin, newsize, 1 ) ) ) ;
1534  flagsCol_.put( irow, oldflag( Slice( nmin, newsize, 1 ) ) ) ;
1535
1536  return ;
1537}
1538
1539void asap::Scantable::regridChannel( int nChan, double dnu )
1540{
1541  LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1542  os << "Regrid abcissa with channel number " << nChan << " and spectral resoultion " << dnu << "Hz." << LogIO::POST ;
1543  // assumed that all rows have same nChan
1544  Vector<Float> arr = specCol_( 0 ) ;
1545  int oldsize = arr.nelements() ;
1546
1547  // if oldsize == nChan, nothing to do
1548  if ( oldsize == nChan ) {
1549    os << "Specified channel number is same as current one. Nothing to do." << LogIO::POST ;
1550    return ;
1551  }
1552
1553  // if oldChan < nChan, unphysical operation
1554  if ( oldsize < nChan ) {
1555    os << "Unphysical operation. Nothing to do." << LogIO::POST ;
1556    return ;
1557  }
1558
1559  // change channel number for specCol_ and flagCol_
1560  Vector<Float> newspec( nChan, 0 ) ;
1561  Vector<uChar> newflag( nChan, false ) ;
1562  vector<string> coordinfo = getCoordInfo() ;
1563  string oldinfo = coordinfo[0] ;
1564  coordinfo[0] = "Hz" ;
1565  setCoordInfo( coordinfo ) ;
1566  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1567    regridChannel( nChan, dnu, irow ) ;
1568  }
1569  coordinfo[0] = oldinfo ;
1570  setCoordInfo( coordinfo ) ;
1571
1572
1573  // NOTE: this method does not update metadata such as
1574  //       FREQUENCIES subtable, nChan, Bandwidth, etc.
1575
1576  return ;
1577}
1578
1579void asap::Scantable::regridChannel( int nChan, double dnu, int irow )
1580{
1581  // logging
1582  //ofstream ofs( "average.log", std::ios::out | std::ios::app ) ;
1583  //ofs << "IFNO = " << getIF( irow ) << " irow = " << irow << endl ;
1584
1585  Vector<Float> oldspec = specCol_( irow ) ;
1586  Vector<uChar> oldflag = flagsCol_( irow ) ;
1587  Vector<Float> newspec( nChan, 0 ) ;
1588  Vector<uChar> newflag( nChan, false ) ;
1589
1590  // regrid
1591  vector<double> abcissa = getAbcissa( irow ) ;
1592  int oldsize = abcissa.size() ;
1593  double olddnu = abcissa[1] - abcissa[0] ;
1594  //int refChan = 0 ;
1595  //double frac = 0.0 ;
1596  //double wedge = 0.0 ;
1597  //double pile = 0.0 ;
1598  int ichan = 0 ;
1599  double wsum = 0.0 ;
1600  Vector<Float> zi( nChan+1 ) ;
1601  Vector<Float> yi( oldsize + 1 ) ;
1602  zi[0] = abcissa[0] - 0.5 * olddnu ;
1603  zi[1] = zi[1] + dnu ;
1604  for ( int ii = 2 ; ii < nChan ; ii++ )
1605    zi[ii] = zi[0] + dnu * ii ;
1606  zi[nChan] = zi[nChan-1] + dnu ;
1607  yi[0] = abcissa[0] - 0.5 * olddnu ;
1608  yi[1] = abcissa[1] + 0.5 * olddnu ;
1609  for ( int ii = 2 ; ii < oldsize ; ii++ )
1610    yi[ii] = abcissa[ii-1] + olddnu ;
1611  yi[oldsize] = abcissa[oldsize-1] + 0.5 * olddnu ;
1612  if ( dnu > 0.0 ) {
1613    for ( int ii = 0 ; ii < nChan ; ii++ ) {
1614      double zl = zi[ii] ;
1615      double zr = zi[ii+1] ;
1616      for ( int j = ichan ; j < oldsize ; j++ ) {
1617        double yl = yi[j] ;
1618        double yr = yi[j+1] ;
1619        if ( yl <= zl ) {
1620          if ( yr <= zl ) {
1621            continue ;
1622          }
1623          else if ( yr <= zr ) {
1624            newspec[ii] += oldspec[j] * ( yr - zl ) ;
1625            newflag[ii] = newflag[ii] || oldflag[j] ;
1626            wsum += ( yr - zl ) ;
1627          }
1628          else {
1629            newspec[ii] += oldspec[j] * dnu ;
1630            newflag[ii] = newflag[ii] || oldflag[j] ;
1631            wsum += dnu ;
1632            ichan = j ;
1633            break ;
1634          }
1635        }
1636        else if ( yl < zr ) {
1637          if ( yr <= zr ) {
1638              newspec[ii] += oldspec[j] * ( yr - yl ) ;
1639              newflag[ii] = newflag[ii] || oldflag[j] ;
1640              wsum += ( yr - yl ) ;
1641          }
1642          else {
1643            newspec[ii] += oldspec[j] * ( zr - yl ) ;
1644            newflag[ii] = newflag[ii] || oldflag[j] ;
1645            wsum += ( zr - yl ) ;
1646            ichan = j ;
1647            break ;
1648          }
1649        }
1650        else {
1651          ichan = j - 1 ;
1652          break ;
1653        }
1654      }
1655      if ( wsum != 0.0 )
1656        newspec[ii] /= wsum ;
1657      wsum = 0.0 ;
1658    }
1659  }
1660  else if ( dnu < 0.0 ) {
1661    for ( int ii = 0 ; ii < nChan ; ii++ ) {
1662      double zl = zi[ii] ;
1663      double zr = zi[ii+1] ;
1664      for ( int j = ichan ; j < oldsize ; j++ ) {
1665        double yl = yi[j] ;
1666        double yr = yi[j+1] ;
1667        if ( yl >= zl ) {
1668          if ( yr >= zl ) {
1669            continue ;
1670          }
1671          else if ( yr >= zr ) {
1672            newspec[ii] += oldspec[j] * abs( yr - zl ) ;
1673            newflag[ii] = newflag[ii] || oldflag[j] ;
1674            wsum += abs( yr - zl ) ;
1675          }
1676          else {
1677            newspec[ii] += oldspec[j] * abs( dnu ) ;
1678            newflag[ii] = newflag[ii] || oldflag[j] ;
1679            wsum += abs( dnu ) ;
1680            ichan = j ;
1681            break ;
1682          }
1683        }
1684        else if ( yl > zr ) {
1685          if ( yr >= zr ) {
1686            newspec[ii] += oldspec[j] * abs( yr - yl ) ;
1687            newflag[ii] = newflag[ii] || oldflag[j] ;
1688            wsum += abs( yr - yl ) ;
1689          }
1690          else {
1691            newspec[ii] += oldspec[j] * abs( zr - yl ) ;
1692            newflag[ii] = newflag[ii] || oldflag[j] ;
1693            wsum += abs( zr - yl ) ;
1694            ichan = j ;
1695            break ;
1696          }
1697        }
1698        else {
1699          ichan = j - 1 ;
1700          break ;
1701        }
1702      }
1703      if ( wsum != 0.0 )
1704        newspec[ii] /= wsum ;
1705      wsum = 0.0 ;
1706    }
1707  }
1708//    * ichan = 0
1709//    ***/
1710//   //ofs << "olddnu = " << olddnu << ", dnu = " << dnu << endl ;
1711//   pile += dnu ;
1712//   wedge = olddnu * ( refChan + 1 ) ;
1713//   while ( wedge < pile ) {
1714//     newspec[0] += olddnu * oldspec[refChan] ;
1715//     newflag[0] = newflag[0] || oldflag[refChan] ;
1716//     //ofs << "channel " << refChan << " is included in new channel 0" << endl ;
1717//     refChan++ ;
1718//     wedge += olddnu ;
1719//     wsum += olddnu ;
1720//     //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
1721//   }
1722//   frac = ( wedge - pile ) / olddnu ;
1723//   wsum += ( 1.0 - frac ) * olddnu ;
1724//   newspec[0] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
1725//   newflag[0] = newflag[0] || oldflag[refChan] ;
1726//   //ofs << "channel " << refChan << " is partly included in new channel 0" << " with fraction of " << ( 1.0 - frac ) << endl ;
