[1846] | 1 | """This module defines the scantable class."""
|
---|
| 2 |
|
---|
[1697] | 3 | import os
|
---|
[2751] | 4 | import re
|
---|
[2315] | 5 | import tempfile
|
---|
[1948] | 6 | import numpy
|
---|
[1691] | 7 | try:
|
---|
| 8 | from functools import wraps as wraps_dec
|
---|
| 9 | except ImportError:
|
---|
| 10 | from asap.compatibility import wraps as wraps_dec
|
---|
| 11 |
|
---|
[1824] | 12 | from asap.env import is_casapy
|
---|
[876] | 13 | from asap._asap import Scantable
|
---|
[2004] | 14 | from asap._asap import filler, msfiller
|
---|
[1824] | 15 | from asap.parameters import rcParams
|
---|
[1862] | 16 | from asap.logging import asaplog, asaplog_post_dec
|
---|
[1824] | 17 | from asap.selector import selector
|
---|
| 18 | from asap.linecatalog import linecatalog
|
---|
[1600] | 19 | from asap.coordinate import coordinate
|
---|
[1859] | 20 | from asap.utils import _n_bools, mask_not, mask_and, mask_or, page
|
---|
[1907] | 21 | from asap.asapfitter import fitter
|
---|
[102] | 22 |
|
---|
[1689] | 23 | def preserve_selection(func):
|
---|
[1691] | 24 | @wraps_dec(func)
|
---|
[1689] | 25 | def wrap(obj, *args, **kw):
|
---|
| 26 | basesel = obj.get_selection()
|
---|
[1857] | 27 | try:
|
---|
| 28 | val = func(obj, *args, **kw)
|
---|
| 29 | finally:
|
---|
| 30 | obj.set_selection(basesel)
|
---|
[1689] | 31 | return val
|
---|
| 32 | return wrap
|
---|
| 33 |
|
---|
[1846] | 34 | def is_scantable(filename):
|
---|
| 35 | """Is the given file a scantable?
|
---|
[1689] | 36 |
|
---|
[1846] | 37 | Parameters:
|
---|
| 38 |
|
---|
| 39 | filename: the name of the file/directory to test
|
---|
| 40 |
|
---|
| 41 | """
|
---|
[1883] | 42 | if ( os.path.isdir(filename)
|
---|
| 43 | and os.path.exists(filename+'/table.info')
|
---|
| 44 | and os.path.exists(filename+'/table.dat') ):
|
---|
| 45 | f=open(filename+'/table.info')
|
---|
| 46 | l=f.readline()
|
---|
| 47 | f.close()
|
---|
[2753] | 48 | match_pattern = '^Type = (Scantable)? *$'
|
---|
[2751] | 49 | if re.match(match_pattern,l):
|
---|
[1883] | 50 | return True
|
---|
| 51 | else:
|
---|
| 52 | return False
|
---|
| 53 | else:
|
---|
| 54 | return False
|
---|
| 55 | ## return (os.path.isdir(filename)
|
---|
| 56 | ## and not os.path.exists(filename+'/table.f1')
|
---|
| 57 | ## and os.path.exists(filename+'/table.info'))
|
---|
[1697] | 58 |
|
---|
[1883] | 59 | def is_ms(filename):
|
---|
| 60 | """Is the given file a MeasurementSet?
|
---|
[1697] | 61 |
|
---|
[1883] | 62 | Parameters:
|
---|
| 63 |
|
---|
| 64 | filename: the name of the file/directory to test
|
---|
| 65 |
|
---|
| 66 | """
|
---|
| 67 | if ( os.path.isdir(filename)
|
---|
| 68 | and os.path.exists(filename+'/table.info')
|
---|
| 69 | and os.path.exists(filename+'/table.dat') ):
|
---|
| 70 | f=open(filename+'/table.info')
|
---|
| 71 | l=f.readline()
|
---|
| 72 | f.close()
|
---|
| 73 | if ( l.find('Measurement Set') != -1 ):
|
---|
| 74 | return True
|
---|
| 75 | else:
|
---|
| 76 | return False
|
---|
| 77 | else:
|
---|
| 78 | return False
|
---|
[2186] | 79 |
|
---|
| 80 | def normalise_edge_param(edge):
|
---|
| 81 | """\
|
---|
| 82 | Convert a given edge value to a one-dimensional array that can be
|
---|
| 83 | given to baseline-fitting/subtraction functions.
|
---|
| 84 | The length of the output value will be an even because values for
|
---|
| 85 | the both sides of spectra are to be contained for each IF. When
|
---|
| 86 | the length is 2, the values will be applied to all IFs. If the length
|
---|
| 87 | is larger than 2, it will be 2*ifnos().
|
---|
| 88 | Accepted format of edge include:
|
---|
| 89 | * an integer - will be used for both sides of spectra of all IFs.
|
---|
| 90 | e.g. 10 is converted to [10,10]
|
---|
[2277] | 91 | * an empty list/tuple [] - converted to [0, 0] and used for all IFs.
|
---|
[2186] | 92 | * a list/tuple containing an integer - same as the above case.
|
---|
| 93 | e.g. [10] is converted to [10,10]
|
---|
| 94 | * a list/tuple containing two integers - will be used for all IFs.
|
---|
| 95 | e.g. [5,10] is output as it is. no need to convert.
|
---|
| 96 | * a list/tuple of lists/tuples containing TWO integers -
|
---|
| 97 | each element of edge will be used for each IF.
|
---|
[2277] | 98 | e.g. [[5,10],[15,20]] - [5,10] for IF[0] and [15,20] for IF[1].
|
---|
| 99 |
|
---|
| 100 | If an element contains the same integer values, the input 'edge'
|
---|
| 101 | parameter can be given in a simpler shape in the following cases:
|
---|
[2186] | 102 | ** when len(edge)!=2
|
---|
[2277] | 103 | any elements containing the same values can be replaced
|
---|
| 104 | to single integers.
|
---|
| 105 | e.g. [[15,15]] can be simplified to [15] (or [15,15] or 15 also).
|
---|
| 106 | e.g. [[1,1],[2,2],[3,3]] can be simplified to [1,2,3].
|
---|
[2186] | 107 | ** when len(edge)=2
|
---|
| 108 | care is needed for this case: ONLY ONE of the
|
---|
| 109 | elements can be a single integer,
|
---|
| 110 | e.g. [[5,5],[10,10]] can be simplified to [5,[10,10]]
|
---|
[2277] | 111 | or [[5,5],10], but can NOT be simplified to [5,10].
|
---|
[2186] | 112 | when [5,10] given, it is interpreted as
|
---|
[2277] | 113 | [[5,10],[5,10],[5,10],...] instead, as shown before.
|
---|
[2186] | 114 | """
|
---|
| 115 | from asap import _is_sequence_or_number as _is_valid
|
---|
| 116 | if isinstance(edge, list) or isinstance(edge, tuple):
|
---|
| 117 | for edgepar in edge:
|
---|
| 118 | if not _is_valid(edgepar, int):
|
---|
| 119 | raise ValueError, "Each element of the 'edge' tuple has \
|
---|
| 120 | to be a pair of integers or an integer."
|
---|
| 121 | if isinstance(edgepar, list) or isinstance(edgepar, tuple):
|
---|
| 122 | if len(edgepar) != 2:
|
---|
| 123 | raise ValueError, "Each element of the 'edge' tuple has \
|
---|
| 124 | to be a pair of integers or an integer."
|
---|
| 125 | else:
|
---|
| 126 | if not _is_valid(edge, int):
|
---|
| 127 | raise ValueError, "Parameter 'edge' has to be an integer or a \
|
---|
| 128 | pair of integers specified as a tuple. \
|
---|
| 129 | Nested tuples are allowed \
|
---|
| 130 | to make individual selection for different IFs."
|
---|
| 131 |
|
---|
| 132 |
|
---|
| 133 | if isinstance(edge, int):
|
---|
| 134 | edge = [ edge, edge ] # e.g. 3 => [3,3]
|
---|
| 135 | elif isinstance(edge, list) or isinstance(edge, tuple):
|
---|
| 136 | if len(edge) == 0:
|
---|
| 137 | edge = [0, 0] # e.g. [] => [0,0]
|
---|
| 138 | elif len(edge) == 1:
|
---|
| 139 | if isinstance(edge[0], int):
|
---|
| 140 | edge = [ edge[0], edge[0] ] # e.g. [1] => [1,1]
|
---|
| 141 |
|
---|
| 142 | commonedge = True
|
---|
| 143 | if len(edge) > 2: commonedge = False
|
---|
| 144 | else:
|
---|
| 145 | for edgepar in edge:
|
---|
| 146 | if isinstance(edgepar, list) or isinstance(edgepar, tuple):
|
---|
| 147 | commonedge = False
|
---|
| 148 | break
|
---|
| 149 |
|
---|
| 150 | if commonedge:
|
---|
| 151 | if len(edge) > 1:
|
---|
| 152 | norm_edge = edge
|
---|
| 153 | else:
|
---|
| 154 | norm_edge = edge + edge
|
---|
| 155 | else:
|
---|
| 156 | norm_edge = []
|
---|
| 157 | for edgepar in edge:
|
---|
| 158 | if isinstance(edgepar, int):
|
---|
| 159 | norm_edge += [edgepar, edgepar]
|
---|
| 160 | else:
|
---|
| 161 | norm_edge += edgepar
|
---|
| 162 |
|
---|
| 163 | return norm_edge
|
---|
| 164 |
|
---|
| 165 | def raise_fitting_failure_exception(e):
|
---|
| 166 | msg = "The fit failed, possibly because it didn't converge."
|
---|
| 167 | if rcParams["verbose"]:
|
---|
| 168 | asaplog.push(str(e))
|
---|
| 169 | asaplog.push(str(msg))
|
---|
| 170 | else:
|
---|
| 171 | raise RuntimeError(str(e)+'\n'+msg)
|
---|
| 172 |
|
---|
[2189] | 173 | def pack_progress_params(showprogress, minnrow):
|
---|
| 174 | return str(showprogress).lower() + ',' + str(minnrow)
|
---|
| 175 |
|
---|
[2767] | 176 | def pack_blinfo(blinfo, maxirow):
|
---|
| 177 | """\
|
---|
| 178 | convert a dictionary or a list of dictionaries of baseline info
|
---|
| 179 | into a list of comma-separated strings.
|
---|
| 180 | """
|
---|
| 181 | if isinstance(blinfo, dict):
|
---|
| 182 | res = do_pack_blinfo(blinfo, maxirow)
|
---|
| 183 | return [res] if res != '' else []
|
---|
| 184 | elif isinstance(blinfo, list) or isinstance(blinfo, tuple):
|
---|
| 185 | res = []
|
---|
| 186 | for i in xrange(len(blinfo)):
|
---|
| 187 | resi = do_pack_blinfo(blinfo[i], maxirow)
|
---|
| 188 | if resi != '':
|
---|
| 189 | res.append(resi)
|
---|
| 190 | return res
|
---|
| 191 |
|
---|
| 192 | def do_pack_blinfo(blinfo, maxirow):
|
---|
| 193 | """\
|
---|
| 194 | convert a dictionary of baseline info for a spectrum into
|
---|
| 195 | a comma-separated string.
|
---|
| 196 | """
|
---|
| 197 | dinfo = {}
|
---|
| 198 | for key in ['row', 'blfunc', 'masklist']:
|
---|
| 199 | if blinfo.has_key(key):
|
---|
| 200 | val = blinfo[key]
|
---|
| 201 | if key == 'row':
|
---|
| 202 | irow = val
|
---|
| 203 | if isinstance(val, list) or isinstance(val, tuple):
|
---|
| 204 | slval = []
|
---|
| 205 | for i in xrange(len(val)):
|
---|
| 206 | if isinstance(val[i], list) or isinstance(val[i], tuple):
|
---|
| 207 | for j in xrange(len(val[i])):
|
---|
| 208 | slval.append(str(val[i][j]))
|
---|
| 209 | else:
|
---|
| 210 | slval.append(str(val[i]))
|
---|
| 211 | sval = ",".join(slval)
|
---|
| 212 | else:
|
---|
| 213 | sval = str(val)
|
---|
| 214 |
|
---|
| 215 | dinfo[key] = sval
|
---|
| 216 | else:
|
---|
| 217 | raise ValueError("'"+key+"' is missing in blinfo.")
|
---|
| 218 |
|
---|
| 219 | if irow >= maxirow: return ''
|
---|
| 220 |
|
---|
| 221 | for key in ['order', 'npiece', 'nwave']:
|
---|
| 222 | if blinfo.has_key(key):
|
---|
| 223 | val = blinfo[key]
|
---|
| 224 | if isinstance(val, list) or isinstance(val, tuple):
|
---|
| 225 | slval = []
|
---|
| 226 | for i in xrange(len(val)):
|
---|
| 227 | slval.append(str(val[i]))
|
---|
| 228 | sval = ",".join(slval)
|
---|
| 229 | else:
|
---|
| 230 | sval = str(val)
|
---|
| 231 | dinfo[key] = sval
|
---|
| 232 |
|
---|
| 233 | blfunc = dinfo['blfunc']
|
---|
| 234 | fspec_keys = {'poly': 'order', 'chebyshev': 'order', 'cspline': 'npiece', 'sinusoid': 'nwave'}
|
---|
| 235 |
|
---|
| 236 | fspec_key = fspec_keys[blfunc]
|
---|
| 237 | if not blinfo.has_key(fspec_key):
|
---|
| 238 | raise ValueError("'"+fspec_key+"' is missing in blinfo.")
|
---|
| 239 |
|
---|
| 240 | clip_params_n = 0
|
---|
| 241 | for key in ['clipthresh', 'clipniter']:
|
---|
| 242 | if blinfo.has_key(key):
|
---|
| 243 | clip_params_n += 1
|
---|
| 244 | dinfo[key] = str(blinfo[key])
|
---|
| 245 |
|
---|
| 246 | if clip_params_n == 0:
|
---|
| 247 | dinfo['clipthresh'] = '0.0'
|
---|
| 248 | dinfo['clipniter'] = '0'
|
---|
| 249 | elif clip_params_n != 2:
|
---|
| 250 | raise ValueError("both 'clipthresh' and 'clipniter' must be given for n-sigma clipping.")
|
---|
| 251 |
|
---|
| 252 | lf_params_n = 0
|
---|
| 253 | for key in ['thresh', 'edge', 'chan_avg_limit']:
|
---|
| 254 | if blinfo.has_key(key):
|
---|
| 255 | lf_params_n += 1
|
---|
| 256 | val = blinfo[key]
|
---|
| 257 | if isinstance(val, list) or isinstance(val, tuple):
|
---|
| 258 | slval = []
|
---|
| 259 | for i in xrange(len(val)):
|
---|
| 260 | slval.append(str(val[i]))
|
---|
| 261 | sval = ",".join(slval)
|
---|
| 262 | else:
|
---|
| 263 | sval = str(val)
|
---|
| 264 | dinfo[key] = sval
|
---|
| 265 |
|
---|
| 266 | if lf_params_n == 3:
|
---|
| 267 | dinfo['use_linefinder'] = 'true'
|
---|
[2810] | 268 | elif lf_params_n == 0:
|
---|
[2767] | 269 | dinfo['use_linefinder'] = 'false'
|
---|
| 270 | dinfo['thresh'] = ''
|
---|
| 271 | dinfo['edge'] = ''
|
---|
| 272 | dinfo['chan_avg_limit'] = ''
|
---|
| 273 | else:
|
---|
| 274 | raise ValueError("all of 'thresh', 'edge' and 'chan_avg_limit' must be given to use linefinder.")
|
---|
| 275 |
|
---|
| 276 | slblinfo = [dinfo['row'], blfunc, dinfo[fspec_key], dinfo['masklist'], \
|
---|
| 277 | dinfo['clipthresh'], dinfo['clipniter'], \
|
---|
| 278 | dinfo['use_linefinder'], dinfo['thresh'], dinfo['edge'], dinfo['chan_avg_limit']]
|
---|
| 279 |
|
---|
| 280 | return ":".join(slblinfo)
|
---|
| 281 |
|
---|
| 282 | def parse_fitresult(sres):
|
---|
| 283 | """\
|
---|
| 284 | Parse the returned value of apply_bltable() or sub_baseline() and
|
---|
| 285 | extract row number, the best-fit coefficients and rms, then pack
|
---|
| 286 | them into a dictionary.
|
---|
| 287 | The input value is generated by Scantable::packFittingResults() and
|
---|
| 288 | formatted as 'row:coeff[0],coeff[1],..,coeff[n-1]:rms'.
|
---|
| 289 | """
|
---|
| 290 | res = []
|
---|
| 291 | for i in xrange(len(sres)):
|
---|
| 292 | (srow, scoeff, srms) = sres[i].split(":")
|
---|
| 293 | row = int(srow)
|
---|
| 294 | rms = float(srms)
|
---|
| 295 | lscoeff = scoeff.split(",")
|
---|
| 296 | coeff = []
|
---|
| 297 | for j in xrange(len(lscoeff)):
|
---|
| 298 | coeff.append(float(lscoeff[j]))
|
---|
| 299 | res.append({'row': row, 'coeff': coeff, 'rms': rms})
|
---|
| 300 |
|
---|
| 301 | return res
|
---|
| 302 |
|
---|
[2882] | 303 | def is_number(s):
|
---|
| 304 | s = s.strip()
|
---|
| 305 | res = True
|
---|
| 306 | try:
|
---|
| 307 | a = float(s)
|
---|
| 308 | res = True
|
---|
| 309 | except:
|
---|
| 310 | res = False
|
---|
| 311 | finally:
|
---|
| 312 | return res
|
---|
| 313 |
|
---|
| 314 | def is_frequency(s):
|
---|
| 315 | s = s.strip()
|
---|
| 316 | return (s[-2:].lower() == "hz")
|
---|
| 317 |
|
---|
[2884] | 318 | def get_freq_by_string(s1, s2):
|
---|
| 319 | if not (is_number(s1) and is_frequency(s2)):
|
---|
[2882] | 320 | raise RuntimeError("Invalid input string.")
|
---|
| 321 |
|
---|
| 322 | prefix_list = ["a", "f", "p", "n", "u", "m", ".", "k", "M", "G", "T", "P", "E"]
|
---|
| 323 | factor_list = [1e-18, 1e-15, 1e-12, 1e-9, 1e-6, 1e-3, 1.0, 1e+3, 1e+6, 1e+9, 1e+12, 1e+15, 1e+18]
|
---|
| 324 |
|
---|
[2884] | 325 | s1 = s1.strip()
|
---|
| 326 | s2 = s2.strip()
|
---|
[2882] | 327 |
|
---|
[2884] | 328 | prefix = s2[-3:-2]
|
---|
[2882] | 329 | if is_number(prefix):
|
---|
[2884] | 330 | res1 = float(s1)
|
---|
| 331 | res2 = float(s2[:-2])
|
---|
[2882] | 332 | else:
|
---|
[2884] | 333 | factor = factor_list[prefix_list.index(prefix)]
|
---|
| 334 | res1 = float(s1) * factor
|
---|
| 335 | res2 = float(s2[:-3]) * factor
|
---|
[2882] | 336 |
|
---|
[2884] | 337 | return (res1, res2)
|
---|
[2882] | 338 |
|
---|
| 339 | def is_velocity(s):
|
---|
| 340 | s = s.strip()
|
---|
| 341 | return (s[-3:].lower() == "m/s")
|
---|
| 342 |
|
---|
[2884] | 343 | def get_velocity_by_string(s1, s2):
|
---|
| 344 | if not (is_number(s1) and is_velocity(s2)):
|
---|
[2882] | 345 | raise RuntimeError("Invalid input string.")
|
---|
| 346 |
|
---|
[2884] | 347 | # note that the default velocity unit is km/s
|
---|
[2882] | 348 | prefix_list = [".", "k"]
|
---|
| 349 | factor_list = [1e-3, 1.0]
|
---|
| 350 |
|
---|
[2884] | 351 | s1 = s1.strip()
|
---|
| 352 | s2 = s2.strip()
|
---|
[2882] | 353 |
|
---|
[2884] | 354 | prefix = s2[-4:-3]
|
---|
| 355 | if is_number(prefix): # in case velocity unit m/s
|
---|
| 356 | res1 = float(s1) * 1e-3
|
---|
| 357 | res2 = float(s2[:-3]) * 1e-3
|
---|
[2882] | 358 | else:
|
---|
[2884] | 359 | factor = factor_list[prefix_list.index(prefix)]
|
---|
| 360 | res1 = float(s1) * factor
|
---|
| 361 | res2 = float(s2[:-4]) * factor
|
---|
[2882] | 362 |
|
---|
[2884] | 363 | return (res1, res2)
|
---|
[2882] | 364 |
|
---|
[2889] | 365 | def get_frequency_by_velocity(restfreq, vel, doppler):
|
---|
[2882] | 366 | # vel is in unit of km/s
|
---|
| 367 |
|
---|
| 368 | # speed of light
|
---|
| 369 | vel_c = 299792.458
|
---|
| 370 |
|
---|
| 371 | import math
|
---|
| 372 | r = vel / vel_c
|
---|
| 373 |
|
---|
[2889] | 374 | if doppler.lower() == 'radio':
|
---|
| 375 | return restfreq * (1.0 - r)
|
---|
| 376 | if doppler.lower() == 'optical':
|
---|
| 377 | return restfreq / (1.0 + r)
|
---|
| 378 | else:
|
---|
| 379 | return restfreq * math.sqrt((1.0 - r) / (1.0 + r))
|
---|
[2882] | 380 |
|
---|
[2891] | 381 | def get_restfreq_in_Hz(s_restfreq):
|
---|
| 382 | value = 0.0
|
---|
| 383 | unit = ""
|
---|
| 384 | s = s_restfreq.replace(" ","")
|
---|
[2889] | 385 |
|
---|
[2891] | 386 | for i in range(len(s))[::-1]:
|
---|
| 387 | if s[i].isalpha():
|
---|
| 388 | unit = s[i] + unit
|
---|
| 389 | else:
|
---|
| 390 | value = float(s[0:i+1])
|
---|
| 391 | break
|
---|
| 392 |
|
---|
| 393 | if (unit == "") or (unit.lower() == "hz"):
|
---|
| 394 | return value
|
---|
| 395 | elif (len(unit) == 3) and (unit[1:3].lower() == "hz"):
|
---|
| 396 | unitprefix = unit[0]
|
---|
| 397 | factor = 1.0
|
---|
| 398 |
|
---|
| 399 | prefix_list = ["a", "f", "p", "n", "u", "m", ".", "k", "M", "G", "T", "P", "E"]
|
---|
| 400 | factor_list = [1e-18, 1e-15, 1e-12, 1e-9, 1e-6, 1e-3, 1.0, 1e+3, 1e+6, 1e+9, 1e+12, 1e+15, 1e+18]
|
---|
| 401 | factor = factor_list[prefix_list.index(unitprefix)]
|
---|
| 402 | """
|
---|
| 403 | if (unitprefix == 'a'):
|
---|
| 404 | factor = 1.0e-18
|
---|
| 405 | elif (unitprefix == 'f'):
|
---|
| 406 | factor = 1.0e-15
|
---|
| 407 | elif (unitprefix == 'p'):
|
---|
| 408 | factor = 1.0e-12
|
---|
| 409 | elif (unitprefix == 'n'):
|
---|
| 410 | factor = 1.0e-9
|
---|
| 411 | elif (unitprefix == 'u'):
|
---|
| 412 | factor = 1.0e-6
|
---|
| 413 | elif (unitprefix == 'm'):
|
---|
| 414 | factor = 1.0e-3
|
---|
| 415 | elif (unitprefix == 'k'):
|
---|
| 416 | factor = 1.0e+3
|
---|
| 417 | elif (unitprefix == 'M'):
|
---|
| 418 | factor = 1.0e+6
|
---|
| 419 | elif (unitprefix == 'G'):
|
---|
| 420 | factor = 1.0e+9
|
---|
| 421 | elif (unitprefix == 'T'):
|
---|
| 422 | factor = 1.0e+12
|
---|
| 423 | elif (unitprefix == 'P'):
|
---|
| 424 | factor = 1.0e+15
|
---|
| 425 | elif (unitprefix == 'E'):
|
---|
| 426 | factor = 1.0e+18
|
---|
| 427 | """
|
---|
| 428 | return value*factor
|
---|
| 429 | else:
|
---|
| 430 | mesg = "wrong unit of restfreq."
|
---|
| 431 | raise Exception, mesg
|
---|
| 432 |
|
---|
| 433 | def normalise_restfreq(in_restfreq):
|
---|
| 434 | if isinstance(in_restfreq, float):
|
---|
| 435 | return in_restfreq
|
---|
| 436 | elif isinstance(in_restfreq, int) or isinstance(in_restfreq, long):
|
---|
| 437 | return float(in_restfreq)
|
---|
| 438 | elif isinstance(in_restfreq, str):
|
---|
| 439 | return get_restfreq_in_Hz(in_restfreq)
|
---|
| 440 | elif isinstance(in_restfreq, list) or isinstance(in_restfreq, numpy.ndarray):
|
---|
| 441 | if isinstance(in_restfreq, numpy.ndarray):
|
---|
| 442 | if len(in_restfreq.shape) > 1:
|
---|
| 443 | mesg = "given in numpy.ndarray, in_restfreq must be 1-D."
|
---|
| 444 | raise Exception, mesg
|
---|
| 445 |
|
---|
| 446 | res = []
|
---|
| 447 | for i in xrange(len(in_restfreq)):
|
---|
| 448 | elem = in_restfreq[i]
|
---|
| 449 | if isinstance(elem, float):
|
---|
| 450 | res.append(elem)
|
---|
| 451 | elif isinstance(elem, int) or isinstance(elem, long):
|
---|
| 452 | res.append(float(elem))
|
---|
| 453 | elif isinstance(elem, str):
|
---|
| 454 | res.append(get_restfreq_in_Hz(elem))
|
---|
| 455 | elif isinstance(elem, dict):
|
---|
| 456 | if isinstance(elem["value"], float):
|
---|
| 457 | res.append(elem)
|
---|
| 458 | elif isinstance(elem["value"], int):
|
---|
| 459 | dictelem = {}
|
---|
| 460 | dictelem["name"] = elem["name"]
|
---|
| 461 | dictelem["value"] = float(elem["value"])
|
---|
| 462 | res.append(dictelem)
|
---|
| 463 | elif isinstance(elem["value"], str):
|
---|
| 464 | dictelem = {}
|
---|
| 465 | dictelem["name"] = elem["name"]
|
---|
| 466 | dictelem["value"] = get_restfreq_in_Hz(elem["value"])
|
---|
| 467 | res.append(dictelem)
|
---|
| 468 | else:
|
---|
| 469 | mesg = "restfreq elements must be float, int, or string."
|
---|
| 470 | raise Exception, mesg
|
---|
| 471 | return res
|
---|
| 472 | else:
|
---|
| 473 | mesg = "wrong type of restfreq given."
|
---|
| 474 | raise Exception, mesg
|
---|
| 475 |
|
---|
| 476 | def set_restfreq(s, restfreq):
|
---|
| 477 | rfset = (restfreq != '') and (restfreq != [])
|
---|
| 478 | if rfset:
|
---|
| 479 | s.set_restfreqs(normalise_restfreq(restfreq))
|
---|
| 480 |
|
---|
[876] | 481 | class scantable(Scantable):
|
---|
[1846] | 482 | """\
|
---|
| 483 | The ASAP container for scans (single-dish data).
|
---|
[102] | 484 | """
|
---|
[1819] | 485 |
|
---|
[1862] | 486 | @asaplog_post_dec
|
---|
[2315] | 487 | def __init__(self, filename, average=None, unit=None, parallactify=None,
|
---|
| 488 | **args):
|
---|
[1846] | 489 | """\
|
---|
[102] | 490 | Create a scantable from a saved one or make a reference
|
---|
[1846] | 491 |
|
---|
[102] | 492 | Parameters:
|
---|
[1846] | 493 |
|
---|
| 494 | filename: the name of an asap table on disk
|
---|
| 495 | or
|
---|
| 496 | the name of a rpfits/sdfits/ms file
|
---|
| 497 | (integrations within scans are auto averaged
|
---|
| 498 | and the whole file is read) or
|
---|
| 499 | [advanced] a reference to an existing scantable
|
---|
| 500 |
|
---|
| 501 | average: average all integrations withinb a scan on read.
|
---|
| 502 | The default (True) is taken from .asaprc.
|
---|
| 503 |
|
---|
[484] | 504 | unit: brightness unit; must be consistent with K or Jy.
|
---|
[1846] | 505 | Over-rides the default selected by the filler
|
---|
| 506 | (input rpfits/sdfits/ms) or replaces the value
|
---|
| 507 | in existing scantables
|
---|
| 508 |
|
---|
[1920] | 509 | antenna: for MeasurementSet input data only:
|
---|
[2349] | 510 | Antenna selection. integer (id) or string
|
---|
| 511 | (name or id).
|
---|
[1846] | 512 |
|
---|
[2349] | 513 | parallactify: Indicate that the data had been parallactified.
|
---|
| 514 | Default (false) is taken from rc file.
|
---|
[1846] | 515 |
|
---|
[2754] | 516 | getpt: Whether to import direction from MS/POINTING
|
---|
| 517 | table properly or not.
|
---|
| 518 | This is effective only when filename is MS.
|
---|
| 519 | The default (True) is to import direction
|
---|
| 520 | from MS/POINTING.
|
---|
[710] | 521 | """
|
---|
[976] | 522 | if average is None:
|
---|
[710] | 523 | average = rcParams['scantable.autoaverage']
|
---|
[1593] | 524 | parallactify = parallactify or rcParams['scantable.parallactify']
|
---|
[1259] | 525 | varlist = vars()
|
---|
[876] | 526 | from asap._asap import stmath
|
---|
[1819] | 527 | self._math = stmath( rcParams['insitu'] )
|
---|
[876] | 528 | if isinstance(filename, Scantable):
|
---|
| 529 | Scantable.__init__(self, filename)
|
---|
[181] | 530 | else:
|
---|
[1697] | 531 | if isinstance(filename, str):
|
---|
[976] | 532 | filename = os.path.expandvars(filename)
|
---|
| 533 | filename = os.path.expanduser(filename)
|
---|
| 534 | if not os.path.exists(filename):
|
---|
| 535 | s = "File '%s' not found." % (filename)
|
---|
| 536 | raise IOError(s)
|
---|
[1697] | 537 | if is_scantable(filename):
|
---|
| 538 | ondisk = rcParams['scantable.storage'] == 'disk'
|
---|
| 539 | Scantable.__init__(self, filename, ondisk)
|
---|
| 540 | if unit is not None:
|
---|
| 541 | self.set_fluxunit(unit)
|
---|
[2008] | 542 | if average:
|
---|
| 543 | self._assign( self.average_time( scanav=True ) )
|
---|
[1819] | 544 | # do not reset to the default freqframe
|
---|
| 545 | #self.set_freqframe(rcParams['scantable.freqframe'])
|
---|
[1883] | 546 | elif is_ms(filename):
|
---|
[1916] | 547 | # Measurement Set
|
---|
| 548 | opts={'ms': {}}
|
---|
[2844] | 549 | mskeys=['getpt','antenna']
|
---|
[1916] | 550 | for key in mskeys:
|
---|
| 551 | if key in args.keys():
|
---|
| 552 | opts['ms'][key] = args[key]
|
---|
| 553 | self._fill([filename], unit, average, opts)
|
---|
[1893] | 554 | elif os.path.isfile(filename):
|
---|
[2761] | 555 | opts={'nro': {}}
|
---|
| 556 | nrokeys=['freqref']
|
---|
| 557 | for key in nrokeys:
|
---|
| 558 | if key in args.keys():
|
---|
| 559 | opts['nro'][key] = args[key]
|
---|
| 560 | self._fill([filename], unit, average, opts)
|
---|
[2350] | 561 | # only apply to new data not "copy constructor"
|
---|
| 562 | self.parallactify(parallactify)
|
---|
[1883] | 563 | else:
|
---|
[1819] | 564 | msg = "The given file '%s'is not a valid " \
|
---|
| 565 | "asap table." % (filename)
|
---|
[1859] | 566 | raise IOError(msg)
|
---|
[1118] | 567 | elif (isinstance(filename, list) or isinstance(filename, tuple)) \
|
---|
[976] | 568 | and isinstance(filename[-1], str):
|
---|
[1916] | 569 | self._fill(filename, unit, average)
|
---|
[1586] | 570 | self.parallactify(parallactify)
|
---|
[1259] | 571 | self._add_history("scantable", varlist)
|
---|
[102] | 572 |
|
---|
[1862] | 573 | @asaplog_post_dec
|
---|
[876] | 574 | def save(self, name=None, format=None, overwrite=False):
|
---|
[1846] | 575 | """\
|
---|
[1280] | 576 | Store the scantable on disk. This can be an asap (aips++) Table,
|
---|
| 577 | SDFITS or MS2 format.
|
---|
[1846] | 578 |
|
---|
[116] | 579 | Parameters:
|
---|
[1846] | 580 |
|
---|
[2431] | 581 | name: the name of the outputfile. For format 'ASCII'
|
---|
[1093] | 582 | this is the root file name (data in 'name'.txt
|
---|
[497] | 583 | and header in 'name'_header.txt)
|
---|
[1855] | 584 |
|
---|
[116] | 585 | format: an optional file format. Default is ASAP.
|
---|
[1855] | 586 | Allowed are:
|
---|
| 587 |
|
---|
| 588 | * 'ASAP' (save as ASAP [aips++] Table),
|
---|
| 589 | * 'SDFITS' (save as SDFITS file)
|
---|
| 590 | * 'ASCII' (saves as ascii text file)
|
---|
| 591 | * 'MS2' (saves as an casacore MeasurementSet V2)
|
---|
[2315] | 592 | * 'FITS' (save as image FITS - not readable by
|
---|
| 593 | class)
|
---|
[1855] | 594 | * 'CLASS' (save as FITS readable by CLASS)
|
---|
| 595 |
|
---|
[411] | 596 | overwrite: If the file should be overwritten if it exists.
|
---|
[256] | 597 | The default False is to return with warning
|
---|
[411] | 598 | without writing the output. USE WITH CARE.
|
---|
[1855] | 599 |
|
---|
[1846] | 600 | Example::
|
---|
| 601 |
|
---|
[116] | 602 | scan.save('myscan.asap')
|
---|
[1118] | 603 | scan.save('myscan.sdfits', 'SDFITS')
|
---|
[1846] | 604 |
|
---|
[116] | 605 | """
|
---|
[411] | 606 | from os import path
|
---|
[1593] | 607 | format = format or rcParams['scantable.save']
|
---|
[256] | 608 | suffix = '.'+format.lower()
|
---|
[1118] | 609 | if name is None or name == "":
|
---|
[256] | 610 | name = 'scantable'+suffix
|
---|
[718] | 611 | msg = "No filename given. Using default name %s..." % name
|
---|
| 612 | asaplog.push(msg)
|
---|
[411] | 613 | name = path.expandvars(name)
|
---|
[256] | 614 | if path.isfile(name) or path.isdir(name):
|
---|
| 615 | if not overwrite:
|
---|
[718] | 616 | msg = "File %s exists." % name
|
---|
[1859] | 617 | raise IOError(msg)
|
---|
[451] | 618 | format2 = format.upper()
|
---|
| 619 | if format2 == 'ASAP':
|
---|
[116] | 620 | self._save(name)
|
---|
[2029] | 621 | elif format2 == 'MS2':
|
---|
| 622 | msopt = {'ms': {'overwrite': overwrite } }
|
---|
| 623 | from asap._asap import mswriter
|
---|
| 624 | writer = mswriter( self )
|
---|
| 625 | writer.write( name, msopt )
|
---|
[116] | 626 | else:
|
---|
[989] | 627 | from asap._asap import stwriter as stw
|
---|
[1118] | 628 | writer = stw(format2)
|
---|
| 629 | writer.write(self, name)
|
---|
[116] | 630 | return
|
---|
| 631 |
|
---|
[102] | 632 | def copy(self):
|
---|
[1846] | 633 | """Return a copy of this scantable.
|
---|
| 634 |
|
---|
| 635 | *Note*:
|
---|
| 636 |
|
---|
[1348] | 637 | This makes a full (deep) copy. scan2 = scan1 makes a reference.
|
---|
[1846] | 638 |
|
---|
| 639 | Example::
|
---|
| 640 |
|
---|
[102] | 641 | copiedscan = scan.copy()
|
---|
[1846] | 642 |
|
---|
[102] | 643 | """
|
---|
[876] | 644 | sd = scantable(Scantable._copy(self))
|
---|
[113] | 645 | return sd
|
---|
| 646 |
|
---|
[1093] | 647 | def drop_scan(self, scanid=None):
|
---|
[1846] | 648 | """\
|
---|
[1093] | 649 | Return a new scantable where the specified scan number(s) has(have)
|
---|
| 650 | been dropped.
