| 1 | """This module defines the scantable class.""" | 
|---|
| 2 |  | 
|---|
| 3 | import os | 
|---|
| 4 | import re | 
|---|
| 5 | import tempfile | 
|---|
| 6 | import numpy | 
|---|
| 7 | try: | 
|---|
| 8 | from functools import wraps as wraps_dec | 
|---|
| 9 | except ImportError: | 
|---|
| 10 | from asap.compatibility import wraps as wraps_dec | 
|---|
| 11 |  | 
|---|
| 12 | from asap.env import is_casapy | 
|---|
| 13 | from asap._asap import Scantable | 
|---|
| 14 | from asap._asap import filler, msfiller | 
|---|
| 15 | from asap.parameters import rcParams | 
|---|
| 16 | from asap.logging import asaplog, asaplog_post_dec | 
|---|
| 17 | from asap.selector import selector | 
|---|
| 18 | from asap.linecatalog import linecatalog | 
|---|
| 19 | from asap.coordinate import coordinate | 
|---|
| 20 | from asap.utils import _n_bools, mask_not, mask_and, mask_or, page | 
|---|
| 21 | from asap.asapfitter import fitter | 
|---|
| 22 |  | 
|---|
| 23 | def preserve_selection(func): | 
|---|
| 24 | @wraps_dec(func) | 
|---|
| 25 | def wrap(obj, *args, **kw): | 
|---|
| 26 | basesel = obj.get_selection() | 
|---|
| 27 | try: | 
|---|
| 28 | val = func(obj, *args, **kw) | 
|---|
| 29 | finally: | 
|---|
| 30 | obj.set_selection(basesel) | 
|---|
| 31 | return val | 
|---|
| 32 | return wrap | 
|---|
| 33 |  | 
|---|
| 34 | def is_scantable(filename): | 
|---|
| 35 | """Is the given file a scantable? | 
|---|
| 36 |  | 
|---|
| 37 | Parameters: | 
|---|
| 38 |  | 
|---|
| 39 | filename: the name of the file/directory to test | 
|---|
| 40 |  | 
|---|
| 41 | """ | 
|---|
| 42 | if ( os.path.isdir(filename) | 
|---|
| 43 | and os.path.exists(filename+'/table.info') | 
|---|
| 44 | and os.path.exists(filename+'/table.dat') ): | 
|---|
| 45 | f=open(filename+'/table.info') | 
|---|
| 46 | l=f.readline() | 
|---|
| 47 | f.close() | 
|---|
| 48 | match_pattern = '^Type = (Scantable)? *$' | 
|---|
| 49 | if re.match(match_pattern,l): | 
|---|
| 50 | return True | 
|---|
| 51 | else: | 
|---|
| 52 | return False | 
|---|
| 53 | else: | 
|---|
| 54 | return False | 
|---|
| 55 | ##     return (os.path.isdir(filename) | 
|---|
| 56 | ##             and not os.path.exists(filename+'/table.f1') | 
|---|
| 57 | ##             and os.path.exists(filename+'/table.info')) | 
|---|
| 58 |  | 
|---|
| 59 | def is_ms(filename): | 
|---|
| 60 | """Is the given file a MeasurementSet? | 
|---|
| 61 |  | 
|---|
| 62 | Parameters: | 
|---|
| 63 |  | 
|---|
| 64 | filename: the name of the file/directory to test | 
|---|
| 65 |  | 
|---|
| 66 | """ | 
|---|
| 67 | if ( os.path.isdir(filename) | 
|---|
| 68 | and os.path.exists(filename+'/table.info') | 
|---|
| 69 | and os.path.exists(filename+'/table.dat') ): | 
|---|
| 70 | f=open(filename+'/table.info') | 
|---|
| 71 | l=f.readline() | 
|---|
| 72 | f.close() | 
|---|
| 73 | if ( l.find('Measurement Set') != -1 ): | 
|---|
| 74 | return True | 
|---|
| 75 | else: | 
|---|
| 76 | return False | 
|---|
| 77 | else: | 
|---|
| 78 | return False | 
|---|
| 79 |  | 
|---|
| 80 | def normalise_edge_param(edge): | 
|---|
| 81 | """\ | 
|---|