1727//   //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
1728//   newspec[0] /= wsum ;
1729//   //ofs << "newspec[0] = " << newspec[0] << endl ;
1730//   //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
1731
1732//   /***
1733//    * ichan = 1 - nChan-2
1734//    ***/
1735//   for ( int ichan = 1 ; ichan < nChan - 1 ; ichan++ ) {
1736//     pile += dnu ;
1737//     newspec[ichan] += frac * olddnu * oldspec[refChan] ;
1738//     newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
1739//     //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << frac << endl ;
1740//     refChan++ ;
1741//     wedge += olddnu ;
1742//     wsum = frac * olddnu ;
1743//     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
1744//     while ( wedge < pile ) {
1745//       newspec[ichan] += olddnu * oldspec[refChan] ;
1746//       newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
1747//       //ofs << "channel " << refChan << " is included in new channel " << ichan << endl ;
1748//       refChan++ ;
1749//       wedge += olddnu ;
1750//       wsum += olddnu ;
1751//       //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
1752//     }
1753//     frac = ( wedge - pile ) / olddnu ;
1754//     wsum += ( 1.0 - frac ) * olddnu ;
1755//     newspec[ichan] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
1756//     newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
1757//     //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << ( 1.0 - frac ) << endl ;
1758//     //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
1759//     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
1760//     newspec[ichan] /= wsum ;
1761//     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << endl ;
1762//   }
1763
1764//   /***
1765//    * ichan = nChan-1
1766//    ***/
1767//   // NOTE: Assumed that all spectra have the same bandwidth
1768//   pile += dnu ;
1769//   newspec[nChan-1] += frac * olddnu * oldspec[refChan] ;
1770//   newflag[nChan-1] = newflag[nChan-1] || oldflag[refChan] ;
1771//   //ofs << "channel " << refChan << " is partly included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
1772//   refChan++ ;
1773//   wedge += olddnu ;
1774//   wsum = frac * olddnu ;
1775//   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
1776//   for ( int jchan = refChan ; jchan < oldsize ; jchan++ ) {
1777//     newspec[nChan-1] += olddnu * oldspec[jchan] ;
1778//     newflag[nChan-1] = newflag[nChan-1] || oldflag[jchan] ;
1779//     wsum += olddnu ;
1780//     //ofs << "channel " << jchan << " is included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
1781//     //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
1782//   }
1783//   //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
1784//   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
1785//   newspec[nChan-1] /= wsum ;
1786//   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << endl ;
1787
1788//   // ofs.close() ;
1789
1790  specCol_.put( irow, newspec ) ;
1791  flagsCol_.put( irow, newflag ) ;
1792
1793  return ;
1794}
1795
1796std::vector<float> Scantable::getWeather(int whichrow) const
1797{
1798  std::vector<float> out(5);
1799  //Float temperature, pressure, humidity, windspeed, windaz;
1800  weatherTable_.getEntry(out[0], out[1], out[2], out[3], out[4],
1801                         mweatheridCol_(uInt(whichrow)));
1802
1803
1804  return out;
1805}
1806
1807bool Scantable::getFlagtraFast(uInt whichrow)
1808{
1809  uChar flag;
1810  Vector<uChar> flags;
1811  flagsCol_.get(whichrow, flags);
1812  flag = flags[0];
1813  for (uInt i = 1; i < flags.size(); ++i) {
1814    flag &= flags[i];
1815  }
1816  return ((flag >> 7) == 1);
1817}
1818
1819void Scantable::polyBaseline(const std::vector<bool>& mask, int order, bool getResidual, bool outLogger, const std::string& blfile)
1820{
1821  ofstream ofs;
1822  String coordInfo = "";
1823  bool hasSameNchan = true;
1824  bool outTextFile = false;
1825
1826  if (blfile != "") {
1827    ofs.open(blfile.c_str(), ios::out | ios::app);
1828    if (ofs) outTextFile = true;
1829  }
1830
1831  if (outLogger || outTextFile) {
1832    coordInfo = getCoordInfo()[0];
1833    if (coordInfo == "") coordInfo = "channel";
1834    hasSameNchan = hasSameNchanOverIFs();
1835  }
1836
1837  Fitter fitter = Fitter();
1838  fitter.setExpression("poly", order);
1839  //fitter.setIterClipping(thresClip, nIterClip);
1840
1841  int nRow = nrow();
1842  std::vector<bool> chanMask;
1843
1844  for (int whichrow = 0; whichrow < nRow; ++whichrow) {
1845    chanMask = getCompositeChanMask(whichrow, mask);
1846    fitBaseline(chanMask, whichrow, fitter);
1847    setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
1848    outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "polyBaseline()", fitter);
1849    showProgressOnTerminal(whichrow, nRow);
1850  }
1851
1852  if (outTextFile) ofs.close();
1853}
1854
1855void Scantable::autoPolyBaseline(const std::vector<bool>& mask, int order, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, bool outLogger, const std::string& blfile)
1856{
1857  ofstream ofs;
1858  String coordInfo = "";
1859  bool hasSameNchan = true;
1860  bool outTextFile = false;
1861
1862  if (blfile != "") {
1863    ofs.open(blfile.c_str(), ios::out | ios::app);
1864    if (ofs) outTextFile = true;
1865  }
1866
1867  if (outLogger || outTextFile) {
1868    coordInfo = getCoordInfo()[0];
1869    if (coordInfo == "") coordInfo = "channel";
1870    hasSameNchan = hasSameNchanOverIFs();
1871  }
1872
1873  Fitter fitter = Fitter();
1874  fitter.setExpression("poly", order);
1875  //fitter.setIterClipping(thresClip, nIterClip);
1876
1877  int nRow = nrow();
1878  std::vector<bool> chanMask;
1879  int minEdgeSize = getIFNos().size()*2;
1880  STLineFinder lineFinder = STLineFinder();
1881  lineFinder.setOptions(threshold, 3, chanAvgLimit);
1882
1883  for (int whichrow = 0; whichrow < nRow; ++whichrow) {
1884
1885    //-------------------------------------------------------
1886    //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
1887    //-------------------------------------------------------
1888    int edgeSize = edge.size();
1889    std::vector<int> currentEdge;
1890    if (edgeSize >= 2) {
1891      int idx = 0;
1892      if (edgeSize > 2) {
1893        if (edgeSize < minEdgeSize) {
1894          throw(AipsError("Length of edge element info is less than that of IFs"));
1895        }
1896        idx = 2 * getIF(whichrow);
1897      }
1898      currentEdge.push_back(edge[idx]);
1899      currentEdge.push_back(edge[idx+1]);
1900    } else {
1901      throw(AipsError("Wrong length of edge element"));