|
---|
[1846] | 651 |
|
---|
[1093] | 652 | Parameters:
|
---|
[1846] | 653 |
|
---|
[1093] | 654 | scanid: a (list of) scan number(s)
|
---|
[1846] | 655 |
|
---|
[1093] | 656 | """
|
---|
| 657 | from asap import _is_sequence_or_number as _is_valid
|
---|
| 658 | from asap import _to_list
|
---|
| 659 | from asap import unique
|
---|
| 660 | if not _is_valid(scanid):
|
---|
[2315] | 661 | raise RuntimeError( 'Please specify a scanno to drop from the'
|
---|
| 662 | ' scantable' )
|
---|
[1859] | 663 | scanid = _to_list(scanid)
|
---|
| 664 | allscans = unique([ self.getscan(i) for i in range(self.nrow())])
|
---|
| 665 | for sid in scanid: allscans.remove(sid)
|
---|
| 666 | if len(allscans) == 0:
|
---|
| 667 | raise ValueError("Can't remove all scans")
|
---|
| 668 | sel = selector(scans=allscans)
|
---|
| 669 | return self._select_copy(sel)
|
---|
[1093] | 670 |
|
---|
[1594] | 671 | def _select_copy(self, selection):
|
---|
| 672 | orig = self.get_selection()
|
---|
| 673 | self.set_selection(orig+selection)
|
---|
| 674 | cp = self.copy()
|
---|
| 675 | self.set_selection(orig)
|
---|
| 676 | return cp
|
---|
| 677 |
|
---|
[102] | 678 | def get_scan(self, scanid=None):
|
---|
[1855] | 679 | """\
|
---|
[102] | 680 | Return a specific scan (by scanno) or collection of scans (by
|
---|
| 681 | source name) in a new scantable.
|
---|
[1846] | 682 |
|
---|
| 683 | *Note*:
|
---|
| 684 |
|
---|
[1348] | 685 | See scantable.drop_scan() for the inverse operation.
|
---|
[1846] | 686 |
|
---|
[102] | 687 | Parameters:
|
---|
[1846] | 688 |
|
---|
[513] | 689 | scanid: a (list of) scanno or a source name, unix-style
|
---|
| 690 | patterns are accepted for source name matching, e.g.
|
---|
| 691 | '*_R' gets all 'ref scans
|
---|
[1846] | 692 |
|
---|
| 693 | Example::
|
---|
| 694 |
|
---|
[513] | 695 | # get all scans containing the source '323p459'
|
---|
| 696 | newscan = scan.get_scan('323p459')
|
---|
| 697 | # get all 'off' scans
|
---|
| 698 | refscans = scan.get_scan('*_R')
|
---|
| 699 | # get a susbset of scans by scanno (as listed in scan.summary())
|
---|
[1118] | 700 | newscan = scan.get_scan([0, 2, 7, 10])
|
---|
[1846] | 701 |
|
---|
[102] | 702 | """
|
---|
| 703 | if scanid is None:
|
---|
[1859] | 704 | raise RuntimeError( 'Please specify a scan no or name to '
|
---|
| 705 | 'retrieve from the scantable' )
|
---|
[102] | 706 | try:
|
---|
[946] | 707 | bsel = self.get_selection()
|
---|
| 708 | sel = selector()
|
---|
[102] | 709 | if type(scanid) is str:
|
---|
[946] | 710 | sel.set_name(scanid)
|
---|
[1594] | 711 | return self._select_copy(sel)
|
---|
[102] | 712 | elif type(scanid) is int:
|
---|
[946] | 713 | sel.set_scans([scanid])
|
---|
[1594] | 714 | return self._select_copy(sel)
|
---|
[381] | 715 | elif type(scanid) is list:
|
---|
[946] | 716 | sel.set_scans(scanid)
|
---|
[1594] | 717 | return self._select_copy(sel)
|
---|
[381] | 718 | else:
|
---|
[718] | 719 | msg = "Illegal scanid type, use 'int' or 'list' if ints."
|
---|
[1859] | 720 | raise TypeError(msg)
|
---|
[102] | 721 | except RuntimeError:
|
---|
[1859] | 722 | raise
|
---|
[102] | 723 |
|
---|
| 724 | def __str__(self):
|
---|
[2315] | 725 | tempFile = tempfile.NamedTemporaryFile()
|
---|
| 726 | Scantable._summary(self, tempFile.name)
|
---|
| 727 | tempFile.seek(0)
|
---|
| 728 | asaplog.clear()
|
---|
| 729 | return tempFile.file.read()
|
---|
[102] | 730 |
|
---|
[2315] | 731 | @asaplog_post_dec
|
---|
[976] | 732 | def summary(self, filename=None):
|
---|
[1846] | 733 | """\
|
---|
[102] | 734 | Print a summary of the contents of this scantable.
|
---|
[1846] | 735 |
|
---|
[102] | 736 | Parameters:
|
---|
[1846] | 737 |
|
---|
[1931] | 738 | filename: the name of a file to write the putput to
|
---|
[102] | 739 | Default - no file output
|
---|
[1846] | 740 |
|
---|
[102] | 741 | """
|
---|
| 742 | if filename is not None:
|
---|
[256] | 743 | if filename is "":
|
---|
| 744 | filename = 'scantable_summary.txt'
|
---|
[415] | 745 | from os.path import expandvars, isdir
|
---|
[411] | 746 | filename = expandvars(filename)
|
---|
[2286] | 747 | if isdir(filename):
|
---|
[718] | 748 | msg = "Illegal file name '%s'." % (filename)
|
---|
[1859] | 749 | raise IOError(msg)
|
---|
[2286] | 750 | else:
|
---|
| 751 | filename = ""
|
---|
| 752 | Scantable._summary(self, filename)
|
---|
[710] | 753 |
|
---|
[1512] | 754 | def get_spectrum(self, rowno):
|
---|
[1471] | 755 | """Return the spectrum for the current row in the scantable as a list.
|
---|
[1846] | 756 |
|
---|
[1471] | 757 | Parameters:
|
---|
[1846] | 758 |
|
---|
[1573] | 759 | rowno: the row number to retrieve the spectrum from
|
---|
[1846] | 760 |
|
---|
[1471] | 761 | """
|
---|
| 762 | return self._getspectrum(rowno)
|
---|
[946] | 763 |
|
---|
[1471] | 764 | def get_mask(self, rowno):
|
---|
| 765 | """Return the mask for the current row in the scantable as a list.
|
---|
[1846] | 766 |
|
---|
[1471] | 767 | Parameters:
|
---|
[1846] | 768 |
|
---|
[1573] | 769 | rowno: the row number to retrieve the mask from
|
---|
[1846] | 770 |
|
---|
[1471] | 771 | """
|
---|
| 772 | return self._getmask(rowno)
|
---|
| 773 |
|
---|
| 774 | def set_spectrum(self, spec, rowno):
|
---|
[1938] | 775 | """Set the spectrum for the current row in the scantable.
|
---|
[1846] | 776 |
|
---|
[1471] | 777 | Parameters:
|
---|
[1846] | 778 |
|
---|
[1855] | 779 | spec: the new spectrum
|
---|
[1846] | 780 |
|
---|
[1855] | 781 | rowno: the row number to set the spectrum for
|
---|
| 782 |
|
---|
[1471] | 783 | """
|
---|
[2348] | 784 | assert(len(spec) == self.nchan(self.getif(rowno)))
|
---|
[1471] | 785 | return self._setspectrum(spec, rowno)
|
---|
| 786 |
|
---|
[1600] | 787 | def get_coordinate(self, rowno):
|
---|
| 788 | """Return the (spectral) coordinate for a a given 'rowno'.
|
---|
[1846] | 789 |
|
---|
| 790 | *Note*:
|
---|
| 791 |
|
---|
[1600] | 792 | * This coordinate is only valid until a scantable method modifies
|
---|
| 793 | the frequency axis.
|
---|
| 794 | * This coordinate does contain the original frequency set-up
|
---|
| 795 | NOT the new frame. The conversions however are done using the user
|
---|
| 796 | specified frame (e.g. LSRK/TOPO). To get the 'real' coordinate,
|
---|
| 797 | use scantable.freq_align first. Without it there is no closure,
|
---|
[1846] | 798 | i.e.::
|
---|
[1600] | 799 |
|
---|
[1846] | 800 | c = myscan.get_coordinate(0)
|
---|
| 801 | c.to_frequency(c.get_reference_pixel()) != c.get_reference_value()
|
---|
| 802 |
|
---|
[1600] | 803 | Parameters:
|
---|
[1846] | 804 |
|
---|
[1600] | 805 | rowno: the row number for the spectral coordinate
|
---|
| 806 |
|
---|
| 807 | """
|
---|
| 808 | return coordinate(Scantable.get_coordinate(self, rowno))
|
---|
| 809 |
|
---|
[946] | 810 | def get_selection(self):
|
---|
[1846] | 811 | """\
|
---|
[1005] | 812 | Get the selection object currently set on this scantable.
|
---|
[1846] | 813 |
|
---|
| 814 | Example::
|
---|
| 815 |
|
---|
[1005] | 816 | sel = scan.get_selection()
|
---|
| 817 | sel.set_ifs(0) # select IF 0
|
---|
| 818 | scan.set_selection(sel) # apply modified selection
|
---|
[1846] | 819 |
|
---|
[946] | 820 | """
|
---|
| 821 | return selector(self._getselection())
|
---|
| 822 |
|
---|
[1576] | 823 | def set_selection(self, selection=None, **kw):
|
---|
[1846] | 824 | """\
|
---|
[1005] | 825 | Select a subset of the data. All following operations on this scantable
|
---|
| 826 | are only applied to thi selection.
|
---|
[1846] | 827 |
|
---|
[1005] | 828 | Parameters:
|
---|
[1697] | 829 |
|
---|
[1846] | 830 | selection: a selector object (default unset the selection), or
|
---|
[2431] | 831 | any combination of 'pols', 'ifs', 'beams', 'scans',
|
---|
| 832 | 'cycles', 'name', 'query'
|
---|
[1697] | 833 |
|
---|
[1846] | 834 | Examples::
|
---|
[1697] | 835 |
|
---|
[1005] | 836 | sel = selector() # create a selection object
|
---|
[1118] | 837 | self.set_scans([0, 3]) # select SCANNO 0 and 3
|
---|
[1005] | 838 | scan.set_selection(sel) # set the selection
|
---|
| 839 | scan.summary() # will only print summary of scanno 0 an 3
|
---|
| 840 | scan.set_selection() # unset the selection
|
---|
[1697] | 841 | # or the equivalent
|
---|
| 842 | scan.set_selection(scans=[0,3])
|
---|
| 843 | scan.summary() # will only print summary of scanno 0 an 3
|
---|
| 844 | scan.set_selection() # unset the selection
|
---|
[1846] | 845 |
|
---|
[946] | 846 | """
|
---|
[1576] | 847 | if selection is None:
|
---|
| 848 | # reset
|
---|
| 849 | if len(kw) == 0:
|
---|
| 850 | selection = selector()
|
---|
| 851 | else:
|
---|
| 852 | # try keywords
|
---|
| 853 | for k in kw:
|
---|
| 854 | if k not in selector.fields:
|
---|
[2320] | 855 | raise KeyError("Invalid selection key '%s', "
|
---|
| 856 | "valid keys are %s" % (k,
|
---|
| 857 | selector.fields))
|
---|
[1576] | 858 | selection = selector(**kw)
|
---|
[946] | 859 | self._setselection(selection)
|
---|
| 860 |
|
---|
[1819] | 861 | def get_row(self, row=0, insitu=None):
|
---|
[1846] | 862 | """\
|
---|
[1819] | 863 | Select a row in the scantable.
|
---|
| 864 | Return a scantable with single row.
|
---|
[1846] | 865 |
|
---|
[1819] | 866 | Parameters:
|
---|
[1846] | 867 |
|
---|
| 868 | row: row no of integration, default is 0.
|
---|
| 869 | insitu: if False a new scantable is returned. Otherwise, the
|
---|
| 870 | scaling is done in-situ. The default is taken from .asaprc
|
---|
| 871 | (False)
|
---|
| 872 |
|
---|
[1819] | 873 | """
|
---|
[2349] | 874 | if insitu is None:
|
---|
| 875 | insitu = rcParams['insitu']
|
---|
[1819] | 876 | if not insitu:
|
---|
| 877 | workscan = self.copy()
|
---|
| 878 | else:
|
---|
| 879 | workscan = self
|
---|
| 880 | # Select a row
|
---|
[2349] | 881 | sel = selector()
|
---|
[1992] | 882 | sel.set_rows([row])
|
---|
[1819] | 883 | workscan.set_selection(sel)
|
---|
| 884 | if not workscan.nrow() == 1:
|
---|
[2349] | 885 | msg = "Could not identify single row. %d rows selected." \
|
---|
| 886 | % (workscan.nrow())
|
---|
[1819] | 887 | raise RuntimeError(msg)
|
---|
| 888 | if insitu:
|
---|
| 889 | self._assign(workscan)
|
---|
| 890 | else:
|
---|
| 891 | return workscan
|
---|
| 892 |
|
---|
[1862] | 893 | @asaplog_post_dec
|
---|
[1907] | 894 | def stats(self, stat='stddev', mask=None, form='3.3f', row=None):
|
---|
[1846] | 895 | """\
|
---|
[135] | 896 | Determine the specified statistic of the current beam/if/pol
|
---|
[102] | 897 | Takes a 'mask' as an optional parameter to specify which
|
---|
| 898 | channels should be excluded.
|
---|
[1846] | 899 |
|
---|
[102] | 900 | Parameters:
|
---|
[1846] | 901 |
|
---|
[1819] | 902 | stat: 'min', 'max', 'min_abc', 'max_abc', 'sumsq', 'sum',
|
---|
| 903 | 'mean', 'var', 'stddev', 'avdev', 'rms', 'median'
|
---|
[1855] | 904 |
|
---|
[135] | 905 | mask: an optional mask specifying where the statistic
|
---|
[102] | 906 | should be determined.
|
---|
[1855] | 907 |
|
---|
[1819] | 908 | form: format string to print statistic values
|
---|
[1846] | 909 |
|
---|
[1907] | 910 | row: row number of spectrum to process.
|
---|
| 911 | (default is None: for all rows)
|
---|
[1846] | 912 |
|
---|
[1907] | 913 | Example:
|
---|
[113] | 914 | scan.set_unit('channel')
|
---|
[1118] | 915 | msk = scan.create_mask([100, 200], [500, 600])
|
---|
[135] | 916 | scan.stats(stat='mean', mask=m)
|
---|
[1846] | 917 |
|
---|
[102] | 918 | """
|
---|
[1593] | 919 | mask = mask or []
|
---|
[876] | 920 | if not self._check_ifs():
|
---|
[1118] | 921 | raise ValueError("Cannot apply mask as the IFs have different "
|
---|
| 922 | "number of channels. Please use setselection() "
|
---|
| 923 | "to select individual IFs")
|
---|
[1819] | 924 | rtnabc = False
|
---|
| 925 | if stat.lower().endswith('_abc'): rtnabc = True
|
---|
| 926 | getchan = False
|
---|
| 927 | if stat.lower().startswith('min') or stat.lower().startswith('max'):
|
---|
| 928 | chan = self._math._minmaxchan(self, mask, stat)
|
---|
| 929 | getchan = True
|
---|
| 930 | statvals = []
|
---|
[1907] | 931 | if not rtnabc:
|
---|
| 932 | if row == None:
|
---|
| 933 | statvals = self._math._stats(self, mask, stat)
|
---|
| 934 | else:
|
---|
| 935 | statvals = self._math._statsrow(self, mask, stat, int(row))
|
---|
[256] | 936 |
|
---|
[1819] | 937 | #def cb(i):
|
---|
| 938 | # return statvals[i]
|
---|
[256] | 939 |
|
---|
[1819] | 940 | #return self._row_callback(cb, stat)
|
---|
[102] | 941 |
|
---|
[1819] | 942 | label=stat
|
---|
| 943 | #callback=cb
|
---|
| 944 | out = ""
|
---|
| 945 | #outvec = []
|
---|
| 946 | sep = '-'*50
|
---|
[1907] | 947 |
|
---|
| 948 | if row == None:
|
---|
| 949 | rows = xrange(self.nrow())
|
---|
| 950 | elif isinstance(row, int):
|
---|
| 951 | rows = [ row ]
|
---|
| 952 |
|
---|
| 953 | for i in rows:
|
---|
[1819] | 954 | refstr = ''
|
---|
| 955 | statunit= ''
|
---|
| 956 | if getchan:
|
---|
| 957 | qx, qy = self.chan2data(rowno=i, chan=chan[i])
|
---|
| 958 | if rtnabc:
|
---|
| 959 | statvals.append(qx['value'])
|
---|
| 960 | refstr = ('(value: %'+form) % (qy['value'])+' ['+qy['unit']+'])'
|
---|
| 961 | statunit= '['+qx['unit']+']'
|
---|
| 962 | else:
|
---|
| 963 | refstr = ('(@ %'+form) % (qx['value'])+' ['+qx['unit']+'])'
|
---|
| 964 |
|
---|
| 965 | tm = self._gettime(i)
|
---|
| 966 | src = self._getsourcename(i)
|
---|
| 967 | out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
|
---|
| 968 | out += 'Time[%s]:\n' % (tm)
|
---|
[1907] | 969 | if self.nbeam(-1) > 1: out += ' Beam[%d] ' % (self.getbeam(i))
|
---|
| 970 | if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
|
---|
| 971 | if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
|
---|
[1819] | 972 | #outvec.append(callback(i))
|
---|
[1907] | 973 | if len(rows) > 1:
|
---|
| 974 | # out += ('= %'+form) % (outvec[i]) +' '+refstr+'\n'
|
---|
| 975 | out += ('= %'+form) % (statvals[i]) +' '+refstr+'\n'
|
---|
| 976 | else:
|
---|
| 977 | # out += ('= %'+form) % (outvec[0]) +' '+refstr+'\n'
|
---|
| 978 | out += ('= %'+form) % (statvals[0]) +' '+refstr+'\n'
|
---|
[1819] | 979 | out += sep+"\n"
|
---|
| 980 |
|
---|
[1859] | 981 | import os
|
---|
| 982 | if os.environ.has_key( 'USER' ):
|
---|
| 983 | usr = os.environ['USER']
|
---|
| 984 | else:
|
---|
| 985 | import commands
|
---|
| 986 | usr = commands.getoutput( 'whoami' )
|
---|
| 987 | tmpfile = '/tmp/tmp_'+usr+'_casapy_asap_scantable_stats'
|
---|
| 988 | f = open(tmpfile,'w')
|
---|
| 989 | print >> f, sep
|
---|
| 990 | print >> f, ' %s %s' % (label, statunit)
|
---|
| 991 | print >> f, sep
|
---|
| 992 | print >> f, out
|
---|
| 993 | f.close()
|
---|
| 994 | f = open(tmpfile,'r')
|
---|
| 995 | x = f.readlines()
|
---|
| 996 | f.close()
|
---|
| 997 | asaplog.push(''.join(x), False)
|
---|
| 998 |
|
---|
[1819] | 999 | return statvals
|
---|
| 1000 |
|
---|
| 1001 | def chan2data(self, rowno=0, chan=0):
|
---|
[1846] | 1002 | """\
|
---|
[1819] | 1003 | Returns channel/frequency/velocity and spectral value
|
---|
| 1004 | at an arbitrary row and channel in the scantable.
|
---|
[1846] | 1005 |
|
---|
[1819] | 1006 | Parameters:
|
---|
[1846] | 1007 |
|
---|
[1819] | 1008 | rowno: a row number in the scantable. Default is the
|
---|
| 1009 | first row, i.e. rowno=0
|
---|
[1855] | 1010 |
|
---|
[1819] | 1011 | chan: a channel in the scantable. Default is the first
|
---|
| 1012 | channel, i.e. pos=0
|
---|
[1846] | 1013 |
|
---|
[1819] | 1014 | """
|
---|
| 1015 | if isinstance(rowno, int) and isinstance(chan, int):
|
---|
| 1016 | qx = {'unit': self.get_unit(),
|
---|
| 1017 | 'value': self._getabcissa(rowno)[chan]}
|
---|
| 1018 | qy = {'unit': self.get_fluxunit(),
|
---|
| 1019 | 'value': self._getspectrum(rowno)[chan]}
|
---|
| 1020 | return qx, qy
|
---|
| 1021 |
|
---|
[1118] | 1022 | def stddev(self, mask=None):
|
---|
[1846] | 1023 | """\
|
---|
[135] | 1024 | Determine the standard deviation of the current beam/if/pol
|
---|
| 1025 | Takes a 'mask' as an optional parameter to specify which
|
---|
| 1026 | channels should be excluded.
|
---|
[1846] | 1027 |
|
---|
[135] | 1028 | Parameters:
|
---|
[1846] | 1029 |
|
---|
[135] | 1030 | mask: an optional mask specifying where the standard
|
---|
| 1031 | deviation should be determined.
|
---|
| 1032 |
|
---|
[1846] | 1033 | Example::
|
---|
| 1034 |
|
---|
[135] | 1035 | scan.set_unit('channel')
|
---|
[1118] | 1036 | msk = scan.create_mask([100, 200], [500, 600])
|
---|
[135] | 1037 | scan.stddev(mask=m)
|
---|
[1846] | 1038 |
|
---|
[135] | 1039 | """
|
---|
[1118] | 1040 | return self.stats(stat='stddev', mask=mask);
|
---|
[135] | 1041 |
|
---|
[1003] | 1042 |
|
---|
[1259] | 1043 | def get_column_names(self):
|
---|
[1846] | 1044 | """\
|
---|
[1003] | 1045 | Return a list of column names, which can be used for selection.
|
---|
| 1046 | """
|
---|
[1259] | 1047 | return list(Scantable.get_column_names(self))
|
---|
[1003] | 1048 |
|
---|
[1730] | 1049 | def get_tsys(self, row=-1):
|
---|
[1846] | 1050 | """\
|
---|
[113] | 1051 | Return the System temperatures.
|
---|
[1846] | 1052 |
|
---|
| 1053 | Parameters:
|
---|
| 1054 |
|
---|
| 1055 | row: the rowno to get the information for. (default all rows)
|
---|
| 1056 |
|
---|
[113] | 1057 | Returns:
|
---|
[1846] | 1058 |
|
---|
[876] | 1059 | a list of Tsys values for the current selection
|
---|
[1846] | 1060 |
|
---|
[113] | 1061 | """
|
---|
[1730] | 1062 | if row > -1:
|
---|
| 1063 | return self._get_column(self._gettsys, row)
|
---|
[876] | 1064 | return self._row_callback(self._gettsys, "Tsys")
|
---|
[256] | 1065 |
|
---|
[2406] | 1066 | def get_tsysspectrum(self, row=-1):
|
---|
| 1067 | """\
|
---|
| 1068 | Return the channel dependent system temperatures.
|
---|
[1730] | 1069 |
|
---|
[2406] | 1070 | Parameters:
|
---|
| 1071 |
|
---|
| 1072 | row: the rowno to get the information for. (default all rows)
|
---|
| 1073 |
|
---|
| 1074 | Returns:
|
---|
| 1075 |
|
---|
| 1076 | a list of Tsys values for the current selection
|
---|
| 1077 |
|
---|
| 1078 | """
|
---|
| 1079 | return self._get_column( self._gettsysspectrum, row )
|
---|
| 1080 |
|
---|
[2791] | 1081 | def set_tsys(self, values, row=-1):
|
---|
| 1082 | """\
|
---|
| 1083 | Set the Tsys value(s) of the given 'row' or the whole scantable
|
---|
| 1084 | (selection).
|
---|
| 1085 |
|
---|
| 1086 | Parameters:
|
---|
| 1087 |
|
---|
| 1088 | values: a scalar or list (if Tsys is a vector) of Tsys value(s)
|
---|
| 1089 | row: the row number to apply Tsys values to.
|
---|
| 1090 | (default all rows)
|
---|
| 1091 |
|
---|
| 1092 | """
|
---|
| 1093 |
|
---|
| 1094 | if not hasattr(values, "__len__"):
|
---|
| 1095 | values = [values]
|
---|
| 1096 | self._settsys(values, row)
|
---|
| 1097 |
|
---|
[1730] | 1098 | def get_weather(self, row=-1):
|
---|
[1846] | 1099 | """\
|
---|
[2930] | 1100 | Return the weather information.
|
---|
[1846] | 1101 |
|
---|
| 1102 | Parameters:
|
---|
| 1103 |
|
---|
| 1104 | row: the rowno to get the information for. (default all rows)
|
---|
| 1105 |
|
---|
| 1106 | Returns:
|
---|
| 1107 |
|
---|
| 1108 | a dict or list of of dicts of values for the current selection
|
---|
| 1109 |
|
---|
| 1110 | """
|
---|
[2930] | 1111 | if row >= len(self):
|
---|
| 1112 | raise IndexError("row out of range")
|
---|
[1730] | 1113 | values = self._get_column(self._get_weather, row)
|
---|
| 1114 | if row > -1:
|
---|
| 1115 | return {'temperature': values[0],
|
---|
| 1116 | 'pressure': values[1], 'humidity' : values[2],
|
---|
| 1117 | 'windspeed' : values[3], 'windaz' : values[4]
|
---|
| 1118 | }
|
---|
| 1119 | else:
|
---|
| 1120 | out = []
|
---|
| 1121 | for r in values:
|
---|
| 1122 | out.append({'temperature': r[0],
|
---|
| 1123 | 'pressure': r[1], 'humidity' : r[2],
|
---|
| 1124 | 'windspeed' : r[3], 'windaz' : r[4]
|
---|
| 1125 | })
|
---|
| 1126 | return out
|
---|
| 1127 |
|
---|
[876] | 1128 | def _row_callback(self, callback, label):
|
---|
| 1129 | out = ""
|
---|
[1118] | 1130 | outvec = []
|
---|
[1590] | 1131 | sep = '-'*50
|
---|
[876] | 1132 | for i in range(self.nrow()):
|
---|
| 1133 | tm = self._gettime(i)
|
---|
| 1134 | src = self._getsourcename(i)
|
---|
[1590] | 1135 | out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
|
---|
[876] | 1136 | out += 'Time[%s]:\n' % (tm)
|
---|
[1590] | 1137 | if self.nbeam(-1) > 1:
|
---|
| 1138 | out += ' Beam[%d] ' % (self.getbeam(i))
|
---|
| 1139 | if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
|
---|
| 1140 | if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
|
---|
[876] | 1141 | outvec.append(callback(i))
|
---|
| 1142 | out += '= %3.3f\n' % (outvec[i])
|
---|
[1590] | 1143 | out += sep+'\n'
|
---|
[1859] | 1144 |
|
---|
| 1145 | asaplog.push(sep)
|
---|
| 1146 | asaplog.push(" %s" % (label))
|
---|
| 1147 | asaplog.push(sep)
|
---|
| 1148 | asaplog.push(out)
|
---|
[1861] | 1149 | asaplog.post()
|
---|
[1175] | 1150 | return outvec
|
---|
[256] | 1151 |
|
---|
[1947] | 1152 | def _get_column(self, callback, row=-1, *args):
|
---|
[1070] | 1153 | """
|
---|
| 1154 | """
|
---|
| 1155 | if row == -1:
|
---|
[1947] | 1156 | return [callback(i, *args) for i in range(self.nrow())]
|
---|
[1070] | 1157 | else:
|
---|
[1819] | 1158 | if 0 <= row < self.nrow():
|
---|
[1947] | 1159 | return callback(row, *args)
|
---|
[256] | 1160 |
|
---|
[1070] | 1161 |
|
---|
[1948] | 1162 | def get_time(self, row=-1, asdatetime=False, prec=-1):
|
---|
[1846] | 1163 | """\
|
---|
[113] | 1164 | Get a list of time stamps for the observations.
|
---|
[1938] | 1165 | Return a datetime object or a string (default) for each
|
---|
| 1166 | integration time stamp in the scantable.
|
---|
[1846] | 1167 |
|
---|
[113] | 1168 | Parameters:
|
---|
[1846] | 1169 |
|
---|
[1348] | 1170 | row: row no of integration. Default -1 return all rows
|
---|
[1855] | 1171 |
|
---|
[1348] | 1172 | asdatetime: return values as datetime objects rather than strings
|
---|
[1846] | 1173 |
|
---|
[2349] | 1174 | prec: number of digits shown. Default -1 to automatic
|
---|
| 1175 | calculation.
|
---|
[1948] | 1176 | Note this number is equals to the digits of MVTime,
|
---|
| 1177 | i.e., 0<prec<3: dates with hh:: only,
|
---|
| 1178 | <5: with hh:mm:, <7 or 0: with hh:mm:ss,
|
---|
[1947] | 1179 | and 6> : with hh:mm:ss.tt... (prec-6 t's added)
|
---|
| 1180 |
|
---|
[113] | 1181 | """
|
---|
[1175] | 1182 | from datetime import datetime
|
---|
[1948] | 1183 | if prec < 0:
|
---|
| 1184 | # automagically set necessary precision +1
|
---|
[2349] | 1185 | prec = 7 - \
|
---|
| 1186 | numpy.floor(numpy.log10(numpy.min(self.get_inttime(row))))
|
---|
[1948] | 1187 | prec = max(6, int(prec))
|
---|
| 1188 | else:
|
---|
| 1189 | prec = max(0, prec)
|
---|
| 1190 | if asdatetime:
|
---|
| 1191 | #precision can be 1 millisecond at max
|
---|
| 1192 | prec = min(12, prec)
|
---|
| 1193 |
|
---|
[1947] | 1194 | times = self._get_column(self._gettime, row, prec)
|
---|
[1348] | 1195 | if not asdatetime:
|
---|
[1392] | 1196 | return times
|
---|
[1947] | 1197 | format = "%Y/%m/%d/%H:%M:%S.%f"
|
---|
| 1198 | if prec < 7:
|
---|
| 1199 | nsub = 1 + (((6-prec)/2) % 3)
|
---|
| 1200 | substr = [".%f","%S","%M"]
|
---|
| 1201 | for i in range(nsub):
|
---|
| 1202 | format = format.replace(substr[i],"")
|
---|
[1175] | 1203 | if isinstance(times, list):
|
---|
[1947] | 1204 | return [datetime.strptime(i, format) for i in times]
|
---|
[1175] | 1205 | else:
|
---|
[1947] | 1206 | return datetime.strptime(times, format)
|
---|
[102] | 1207 |
|
---|
[1348] | 1208 |
|
---|
| 1209 | def get_inttime(self, row=-1):
|
---|
[1846] | 1210 | """\
|
---|
[1348] | 1211 | Get a list of integration times for the observations.
|
---|
| 1212 | Return a time in seconds for each integration in the scantable.
|
---|
[1846] | 1213 |
|
---|
[1348] | 1214 | Parameters:
|
---|
[1846] | 1215 |
|
---|
[1348] | 1216 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 1217 |
|
---|
[1348] | 1218 | """
|
---|
[1573] | 1219 | return self._get_column(self._getinttime, row)
|
---|
[1348] | 1220 |
|
---|
[1573] | 1221 |
|
---|
[714] | 1222 | def get_sourcename(self, row=-1):
|
---|
[1846] | 1223 | """\
|
---|
[794] | 1224 | Get a list source names for the observations.
|
---|
[714] | 1225 | Return a string for each integration in the scantable.
|
---|
| 1226 | Parameters:
|
---|
[1846] | 1227 |
|
---|
[1348] | 1228 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 1229 |
|
---|
[714] | 1230 | """
|
---|
[1070] | 1231 | return self._get_column(self._getsourcename, row)
|
---|
[714] | 1232 |
|
---|
[794] | 1233 | def get_elevation(self, row=-1):
|
---|
[1846] | 1234 | """\
|
---|
[794] | 1235 | Get a list of elevations for the observations.
|
---|
| 1236 | Return a float for each integration in the scantable.
|
---|
[1846] | 1237 |
|
---|
[794] | 1238 | Parameters:
|
---|
[1846] | 1239 |
|
---|
[1348] | 1240 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 1241 |
|
---|
[794] | 1242 | """
|
---|
[1070] | 1243 | return self._get_column(self._getelevation, row)
|
---|
[794] | 1244 |
|
---|
| 1245 | def get_azimuth(self, row=-1):
|
---|
[1846] | 1246 | """\
|
---|
[794] | 1247 | Get a list of azimuths for the observations.
|
---|
| 1248 | Return a float for each integration in the scantable.
|
---|
[1846] | 1249 |
|
---|
[794] | 1250 | Parameters:
|
---|
[1348] | 1251 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 1252 |
|
---|
[794] | 1253 | """
|
---|
[1070] | 1254 | return self._get_column(self._getazimuth, row)
|
---|
[794] | 1255 |
|
---|
| 1256 | def get_parangle(self, row=-1):
|
---|
[1846] | 1257 | """\
|
---|
[794] | 1258 | Get a list of parallactic angles for the observations.
|
---|
| 1259 | Return a float for each integration in the scantable.
|
---|
[1846] | 1260 |
|
---|
[794] | 1261 | Parameters:
|
---|
[1846] | 1262 |
|
---|
[1348] | 1263 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 1264 |
|
---|
[794] | 1265 | """
|
---|
[1070] | 1266 | return self._get_column(self._getparangle, row)
|
---|
[794] | 1267 |
|
---|
[1070] | 1268 | def get_direction(self, row=-1):
|
---|
| 1269 | """
|
---|
| 1270 | Get a list of Positions on the sky (direction) for the observations.
|
---|
[1594] | 1271 | Return a string for each integration in the scantable.
|
---|
[1855] | 1272 |
|
---|
[1070] | 1273 | Parameters:
|
---|
[1855] | 1274 |
|
---|
[1070] | 1275 | row: row no of integration. Default -1 return all rows
|
---|
[1855] | 1276 |
|
---|
[1070] | 1277 | """
|
---|
| 1278 | return self._get_column(self._getdirection, row)
|
---|
| 1279 |
|
---|
[1391] | 1280 | def get_directionval(self, row=-1):
|
---|
[1846] | 1281 | """\
|
---|
[1391] | 1282 | Get a list of Positions on the sky (direction) for the observations.
|
---|
| 1283 | Return a float for each integration in the scantable.
|
---|
[1846] | 1284 |
|
---|
[1391] | 1285 | Parameters:
|
---|
[1846] | 1286 |
|
---|
[1391] | 1287 | row: row no of integration. Default -1 return all rows
|
---|
[1846] | 1288 |
|
---|
[1391] | 1289 | """
|
---|
| 1290 | return self._get_column(self._getdirectionvec, row)
|
---|
| 1291 |
|
---|
[1862] | 1292 | @asaplog_post_dec
|
---|
[102] | 1293 | def set_unit(self, unit='channel'):
|
---|
[1846] | 1294 | """\
|
---|
[102] | 1295 | Set the unit for all following operations on this scantable
|
---|
[1846] | 1296 |
|
---|
[102] | 1297 | Parameters:
|
---|
[1846] | 1298 |
|
---|
| 1299 | unit: optional unit, default is 'channel'. Use one of '*Hz',
|
---|
| 1300 | 'km/s', 'channel' or equivalent ''
|
---|
| 1301 |
|
---|
[102] | 1302 | """
|
---|
[484] | 1303 | varlist = vars()
|
---|
[1118] | 1304 | if unit in ['', 'pixel', 'channel']:
|
---|
[113] | 1305 | unit = ''
|
---|
| 1306 | inf = list(self._getcoordinfo())
|
---|
| 1307 | inf[0] = unit
|
---|
| 1308 | self._setcoordinfo(inf)
|
---|
[1118] | 1309 | self._add_history("set_unit", varlist)
|
---|
[113] | 1310 |
|
---|
[1862] | 1311 | @asaplog_post_dec
|
---|
[484] | 1312 | def set_instrument(self, instr):
|
---|
[1846] | 1313 | """\
|
---|
[1348] | 1314 | Set the instrument for subsequent processing.
|
---|
[1846] | 1315 |
|
---|
[358] | 1316 | Parameters:
|
---|
[1846] | 1317 |
|
---|
[710] | 1318 | instr: Select from 'ATPKSMB', 'ATPKSHOH', 'ATMOPRA',
|
---|
[407] | 1319 | 'DSS-43' (Tid), 'CEDUNA', and 'HOBART'
|
---|
[1846] | 1320 |
|
---|
[358] | 1321 | """
|
---|
| 1322 | self._setInstrument(instr)
|
---|
[1118] | 1323 | self._add_history("set_instument", vars())
|
---|
[358] | 1324 |
|
---|
[1862] | 1325 | @asaplog_post_dec
|
---|
[1190] | 1326 | def set_feedtype(self, feedtype):
|
---|
[1846] | 1327 | """\
|
---|
[1190] | 1328 | Overwrite the feed type, which might not be set correctly.
|
---|
[1846] | 1329 |
|
---|
[1190] | 1330 | Parameters:
|
---|
[1846] | 1331 |
|
---|
[1190] | 1332 | feedtype: 'linear' or 'circular'
|
---|
[1846] | 1333 |
|
---|
[1190] | 1334 | """
|
---|
| 1335 | self._setfeedtype(feedtype)
|
---|
| 1336 | self._add_history("set_feedtype", vars())
|
---|
| 1337 |
|
---|
[1862] | 1338 | @asaplog_post_dec
|
---|
[2897] | 1339 | def get_doppler(self):
|
---|
| 1340 | """\
|
---|
| 1341 | Get the doppler.
|
---|
| 1342 | """
|
---|
| 1343 | return self._getcoordinfo()[2]
|
---|
| 1344 |
|
---|
| 1345 | @asaplog_post_dec
|
---|
[276] | 1346 | def set_doppler(self, doppler='RADIO'):
|
---|
[1846] | 1347 | """\
|
---|
[276] | 1348 | Set the doppler for all following operations on this scantable.