| 82 | Convert a given edge value to a one-dimensional array that can be | 
|---|
| 83 | given to baseline-fitting/subtraction functions. | 
|---|
| 84 | The length of the output value will be an even because values for | 
|---|
| 85 | the both sides of spectra are to be contained for each IF. When | 
|---|
| 86 | the length is 2, the values will be applied to all IFs. If the length | 
|---|
| 87 | is larger than 2, it will be 2*ifnos(). | 
|---|
| 88 | Accepted format of edge include: | 
|---|
| 89 | * an integer - will be used for both sides of spectra of all IFs. | 
|---|
| 90 | e.g. 10 is converted to [10,10] | 
|---|
| 91 | * an empty list/tuple [] - converted to [0, 0] and used for all IFs. | 
|---|
| 92 | * a list/tuple containing an integer - same as the above case. | 
|---|
| 93 | e.g. [10] is converted to [10,10] | 
|---|
| 94 | * a list/tuple containing two integers - will be used for all IFs. | 
|---|
| 95 | e.g. [5,10] is output as it is. no need to convert. | 
|---|
| 96 | * a list/tuple of lists/tuples containing TWO integers - | 
|---|
| 97 | each element of edge will be used for each IF. | 
|---|
| 98 | e.g. [[5,10],[15,20]] - [5,10] for IF[0] and [15,20] for IF[1]. | 
|---|
| 99 |  | 
|---|
| 100 | If an element contains the same integer values, the input 'edge' | 
|---|
| 101 | parameter can be given in a simpler shape in the following cases: | 
|---|
| 102 | ** when len(edge)!=2 | 
|---|
| 103 | any elements containing the same values can be replaced | 
|---|
| 104 | to single integers. | 
|---|
| 105 | e.g. [[15,15]] can be simplified to [15] (or [15,15] or 15 also). | 
|---|
| 106 | e.g. [[1,1],[2,2],[3,3]] can be simplified to [1,2,3]. | 
|---|
| 107 | ** when len(edge)=2 | 
|---|
| 108 | care is needed for this case: ONLY ONE of the | 
|---|
| 109 | elements can be a single integer, | 
|---|
| 110 | e.g. [[5,5],[10,10]] can be simplified to [5,[10,10]] | 
|---|
| 111 | or [[5,5],10], but can NOT be simplified to [5,10]. | 
|---|
| 112 | when [5,10] given, it is interpreted as | 
|---|
| 113 | [[5,10],[5,10],[5,10],...] instead, as shown before. | 
|---|
| 114 | """ | 
|---|
| 115 | from asap import _is_sequence_or_number as _is_valid | 
|---|
| 116 | if isinstance(edge, list) or isinstance(edge, tuple): | 
|---|
| 117 | for edgepar in edge: | 
|---|
| 118 | if not _is_valid(edgepar, int): | 
|---|
| 119 | raise ValueError, "Each element of the 'edge' tuple has \ | 
|---|
| 120 | to be a pair of integers or an integer." | 
|---|
| 121 | if isinstance(edgepar, list) or isinstance(edgepar, tuple): | 
|---|
| 122 | if len(edgepar) != 2: | 
|---|
| 123 | raise ValueError, "Each element of the 'edge' tuple has \ | 
|---|
| 124 | to be a pair of integers or an integer." | 
|---|
| 125 | else: | 
|---|
| 126 | if not _is_valid(edge, int): | 
|---|
| 127 | raise ValueError, "Parameter 'edge' has to be an integer or a \ | 
|---|
| 128 | pair of integers specified as a tuple. \ | 
|---|
| 129 | Nested tuples are allowed \ | 
|---|
| 130 | to make individual selection for different IFs." | 
|---|
| 131 |  | 
|---|
| 132 |  | 
|---|
| 133 | if isinstance(edge, int): | 