1902    }
1903    lineFinder.setData(getSpectrum(whichrow));
1904    lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
1905    chanMask = lineFinder.getMask();
1906    //-------------------------------------------------------
1907
1908    fitBaseline(chanMask, whichrow, fitter);
1909    setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
1910
1911    outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoPolyBaseline()", fitter);
1912    showProgressOnTerminal(whichrow, nRow);
1913  }
1914
1915  if (outTextFile) ofs.close();
1916}
1917
1918void Scantable::cubicSplineBaseline(const std::vector<bool>& mask, int nPiece, float thresClip, int nIterClip, bool getResidual, bool outLogger, const std::string& blfile)
1919{
1920  ofstream ofs;
1921  String coordInfo = "";
1922  bool hasSameNchan = true;
1923  bool outTextFile = false;
1924
1925  if (blfile != "") {
1926    ofs.open(blfile.c_str(), ios::out | ios::app);
1927    if (ofs) outTextFile = true;
1928  }
1929
1930  if (outLogger || outTextFile) {
1931    coordInfo = getCoordInfo()[0];
1932    if (coordInfo == "") coordInfo = "channel";
1933    hasSameNchan = hasSameNchanOverIFs();
1934  }
1935
1936  //Fitter fitter = Fitter();
1937  //fitter.setExpression("cspline", nPiece);
1938  //fitter.setIterClipping(thresClip, nIterClip);
1939
1940  int nRow = nrow();
1941  std::vector<bool> chanMask;
1942
1943  for (int whichrow = 0; whichrow < nRow; ++whichrow) {
1944    chanMask = getCompositeChanMask(whichrow, mask);
1945    //fitBaseline(chanMask, whichrow, fitter);
1946    //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
1947    std::vector<int> pieceEdges;
1948    std::vector<float> params;
1949    std::vector<float> res = doCubicSplineFitting(getSpectrum(whichrow), chanMask, nPiece, pieceEdges, params, thresClip, nIterClip, getResidual);
1950    setSpectrum(res, whichrow);
1951    //
1952
1953    outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "cubicSplineBaseline()", pieceEdges, params);
1954    showProgressOnTerminal(whichrow, nRow);
1955  }
1956
1957  if (outTextFile) ofs.close();
1958}
1959
1960void Scantable::autoCubicSplineBaseline(const std::vector<bool>& mask, int nPiece, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, bool outLogger, const std::string& blfile)
1961{
1962  ofstream ofs;
1963  String coordInfo = "";
1964  bool hasSameNchan = true;
1965  bool outTextFile = false;
1966
1967  if (blfile != "") {
1968    ofs.open(blfile.c_str(), ios::out | ios::app);
1969    if (ofs) outTextFile = true;
1970  }
1971
1972  if (outLogger || outTextFile) {
1973    coordInfo = getCoordInfo()[0];
1974    if (coordInfo == "") coordInfo = "channel";
1975    hasSameNchan = hasSameNchanOverIFs();
1976  }
1977
1978  //Fitter fitter = Fitter();
1979  //fitter.setExpression("cspline", nPiece);
1980  //fitter.setIterClipping(thresClip, nIterClip);
1981
1982  int nRow = nrow();
1983  std::vector<bool> chanMask;
1984  int minEdgeSize = getIFNos().size()*2;
1985  STLineFinder lineFinder = STLineFinder();
1986  lineFinder.setOptions(threshold, 3, chanAvgLimit);
1987
1988  for (int whichrow = 0; whichrow < nRow; ++whichrow) {
1989
1990    //-------------------------------------------------------
1991    //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
1992    //-------------------------------------------------------
1993    int edgeSize = edge.size();
1994    std::vector<int> currentEdge;
1995    if (edgeSize >= 2) {
1996      int idx = 0;
1997      if (edgeSize > 2) {
1998        if (edgeSize < minEdgeSize) {
1999          throw(AipsError("Length of edge element info is less than that of IFs"));
2000        }
2001        idx = 2 * getIF(whichrow);
2002      }
2003      currentEdge.push_back(edge[idx]);
2004      currentEdge.push_back(edge[idx+1]);
2005    } else {
2006      throw(AipsError("Wrong length of edge element"));
2007    }
2008    lineFinder.setData(getSpectrum(whichrow));
2009    lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
2010    chanMask = lineFinder.getMask();
2011    //-------------------------------------------------------
2012
2013
2014    //fitBaseline(chanMask, whichrow, fitter);
2015    //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
2016    std::vector<int> pieceEdges;
2017    std::vector<float> params;
2018    std::vector<float> res = doCubicSplineFitting(getSpectrum(whichrow), chanMask, nPiece, pieceEdges, params, thresClip, nIterClip, getResidual);
2019    setSpectrum(res, whichrow);
2020    //
2021
2022    outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoCubicSplineBaseline()", pieceEdges, params);
2023    showProgressOnTerminal(whichrow, nRow);
2024  }
2025
2026  if (outTextFile) ofs.close();
2027}
2028
2029std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data, const std::vector<bool>& mask, int nPiece, std::vector<int>& idxEdge, std::vector<float>& params, float thresClip, int nIterClip, bool getResidual)
2030{
2031  if (data.size() != mask.size()) {
2032    throw(AipsError("data and mask sizes are not identical"));
2033  }
2034  if (nPiece < 1) {
2035    throw(AipsError("number of the sections must be one or more"));
2036  }
2037
2038  int nChan = data.size();
2039  std::vector<int> maskArray;
2040  std::vector<int> x;
2041  for (int i = 0; i < nChan; ++i) {
2042    maskArray.push_back(mask[i] ? 1 : 0);
2043    if (mask[i]) {
2044      x.push_back(i);
2045    }
2046  }
2047
2048  int initNData = x.size();
2049
2050  int nElement = (int)(floor(floor((double)(initNData/nPiece))+0.5));
2051  std::vector<double> invEdge;
2052  idxEdge.clear();
2053  idxEdge.push_back(x[0]);
2054  for (int i = 1; i < nPiece; ++i) {
2055    int valX = x[nElement*i];
2056    idxEdge.push_back(valX);
2057    invEdge.push_back(1.0/(double)valX);
2058  }
2059  idxEdge.push_back(x[x.size()-1]+1);
2060
2061  int nData = initNData;
2062  int nDOF = nPiece + 3;  //number of parameters to solve, namely, 4+(nPiece-1).
2063
2064  std::vector<double> x1, x2, x3, z1, x1z1, x2z1, x3z1, r1, residual;
2065  for (int i = 0; i < nChan; ++i) {
2066    double di = (double)i;
2067    double dD = (double)data[i];
2068    x1.push_back(di);
2069    x2.push_back(di*di);
2070    x3.push_back(di*di*di);
2071    z1.push_back(dD);
2072    x1z1.push_back(dD*di);
2073    x2z1.push_back(dD*di*di);
2074    x3z1.push_back(dD*di*di*di);
2075    r1.push_back(0.0);
2076    residual.push_back(0.0);
2077  }
2078
2079  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
2080    // xMatrix : horizontal concatenation of
2081    //           the least-sq. matrix (left) and an
2082    //           identity matrix (right).
2083    // the right part is used to calculate the inverse matrix of the left part.