|
---|
[1846] | 1349 |
|
---|
[276] | 1350 | Parameters:
|
---|
[1846] | 1351 |
|
---|
[276] | 1352 | doppler: One of 'RADIO', 'OPTICAL', 'Z', 'BETA', 'GAMMA'
|
---|
[1846] | 1353 |
|
---|
[276] | 1354 | """
|
---|
[484] | 1355 | varlist = vars()
|
---|
[276] | 1356 | inf = list(self._getcoordinfo())
|
---|
| 1357 | inf[2] = doppler
|
---|
| 1358 | self._setcoordinfo(inf)
|
---|
[1118] | 1359 | self._add_history("set_doppler", vars())
|
---|
[710] | 1360 |
|
---|
[1862] | 1361 | @asaplog_post_dec
|
---|
[226] | 1362 | def set_freqframe(self, frame=None):
|
---|
[1846] | 1363 | """\
|
---|
[113] | 1364 | Set the frame type of the Spectral Axis.
|
---|
[1846] | 1365 |
|
---|
[113] | 1366 | Parameters:
|
---|
[1846] | 1367 |
|
---|
[591] | 1368 | frame: an optional frame type, default 'LSRK'. Valid frames are:
|
---|
[1819] | 1369 | 'TOPO', 'LSRD', 'LSRK', 'BARY',
|
---|
[1118] | 1370 | 'GEO', 'GALACTO', 'LGROUP', 'CMB'
|
---|
[1846] | 1371 |
|
---|
| 1372 | Example::
|
---|
| 1373 |
|
---|
[113] | 1374 | scan.set_freqframe('BARY')
|
---|
[1846] | 1375 |
|
---|
[113] | 1376 | """
|
---|
[1593] | 1377 | frame = frame or rcParams['scantable.freqframe']
|
---|
[484] | 1378 | varlist = vars()
|
---|
[1819] | 1379 | # "REST" is not implemented in casacore
|
---|
| 1380 | #valid = ['REST', 'TOPO', 'LSRD', 'LSRK', 'BARY', \
|
---|
| 1381 | # 'GEO', 'GALACTO', 'LGROUP', 'CMB']
|
---|
| 1382 | valid = ['TOPO', 'LSRD', 'LSRK', 'BARY', \
|
---|
[1118] | 1383 | 'GEO', 'GALACTO', 'LGROUP', 'CMB']
|
---|
[591] | 1384 |
|
---|
[989] | 1385 | if frame in valid:
|
---|
[113] | 1386 | inf = list(self._getcoordinfo())
|
---|
| 1387 | inf[1] = frame
|
---|
| 1388 | self._setcoordinfo(inf)
|
---|
[1118] | 1389 | self._add_history("set_freqframe", varlist)
|
---|
[102] | 1390 | else:
|
---|
[1118] | 1391 | msg = "Please specify a valid freq type. Valid types are:\n", valid
|
---|
[1859] | 1392 | raise TypeError(msg)
|
---|
[710] | 1393 |
|
---|
[1862] | 1394 | @asaplog_post_dec
|
---|
[989] | 1395 | def set_dirframe(self, frame=""):
|
---|
[1846] | 1396 | """\
|
---|
[989] | 1397 | Set the frame type of the Direction on the sky.
|
---|
[1846] | 1398 |
|
---|
[989] | 1399 | Parameters:
|
---|
[1846] | 1400 |
|
---|
[989] | 1401 | frame: an optional frame type, default ''. Valid frames are:
|
---|
| 1402 | 'J2000', 'B1950', 'GALACTIC'
|
---|
[1846] | 1403 |
|
---|
| 1404 | Example:
|
---|
| 1405 |
|
---|
[989] | 1406 | scan.set_dirframe('GALACTIC')
|
---|
[1846] | 1407 |
|
---|
[989] | 1408 | """
|
---|
| 1409 | varlist = vars()
|
---|
[1859] | 1410 | Scantable.set_dirframe(self, frame)
|
---|
[1118] | 1411 | self._add_history("set_dirframe", varlist)
|
---|
[989] | 1412 |
|
---|
[113] | 1413 | def get_unit(self):
|
---|
[1846] | 1414 | """\
|
---|
[113] | 1415 | Get the default unit set in this scantable
|
---|
[1846] | 1416 |
|
---|
[113] | 1417 | Returns:
|
---|
[1846] | 1418 |
|
---|
[113] | 1419 | A unit string
|
---|
[1846] | 1420 |
|
---|
[113] | 1421 | """
|
---|
| 1422 | inf = self._getcoordinfo()
|
---|
| 1423 | unit = inf[0]
|
---|
| 1424 | if unit == '': unit = 'channel'
|
---|
| 1425 | return unit
|
---|
[102] | 1426 |
|
---|
[1862] | 1427 | @asaplog_post_dec
|
---|
[158] | 1428 | def get_abcissa(self, rowno=0):
|
---|
[1846] | 1429 | """\
|
---|
[158] | 1430 | Get the abcissa in the current coordinate setup for the currently
|
---|
[113] | 1431 | selected Beam/IF/Pol
|
---|
[1846] | 1432 |
|
---|
[113] | 1433 | Parameters:
|
---|
[1846] | 1434 |
|
---|
[226] | 1435 | rowno: an optional row number in the scantable. Default is the
|
---|
| 1436 | first row, i.e. rowno=0
|
---|
[1846] | 1437 |
|
---|
[113] | 1438 | Returns:
|
---|
[1846] | 1439 |
|
---|
[1348] | 1440 | The abcissa values and the format string (as a dictionary)
|
---|
[1846] | 1441 |
|
---|
[113] | 1442 | """
|
---|
[256] | 1443 | abc = self._getabcissa(rowno)
|
---|
[710] | 1444 | lbl = self._getabcissalabel(rowno)
|
---|
[158] | 1445 | return abc, lbl
|
---|
[113] | 1446 |
|
---|
[1862] | 1447 | @asaplog_post_dec
|
---|
[2322] | 1448 | def flag(self, mask=None, unflag=False, row=-1):
|
---|
[1846] | 1449 | """\
|
---|
[1001] | 1450 | Flag the selected data using an optional channel mask.
|
---|
[1846] | 1451 |
|
---|
[1001] | 1452 | Parameters:
|
---|
[1846] | 1453 |
|
---|
[1001] | 1454 | mask: an optional channel mask, created with create_mask. Default
|
---|
| 1455 | (no mask) is all channels.
|
---|
[1855] | 1456 |
|
---|
[1819] | 1457 | unflag: if True, unflag the data
|
---|
[1846] | 1458 |
|
---|
[2322] | 1459 | row: an optional row number in the scantable.
|
---|
| 1460 | Default -1 flags all rows
|
---|
| 1461 |
|
---|
[1001] | 1462 | """
|
---|
| 1463 | varlist = vars()
|
---|
[1593] | 1464 | mask = mask or []
|
---|
[1994] | 1465 | self._flag(row, mask, unflag)
|
---|
[1001] | 1466 | self._add_history("flag", varlist)
|
---|
| 1467 |
|
---|
[1862] | 1468 | @asaplog_post_dec
|
---|
[2322] | 1469 | def flag_row(self, rows=None, unflag=False):
|
---|
[1846] | 1470 | """\
|
---|
[1819] | 1471 | Flag the selected data in row-based manner.
|
---|
[1846] | 1472 |
|
---|
[1819] | 1473 | Parameters:
|
---|
[1846] | 1474 |
|
---|
[1843] | 1475 | rows: list of row numbers to be flagged. Default is no row
|
---|
[2322] | 1476 | (must be explicitly specified to execute row-based
|
---|
| 1477 | flagging).
|
---|
[1855] | 1478 |
|
---|
[1819] | 1479 | unflag: if True, unflag the data.
|
---|
[1846] | 1480 |
|
---|
[1819] | 1481 | """
|
---|
| 1482 | varlist = vars()
|
---|
[2322] | 1483 | if rows is None:
|
---|
| 1484 | rows = []
|
---|
[1859] | 1485 | self._flag_row(rows, unflag)
|
---|
[1819] | 1486 | self._add_history("flag_row", varlist)
|
---|
| 1487 |
|
---|
[1862] | 1488 | @asaplog_post_dec
|
---|
[1819] | 1489 | def clip(self, uthres=None, dthres=None, clipoutside=True, unflag=False):
|
---|
[1846] | 1490 | """\
|
---|
[1819] | 1491 | Flag the selected data outside a specified range (in channel-base)
|
---|
[1846] | 1492 |
|
---|
[1819] | 1493 | Parameters:
|
---|
[1846] | 1494 |
|
---|
[1819] | 1495 | uthres: upper threshold.
|
---|
[1855] | 1496 |
|
---|
[1819] | 1497 | dthres: lower threshold
|
---|
[1846] | 1498 |
|
---|
[2322] | 1499 | clipoutside: True for flagging data outside the range
|
---|
| 1500 | [dthres:uthres].
|
---|
[1928] | 1501 | False for flagging data inside the range.
|
---|
[1855] | 1502 |
|
---|
[1846] | 1503 | unflag: if True, unflag the data.
|
---|
| 1504 |
|
---|
[1819] | 1505 | """
|
---|
| 1506 | varlist = vars()
|
---|
[1859] | 1507 | self._clip(uthres, dthres, clipoutside, unflag)
|
---|
[1819] | 1508 | self._add_history("clip", varlist)
|
---|
| 1509 |
|
---|
[1862] | 1510 | @asaplog_post_dec
|
---|
[1584] | 1511 | def lag_flag(self, start, end, unit="MHz", insitu=None):
|
---|
[1846] | 1512 | """\
|
---|
[1192] | 1513 | Flag the data in 'lag' space by providing a frequency to remove.
|
---|
[2177] | 1514 | Flagged data in the scantable get interpolated over the region.
|
---|
[1192] | 1515 | No taper is applied.
|
---|
[1846] | 1516 |
|
---|
[1192] | 1517 | Parameters:
|
---|
[1846] | 1518 |
|
---|
[1579] | 1519 | start: the start frequency (really a period within the
|
---|
| 1520 | bandwidth) or period to remove
|
---|
[1855] | 1521 |
|
---|
[1579] | 1522 | end: the end frequency or period to remove
|
---|
[1855] | 1523 |
|
---|
[2431] | 1524 | unit: the frequency unit (default 'MHz') or '' for
|
---|
[1579] | 1525 | explicit lag channels
|
---|
[1846] | 1526 |
|
---|
| 1527 | *Notes*:
|
---|
| 1528 |
|
---|
[1579] | 1529 | It is recommended to flag edges of the band or strong
|
---|
[1348] | 1530 | signals beforehand.
|
---|
[1846] | 1531 |
|
---|
[1192] | 1532 | """
|
---|
| 1533 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 1534 | self._math._setinsitu(insitu)
|
---|
| 1535 | varlist = vars()
|
---|
[1579] | 1536 | base = { "GHz": 1000000000., "MHz": 1000000., "kHz": 1000., "Hz": 1.}
|
---|
| 1537 | if not (unit == "" or base.has_key(unit)):
|
---|
[1192] | 1538 | raise ValueError("%s is not a valid unit." % unit)
|
---|
[1859] | 1539 | if unit == "":
|
---|
| 1540 | s = scantable(self._math._lag_flag(self, start, end, "lags"))
|
---|
| 1541 | else:
|
---|
| 1542 | s = scantable(self._math._lag_flag(self, start*base[unit],
|
---|
| 1543 | end*base[unit], "frequency"))
|
---|
[1192] | 1544 | s._add_history("lag_flag", varlist)
|
---|
| 1545 | if insitu:
|
---|
| 1546 | self._assign(s)
|
---|
| 1547 | else:
|
---|
| 1548 | return s
|
---|
[1001] | 1549 |
|
---|
[1862] | 1550 | @asaplog_post_dec
|
---|
[2349] | 1551 | def fft(self, rowno=None, mask=None, getrealimag=False):
|
---|
[2177] | 1552 | """\
|
---|
| 1553 | Apply FFT to the spectra.
|
---|
| 1554 | Flagged data in the scantable get interpolated over the region.
|
---|
| 1555 |
|
---|
| 1556 | Parameters:
|
---|
[2186] | 1557 |
|
---|
| 1558 | rowno: The row number(s) to be processed. int, list
|
---|
[2349] | 1559 | and tuple are accepted. By default (None), FFT
|
---|
[2186] | 1560 | is applied to the whole data.
|
---|
| 1561 |
|
---|
| 1562 | mask: Auxiliary channel mask(s). Given as a boolean
|
---|
| 1563 | list, it is applied to all specified rows.
|
---|
| 1564 | A list of boolean lists can also be used to
|
---|
| 1565 | apply different masks. In the latter case, the
|
---|
| 1566 | length of 'mask' must be the same as that of
|
---|
[2349] | 1567 | 'rowno'. The default is None.
|
---|
[2177] | 1568 |
|
---|
| 1569 | getrealimag: If True, returns the real and imaginary part
|
---|
| 1570 | values of the complex results.
|
---|
| 1571 | If False (the default), returns the amplitude
|
---|
| 1572 | (absolute value) normalised with Ndata/2 and
|
---|
| 1573 | phase (argument, in unit of radian).
|
---|
| 1574 |
|
---|
| 1575 | Returns:
|
---|
| 1576 |
|
---|
[2186] | 1577 | A list of dictionaries containing the results for each spectrum.
|
---|
| 1578 | Each dictionary contains two values, the real and the imaginary
|
---|
| 1579 | parts when getrealimag = True, or the amplitude(absolute value)
|
---|
| 1580 | and the phase(argument) when getrealimag = False. The key for
|
---|
| 1581 | these values are 'real' and 'imag', or 'ampl' and 'phase',
|
---|
[2177] | 1582 | respectively.
|
---|
| 1583 | """
|
---|
[2349] | 1584 | if rowno is None:
|
---|
| 1585 | rowno = []
|
---|
[2177] | 1586 | if isinstance(rowno, int):
|
---|
| 1587 | rowno = [rowno]
|
---|
| 1588 | elif not (isinstance(rowno, list) or isinstance(rowno, tuple)):
|
---|
[2186] | 1589 | raise TypeError("The row number(s) must be int, list or tuple.")
|
---|
| 1590 | if len(rowno) == 0: rowno = [i for i in xrange(self.nrow())]
|
---|
| 1591 |
|
---|
[2411] | 1592 | usecommonmask = True
|
---|
| 1593 |
|
---|
| 1594 | if mask is None:
|
---|
| 1595 | mask = []
|
---|
| 1596 | if isinstance(mask, list) or isinstance(mask, tuple):
|
---|
| 1597 | if len(mask) == 0:
|
---|
| 1598 | mask = [[]]
|
---|
| 1599 | else:
|
---|
| 1600 | if isinstance(mask[0], bool):
|
---|
| 1601 | if len(mask) != self.nchan(self.getif(rowno[0])):
|
---|
| 1602 | raise ValueError("The spectra and the mask have "
|
---|
| 1603 | "different length.")
|
---|
| 1604 | mask = [mask]
|
---|
| 1605 | elif isinstance(mask[0], list) or isinstance(mask[0], tuple):
|
---|
| 1606 | usecommonmask = False
|
---|
| 1607 | if len(mask) != len(rowno):
|
---|
| 1608 | raise ValueError("When specifying masks for each "
|
---|
| 1609 | "spectrum, the numbers of them "
|
---|
| 1610 | "must be identical.")
|
---|
| 1611 | for i in xrange(mask):
|
---|
| 1612 | if len(mask[i]) != self.nchan(self.getif(rowno[i])):
|
---|
| 1613 | raise ValueError("The spectra and the mask have "
|
---|
| 1614 | "different length.")
|
---|
| 1615 | else:
|
---|
| 1616 | raise TypeError("The mask must be a boolean list or "
|
---|
| 1617 | "a list of boolean list.")
|
---|
| 1618 | else:
|
---|
[2349] | 1619 | raise TypeError("The mask must be a boolean list or a list of "
|
---|
| 1620 | "boolean list.")
|
---|
[2186] | 1621 |
|
---|
| 1622 | res = []
|
---|
| 1623 |
|
---|
| 1624 | imask = 0
|
---|
| 1625 | for whichrow in rowno:
|
---|
| 1626 | fspec = self._fft(whichrow, mask[imask], getrealimag)
|
---|
| 1627 | nspec = len(fspec)
|
---|
[2177] | 1628 |
|
---|
[2349] | 1629 | i = 0
|
---|
| 1630 | v1 = []
|
---|
| 1631 | v2 = []
|
---|
| 1632 | reselem = {"real":[],"imag":[]} if getrealimag \
|
---|
| 1633 | else {"ampl":[],"phase":[]}
|
---|
[2177] | 1634 |
|
---|
[2186] | 1635 | while (i < nspec):
|
---|
| 1636 | v1.append(fspec[i])
|
---|
| 1637 | v2.append(fspec[i+1])
|
---|
[2349] | 1638 | i += 2
|
---|
[2186] | 1639 |
|
---|
[2177] | 1640 | if getrealimag:
|
---|
[2186] | 1641 | reselem["real"] += v1
|
---|
| 1642 | reselem["imag"] += v2
|
---|
[2177] | 1643 | else:
|
---|
[2186] | 1644 | reselem["ampl"] += v1
|
---|
| 1645 | reselem["phase"] += v2
|
---|
[2177] | 1646 |
|
---|
[2186] | 1647 | res.append(reselem)
|
---|
| 1648 |
|
---|
[2349] | 1649 | if not usecommonmask:
|
---|
| 1650 | imask += 1
|
---|
[2186] | 1651 |
|
---|
[2177] | 1652 | return res
|
---|
| 1653 |
|
---|
| 1654 | @asaplog_post_dec
|
---|
[113] | 1655 | def create_mask(self, *args, **kwargs):
|
---|
[1846] | 1656 | """\
|
---|
[1118] | 1657 | Compute and return a mask based on [min, max] windows.
|
---|
[189] | 1658 | The specified windows are to be INCLUDED, when the mask is
|
---|
[113] | 1659 | applied.
|
---|
[1846] | 1660 |
|
---|
[102] | 1661 | Parameters:
|
---|
[1846] | 1662 |
|
---|
[1118] | 1663 | [min, max], [min2, max2], ...
|
---|
[1024] | 1664 | Pairs of start/end points (inclusive)specifying the regions
|
---|
[102] | 1665 | to be masked
|
---|
[1855] | 1666 |
|
---|
[189] | 1667 | invert: optional argument. If specified as True,
|
---|
| 1668 | return an inverted mask, i.e. the regions
|
---|
| 1669 | specified are EXCLUDED
|
---|
[1855] | 1670 |
|
---|
[513] | 1671 | row: create the mask using the specified row for
|
---|
| 1672 | unit conversions, default is row=0
|
---|
| 1673 | only necessary if frequency varies over rows.
|
---|
[1846] | 1674 |
|
---|
| 1675 | Examples::
|
---|
| 1676 |
|
---|
[113] | 1677 | scan.set_unit('channel')
|
---|
[1846] | 1678 | # a)
|
---|
[1118] | 1679 | msk = scan.create_mask([400, 500], [800, 900])
|
---|
[189] | 1680 | # masks everything outside 400 and 500
|
---|
[113] | 1681 | # and 800 and 900 in the unit 'channel'
|
---|
| 1682 |
|
---|
[1846] | 1683 | # b)
|
---|
[1118] | 1684 | msk = scan.create_mask([400, 500], [800, 900], invert=True)
|
---|
[189] | 1685 | # masks the regions between 400 and 500
|
---|
[113] | 1686 | # and 800 and 900 in the unit 'channel'
|
---|
[1846] | 1687 |
|
---|
| 1688 | # c)
|
---|
| 1689 | #mask only channel 400
|
---|
[1554] | 1690 | msk = scan.create_mask([400])
|
---|
[1846] | 1691 |
|
---|
[102] | 1692 | """
|
---|
[1554] | 1693 | row = kwargs.get("row", 0)
|
---|
[513] | 1694 | data = self._getabcissa(row)
|
---|
[113] | 1695 | u = self._getcoordinfo()[0]
|
---|
[1859] | 1696 | if u == "":
|
---|
| 1697 | u = "channel"
|
---|
| 1698 | msg = "The current mask window unit is %s" % u
|
---|
| 1699 | i = self._check_ifs()
|
---|
| 1700 | if not i:
|
---|
| 1701 | msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
|
---|
| 1702 | asaplog.push(msg)
|
---|
[2348] | 1703 | n = len(data)
|
---|
[1295] | 1704 | msk = _n_bools(n, False)
|
---|
[710] | 1705 | # test if args is a 'list' or a 'normal *args - UGLY!!!
|
---|
| 1706 |
|
---|
[2349] | 1707 | ws = (isinstance(args[-1][-1], int)
|
---|
| 1708 | or isinstance(args[-1][-1], float)) and args or args[0]
|
---|
[710] | 1709 | for window in ws:
|
---|
[1554] | 1710 | if len(window) == 1:
|
---|
| 1711 | window = [window[0], window[0]]
|
---|
| 1712 | if len(window) == 0 or len(window) > 2:
|
---|
[2349] | 1713 | raise ValueError("A window needs to be defined as "
|
---|
| 1714 | "[start(, end)]")
|
---|
[1545] | 1715 | if window[0] > window[1]:
|
---|
| 1716 | tmp = window[0]
|
---|
| 1717 | window[0] = window[1]
|
---|
| 1718 | window[1] = tmp
|
---|
[102] | 1719 | for i in range(n):
|
---|
[1024] | 1720 | if data[i] >= window[0] and data[i] <= window[1]:
|
---|
[1295] | 1721 | msk[i] = True
|
---|
[113] | 1722 | if kwargs.has_key('invert'):
|
---|
| 1723 | if kwargs.get('invert'):
|
---|
[1295] | 1724 | msk = mask_not(msk)
|
---|
[102] | 1725 | return msk
|
---|
[710] | 1726 |
|
---|
[1931] | 1727 | def get_masklist(self, mask=None, row=0, silent=False):
|
---|
[1846] | 1728 | """\
|
---|
[1819] | 1729 | Compute and return a list of mask windows, [min, max].
|
---|
[1846] | 1730 |
|
---|
[1819] | 1731 | Parameters:
|
---|
[1846] | 1732 |
|
---|
[1819] | 1733 | mask: channel mask, created with create_mask.
|
---|
[1855] | 1734 |
|
---|
[1819] | 1735 | row: calcutate the masklist using the specified row
|
---|
| 1736 | for unit conversions, default is row=0
|
---|
| 1737 | only necessary if frequency varies over rows.
|
---|
[1846] | 1738 |
|
---|
[1819] | 1739 | Returns:
|
---|
[1846] | 1740 |
|
---|
[1819] | 1741 | [min, max], [min2, max2], ...
|
---|
| 1742 | Pairs of start/end points (inclusive)specifying
|
---|
| 1743 | the masked regions
|
---|
[1846] | 1744 |
|
---|
[1819] | 1745 | """
|
---|
| 1746 | if not (isinstance(mask,list) or isinstance(mask, tuple)):
|
---|
| 1747 | raise TypeError("The mask should be list or tuple.")
|
---|
[2427] | 1748 | if len(mask) <= 0:
|
---|
| 1749 | raise TypeError("The mask elements should be > 0")
|
---|
[2348] | 1750 | data = self._getabcissa(row)
|
---|
| 1751 | if len(data) != len(mask):
|
---|
[1819] | 1752 | msg = "Number of channels in scantable != number of mask elements"
|
---|
| 1753 | raise TypeError(msg)
|
---|
| 1754 | u = self._getcoordinfo()[0]
|
---|
[1859] | 1755 | if u == "":
|
---|
| 1756 | u = "channel"
|
---|
| 1757 | msg = "The current mask window unit is %s" % u
|
---|
| 1758 | i = self._check_ifs()
|
---|
| 1759 | if not i:
|
---|
| 1760 | msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
|
---|
[1931] | 1761 | if not silent:
|
---|
| 1762 | asaplog.push(msg)
|
---|
[2349] | 1763 | masklist = []
|
---|
[1819] | 1764 | ist, ien = None, None
|
---|
| 1765 | ist, ien=self.get_mask_indices(mask)
|
---|
| 1766 | if ist is not None and ien is not None:
|
---|
| 1767 | for i in xrange(len(ist)):
|
---|
| 1768 | range=[data[ist[i]],data[ien[i]]]
|
---|
| 1769 | range.sort()
|
---|
| 1770 | masklist.append([range[0],range[1]])
|
---|
| 1771 | return masklist
|
---|
| 1772 |
|
---|
| 1773 | def get_mask_indices(self, mask=None):
|
---|
[1846] | 1774 | """\
|
---|
[1819] | 1775 | Compute and Return lists of mask start indices and mask end indices.
|
---|
[1855] | 1776 |
|
---|
| 1777 | Parameters:
|
---|
| 1778 |
|
---|
[1819] | 1779 | mask: channel mask, created with create_mask.
|
---|
[1846] | 1780 |
|
---|
[1819] | 1781 | Returns:
|
---|
[1846] | 1782 |
|
---|
[1819] | 1783 | List of mask start indices and that of mask end indices,
|
---|
| 1784 | i.e., [istart1,istart2,....], [iend1,iend2,....].
|
---|
[1846] | 1785 |
|
---|
[1819] | 1786 | """
|
---|
| 1787 | if not (isinstance(mask,list) or isinstance(mask, tuple)):
|
---|
| 1788 | raise TypeError("The mask should be list or tuple.")
|
---|
[2427] | 1789 | if len(mask) <= 0:
|
---|
| 1790 | raise TypeError("The mask elements should be > 0")
|
---|
[2349] | 1791 | istart = []
|
---|
| 1792 | iend = []
|
---|
| 1793 | if mask[0]:
|
---|
| 1794 | istart.append(0)
|
---|
[1819] | 1795 | for i in range(len(mask)-1):
|
---|
| 1796 | if not mask[i] and mask[i+1]:
|
---|
| 1797 | istart.append(i+1)
|
---|
| 1798 | elif mask[i] and not mask[i+1]:
|
---|
| 1799 | iend.append(i)
|
---|
[2349] | 1800 | if mask[len(mask)-1]:
|
---|
| 1801 | iend.append(len(mask)-1)
|
---|
[1819] | 1802 | if len(istart) != len(iend):
|
---|
| 1803 | raise RuntimeError("Numbers of mask start != mask end.")
|
---|
| 1804 | for i in range(len(istart)):
|
---|
| 1805 | if istart[i] > iend[i]:
|
---|
| 1806 | raise RuntimeError("Mask start index > mask end index")
|
---|
| 1807 | break
|
---|
| 1808 | return istart,iend
|
---|
| 1809 |
|
---|
[2013] | 1810 | @asaplog_post_dec
|
---|
[2882] | 1811 | def parse_spw_selection(self, selectstring, restfreq=None, frame=None, doppler=None):
|
---|
| 1812 | """
|
---|
| 1813 | Parse MS type spw/channel selection syntax.
|
---|
| 1814 |
|
---|
| 1815 | Parameters:
|
---|
| 1816 | selectstring : A string expression of spw and channel selection.
|
---|
| 1817 | Comma-separated expressions mean different spw -
|
---|
| 1818 | channel combinations. Spws and channel selections
|
---|
| 1819 | are partitioned by a colon ':'. In a single
|
---|
| 1820 | selection expression, you can put multiple values
|
---|
| 1821 | separated by semicolons ';'. Both for spw and
|
---|
| 1822 | channel selection, allowed cases include single
|
---|
| 1823 | value, blank('') or asterisk('*') to specify all
|
---|
| 1824 | available values, two values connected with a
|
---|
| 1825 | tilde ('~') to specify an inclusive range. Unit
|
---|
| 1826 | strings for frequency or velocity can be added to
|
---|
| 1827 | the tilde-connected values. For channel selection
|
---|
| 1828 | expression, placing a '<' or a '>' is possible to
|
---|
| 1829 | specify a semi-infinite interval as well.
|
---|
| 1830 |
|
---|
| 1831 | examples:
|
---|
| 1832 | '' or '*' = all spws (all channels)
|
---|
| 1833 | '<2,4~6,9' = Spws 0,1,4,5,6,9 (all channels)
|
---|
| 1834 | '3:3~45;60' = channels 3 to 45 and 60 in spw 3
|
---|
| 1835 | '0~1:2~6,8' = channels 2 to 6 in spws 0,1, and
|
---|
| 1836 | all channels in spw8
|
---|
[2884] | 1837 | '1.3~1.5GHz' = all spws that fall in or have at
|
---|
| 1838 | least some overwrap with frequency
|
---|
| 1839 | range between 1.3GHz and 1.5GHz.
|
---|
| 1840 | '1.3~1.5GHz:1.3~1.5GHz' = channels that fall
|
---|
| 1841 | between the specified
|
---|
| 1842 | frequency range in spws
|
---|
| 1843 | that fall in or have
|
---|
| 1844 | overwrap with the
|
---|
| 1845 | specified frequency
|
---|
| 1846 | range.
|
---|
| 1847 | '1:-200~250km/s' = channels that fall between the
|
---|
| 1848 | specified velocity range in
|
---|
| 1849 | spw 1.
|
---|
[2897] | 1850 | restfreq: the rest frequency.
|
---|
| 1851 | examples: '115.2712GHz', 115271201800.0
|
---|
| 1852 | frame: an optional frame type, default 'LSRK'. Valid frames are:
|
---|
| 1853 | 'TOPO', 'LSRD', 'LSRK', 'BARY',
|
---|
| 1854 | 'GEO', 'GALACTO', 'LGROUP', 'CMB'
|
---|
| 1855 | doppler: one of 'RADIO', 'OPTICAL', 'Z', 'BETA', 'GAMMA'
|
---|
[2882] | 1856 | Returns:
|
---|
| 1857 | A dictionary of selected (valid) spw and masklist pairs,
|
---|
| 1858 | e.g. {'0': [[50,250],[350,462]], '2': [[100,400],[550,974]]}
|
---|
| 1859 | """
|
---|
| 1860 | if not isinstance(selectstring, str):
|
---|
| 1861 | asaplog.post()
|
---|
| 1862 | asaplog.push("Expression of spw/channel selection must be a string.")
|
---|
| 1863 | asaplog.post("ERROR")
|
---|
| 1864 |
|
---|
| 1865 | orig_unit = self.get_unit()
|
---|
| 1866 | self.set_unit('channel')
|
---|
| 1867 |
|
---|
[2891] | 1868 | if restfreq is not None:
|
---|
[2892] | 1869 | orig_molids = self._getmolidcol_list()
|
---|
| 1870 | set_restfreq(self, restfreq)
|
---|
[2882] | 1871 |
|
---|
[2897] | 1872 | orig_coord = self._getcoordinfo()
|
---|
[2892] | 1873 |
|
---|
| 1874 | if frame is not None:
|
---|
| 1875 | orig_frame = orig_coord[1]
|
---|
| 1876 | self.set_freqframe(frame)
|
---|
| 1877 |
|
---|
| 1878 | if doppler is not None:
|
---|
| 1879 | orig_doppler = orig_coord[2]
|
---|
| 1880 | self.set_doppler(doppler)
|
---|
[2882] | 1881 |
|
---|
| 1882 | valid_ifs = self.getifnos()
|
---|
| 1883 |
|
---|
| 1884 | comma_sep = selectstring.split(",")
|
---|
| 1885 | res = {}
|
---|
| 1886 |
|
---|
| 1887 | for cms_elem in comma_sep:
|
---|
| 1888 | colon_sep = cms_elem.split(":")
|
---|
| 1889 |
|
---|
| 1890 | if (len(colon_sep) > 2):
|
---|
| 1891 | raise RuntimeError("Invalid selection expression: more than two colons!")
|
---|
| 1892 |
|
---|
| 1893 | # parse spw expression and store result in spw_list.
|
---|
| 1894 | # allowed cases include '', '*', 'a', '<a', '>a', 'a~b',
|
---|
[2884] | 1895 | # 'a~b*Hz' (where * can be '', 'k', 'M', 'G' etc.),
|
---|
| 1896 | # 'a~b*m/s' (where * can be '' or 'k') and also
|
---|
[2882] | 1897 | # several of the above expressions connected with ';'.
|
---|
| 1898 |
|
---|
| 1899 | spw_list = []
|
---|
| 1900 |
|
---|
| 1901 | semicolon_sep = colon_sep[0].split(";")
|
---|
| 1902 |
|
---|
| 1903 | for scs_elem in semicolon_sep:
|
---|
| 1904 | scs_elem = scs_elem.strip()
|
---|
| 1905 |
|
---|
| 1906 | lt_sep = scs_elem.split("<")
|
---|
| 1907 | gt_sep = scs_elem.split(">")
|
---|
| 1908 | ti_sep = scs_elem.split("~")
|
---|
| 1909 |
|
---|
| 1910 | lt_sep_length = len(lt_sep)
|
---|
| 1911 | gt_sep_length = len(gt_sep)
|
---|
| 1912 | ti_sep_length = len(ti_sep)
|
---|
| 1913 |
|
---|
| 1914 | len_product = lt_sep_length * gt_sep_length * ti_sep_length
|
---|
| 1915 |
|
---|
| 1916 | if (len_product > 2):
|
---|
| 1917 | # '<', '>' and '~' must not coexist in a single spw expression
|
---|
| 1918 |
|
---|
| 1919 | raise RuntimeError("Invalid spw selection.")
|
---|
| 1920 |
|
---|
| 1921 | elif (len_product == 1):
|
---|
| 1922 | # '', '*', or single spw number.
|
---|
| 1923 |
|
---|
| 1924 | if (scs_elem == "") or (scs_elem == "*"):
|
---|
| 1925 | spw_list = valid_ifs[:] # deep copy
|
---|
| 1926 |
|
---|
| 1927 | else: # single number
|
---|
[2887] | 1928 | expr = int(scs_elem)
|
---|
| 1929 | spw_list.append(expr)
|
---|
| 1930 | if expr not in valid_ifs:
|
---|
| 1931 | asaplog.push("Invalid spw given. Ignored.")
|
---|
| 1932 |
|
---|
[2882] | 1933 | else: # (len_product == 2)
|
---|
[2887] | 1934 | # namely, one of '<', '>' or '~' appears just once.
|
---|
[2882] | 1935 |
|
---|
| 1936 | if (lt_sep_length == 2): # '<a'
|
---|
| 1937 | if is_number(lt_sep[1]):
|
---|
[2886] | 1938 | no_valid_spw = True
|
---|
[2882] | 1939 | for i in valid_ifs:
|
---|
| 1940 | if (i < float(lt_sep[1])):
|
---|
| 1941 | spw_list.append(i)
|
---|
[2886] | 1942 | no_valid_spw = False
|
---|
| 1943 |
|
---|
| 1944 | if no_valid_spw:
|
---|
| 1945 | raise ValueError("Invalid spw selection ('<" + str(lt_sep[1]) + "').")
|
---|
[2882] | 1946 |
|
---|
| 1947 | else:
|
---|
[2886] | 1948 | raise RuntimeError("Invalid spw selection.")
|
---|
[2882] | 1949 |
|
---|
| 1950 | elif (gt_sep_length == 2): # '>a'
|
---|
| 1951 | if is_number(gt_sep[1]):
|
---|
[2886] | 1952 | no_valid_spw = True
|
---|
[2882] | 1953 | for i in valid_ifs:
|
---|
| 1954 | if (i > float(gt_sep[1])):
|
---|
| 1955 | spw_list.append(i)
|
---|
[2886] | 1956 | no_valid_spw = False
|
---|
| 1957 |
|
---|
| 1958 | if no_valid_spw:
|
---|
| 1959 | raise ValueError("Invalid spw selection ('>" + str(gt_sep[1]) + "').")
|
---|
[2882] | 1960 |
|
---|
| 1961 | else:
|
---|
[2886] | 1962 | raise RuntimeError("Invalid spw selection.")
|
---|
[2882] | 1963 |
|
---|
| 1964 | else: # (ti_sep_length == 2) where both boundaries inclusive
|
---|
| 1965 | expr0 = ti_sep[0].strip()
|
---|
| 1966 | expr1 = ti_sep[1].strip()
|
---|
| 1967 |
|
---|
| 1968 | if is_number(expr0) and is_number(expr1):
|
---|
| 1969 | # 'a~b'
|
---|
| 1970 | expr_pmin = min(float(expr0), float(expr1))
|
---|
| 1971 | expr_pmax = max(float(expr0), float(expr1))
|
---|
[2887] | 1972 | has_invalid_spw = False
|
---|
[2886] | 1973 | no_valid_spw = True
|
---|
| 1974 |
|
---|
[2882] | 1975 | for i in valid_ifs:
|
---|
| 1976 | if (expr_pmin <= i) and (i <= expr_pmax):
|
---|
| 1977 | spw_list.append(i)
|
---|
[2886] | 1978 | no_valid_spw = False
|
---|
[2887] | 1979 | else:
|
---|
| 1980 | has_invalid_spw = True
|
---|
[2886] | 1981 |
|
---|
[2887] | 1982 | if has_invalid_spw:
|
---|
| 1983 | msg = "Invalid spw is given. Ignored."
|
---|
| 1984 | asaplog.push(msg)
|
---|
| 1985 | asaplog.post()
|
---|
| 1986 |
|
---|
[2886] | 1987 | if no_valid_spw:
|
---|
| 1988 | raise ValueError("No valid spw in range ('" + str(expr_pmin) + "~" + str(expr_pmax) + "').")