|---|
| 134 | edge = [ edge, edge ]                 # e.g. 3   => [3,3] | 
|---|
| 135 | elif isinstance(edge, list) or isinstance(edge, tuple): | 
|---|
| 136 | if len(edge) == 0: | 
|---|
| 137 | edge = [0, 0]                     # e.g. []  => [0,0] | 
|---|
| 138 | elif len(edge) == 1: | 
|---|
| 139 | if isinstance(edge[0], int): | 
|---|
| 140 | edge = [ edge[0], edge[0] ]   # e.g. [1] => [1,1] | 
|---|
| 141 |  | 
|---|
| 142 | commonedge = True | 
|---|
| 143 | if len(edge) > 2: commonedge = False | 
|---|
| 144 | else: | 
|---|
| 145 | for edgepar in edge: | 
|---|
| 146 | if isinstance(edgepar, list) or isinstance(edgepar, tuple): | 
|---|
| 147 | commonedge = False | 
|---|
| 148 | break | 
|---|
| 149 |  | 
|---|
| 150 | if commonedge: | 
|---|
| 151 | if len(edge) > 1: | 
|---|
| 152 | norm_edge = edge | 
|---|
| 153 | else: | 
|---|
| 154 | norm_edge = edge + edge | 
|---|
| 155 | else: | 
|---|
| 156 | norm_edge = [] | 
|---|
| 157 | for edgepar in edge: | 
|---|
| 158 | if isinstance(edgepar, int): | 
|---|
| 159 | norm_edge += [edgepar, edgepar] | 
|---|
| 160 | else: | 
|---|
| 161 | norm_edge += edgepar | 
|---|
| 162 |  | 
|---|
| 163 | return norm_edge | 
|---|
| 164 |  | 
|---|
| 165 | def raise_fitting_failure_exception(e): | 
|---|
| 166 | msg = "The fit failed, possibly because it didn't converge." | 
|---|
| 167 | if rcParams["verbose"]: | 
|---|
| 168 | asaplog.push(str(e)) | 
|---|
| 169 | asaplog.push(str(msg)) | 
|---|
| 170 | else: | 
|---|
| 171 | raise RuntimeError(str(e)+'\n'+msg) | 
|---|
| 172 |  | 
|---|
| 173 | def pack_progress_params(showprogress, minnrow): | 
|---|
| 174 | return str(showprogress).lower() + ',' + str(minnrow) | 
|---|
| 175 |  | 
|---|
| 176 | def pack_blinfo(blinfo, maxirow): | 
|---|
| 177 | """\ | 
|---|
| 178 | convert a dictionary or a list of dictionaries of baseline info | 
|---|
| 179 | into a list of comma-separated strings. | 
|---|
| 180 | """ | 
|---|
| 181 | if isinstance(blinfo, dict): | 
|---|
| 182 | res = do_pack_blinfo(blinfo, maxirow) | 
|---|
| 183 | return [res] if res != '' else [] | 
|---|
| 184 | elif isinstance(blinfo, list) or isinstance(blinfo, tuple): | 
|---|
| 185 | res = [] | 
|---|
| 186 | for i in xrange(len(blinfo)): | 
|---|
| 187 | resi = do_pack_blinfo(blinfo[i], maxirow) | 
|---|
| 188 | if resi != '': | 
|---|
| 189 | res.append(resi) | 
|---|
| 190 | return res | 
|---|
| 191 |  | 
|---|
| 192 | def do_pack_blinfo(blinfo, maxirow): | 
|---|
| 193 | """\ | 
|---|
| 194 | convert a dictionary of baseline info for a spectrum into | 
|---|
| 195 | a comma-separated string. | 
|---|
| 196 | """ | 
|---|
| 197 | dinfo = {} | 
|---|
| 198 | for key in ['row', 'blfunc', 'masklist']: | 
|---|
| 199 | if blinfo.has_key(key): | 
|---|
| 200 | val = blinfo[key] | 
|---|
| 201 | if key == 'row': | 
|---|
| 202 | irow = val | 
|---|
| 203 | if isinstance(val, list) or isinstance(val, tuple): | 
|---|
| 204 | slval = [] | 
|---|
| 205 | for i in xrange(len(val)): | 
|---|
| 206 | if isinstance(val[i], list) or isinstance(val[i], tuple): | 
|---|
| 207 | for j in xrange(len(val[i])): | 