2084    double xMatrix[nDOF][2*nDOF];
2085    double zMatrix[nDOF];
2086    for (int i = 0; i < nDOF; ++i) {
2087      for (int j = 0; j < 2*nDOF; ++j) {
2088        xMatrix[i][j] = 0.0;
2089      }
2090      xMatrix[i][nDOF+i] = 1.0;
2091      zMatrix[i] = 0.0;
2092    }
2093
2094    for (int n = 0; n < nPiece; ++n) {
2095      for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
2096
2097        if (maskArray[i] == 0) continue;
2098
2099        xMatrix[0][0] += 1.0;
2100        xMatrix[0][1] += x1[i];
2101        xMatrix[0][2] += x2[i];
2102        xMatrix[0][3] += x3[i];
2103        xMatrix[1][1] += x2[i];
2104        xMatrix[1][2] += x3[i];
2105        xMatrix[1][3] += x2[i]*x2[i];
2106        xMatrix[2][2] += x2[i]*x2[i];
2107        xMatrix[2][3] += x3[i]*x2[i];
2108        xMatrix[3][3] += x3[i]*x3[i];
2109        zMatrix[0] += z1[i];
2110        zMatrix[1] += x1z1[i];
2111        zMatrix[2] += x2z1[i];
2112        zMatrix[3] += x3z1[i];
2113
2114        for (int j = 0; j < n; ++j) {
2115          double q = 1.0 - x1[i]*invEdge[j];
2116          q = q*q*q;
2117          xMatrix[0][j+4] += q;
2118          xMatrix[1][j+4] += q*x1[i];
2119          xMatrix[2][j+4] += q*x2[i];
2120          xMatrix[3][j+4] += q*x3[i];
2121          for (int k = 0; k < j; ++k) {
2122            double r = 1.0 - x1[i]*invEdge[k];
2123            r = r*r*r;
2124            xMatrix[k+4][j+4] += r*q;
2125          }
2126          xMatrix[j+4][j+4] += q*q;
2127          zMatrix[j+4] += q*z1[i];
2128        }
2129
2130      }
2131    }
2132
2133    for (int i = 0; i < nDOF; ++i) {
2134      for (int j = 0; j < i; ++j) {
2135        xMatrix[i][j] = xMatrix[j][i];
2136      }
2137    }
2138
2139    std::vector<double> invDiag;
2140    for (int i = 0; i < nDOF; ++i) {
2141      invDiag.push_back(1.0/xMatrix[i][i]);
2142      for (int j = 0; j < nDOF; ++j) {
2143        xMatrix[i][j] *= invDiag[i];
2144      }
2145    }
2146
2147    for (int k = 0; k < nDOF; ++k) {
2148      for (int i = 0; i < nDOF; ++i) {
2149        if (i != k) {
2150          double factor1 = xMatrix[k][k];
2151          double factor2 = xMatrix[i][k];
2152          for (int j = k; j < 2*nDOF; ++j) {
2153            xMatrix[i][j] *= factor1;
2154            xMatrix[i][j] -= xMatrix[k][j]*factor2;
2155            xMatrix[i][j] /= factor1;
2156          }
2157        }
2158      }
2159      double xDiag = xMatrix[k][k];
2160      for (int j = k; j < 2*nDOF; ++j) {
2161        xMatrix[k][j] /= xDiag;
2162      }
2163    }
2164   
2165    for (int i = 0; i < nDOF; ++i) {
2166      for (int j = 0; j < nDOF; ++j) {
2167        xMatrix[i][nDOF+j] *= invDiag[j];
2168      }
2169    }
2170    //compute a vector y which consists of the coefficients of the best-fit spline curves
2171    //(a0,a1,a2,a3(,b3,c3,...)), namely, the ones for the leftmost piece and the ones of
2172    //cubic terms for the other pieces (in case nPiece>1).
2173    std::vector<double> y;
2174    y.clear();
2175    for (int i = 0; i < nDOF; ++i) {
2176      y.push_back(0.0);
2177      for (int j = 0; j < nDOF; ++j) {
2178        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
2179      }
2180    }
2181
2182    double a0 = y[0];
2183    double a1 = y[1];
2184    double a2 = y[2];
2185    double a3 = y[3];
2186    params.clear();
2187
2188    for (int n = 0; n < nPiece; ++n) {
2189      for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
2190        r1[i] = a0 + a1*x1[i] + a2*x2[i] + a3*x3[i];
2191        residual[i] = z1[i] - r1[i];
2192      }
2193      params.push_back(a0);
2194      params.push_back(a1);
2195      params.push_back(a2);
2196      params.push_back(a3);
2197
2198      if (n == nPiece-1) break;
2199
2200      double d = y[4+n];
2201      double iE = invEdge[n];
2202      a0 +=     d;
2203      a1 -= 3.0*d*iE;
2204      a2 += 3.0*d*iE*iE;
2205      a3 -=     d*iE*iE*iE;
2206    }
2207
2208    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
2209      break;
2210    } else {
2211      double stdDev = 0.0;
2212      for (int i = 0; i < nChan; ++i) {
2213        stdDev += residual[i]*residual[i]*(double)maskArray[i];
2214      }
2215      stdDev = sqrt(stdDev/(double)nData);
2216     
2217      double thres = stdDev * thresClip;
2218      int newNData = 0;
2219      for (int i = 0; i < nChan; ++i) {
2220        if (abs(residual[i]) >= thres) {
2221          maskArray[i] = 0;
2222        }
2223        if (maskArray[i] > 0) {
2224          newNData++;
2225        }
2226      }
2227      if (newNData == nData) {
2228        break; //no more flag to add. iteration stops.
2229      } else {
2230        nData = newNData;
2231      }
2232    }
2233  }
2234
2235  std::vector<float> result;
2236  if (getResidual) {
2237    for (int i = 0; i < nChan; ++i) {
2238      result.push_back((float)residual[i]);
2239    }
2240  } else {
2241    for (int i = 0; i < nChan; ++i) {
2242      result.push_back((float)r1[i]);
2243    }
2244  }
2245
2246  return result;
2247}
2248
2249  void Scantable::selectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves)
2250{
2251  nWaves.clear();
2252
2253  if (applyFFT) {
2254    string fftThAttr;
2255    float fftThSigma;
2256    int fftThTop;
2257    parseThresholdExpression(fftThresh, fftThAttr, fftThSigma, fftThTop);
2258    doSelectWaveNumbers(whichrow, chanMask, fftMethod, fftThSigma, fftThTop, fftThAttr, nWaves);
2259  }
2260
2261  addAuxWaveNumbers(addNWaves, rejectNWaves, nWaves);
2262}
2263
2264void Scantable::parseThresholdExpression(const std::string& fftThresh, std::string& fftThAttr, float& fftThSigma, int& fftThTop)
2265{
2266  uInt idxSigma = fftThresh.find("sigma");
2267  uInt idxTop   = fftThresh.find("top");
2268
2269  if (idxSigma == fftThresh.size() - 5) {
2270    std::istringstream is(fftThresh.substr(0, fftThresh.size() - 5));
2271    is >> fftThSigma;
2272    fftThAttr = "sigma";
2273  } else if (idxTop == 0) {
2274    std::istringstream is(fftThresh.substr(3));
2275    is >> fftThTop;
2276    fftThAttr = "top";
2277  } else {
2278    bool isNumber = true;
2279    for (uInt i = 0; i < fftThresh.size()-1; ++i) {
2280      char ch = (fftThresh.substr(i, 1).c_str())[0];
2281      if (!(isdigit(ch) || (fftThresh.substr(i, 1) == "."))) {
2282        isNumber = false;
2283        break;
2284      }
2285    }
2286    if (isNumber) {
2287      std::istringstream is(fftThresh);
2288      is >> fftThSigma;
2289      fftThAttr = "sigma";
2290    } else {
2291      throw(AipsError("fftthresh has a wrong value"));
2292    }
2293  }
2294}
2295
2296void Scantable::doSelectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const std::string& fftMethod, const float fftThSigma, const int fftThTop, const std::string& fftThAttr, std::vector<int>& nWaves)
2297{
2298  std::vector<float> fspec;
2299  if (fftMethod == "fft") {
2300    fspec = execFFT(whichrow, chanMask, false, true);
2301  //} else if (fftMethod == "lsp") {
2302  //  fspec = lombScarglePeriodogram(whichrow);
2303  }
2304
2305  if (fftThAttr == "sigma") {
2306    float mean  = 0.0;
2307    float mean2 = 0.0;
2308    for (uInt i = 0; i < fspec.size(); ++i) {
2309      mean  += fspec[i];
2310      mean2 += fspec[i]*fspec[i];
2311    }
2312    mean  /= float(fspec.size());
2313    mean2 /= float(fspec.size());
2314    float thres = mean + fftThSigma * float(sqrt(mean2 - mean*mean));
2315
2316    for (uInt i = 0; i < fspec.size(); ++i) {
2317      if (fspec[i] >= thres) {
2318        nWaves.push_back(i);
2319      }
2320    }
2321
2322  } else if (fftThAttr == "top") {
2323    for (int i = 0; i < fftThTop; ++i) {