|
---|
[2887] | 1989 |
|
---|
[2884] | 1990 | elif is_number(expr0) and is_frequency(expr1):
|
---|
| 1991 | # 'a~b*Hz'
|
---|
| 1992 | (expr_f0, expr_f1) = get_freq_by_string(expr0, expr1)
|
---|
[2886] | 1993 | no_valid_spw = True
|
---|
| 1994 |
|
---|
[2882] | 1995 | for coord in self._get_coordinate_list():
|
---|
| 1996 | expr_p0 = coord['coord'].to_pixel(expr_f0)
|
---|
| 1997 | expr_p1 = coord['coord'].to_pixel(expr_f1)
|
---|
| 1998 | expr_pmin = min(expr_p0, expr_p1)
|
---|
| 1999 | expr_pmax = max(expr_p0, expr_p1)
|
---|
| 2000 |
|
---|
| 2001 | spw = coord['if']
|
---|
| 2002 | pmin = 0.0
|
---|
| 2003 | pmax = float(self.nchan(spw) - 1)
|
---|
| 2004 |
|
---|
| 2005 | if ((expr_pmax - pmin)*(expr_pmin - pmax) <= 0.0):
|
---|
| 2006 | spw_list.append(spw)
|
---|
[2886] | 2007 | no_valid_spw = False
|
---|
| 2008 |
|
---|
| 2009 | if no_valid_spw:
|
---|
| 2010 | raise ValueError("No valid spw in range ('" + str(expr0) + "~" + str(expr1) + "').")
|
---|
[2882] | 2011 |
|
---|
[2884] | 2012 | elif is_number(expr0) and is_velocity(expr1):
|
---|
| 2013 | # 'a~b*m/s'
|
---|
| 2014 | (expr_v0, expr_v1) = get_velocity_by_string(expr0, expr1)
|
---|
[2882] | 2015 | expr_vmin = min(expr_v0, expr_v1)
|
---|
| 2016 | expr_vmax = max(expr_v0, expr_v1)
|
---|
[2886] | 2017 | no_valid_spw = True
|
---|
| 2018 |
|
---|
[2882] | 2019 | for coord in self._get_coordinate_list():
|
---|
| 2020 | spw = coord['if']
|
---|
| 2021 |
|
---|
| 2022 | pmin = 0.0
|
---|
| 2023 | pmax = float(self.nchan(spw) - 1)
|
---|
| 2024 |
|
---|
| 2025 | vel0 = coord['coord'].to_velocity(pmin)
|
---|
| 2026 | vel1 = coord['coord'].to_velocity(pmax)
|
---|
| 2027 |
|
---|
| 2028 | vmin = min(vel0, vel1)
|
---|
| 2029 | vmax = max(vel0, vel1)
|
---|
| 2030 |
|
---|
| 2031 | if ((expr_vmax - vmin)*(expr_vmin - vmax) <= 0.0):
|
---|
| 2032 | spw_list.append(spw)
|
---|
[2886] | 2033 | no_valid_spw = False
|
---|
| 2034 |
|
---|
| 2035 | if no_valid_spw:
|
---|
| 2036 | raise ValueError("No valid spw in range ('" + str(expr0) + "~" + str(expr1) + "').")
|
---|
[2882] | 2037 |
|
---|
| 2038 | else:
|
---|
| 2039 | # cases such as 'aGHz~bkm/s' are not allowed now
|
---|
| 2040 | raise RuntimeError("Invalid spw selection.")
|
---|
| 2041 |
|
---|
[2887] | 2042 | # check spw list and remove invalid ones.
|
---|
| 2043 | # if no valid spw left, emit ValueError.
|
---|
| 2044 | if len(spw_list) == 0:
|
---|
| 2045 | raise ValueError("No valid spw in given range.")
|
---|
| 2046 |
|
---|
[2882] | 2047 | # parse channel expression and store the result in crange_list.
|
---|
| 2048 | # allowed cases include '', 'a~b', 'a*Hz~b*Hz' (where * can be
|
---|
| 2049 | # '', 'k', 'M', 'G' etc.), 'a*m/s~b*m/s' (where * can be '' or 'k')
|
---|
| 2050 | # and also several of the above expressions connected with ';'.
|
---|
| 2051 |
|
---|
| 2052 | for spw in spw_list:
|
---|
| 2053 | pmin = 0.0
|
---|
| 2054 | pmax = float(self.nchan(spw) - 1)
|
---|
[2909] | 2055 |
|
---|
| 2056 | molid = self._getmolidcol_list()[self.get_first_rowno_by_if(spw)]
|
---|
[2882] | 2057 |
|
---|
| 2058 | if (len(colon_sep) == 1):
|
---|
| 2059 | # no expression for channel selection,
|
---|
| 2060 | # which means all channels are to be selected.
|
---|
| 2061 | crange_list = [[pmin, pmax]]
|
---|
| 2062 |
|
---|
| 2063 | else: # (len(colon_sep) == 2)
|
---|
| 2064 | crange_list = []
|
---|
| 2065 |
|
---|
| 2066 | found = False
|
---|
| 2067 | for i in self._get_coordinate_list():
|
---|
| 2068 | if (i['if'] == spw):
|
---|
| 2069 | coord = i['coord']
|
---|
| 2070 | found = True
|
---|
| 2071 | break
|
---|
| 2072 |
|
---|
[2887] | 2073 | if found:
|
---|
| 2074 | semicolon_sep = colon_sep[1].split(";")
|
---|
| 2075 | for scs_elem in semicolon_sep:
|
---|
| 2076 | scs_elem = scs_elem.strip()
|
---|
[2882] | 2077 |
|
---|
[2887] | 2078 | ti_sep = scs_elem.split("~")
|
---|
| 2079 | ti_sep_length = len(ti_sep)
|
---|
[2882] | 2080 |
|
---|
[2887] | 2081 | if (ti_sep_length > 2):
|
---|
| 2082 | raise RuntimeError("Invalid channel selection.")
|
---|
[2882] | 2083 |
|
---|
[2887] | 2084 | elif (ti_sep_length == 1):
|
---|
| 2085 | if (scs_elem == "") or (scs_elem == "*"):
|
---|
| 2086 | # '' and '*' for all channels
|
---|
| 2087 | crange_list = [[pmin, pmax]]
|
---|
| 2088 | break
|
---|
| 2089 | elif (is_number(scs_elem)):
|
---|
| 2090 | # single channel given
|
---|
| 2091 | crange_list.append([float(scs_elem), float(scs_elem)])
|
---|
| 2092 | else:
|
---|
| 2093 | raise RuntimeError("Invalid channel selection.")
|
---|
[2882] | 2094 |
|
---|
[2887] | 2095 | else: #(ti_sep_length == 2)
|
---|
| 2096 | expr0 = ti_sep[0].strip()
|
---|
| 2097 | expr1 = ti_sep[1].strip()
|
---|
[2882] | 2098 |
|
---|
[2887] | 2099 | if is_number(expr0) and is_number(expr1):
|
---|
| 2100 | # 'a~b'
|
---|
| 2101 | expr_pmin = min(float(expr0), float(expr1))
|
---|
| 2102 | expr_pmax = max(float(expr0), float(expr1))
|
---|
[2882] | 2103 |
|
---|
[2887] | 2104 | elif is_number(expr0) and is_frequency(expr1):
|
---|
| 2105 | # 'a~b*Hz'
|
---|
| 2106 | (expr_f0, expr_f1) = get_freq_by_string(expr0, expr1)
|
---|
| 2107 | expr_p0 = coord.to_pixel(expr_f0)
|
---|
| 2108 | expr_p1 = coord.to_pixel(expr_f1)
|
---|
| 2109 | expr_pmin = min(expr_p0, expr_p1)
|
---|
| 2110 | expr_pmax = max(expr_p0, expr_p1)
|
---|
[2882] | 2111 |
|
---|
[2887] | 2112 | elif is_number(expr0) and is_velocity(expr1):
|
---|
| 2113 | # 'a~b*m/s'
|
---|
[2909] | 2114 | restf = self.get_restfreqs()[molid][0]
|
---|
[2887] | 2115 | (expr_v0, expr_v1) = get_velocity_by_string(expr0, expr1)
|
---|
[2897] | 2116 | dppl = self.get_doppler()
|
---|
| 2117 | expr_f0 = get_frequency_by_velocity(restf, expr_v0, dppl)
|
---|
| 2118 | expr_f1 = get_frequency_by_velocity(restf, expr_v1, dppl)
|
---|
[2887] | 2119 | expr_p0 = coord.to_pixel(expr_f0)
|
---|
| 2120 | expr_p1 = coord.to_pixel(expr_f1)
|
---|
| 2121 | expr_pmin = min(expr_p0, expr_p1)
|
---|
| 2122 | expr_pmax = max(expr_p0, expr_p1)
|
---|
[2882] | 2123 |
|
---|
[2887] | 2124 | else:
|
---|
| 2125 | # cases such as 'aGHz~bkm/s' are not allowed now
|
---|
| 2126 | raise RuntimeError("Invalid channel selection.")
|
---|
[2882] | 2127 |
|
---|
[2887] | 2128 | cmin = max(pmin, expr_pmin)
|
---|
| 2129 | cmax = min(pmax, expr_pmax)
|
---|
| 2130 | # if the given range of channel selection has overwrap with
|
---|
| 2131 | # that of current spw, output the overwrap area.
|
---|
| 2132 | if (cmin <= cmax):
|
---|
| 2133 | cmin = float(int(cmin + 0.5))
|
---|
| 2134 | cmax = float(int(cmax + 0.5))
|
---|
| 2135 | crange_list.append([cmin, cmax])
|
---|
[2882] | 2136 |
|
---|
| 2137 | if (len(crange_list) == 0):
|
---|
| 2138 | crange_list.append([])
|
---|
| 2139 |
|
---|
[2910] | 2140 | if (len(crange_list[0]) > 0):
|
---|
| 2141 | if res.has_key(spw):
|
---|
| 2142 | res[spw].extend(crange_list)
|
---|
| 2143 | else:
|
---|
| 2144 | res[spw] = crange_list
|
---|
[2882] | 2145 |
|
---|
[2887] | 2146 | for spw in res.keys():
|
---|
[2932] | 2147 | if spw in valid_ifs:
|
---|
| 2148 | # remove duplicated chennal ranges
|
---|
| 2149 | for i in reversed(xrange(len(res[spw]))):
|
---|
| 2150 | for j in xrange(i):
|
---|
| 2151 | if ((res[spw][i][0]-res[spw][j][1])*(res[spw][i][1]-res[spw][j][0]) <= 0):
|
---|
| 2152 | res[spw][j][0] = min(res[spw][i][0], res[spw][j][0])
|
---|
| 2153 | res[spw][j][1] = max(res[spw][i][1], res[spw][j][1])
|
---|
| 2154 | res[spw].pop(i)
|
---|
| 2155 | break
|
---|
| 2156 | else:
|
---|
[2887] | 2157 | del res[spw]
|
---|
| 2158 |
|
---|
| 2159 | if len(res) == 0:
|
---|
| 2160 | raise RuntimeError("No valid spw.")
|
---|
| 2161 |
|
---|
[2882] | 2162 | # restore original values
|
---|
[2892] | 2163 | self.set_unit(orig_unit)
|
---|
[2891] | 2164 | if restfreq is not None:
|
---|
[2892] | 2165 | self._setmolidcol_list(orig_molids)
|
---|
| 2166 | if frame is not None:
|
---|
| 2167 | self.set_freqframe(orig_frame)
|
---|
| 2168 | if doppler is not None:
|
---|
| 2169 | self.set_doppler(orig_doppler)
|
---|
[2882] | 2170 |
|
---|
| 2171 | return res
|
---|
[2890] | 2172 |
|
---|
[2882] | 2173 | @asaplog_post_dec
|
---|
| 2174 | def get_first_rowno_by_if(self, ifno):
|
---|
| 2175 | found = False
|
---|
| 2176 | for irow in xrange(self.nrow()):
|
---|
| 2177 | if (self.getif(irow) == ifno):
|
---|
| 2178 | res = irow
|
---|
| 2179 | found = True
|
---|
| 2180 | break
|
---|
| 2181 |
|
---|
[2926] | 2182 | if not found: raise RuntimeError("No valid spw.")
|
---|
[2882] | 2183 |
|
---|
| 2184 | return res
|
---|
| 2185 |
|
---|
| 2186 | @asaplog_post_dec
|
---|
| 2187 | def _get_coordinate_list(self):
|
---|
| 2188 | res = []
|
---|
| 2189 | spws = self.getifnos()
|
---|
| 2190 | for spw in spws:
|
---|
| 2191 | elem = {}
|
---|
| 2192 | elem['if'] = spw
|
---|
| 2193 | elem['coord'] = self.get_coordinate(self.get_first_rowno_by_if(spw))
|
---|
| 2194 | res.append(elem)
|
---|
| 2195 |
|
---|
| 2196 | return res
|
---|
| 2197 |
|
---|
| 2198 | @asaplog_post_dec
|
---|
[2349] | 2199 | def parse_maskexpr(self, maskstring):
|
---|
[2013] | 2200 | """
|
---|
| 2201 | Parse CASA type mask selection syntax (IF dependent).
|
---|
| 2202 |
|
---|
| 2203 | Parameters:
|
---|
| 2204 | maskstring : A string mask selection expression.
|
---|
| 2205 | A comma separated selections mean different IF -
|
---|
| 2206 | channel combinations. IFs and channel selections
|
---|
| 2207 | are partitioned by a colon, ':'.
|
---|
| 2208 | examples:
|
---|
[2015] | 2209 | '' = all IFs (all channels)
|
---|
[2013] | 2210 | '<2,4~6,9' = IFs 0,1,4,5,6,9 (all channels)
|
---|
| 2211 | '3:3~45;60' = channels 3 to 45 and 60 in IF 3
|
---|
| 2212 | '0~1:2~6,8' = channels 2 to 6 in IFs 0,1, and
|
---|
| 2213 | all channels in IF8
|
---|
| 2214 | Returns:
|
---|
| 2215 | A dictionary of selected (valid) IF and masklist pairs,
|
---|
| 2216 | e.g. {'0': [[50,250],[350,462]], '2': [[100,400],[550,974]]}
|
---|
| 2217 | """
|
---|
| 2218 | if not isinstance(maskstring,str):
|
---|
| 2219 | asaplog.post()
|
---|
[2611] | 2220 | asaplog.push("Mask expression should be a string.")
|
---|
[2013] | 2221 | asaplog.post("ERROR")
|
---|
| 2222 |
|
---|
| 2223 | valid_ifs = self.getifnos()
|
---|
| 2224 | frequnit = self.get_unit()
|
---|
| 2225 | seldict = {}
|
---|
[2015] | 2226 | if maskstring == "":
|
---|
| 2227 | maskstring = str(valid_ifs)[1:-1]
|
---|
[2611] | 2228 | ## split each selection "IF range[:CHAN range]"
|
---|
[2867] | 2229 | # split maskstring by "<spaces>,<spaces>"
|
---|
| 2230 | comma_sep = re.compile('\s*,\s*')
|
---|
| 2231 | sellist = comma_sep.split(maskstring)
|
---|
| 2232 | # separator by "<spaces>:<spaces>"
|
---|
| 2233 | collon_sep = re.compile('\s*:\s*')
|
---|
[2013] | 2234 | for currselstr in sellist:
|
---|
[2867] | 2235 | selset = collon_sep.split(currselstr)
|
---|
[2013] | 2236 | # spw and mask string (may include ~, < or >)
|
---|
[2349] | 2237 | spwmasklist = self._parse_selection(selset[0], typestr='integer',
|
---|
[2611] | 2238 | minval=min(valid_ifs),
|
---|
[2349] | 2239 | maxval=max(valid_ifs))
|
---|
[2013] | 2240 | for spwlist in spwmasklist:
|
---|
| 2241 | selspws = []
|
---|
| 2242 | for ispw in range(spwlist[0],spwlist[1]+1):
|
---|
| 2243 | # Put into the list only if ispw exists
|
---|
| 2244 | if valid_ifs.count(ispw):
|
---|
| 2245 | selspws.append(ispw)
|
---|
| 2246 | del spwmasklist, spwlist
|
---|
| 2247 |
|
---|
| 2248 | # parse frequency mask list
|
---|
| 2249 | if len(selset) > 1:
|
---|
[2349] | 2250 | freqmasklist = self._parse_selection(selset[1], typestr='float',
|
---|
| 2251 | offset=0.)
|
---|
[2013] | 2252 | else:
|
---|
| 2253 | # want to select the whole spectrum
|
---|
| 2254 | freqmasklist = [None]
|
---|
| 2255 |
|
---|
| 2256 | ## define a dictionary of spw - masklist combination
|
---|
| 2257 | for ispw in selspws:
|
---|
| 2258 | #print "working on", ispw
|
---|
| 2259 | spwstr = str(ispw)
|
---|
| 2260 | if len(selspws) == 0:
|
---|
| 2261 | # empty spw
|
---|
| 2262 | continue
|
---|
| 2263 | else:
|
---|
| 2264 | ## want to get min and max of the spw and
|
---|
| 2265 | ## offset to set for '<' and '>'
|
---|
| 2266 | if frequnit == 'channel':
|
---|
| 2267 | minfreq = 0
|
---|
| 2268 | maxfreq = self.nchan(ifno=ispw)
|
---|
| 2269 | offset = 0.5
|
---|
| 2270 | else:
|
---|
| 2271 | ## This is ugly part. need improvement
|
---|
| 2272 | for ifrow in xrange(self.nrow()):
|
---|
| 2273 | if self.getif(ifrow) == ispw:
|
---|
| 2274 | #print "IF",ispw,"found in row =",ifrow
|
---|
| 2275 | break
|
---|
| 2276 | freqcoord = self.get_coordinate(ifrow)
|
---|
| 2277 | freqs = self._getabcissa(ifrow)
|
---|
| 2278 | minfreq = min(freqs)
|
---|
| 2279 | maxfreq = max(freqs)
|
---|
| 2280 | if len(freqs) == 1:
|
---|
| 2281 | offset = 0.5
|
---|
| 2282 | elif frequnit.find('Hz') > 0:
|
---|
[2349] | 2283 | offset = abs(freqcoord.to_frequency(1,
|
---|
| 2284 | unit=frequnit)
|
---|
| 2285 | -freqcoord.to_frequency(0,
|
---|
| 2286 | unit=frequnit)
|
---|
| 2287 | )*0.5
|
---|
[2013] | 2288 | elif frequnit.find('m/s') > 0:
|
---|
[2349] | 2289 | offset = abs(freqcoord.to_velocity(1,
|
---|
| 2290 | unit=frequnit)
|
---|
| 2291 | -freqcoord.to_velocity(0,
|
---|
| 2292 | unit=frequnit)
|
---|
| 2293 | )*0.5
|
---|
[2013] | 2294 | else:
|
---|
| 2295 | asaplog.post()
|
---|
| 2296 | asaplog.push("Invalid frequency unit")
|
---|
| 2297 | asaplog.post("ERROR")
|
---|
| 2298 | del freqs, freqcoord, ifrow
|
---|
| 2299 | for freq in freqmasklist:
|
---|
| 2300 | selmask = freq or [minfreq, maxfreq]
|
---|
| 2301 | if selmask[0] == None:
|
---|
| 2302 | ## selection was "<freq[1]".
|
---|
| 2303 | if selmask[1] < minfreq:
|
---|
| 2304 | ## avoid adding region selection
|
---|
| 2305 | selmask = None
|
---|
| 2306 | else:
|
---|
| 2307 | selmask = [minfreq,selmask[1]-offset]
|
---|
| 2308 | elif selmask[1] == None:
|
---|
| 2309 | ## selection was ">freq[0]"
|
---|
| 2310 | if selmask[0] > maxfreq:
|
---|
| 2311 | ## avoid adding region selection
|
---|
| 2312 | selmask = None
|
---|
| 2313 | else:
|
---|
| 2314 | selmask = [selmask[0]+offset,maxfreq]
|
---|
| 2315 | if selmask:
|
---|
| 2316 | if not seldict.has_key(spwstr):
|
---|
| 2317 | # new spw selection
|
---|
| 2318 | seldict[spwstr] = []
|
---|
| 2319 | seldict[spwstr] += [selmask]
|
---|
| 2320 | del minfreq,maxfreq,offset,freq,selmask
|
---|
| 2321 | del spwstr
|
---|
| 2322 | del freqmasklist
|
---|
| 2323 | del valid_ifs
|
---|
| 2324 | if len(seldict) == 0:
|
---|
| 2325 | asaplog.post()
|
---|
[2349] | 2326 | asaplog.push("No valid selection in the mask expression: "
|
---|
| 2327 | +maskstring)
|
---|
[2013] | 2328 | asaplog.post("WARN")
|
---|
| 2329 | return None
|
---|
| 2330 | msg = "Selected masklist:\n"
|
---|
| 2331 | for sif, lmask in seldict.iteritems():
|
---|
| 2332 | msg += " IF"+sif+" - "+str(lmask)+"\n"
|
---|
| 2333 | asaplog.push(msg)
|
---|
| 2334 | return seldict
|
---|
| 2335 |
|
---|
[2611] | 2336 | @asaplog_post_dec
|
---|
| 2337 | def parse_idx_selection(self, mode, selexpr):
|
---|
| 2338 | """
|
---|
| 2339 | Parse CASA type mask selection syntax of SCANNO, IFNO, POLNO,
|
---|
| 2340 | BEAMNO, and row number
|
---|
| 2341 |
|
---|
| 2342 | Parameters:
|
---|
| 2343 | mode : which column to select.
|
---|
| 2344 | ['scan',|'if'|'pol'|'beam'|'row']
|
---|
| 2345 | selexpr : A comma separated selection expression.
|
---|
| 2346 | examples:
|
---|
| 2347 | '' = all (returns [])
|
---|
| 2348 | '<2,4~6,9' = indices less than 2, 4 to 6 and 9
|
---|
| 2349 | (returns [0,1,4,5,6,9])
|
---|
| 2350 | Returns:
|
---|
| 2351 | A List of selected indices
|
---|
| 2352 | """
|
---|
| 2353 | if selexpr == "":
|
---|
| 2354 | return []
|
---|
| 2355 | valid_modes = {'s': 'scan', 'i': 'if', 'p': 'pol',
|
---|
| 2356 | 'b': 'beam', 'r': 'row'}
|
---|
| 2357 | smode = mode.lower()[0]
|
---|
| 2358 | if not (smode in valid_modes.keys()):
|
---|
| 2359 | msg = "Invalid mode '%s'. Valid modes are %s" %\
|
---|
| 2360 | (mode, str(valid_modes.values()))
|
---|
| 2361 | asaplog.post()
|
---|
| 2362 | asaplog.push(msg)
|
---|
| 2363 | asaplog.post("ERROR")
|
---|
| 2364 | mode = valid_modes[smode]
|
---|
| 2365 | minidx = None
|
---|
| 2366 | maxidx = None
|
---|
| 2367 | if smode == 'r':
|
---|
| 2368 | minidx = 0
|
---|
| 2369 | maxidx = self.nrow()
|
---|
| 2370 | else:
|
---|
| 2371 | idx = getattr(self,"get"+mode+"nos")()
|
---|
| 2372 | minidx = min(idx)
|
---|
| 2373 | maxidx = max(idx)
|
---|
| 2374 | del idx
|
---|
[2867] | 2375 | # split selexpr by "<spaces>,<spaces>"
|
---|
| 2376 | comma_sep = re.compile('\s*,\s*')
|
---|
| 2377 | sellist = comma_sep.split(selexpr)
|
---|
[2611] | 2378 | idxlist = []
|
---|
| 2379 | for currselstr in sellist:
|
---|
| 2380 | # single range (may include ~, < or >)
|
---|
| 2381 | currlist = self._parse_selection(currselstr, typestr='integer',
|
---|
| 2382 | minval=minidx,maxval=maxidx)
|
---|
| 2383 | for thelist in currlist:
|
---|
| 2384 | idxlist += range(thelist[0],thelist[1]+1)
|
---|
[2932] | 2385 | # remove duplicated elements after first ones
|
---|
| 2386 | for i in reversed(xrange(len(idxlist))):
|
---|
| 2387 | if idxlist.index(idxlist[i]) < i:
|
---|
| 2388 | idxlist.pop(i)
|
---|
[2611] | 2389 | msg = "Selected %s: %s" % (mode.upper()+"NO", str(idxlist))
|
---|
| 2390 | asaplog.push(msg)
|
---|
| 2391 | return idxlist
|
---|
| 2392 |
|
---|
[2349] | 2393 | def _parse_selection(self, selstr, typestr='float', offset=0.,
|
---|
[2351] | 2394 | minval=None, maxval=None):
|
---|
[2013] | 2395 | """
|
---|
| 2396 | Parameters:
|
---|
| 2397 | selstr : The Selection string, e.g., '<3;5~7;100~103;9'
|
---|
| 2398 | typestr : The type of the values in returned list
|
---|
| 2399 | ('integer' or 'float')
|
---|
| 2400 | offset : The offset value to subtract from or add to
|
---|
| 2401 | the boundary value if the selection string
|
---|
[2611] | 2402 | includes '<' or '>' [Valid only for typestr='float']
|
---|
[2013] | 2403 | minval, maxval : The minimum/maximum values to set if the
|
---|
| 2404 | selection string includes '<' or '>'.
|
---|
| 2405 | The list element is filled with None by default.
|
---|
| 2406 | Returns:
|
---|
| 2407 | A list of min/max pair of selections.
|
---|
| 2408 | Example:
|
---|
[2611] | 2409 | _parse_selection('<3;5~7;9',typestr='int',minval=0)
|
---|
| 2410 | --> returns [[0,2],[5,7],[9,9]]
|
---|
| 2411 | _parse_selection('<3;5~7;9',typestr='float',offset=0.5,minval=0)
|
---|
| 2412 | --> returns [[0.,2.5],[5.0,7.0],[9.,9.]]
|
---|
[2013] | 2413 | """
|
---|
[2867] | 2414 | # split selstr by '<spaces>;<spaces>'
|
---|
| 2415 | semi_sep = re.compile('\s*;\s*')
|
---|
| 2416 | selgroups = semi_sep.split(selstr)
|
---|
[2013] | 2417 | sellists = []
|
---|
| 2418 | if typestr.lower().startswith('int'):
|
---|
| 2419 | formatfunc = int
|
---|
[2611] | 2420 | offset = 1
|
---|
[2013] | 2421 | else:
|
---|
| 2422 | formatfunc = float
|
---|
| 2423 |
|
---|
| 2424 | for currsel in selgroups:
|
---|
[2867] | 2425 | if currsel.strip() == '*' or len(currsel.strip()) == 0:
|
---|
| 2426 | minsel = minval
|
---|
| 2427 | maxsel = maxval
|
---|
[2013] | 2428 | if currsel.find('~') > 0:
|
---|
[2611] | 2429 | # val0 <= x <= val1
|
---|
[2013] | 2430 | minsel = formatfunc(currsel.split('~')[0].strip())
|
---|
[2867] | 2431 | maxsel = formatfunc(currsel.split('~')[1].strip())
|
---|
[2611] | 2432 | elif currsel.strip().find('<=') > -1:
|
---|
| 2433 | bound = currsel.split('<=')
|
---|
| 2434 | try: # try "x <= val"
|
---|
| 2435 | minsel = minval
|
---|
| 2436 | maxsel = formatfunc(bound[1].strip())
|
---|
| 2437 | except ValueError: # now "val <= x"
|
---|
| 2438 | minsel = formatfunc(bound[0].strip())
|
---|
| 2439 | maxsel = maxval
|
---|
| 2440 | elif currsel.strip().find('>=') > -1:
|
---|
| 2441 | bound = currsel.split('>=')
|
---|
| 2442 | try: # try "x >= val"
|
---|
| 2443 | minsel = formatfunc(bound[1].strip())
|
---|
| 2444 | maxsel = maxval
|
---|
| 2445 | except ValueError: # now "val >= x"
|
---|
| 2446 | minsel = minval
|
---|
| 2447 | maxsel = formatfunc(bound[0].strip())
|
---|
| 2448 | elif currsel.strip().find('<') > -1:
|
---|
| 2449 | bound = currsel.split('<')
|
---|
| 2450 | try: # try "x < val"
|
---|
| 2451 | minsel = minval
|
---|
| 2452 | maxsel = formatfunc(bound[1].strip()) \
|
---|
| 2453 | - formatfunc(offset)
|
---|
| 2454 | except ValueError: # now "val < x"
|
---|
| 2455 | minsel = formatfunc(bound[0].strip()) \
|
---|
[2013] | 2456 | + formatfunc(offset)
|
---|
[2611] | 2457 | maxsel = maxval
|
---|
| 2458 | elif currsel.strip().find('>') > -1:
|
---|
| 2459 | bound = currsel.split('>')
|
---|
| 2460 | try: # try "x > val"
|
---|
| 2461 | minsel = formatfunc(bound[1].strip()) \
|
---|
| 2462 | + formatfunc(offset)
|
---|
| 2463 | maxsel = maxval
|
---|
| 2464 | except ValueError: # now "val > x"
|
---|
| 2465 | minsel = minval
|
---|
| 2466 | maxsel = formatfunc(bound[0].strip()) \
|
---|
| 2467 | - formatfunc(offset)
|
---|
[2013] | 2468 | else:
|
---|
| 2469 | minsel = formatfunc(currsel)
|
---|
| 2470 | maxsel = formatfunc(currsel)
|
---|
| 2471 | sellists.append([minsel,maxsel])
|
---|
| 2472 | return sellists
|
---|
| 2473 |
|
---|
[1819] | 2474 | # def get_restfreqs(self):
|
---|
| 2475 | # """
|
---|
| 2476 | # Get the restfrequency(s) stored in this scantable.
|
---|
| 2477 | # The return value(s) are always of unit 'Hz'
|
---|
| 2478 | # Parameters:
|
---|
| 2479 | # none
|
---|
| 2480 | # Returns:
|
---|
| 2481 | # a list of doubles
|
---|
| 2482 | # """
|
---|
| 2483 | # return list(self._getrestfreqs())
|
---|
| 2484 |
|
---|
| 2485 | def get_restfreqs(self, ids=None):
|
---|
[1846] | 2486 | """\
|
---|
[256] | 2487 | Get the restfrequency(s) stored in this scantable.
|
---|
| 2488 | The return value(s) are always of unit 'Hz'
|
---|
[1846] | 2489 |
|
---|
[256] | 2490 | Parameters:
|
---|
[1846] | 2491 |
|
---|
[1819] | 2492 | ids: (optional) a list of MOLECULE_ID for that restfrequency(s) to
|
---|
| 2493 | be retrieved
|
---|
[1846] | 2494 |
|
---|
[256] | 2495 | Returns:
|
---|
[1846] | 2496 |
|
---|
[1819] | 2497 | dictionary containing ids and a list of doubles for each id
|
---|
[1846] | 2498 |
|
---|
[256] | 2499 | """
|
---|
[1819] | 2500 | if ids is None:
|
---|
[2349] | 2501 | rfreqs = {}
|
---|
[1819] | 2502 | idlist = self.getmolnos()
|
---|
| 2503 | for i in idlist:
|
---|
[2349] | 2504 | rfreqs[i] = list(self._getrestfreqs(i))
|
---|
[1819] | 2505 | return rfreqs
|
---|
| 2506 | else:
|
---|
[2349] | 2507 | if type(ids) == list or type(ids) == tuple:
|
---|
| 2508 | rfreqs = {}
|
---|
[1819] | 2509 | for i in ids:
|
---|
[2349] | 2510 | rfreqs[i] = list(self._getrestfreqs(i))
|
---|
[1819] | 2511 | return rfreqs
|
---|
| 2512 | else:
|
---|
| 2513 | return list(self._getrestfreqs(ids))
|
---|
[102] | 2514 |
|
---|
[2349] | 2515 | @asaplog_post_dec
|
---|
[931] | 2516 | def set_restfreqs(self, freqs=None, unit='Hz'):
|
---|
[1846] | 2517 | """\
|
---|
[931] | 2518 | Set or replace the restfrequency specified and
|
---|
[1938] | 2519 | if the 'freqs' argument holds a scalar,
|
---|
[931] | 2520 | then that rest frequency will be applied to all the selected
|
---|
| 2521 | data. If the 'freqs' argument holds
|
---|
| 2522 | a vector, then it MUST be of equal or smaller length than
|
---|
| 2523 | the number of IFs (and the available restfrequencies will be
|
---|
| 2524 | replaced by this vector). In this case, *all* data have
|
---|
| 2525 | the restfrequency set per IF according
|
---|
| 2526 | to the corresponding value you give in the 'freqs' vector.
|
---|
[1118] | 2527 | E.g. 'freqs=[1e9, 2e9]' would mean IF 0 gets restfreq 1e9 and
|
---|
[931] | 2528 | IF 1 gets restfreq 2e9.
|
---|
[1846] | 2529 |
|
---|
[1395] | 2530 | You can also specify the frequencies via a linecatalog.
|
---|
[1153] | 2531 |
|
---|
[931] | 2532 | Parameters:
|
---|
[1846] | 2533 |
|
---|
[931] | 2534 | freqs: list of rest frequency values or string idenitfiers
|
---|
[1855] | 2535 |
|
---|
[931] | 2536 | unit: unit for rest frequency (default 'Hz')
|
---|
[402] | 2537 |
|
---|
[1846] | 2538 |
|
---|
| 2539 | Example::
|
---|
| 2540 |
|
---|
[1819] | 2541 | # set the given restfrequency for the all currently selected IFs
|
---|
[931] | 2542 | scan.set_restfreqs(freqs=1.4e9)
|
---|
[1845] | 2543 | # set restfrequencies for the n IFs (n > 1) in the order of the
|
---|
| 2544 | # list, i.e
|
---|
| 2545 | # IF0 -> 1.4e9, IF1 -> 1.41e9, IF3 -> 1.42e9
|
---|
| 2546 | # len(list_of_restfreqs) == nIF
|
---|
| 2547 | # for nIF == 1 the following will set multiple restfrequency for
|
---|
| 2548 | # that IF
|
---|
[1819] | 2549 | scan.set_restfreqs(freqs=[1.4e9, 1.41e9, 1.42e9])
|
---|
[1845] | 2550 | # set multiple restfrequencies per IF. as a list of lists where
|
---|
| 2551 | # the outer list has nIF elements, the inner s arbitrary
|
---|
| 2552 | scan.set_restfreqs(freqs=[[1.4e9, 1.41e9], [1.67e9]])
|
---|
[391] | 2553 |
|
---|
[1846] | 2554 | *Note*:
|
---|
[1845] | 2555 |
|
---|
[931] | 2556 | To do more sophisticate Restfrequency setting, e.g. on a
|
---|
| 2557 | source and IF basis, use scantable.set_selection() before using
|
---|
[1846] | 2558 | this function::
|
---|
[931] | 2559 |
|
---|
[1846] | 2560 | # provided your scantable is called scan
|
---|
| 2561 | selection = selector()
|
---|
[2431] | 2562 | selection.set_name('ORION*')
|
---|
[1846] | 2563 | selection.set_ifs([1])
|
---|
| 2564 | scan.set_selection(selection)
|
---|
| 2565 | scan.set_restfreqs(freqs=86.6e9)
|
---|
| 2566 |
|
---|
[931] | 2567 | """
|
---|
| 2568 | varlist = vars()
|
---|
[1157] | 2569 | from asap import linecatalog
|
---|
| 2570 | # simple value
|
---|
[1118] | 2571 | if isinstance(freqs, int) or isinstance(freqs, float):
|
---|
[1845] | 2572 | self._setrestfreqs([freqs], [""], unit)
|
---|
[1157] | 2573 | # list of values
|
---|
[1118] | 2574 | elif isinstance(freqs, list) or isinstance(freqs, tuple):
|
---|
[1157] | 2575 | # list values are scalars
|
---|
[1118] | 2576 | if isinstance(freqs[-1], int) or isinstance(freqs[-1], float):
|
---|
[1845] | 2577 | if len(freqs) == 1:
|
---|
| 2578 | self._setrestfreqs(freqs, [""], unit)
|
---|
| 2579 | else:
|
---|
| 2580 | # allow the 'old' mode of setting mulitple IFs
|
---|
| 2581 | savesel = self._getselection()
|
---|
[2599] | 2582 | sel = self.get_selection()
|
---|
[1845] | 2583 | iflist = self.getifnos()
|
---|
| 2584 | if len(freqs)>len(iflist):
|
---|
| 2585 | raise ValueError("number of elements in list of list "
|
---|
| 2586 | "exeeds the current IF selections")
|
---|
| 2587 | iflist = self.getifnos()
|
---|
| 2588 | for i, fval in enumerate(freqs):
|
---|
| 2589 | sel.set_ifs(iflist[i])
|
---|
| 2590 | self._setselection(sel)
|
---|
| 2591 | self._setrestfreqs([fval], [""], unit)
|
---|
| 2592 | self._setselection(savesel)
|
---|
| 2593 |
|
---|
| 2594 | # list values are dict, {'value'=, 'name'=)
|
---|
[1157] | 2595 | elif isinstance(freqs[-1], dict):
|
---|
[1845] | 2596 | values = []
|
---|
| 2597 | names = []
|
---|
| 2598 | for d in freqs:
|
---|
| 2599 | values.append(d["value"])
|
---|
| 2600 | names.append(d["name"])
|
---|
| 2601 | self._setrestfreqs(values, names, unit)
|
---|
[1819] | 2602 | elif isinstance(freqs[-1], list) or isinstance(freqs[-1], tuple):
|
---|
[1157] | 2603 | savesel = self._getselection()
|
---|
[2599] | 2604 | sel = self.get_selection()
|
---|
[1322] | 2605 | iflist = self.getifnos()
|
---|
[1819] | 2606 | if len(freqs)>len(iflist):
|
---|
[1845] | 2607 | raise ValueError("number of elements in list of list exeeds"
|
---|
| 2608 | " the current IF selections")
|
---|
| 2609 | for i, fval in enumerate(freqs):
|
---|
[1322] | 2610 | sel.set_ifs(iflist[i])
|
---|
[1259] | 2611 | self._setselection(sel)
|
---|
[1845] | 2612 | self._setrestfreqs(fval, [""], unit)
|
---|
[1157] | 2613 | self._setselection(savesel)
|
---|
| 2614 | # freqs are to be taken from a linecatalog
|
---|
[1153] | 2615 | elif isinstance(freqs, linecatalog):
|
---|
| 2616 | savesel = self._getselection()
|
---|
[2599] | 2617 | sel = self.get_selection()
|
---|
[1153] | 2618 | for i in xrange(freqs.nrow()):
|
---|
[1322] | 2619 | sel.set_ifs(iflist[i])
|
---|
[1153] | 2620 | self._setselection(sel)
|
---|
[1845] | 2621 | self._setrestfreqs([freqs.get_frequency(i)],
|
---|
| 2622 | [freqs.get_name(i)], "MHz")
|
---|
[1153] | 2623 | # ensure that we are not iterating past nIF
|
---|
| 2624 | if i == self.nif()-1: break
|
---|
| 2625 | self._setselection(savesel)
|
---|
[931] | 2626 | else:
|
---|
| 2627 | return
|
---|
| 2628 | self._add_history("set_restfreqs", varlist)
|
---|
| 2629 |
|
---|
[2349] | 2630 | @asaplog_post_dec
|
---|
[1360] | 2631 | def shift_refpix(self, delta):
|
---|
[1846] | 2632 | """\
|
---|
[1589] | 2633 | Shift the reference pixel of the Spectra Coordinate by an
|
---|
| 2634 | integer amount.