|---|
| 208 | slval.append(str(val[i][j])) | 
|---|
| 209 | else: | 
|---|
| 210 | slval.append(str(val[i])) | 
|---|
| 211 | sval = ",".join(slval) | 
|---|
| 212 | else: | 
|---|
| 213 | sval = str(val) | 
|---|
| 214 |  | 
|---|
| 215 | dinfo[key] = sval | 
|---|
| 216 | else: | 
|---|
| 217 | raise ValueError("'"+key+"' is missing in blinfo.") | 
|---|
| 218 |  | 
|---|
| 219 | if irow >= maxirow: return '' | 
|---|
| 220 |  | 
|---|
| 221 | for key in ['order', 'npiece', 'nwave']: | 
|---|
| 222 | if blinfo.has_key(key): | 
|---|
| 223 | val = blinfo[key] | 
|---|
| 224 | if isinstance(val, list) or isinstance(val, tuple): | 
|---|
| 225 | slval = [] | 
|---|
| 226 | for i in xrange(len(val)): | 
|---|
| 227 | slval.append(str(val[i])) | 
|---|
| 228 | sval = ",".join(slval) | 
|---|
| 229 | else: | 
|---|
| 230 | sval = str(val) | 
|---|
| 231 | dinfo[key] = sval | 
|---|
| 232 |  | 
|---|
| 233 | blfunc = dinfo['blfunc'] | 
|---|
| 234 | fspec_keys = {'poly': 'order', 'chebyshev': 'order', 'cspline': 'npiece', 'sinusoid': 'nwave'} | 
|---|
| 235 |  | 
|---|
| 236 | fspec_key = fspec_keys[blfunc] | 
|---|
| 237 | if not blinfo.has_key(fspec_key): | 
|---|
| 238 | raise ValueError("'"+fspec_key+"' is missing in blinfo.") | 
|---|
| 239 |  | 
|---|
| 240 | clip_params_n = 0 | 
|---|
| 241 | for key in ['clipthresh', 'clipniter']: | 
|---|
| 242 | if blinfo.has_key(key): | 
|---|
| 243 | clip_params_n += 1 | 
|---|
| 244 | dinfo[key] = str(blinfo[key]) | 
|---|
| 245 |  | 
|---|
| 246 | if clip_params_n == 0: | 
|---|
| 247 | dinfo['clipthresh'] = '0.0' | 
|---|
| 248 | dinfo['clipniter']  = '0' | 
|---|
| 249 | elif clip_params_n != 2: | 
|---|
| 250 | raise ValueError("both 'clipthresh' and 'clipniter' must be given for n-sigma clipping.") | 
|---|
| 251 |  | 
|---|
| 252 | lf_params_n = 0 | 
|---|
| 253 | for key in ['thresh', 'edge', 'chan_avg_limit']: | 
|---|
| 254 | if blinfo.has_key(key): | 
|---|
| 255 | lf_params_n += 1 | 
|---|
| 256 | val = blinfo[key] | 
|---|
| 257 | if isinstance(val, list) or isinstance(val, tuple): | 
|---|
| 258 | slval = [] | 
|---|
| 259 | for i in xrange(len(val)): | 
|---|
| 260 | slval.append(str(val[i])) | 
|---|
| 261 | sval = ",".join(slval) | 
|---|
| 262 | else: | 
|---|
| 263 | sval = str(val) | 
|---|
| 264 | dinfo[key] = sval | 
|---|
| 265 |  | 
|---|
| 266 | if lf_params_n == 3: | 
|---|
| 267 | dinfo['use_linefinder'] = 'true' | 
|---|
| 268 | elif lf_params_n == 0: | 
|---|
| 269 | dinfo['use_linefinder'] = 'false' | 
|---|
| 270 | dinfo['thresh']         = '' | 
|---|
| 271 | dinfo['edge']           = '' | 
|---|
| 272 | dinfo['chan_avg_limit'] = '' | 
|---|
| 273 | else: | 
|---|
| 274 | raise ValueError("all of 'thresh', 'edge' and 'chan_avg_limit' must be given to use linefinder.") | 
|---|
| 275 |  | 
|---|
| 276 | slblinfo = [dinfo['row'], blfunc, dinfo[fspec_key], dinfo['masklist'], \ | 
|---|
| 277 | dinfo['clipthresh'], dinfo['clipniter'], \ | 
|---|
| 278 | dinfo['use_linefinder'], dinfo['thresh'], dinfo['edge'], dinfo['chan_avg_limit']] | 
|---|
| 279 |  | 
|---|
| 280 | return ":".join(slblinfo) | 