2324      float max = 0.0;
2325      int maxIdx = 0;
2326      for (uInt j = 0; j < fspec.size(); ++j) {
2327        if (fspec[j] > max) {
2328          max = fspec[j];
2329          maxIdx = j;
2330        }
2331      }
2332      nWaves.push_back(maxIdx);
2333      fspec[maxIdx] = 0.0;
2334    }
2335
2336  }
2337
2338  if (nWaves.size() > 1) {
2339    sort(nWaves.begin(), nWaves.end());
2340  }
2341}
2342
2343void Scantable::addAuxWaveNumbers(const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves)
2344{
2345  for (uInt i = 0; i < addNWaves.size(); ++i) {
2346    bool found = false;
2347    for (uInt j = 0; j < nWaves.size(); ++j) {
2348      if (nWaves[j] == addNWaves[i]) {
2349        found = true;
2350        break;
2351      }
2352    }
2353    if (!found) nWaves.push_back(addNWaves[i]);
2354  }
2355
2356  for (uInt i = 0; i < rejectNWaves.size(); ++i) {
2357    for (std::vector<int>::iterator j = nWaves.begin(); j != nWaves.end(); ) {
2358      if (*j == rejectNWaves[i]) {
2359        j = nWaves.erase(j);
2360      } else {
2361        ++j;
2362      }
2363    }
2364  }
2365
2366  if (nWaves.size() > 1) {
2367    sort(nWaves.begin(), nWaves.end());
2368    unique(nWaves.begin(), nWaves.end());
2369  }
2370}
2371
2372void Scantable::sinusoidBaseline(const std::vector<bool>& mask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, float thresClip, int nIterClip, bool getResidual, bool outLogger, const std::string& blfile)
2373{
2374  ofstream ofs;
2375  String coordInfo = "";
2376  bool hasSameNchan = true;
2377  bool outTextFile = false;
2378
2379  if (blfile != "") {
2380    ofs.open(blfile.c_str(), ios::out | ios::app);
2381    if (ofs) outTextFile = true;
2382  }
2383
2384  if (outLogger || outTextFile) {
2385    coordInfo = getCoordInfo()[0];
2386    if (coordInfo == "") coordInfo = "channel";
2387    hasSameNchan = hasSameNchanOverIFs();
2388  }
2389
2390  //Fitter fitter = Fitter();
2391  //fitter.setExpression("sinusoid", nWaves);
2392  //fitter.setIterClipping(thresClip, nIterClip);
2393
2394  int nRow = nrow();
2395  std::vector<bool> chanMask;
2396  std::vector<int> nWaves;
2397
2398  for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2399    chanMask = getCompositeChanMask(whichrow, mask);
2400    selectWaveNumbers(whichrow, chanMask, applyFFT, fftMethod, fftThresh, addNWaves, rejectNWaves, nWaves);
2401
2402    //FOR DEBUGGING------------
2403    if (whichrow < 0) {// == nRow -1) {
2404      cout << "+++ i=" << setw(3) << whichrow << ", IF=" << setw(2) << getIF(whichrow);
2405      if (applyFFT) {
2406          cout << "[ ";
2407          for (uInt j = 0; j < nWaves.size(); ++j) {
2408            cout << nWaves[j] << ", ";
2409          }
2410          cout << " ]    " << endl;
2411      }
2412      cout << flush;
2413    }
2414    //-------------------------
2415
2416    //fitBaseline(chanMask, whichrow, fitter);
2417    //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
2418    std::vector<float> params;
2419    std::vector<float> res = doSinusoidFitting(getSpectrum(whichrow), chanMask, nWaves, params, thresClip, nIterClip, getResidual);
2420    setSpectrum(res, whichrow);
2421    //
2422
2423    outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "sinusoidBaseline()", params);
2424    showProgressOnTerminal(whichrow, nRow);
2425  }
2426
2427  if (outTextFile) ofs.close();
2428}
2429
2430void Scantable::autoSinusoidBaseline(const std::vector<bool>& mask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, bool outLogger, const std::string& blfile)
2431{
2432  ofstream ofs;
2433  String coordInfo = "";
2434  bool hasSameNchan = true;
2435  bool outTextFile = false;
2436
2437  if (blfile != "") {
2438    ofs.open(blfile.c_str(), ios::out | ios::app);
2439    if (ofs) outTextFile = true;
2440  }
2441
2442  if (outLogger || outTextFile) {
2443    coordInfo = getCoordInfo()[0];
2444    if (coordInfo == "") coordInfo = "channel";
2445    hasSameNchan = hasSameNchanOverIFs();
2446  }
2447
2448  //Fitter fitter = Fitter();
2449  //fitter.setExpression("sinusoid", nWaves);
2450  //fitter.setIterClipping(thresClip, nIterClip);
2451
2452  int nRow = nrow();
2453  std::vector<bool> chanMask;
2454  std::vector<int> nWaves;
2455
2456  int minEdgeSize = getIFNos().size()*2;
2457  STLineFinder lineFinder = STLineFinder();
2458  lineFinder.setOptions(threshold, 3, chanAvgLimit);
2459
2460  for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2461
2462    //-------------------------------------------------------
2463    //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
2464    //-------------------------------------------------------
2465    int edgeSize = edge.size();
2466    std::vector<int> currentEdge;
2467    if (edgeSize >= 2) {
2468      int idx = 0;
2469      if (edgeSize > 2) {
2470        if (edgeSize < minEdgeSize) {
2471          throw(AipsError("Length of edge element info is less than that of IFs"));
2472        }
2473        idx = 2 * getIF(whichrow);
2474      }
2475      currentEdge.push_back(edge[idx]);
2476      currentEdge.push_back(edge[idx+1]);
2477    } else {
2478      throw(AipsError("Wrong length of edge element"));
2479    }
2480    lineFinder.setData(getSpectrum(whichrow));
2481    lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
2482    chanMask = lineFinder.getMask();
2483    //-------------------------------------------------------
2484
2485    selectWaveNumbers(whichrow, chanMask, applyFFT, fftMethod, fftThresh, addNWaves, rejectNWaves, nWaves);
2486
2487    //fitBaseline(chanMask, whichrow, fitter);
2488    //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
2489    std::vector<float> params;
2490    std::vector<float> res = doSinusoidFitting(getSpectrum(whichrow), chanMask, nWaves, params, thresClip, nIterClip, getResidual);
2491    setSpectrum(res, whichrow);
2492    //
2493
2494    outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoSinusoidBaseline()", params);
2495    showProgressOnTerminal(whichrow, nRow);
2496  }
2497
2498  if (outTextFile) ofs.close();
2499}
2500
2501std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data, const std::vector<bool>& mask, const std::vector<int>& waveNumbers, std::vector<float>& params, float thresClip, int nIterClip, bool getResidual)
2502{
2503  if (data.size() != mask.size()) {
2504    throw(AipsError("data and mask sizes are not identical"));
2505  }
2506  if (data.size() < 2) {
2507    throw(AipsError("data size is too short"));
2508  }
2509  if (waveNumbers.size() == 0) {
2510    throw(AipsError("no wave numbers given"));
2511  }
2512  std::vector<int> nWaves;  // sorted and uniqued array of wave numbers
2513  nWaves.reserve(waveNumbers.size());
2514  copy(waveNumbers.begin(), waveNumbers.end(), back_inserter(nWaves));
2515  sort(nWaves.begin(), nWaves.end());
2516  std::vector<int>::iterator end_it = unique(nWaves.begin(), nWaves.end());
2517  nWaves.erase(end_it, nWaves.end());
2518
2519  int minNWaves = nWaves[0];
2520  if (minNWaves < 0) {
2521    throw(AipsError("wave number must be positive or zero (i.e. constant)"));
2522  }
2523  bool hasConstantTerm = (minNWaves == 0);
2524
2525  int nChan = data.size();
2526  std::vector<int> maskArray;
2527  std::vector<int> x;
2528  for (int i = 0; i < nChan; ++i) {
2529    maskArray.push_back(mask[i] ? 1 : 0);
2530    if (mask[i]) {
2531      x.push_back(i);
2532    }
2533  }
2534
2535  int initNData = x.size();
2536
2537  int nData = initNData;
2538  int nDOF = nWaves.size() * 2 - (hasConstantTerm ? 1 : 0);  //number of parameters to solve.