|
---|
[1846] | 2635 |
|
---|
[1589] | 2636 | Parameters:
|
---|
[1846] | 2637 |
|
---|
[1589] | 2638 | delta: the amount to shift by
|
---|
[1846] | 2639 |
|
---|
| 2640 | *Note*:
|
---|
| 2641 |
|
---|
[1589] | 2642 | Be careful using this with broadband data.
|
---|
[1846] | 2643 |
|
---|
[1360] | 2644 | """
|
---|
[2349] | 2645 | varlist = vars()
|
---|
[1731] | 2646 | Scantable.shift_refpix(self, delta)
|
---|
[2349] | 2647 | s._add_history("shift_refpix", varlist)
|
---|
[931] | 2648 |
|
---|
[1862] | 2649 | @asaplog_post_dec
|
---|
[2820] | 2650 | def history(self, filename=None, nrows=-1, start=0):
|
---|
[1846] | 2651 | """\
|
---|
[1259] | 2652 | Print the history. Optionally to a file.
|
---|
[1846] | 2653 |
|
---|
[1348] | 2654 | Parameters:
|
---|
[1846] | 2655 |
|
---|
[1928] | 2656 | filename: The name of the file to save the history to.
|
---|
[1846] | 2657 |
|
---|
[1259] | 2658 | """
|
---|
[2820] | 2659 | n = self._historylength()
|
---|
| 2660 | if nrows == -1:
|
---|
| 2661 | nrows = n
|
---|
| 2662 | if start+nrows > n:
|
---|
| 2663 | nrows = nrows-start
|
---|
| 2664 | if n > 1000 and nrows == n:
|
---|
| 2665 | nrows = 1000
|
---|
| 2666 | start = n-1000
|
---|
| 2667 | asaplog.push("Warning: History has {0} entries. Displaying last "
|
---|
| 2668 | "1000".format(n))
|
---|
| 2669 | hist = list(self._gethistory(nrows, start))
|
---|
[794] | 2670 | out = "-"*80
|
---|
[484] | 2671 | for h in hist:
|
---|
[2820] | 2672 | if not h.strip():
|
---|
| 2673 | continue
|
---|
| 2674 | if h.find("---") >-1:
|
---|
| 2675 | continue
|
---|
[489] | 2676 | else:
|
---|
| 2677 | items = h.split("##")
|
---|
| 2678 | date = items[0]
|
---|
| 2679 | func = items[1]
|
---|
| 2680 | items = items[2:]
|
---|
[794] | 2681 | out += "\n"+date+"\n"
|
---|
| 2682 | out += "Function: %s\n Parameters:" % (func)
|
---|
[489] | 2683 | for i in items:
|
---|
[1938] | 2684 | if i == '':
|
---|
| 2685 | continue
|
---|
[489] | 2686 | s = i.split("=")
|
---|
[1118] | 2687 | out += "\n %s = %s" % (s[0], s[1])
|
---|
[2820] | 2688 | out = "\n".join([out, "*"*80])
|
---|
[1259] | 2689 | if filename is not None:
|
---|
| 2690 | if filename is "":
|
---|
| 2691 | filename = 'scantable_history.txt'
|
---|
| 2692 | filename = os.path.expandvars(os.path.expanduser(filename))
|
---|
| 2693 | if not os.path.isdir(filename):
|
---|
| 2694 | data = open(filename, 'w')
|
---|
| 2695 | data.write(out)
|
---|
| 2696 | data.close()
|
---|
| 2697 | else:
|
---|
| 2698 | msg = "Illegal file name '%s'." % (filename)
|
---|
[1859] | 2699 | raise IOError(msg)
|
---|
| 2700 | return page(out)
|
---|
[2349] | 2701 |
|
---|
[513] | 2702 | #
|
---|
| 2703 | # Maths business
|
---|
| 2704 | #
|
---|
[1862] | 2705 | @asaplog_post_dec
|
---|
[2818] | 2706 | def average_time(self, mask=None, scanav=False, weight='tint', align=False,
|
---|
| 2707 | avmode="NONE"):
|
---|
[1846] | 2708 | """\
|
---|
[2349] | 2709 | Return the (time) weighted average of a scan. Scans will be averaged
|
---|
| 2710 | only if the source direction (RA/DEC) is within 1' otherwise
|
---|
[1846] | 2711 |
|
---|
| 2712 | *Note*:
|
---|
| 2713 |
|
---|
[1070] | 2714 | in channels only - align if necessary
|
---|
[1846] | 2715 |
|
---|
[513] | 2716 | Parameters:
|
---|
[1846] | 2717 |
|
---|
[513] | 2718 | mask: an optional mask (only used for 'var' and 'tsys'
|
---|
| 2719 | weighting)
|
---|
[1855] | 2720 |
|
---|
[558] | 2721 | scanav: True averages each scan separately
|
---|
| 2722 | False (default) averages all scans together,
|
---|
[1855] | 2723 |
|
---|
[1099] | 2724 | weight: Weighting scheme.
|
---|
| 2725 | 'none' (mean no weight)
|
---|
| 2726 | 'var' (1/var(spec) weighted)
|
---|
| 2727 | 'tsys' (1/Tsys**2 weighted)
|
---|
| 2728 | 'tint' (integration time weighted)
|
---|
| 2729 | 'tintsys' (Tint/Tsys**2)
|
---|
| 2730 | 'median' ( median averaging)
|
---|
[535] | 2731 | The default is 'tint'
|
---|
[1855] | 2732 |
|
---|
[931] | 2733 | align: align the spectra in velocity before averaging. It takes
|
---|
| 2734 | the time of the first spectrum as reference time.
|
---|
[2818] | 2735 | avmode: 'SOURCE' - also select by source name - or
|
---|
| 2736 | 'NONE' (default). Not applicable for scanav=True or
|
---|
| 2737 | weight=median
|
---|
[1846] | 2738 |
|
---|
| 2739 | Example::
|
---|
| 2740 |
|
---|
[513] | 2741 | # time average the scantable without using a mask
|
---|
[710] | 2742 | newscan = scan.average_time()
|
---|
[1846] | 2743 |
|
---|
[513] | 2744 | """
|
---|
| 2745 | varlist = vars()
|
---|
[1593] | 2746 | weight = weight or 'TINT'
|
---|
| 2747 | mask = mask or ()
|
---|
[2818] | 2748 | scanav = (scanav and 'SCAN') or avmode.upper()
|
---|
[1118] | 2749 | scan = (self, )
|
---|
[1859] | 2750 |
|
---|
| 2751 | if align:
|
---|
| 2752 | scan = (self.freq_align(insitu=False), )
|
---|
[2818] | 2753 | asaplog.push("Note: Alignment is don on a source-by-source basis")
|
---|
| 2754 | asaplog.push("Note: Averaging (by default) is not")
|
---|
| 2755 | # we need to set it to SOURCE averaging here
|
---|
[1859] | 2756 | s = None
|
---|
| 2757 | if weight.upper() == 'MEDIAN':
|
---|
| 2758 | s = scantable(self._math._averagechannel(scan[0], 'MEDIAN',
|
---|
| 2759 | scanav))
|
---|
| 2760 | else:
|
---|
| 2761 | s = scantable(self._math._average(scan, mask, weight.upper(),
|
---|
| 2762 | scanav))
|
---|
[1099] | 2763 | s._add_history("average_time", varlist)
|
---|
[513] | 2764 | return s
|
---|
[710] | 2765 |
|
---|
[1862] | 2766 | @asaplog_post_dec
|
---|
[876] | 2767 | def convert_flux(self, jyperk=None, eta=None, d=None, insitu=None):
|
---|
[1846] | 2768 | """\
|
---|
[513] | 2769 | Return a scan where all spectra are converted to either
|
---|
| 2770 | Jansky or Kelvin depending upon the flux units of the scan table.
|
---|
| 2771 | By default the function tries to look the values up internally.
|
---|
| 2772 | If it can't find them (or if you want to over-ride), you must
|
---|
| 2773 | specify EITHER jyperk OR eta (and D which it will try to look up
|
---|
| 2774 | also if you don't set it). jyperk takes precedence if you set both.
|
---|
[1846] | 2775 |
|
---|
[513] | 2776 | Parameters:
|
---|
[1846] | 2777 |
|
---|
[513] | 2778 | jyperk: the Jy / K conversion factor
|
---|
[1855] | 2779 |
|
---|
[513] | 2780 | eta: the aperture efficiency
|
---|
[1855] | 2781 |
|
---|
[1928] | 2782 | d: the geometric diameter (metres)
|
---|
[1855] | 2783 |
|
---|
[513] | 2784 | insitu: if False a new scantable is returned.
|
---|
| 2785 | Otherwise, the scaling is done in-situ
|
---|
| 2786 | The default is taken from .asaprc (False)
|
---|
[1846] | 2787 |
|
---|
[513] | 2788 | """
|
---|
| 2789 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 2790 | self._math._setinsitu(insitu)
|
---|
[513] | 2791 | varlist = vars()
|
---|
[1593] | 2792 | jyperk = jyperk or -1.0
|
---|
| 2793 | d = d or -1.0
|
---|
| 2794 | eta = eta or -1.0
|
---|
[876] | 2795 | s = scantable(self._math._convertflux(self, d, eta, jyperk))
|
---|
| 2796 | s._add_history("convert_flux", varlist)
|
---|
| 2797 | if insitu: self._assign(s)
|
---|
| 2798 | else: return s
|
---|
[513] | 2799 |
|
---|
[1862] | 2800 | @asaplog_post_dec
|
---|
[876] | 2801 | def gain_el(self, poly=None, filename="", method="linear", insitu=None):
|
---|
[1846] | 2802 | """\
|
---|
[513] | 2803 | Return a scan after applying a gain-elevation correction.
|
---|
| 2804 | The correction can be made via either a polynomial or a
|
---|
| 2805 | table-based interpolation (and extrapolation if necessary).
|
---|
| 2806 | You specify polynomial coefficients, an ascii table or neither.
|
---|
| 2807 | If you specify neither, then a polynomial correction will be made
|
---|
| 2808 | with built in coefficients known for certain telescopes (an error
|
---|
| 2809 | will occur if the instrument is not known).
|
---|
| 2810 | The data and Tsys are *divided* by the scaling factors.
|
---|
[1846] | 2811 |
|
---|
[513] | 2812 | Parameters:
|
---|
[1846] | 2813 |
|
---|
[513] | 2814 | poly: Polynomial coefficients (default None) to compute a
|
---|
| 2815 | gain-elevation correction as a function of
|
---|
| 2816 | elevation (in degrees).
|
---|
[1855] | 2817 |
|
---|
[513] | 2818 | filename: The name of an ascii file holding correction factors.
|
---|
| 2819 | The first row of the ascii file must give the column
|
---|
| 2820 | names and these MUST include columns
|
---|
[2431] | 2821 | 'ELEVATION' (degrees) and 'FACTOR' (multiply data
|
---|
[513] | 2822 | by this) somewhere.
|
---|
| 2823 | The second row must give the data type of the
|
---|
| 2824 | column. Use 'R' for Real and 'I' for Integer.
|
---|
| 2825 | An example file would be
|
---|
| 2826 | (actual factors are arbitrary) :
|
---|
| 2827 |
|
---|
| 2828 | TIME ELEVATION FACTOR
|
---|
| 2829 | R R R
|
---|
| 2830 | 0.1 0 0.8
|
---|
| 2831 | 0.2 20 0.85
|
---|
| 2832 | 0.3 40 0.9
|
---|
| 2833 | 0.4 60 0.85
|
---|
| 2834 | 0.5 80 0.8
|
---|
| 2835 | 0.6 90 0.75
|
---|
[1855] | 2836 |
|
---|
[513] | 2837 | method: Interpolation method when correcting from a table.
|
---|
[2431] | 2838 | Values are 'nearest', 'linear' (default), 'cubic'
|
---|
| 2839 | and 'spline'
|
---|
[1855] | 2840 |
|
---|
[513] | 2841 | insitu: if False a new scantable is returned.
|
---|
| 2842 | Otherwise, the scaling is done in-situ
|
---|
| 2843 | The default is taken from .asaprc (False)
|
---|
[1846] | 2844 |
|
---|
[513] | 2845 | """
|
---|
| 2846 |
|
---|
| 2847 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 2848 | self._math._setinsitu(insitu)
|
---|
[513] | 2849 | varlist = vars()
|
---|
[1593] | 2850 | poly = poly or ()
|
---|
[513] | 2851 | from os.path import expandvars
|
---|
| 2852 | filename = expandvars(filename)
|
---|
[876] | 2853 | s = scantable(self._math._gainel(self, poly, filename, method))
|
---|
| 2854 | s._add_history("gain_el", varlist)
|
---|
[1593] | 2855 | if insitu:
|
---|
| 2856 | self._assign(s)
|
---|
| 2857 | else:
|
---|
| 2858 | return s
|
---|
[710] | 2859 |
|
---|
[1862] | 2860 | @asaplog_post_dec
|
---|
[931] | 2861 | def freq_align(self, reftime=None, method='cubic', insitu=None):
|
---|
[1846] | 2862 | """\
|
---|
[513] | 2863 | Return a scan where all rows have been aligned in frequency/velocity.
|
---|
| 2864 | The alignment frequency frame (e.g. LSRK) is that set by function
|
---|
| 2865 | set_freqframe.
|
---|
[1846] | 2866 |
|
---|
[513] | 2867 | Parameters:
|
---|
[1855] | 2868 |
|
---|
[513] | 2869 | reftime: reference time to align at. By default, the time of
|
---|
| 2870 | the first row of data is used.
|
---|
[1855] | 2871 |
|
---|
[513] | 2872 | method: Interpolation method for regridding the spectra.
|
---|
[2431] | 2873 | Choose from 'nearest', 'linear', 'cubic' (default)
|
---|
| 2874 | and 'spline'
|
---|
[1855] | 2875 |
|
---|
[513] | 2876 | insitu: if False a new scantable is returned.
|
---|
| 2877 | Otherwise, the scaling is done in-situ
|
---|
| 2878 | The default is taken from .asaprc (False)
|
---|
[1846] | 2879 |
|
---|
[513] | 2880 | """
|
---|
[931] | 2881 | if insitu is None: insitu = rcParams["insitu"]
|
---|
[2429] | 2882 | oldInsitu = self._math._insitu()
|
---|
[876] | 2883 | self._math._setinsitu(insitu)
|
---|
[513] | 2884 | varlist = vars()
|
---|
[1593] | 2885 | reftime = reftime or ""
|
---|
[931] | 2886 | s = scantable(self._math._freq_align(self, reftime, method))
|
---|
[876] | 2887 | s._add_history("freq_align", varlist)
|
---|
[2429] | 2888 | self._math._setinsitu(oldInsitu)
|
---|
[2349] | 2889 | if insitu:
|
---|
| 2890 | self._assign(s)
|
---|
| 2891 | else:
|
---|
| 2892 | return s
|
---|
[513] | 2893 |
|
---|
[1862] | 2894 | @asaplog_post_dec
|
---|
[1725] | 2895 | def opacity(self, tau=None, insitu=None):
|
---|
[1846] | 2896 | """\
|
---|
[513] | 2897 | Apply an opacity correction. The data
|
---|
| 2898 | and Tsys are multiplied by the correction factor.
|
---|
[1846] | 2899 |
|
---|
[513] | 2900 | Parameters:
|
---|
[1855] | 2901 |
|
---|
[1689] | 2902 | tau: (list of) opacity from which the correction factor is
|
---|
[513] | 2903 | exp(tau*ZD)
|
---|
[1689] | 2904 | where ZD is the zenith-distance.
|
---|
| 2905 | If a list is provided, it has to be of length nIF,
|
---|
| 2906 | nIF*nPol or 1 and in order of IF/POL, e.g.
|
---|
| 2907 | [opif0pol0, opif0pol1, opif1pol0 ...]
|
---|
[1725] | 2908 | if tau is `None` the opacities are determined from a
|
---|
| 2909 | model.
|
---|
[1855] | 2910 |
|
---|
[513] | 2911 | insitu: if False a new scantable is returned.
|
---|
| 2912 | Otherwise, the scaling is done in-situ
|
---|
| 2913 | The default is taken from .asaprc (False)
|
---|
[1846] | 2914 |
|
---|
[513] | 2915 | """
|
---|
[2349] | 2916 | if insitu is None:
|
---|
| 2917 | insitu = rcParams['insitu']
|
---|
[876] | 2918 | self._math._setinsitu(insitu)
|
---|
[513] | 2919 | varlist = vars()
|
---|
[1689] | 2920 | if not hasattr(tau, "__len__"):
|
---|
| 2921 | tau = [tau]
|
---|
[876] | 2922 | s = scantable(self._math._opacity(self, tau))
|
---|
| 2923 | s._add_history("opacity", varlist)
|
---|
[2349] | 2924 | if insitu:
|
---|
| 2925 | self._assign(s)
|
---|
| 2926 | else:
|
---|
| 2927 | return s
|
---|
[513] | 2928 |
|
---|
[1862] | 2929 | @asaplog_post_dec
|
---|
[513] | 2930 | def bin(self, width=5, insitu=None):
|
---|
[1846] | 2931 | """\
|
---|
[513] | 2932 | Return a scan where all spectra have been binned up.
|
---|
[1846] | 2933 |
|
---|
[1348] | 2934 | Parameters:
|
---|
[1846] | 2935 |
|
---|
[513] | 2936 | width: The bin width (default=5) in pixels
|
---|
[1855] | 2937 |
|
---|
[513] | 2938 | insitu: if False a new scantable is returned.
|
---|
| 2939 | Otherwise, the scaling is done in-situ
|
---|
| 2940 | The default is taken from .asaprc (False)
|
---|
[1846] | 2941 |
|
---|
[513] | 2942 | """
|
---|
[2349] | 2943 | if insitu is None:
|
---|
| 2944 | insitu = rcParams['insitu']
|
---|
[876] | 2945 | self._math._setinsitu(insitu)
|
---|
[513] | 2946 | varlist = vars()
|
---|
[876] | 2947 | s = scantable(self._math._bin(self, width))
|
---|
[1118] | 2948 | s._add_history("bin", varlist)
|
---|
[1589] | 2949 | if insitu:
|
---|
| 2950 | self._assign(s)
|
---|
| 2951 | else:
|
---|
| 2952 | return s
|
---|
[513] | 2953 |
|
---|
[1862] | 2954 | @asaplog_post_dec
|
---|
[2672] | 2955 | def reshape(self, first, last, insitu=None):
|
---|
| 2956 | """Resize the band by providing first and last channel.
|
---|
| 2957 | This will cut off all channels outside [first, last].
|
---|
| 2958 | """
|
---|
| 2959 | if insitu is None:
|
---|
| 2960 | insitu = rcParams['insitu']
|
---|
| 2961 | varlist = vars()
|
---|
| 2962 | if last < 0:
|
---|
| 2963 | last = self.nchan()-1 + last
|
---|
| 2964 | s = None
|
---|
| 2965 | if insitu:
|
---|
| 2966 | s = self
|
---|
| 2967 | else:
|
---|
| 2968 | s = self.copy()
|
---|
| 2969 | s._reshape(first,last)
|
---|
| 2970 | s._add_history("reshape", varlist)
|
---|
| 2971 | if not insitu:
|
---|
| 2972 | return s
|
---|
| 2973 |
|
---|
| 2974 | @asaplog_post_dec
|
---|
[513] | 2975 | def resample(self, width=5, method='cubic', insitu=None):
|
---|
[1846] | 2976 | """\
|
---|
[1348] | 2977 | Return a scan where all spectra have been binned up.
|
---|
[1573] | 2978 |
|
---|
[1348] | 2979 | Parameters:
|
---|
[1846] | 2980 |
|
---|
[513] | 2981 | width: The bin width (default=5) in pixels
|
---|
[1855] | 2982 |
|
---|
[513] | 2983 | method: Interpolation method when correcting from a table.
|
---|
[2431] | 2984 | Values are 'nearest', 'linear', 'cubic' (default)
|
---|
| 2985 | and 'spline'
|
---|
[1855] | 2986 |
|
---|
[513] | 2987 | insitu: if False a new scantable is returned.
|
---|
| 2988 | Otherwise, the scaling is done in-situ
|
---|
| 2989 | The default is taken from .asaprc (False)
|
---|
[1846] | 2990 |
|
---|
[513] | 2991 | """
|
---|
[2349] | 2992 | if insitu is None:
|
---|
| 2993 | insitu = rcParams['insitu']
|
---|
[876] | 2994 | self._math._setinsitu(insitu)
|
---|
[513] | 2995 | varlist = vars()
|
---|
[876] | 2996 | s = scantable(self._math._resample(self, method, width))
|
---|
[1118] | 2997 | s._add_history("resample", varlist)
|
---|
[2349] | 2998 | if insitu:
|
---|
| 2999 | self._assign(s)
|
---|
| 3000 | else:
|
---|
| 3001 | return s
|
---|
[513] | 3002 |
|
---|
[1862] | 3003 | @asaplog_post_dec
|
---|
[946] | 3004 | def average_pol(self, mask=None, weight='none'):
|
---|
[1846] | 3005 | """\
|
---|
[946] | 3006 | Average the Polarisations together.
|
---|
[1846] | 3007 |
|
---|
[946] | 3008 | Parameters:
|
---|
[1846] | 3009 |
|
---|
[946] | 3010 | mask: An optional mask defining the region, where the
|
---|
| 3011 | averaging will be applied. The output will have all
|
---|
| 3012 | specified points masked.
|
---|
[1855] | 3013 |
|
---|
[946] | 3014 | weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
|
---|
| 3015 | weighted), or 'tsys' (1/Tsys**2 weighted)
|
---|
[1846] | 3016 |
|
---|
[946] | 3017 | """
|
---|
| 3018 | varlist = vars()
|
---|
[1593] | 3019 | mask = mask or ()
|
---|
[1010] | 3020 | s = scantable(self._math._averagepol(self, mask, weight.upper()))
|
---|
[1118] | 3021 | s._add_history("average_pol", varlist)
|
---|
[992] | 3022 | return s
|
---|
[513] | 3023 |
|
---|
[1862] | 3024 | @asaplog_post_dec
|
---|
[1145] | 3025 | def average_beam(self, mask=None, weight='none'):
|
---|
[1846] | 3026 | """\
|
---|
[1145] | 3027 | Average the Beams together.
|
---|
[1846] | 3028 |
|
---|
[1145] | 3029 | Parameters:
|
---|
| 3030 | mask: An optional mask defining the region, where the
|
---|
| 3031 | averaging will be applied. The output will have all
|
---|
| 3032 | specified points masked.
|
---|
[1855] | 3033 |
|
---|
[1145] | 3034 | weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
|
---|
| 3035 | weighted), or 'tsys' (1/Tsys**2 weighted)
|
---|
[1846] | 3036 |
|
---|
[1145] | 3037 | """
|
---|
| 3038 | varlist = vars()
|
---|
[1593] | 3039 | mask = mask or ()
|
---|
[1145] | 3040 | s = scantable(self._math._averagebeams(self, mask, weight.upper()))
|
---|
| 3041 | s._add_history("average_beam", varlist)
|
---|
| 3042 | return s
|
---|
| 3043 |
|
---|
[1586] | 3044 | def parallactify(self, pflag):
|
---|
[1846] | 3045 | """\
|
---|
[1843] | 3046 | Set a flag to indicate whether this data should be treated as having
|
---|
[1617] | 3047 | been 'parallactified' (total phase == 0.0)
|
---|
[1846] | 3048 |
|
---|
[1617] | 3049 | Parameters:
|
---|
[1855] | 3050 |
|
---|
[1843] | 3051 | pflag: Bool indicating whether to turn this on (True) or
|
---|
[1617] | 3052 | off (False)
|
---|
[1846] | 3053 |
|
---|
[1617] | 3054 | """
|
---|
[1586] | 3055 | varlist = vars()
|
---|
| 3056 | self._parallactify(pflag)
|
---|
| 3057 | self._add_history("parallactify", varlist)
|
---|
| 3058 |
|
---|
[1862] | 3059 | @asaplog_post_dec
|
---|
[992] | 3060 | def convert_pol(self, poltype=None):
|
---|
[1846] | 3061 | """\
|
---|
[992] | 3062 | Convert the data to a different polarisation type.
|
---|
[1565] | 3063 | Note that you will need cross-polarisation terms for most conversions.
|
---|
[1846] | 3064 |
|
---|
[992] | 3065 | Parameters:
|
---|
[1855] | 3066 |
|
---|
[992] | 3067 | poltype: The new polarisation type. Valid types are:
|
---|
[2431] | 3068 | 'linear', 'circular', 'stokes' and 'linpol'
|
---|
[1846] | 3069 |
|
---|
[992] | 3070 | """
|
---|
| 3071 | varlist = vars()
|
---|
[1859] | 3072 | s = scantable(self._math._convertpol(self, poltype))
|
---|
[1118] | 3073 | s._add_history("convert_pol", varlist)
|
---|
[992] | 3074 | return s
|
---|
| 3075 |
|
---|
[1862] | 3076 | @asaplog_post_dec
|
---|
[2269] | 3077 | def smooth(self, kernel="hanning", width=5.0, order=2, plot=False,
|
---|
| 3078 | insitu=None):
|
---|
[1846] | 3079 | """\
|
---|
[513] | 3080 | Smooth the spectrum by the specified kernel (conserving flux).
|
---|
[1846] | 3081 |
|
---|
[513] | 3082 | Parameters:
|
---|
[1846] | 3083 |
|
---|
[513] | 3084 | kernel: The type of smoothing kernel. Select from
|
---|
[1574] | 3085 | 'hanning' (default), 'gaussian', 'boxcar', 'rmedian'
|
---|
| 3086 | or 'poly'
|
---|
[1855] | 3087 |
|
---|
[513] | 3088 | width: The width of the kernel in pixels. For hanning this is
|
---|
| 3089 | ignored otherwise it defauls to 5 pixels.
|
---|
| 3090 | For 'gaussian' it is the Full Width Half
|
---|
| 3091 | Maximum. For 'boxcar' it is the full width.
|
---|
[1574] | 3092 | For 'rmedian' and 'poly' it is the half width.
|
---|
[1855] | 3093 |
|
---|
[1574] | 3094 | order: Optional parameter for 'poly' kernel (default is 2), to
|
---|
| 3095 | specify the order of the polnomial. Ignored by all other
|
---|
| 3096 | kernels.
|
---|
[1855] | 3097 |
|
---|
[1819] | 3098 | plot: plot the original and the smoothed spectra.
|
---|
| 3099 | In this each indivual fit has to be approved, by
|
---|
| 3100 | typing 'y' or 'n'
|
---|
[1855] | 3101 |
|
---|
[513] | 3102 | insitu: if False a new scantable is returned.
|
---|
| 3103 | Otherwise, the scaling is done in-situ
|
---|
| 3104 | The default is taken from .asaprc (False)
|
---|
[1846] | 3105 |
|
---|
[513] | 3106 | """
|
---|
| 3107 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 3108 | self._math._setinsitu(insitu)
|
---|
[513] | 3109 | varlist = vars()
|
---|
[1819] | 3110 |
|
---|
| 3111 | if plot: orgscan = self.copy()
|
---|
| 3112 |
|
---|
[1574] | 3113 | s = scantable(self._math._smooth(self, kernel.lower(), width, order))
|
---|
[876] | 3114 | s._add_history("smooth", varlist)
|
---|
[1819] | 3115 |
|
---|
[2610] | 3116 | action = 'H'
|
---|
[1819] | 3117 | if plot:
|
---|
[2150] | 3118 | from asap.asapplotter import new_asaplot
|
---|
| 3119 | theplot = new_asaplot(rcParams['plotter.gui'])
|
---|
[2535] | 3120 | from matplotlib import rc as rcp
|
---|
| 3121 | rcp('lines', linewidth=1)
|
---|
[2150] | 3122 | theplot.set_panels()
|
---|
[1819] | 3123 | ylab=s._get_ordinate_label()
|
---|
[2150] | 3124 | #theplot.palette(0,["#777777","red"])
|
---|
[1819] | 3125 | for r in xrange(s.nrow()):
|
---|
| 3126 | xsm=s._getabcissa(r)
|
---|
| 3127 | ysm=s._getspectrum(r)
|
---|
| 3128 | xorg=orgscan._getabcissa(r)
|
---|
| 3129 | yorg=orgscan._getspectrum(r)
|
---|
[2610] | 3130 | if action != "N": #skip plotting if rejecting all
|
---|
| 3131 | theplot.clear()
|
---|
| 3132 | theplot.hold()
|
---|
| 3133 | theplot.set_axes('ylabel',ylab)
|
---|
| 3134 | theplot.set_axes('xlabel',s._getabcissalabel(r))
|
---|
| 3135 | theplot.set_axes('title',s._getsourcename(r))
|
---|
| 3136 | theplot.set_line(label='Original',color="#777777")
|
---|
| 3137 | theplot.plot(xorg,yorg)
|
---|
| 3138 | theplot.set_line(label='Smoothed',color="red")
|
---|
| 3139 | theplot.plot(xsm,ysm)
|
---|
| 3140 | ### Ugly part for legend
|
---|
| 3141 | for i in [0,1]:
|
---|
| 3142 | theplot.subplots[0]['lines'].append(
|
---|
| 3143 | [theplot.subplots[0]['axes'].lines[i]]
|
---|
| 3144 | )
|
---|
| 3145 | theplot.release()
|
---|
| 3146 | ### Ugly part for legend
|
---|
| 3147 | theplot.subplots[0]['lines']=[]
|
---|
| 3148 | res = self._get_verify_action("Accept smoothing?",action)
|
---|
| 3149 | #print "IF%d, POL%d: got result = %s" %(s.getif(r),s.getpol(r),res)
|
---|
| 3150 | if r == 0: action = None
|
---|
| 3151 | #res = raw_input("Accept smoothing ([y]/n): ")
|
---|
[1819] | 3152 | if res.upper() == 'N':
|
---|
[2610] | 3153 | # reject for the current rows
|
---|
[1819] | 3154 | s._setspectrum(yorg, r)
|
---|
[2610] | 3155 | elif res.upper() == 'R':
|
---|
| 3156 | # reject all the following rows
|
---|
| 3157 | action = "N"
|
---|
| 3158 | s._setspectrum(yorg, r)
|
---|
| 3159 | elif res.upper() == 'A':
|
---|
| 3160 | # accept all the following rows
|
---|
| 3161 | break
|
---|
[2150] | 3162 | theplot.quit()
|
---|
| 3163 | del theplot
|
---|
[1819] | 3164 | del orgscan
|
---|
| 3165 |
|
---|
[876] | 3166 | if insitu: self._assign(s)
|
---|
| 3167 | else: return s
|
---|
[513] | 3168 |
|
---|
[2186] | 3169 | @asaplog_post_dec
|
---|
[2435] | 3170 | def regrid_channel(self, width=5, plot=False, insitu=None):
|
---|
| 3171 | """\
|
---|
| 3172 | Regrid the spectra by the specified channel width
|
---|
| 3173 |
|
---|
| 3174 | Parameters:
|
---|
| 3175 |
|
---|
| 3176 | width: The channel width (float) of regridded spectra
|
---|
| 3177 | in the current spectral unit.
|
---|
| 3178 |
|
---|
| 3179 | plot: [NOT IMPLEMENTED YET]
|
---|
| 3180 | plot the original and the regridded spectra.
|
---|
| 3181 | In this each indivual fit has to be approved, by
|
---|
| 3182 | typing 'y' or 'n'
|
---|
| 3183 |
|
---|
| 3184 | insitu: if False a new scantable is returned.
|
---|
| 3185 | Otherwise, the scaling is done in-situ
|
---|
| 3186 | The default is taken from .asaprc (False)
|
---|
| 3187 |
|
---|
| 3188 | """
|
---|
| 3189 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 3190 | varlist = vars()
|
---|
| 3191 |
|
---|
| 3192 | if plot:
|
---|
| 3193 | asaplog.post()
|
---|
| 3194 | asaplog.push("Verification plot is not implemtnetd yet.")