|---|
| 281 |  | 
|---|
| 282 | def parse_fitresult(sres): | 
|---|
| 283 | """\ | 
|---|
| 284 | Parse the returned value of apply_bltable() or sub_baseline() and | 
|---|
| 285 | extract row number, the best-fit coefficients and rms, then pack | 
|---|
| 286 | them into a dictionary. | 
|---|
| 287 | The input value is generated by Scantable::packFittingResults() and | 
|---|
| 288 | formatted as 'row:coeff[0],coeff[1],..,coeff[n-1]:rms'. | 
|---|
| 289 | """ | 
|---|
| 290 | res = [] | 
|---|
| 291 | for i in xrange(len(sres)): | 
|---|
| 292 | (srow, scoeff, srms) = sres[i].split(":") | 
|---|
| 293 | row = int(srow) | 
|---|
| 294 | rms = float(srms) | 
|---|
| 295 | lscoeff = scoeff.split(",") | 
|---|
| 296 | coeff = [] | 
|---|
| 297 | for j in xrange(len(lscoeff)): | 
|---|
| 298 | coeff.append(float(lscoeff[j])) | 
|---|
| 299 | res.append({'row': row, 'coeff': coeff, 'rms': rms}) | 
|---|
| 300 |  | 
|---|
| 301 | return res | 
|---|
| 302 |  | 
|---|
| 303 | def is_number(s): | 
|---|
| 304 | s = s.strip() | 
|---|
| 305 | res = True | 
|---|
| 306 | try: | 
|---|
| 307 | a = float(s) | 
|---|
| 308 | res = True | 
|---|
| 309 | except: | 
|---|
| 310 | res = False | 
|---|
| 311 | finally: | 
|---|
| 312 | return res | 
|---|
| 313 |  | 
|---|
| 314 | def is_frequency(s): | 
|---|
| 315 | s = s.strip() | 
|---|
| 316 | return (s[-2:].lower() == "hz") | 
|---|
| 317 |  | 
|---|
| 318 | def get_freq_by_string(s1, s2): | 
|---|
| 319 | if not (is_number(s1) and is_frequency(s2)): | 
|---|
| 320 | raise RuntimeError("Invalid input string.") | 
|---|
| 321 |  | 
|---|
| 322 | prefix_list = ["a", "f", "p", "n", "u", "m", ".", "k", "M", "G", "T", "P", "E"] | 
|---|
| 323 | factor_list = [1e-18, 1e-15, 1e-12, 1e-9, 1e-6, 1e-3, 1.0, 1e+3, 1e+6, 1e+9, 1e+12, 1e+15, 1e+18] | 
|---|
| 324 |  | 
|---|
| 325 | s1 = s1.strip() | 
|---|
| 326 | s2 = s2.strip() | 
|---|
| 327 |  | 
|---|
| 328 | prefix = s2[-3:-2] | 
|---|
| 329 | if is_number(prefix): | 
|---|
| 330 | res1 = float(s1) | 
|---|
| 331 | res2 = float(s2[:-2]) | 
|---|
| 332 | else: | 
|---|
| 333 | factor = factor_list[prefix_list.index(prefix)] | 
|---|
| 334 | res1 = float(s1) * factor | 
|---|
| 335 | res2 = float(s2[:-3]) * factor | 
|---|
| 336 |  | 
|---|
| 337 | return (res1, res2) | 
|---|
| 338 |  | 
|---|
| 339 | def is_velocity(s): | 
|---|
| 340 | s = s.strip() | 
|---|
| 341 | return (s[-3:].lower() == "m/s") | 
|---|
| 342 |  | 
|---|
| 343 | def get_velocity_by_string(s1, s2): | 
|---|
| 344 | if not (is_number(s1) and is_velocity(s2)): | 
|---|
| 345 | raise RuntimeError("Invalid input string.") | 
|---|
| 346 |  | 
|---|
| 347 | # note that the default velocity unit is km/s | 
|---|
| 348 | prefix_list = [".", "k"] | 
|---|
| 349 | factor_list = [1e-3, 1.0] | 
|---|
| 350 |  | 
|---|
| 351 | s1 = s1.strip() | 
|---|
| 352 | s2 = s2.strip() | 
|---|
| 353 |  | 
|---|
| 354 | prefix = s2[-4:-3] | 
|---|
| 355 | if is_number(prefix): # in case velocity unit m/s | 
|---|
| 356 | res1 = float(s1) * 1e-3 | 
|---|
| 357 | res2 = float(s2[:-3]) * 1e-3 | 
|---|
| 358 | else: | 
|---|