2539
2540  const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
2541  double baseXFactor = 2.0*PI/(double)(nChan-1);  //the denominator (nChan-1) should be changed to (xdata[nChan-1]-xdata[0]) for accepting x-values given in velocity or frequency when this function is moved to fitter. (2011/03/30 WK)
2542
2543  // xArray : contains elemental values for computing the least-square matrix.
2544  //          xArray.size() is nDOF and xArray[*].size() is nChan.
2545  //          Each xArray element are as follows:
2546  //          xArray[0]    = {1.0, 1.0, 1.0, ..., 1.0},
2547  //          xArray[2n-1] = {sin(nPI/L*x[0]), sin(nPI/L*x[1]), ..., sin(nPI/L*x[nChan])},
2548  //          xArray[2n]   = {cos(nPI/L*x[0]), cos(nPI/L*x[1]), ..., cos(nPI/L*x[nChan])},
2549  //          where (1 <= n <= nMaxWavesInSW),
2550  //          or,
2551  //          xArray[2n-1] = {sin(wn[n]PI/L*x[0]), sin(wn[n]PI/L*x[1]), ..., sin(wn[n]PI/L*x[nChan])},
2552  //          xArray[2n]   = {cos(wn[n]PI/L*x[0]), cos(wn[n]PI/L*x[1]), ..., cos(wn[n]PI/L*x[nChan])},
2553  //          where wn[n] denotes waveNumbers[n] (1 <= n <= waveNumbers.size()).
2554  std::vector<std::vector<double> > xArray;
2555  if (hasConstantTerm) {
2556    std::vector<double> xu;
2557    for (int j = 0; j < nChan; ++j) {
2558      xu.push_back(1.0);
2559    }
2560    xArray.push_back(xu);
2561  }
2562  for (uInt i = (hasConstantTerm ? 1 : 0); i < nWaves.size(); ++i) {
2563    double xFactor = baseXFactor*(double)nWaves[i];
2564    std::vector<double> xs, xc;
2565    xs.clear();
2566    xc.clear();
2567    for (int j = 0; j < nChan; ++j) {
2568      xs.push_back(sin(xFactor*(double)j));
2569      xc.push_back(cos(xFactor*(double)j));
2570    }
2571    xArray.push_back(xs);
2572    xArray.push_back(xc);
2573  }
2574
2575  std::vector<double> z1, r1, residual;
2576  for (int i = 0; i < nChan; ++i) {
2577    z1.push_back((double)data[i]);
2578    r1.push_back(0.0);
2579    residual.push_back(0.0);
2580  }
2581
2582  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
2583    // xMatrix : horizontal concatenation of
2584    //           the least-sq. matrix (left) and an
2585    //           identity matrix (right).
2586    // the right part is used to calculate the inverse matrix of the left part.
2587    double xMatrix[nDOF][2*nDOF];
2588    double zMatrix[nDOF];
2589    for (int i = 0; i < nDOF; ++i) {
2590      for (int j = 0; j < 2*nDOF; ++j) {
2591        xMatrix[i][j] = 0.0;
2592      }
2593      xMatrix[i][nDOF+i] = 1.0;
2594      zMatrix[i] = 0.0;
2595    }
2596
2597    for (int k = 0; k < nChan; ++k) {
2598      if (maskArray[k] == 0) continue;
2599
2600      for (int i = 0; i < nDOF; ++i) {
2601        for (int j = i; j < nDOF; ++j) {
2602          xMatrix[i][j] += xArray[i][k] * xArray[j][k];
2603        }
2604        zMatrix[i] += z1[k] * xArray[i][k];
2605      }
2606    }
2607
2608    for (int i = 0; i < nDOF; ++i) {
2609      for (int j = 0; j < i; ++j) {
2610        xMatrix[i][j] = xMatrix[j][i];
2611      }
2612    }
2613
2614    std::vector<double> invDiag;
2615    for (int i = 0; i < nDOF; ++i) {
2616      invDiag.push_back(1.0/xMatrix[i][i]);
2617      for (int j = 0; j < nDOF; ++j) {
2618        xMatrix[i][j] *= invDiag[i];
2619      }
2620    }
2621
2622    for (int k = 0; k < nDOF; ++k) {
2623      for (int i = 0; i < nDOF; ++i) {
2624        if (i != k) {
2625          double factor1 = xMatrix[k][k];
2626          double factor2 = xMatrix[i][k];
2627          for (int j = k; j < 2*nDOF; ++j) {
2628            xMatrix[i][j] *= factor1;
2629            xMatrix[i][j] -= xMatrix[k][j]*factor2;
2630            xMatrix[i][j] /= factor1;
2631          }
2632        }
2633      }
2634      double xDiag = xMatrix[k][k];
2635      for (int j = k; j < 2*nDOF; ++j) {
2636        xMatrix[k][j] /= xDiag;
2637      }
2638    }
2639   
2640    for (int i = 0; i < nDOF; ++i) {
2641      for (int j = 0; j < nDOF; ++j) {
2642        xMatrix[i][nDOF+j] *= invDiag[j];
2643      }
2644    }
2645    //compute a vector y which consists of the coefficients of the sinusoids forming the
2646    //best-fit curves (a0,s1,c1,s2,c2,...), where a0 is constant and s* and c* are of sine
2647    //and cosine functions, respectively.
2648    std::vector<double> y;
2649    params.clear();
2650    for (int i = 0; i < nDOF; ++i) {
2651      y.push_back(0.0);
2652      for (int j = 0; j < nDOF; ++j) {
2653        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
2654      }
2655      params.push_back(y[i]);
2656    }
2657
2658    for (int i = 0; i < nChan; ++i) {
2659      r1[i] = y[0];
2660      for (int j = 1; j < nDOF; ++j) {
2661        r1[i] += y[j]*xArray[j][i];
2662      }
2663      residual[i] = z1[i] - r1[i];
2664    }
2665
2666    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
2667      break;
2668    } else {
2669      double stdDev = 0.0;
2670      for (int i = 0; i < nChan; ++i) {
2671        stdDev += residual[i]*residual[i]*(double)maskArray[i];
2672      }
2673      stdDev = sqrt(stdDev/(double)nData);
2674     
2675      double thres = stdDev * thresClip;
2676      int newNData = 0;
2677      for (int i = 0; i < nChan; ++i) {
2678        if (abs(residual[i]) >= thres) {
2679          maskArray[i] = 0;
2680        }
2681        if (maskArray[i] > 0) {
2682          newNData++;
2683        }
2684      }
2685      if (newNData == nData) {
2686        break; //no more flag to add. iteration stops.