|
---|
| 3195 | asaplog.post("WARN")
|
---|
| 3196 |
|
---|
| 3197 | s = self.copy()
|
---|
| 3198 | s._regrid_specchan(width)
|
---|
| 3199 |
|
---|
| 3200 | s._add_history("regrid_channel", varlist)
|
---|
| 3201 |
|
---|
| 3202 | # if plot:
|
---|
| 3203 | # from asap.asapplotter import new_asaplot
|
---|
| 3204 | # theplot = new_asaplot(rcParams['plotter.gui'])
|
---|
[2535] | 3205 | # from matplotlib import rc as rcp
|
---|
| 3206 | # rcp('lines', linewidth=1)
|
---|
[2435] | 3207 | # theplot.set_panels()
|
---|
| 3208 | # ylab=s._get_ordinate_label()
|
---|
| 3209 | # #theplot.palette(0,["#777777","red"])
|
---|
| 3210 | # for r in xrange(s.nrow()):
|
---|
| 3211 | # xsm=s._getabcissa(r)
|
---|
| 3212 | # ysm=s._getspectrum(r)
|
---|
| 3213 | # xorg=orgscan._getabcissa(r)
|
---|
| 3214 | # yorg=orgscan._getspectrum(r)
|
---|
| 3215 | # theplot.clear()
|
---|
| 3216 | # theplot.hold()
|
---|
| 3217 | # theplot.set_axes('ylabel',ylab)
|
---|
| 3218 | # theplot.set_axes('xlabel',s._getabcissalabel(r))
|
---|
| 3219 | # theplot.set_axes('title',s._getsourcename(r))
|
---|
| 3220 | # theplot.set_line(label='Original',color="#777777")
|
---|
| 3221 | # theplot.plot(xorg,yorg)
|
---|
| 3222 | # theplot.set_line(label='Smoothed',color="red")
|
---|
| 3223 | # theplot.plot(xsm,ysm)
|
---|
| 3224 | # ### Ugly part for legend
|
---|
| 3225 | # for i in [0,1]:
|
---|
| 3226 | # theplot.subplots[0]['lines'].append(
|
---|
| 3227 | # [theplot.subplots[0]['axes'].lines[i]]
|
---|
| 3228 | # )
|
---|
| 3229 | # theplot.release()
|
---|
| 3230 | # ### Ugly part for legend
|
---|
| 3231 | # theplot.subplots[0]['lines']=[]
|
---|
| 3232 | # res = raw_input("Accept smoothing ([y]/n): ")
|
---|
| 3233 | # if res.upper() == 'N':
|
---|
| 3234 | # s._setspectrum(yorg, r)
|
---|
| 3235 | # theplot.quit()
|
---|
| 3236 | # del theplot
|
---|
| 3237 | # del orgscan
|
---|
| 3238 |
|
---|
| 3239 | if insitu: self._assign(s)
|
---|
| 3240 | else: return s
|
---|
| 3241 |
|
---|
| 3242 | @asaplog_post_dec
|
---|
[2186] | 3243 | def _parse_wn(self, wn):
|
---|
| 3244 | if isinstance(wn, list) or isinstance(wn, tuple):
|
---|
| 3245 | return wn
|
---|
| 3246 | elif isinstance(wn, int):
|
---|
| 3247 | return [ wn ]
|
---|
| 3248 | elif isinstance(wn, str):
|
---|
[2277] | 3249 | if '-' in wn: # case 'a-b' : return [a,a+1,...,b-1,b]
|
---|
[2186] | 3250 | val = wn.split('-')
|
---|
| 3251 | val = [int(val[0]), int(val[1])]
|
---|
| 3252 | val.sort()
|
---|
| 3253 | res = [i for i in xrange(val[0], val[1]+1)]
|
---|
[2277] | 3254 | elif wn[:2] == '<=' or wn[:2] == '=<': # cases '<=a','=<a' : return [0,1,...,a-1,a]
|
---|
[2186] | 3255 | val = int(wn[2:])+1
|
---|
| 3256 | res = [i for i in xrange(val)]
|
---|
[2277] | 3257 | elif wn[-2:] == '>=' or wn[-2:] == '=>': # cases 'a>=','a=>' : return [0,1,...,a-1,a]
|
---|
[2186] | 3258 | val = int(wn[:-2])+1
|
---|
| 3259 | res = [i for i in xrange(val)]
|
---|
[2277] | 3260 | elif wn[0] == '<': # case '<a' : return [0,1,...,a-2,a-1]
|
---|
[2186] | 3261 | val = int(wn[1:])
|
---|
| 3262 | res = [i for i in xrange(val)]
|
---|
[2277] | 3263 | elif wn[-1] == '>': # case 'a>' : return [0,1,...,a-2,a-1]
|
---|
[2186] | 3264 | val = int(wn[:-1])
|
---|
| 3265 | res = [i for i in xrange(val)]
|
---|
[2411] | 3266 | elif wn[:2] == '>=' or wn[:2] == '=>': # cases '>=a','=>a' : return [a,-999], which is
|
---|
| 3267 | # then interpreted in C++
|
---|
| 3268 | # side as [a,a+1,...,a_nyq]
|
---|
| 3269 | # (CAS-3759)
|
---|
[2186] | 3270 | val = int(wn[2:])
|
---|
[2411] | 3271 | res = [val, -999]
|
---|
| 3272 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
| 3273 | elif wn[-2:] == '<=' or wn[-2:] == '=<': # cases 'a<=','a=<' : return [a,-999], which is
|
---|
| 3274 | # then interpreted in C++
|
---|
| 3275 | # side as [a,a+1,...,a_nyq]
|
---|
| 3276 | # (CAS-3759)
|
---|
[2186] | 3277 | val = int(wn[:-2])
|
---|
[2411] | 3278 | res = [val, -999]
|
---|
| 3279 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
| 3280 | elif wn[0] == '>': # case '>a' : return [a+1,-999], which is
|
---|
| 3281 | # then interpreted in C++
|
---|
| 3282 | # side as [a+1,a+2,...,a_nyq]
|
---|
| 3283 | # (CAS-3759)
|
---|
[2186] | 3284 | val = int(wn[1:])+1
|
---|
[2411] | 3285 | res = [val, -999]
|
---|
| 3286 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
| 3287 | elif wn[-1] == '<': # case 'a<' : return [a+1,-999], which is
|
---|
| 3288 | # then interpreted in C++
|
---|
| 3289 | # side as [a+1,a+2,...,a_nyq]
|
---|
| 3290 | # (CAS-3759)
|
---|
[2186] | 3291 | val = int(wn[:-1])+1
|
---|
[2411] | 3292 | res = [val, -999]
|
---|
| 3293 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
[2012] | 3294 |
|
---|
[2186] | 3295 | return res
|
---|
| 3296 | else:
|
---|
| 3297 | msg = 'wrong value given for addwn/rejwn'
|
---|
| 3298 | raise RuntimeError(msg)
|
---|
| 3299 |
|
---|
[2713] | 3300 | @asaplog_post_dec
|
---|
[2810] | 3301 | def apply_bltable(self, insitu=None, retfitres=None, inbltable=None, outbltable=None, overwrite=None):
|
---|
[2767] | 3302 | """\
|
---|
| 3303 | Subtract baseline based on parameters written in Baseline Table.
|
---|
| 3304 |
|
---|
| 3305 | Parameters:
|
---|
[2809] | 3306 | insitu: if True, baseline fitting/subtraction is done
|
---|
[2810] | 3307 | in-situ. If False, a new scantable with
|
---|
| 3308 | baseline subtracted is returned. Actually,
|
---|
| 3309 | format of the returned value depends on both
|
---|
| 3310 | insitu and retfitres (see below).
|
---|
[2767] | 3311 | The default is taken from .asaprc (False)
|
---|
[2810] | 3312 | retfitres: if True, the results of baseline fitting (i.e.,
|
---|
| 3313 | coefficients and rms) are returned.
|
---|
| 3314 | default is False.
|
---|
| 3315 | The format of the returned value of this
|
---|
| 3316 | function varies as follows:
|
---|
| 3317 | (1) in case insitu=True and retfitres=True:
|
---|
| 3318 | fitting result.
|
---|
| 3319 | (2) in case insitu=True and retfitres=False:
|
---|
| 3320 | None.
|
---|
| 3321 | (3) in case insitu=False and retfitres=True:
|
---|
| 3322 | a dictionary containing a new scantable
|
---|
| 3323 | (with baseline subtracted) and the fitting
|
---|
| 3324 | results.
|
---|
| 3325 | (4) in case insitu=False and retfitres=False:
|
---|
| 3326 | a new scantable (with baseline subtracted).
|
---|
[2767] | 3327 | inbltable: name of input baseline table. The row number of
|
---|
| 3328 | scantable and that of inbltable must be
|
---|
| 3329 | identical.
|
---|
| 3330 | outbltable: name of output baseline table where baseline
|
---|
| 3331 | parameters and fitting results recorded.
|
---|
| 3332 | default is ''(no output).
|
---|
[2809] | 3333 | overwrite: if True when an existing baseline table is
|
---|
| 3334 | specified for outbltable, overwrites it.
|
---|
| 3335 | Otherwise there is no harm.
|
---|
[2767] | 3336 | default is False.
|
---|
| 3337 | """
|
---|
| 3338 |
|
---|
| 3339 | try:
|
---|
| 3340 | varlist = vars()
|
---|
[2810] | 3341 | if retfitres is None: retfitres = False
|
---|
[2767] | 3342 | if inbltable is None: raise ValueError("bltable missing.")
|
---|
| 3343 | if outbltable is None: outbltable = ''
|
---|
| 3344 | if overwrite is None: overwrite = False
|
---|
| 3345 |
|
---|
| 3346 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 3347 | if insitu:
|
---|
| 3348 | workscan = self
|
---|
| 3349 | else:
|
---|
| 3350 | workscan = self.copy()
|
---|
| 3351 |
|
---|
| 3352 | sres = workscan._apply_bltable(inbltable,
|
---|
[2810] | 3353 | retfitres,
|
---|
[2767] | 3354 | outbltable,
|
---|
| 3355 | os.path.exists(outbltable),
|
---|
| 3356 | overwrite)
|
---|
[2810] | 3357 | if retfitres: res = parse_fitresult(sres)
|
---|
[2767] | 3358 |
|
---|
| 3359 | workscan._add_history('apply_bltable', varlist)
|
---|
| 3360 |
|
---|
| 3361 | if insitu:
|
---|
| 3362 | self._assign(workscan)
|
---|
[2810] | 3363 | if retfitres:
|
---|
| 3364 | return res
|
---|
| 3365 | else:
|
---|
| 3366 | return None
|
---|
[2767] | 3367 | else:
|
---|
[2810] | 3368 | if retfitres:
|
---|
| 3369 | return {'scantable': workscan, 'fitresults': res}
|
---|
| 3370 | else:
|
---|
| 3371 | return workscan
|
---|
[2767] | 3372 |
|
---|
| 3373 | except RuntimeError, e:
|
---|
| 3374 | raise_fitting_failure_exception(e)
|
---|
| 3375 |
|
---|
| 3376 | @asaplog_post_dec
|
---|
[2810] | 3377 | def sub_baseline(self, insitu=None, retfitres=None, blinfo=None, bltable=None, overwrite=None):
|
---|
[2767] | 3378 | """\
|
---|
| 3379 | Subtract baseline based on parameters written in the input list.
|
---|
| 3380 |
|
---|
| 3381 | Parameters:
|
---|
[2809] | 3382 | insitu: if True, baseline fitting/subtraction is done
|
---|
[2810] | 3383 | in-situ. If False, a new scantable with
|
---|
| 3384 | baseline subtracted is returned. Actually,
|
---|
| 3385 | format of the returned value depends on both
|
---|
| 3386 | insitu and retfitres (see below).
|
---|
[2767] | 3387 | The default is taken from .asaprc (False)
|
---|
[2810] | 3388 | retfitres: if True, the results of baseline fitting (i.e.,
|
---|
| 3389 | coefficients and rms) are returned.
|
---|
| 3390 | default is False.
|
---|
| 3391 | The format of the returned value of this
|
---|
| 3392 | function varies as follows:
|
---|
| 3393 | (1) in case insitu=True and retfitres=True:
|
---|
| 3394 | fitting result.
|
---|
| 3395 | (2) in case insitu=True and retfitres=False:
|
---|
| 3396 | None.
|
---|
| 3397 | (3) in case insitu=False and retfitres=True:
|
---|
| 3398 | a dictionary containing a new scantable
|
---|
| 3399 | (with baseline subtracted) and the fitting
|
---|
| 3400 | results.
|
---|
| 3401 | (4) in case insitu=False and retfitres=False:
|
---|
| 3402 | a new scantable (with baseline subtracted).
|
---|
[2767] | 3403 | blinfo: baseline parameter set stored in a dictionary
|
---|
| 3404 | or a list of dictionary. Each dictionary
|
---|
| 3405 | corresponds to each spectrum and must contain
|
---|
| 3406 | the following keys and values:
|
---|
| 3407 | 'row': row number,
|
---|
| 3408 | 'blfunc': function name. available ones include
|
---|
| 3409 | 'poly', 'chebyshev', 'cspline' and
|
---|
| 3410 | 'sinusoid',
|
---|
| 3411 | 'order': maximum order of polynomial. needed
|
---|
| 3412 | if blfunc='poly' or 'chebyshev',
|
---|
| 3413 | 'npiece': number or piecewise polynomial.
|
---|
| 3414 | needed if blfunc='cspline',
|
---|
| 3415 | 'nwave': a list of sinusoidal wave numbers.
|
---|
| 3416 | needed if blfunc='sinusoid', and
|
---|
| 3417 | 'masklist': min-max windows for channel mask.
|
---|
| 3418 | the specified ranges will be used
|
---|
| 3419 | for fitting.
|
---|
| 3420 | bltable: name of output baseline table where baseline
|
---|
| 3421 | parameters and fitting results recorded.
|
---|
| 3422 | default is ''(no output).
|
---|
[2809] | 3423 | overwrite: if True when an existing baseline table is
|
---|
| 3424 | specified for bltable, overwrites it.
|
---|
| 3425 | Otherwise there is no harm.
|
---|
[2767] | 3426 | default is False.
|
---|
| 3427 |
|
---|
| 3428 | Example:
|
---|
| 3429 | sub_baseline(blinfo=[{'row':0, 'blfunc':'poly', 'order':5,
|
---|
| 3430 | 'masklist':[[10,350],[352,510]]},
|
---|
| 3431 | {'row':1, 'blfunc':'cspline', 'npiece':3,
|
---|
| 3432 | 'masklist':[[3,16],[19,404],[407,511]]}
|
---|
| 3433 | ])
|
---|
| 3434 |
|
---|
| 3435 | the first spectrum (row=0) will be fitted with polynomial
|
---|
| 3436 | of order=5 and the next one (row=1) will be fitted with cubic
|
---|
| 3437 | spline consisting of 3 pieces.
|
---|
| 3438 | """
|
---|
| 3439 |
|
---|
| 3440 | try:
|
---|
| 3441 | varlist = vars()
|
---|
[2810] | 3442 | if retfitres is None: retfitres = False
|
---|
[2767] | 3443 | if blinfo is None: blinfo = []
|
---|
| 3444 | if bltable is None: bltable = ''
|
---|
| 3445 | if overwrite is None: overwrite = False
|
---|
| 3446 |
|
---|
| 3447 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 3448 | if insitu:
|
---|
| 3449 | workscan = self
|
---|
| 3450 | else:
|
---|
| 3451 | workscan = self.copy()
|
---|
| 3452 |
|
---|
| 3453 | nrow = workscan.nrow()
|
---|
| 3454 |
|
---|
| 3455 | in_blinfo = pack_blinfo(blinfo=blinfo, maxirow=nrow)
|
---|
| 3456 |
|
---|
| 3457 | print "in_blinfo=< "+ str(in_blinfo)+" >"
|
---|
| 3458 |
|
---|
| 3459 | sres = workscan._sub_baseline(in_blinfo,
|
---|
[2810] | 3460 | retfitres,
|
---|
[2767] | 3461 | bltable,
|
---|
| 3462 | os.path.exists(bltable),
|
---|
| 3463 | overwrite)
|
---|
[2810] | 3464 | if retfitres: res = parse_fitresult(sres)
|
---|
[2767] | 3465 |
|
---|
| 3466 | workscan._add_history('sub_baseline', varlist)
|
---|
| 3467 |
|
---|
| 3468 | if insitu:
|
---|
| 3469 | self._assign(workscan)
|
---|
[2810] | 3470 | if retfitres:
|
---|
| 3471 | return res
|
---|
| 3472 | else:
|
---|
| 3473 | return None
|
---|
[2767] | 3474 | else:
|
---|
[2810] | 3475 | if retfitres:
|
---|
| 3476 | return {'scantable': workscan, 'fitresults': res}
|
---|
| 3477 | else:
|
---|
| 3478 | return workscan
|
---|
[2767] | 3479 |
|
---|
| 3480 | except RuntimeError, e:
|
---|
| 3481 | raise_fitting_failure_exception(e)
|
---|
| 3482 |
|
---|
| 3483 | @asaplog_post_dec
|
---|
[2713] | 3484 | def calc_aic(self, value=None, blfunc=None, order=None, mask=None,
|
---|
| 3485 | whichrow=None, uselinefinder=None, edge=None,
|
---|
| 3486 | threshold=None, chan_avg_limit=None):
|
---|
| 3487 | """\
|
---|
| 3488 | Calculates and returns model selection criteria for a specified
|
---|
| 3489 | baseline model and a given spectrum data.
|
---|
| 3490 | Available values include Akaike Information Criterion (AIC), the
|
---|
| 3491 | corrected Akaike Information Criterion (AICc) by Sugiura(1978),
|
---|
| 3492 | Bayesian Information Criterion (BIC) and the Generalised Cross
|
---|
| 3493 | Validation (GCV).
|
---|
[2186] | 3494 |
|
---|
[2713] | 3495 | Parameters:
|
---|
| 3496 | value: name of model selection criteria to calculate.
|
---|
| 3497 | available ones include 'aic', 'aicc', 'bic' and
|
---|
| 3498 | 'gcv'. default is 'aicc'.
|
---|
| 3499 | blfunc: baseline function name. available ones include
|
---|
| 3500 | 'chebyshev', 'cspline' and 'sinusoid'.
|
---|
| 3501 | default is 'chebyshev'.
|
---|
| 3502 | order: parameter for basline function. actually stands for
|
---|
| 3503 | order of polynomial (order) for 'chebyshev',
|
---|
| 3504 | number of spline pieces (npiece) for 'cspline' and
|
---|
| 3505 | maximum wave number for 'sinusoid', respectively.
|
---|
| 3506 | default is 5 (which is also the default order value
|
---|
| 3507 | for [auto_]chebyshev_baseline()).
|
---|
| 3508 | mask: an optional mask. default is [].
|
---|
| 3509 | whichrow: row number. default is 0 (the first row)
|
---|
| 3510 | uselinefinder: use sd.linefinder() to flag out line regions
|
---|
| 3511 | default is True.
|
---|
| 3512 | edge: an optional number of channel to drop at
|
---|
| 3513 | the edge of spectrum. If only one value is
|
---|
| 3514 | specified, the same number will be dropped
|
---|
| 3515 | from both sides of the spectrum. Default
|
---|
| 3516 | is to keep all channels. Nested tuples
|
---|
| 3517 | represent individual edge selection for
|
---|
| 3518 | different IFs (a number of spectral channels
|
---|
| 3519 | can be different)
|
---|
| 3520 | default is (0, 0).
|
---|
| 3521 | threshold: the threshold used by line finder. It is
|
---|
| 3522 | better to keep it large as only strong lines
|
---|
| 3523 | affect the baseline solution.
|
---|
| 3524 | default is 3.
|
---|
| 3525 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 3526 | channels to average during the search of
|
---|
| 3527 | weak and broad lines. The default is no
|
---|
| 3528 | averaging (and no search for weak lines).
|
---|
| 3529 | If such lines can affect the fitted baseline
|
---|
| 3530 | (e.g. a high order polynomial is fitted),
|
---|
| 3531 | increase this parameter (usually values up
|
---|
| 3532 | to 8 are reasonable). Most users of this
|
---|
| 3533 | method should find the default value sufficient.
|
---|
| 3534 | default is 1.
|
---|
| 3535 |
|
---|
| 3536 | Example:
|
---|
| 3537 | aic = scan.calc_aic(blfunc='chebyshev', order=5, whichrow=0)
|
---|
| 3538 | """
|
---|
| 3539 |
|
---|
| 3540 | try:
|
---|
| 3541 | varlist = vars()
|
---|
| 3542 |
|
---|
| 3543 | if value is None: value = 'aicc'
|
---|
| 3544 | if blfunc is None: blfunc = 'chebyshev'
|
---|
| 3545 | if order is None: order = 5
|
---|
| 3546 | if mask is None: mask = []
|
---|
| 3547 | if whichrow is None: whichrow = 0
|
---|
| 3548 | if uselinefinder is None: uselinefinder = True
|
---|
| 3549 | if edge is None: edge = (0, 0)
|
---|
| 3550 | if threshold is None: threshold = 3
|
---|
| 3551 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 3552 |
|
---|
| 3553 | return self._calc_aic(value, blfunc, order, mask,
|
---|
| 3554 | whichrow, uselinefinder, edge,
|
---|
| 3555 | threshold, chan_avg_limit)
|
---|
| 3556 |
|
---|
| 3557 | except RuntimeError, e:
|
---|
| 3558 | raise_fitting_failure_exception(e)
|
---|
| 3559 |
|
---|
[1862] | 3560 | @asaplog_post_dec
|
---|
[2771] | 3561 | def sinusoid_baseline(self, mask=None, applyfft=None,
|
---|
[2269] | 3562 | fftmethod=None, fftthresh=None,
|
---|
[2771] | 3563 | addwn=None, rejwn=None,
|
---|
| 3564 | insitu=None,
|
---|
| 3565 | clipthresh=None, clipniter=None,
|
---|
| 3566 | plot=None,
|
---|
| 3567 | getresidual=None,
|
---|
| 3568 | showprogress=None, minnrow=None,
|
---|
| 3569 | outlog=None,
|
---|
[2767] | 3570 | blfile=None, csvformat=None,
|
---|
| 3571 | bltable=None):
|
---|
[2047] | 3572 | """\
|
---|
[2349] | 3573 | Return a scan which has been baselined (all rows) with sinusoidal
|
---|
| 3574 | functions.
|
---|
| 3575 |
|
---|
[2047] | 3576 | Parameters:
|
---|
[2186] | 3577 | mask: an optional mask
|
---|
| 3578 | applyfft: if True use some method, such as FFT, to find
|
---|
| 3579 | strongest sinusoidal components in the wavenumber
|
---|
| 3580 | domain to be used for baseline fitting.
|
---|
| 3581 | default is True.
|
---|
| 3582 | fftmethod: method to find the strong sinusoidal components.
|
---|
| 3583 | now only 'fft' is available and it is the default.
|
---|
| 3584 | fftthresh: the threshold to select wave numbers to be used for
|
---|
| 3585 | fitting from the distribution of amplitudes in the
|
---|
| 3586 | wavenumber domain.
|
---|
| 3587 | both float and string values accepted.
|
---|
| 3588 | given a float value, the unit is set to sigma.
|
---|
| 3589 | for string values, allowed formats include:
|
---|
[2349] | 3590 | 'xsigma' or 'x' (= x-sigma level. e.g.,
|
---|
| 3591 | '3sigma'), or
|
---|
[2186] | 3592 | 'topx' (= the x strongest ones, e.g. 'top5').
|
---|
| 3593 | default is 3.0 (unit: sigma).
|
---|
| 3594 | addwn: the additional wave numbers to be used for fitting.
|
---|
| 3595 | list or integer value is accepted to specify every
|
---|
| 3596 | wave numbers. also string value can be used in case
|
---|
| 3597 | you need to specify wave numbers in a certain range,
|
---|
| 3598 | e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b),
|
---|
| 3599 | '<a' (= 0,1,...,a-2,a-1),
|
---|
| 3600 | '>=a' (= a, a+1, ... up to the maximum wave
|
---|
| 3601 | number corresponding to the Nyquist
|
---|
| 3602 | frequency for the case of FFT).
|
---|
[2411] | 3603 | default is [0].
|
---|
[2186] | 3604 | rejwn: the wave numbers NOT to be used for fitting.
|
---|
| 3605 | can be set just as addwn but has higher priority:
|
---|
| 3606 | wave numbers which are specified both in addwn
|
---|
| 3607 | and rejwn will NOT be used. default is [].
|
---|
[2771] | 3608 | insitu: if False a new scantable is returned.
|
---|
| 3609 | Otherwise, the scaling is done in-situ
|
---|
| 3610 | The default is taken from .asaprc (False)
|
---|
[2081] | 3611 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
[2349] | 3612 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 3613 | clipping (default is 0)
|
---|
[2081] | 3614 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 3615 | plot the fit and the residual. In this each
|
---|
| 3616 | indivual fit has to be approved, by typing 'y'
|
---|
| 3617 | or 'n'
|
---|
| 3618 | getresidual: if False, returns best-fit values instead of
|
---|
| 3619 | residual. (default is True)
|
---|
[2189] | 3620 | showprogress: show progress status for large data.
|
---|
| 3621 | default is True.
|
---|
| 3622 | minnrow: minimum number of input spectra to show.
|
---|
| 3623 | default is 1000.
|
---|
[2081] | 3624 | outlog: Output the coefficients of the best-fit
|
---|
| 3625 | function to logger (default is False)
|
---|
| 3626 | blfile: Name of a text file in which the best-fit
|
---|
| 3627 | parameter values to be written
|
---|
[2186] | 3628 | (default is '': no file/logger output)
|
---|
[2641] | 3629 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[2767] | 3630 | bltable: name of a baseline table where fitting results
|
---|
| 3631 | (coefficients, rms, etc.) are to be written.
|
---|
| 3632 | if given, fitting results will NOT be output to
|
---|
| 3633 | scantable (insitu=True) or None will be
|
---|
| 3634 | returned (insitu=False).
|
---|
| 3635 | (default is "": no table output)
|
---|
[2047] | 3636 |
|
---|
| 3637 | Example:
|
---|
[2349] | 3638 | # return a scan baselined by a combination of sinusoidal curves
|
---|
| 3639 | # having wave numbers in spectral window up to 10,
|
---|
[2047] | 3640 | # also with 3-sigma clipping, iteration up to 4 times
|
---|
[2186] | 3641 | bscan = scan.sinusoid_baseline(addwn='<=10',clipthresh=3.0,clipniter=4)
|
---|
[2081] | 3642 |
|
---|
| 3643 | Note:
|
---|
| 3644 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 3645 | based on specunit of 'channel'.
|
---|
[2047] | 3646 | """
|
---|
| 3647 |
|
---|
[2186] | 3648 | try:
|
---|
| 3649 | varlist = vars()
|
---|
[2047] | 3650 |
|
---|
[2186] | 3651 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 3652 | if insitu:
|
---|
| 3653 | workscan = self
|
---|
| 3654 | else:
|
---|
| 3655 | workscan = self.copy()
|
---|
| 3656 |
|
---|
[2410] | 3657 | if mask is None: mask = []
|
---|
[2186] | 3658 | if applyfft is None: applyfft = True
|
---|
| 3659 | if fftmethod is None: fftmethod = 'fft'
|
---|
| 3660 | if fftthresh is None: fftthresh = 3.0
|
---|
[2411] | 3661 | if addwn is None: addwn = [0]
|
---|
[2186] | 3662 | if rejwn is None: rejwn = []
|
---|
| 3663 | if clipthresh is None: clipthresh = 3.0
|
---|
| 3664 | if clipniter is None: clipniter = 0
|
---|
| 3665 | if plot is None: plot = False
|
---|
| 3666 | if getresidual is None: getresidual = True
|
---|
[2189] | 3667 | if showprogress is None: showprogress = True
|
---|
| 3668 | if minnrow is None: minnrow = 1000
|
---|
[2186] | 3669 | if outlog is None: outlog = False
|
---|
| 3670 | if blfile is None: blfile = ''
|
---|
[2641] | 3671 | if csvformat is None: csvformat = False
|
---|
[2767] | 3672 | if bltable is None: bltable = ''
|
---|
[2047] | 3673 |
|
---|
[2767] | 3674 | sapplyfft = 'true' if applyfft else 'false'
|
---|
| 3675 | fftinfo = ','.join([sapplyfft, fftmethod.lower(), str(fftthresh).lower()])
|
---|
[2641] | 3676 |
|
---|
[2767] | 3677 | scsvformat = 'T' if csvformat else 'F'
|
---|
| 3678 |
|
---|
[2081] | 3679 | #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method.
|
---|
[2767] | 3680 | workscan._sinusoid_baseline(mask,
|
---|
| 3681 | fftinfo,
|
---|
| 3682 | #applyfft, fftmethod.lower(),
|
---|
| 3683 | #str(fftthresh).lower(),
|
---|
[2349] | 3684 | workscan._parse_wn(addwn),
|
---|
[2643] | 3685 | workscan._parse_wn(rejwn),
|
---|
| 3686 | clipthresh, clipniter,
|
---|
| 3687 | getresidual,
|
---|
[2349] | 3688 | pack_progress_params(showprogress,
|
---|
[2641] | 3689 | minnrow),
|
---|
[2767] | 3690 | outlog, scsvformat+blfile,
|
---|
| 3691 | bltable)
|
---|
[2186] | 3692 | workscan._add_history('sinusoid_baseline', varlist)
|
---|
[2767] | 3693 |
|
---|
| 3694 | if bltable == '':
|
---|
| 3695 | if insitu:
|
---|
| 3696 | self._assign(workscan)
|
---|
| 3697 | else:
|
---|
| 3698 | return workscan
|
---|
[2047] | 3699 | else:
|
---|
[2767] | 3700 | if not insitu:
|
---|
| 3701 | return None
|
---|
[2047] | 3702 |
|
---|
| 3703 | except RuntimeError, e:
|
---|
[2186] | 3704 | raise_fitting_failure_exception(e)
|
---|
[2047] | 3705 |
|
---|
| 3706 |
|
---|
[2186] | 3707 | @asaplog_post_dec
|
---|
[2771] | 3708 | def auto_sinusoid_baseline(self, mask=None, applyfft=None,
|
---|
[2349] | 3709 | fftmethod=None, fftthresh=None,
|
---|
[2771] | 3710 | addwn=None, rejwn=None,
|
---|
| 3711 | insitu=None,
|
---|
| 3712 | clipthresh=None, clipniter=None,
|
---|
| 3713 | edge=None, threshold=None, chan_avg_limit=None,
|
---|
| 3714 | plot=None,
|
---|
| 3715 | getresidual=None,
|
---|
| 3716 | showprogress=None, minnrow=None,
|
---|
| 3717 | outlog=None,
|
---|
[2767] | 3718 | blfile=None, csvformat=None,
|
---|
| 3719 | bltable=None):
|
---|
[2047] | 3720 | """\
|
---|
[2349] | 3721 | Return a scan which has been baselined (all rows) with sinusoidal
|
---|
| 3722 | functions.
|
---|
[2047] | 3723 | Spectral lines are detected first using linefinder and masked out
|
---|
| 3724 | to avoid them affecting the baseline solution.
|
---|
| 3725 |
|
---|
| 3726 | Parameters:
|
---|
[2189] | 3727 | mask: an optional mask retreived from scantable
|
---|
| 3728 | applyfft: if True use some method, such as FFT, to find
|
---|
| 3729 | strongest sinusoidal components in the wavenumber
|
---|
| 3730 | domain to be used for baseline fitting.
|
---|
| 3731 | default is True.
|
---|
| 3732 | fftmethod: method to find the strong sinusoidal components.
|
---|
| 3733 | now only 'fft' is available and it is the default.
|
---|
| 3734 | fftthresh: the threshold to select wave numbers to be used for
|
---|
| 3735 | fitting from the distribution of amplitudes in the
|
---|
| 3736 | wavenumber domain.
|
---|
| 3737 | both float and string values accepted.
|
---|
| 3738 | given a float value, the unit is set to sigma.
|
---|
| 3739 | for string values, allowed formats include:
|
---|
[2349] | 3740 | 'xsigma' or 'x' (= x-sigma level. e.g.,
|
---|
| 3741 | '3sigma'), or
|
---|
[2189] | 3742 | 'topx' (= the x strongest ones, e.g. 'top5').
|
---|
| 3743 | default is 3.0 (unit: sigma).
|
---|
| 3744 | addwn: the additional wave numbers to be used for fitting.
|
---|
| 3745 | list or integer value is accepted to specify every
|
---|
| 3746 | wave numbers. also string value can be used in case
|
---|
| 3747 | you need to specify wave numbers in a certain range,
|
---|
| 3748 | e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b),
|
---|
| 3749 | '<a' (= 0,1,...,a-2,a-1),
|
---|
| 3750 | '>=a' (= a, a+1, ... up to the maximum wave
|
---|
| 3751 | number corresponding to the Nyquist
|
---|
| 3752 | frequency for the case of FFT).
|
---|
[2411] | 3753 | default is [0].
|
---|
[2189] | 3754 | rejwn: the wave numbers NOT to be used for fitting.
|
---|
| 3755 | can be set just as addwn but has higher priority:
|
---|
| 3756 | wave numbers which are specified both in addwn
|
---|
| 3757 | and rejwn will NOT be used. default is [].
|
---|
[2771] | 3758 | insitu: if False a new scantable is returned.
|
---|
| 3759 | Otherwise, the scaling is done in-situ
|
---|
| 3760 | The default is taken from .asaprc (False)
|
---|
[2189] | 3761 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
[2349] | 3762 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 3763 | clipping (default is 0)
|
---|
[2189] | 3764 | edge: an optional number of channel to drop at
|
---|
| 3765 | the edge of spectrum. If only one value is
|
---|
| 3766 | specified, the same number will be dropped
|
---|
| 3767 | from both sides of the spectrum. Default
|
---|
| 3768 | is to keep all channels. Nested tuples
|
---|
| 3769 | represent individual edge selection for
|
---|
| 3770 | different IFs (a number of spectral channels
|
---|
| 3771 | can be different)
|
---|
| 3772 | threshold: the threshold used by line finder. It is
|
---|
| 3773 | better to keep it large as only strong lines
|
---|
| 3774 | affect the baseline solution.
|
---|
| 3775 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 3776 | channels to average during the search of
|
---|
| 3777 | weak and broad lines. The default is no
|
---|
| 3778 | averaging (and no search for weak lines).
|
---|
| 3779 | If such lines can affect the fitted baseline
|
---|
| 3780 | (e.g. a high order polynomial is fitted),
|
---|
| 3781 | increase this parameter (usually values up
|
---|
| 3782 | to 8 are reasonable). Most users of this
|
---|
| 3783 | method should find the default value sufficient.
|
---|
| 3784 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 3785 | plot the fit and the residual. In this each
|
---|
| 3786 | indivual fit has to be approved, by typing 'y'
|
---|
| 3787 | or 'n'
|
---|
| 3788 | getresidual: if False, returns best-fit values instead of
|
---|
| 3789 | residual. (default is True)
|
---|
| 3790 | showprogress: show progress status for large data.
|
---|
| 3791 | default is True.
|
---|
| 3792 | minnrow: minimum number of input spectra to show.
|
---|
| 3793 | default is 1000.
|
---|
| 3794 | outlog: Output the coefficients of the best-fit
|
---|
| 3795 | function to logger (default is False)
|
---|
| 3796 | blfile: Name of a text file in which the best-fit
|
---|
| 3797 | parameter values to be written
|
---|
| 3798 | (default is "": no file/logger output)
|
---|
[2641] | 3799 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[2767] | 3800 | bltable: name of a baseline table where fitting results
|
---|
| 3801 | (coefficients, rms, etc.) are to be written.
|
---|
| 3802 | if given, fitting results will NOT be output to
|
---|
| 3803 | scantable (insitu=True) or None will be
|
---|
| 3804 | returned (insitu=False).
|
---|
| 3805 | (default is "": no table output)
|
---|
[2047] | 3806 |
|
---|
| 3807 | Example:
|
---|
[2186] | 3808 | bscan = scan.auto_sinusoid_baseline(addwn='<=10', insitu=False)
|
---|
[2081] | 3809 |
|
---|
| 3810 | Note:
|
---|
| 3811 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 3812 | based on specunit of 'channel'.
|
---|
[2047] | 3813 | """
|
---|
| 3814 |
|
---|
[2186] | 3815 | try:
|
---|
| 3816 | varlist = vars()
|
---|
[2047] | 3817 |
|
---|
[2186] | 3818 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 3819 | if insitu:
|
---|
| 3820 | workscan = self
|
---|
[2047] | 3821 | else:
|
---|
[2186] | 3822 | workscan = self.copy()
|
---|
| 3823 |
|
---|
[2410] | 3824 | if mask is None: mask = []
|
---|
[2186] | 3825 | if applyfft is None: applyfft = True
|
---|
| 3826 | if fftmethod is None: fftmethod = 'fft'
|
---|
| 3827 | if fftthresh is None: fftthresh = 3.0
|
---|
[2411] | 3828 | if addwn is None: addwn = [0]
|
---|
[2186] | 3829 | if rejwn is None: rejwn = []
|
---|
| 3830 | if clipthresh is None: clipthresh = 3.0
|
---|
| 3831 | if clipniter is None: clipniter = 0
|
---|
| 3832 | if edge is None: edge = (0,0)
|
---|
| 3833 | if threshold is None: threshold = 3
|
---|
| 3834 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 3835 | if plot is None: plot = False
|
---|
| 3836 | if getresidual is None: getresidual = True
|
---|
[2189] | 3837 | if showprogress is None: showprogress = True
|
---|
| 3838 | if minnrow is None: minnrow = 1000
|
---|
[2186] | 3839 | if outlog is None: outlog = False
|
---|
| 3840 | if blfile is None: blfile = ''
|
---|
[2641] | 3841 | if csvformat is None: csvformat = False
|
---|
[2767] | 3842 | if bltable is None: bltable = ''
|
---|
[2047] | 3843 |
|
---|
[2767] | 3844 | sapplyfft = 'true' if applyfft else 'false'
|
---|
| 3845 | fftinfo = ','.join([sapplyfft, fftmethod.lower(), str(fftthresh).lower()])
|
---|
[2641] | 3846 |
|
---|
[2767] | 3847 | scsvformat = 'T' if csvformat else 'F'
|
---|
| 3848 |
|
---|
[2277] | 3849 | #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method.
|
---|
[2767] | 3850 | workscan._auto_sinusoid_baseline(mask,
|
---|
| 3851 | fftinfo,
|
---|
[2349] | 3852 | workscan._parse_wn(addwn),
|
---|
| 3853 | workscan._parse_wn(rejwn),
|
---|
| 3854 | clipthresh, clipniter,
|
---|
| 3855 | normalise_edge_param(edge),
|
---|
| 3856 | threshold, chan_avg_limit,
|
---|
| 3857 | getresidual,
|
---|
| 3858 | pack_progress_params(showprogress,
|
---|
| 3859 | minnrow),
|
---|
[2767] | 3860 | outlog, scsvformat+blfile, bltable)
|
---|
[2047] | 3861 | workscan._add_history("auto_sinusoid_baseline", varlist)
|
---|
[2767] | 3862 |
|
---|
| 3863 | if bltable == '':
|
---|
| 3864 | if insitu:
|
---|
| 3865 | self._assign(workscan)
|
---|
| 3866 | else:
|
---|
| 3867 | return workscan
|
---|
[2047] | 3868 | else:
|
---|
[2767] | 3869 | if not insitu:
|
---|
| 3870 | return None
|
---|
[2047] | 3871 |
|
---|
| 3872 | except RuntimeError, e:
|
---|
[2186] | 3873 | raise_fitting_failure_exception(e)
|
---|
[2047] | 3874 |
|
---|
| 3875 | @asaplog_post_dec
|
---|
[2771] | 3876 | def cspline_baseline(self, mask=None, npiece=None, insitu=None,
|
---|
[2349] | 3877 | clipthresh=None, clipniter=None, plot=None,
|
---|
| 3878 | getresidual=None, showprogress=None, minnrow=None,
|
---|
[2767] | 3879 | outlog=None, blfile=None, csvformat=None,
|
---|
| 3880 | bltable=None):
|
---|
[1846] | 3881 | """\
|
---|
[2349] | 3882 | Return a scan which has been baselined (all rows) by cubic spline
|
---|
| 3883 | function (piecewise cubic polynomial).