| 359 | factor = factor_list[prefix_list.index(prefix)] | 
|---|
| 360 | res1 = float(s1) * factor | 
|---|
| 361 | res2 = float(s2[:-4]) * factor | 
|---|
| 362 |  | 
|---|
| 363 | return (res1, res2) | 
|---|
| 364 |  | 
|---|
| 365 | def get_frequency_by_velocity(restfreq, vel, doppler): | 
|---|
| 366 | # vel is in unit of km/s | 
|---|
| 367 |  | 
|---|
| 368 | # speed of light | 
|---|
| 369 | vel_c = 299792.458 | 
|---|
| 370 |  | 
|---|
| 371 | import math | 
|---|
| 372 | r = vel / vel_c | 
|---|
| 373 |  | 
|---|
| 374 | if doppler.lower() == 'radio': | 
|---|
| 375 | return restfreq * (1.0 - r) | 
|---|
| 376 | if doppler.lower() == 'optical': | 
|---|
| 377 | return restfreq / (1.0 + r) | 
|---|
| 378 | else: | 
|---|
| 379 | return restfreq * math.sqrt((1.0 - r) / (1.0 + r)) | 
|---|
| 380 |  | 
|---|
| 381 | def get_restfreq_in_Hz(s_restfreq): | 
|---|
| 382 | value = 0.0 | 
|---|
| 383 | unit = "" | 
|---|
| 384 | s = s_restfreq.replace(" ","") | 
|---|
| 385 |  | 
|---|
| 386 | for i in range(len(s))[::-1]: | 
|---|
| 387 | if s[i].isalpha(): | 
|---|
| 388 | unit = s[i] + unit | 
|---|
| 389 | else: | 
|---|
| 390 | value = float(s[0:i+1]) | 
|---|
| 391 | break | 
|---|
| 392 |  | 
|---|
| 393 | if (unit == "") or (unit.lower() == "hz"): | 
|---|
| 394 | return value | 
|---|
| 395 | elif (len(unit) == 3) and (unit[1:3].lower() == "hz"): | 
|---|
| 396 | unitprefix = unit[0] | 
|---|
| 397 | factor = 1.0 | 
|---|
| 398 |  | 
|---|
| 399 | prefix_list = ["a", "f", "p", "n", "u", "m", ".", "k", "M", "G", "T", "P", "E"] | 
|---|
| 400 | factor_list = [1e-18, 1e-15, 1e-12, 1e-9, 1e-6, 1e-3, 1.0, 1e+3, 1e+6, 1e+9, 1e+12, 1e+15, 1e+18] | 
|---|
| 401 | factor = factor_list[prefix_list.index(unitprefix)] | 
|---|
| 402 | """ | 
|---|
| 403 | if (unitprefix == 'a'): | 
|---|
| 404 | factor = 1.0e-18 | 
|---|
| 405 | elif (unitprefix == 'f'): | 
|---|
| 406 | factor = 1.0e-15 | 
|---|
| 407 | elif (unitprefix == 'p'): | 
|---|
| 408 | factor = 1.0e-12 | 
|---|
| 409 | elif (unitprefix == 'n'): | 
|---|
| 410 | factor = 1.0e-9 | 
|---|
| 411 | elif (unitprefix == 'u'): | 
|---|
| 412 | factor = 1.0e-6 | 
|---|
| 413 | elif (unitprefix == 'm'): | 
|---|
| 414 | factor = 1.0e-3 | 
|---|
| 415 | elif (unitprefix == 'k'): | 
|---|
| 416 | factor = 1.0e+3 | 
|---|
| 417 | elif (unitprefix == 'M'): | 
|---|
| 418 | factor = 1.0e+6 | 
|---|
| 419 | elif (unitprefix == 'G'): | 
|---|
| 420 | factor = 1.0e+9 | 
|---|
| 421 | elif (unitprefix == 'T'): | 
|---|
| 422 | factor = 1.0e+12 | 
|---|
| 423 | elif (unitprefix == 'P'): | 
|---|
| 424 | factor = 1.0e+15 | 
|---|
| 425 | elif (unitprefix == 'E'): | 
|---|
| 426 | factor = 1.0e+18 | 
|---|
| 427 | """ | 
|---|
| 428 | return value*factor | 
|---|
| 429 | else: | 
|---|
| 430 | mesg = "wrong unit of restfreq." | 
|---|
| 431 | raise Exception, mesg | 
|---|
| 432 |  | 
|---|
| 433 | def normalise_restfreq(in_restfreq): | 
|---|
| 434 | if isinstance(in_restfreq, float): | 
|---|
| 435 | return in_restfreq | 
|---|
| 436 | elif isinstance(in_restfreq, int) or isinstance(in_restfreq, long): | 
|---|
| 437 | return float(in_restfreq) | 