2687      } else {
2688        nData = newNData;
2689      }
2690    }
2691  }
2692
2693  std::vector<float> result;
2694  if (getResidual) {
2695    for (int i = 0; i < nChan; ++i) {
2696      result.push_back((float)residual[i]);
2697    }
2698  } else {
2699    for (int i = 0; i < nChan; ++i) {
2700      result.push_back((float)r1[i]);
2701    }
2702  }
2703
2704  return result;
2705}
2706
2707void Scantable::fitBaseline(const std::vector<bool>& mask, int whichrow, Fitter& fitter)
2708{
2709  std::vector<double> dAbcissa = getAbcissa(whichrow);
2710  std::vector<float> abcissa;
2711  for (uInt i = 0; i < dAbcissa.size(); ++i) {
2712    abcissa.push_back((float)dAbcissa[i]);
2713  }
2714  std::vector<float> spec = getSpectrum(whichrow);
2715
2716  fitter.setData(abcissa, spec, mask);
2717  fitter.lfit();
2718}
2719
2720std::vector<bool> Scantable::getCompositeChanMask(int whichrow, const std::vector<bool>& inMask)
2721{
2722  std::vector<bool> mask = getMask(whichrow);
2723  uInt maskSize = mask.size();
2724  if (maskSize != inMask.size()) {
2725    throw(AipsError("mask sizes are not the same."));
2726  }
2727  for (uInt i = 0; i < maskSize; ++i) {
2728    mask[i] = mask[i] && inMask[i];
2729  }
2730
2731  return mask;
2732}
2733
2734/*
2735std::vector<bool> Scantable::getCompositeChanMask(int whichrow, const std::vector<bool>& inMask, const std::vector<int>& edge, const int minEdgeSize, STLineFinder& lineFinder)
2736{
2737  int edgeSize = edge.size();
2738  std::vector<int> currentEdge;
2739  if (edgeSize >= 2) {
2740      int idx = 0;
2741      if (edgeSize > 2) {
2742        if (edgeSize < minEdgeSize) {
2743          throw(AipsError("Length of edge element info is less than that of IFs"));
2744        }
2745        idx = 2 * getIF(whichrow);
2746      }
2747      currentEdge.push_back(edge[idx]);
2748      currentEdge.push_back(edge[idx+1]);
2749  } else {
2750    throw(AipsError("Wrong length of edge element"));
2751  }
2752
2753  lineFinder.setData(getSpectrum(whichrow));
2754  lineFinder.findLines(getCompositeChanMask(whichrow, inMask), currentEdge, whichrow);
2755
2756  return lineFinder.getMask();
2757}
2758*/
2759
2760/* for poly. the variations of outputFittingResult() should be merged into one eventually (2011/3/10 WK)  */
2761void Scantable::outputFittingResult(bool outLogger, bool outTextFile, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, Fitter& fitter)
2762{
2763  if (outLogger || outTextFile) {
2764    std::vector<float> params = fitter.getParameters();
2765    std::vector<bool>  fixed  = fitter.getFixedParameters();
2766    float rms = getRms(chanMask, whichrow);
2767    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
2768
2769    if (outLogger) {
2770      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
2771      ols << formatBaselineParams(params, fixed, rms, masklist, whichrow, false) << LogIO::POST ;
2772    }
2773    if (outTextFile) {
2774      ofs << formatBaselineParams(params, fixed, rms, masklist, whichrow, true) << flush;
2775    }
2776  }
2777}
2778
2779/* for cspline. will be merged once cspline is available in fitter (2011/3/10 WK) */
2780void Scantable::outputFittingResult(bool outLogger, bool outTextFile, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, const std::vector<int>& edge, const std::vector<float>& params)
2781{
2782  if (outLogger || outTextFile) {
2783    float rms = getRms(chanMask, whichrow);
2784    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
2785    std::vector<bool> fixed;
2786    fixed.clear();
2787
2788    if (outLogger) {
2789      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
2790      ols << formatPiecewiseBaselineParams(edge, params, fixed, rms, masklist, whichrow, false) << LogIO::POST ;
2791    }
2792    if (outTextFile) {
2793      ofs << formatPiecewiseBaselineParams(edge, params, fixed, rms, masklist, whichrow, true) << flush;
2794    }
2795  }
2796}
2797
2798/* for sinusoid. will be merged once sinusoid is available in fitter (2011/3/10 WK) */
2799void Scantable::outputFittingResult(bool outLogger, bool outTextFile, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, const std::vector<float>& params)
2800{
2801  if (outLogger || outTextFile) {
2802    float rms = getRms(chanMask, whichrow);
2803    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
2804    std::vector<bool> fixed;
2805    fixed.clear();
2806
2807    if (outLogger) {
2808      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
2809      ols << formatBaselineParams(params, fixed, rms, masklist, whichrow, false) << LogIO::POST ;
2810    }
2811    if (outTextFile) {
2812      ofs << formatBaselineParams(params, fixed, rms, masklist, whichrow, true) << flush;
2813    }
2814  }
2815}
2816
2817void Scantable::showProgressOnTerminal(const int nProcessed, const int nTotal, const int nTotalThreshold)
2818{
2819  if (nTotal >= nTotalThreshold) {
2820    int nInterval = int(floor(double(nTotal)/100.0));
2821    if (nInterval == 0) nInterval++;
2822
2823    if (nProcessed == 0) {
2824      printf("\x1b[31m\x1b[1m");             //set red color, highlighted
2825      printf("[  0%%]");
2826      printf("\x1b[39m\x1b[0m");             //default attributes
2827      fflush(NULL);
2828    } else if (nProcessed % nInterval == 0) {
2829      printf("\r\x1b[1C");                   //go to the 2nd column
2830      printf("\x1b[31m\x1b[1m");             //set red color, highlighted
2831      printf("%3d", (int)(100.0*(double(nProcessed+1))/(double(nTotal))) );
2832      printf("\x1b[39m\x1b[0m");             //default attributes
2833      printf("\x1b[2C");                     //go to the end of line
2834      fflush(NULL);
2835    }
2836    if (nProcessed == nTotal - 1) {
2837      printf("\r\x1b[K");                    //clear
2838      fflush(NULL);
2839    }
2840  }
2841}
2842
2843std::vector<float> Scantable::execFFT(const int whichrow, const std::vector<bool>& inMask, bool getRealImag, bool getAmplitudeOnly)
2844{
2845  std::vector<bool>  mask = getMask(whichrow);
2846
2847  if (inMask.size() > 0) {
2848    uInt maskSize = mask.size();
2849    if (maskSize != inMask.size()) {
2850      throw(AipsError("mask sizes are not the same."));
2851    }
2852    for (uInt i = 0; i < maskSize; ++i) {
2853      mask[i] = mask[i] && inMask[i];
2854    }
2855  }
2856
2857  Vector<Float> spec = getSpectrum(whichrow);
2858  mathutil::doZeroOrderInterpolation(spec, mask);
2859
2860  FFTServer<Float,Complex> ffts;
2861  Vector<Complex> fftres;
2862  ffts.fft0(fftres, spec);
2863
2864  std::vector<float> res;
2865  float norm = float(2.0/double(spec.size()));
2866
2867  if (getRealImag) {
2868    for (uInt i = 0; i < fftres.size(); ++i) {
2869      res.push_back(real(fftres[i])*norm);
2870      res.push_back(imag(fftres[i])*norm);
2871    }
2872  } else {
2873    for (uInt i = 0; i < fftres.size(); ++i) {
2874      res.push_back(abs(fftres[i])*norm);
2875      if (!getAmplitudeOnly) res.push_back(arg(fftres[i]));
2876    }
2877  }
2878
2879  return res;
2880}
2881
2882
2883float Scantable::getRms(const std::vector<bool>& mask, int whichrow)
2884{
2885  Vector<Float> spec;
2886  specCol_.get(whichrow, spec);
2887
2888  float mean = 0.0;
2889  float smean = 0.0;
2890  int n = 0;
2891  for (uInt i = 0; i < spec.nelements(); ++i) {