|
---|
| 3884 |
|
---|
[513] | 3885 | Parameters:
|
---|
[2771] | 3886 | mask: An optional mask
|
---|
| 3887 | npiece: Number of pieces. (default is 2)
|
---|
[2189] | 3888 | insitu: If False a new scantable is returned.
|
---|
| 3889 | Otherwise, the scaling is done in-situ
|
---|
| 3890 | The default is taken from .asaprc (False)
|
---|
| 3891 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
[2349] | 3892 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 3893 | clipping (default is 0)
|
---|
[2189] | 3894 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 3895 | plot the fit and the residual. In this each
|
---|
| 3896 | indivual fit has to be approved, by typing 'y'
|
---|
| 3897 | or 'n'
|
---|
| 3898 | getresidual: if False, returns best-fit values instead of
|
---|
| 3899 | residual. (default is True)
|
---|
| 3900 | showprogress: show progress status for large data.
|
---|
| 3901 | default is True.
|
---|
| 3902 | minnrow: minimum number of input spectra to show.
|
---|
| 3903 | default is 1000.
|
---|
| 3904 | outlog: Output the coefficients of the best-fit
|
---|
| 3905 | function to logger (default is False)
|
---|
| 3906 | blfile: Name of a text file in which the best-fit
|
---|
| 3907 | parameter values to be written
|
---|
| 3908 | (default is "": no file/logger output)
|
---|
[2641] | 3909 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[2767] | 3910 | bltable: name of a baseline table where fitting results
|
---|
| 3911 | (coefficients, rms, etc.) are to be written.
|
---|
| 3912 | if given, fitting results will NOT be output to
|
---|
| 3913 | scantable (insitu=True) or None will be
|
---|
| 3914 | returned (insitu=False).
|
---|
| 3915 | (default is "": no table output)
|
---|
[1846] | 3916 |
|
---|
[2012] | 3917 | Example:
|
---|
[2349] | 3918 | # return a scan baselined by a cubic spline consisting of 2 pieces
|
---|
| 3919 | # (i.e., 1 internal knot),
|
---|
[2012] | 3920 | # also with 3-sigma clipping, iteration up to 4 times
|
---|
| 3921 | bscan = scan.cspline_baseline(npiece=2,clipthresh=3.0,clipniter=4)
|
---|
[2081] | 3922 |
|
---|
| 3923 | Note:
|
---|
| 3924 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 3925 | based on specunit of 'channel'.
|
---|
[2012] | 3926 | """
|
---|
| 3927 |
|
---|
[2186] | 3928 | try:
|
---|
| 3929 | varlist = vars()
|
---|
| 3930 |
|
---|
| 3931 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 3932 | if insitu:
|
---|
| 3933 | workscan = self
|
---|
| 3934 | else:
|
---|
| 3935 | workscan = self.copy()
|
---|
[1855] | 3936 |
|
---|
[2410] | 3937 | if mask is None: mask = []
|
---|
[2189] | 3938 | if npiece is None: npiece = 2
|
---|
| 3939 | if clipthresh is None: clipthresh = 3.0
|
---|
| 3940 | if clipniter is None: clipniter = 0
|
---|
| 3941 | if plot is None: plot = False
|
---|
| 3942 | if getresidual is None: getresidual = True
|
---|
| 3943 | if showprogress is None: showprogress = True
|
---|
| 3944 | if minnrow is None: minnrow = 1000
|
---|
| 3945 | if outlog is None: outlog = False
|
---|
| 3946 | if blfile is None: blfile = ''
|
---|
[2767] | 3947 | if csvformat is None: csvformat = False
|
---|
| 3948 | if bltable is None: bltable = ''
|
---|
[1855] | 3949 |
|
---|
[2767] | 3950 | scsvformat = 'T' if csvformat else 'F'
|
---|
[2641] | 3951 |
|
---|
[2012] | 3952 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
[2767] | 3953 | workscan._cspline_baseline(mask, npiece,
|
---|
| 3954 | clipthresh, clipniter,
|
---|
[2349] | 3955 | getresidual,
|
---|
| 3956 | pack_progress_params(showprogress,
|
---|
[2641] | 3957 | minnrow),
|
---|
[2767] | 3958 | outlog, scsvformat+blfile,
|
---|
| 3959 | bltable)
|
---|
[2012] | 3960 | workscan._add_history("cspline_baseline", varlist)
|
---|
[2767] | 3961 |
|
---|
| 3962 | if bltable == '':
|
---|
| 3963 | if insitu:
|
---|
| 3964 | self._assign(workscan)
|
---|
| 3965 | else:
|
---|
| 3966 | return workscan
|
---|
[2012] | 3967 | else:
|
---|
[2767] | 3968 | if not insitu:
|
---|
| 3969 | return None
|
---|
[2012] | 3970 |
|
---|
| 3971 | except RuntimeError, e:
|
---|
[2186] | 3972 | raise_fitting_failure_exception(e)
|
---|
[1855] | 3973 |
|
---|
[2186] | 3974 | @asaplog_post_dec
|
---|
[2771] | 3975 | def auto_cspline_baseline(self, mask=None, npiece=None, insitu=None,
|
---|
[2349] | 3976 | clipthresh=None, clipniter=None,
|
---|
| 3977 | edge=None, threshold=None, chan_avg_limit=None,
|
---|
| 3978 | getresidual=None, plot=None,
|
---|
| 3979 | showprogress=None, minnrow=None, outlog=None,
|
---|
[2767] | 3980 | blfile=None, csvformat=None, bltable=None):
|
---|
[2012] | 3981 | """\
|
---|
| 3982 | Return a scan which has been baselined (all rows) by cubic spline
|
---|
| 3983 | function (piecewise cubic polynomial).
|
---|
| 3984 | Spectral lines are detected first using linefinder and masked out
|
---|
| 3985 | to avoid them affecting the baseline solution.
|
---|
| 3986 |
|
---|
| 3987 | Parameters:
|
---|
[2771] | 3988 | mask: an optional mask retreived from scantable
|
---|
| 3989 | npiece: Number of pieces. (default is 2)
|
---|
[2189] | 3990 | insitu: if False a new scantable is returned.
|
---|
| 3991 | Otherwise, the scaling is done in-situ
|
---|
| 3992 | The default is taken from .asaprc (False)
|
---|
| 3993 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
[2349] | 3994 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 3995 | clipping (default is 0)
|
---|
[2189] | 3996 | edge: an optional number of channel to drop at
|
---|
| 3997 | the edge of spectrum. If only one value is
|
---|
| 3998 | specified, the same number will be dropped
|
---|
| 3999 | from both sides of the spectrum. Default
|
---|
| 4000 | is to keep all channels. Nested tuples
|
---|
| 4001 | represent individual edge selection for
|
---|
| 4002 | different IFs (a number of spectral channels
|
---|
| 4003 | can be different)
|
---|
| 4004 | threshold: the threshold used by line finder. It is
|
---|
| 4005 | better to keep it large as only strong lines
|
---|
| 4006 | affect the baseline solution.
|
---|
| 4007 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 4008 | channels to average during the search of
|
---|
| 4009 | weak and broad lines. The default is no
|
---|
| 4010 | averaging (and no search for weak lines).
|
---|
| 4011 | If such lines can affect the fitted baseline
|
---|
| 4012 | (e.g. a high order polynomial is fitted),
|
---|
| 4013 | increase this parameter (usually values up
|
---|
| 4014 | to 8 are reasonable). Most users of this
|
---|
| 4015 | method should find the default value sufficient.
|
---|
| 4016 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 4017 | plot the fit and the residual. In this each
|
---|
| 4018 | indivual fit has to be approved, by typing 'y'
|
---|
| 4019 | or 'n'
|
---|
| 4020 | getresidual: if False, returns best-fit values instead of
|
---|
| 4021 | residual. (default is True)
|
---|
| 4022 | showprogress: show progress status for large data.
|
---|
| 4023 | default is True.
|
---|
| 4024 | minnrow: minimum number of input spectra to show.
|
---|
| 4025 | default is 1000.
|
---|
| 4026 | outlog: Output the coefficients of the best-fit
|
---|
| 4027 | function to logger (default is False)
|
---|
| 4028 | blfile: Name of a text file in which the best-fit
|
---|
| 4029 | parameter values to be written
|
---|
| 4030 | (default is "": no file/logger output)
|
---|
[2641] | 4031 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[2767] | 4032 | bltable: name of a baseline table where fitting results
|
---|
| 4033 | (coefficients, rms, etc.) are to be written.
|
---|
| 4034 | if given, fitting results will NOT be output to
|
---|
| 4035 | scantable (insitu=True) or None will be
|
---|
| 4036 | returned (insitu=False).
|
---|
| 4037 | (default is "": no table output)
|
---|
[1846] | 4038 |
|
---|
[1907] | 4039 | Example:
|
---|
[2012] | 4040 | bscan = scan.auto_cspline_baseline(npiece=3, insitu=False)
|
---|
[2081] | 4041 |
|
---|
| 4042 | Note:
|
---|
| 4043 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 4044 | based on specunit of 'channel'.
|
---|
[2012] | 4045 | """
|
---|
[1846] | 4046 |
|
---|
[2186] | 4047 | try:
|
---|
| 4048 | varlist = vars()
|
---|
[2012] | 4049 |
|
---|
[2186] | 4050 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 4051 | if insitu:
|
---|
| 4052 | workscan = self
|
---|
[1391] | 4053 | else:
|
---|
[2186] | 4054 | workscan = self.copy()
|
---|
| 4055 |
|
---|
[2410] | 4056 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
| 4057 | if mask is None: mask = []
|
---|
[2186] | 4058 | if npiece is None: npiece = 2
|
---|
| 4059 | if clipthresh is None: clipthresh = 3.0
|
---|
| 4060 | if clipniter is None: clipniter = 0
|
---|
| 4061 | if edge is None: edge = (0, 0)
|
---|
| 4062 | if threshold is None: threshold = 3
|
---|
| 4063 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 4064 | if plot is None: plot = False
|
---|
| 4065 | if getresidual is None: getresidual = True
|
---|
[2189] | 4066 | if showprogress is None: showprogress = True
|
---|
| 4067 | if minnrow is None: minnrow = 1000
|
---|
[2186] | 4068 | if outlog is None: outlog = False
|
---|
| 4069 | if blfile is None: blfile = ''
|
---|
[2641] | 4070 | if csvformat is None: csvformat = False
|
---|
[2767] | 4071 | if bltable is None: bltable = ''
|
---|
[1819] | 4072 |
|
---|
[2767] | 4073 | scsvformat = 'T' if csvformat else 'F'
|
---|
[2641] | 4074 |
|
---|
[2277] | 4075 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
[2767] | 4076 | workscan._auto_cspline_baseline(mask, npiece,
|
---|
| 4077 | clipthresh, clipniter,
|
---|
[2269] | 4078 | normalise_edge_param(edge),
|
---|
| 4079 | threshold,
|
---|
| 4080 | chan_avg_limit, getresidual,
|
---|
| 4081 | pack_progress_params(showprogress,
|
---|
| 4082 | minnrow),
|
---|
[2767] | 4083 | outlog,
|
---|
| 4084 | scsvformat+blfile,
|
---|
| 4085 | bltable)
|
---|
[2012] | 4086 | workscan._add_history("auto_cspline_baseline", varlist)
|
---|
[2767] | 4087 |
|
---|
| 4088 | if bltable == '':
|
---|
| 4089 | if insitu:
|
---|
| 4090 | self._assign(workscan)
|
---|
| 4091 | else:
|
---|
| 4092 | return workscan
|
---|
[1856] | 4093 | else:
|
---|
[2767] | 4094 | if not insitu:
|
---|
| 4095 | return None
|
---|
[2012] | 4096 |
|
---|
| 4097 | except RuntimeError, e:
|
---|
[2186] | 4098 | raise_fitting_failure_exception(e)
|
---|
[513] | 4099 |
|
---|
[1931] | 4100 | @asaplog_post_dec
|
---|
[2771] | 4101 | def chebyshev_baseline(self, mask=None, order=None, insitu=None,
|
---|
[2645] | 4102 | clipthresh=None, clipniter=None, plot=None,
|
---|
| 4103 | getresidual=None, showprogress=None, minnrow=None,
|
---|
[2767] | 4104 | outlog=None, blfile=None, csvformat=None,
|
---|
| 4105 | bltable=None):
|
---|
[2645] | 4106 | """\
|
---|
| 4107 | Return a scan which has been baselined (all rows) by Chebyshev polynomials.
|
---|
| 4108 |
|
---|
| 4109 | Parameters:
|
---|
[2771] | 4110 | mask: An optional mask
|
---|
| 4111 | order: the maximum order of Chebyshev polynomial (default is 5)
|
---|
[2645] | 4112 | insitu: If False a new scantable is returned.
|
---|
| 4113 | Otherwise, the scaling is done in-situ
|
---|
| 4114 | The default is taken from .asaprc (False)
|
---|
| 4115 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
| 4116 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 4117 | clipping (default is 0)
|
---|
| 4118 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 4119 | plot the fit and the residual. In this each
|
---|
| 4120 | indivual fit has to be approved, by typing 'y'
|
---|
| 4121 | or 'n'
|
---|
| 4122 | getresidual: if False, returns best-fit values instead of
|
---|
| 4123 | residual. (default is True)
|
---|
| 4124 | showprogress: show progress status for large data.
|
---|
| 4125 | default is True.
|
---|
| 4126 | minnrow: minimum number of input spectra to show.
|
---|
| 4127 | default is 1000.
|
---|
| 4128 | outlog: Output the coefficients of the best-fit
|
---|
| 4129 | function to logger (default is False)
|
---|
| 4130 | blfile: Name of a text file in which the best-fit
|
---|
| 4131 | parameter values to be written
|
---|
| 4132 | (default is "": no file/logger output)
|
---|
| 4133 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[2767] | 4134 | bltable: name of a baseline table where fitting results
|
---|
| 4135 | (coefficients, rms, etc.) are to be written.
|
---|
| 4136 | if given, fitting results will NOT be output to
|
---|
| 4137 | scantable (insitu=True) or None will be
|
---|
| 4138 | returned (insitu=False).
|
---|
| 4139 | (default is "": no table output)
|
---|
[2645] | 4140 |
|
---|
| 4141 | Example:
|
---|
| 4142 | # return a scan baselined by a cubic spline consisting of 2 pieces
|
---|
| 4143 | # (i.e., 1 internal knot),
|
---|
| 4144 | # also with 3-sigma clipping, iteration up to 4 times
|
---|
| 4145 | bscan = scan.cspline_baseline(npiece=2,clipthresh=3.0,clipniter=4)
|
---|
| 4146 |
|
---|
| 4147 | Note:
|
---|
| 4148 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 4149 | based on specunit of 'channel'.
|
---|
| 4150 | """
|
---|
| 4151 |
|
---|
| 4152 | try:
|
---|
| 4153 | varlist = vars()
|
---|
| 4154 |
|
---|
| 4155 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 4156 | if insitu:
|
---|
| 4157 | workscan = self
|
---|
| 4158 | else:
|
---|
| 4159 | workscan = self.copy()
|
---|
| 4160 |
|
---|
| 4161 | if mask is None: mask = []
|
---|
| 4162 | if order is None: order = 5
|
---|
| 4163 | if clipthresh is None: clipthresh = 3.0
|
---|
| 4164 | if clipniter is None: clipniter = 0
|
---|
| 4165 | if plot is None: plot = False
|
---|
| 4166 | if getresidual is None: getresidual = True
|
---|
| 4167 | if showprogress is None: showprogress = True
|
---|
| 4168 | if minnrow is None: minnrow = 1000
|
---|
| 4169 | if outlog is None: outlog = False
|
---|
| 4170 | if blfile is None: blfile = ''
|
---|
[2767] | 4171 | if csvformat is None: csvformat = False
|
---|
| 4172 | if bltable is None: bltable = ''
|
---|
[2645] | 4173 |
|
---|
[2767] | 4174 | scsvformat = 'T' if csvformat else 'F'
|
---|
[2645] | 4175 |
|
---|
| 4176 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
[2767] | 4177 | workscan._chebyshev_baseline(mask, order,
|
---|
| 4178 | clipthresh, clipniter,
|
---|
[2645] | 4179 | getresidual,
|
---|
| 4180 | pack_progress_params(showprogress,
|
---|
| 4181 | minnrow),
|
---|
[2767] | 4182 | outlog, scsvformat+blfile,
|
---|
| 4183 | bltable)
|
---|
[2645] | 4184 | workscan._add_history("chebyshev_baseline", varlist)
|
---|
[2767] | 4185 |
|
---|
| 4186 | if bltable == '':
|
---|
| 4187 | if insitu:
|
---|
| 4188 | self._assign(workscan)
|
---|
| 4189 | else:
|
---|
| 4190 | return workscan
|
---|
[2645] | 4191 | else:
|
---|
[2767] | 4192 | if not insitu:
|
---|
| 4193 | return None
|
---|
[2645] | 4194 |
|
---|
| 4195 | except RuntimeError, e:
|
---|
| 4196 | raise_fitting_failure_exception(e)
|
---|
| 4197 |
|
---|
| 4198 | @asaplog_post_dec
|
---|
[2771] | 4199 | def auto_chebyshev_baseline(self, mask=None, order=None, insitu=None,
|
---|
[2645] | 4200 | clipthresh=None, clipniter=None,
|
---|
| 4201 | edge=None, threshold=None, chan_avg_limit=None,
|
---|
| 4202 | getresidual=None, plot=None,
|
---|
| 4203 | showprogress=None, minnrow=None, outlog=None,
|
---|
[2767] | 4204 | blfile=None, csvformat=None, bltable=None):
|
---|
[2645] | 4205 | """\
|
---|
| 4206 | Return a scan which has been baselined (all rows) by Chebyshev polynomials.
|
---|
| 4207 | Spectral lines are detected first using linefinder and masked out
|
---|
| 4208 | to avoid them affecting the baseline solution.
|
---|
| 4209 |
|
---|
| 4210 | Parameters:
|
---|
[2771] | 4211 | mask: an optional mask retreived from scantable
|
---|
| 4212 | order: the maximum order of Chebyshev polynomial (default is 5)
|
---|
[2645] | 4213 | insitu: if False a new scantable is returned.
|
---|
| 4214 | Otherwise, the scaling is done in-situ
|
---|
| 4215 | The default is taken from .asaprc (False)
|
---|
| 4216 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
| 4217 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 4218 | clipping (default is 0)
|
---|
| 4219 | edge: an optional number of channel to drop at
|
---|
| 4220 | the edge of spectrum. If only one value is
|
---|
| 4221 | specified, the same number will be dropped
|
---|
| 4222 | from both sides of the spectrum. Default
|
---|
| 4223 | is to keep all channels. Nested tuples
|
---|
| 4224 | represent individual edge selection for
|
---|
| 4225 | different IFs (a number of spectral channels
|
---|
| 4226 | can be different)
|
---|
| 4227 | threshold: the threshold used by line finder. It is
|
---|
| 4228 | better to keep it large as only strong lines
|
---|
| 4229 | affect the baseline solution.
|
---|
| 4230 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 4231 | channels to average during the search of
|
---|
| 4232 | weak and broad lines. The default is no
|
---|
| 4233 | averaging (and no search for weak lines).
|
---|
| 4234 | If such lines can affect the fitted baseline
|
---|
| 4235 | (e.g. a high order polynomial is fitted),
|
---|
| 4236 | increase this parameter (usually values up
|
---|
| 4237 | to 8 are reasonable). Most users of this
|
---|
| 4238 | method should find the default value sufficient.
|
---|
| 4239 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 4240 | plot the fit and the residual. In this each
|
---|
| 4241 | indivual fit has to be approved, by typing 'y'
|
---|
| 4242 | or 'n'
|
---|
| 4243 | getresidual: if False, returns best-fit values instead of
|
---|
| 4244 | residual. (default is True)
|
---|
| 4245 | showprogress: show progress status for large data.
|
---|
| 4246 | default is True.
|
---|
| 4247 | minnrow: minimum number of input spectra to show.
|
---|
| 4248 | default is 1000.
|
---|
| 4249 | outlog: Output the coefficients of the best-fit
|
---|
| 4250 | function to logger (default is False)
|
---|
| 4251 | blfile: Name of a text file in which the best-fit
|
---|
| 4252 | parameter values to be written
|
---|
| 4253 | (default is "": no file/logger output)
|
---|
| 4254 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[2767] | 4255 | bltable: name of a baseline table where fitting results
|
---|
| 4256 | (coefficients, rms, etc.) are to be written.
|
---|
| 4257 | if given, fitting results will NOT be output to
|
---|
| 4258 | scantable (insitu=True) or None will be
|
---|
| 4259 | returned (insitu=False).
|
---|
| 4260 | (default is "": no table output)
|
---|
[2645] | 4261 |
|
---|
| 4262 | Example:
|
---|
| 4263 | bscan = scan.auto_cspline_baseline(npiece=3, insitu=False)
|
---|
| 4264 |
|
---|
| 4265 | Note:
|
---|
| 4266 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 4267 | based on specunit of 'channel'.
|
---|
| 4268 | """
|
---|
| 4269 |
|
---|
| 4270 | try:
|
---|
| 4271 | varlist = vars()
|
---|
| 4272 |
|
---|
| 4273 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 4274 | if insitu:
|
---|
| 4275 | workscan = self
|
---|
| 4276 | else:
|
---|
| 4277 | workscan = self.copy()
|
---|
| 4278 |
|
---|
| 4279 | if mask is None: mask = []
|
---|
| 4280 | if order is None: order = 5
|
---|
| 4281 | if clipthresh is None: clipthresh = 3.0
|
---|
| 4282 | if clipniter is None: clipniter = 0
|
---|
| 4283 | if edge is None: edge = (0, 0)
|
---|
| 4284 | if threshold is None: threshold = 3
|
---|
| 4285 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 4286 | if plot is None: plot = False
|
---|
| 4287 | if getresidual is None: getresidual = True
|
---|
| 4288 | if showprogress is None: showprogress = True
|
---|
| 4289 | if minnrow is None: minnrow = 1000
|
---|
| 4290 | if outlog is None: outlog = False
|
---|
| 4291 | if blfile is None: blfile = ''
|
---|
| 4292 | if csvformat is None: csvformat = False
|
---|
[2767] | 4293 | if bltable is None: bltable = ''
|
---|
[2645] | 4294 |
|
---|
[2767] | 4295 | scsvformat = 'T' if csvformat else 'F'
|
---|
[2645] | 4296 |
|
---|
| 4297 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
[2767] | 4298 | workscan._auto_chebyshev_baseline(mask, order,
|
---|
| 4299 | clipthresh, clipniter,
|
---|
[2645] | 4300 | normalise_edge_param(edge),
|
---|
| 4301 | threshold,
|
---|
| 4302 | chan_avg_limit, getresidual,
|
---|
| 4303 | pack_progress_params(showprogress,
|
---|
| 4304 | minnrow),
|
---|
[2767] | 4305 | outlog, scsvformat+blfile,
|
---|
| 4306 | bltable)
|
---|
[2645] | 4307 | workscan._add_history("auto_chebyshev_baseline", varlist)
|
---|
[2767] | 4308 |
|
---|
| 4309 | if bltable == '':
|
---|
| 4310 | if insitu:
|
---|
| 4311 | self._assign(workscan)
|
---|
| 4312 | else:
|
---|
| 4313 | return workscan
|
---|
[2645] | 4314 | else:
|
---|
[2767] | 4315 | if not insitu:
|
---|
| 4316 | return None
|
---|
[2645] | 4317 |
|
---|
| 4318 | except RuntimeError, e:
|
---|
| 4319 | raise_fitting_failure_exception(e)
|
---|
| 4320 |
|
---|
| 4321 | @asaplog_post_dec
|
---|
[2771] | 4322 | def poly_baseline(self, mask=None, order=None, insitu=None,
|
---|
[2767] | 4323 | clipthresh=None, clipniter=None, plot=None,
|
---|
[2269] | 4324 | getresidual=None, showprogress=None, minnrow=None,
|
---|
[2767] | 4325 | outlog=None, blfile=None, csvformat=None,
|
---|
| 4326 | bltable=None):
|
---|
[1907] | 4327 | """\
|
---|
| 4328 | Return a scan which has been baselined (all rows) by a polynomial.
|
---|
| 4329 | Parameters:
|
---|
[2771] | 4330 | mask: an optional mask
|
---|
| 4331 | order: the order of the polynomial (default is 0)
|
---|
[2189] | 4332 | insitu: if False a new scantable is returned.
|
---|
| 4333 | Otherwise, the scaling is done in-situ
|
---|
| 4334 | The default is taken from .asaprc (False)
|
---|
[2767] | 4335 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
| 4336 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 4337 | clipping (default is 0)
|
---|
[2189] | 4338 | plot: plot the fit and the residual. In this each
|
---|
| 4339 | indivual fit has to be approved, by typing 'y'
|
---|
| 4340 | or 'n'
|
---|
| 4341 | getresidual: if False, returns best-fit values instead of
|
---|
| 4342 | residual. (default is True)
|
---|
| 4343 | showprogress: show progress status for large data.
|
---|
| 4344 | default is True.
|
---|
| 4345 | minnrow: minimum number of input spectra to show.
|
---|
| 4346 | default is 1000.
|
---|
| 4347 | outlog: Output the coefficients of the best-fit
|
---|
| 4348 | function to logger (default is False)
|
---|
| 4349 | blfile: Name of a text file in which the best-fit
|
---|
| 4350 | parameter values to be written
|
---|
| 4351 | (default is "": no file/logger output)
|
---|
[2641] | 4352 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[2767] | 4353 | bltable: name of a baseline table where fitting results
|
---|
| 4354 | (coefficients, rms, etc.) are to be written.
|
---|
| 4355 | if given, fitting results will NOT be output to
|
---|
| 4356 | scantable (insitu=True) or None will be
|
---|
| 4357 | returned (insitu=False).
|
---|
| 4358 | (default is "": no table output)
|
---|
[2012] | 4359 |
|
---|
[1907] | 4360 | Example:
|
---|
| 4361 | # return a scan baselined by a third order polynomial,
|
---|
| 4362 | # not using a mask
|
---|
| 4363 | bscan = scan.poly_baseline(order=3)
|
---|
| 4364 | """
|
---|
[1931] | 4365 |
|
---|
[2186] | 4366 | try:
|
---|
| 4367 | varlist = vars()
|
---|
[1931] | 4368 |
|
---|
[2269] | 4369 | if insitu is None:
|
---|
| 4370 | insitu = rcParams["insitu"]
|
---|
[2186] | 4371 | if insitu:
|
---|
| 4372 | workscan = self
|
---|
| 4373 | else:
|
---|
| 4374 | workscan = self.copy()
|
---|
[1907] | 4375 |
|
---|
[2410] | 4376 | if mask is None: mask = []
|
---|
[2189] | 4377 | if order is None: order = 0
|
---|
[2767] | 4378 | if clipthresh is None: clipthresh = 3.0
|
---|
| 4379 | if clipniter is None: clipniter = 0
|
---|
[2189] | 4380 | if plot is None: plot = False
|
---|
| 4381 | if getresidual is None: getresidual = True
|
---|
| 4382 | if showprogress is None: showprogress = True
|
---|
| 4383 | if minnrow is None: minnrow = 1000
|
---|
| 4384 | if outlog is None: outlog = False
|
---|
[2767] | 4385 | if blfile is None: blfile = ''
|
---|
[2641] | 4386 | if csvformat is None: csvformat = False
|
---|
[2767] | 4387 | if bltable is None: bltable = ''
|
---|
[1907] | 4388 |
|
---|
[2767] | 4389 | scsvformat = 'T' if csvformat else 'F'
|
---|
[2641] | 4390 |
|
---|
[2012] | 4391 | if plot:
|
---|
[2269] | 4392 | outblfile = (blfile != "") and \
|
---|
[2349] | 4393 | os.path.exists(os.path.expanduser(
|
---|
| 4394 | os.path.expandvars(blfile))
|
---|
| 4395 | )
|
---|
[2269] | 4396 | if outblfile:
|
---|
| 4397 | blf = open(blfile, "a")
|
---|
[2012] | 4398 |
|
---|
[1907] | 4399 | f = fitter()
|
---|
| 4400 | f.set_function(lpoly=order)
|
---|
[2186] | 4401 |
|
---|
| 4402 | rows = xrange(workscan.nrow())
|
---|
| 4403 | #if len(rows) > 0: workscan._init_blinfo()
|
---|
[2610] | 4404 |
|
---|
| 4405 | action = "H"
|
---|
[1907] | 4406 | for r in rows:
|
---|
| 4407 | f.x = workscan._getabcissa(r)
|
---|
| 4408 | f.y = workscan._getspectrum(r)
|
---|
[2541] | 4409 | if mask:
|
---|
| 4410 | f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
|
---|
| 4411 | else: # mask=None
|
---|
| 4412 | f.mask = workscan._getmask(r)
|
---|
| 4413 |
|
---|
[1907] | 4414 | f.data = None
|
---|
| 4415 | f.fit()
|
---|
[2541] | 4416 |
|
---|
[2610] | 4417 | if action != "Y": # skip plotting when accepting all
|
---|
| 4418 | f.plot(residual=True)
|
---|
| 4419 | #accept_fit = raw_input("Accept fit ( [y]/n ): ")
|
---|
| 4420 | #if accept_fit.upper() == "N":
|
---|
| 4421 | # #workscan._append_blinfo(None, None, None)
|
---|
| 4422 | # continue
|
---|
| 4423 | accept_fit = self._get_verify_action("Accept fit?",action)
|
---|
| 4424 | if r == 0: action = None
|
---|
[1907] | 4425 | if accept_fit.upper() == "N":
|
---|
| 4426 | continue
|
---|
[2610] | 4427 | elif accept_fit.upper() == "R":
|
---|
| 4428 | break
|
---|
| 4429 | elif accept_fit.upper() == "A":
|
---|
| 4430 | action = "Y"
|
---|
[2012] | 4431 |
|
---|
| 4432 | blpars = f.get_parameters()
|
---|
| 4433 | masklist = workscan.get_masklist(f.mask, row=r, silent=True)
|
---|
| 4434 | #workscan._append_blinfo(blpars, masklist, f.mask)
|
---|
[2269] | 4435 | workscan._setspectrum((f.fitter.getresidual()
|
---|
| 4436 | if getresidual else f.fitter.getfit()), r)
|
---|
[1907] | 4437 |
|
---|
[2012] | 4438 | if outblfile:
|
---|
| 4439 | rms = workscan.get_rms(f.mask, r)
|
---|
[2269] | 4440 | dataout = \
|
---|
| 4441 | workscan.format_blparams_row(blpars["params"],
|
---|
| 4442 | blpars["fixed"],
|
---|
| 4443 | rms, str(masklist),
|
---|
[2641] | 4444 | r, True, csvformat)
|
---|
[2012] | 4445 | blf.write(dataout)
|
---|
| 4446 |
|
---|
[1907] | 4447 | f._p.unmap()
|
---|
| 4448 | f._p = None
|
---|
[2012] | 4449 |
|
---|
[2349] | 4450 | if outblfile:
|
---|
| 4451 | blf.close()
|
---|
[1907] | 4452 | else:
|
---|
[2767] | 4453 | workscan._poly_baseline(mask, order,
|
---|
| 4454 | clipthresh, clipniter, #
|
---|
| 4455 | getresidual,
|
---|
[2269] | 4456 | pack_progress_params(showprogress,
|
---|
| 4457 | minnrow),
|
---|
[2767] | 4458 | outlog, scsvformat+blfile,
|
---|
| 4459 | bltable) #
|
---|
[1907] | 4460 |
|
---|
| 4461 | workscan._add_history("poly_baseline", varlist)
|
---|
| 4462 |
|
---|
| 4463 | if insitu:
|
---|
| 4464 | self._assign(workscan)
|
---|
| 4465 | else:
|
---|
| 4466 | return workscan
|
---|
| 4467 |
|
---|
[1919] | 4468 | except RuntimeError, e:
|
---|
[2186] | 4469 | raise_fitting_failure_exception(e)
|
---|
[1907] | 4470 |
|
---|
[2186] | 4471 | @asaplog_post_dec
|
---|
[2771] | 4472 | def auto_poly_baseline(self, mask=None, order=None, insitu=None,
|
---|
[2767] | 4473 | clipthresh=None, clipniter=None,
|
---|
| 4474 | edge=None, threshold=None, chan_avg_limit=None,
|
---|
| 4475 | getresidual=None, plot=None,
|
---|
| 4476 | showprogress=None, minnrow=None, outlog=None,
|
---|
| 4477 | blfile=None, csvformat=None, bltable=None):
|
---|
[1846] | 4478 | """\
|
---|
[1931] | 4479 | Return a scan which has been baselined (all rows) by a polynomial.
|
---|
[880] | 4480 | Spectral lines are detected first using linefinder and masked out
|
---|
| 4481 | to avoid them affecting the baseline solution.
|
---|
| 4482 |
|
---|
| 4483 | Parameters:
|
---|
[2771] | 4484 | mask: an optional mask retreived from scantable
|
---|
| 4485 | order: the order of the polynomial (default is 0)
|
---|
[2189] | 4486 | insitu: if False a new scantable is returned.
|
---|
| 4487 | Otherwise, the scaling is done in-situ
|
---|
| 4488 | The default is taken from .asaprc (False)
|
---|
[2767] | 4489 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
| 4490 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 4491 | clipping (default is 0)
|
---|
[2189] | 4492 | edge: an optional number of channel to drop at
|
---|
| 4493 | the edge of spectrum. If only one value is
|
---|
| 4494 | specified, the same number will be dropped
|
---|
| 4495 | from both sides of the spectrum. Default
|
---|
| 4496 | is to keep all channels. Nested tuples
|
---|
| 4497 | represent individual edge selection for
|
---|
| 4498 | different IFs (a number of spectral channels
|
---|
| 4499 | can be different)
|
---|
| 4500 | threshold: the threshold used by line finder. It is
|
---|
| 4501 | better to keep it large as only strong lines
|
---|
| 4502 | affect the baseline solution.
|
---|
| 4503 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 4504 | channels to average during the search of
|
---|
| 4505 | weak and broad lines. The default is no
|
---|
| 4506 | averaging (and no search for weak lines).
|
---|
| 4507 | If such lines can affect the fitted baseline
|
---|
| 4508 | (e.g. a high order polynomial is fitted),
|
---|
| 4509 | increase this parameter (usually values up
|
---|
| 4510 | to 8 are reasonable). Most users of this
|
---|
| 4511 | method should find the default value sufficient.
|
---|
| 4512 | plot: plot the fit and the residual. In this each
|
---|
| 4513 | indivual fit has to be approved, by typing 'y'
|
---|
| 4514 | or 'n'
|
---|
| 4515 | getresidual: if False, returns best-fit values instead of
|
---|
| 4516 | residual. (default is True)
|
---|
| 4517 | showprogress: show progress status for large data.
|
---|
| 4518 | default is True.
|
---|
| 4519 | minnrow: minimum number of input spectra to show.
|
---|
| 4520 | default is 1000.
|
---|
| 4521 | outlog: Output the coefficients of the best-fit
|
---|
| 4522 | function to logger (default is False)
|
---|
| 4523 | blfile: Name of a text file in which the best-fit
|
---|
| 4524 | parameter values to be written
|
---|
| 4525 | (default is "": no file/logger output)
|
---|
[2641] | 4526 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[2767] | 4527 | bltable: name of a baseline table where fitting results
|
---|
| 4528 | (coefficients, rms, etc.) are to be written.
|
---|
| 4529 | if given, fitting results will NOT be output to
|
---|
| 4530 | scantable (insitu=True) or None will be
|
---|
| 4531 | returned (insitu=False).