2892    if (mask[i]) {
2893      mean += spec[i];
2894      smean += spec[i]*spec[i];
2895      n++;
2896    }
2897  }
2898
2899  mean /= (float)n;
2900  smean /= (float)n;
2901
2902  return sqrt(smean - mean*mean);
2903}
2904
2905
2906std::string Scantable::formatBaselineParamsHeader(int whichrow, const std::string& masklist, bool verbose) const
2907{
2908  ostringstream oss;
2909
2910  if (verbose) {
2911    oss <<  " Scan[" << getScan(whichrow)  << "]";
2912    oss <<  " Beam[" << getBeam(whichrow)  << "]";
2913    oss <<    " IF[" << getIF(whichrow)    << "]";
2914    oss <<   " Pol[" << getPol(whichrow)   << "]";
2915    oss << " Cycle[" << getCycle(whichrow) << "]: " << endl;
2916    oss << "Fitter range = " << masklist << endl;
2917    oss << "Baseline parameters" << endl;
2918    oss << flush;
2919  }
2920
2921  return String(oss);
2922}
2923
2924std::string Scantable::formatBaselineParamsFooter(float rms, bool verbose) const
2925{
2926  ostringstream oss;
2927
2928  if (verbose) {
2929    oss << "Results of baseline fit" << endl;
2930    oss << "  rms = " << setprecision(6) << rms << endl;
2931    for (int i = 0; i < 60; ++i) {
2932      oss << "-";
2933    }
2934    oss << endl;
2935    oss << flush;
2936  }
2937
2938  return String(oss);
2939}
2940
2941std::string Scantable::formatBaselineParams(const std::vector<float>& params,
2942                                            const std::vector<bool>& fixed,
2943                                            float rms,
2944                                            const std::string& masklist,
2945                                            int whichrow,
2946                                            bool verbose,
2947                                            int start, int count,
2948                                            bool resetparamid) const
2949{
2950  int nParam = (int)(params.size());
2951
2952  if (nParam < 1) {
2953    return("  Not fitted");
2954  } else {
2955
2956    ostringstream oss;
2957    oss << formatBaselineParamsHeader(whichrow, masklist, verbose);
2958
2959    if (start < 0) start = 0;
2960    if (count < 0) count = nParam;
2961    int end = start + count;
2962    if (end > nParam) end = nParam;
2963    int paramidoffset = (resetparamid) ? (-start) : 0;
2964
2965    for (int i = start; i < end; ++i) {
2966      if (i > start) {
2967        oss << ",";
2968      }
2969      std::string sFix = ((fixed.size() > 0) && (fixed[i]) && verbose) ? "(fixed)" : "";
2970      oss << "  p" << (i+paramidoffset) << sFix << "= " << right << setw(13) << setprecision(6) << params[i];
2971    }
2972
2973    oss << endl;
2974    oss << formatBaselineParamsFooter(rms, verbose);
2975
2976    return String(oss);
2977  }
2978
2979}
2980
2981std::string Scantable::formatPiecewiseBaselineParams(const std::vector<int>& ranges, const std::vector<float>& params, const std::vector<bool>& fixed, float rms, const std::string& masklist, int whichrow, bool verbose) const
2982{
2983  int nOutParam = (int)(params.size());
2984  int nPiece = (int)(ranges.size()) - 1;
2985
2986  if (nOutParam < 1) {
2987    return("  Not fitted");
2988  } else if (nPiece < 0) {
2989    return formatBaselineParams(params, fixed, rms, masklist, whichrow, verbose);
2990  } else if (nPiece < 1) {
2991    return("  Bad count of the piece edge info");
2992  } else if (nOutParam % nPiece != 0) {
2993    return("  Bad count of the output baseline parameters");
2994  } else {
2995
2996    int nParam = nOutParam / nPiece;
2997
2998    ostringstream oss;
2999    oss << formatBaselineParamsHeader(whichrow, masklist, verbose);
3000
3001    stringstream ss;
3002    ss << ranges[nPiece] << flush;
3003    int wRange = ss.str().size() * 2 + 5;
3004
3005    for (int i = 0; i < nPiece; ++i) {
3006      ss.str("");
3007      ss << "  [" << ranges[i] << "," << (ranges[i+1]-1) << "]";
3008      oss << left << setw(wRange) << ss.str();
3009      oss << formatBaselineParams(params, fixed, rms, masklist, whichrow, false, i*nParam, nParam, true);
3010    }
3011
3012    oss << formatBaselineParamsFooter(rms, verbose);
3013
3014    return String(oss);
3015  }
3016
3017}
3018
3019bool Scantable::hasSameNchanOverIFs()
3020{
3021  int nIF = nif(-1);
3022  int nCh;
3023  int totalPositiveNChan = 0;
3024  int nPositiveNChan = 0;
3025
3026  for (int i = 0; i < nIF; ++i) {
3027    nCh = nchan(i);
3028    if (nCh > 0) {
3029      totalPositiveNChan += nCh;
3030      nPositiveNChan++;
3031    }
3032  }
3033
3034  return (totalPositiveNChan == (nPositiveNChan * nchan(0)));
3035}
3036
3037std::string Scantable::getMaskRangeList(const std::vector<bool>& mask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, bool verbose)
3038{
3039  if (mask.size() < 2) {
3040    throw(AipsError("The mask elements should be > 1"));
3041  }
3042  int IF = getIF(whichrow);
3043  if (mask.size() != (uInt)nchan(IF)) {
3044    throw(AipsError("Number of channels in scantable != number of mask elements"));
3045  }
3046
3047  if (verbose) {
3048    LogIO logOs(LogOrigin("Scantable", "getMaskRangeList()", WHERE));
3049    logOs << LogIO::WARN << "The current mask window unit is " << coordInfo;
3050    if (!hasSameNchan) {
3051      logOs << endl << "This mask is only valid for IF=" << IF;
3052    }
3053    logOs << LogIO::POST;
3054  }
3055
3056  std::vector<double> abcissa = getAbcissa(whichrow);
3057  std::vector<int> edge = getMaskEdgeIndices(mask);
3058
3059  ostringstream oss;
3060  oss.setf(ios::fixed);
3061  oss << setprecision(1) << "[";
3062  for (uInt i = 0; i < edge.size(); i+=2) {
3063    if (i > 0) oss << ",";
3064    oss << "[" << (float)abcissa[edge[i]] << "," << (float)abcissa[edge[i+1]] << "]";
3065  }
3066  oss << "]" << flush;
3067
3068  return String(oss);
3069}
3070
3071std::vector<int> Scantable::getMaskEdgeIndices(const std::vector<bool>& mask)
3072{
3073  if (mask.size() < 2) {
3074    throw(AipsError("The mask elements should be > 1"));
3075  }
3076
3077  std::vector<int> out, startIndices, endIndices;
3078  int maskSize = mask.size();
3079
3080  startIndices.clear();
3081  endIndices.clear();
3082
3083  if (mask[0]) {
3084    startIndices.push_back(0);
3085  }
3086  for (int i = 1; i < maskSize; ++i) {
3087    if ((!mask[i-1]) && mask[i]) {
3088      startIndices.push_back(i);
3089    } else if (mask[i-1] && (!mask[i])) {
3090      endIndices.push_back(i-1);
3091    }
3092  }
3093  if (mask[maskSize-1]) {
3094    endIndices.push_back(maskSize-1);
3095  }
3096
3097  if (startIndices.size() != endIndices.size()) {
3098    throw(AipsError("Inconsistent Mask Size: bad data?"));
3099  }
3100  for (uInt i = 0; i < startIndices.size(); ++i) {
3101    if (startIndices[i] > endIndices[i]) {
3102      throw(AipsError("Mask start index > mask end index"));
3103    }
3104  }
3105
3106  out.clear();
3107  for (uInt i = 0; i < startIndices.size(); ++i) {
3108    out.push_back(startIndices[i]);
3109    out.push_back(endIndices[i]);
3110  }
3111
3112  return out;
3113}
3114
3115vector<float> Scantable::getTsysSpectrum( int whichrow ) const
3116{
3117  Vector<Float> tsys( tsysCol_(whichrow) ) ;
3118  vector<float> stlTsys ;
3119  tsys.tovector( stlTsys ) ;
3120  return stlTsys ;
3121}
3122
3123
3124}
3125//namespace asap
Note: See TracBrowser for help on using the repository browser.