|
---|
| 4532 | (default is "": no table output)
|
---|
[1846] | 4533 |
|
---|
[2012] | 4534 | Example:
|
---|
| 4535 | bscan = scan.auto_poly_baseline(order=7, insitu=False)
|
---|
| 4536 | """
|
---|
[880] | 4537 |
|
---|
[2186] | 4538 | try:
|
---|
| 4539 | varlist = vars()
|
---|
[1846] | 4540 |
|
---|
[2269] | 4541 | if insitu is None:
|
---|
| 4542 | insitu = rcParams['insitu']
|
---|
[2186] | 4543 | if insitu:
|
---|
| 4544 | workscan = self
|
---|
| 4545 | else:
|
---|
| 4546 | workscan = self.copy()
|
---|
[1846] | 4547 |
|
---|
[2410] | 4548 | if mask is None: mask = []
|
---|
[2186] | 4549 | if order is None: order = 0
|
---|
[2767] | 4550 | if clipthresh is None: clipthresh = 3.0
|
---|
| 4551 | if clipniter is None: clipniter = 0
|
---|
[2186] | 4552 | if edge is None: edge = (0, 0)
|
---|
| 4553 | if threshold is None: threshold = 3
|
---|
| 4554 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 4555 | if plot is None: plot = False
|
---|
| 4556 | if getresidual is None: getresidual = True
|
---|
[2189] | 4557 | if showprogress is None: showprogress = True
|
---|
| 4558 | if minnrow is None: minnrow = 1000
|
---|
[2186] | 4559 | if outlog is None: outlog = False
|
---|
| 4560 | if blfile is None: blfile = ''
|
---|
[2641] | 4561 | if csvformat is None: csvformat = False
|
---|
[2767] | 4562 | if bltable is None: bltable = ''
|
---|
[1846] | 4563 |
|
---|
[2767] | 4564 | scsvformat = 'T' if csvformat else 'F'
|
---|
[2641] | 4565 |
|
---|
[2186] | 4566 | edge = normalise_edge_param(edge)
|
---|
[880] | 4567 |
|
---|
[2012] | 4568 | if plot:
|
---|
[2269] | 4569 | outblfile = (blfile != "") and \
|
---|
| 4570 | os.path.exists(os.path.expanduser(os.path.expandvars(blfile)))
|
---|
[2012] | 4571 | if outblfile: blf = open(blfile, "a")
|
---|
| 4572 |
|
---|
[2186] | 4573 | from asap.asaplinefind import linefinder
|
---|
[2012] | 4574 | fl = linefinder()
|
---|
[2269] | 4575 | fl.set_options(threshold=threshold, avg_limit=chan_avg_limit)
|
---|
[2012] | 4576 | fl.set_scan(workscan)
|
---|
[2186] | 4577 |
|
---|
[2012] | 4578 | f = fitter()
|
---|
| 4579 | f.set_function(lpoly=order)
|
---|
[880] | 4580 |
|
---|
[2186] | 4581 | rows = xrange(workscan.nrow())
|
---|
| 4582 | #if len(rows) > 0: workscan._init_blinfo()
|
---|
[2610] | 4583 |
|
---|
| 4584 | action = "H"
|
---|
[2012] | 4585 | for r in rows:
|
---|
[2186] | 4586 | idx = 2*workscan.getif(r)
|
---|
[2541] | 4587 | if mask:
|
---|
| 4588 | msk = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
|
---|
| 4589 | else: # mask=None
|
---|
| 4590 | msk = workscan._getmask(r)
|
---|
| 4591 | fl.find_lines(r, msk, edge[idx:idx+2])
|
---|
[907] | 4592 |
|
---|
[2012] | 4593 | f.x = workscan._getabcissa(r)
|
---|
| 4594 | f.y = workscan._getspectrum(r)
|
---|
| 4595 | f.mask = fl.get_mask()
|
---|
| 4596 | f.data = None
|
---|
| 4597 | f.fit()
|
---|
| 4598 |
|
---|
[2610] | 4599 | if action != "Y": # skip plotting when accepting all
|
---|
| 4600 | f.plot(residual=True)
|
---|
| 4601 | #accept_fit = raw_input("Accept fit ( [y]/n ): ")
|
---|
| 4602 | accept_fit = self._get_verify_action("Accept fit?",action)
|
---|
| 4603 | if r == 0: action = None
|
---|
[2012] | 4604 | if accept_fit.upper() == "N":
|
---|
| 4605 | #workscan._append_blinfo(None, None, None)
|
---|
| 4606 | continue
|
---|
[2610] | 4607 | elif accept_fit.upper() == "R":
|
---|
| 4608 | break
|
---|
| 4609 | elif accept_fit.upper() == "A":
|
---|
| 4610 | action = "Y"
|
---|
[2012] | 4611 |
|
---|
| 4612 | blpars = f.get_parameters()
|
---|
| 4613 | masklist = workscan.get_masklist(f.mask, row=r, silent=True)
|
---|
| 4614 | #workscan._append_blinfo(blpars, masklist, f.mask)
|
---|
[2349] | 4615 | workscan._setspectrum(
|
---|
| 4616 | (f.fitter.getresidual() if getresidual
|
---|
| 4617 | else f.fitter.getfit()), r
|
---|
| 4618 | )
|
---|
[2012] | 4619 |
|
---|
| 4620 | if outblfile:
|
---|
| 4621 | rms = workscan.get_rms(f.mask, r)
|
---|
[2269] | 4622 | dataout = \
|
---|
| 4623 | workscan.format_blparams_row(blpars["params"],
|
---|
| 4624 | blpars["fixed"],
|
---|
| 4625 | rms, str(masklist),
|
---|
[2641] | 4626 | r, True, csvformat)
|
---|
[2012] | 4627 | blf.write(dataout)
|
---|
| 4628 |
|
---|
| 4629 | f._p.unmap()
|
---|
| 4630 | f._p = None
|
---|
| 4631 |
|
---|
| 4632 | if outblfile: blf.close()
|
---|
| 4633 | else:
|
---|
[2767] | 4634 | workscan._auto_poly_baseline(mask, order,
|
---|
| 4635 | clipthresh, clipniter,
|
---|
| 4636 | edge, threshold,
|
---|
[2269] | 4637 | chan_avg_limit, getresidual,
|
---|
| 4638 | pack_progress_params(showprogress,
|
---|
| 4639 | minnrow),
|
---|
[2767] | 4640 | outlog, scsvformat+blfile,
|
---|
| 4641 | bltable)
|
---|
| 4642 | workscan._add_history("auto_poly_baseline", varlist)
|
---|
[2012] | 4643 |
|
---|
[2767] | 4644 | if bltable == '':
|
---|
| 4645 | if insitu:
|
---|
| 4646 | self._assign(workscan)
|
---|
| 4647 | else:
|
---|
| 4648 | return workscan
|
---|
[2012] | 4649 | else:
|
---|
[2767] | 4650 | if not insitu:
|
---|
| 4651 | return None
|
---|
[2012] | 4652 |
|
---|
| 4653 | except RuntimeError, e:
|
---|
[2186] | 4654 | raise_fitting_failure_exception(e)
|
---|
[2012] | 4655 |
|
---|
| 4656 | def _init_blinfo(self):
|
---|
| 4657 | """\
|
---|
| 4658 | Initialise the following three auxiliary members:
|
---|
| 4659 | blpars : parameters of the best-fit baseline,
|
---|
| 4660 | masklists : mask data (edge positions of masked channels) and
|
---|
| 4661 | actualmask : mask data (in boolean list),
|
---|
| 4662 | to keep for use later (including output to logger/text files).
|
---|
| 4663 | Used by poly_baseline() and auto_poly_baseline() in case of
|
---|
| 4664 | 'plot=True'.
|
---|
| 4665 | """
|
---|
| 4666 | self.blpars = []
|
---|
| 4667 | self.masklists = []
|
---|
| 4668 | self.actualmask = []
|
---|
| 4669 | return
|
---|
[880] | 4670 |
|
---|
[2012] | 4671 | def _append_blinfo(self, data_blpars, data_masklists, data_actualmask):
|
---|
| 4672 | """\
|
---|
| 4673 | Append baseline-fitting related info to blpars, masklist and
|
---|
| 4674 | actualmask.
|
---|
| 4675 | """
|
---|
| 4676 | self.blpars.append(data_blpars)
|
---|
| 4677 | self.masklists.append(data_masklists)
|
---|
| 4678 | self.actualmask.append(data_actualmask)
|
---|
| 4679 | return
|
---|
| 4680 |
|
---|
[1862] | 4681 | @asaplog_post_dec
|
---|
[914] | 4682 | def rotate_linpolphase(self, angle):
|
---|
[1846] | 4683 | """\
|
---|
[914] | 4684 | Rotate the phase of the complex polarization O=Q+iU correlation.
|
---|
| 4685 | This is always done in situ in the raw data. So if you call this
|
---|
| 4686 | function more than once then each call rotates the phase further.
|
---|
[1846] | 4687 |
|
---|
[914] | 4688 | Parameters:
|
---|
[1846] | 4689 |
|
---|
[914] | 4690 | angle: The angle (degrees) to rotate (add) by.
|
---|
[1846] | 4691 |
|
---|
| 4692 | Example::
|
---|
| 4693 |
|
---|
[914] | 4694 | scan.rotate_linpolphase(2.3)
|
---|
[1846] | 4695 |
|
---|
[914] | 4696 | """
|
---|
| 4697 | varlist = vars()
|
---|
[936] | 4698 | self._math._rotate_linpolphase(self, angle)
|
---|
[914] | 4699 | self._add_history("rotate_linpolphase", varlist)
|
---|
| 4700 | return
|
---|
[710] | 4701 |
|
---|
[1862] | 4702 | @asaplog_post_dec
|
---|
[914] | 4703 | def rotate_xyphase(self, angle):
|
---|
[1846] | 4704 | """\
|
---|
[914] | 4705 | Rotate the phase of the XY correlation. This is always done in situ
|
---|
| 4706 | in the data. So if you call this function more than once
|
---|
| 4707 | then each call rotates the phase further.
|
---|
[1846] | 4708 |
|
---|
[914] | 4709 | Parameters:
|
---|
[1846] | 4710 |
|
---|
[914] | 4711 | angle: The angle (degrees) to rotate (add) by.
|
---|
[1846] | 4712 |
|
---|
| 4713 | Example::
|
---|
| 4714 |
|
---|
[914] | 4715 | scan.rotate_xyphase(2.3)
|
---|
[1846] | 4716 |
|
---|
[914] | 4717 | """
|
---|
| 4718 | varlist = vars()
|
---|
[936] | 4719 | self._math._rotate_xyphase(self, angle)
|
---|
[914] | 4720 | self._add_history("rotate_xyphase", varlist)
|
---|
| 4721 | return
|
---|
| 4722 |
|
---|
[1862] | 4723 | @asaplog_post_dec
|
---|
[914] | 4724 | def swap_linears(self):
|
---|
[1846] | 4725 | """\
|
---|
[1573] | 4726 | Swap the linear polarisations XX and YY, or better the first two
|
---|
[1348] | 4727 | polarisations as this also works for ciculars.
|
---|
[914] | 4728 | """
|
---|
| 4729 | varlist = vars()
|
---|
[936] | 4730 | self._math._swap_linears(self)
|
---|
[914] | 4731 | self._add_history("swap_linears", varlist)
|
---|
| 4732 | return
|
---|
| 4733 |
|
---|
[1862] | 4734 | @asaplog_post_dec
|
---|
[914] | 4735 | def invert_phase(self):
|
---|
[1846] | 4736 | """\
|
---|
[914] | 4737 | Invert the phase of the complex polarisation
|
---|
| 4738 | """
|
---|
| 4739 | varlist = vars()
|
---|
[936] | 4740 | self._math._invert_phase(self)
|
---|
[914] | 4741 | self._add_history("invert_phase", varlist)
|
---|
| 4742 | return
|
---|
| 4743 |
|
---|
[1862] | 4744 | @asaplog_post_dec
|
---|
[876] | 4745 | def add(self, offset, insitu=None):
|
---|
[1846] | 4746 | """\
|
---|
[513] | 4747 | Return a scan where all spectra have the offset added
|
---|
[1846] | 4748 |
|
---|
[513] | 4749 | Parameters:
|
---|
[1846] | 4750 |
|
---|
[513] | 4751 | offset: the offset
|
---|
[1855] | 4752 |
|
---|
[513] | 4753 | insitu: if False a new scantable is returned.
|
---|
| 4754 | Otherwise, the scaling is done in-situ
|
---|
| 4755 | The default is taken from .asaprc (False)
|
---|
[1846] | 4756 |
|
---|
[513] | 4757 | """
|
---|
| 4758 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 4759 | self._math._setinsitu(insitu)
|
---|
[513] | 4760 | varlist = vars()
|
---|
[876] | 4761 | s = scantable(self._math._unaryop(self, offset, "ADD", False))
|
---|
[1118] | 4762 | s._add_history("add", varlist)
|
---|
[876] | 4763 | if insitu:
|
---|
| 4764 | self._assign(s)
|
---|
| 4765 | else:
|
---|
[513] | 4766 | return s
|
---|
| 4767 |
|
---|
[1862] | 4768 | @asaplog_post_dec
|
---|
[1308] | 4769 | def scale(self, factor, tsys=True, insitu=None):
|
---|
[1846] | 4770 | """\
|
---|
| 4771 |
|
---|
[1938] | 4772 | Return a scan where all spectra are scaled by the given 'factor'
|
---|
[1846] | 4773 |
|
---|
[513] | 4774 | Parameters:
|
---|
[1846] | 4775 |
|
---|
[1819] | 4776 | factor: the scaling factor (float or 1D float list)
|
---|
[1855] | 4777 |
|
---|
[513] | 4778 | insitu: if False a new scantable is returned.
|
---|
| 4779 | Otherwise, the scaling is done in-situ
|
---|
| 4780 | The default is taken from .asaprc (False)
|
---|
[1855] | 4781 |
|
---|
[513] | 4782 | tsys: if True (default) then apply the operation to Tsys
|
---|
| 4783 | as well as the data
|
---|
[1846] | 4784 |
|
---|
[513] | 4785 | """
|
---|
| 4786 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 4787 | self._math._setinsitu(insitu)
|
---|
[513] | 4788 | varlist = vars()
|
---|
[1819] | 4789 | s = None
|
---|
| 4790 | import numpy
|
---|
| 4791 | if isinstance(factor, list) or isinstance(factor, numpy.ndarray):
|
---|
[2320] | 4792 | if isinstance(factor[0], list) or isinstance(factor[0],
|
---|
| 4793 | numpy.ndarray):
|
---|
[1819] | 4794 | from asapmath import _array2dOp
|
---|
[2320] | 4795 | s = _array2dOp( self, factor, "MUL", tsys, insitu )
|
---|
[1819] | 4796 | else:
|
---|
[2320] | 4797 | s = scantable( self._math._arrayop( self, factor,
|
---|
| 4798 | "MUL", tsys ) )
|
---|
[1819] | 4799 | else:
|
---|
[2320] | 4800 | s = scantable(self._math._unaryop(self, factor, "MUL", tsys))
|
---|
[1118] | 4801 | s._add_history("scale", varlist)
|
---|
[876] | 4802 | if insitu:
|
---|
| 4803 | self._assign(s)
|
---|
| 4804 | else:
|
---|
[513] | 4805 | return s
|
---|
| 4806 |
|
---|
[2349] | 4807 | @preserve_selection
|
---|
| 4808 | def set_sourcetype(self, match, matchtype="pattern",
|
---|
[1504] | 4809 | sourcetype="reference"):
|
---|
[1846] | 4810 | """\
|
---|
[1502] | 4811 | Set the type of the source to be an source or reference scan
|
---|
[1846] | 4812 | using the provided pattern.
|
---|
| 4813 |
|
---|
[1502] | 4814 | Parameters:
|
---|
[1846] | 4815 |
|
---|
[1504] | 4816 | match: a Unix style pattern, regular expression or selector
|
---|
[1855] | 4817 |
|
---|
[1504] | 4818 | matchtype: 'pattern' (default) UNIX style pattern or
|
---|
| 4819 | 'regex' regular expression
|
---|
[1855] | 4820 |
|
---|
[1502] | 4821 | sourcetype: the type of the source to use (source/reference)
|
---|
[1846] | 4822 |
|
---|
[1502] | 4823 | """
|
---|
| 4824 | varlist = vars()
|
---|
| 4825 | stype = -1
|
---|
[2480] | 4826 | if sourcetype.lower().startswith("r") or sourcetype.lower() == "off":
|
---|
[1502] | 4827 | stype = 1
|
---|
[2480] | 4828 | elif sourcetype.lower().startswith("s") or sourcetype.lower() == "on":
|
---|
[1502] | 4829 | stype = 0
|
---|
[1504] | 4830 | else:
|
---|
[2480] | 4831 | raise ValueError("Illegal sourcetype use s(ource)/on or r(eference)/off")
|
---|
[1504] | 4832 | if matchtype.lower().startswith("p"):
|
---|
| 4833 | matchtype = "pattern"
|
---|
| 4834 | elif matchtype.lower().startswith("r"):
|
---|
| 4835 | matchtype = "regex"
|
---|
| 4836 | else:
|
---|
| 4837 | raise ValueError("Illegal matchtype, use p(attern) or r(egex)")
|
---|
[1502] | 4838 | sel = selector()
|
---|
| 4839 | if isinstance(match, selector):
|
---|
| 4840 | sel = match
|
---|
| 4841 | else:
|
---|
[2480] | 4842 | sel.set_query("SRCNAME=%s('%s')" % (matchtype, match))
|
---|
| 4843 | self.set_selection(sel)
|
---|
[1502] | 4844 | self._setsourcetype(stype)
|
---|
[1573] | 4845 | self._add_history("set_sourcetype", varlist)
|
---|
[1502] | 4846 |
|
---|
[2818] | 4847 |
|
---|
| 4848 | def set_sourcename(self, name):
|
---|
| 4849 | varlist = vars()
|
---|
| 4850 | self._setsourcename(name)
|
---|
| 4851 | self._add_history("set_sourcename", varlist)
|
---|
| 4852 |
|
---|
[1862] | 4853 | @asaplog_post_dec
|
---|
[1857] | 4854 | @preserve_selection
|
---|
[1819] | 4855 | def auto_quotient(self, preserve=True, mode='paired', verify=False):
|
---|
[1846] | 4856 | """\
|
---|
[670] | 4857 | This function allows to build quotients automatically.
|
---|
[1819] | 4858 | It assumes the observation to have the same number of
|
---|
[670] | 4859 | "ons" and "offs"
|
---|
[1846] | 4860 |
|
---|
[670] | 4861 | Parameters:
|
---|
[1846] | 4862 |
|
---|
[710] | 4863 | preserve: you can preserve (default) the continuum or
|
---|
| 4864 | remove it. The equations used are
|
---|
[1857] | 4865 |
|
---|
[670] | 4866 | preserve: Output = Toff * (on/off) - Toff
|
---|
[1857] | 4867 |
|
---|
[1070] | 4868 | remove: Output = Toff * (on/off) - Ton
|
---|
[1855] | 4869 |
|
---|
[1573] | 4870 | mode: the on/off detection mode
|
---|
[1348] | 4871 | 'paired' (default)
|
---|
| 4872 | identifies 'off' scans by the
|
---|
| 4873 | trailing '_R' (Mopra/Parkes) or
|
---|
| 4874 | '_e'/'_w' (Tid) and matches
|
---|
| 4875 | on/off pairs from the observing pattern
|
---|
[1502] | 4876 | 'time'
|
---|
| 4877 | finds the closest off in time
|
---|
[1348] | 4878 |
|
---|
[1857] | 4879 | .. todo:: verify argument is not implemented
|
---|
| 4880 |
|
---|
[670] | 4881 | """
|
---|
[1857] | 4882 | varlist = vars()
|
---|
[1348] | 4883 | modes = ["time", "paired"]
|
---|
[670] | 4884 | if not mode in modes:
|
---|
[876] | 4885 | msg = "please provide valid mode. Valid modes are %s" % (modes)
|
---|
| 4886 | raise ValueError(msg)
|
---|
[1348] | 4887 | s = None
|
---|
| 4888 | if mode.lower() == "paired":
|
---|
[2840] | 4889 | from asap._asap import srctype
|
---|
[1857] | 4890 | sel = self.get_selection()
|
---|
[2840] | 4891 | #sel.set_query("SRCTYPE==psoff")
|
---|
| 4892 | sel.set_types(srctype.psoff)
|
---|
[1356] | 4893 | self.set_selection(sel)
|
---|
[1348] | 4894 | offs = self.copy()
|
---|
[2840] | 4895 | #sel.set_query("SRCTYPE==pson")
|
---|
| 4896 | sel.set_types(srctype.pson)
|
---|
[1356] | 4897 | self.set_selection(sel)
|
---|
[1348] | 4898 | ons = self.copy()
|
---|
| 4899 | s = scantable(self._math._quotient(ons, offs, preserve))
|
---|
| 4900 | elif mode.lower() == "time":
|
---|
| 4901 | s = scantable(self._math._auto_quotient(self, mode, preserve))
|
---|
[1118] | 4902 | s._add_history("auto_quotient", varlist)
|
---|
[876] | 4903 | return s
|
---|
[710] | 4904 |
|
---|
[1862] | 4905 | @asaplog_post_dec
|
---|
[1145] | 4906 | def mx_quotient(self, mask = None, weight='median', preserve=True):
|
---|
[1846] | 4907 | """\
|
---|
[1143] | 4908 | Form a quotient using "off" beams when observing in "MX" mode.
|
---|
[1846] | 4909 |
|
---|
[1143] | 4910 | Parameters:
|
---|
[1846] | 4911 |
|
---|
[1145] | 4912 | mask: an optional mask to be used when weight == 'stddev'
|
---|
[1855] | 4913 |
|
---|
[1143] | 4914 | weight: How to average the off beams. Default is 'median'.
|
---|
[1855] | 4915 |
|
---|
[1145] | 4916 | preserve: you can preserve (default) the continuum or
|
---|
[1855] | 4917 | remove it. The equations used are:
|
---|
[1846] | 4918 |
|
---|
[1855] | 4919 | preserve: Output = Toff * (on/off) - Toff
|
---|
| 4920 |
|
---|
| 4921 | remove: Output = Toff * (on/off) - Ton
|
---|
| 4922 |
|
---|
[1217] | 4923 | """
|
---|
[1593] | 4924 | mask = mask or ()
|
---|
[1141] | 4925 | varlist = vars()
|
---|
| 4926 | on = scantable(self._math._mx_extract(self, 'on'))
|
---|
[1143] | 4927 | preoff = scantable(self._math._mx_extract(self, 'off'))
|
---|
| 4928 | off = preoff.average_time(mask=mask, weight=weight, scanav=False)
|
---|
[1217] | 4929 | from asapmath import quotient
|
---|
[1145] | 4930 | q = quotient(on, off, preserve)
|
---|
[1143] | 4931 | q._add_history("mx_quotient", varlist)
|
---|
[1217] | 4932 | return q
|
---|
[513] | 4933 |
|
---|
[1862] | 4934 | @asaplog_post_dec
|
---|
[718] | 4935 | def freq_switch(self, insitu=None):
|
---|
[1846] | 4936 | """\
|
---|
[718] | 4937 | Apply frequency switching to the data.
|
---|
[1846] | 4938 |
|
---|
[718] | 4939 | Parameters:
|
---|
[1846] | 4940 |
|
---|
[718] | 4941 | insitu: if False a new scantable is returned.
|
---|
| 4942 | Otherwise, the swictching is done in-situ
|
---|
| 4943 | The default is taken from .asaprc (False)
|
---|
[1846] | 4944 |
|
---|
[718] | 4945 | """
|
---|
| 4946 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 4947 | self._math._setinsitu(insitu)
|
---|
[718] | 4948 | varlist = vars()
|
---|
[876] | 4949 | s = scantable(self._math._freqswitch(self))
|
---|
[1118] | 4950 | s._add_history("freq_switch", varlist)
|
---|
[1856] | 4951 | if insitu:
|
---|
| 4952 | self._assign(s)
|
---|
| 4953 | else:
|
---|
| 4954 | return s
|
---|
[718] | 4955 |
|
---|
[1862] | 4956 | @asaplog_post_dec
|
---|
[780] | 4957 | def recalc_azel(self):
|
---|
[1846] | 4958 | """Recalculate the azimuth and elevation for each position."""
|
---|
[780] | 4959 | varlist = vars()
|
---|
[876] | 4960 | self._recalcazel()
|
---|
[780] | 4961 | self._add_history("recalc_azel", varlist)
|
---|
| 4962 | return
|
---|
| 4963 |
|
---|
[1862] | 4964 | @asaplog_post_dec
|
---|
[513] | 4965 | def __add__(self, other):
|
---|
[2574] | 4966 | """
|
---|
| 4967 | implicit on all axes and on Tsys
|
---|
| 4968 | """
|
---|
[513] | 4969 | varlist = vars()
|
---|
[2574] | 4970 | s = self.__op( other, "ADD" )
|
---|
[513] | 4971 | s._add_history("operator +", varlist)
|
---|
| 4972 | return s
|
---|
| 4973 |
|
---|
[1862] | 4974 | @asaplog_post_dec
|
---|
[513] | 4975 | def __sub__(self, other):
|
---|
| 4976 | """
|
---|
| 4977 | implicit on all axes and on Tsys
|
---|
| 4978 | """
|
---|
| 4979 | varlist = vars()
|
---|
[2574] | 4980 | s = self.__op( other, "SUB" )
|
---|
[513] | 4981 | s._add_history("operator -", varlist)
|
---|
| 4982 | return s
|
---|
[710] | 4983 |
|
---|
[1862] | 4984 | @asaplog_post_dec
|
---|
[513] | 4985 | def __mul__(self, other):
|
---|
| 4986 | """
|
---|
| 4987 | implicit on all axes and on Tsys
|
---|
| 4988 | """
|
---|
| 4989 | varlist = vars()
|
---|
[2574] | 4990 | s = self.__op( other, "MUL" ) ;
|
---|
[513] | 4991 | s._add_history("operator *", varlist)
|
---|
| 4992 | return s
|
---|
| 4993 |
|
---|
[710] | 4994 |
|
---|
[1862] | 4995 | @asaplog_post_dec
|
---|
[513] | 4996 | def __div__(self, other):
|
---|
| 4997 | """
|
---|
| 4998 | implicit on all axes and on Tsys
|
---|
| 4999 | """
|
---|
| 5000 | varlist = vars()
|
---|
[2574] | 5001 | s = self.__op( other, "DIV" )
|
---|
| 5002 | s._add_history("operator /", varlist)
|
---|
| 5003 | return s
|
---|
| 5004 |
|
---|
| 5005 | @asaplog_post_dec
|
---|
| 5006 | def __op( self, other, mode ):
|
---|
[513] | 5007 | s = None
|
---|
| 5008 | if isinstance(other, scantable):
|
---|
[2574] | 5009 | s = scantable(self._math._binaryop(self, other, mode))
|
---|
[513] | 5010 | elif isinstance(other, float):
|
---|
| 5011 | if other == 0.0:
|
---|
[718] | 5012 | raise ZeroDivisionError("Dividing by zero is not recommended")
|
---|
[2574] | 5013 | s = scantable(self._math._unaryop(self, other, mode, False))
|
---|
[2144] | 5014 | elif isinstance(other, list) or isinstance(other, numpy.ndarray):
|
---|
[2349] | 5015 | if isinstance(other[0], list) \
|
---|
| 5016 | or isinstance(other[0], numpy.ndarray):
|
---|
[2144] | 5017 | from asapmath import _array2dOp
|
---|
[2574] | 5018 | s = _array2dOp( self, other, mode, False )
|
---|
[2144] | 5019 | else:
|
---|
[2574] | 5020 | s = scantable( self._math._arrayop( self, other,
|
---|
| 5021 | mode, False ) )
|
---|
[513] | 5022 | else:
|
---|
[718] | 5023 | raise TypeError("Other input is not a scantable or float value")
|
---|
[513] | 5024 | return s
|
---|
| 5025 |
|
---|
[1862] | 5026 | @asaplog_post_dec
|
---|
[530] | 5027 | def get_fit(self, row=0):
|
---|
[1846] | 5028 | """\
|
---|
[530] | 5029 | Print or return the stored fits for a row in the scantable
|
---|
[1846] | 5030 |
|
---|
[530] | 5031 | Parameters:
|
---|
[1846] | 5032 |
|
---|
[530] | 5033 | row: the row which the fit has been applied to.
|
---|
[1846] | 5034 |
|
---|
[530] | 5035 | """
|
---|
| 5036 | if row > self.nrow():
|
---|
| 5037 | return
|
---|
[976] | 5038 | from asap.asapfit import asapfit
|
---|
[530] | 5039 | fit = asapfit(self._getfit(row))
|
---|
[1859] | 5040 | asaplog.push( '%s' %(fit) )
|
---|
| 5041 | return fit.as_dict()
|
---|
[530] | 5042 |
|
---|
[2349] | 5043 | @preserve_selection
|
---|
[1483] | 5044 | def flag_nans(self):
|
---|
[1846] | 5045 | """\
|
---|
[1483] | 5046 | Utility function to flag NaN values in the scantable.
|
---|
| 5047 | """
|
---|
| 5048 | import numpy
|
---|
| 5049 | basesel = self.get_selection()
|
---|
| 5050 | for i in range(self.nrow()):
|
---|
[1589] | 5051 | sel = self.get_row_selector(i)
|
---|
| 5052 | self.set_selection(basesel+sel)
|
---|
[1483] | 5053 | nans = numpy.isnan(self._getspectrum(0))
|
---|
[2877] | 5054 | if numpy.any(nans):
|
---|
| 5055 | bnans = [ bool(v) for v in nans]
|
---|
| 5056 | self.flag(bnans)
|
---|
| 5057 |
|
---|
| 5058 | self.set_selection(basesel)
|
---|
[1483] | 5059 |
|
---|
[1588] | 5060 | def get_row_selector(self, rowno):
|
---|
[1992] | 5061 | return selector(rows=[rowno])
|
---|
[1573] | 5062 |
|
---|
[484] | 5063 | def _add_history(self, funcname, parameters):
|
---|
[1435] | 5064 | if not rcParams['scantable.history']:
|
---|
| 5065 | return
|
---|
[484] | 5066 | # create date
|
---|
| 5067 | sep = "##"
|
---|
| 5068 | from datetime import datetime
|
---|
| 5069 | dstr = datetime.now().strftime('%Y/%m/%d %H:%M:%S')
|
---|
| 5070 | hist = dstr+sep
|
---|
| 5071 | hist += funcname+sep#cdate+sep
|
---|
[2349] | 5072 | if parameters.has_key('self'):
|
---|
| 5073 | del parameters['self']
|
---|
[1118] | 5074 | for k, v in parameters.iteritems():
|
---|
[484] | 5075 | if type(v) is dict:
|
---|
[1118] | 5076 | for k2, v2 in v.iteritems():
|
---|
[484] | 5077 | hist += k2
|
---|
| 5078 | hist += "="
|
---|
[1118] | 5079 | if isinstance(v2, scantable):
|
---|
[484] | 5080 | hist += 'scantable'
|
---|
| 5081 | elif k2 == 'mask':
|
---|
[1118] | 5082 | if isinstance(v2, list) or isinstance(v2, tuple):
|
---|
[513] | 5083 | hist += str(self._zip_mask(v2))
|
---|
| 5084 | else:
|
---|
| 5085 | hist += str(v2)
|
---|
[484] | 5086 | else:
|
---|
[513] | 5087 | hist += str(v2)
|
---|
[484] | 5088 | else:
|
---|
| 5089 | hist += k
|
---|
| 5090 | hist += "="
|
---|
[1118] | 5091 | if isinstance(v, scantable):
|
---|
[484] | 5092 | hist += 'scantable'
|
---|
| 5093 | elif k == 'mask':
|
---|
[1118] | 5094 | if isinstance(v, list) or isinstance(v, tuple):
|
---|
[513] | 5095 | hist += str(self._zip_mask(v))
|
---|
| 5096 | else:
|
---|
| 5097 | hist += str(v)
|
---|
[484] | 5098 | else:
|
---|
| 5099 | hist += str(v)
|
---|
| 5100 | hist += sep
|
---|
| 5101 | hist = hist[:-2] # remove trailing '##'
|
---|
| 5102 | self._addhistory(hist)
|
---|
| 5103 |
|
---|
[710] | 5104 |
|
---|
[484] | 5105 | def _zip_mask(self, mask):
|
---|
| 5106 | mask = list(mask)
|
---|
| 5107 | i = 0
|
---|
| 5108 | segments = []
|
---|
| 5109 | while mask[i:].count(1):
|
---|
| 5110 | i += mask[i:].index(1)
|
---|
| 5111 | if mask[i:].count(0):
|
---|
| 5112 | j = i + mask[i:].index(0)
|
---|
| 5113 | else:
|
---|
[710] | 5114 | j = len(mask)
|
---|
[1118] | 5115 | segments.append([i, j])
|
---|
[710] | 5116 | i = j
|
---|
[484] | 5117 | return segments
|
---|
[714] | 5118 |
|
---|
[626] | 5119 | def _get_ordinate_label(self):
|
---|
| 5120 | fu = "("+self.get_fluxunit()+")"
|
---|
| 5121 | import re
|
---|
| 5122 | lbl = "Intensity"
|
---|
[1118] | 5123 | if re.match(".K.", fu):
|
---|
[626] | 5124 | lbl = "Brightness Temperature "+ fu
|
---|
[1118] | 5125 | elif re.match(".Jy.", fu):
|
---|
[626] | 5126 | lbl = "Flux density "+ fu
|
---|
| 5127 | return lbl
|
---|
[710] | 5128 |
|
---|
[876] | 5129 | def _check_ifs(self):
|
---|
[2349] | 5130 | # return len(set([self.nchan(i) for i in self.getifnos()])) == 1
|
---|
[1986] | 5131 | nchans = [self.nchan(i) for i in self.getifnos()]
|
---|
[2004] | 5132 | nchans = filter(lambda t: t > 0, nchans)
|
---|
[876] | 5133 | return (sum(nchans)/len(nchans) == nchans[0])
|
---|
[976] | 5134 |
|
---|
[1862] | 5135 | @asaplog_post_dec
|
---|
[1916] | 5136 | def _fill(self, names, unit, average, opts={}):
|
---|
[976] | 5137 | first = True
|
---|
| 5138 | fullnames = []
|
---|
| 5139 | for name in names:
|
---|
| 5140 | name = os.path.expandvars(name)
|
---|
| 5141 | name = os.path.expanduser(name)
|
---|
| 5142 | if not os.path.exists(name):
|
---|
| 5143 | msg = "File '%s' does not exists" % (name)
|
---|
| 5144 | raise IOError(msg)
|
---|
| 5145 | fullnames.append(name)
|
---|
| 5146 | if average:
|
---|
| 5147 | asaplog.push('Auto averaging integrations')
|
---|
[1079] | 5148 | stype = int(rcParams['scantable.storage'].lower() == 'disk')
|
---|
[976] | 5149 | for name in fullnames:
|
---|
[1073] | 5150 | tbl = Scantable(stype)
|
---|
[2004] | 5151 | if is_ms( name ):
|
---|
| 5152 | r = msfiller( tbl )
|
---|
| 5153 | else:
|
---|
| 5154 | r = filler( tbl )
|
---|
[976] | 5155 | msg = "Importing %s..." % (name)
|
---|
[1118] | 5156 | asaplog.push(msg, False)
|
---|
[2349] | 5157 | r.open(name, opts)
|
---|
[2480] | 5158 | rx = rcParams['scantable.reference']
|
---|
| 5159 | r.setreferenceexpr(rx)
|
---|
[1843] | 5160 | r.fill()
|
---|
[976] | 5161 | if average:
|
---|
[1118] | 5162 | tbl = self._math._average((tbl, ), (), 'NONE', 'SCAN')
|
---|
[976] | 5163 | if not first:
|
---|
[2902] | 5164 | tbl = self._math._merge([self, tbl])
|
---|
[976] | 5165 | Scantable.__init__(self, tbl)
|
---|
[1843] | 5166 | r.close()
|
---|
[1118] | 5167 | del r, tbl
|
---|
[976] | 5168 | first = False
|
---|
[1861] | 5169 | #flush log
|
---|
| 5170 | asaplog.post()
|
---|
[976] | 5171 | if unit is not None:
|
---|
| 5172 | self.set_fluxunit(unit)
|
---|
[1824] | 5173 | if not is_casapy():
|
---|
| 5174 | self.set_freqframe(rcParams['scantable.freqframe'])
|
---|
[976] | 5175 |
|
---|
[2610] | 5176 | def _get_verify_action( self, msg, action=None ):
|
---|
| 5177 | valid_act = ['Y', 'N', 'A', 'R']
|
---|
| 5178 | if not action or not isinstance(action, str):
|
---|
| 5179 | action = raw_input("%s [Y/n/a/r] (h for help): " % msg)
|
---|
| 5180 | if action == '':
|
---|
| 5181 | return "Y"
|
---|
| 5182 | elif (action.upper()[0] in valid_act):
|
---|
| 5183 | return action.upper()[0]
|
---|
| 5184 | elif (action.upper()[0] in ['H','?']):
|
---|
| 5185 | print "Available actions of verification [Y|n|a|r]"
|
---|
| 5186 | print " Y : Yes for current data (default)"
|
---|
| 5187 | print " N : No for current data"
|
---|
| 5188 | print " A : Accept all in the following and exit from verification"
|
---|
| 5189 | print " R : Reject all in the following and exit from verification"
|
---|
| 5190 | print " H or ?: help (show this message)"
|
---|
| 5191 | return self._get_verify_action(msg)
|
---|
| 5192 | else:
|
---|
| 5193 | return 'Y'
|
---|
[2012] | 5194 |
|
---|
[1402] | 5195 | def __getitem__(self, key):
|
---|
| 5196 | if key < 0:
|
---|
| 5197 | key += self.nrow()
|
---|
| 5198 | if key >= self.nrow():
|
---|
| 5199 | raise IndexError("Row index out of range.")
|
---|
| 5200 | return self._getspectrum(key)
|
---|
| 5201 |
|
---|
| 5202 | def __setitem__(self, key, value):
|
---|
| 5203 | if key < 0:
|
---|
| 5204 | key += self.nrow()
|
---|
| 5205 | if key >= self.nrow():
|
---|
| 5206 | raise IndexError("Row index out of range.")
|
---|
| 5207 | if not hasattr(value, "__len__") or \
|
---|
| 5208 | len(value) > self.nchan(self.getif(key)):
|
---|
| 5209 | raise ValueError("Spectrum length doesn't match.")
|
---|
| 5210 | return self._setspectrum(value, key)
|
---|
| 5211 |
|
---|
| 5212 | def __len__(self):
|
---|
| 5213 | return self.nrow()
|
---|
| 5214 |
|
---|
| 5215 | def __iter__(self):
|
---|
| 5216 | for i in range(len(self)):
|
---|
| 5217 | yield self[i]
|
---|