|---|
| 438 | elif isinstance(in_restfreq, str): | 
|---|
| 439 | return get_restfreq_in_Hz(in_restfreq) | 
|---|
| 440 | elif isinstance(in_restfreq, list) or isinstance(in_restfreq, numpy.ndarray): | 
|---|
| 441 | if isinstance(in_restfreq, numpy.ndarray): | 
|---|
| 442 | if len(in_restfreq.shape) > 1: | 
|---|
| 443 | mesg = "given in numpy.ndarray, in_restfreq must be 1-D." | 
|---|
| 444 | raise Exception, mesg | 
|---|
| 445 |  | 
|---|
| 446 | res = [] | 
|---|
| 447 | for i in xrange(len(in_restfreq)): | 
|---|
| 448 | elem = in_restfreq[i] | 
|---|
| 449 | if isinstance(elem, float): | 
|---|
| 450 | res.append(elem) | 
|---|
| 451 | elif isinstance(elem, int) or isinstance(elem, long): | 
|---|
| 452 | res.append(float(elem)) | 
|---|
| 453 | elif isinstance(elem, str): | 
|---|
| 454 | res.append(get_restfreq_in_Hz(elem)) | 
|---|
| 455 | elif isinstance(elem, dict): | 
|---|
| 456 | if isinstance(elem["value"], float): | 
|---|
| 457 | res.append(elem) | 
|---|
| 458 | elif isinstance(elem["value"], int): | 
|---|
| 459 | dictelem = {} | 
|---|
| 460 | dictelem["name"]  = elem["name"] | 
|---|
| 461 | dictelem["value"] = float(elem["value"]) | 
|---|
| 462 | res.append(dictelem) | 
|---|
| 463 | elif isinstance(elem["value"], str): | 
|---|
| 464 | dictelem = {} | 
|---|
| 465 | dictelem["name"]  = elem["name"] | 
|---|
| 466 | dictelem["value"] = get_restfreq_in_Hz(elem["value"]) | 
|---|
| 467 | res.append(dictelem) | 
|---|
| 468 | else: | 
|---|
| 469 | mesg = "restfreq elements must be float, int, or string." | 
|---|
| 470 | raise Exception, mesg | 
|---|
| 471 | return res | 
|---|
| 472 | else: | 
|---|
| 473 | mesg = "wrong type of restfreq given." | 
|---|
| 474 | raise Exception, mesg | 
|---|
| 475 |  | 
|---|
| 476 | def set_restfreq(s, restfreq): | 
|---|
| 477 | rfset = (restfreq != '') and (restfreq != []) | 
|---|
| 478 | if rfset: | 
|---|
| 479 | s.set_restfreqs(normalise_restfreq(restfreq)) | 
|---|
| 480 |  | 
|---|
| 481 | class scantable(Scantable): | 
|---|
| 482 | """\ | 
|---|
| 483 | The ASAP container for scans (single-dish data). | 
|---|
| 484 | """ | 
|---|
| 485 |  | 
|---|
| 486 | @asaplog_post_dec | 
|---|
| 487 | def __init__(self, filename, average=None, unit=None, parallactify=None, | 
|---|
| 488 | **args): | 
|---|
| 489 | """\ | 
|---|
| 490 | Create a scantable from a saved one or make a reference | 
|---|
| 491 |  | 
|---|
| 492 | Parameters: | 
|---|
| 493 |  | 
|---|
| 494 | filename:     the name of an asap table on disk | 
|---|
| 495 | or | 
|---|
| 496 | the name of a rpfits/sdfits/ms file | 
|---|
| 497 | (integrations within scans are auto averaged | 
|---|
| 498 | and the whole file is read) or | 
|---|
| 499 | [advanced] a reference to an existing scantable | 
|---|
| 500 |  | 
|---|
| 501 | average:      average all integrations withinb a scan on read. | 
|---|
| 502 | The default (True) is taken from .asaprc. | 
|---|
| 503 |  | 
|---|
| 504 | unit:         brightness unit; must be consistent with K or Jy. | 
|---|
| 505 | Over-rides the default selected by the filler | 
|---|
| 506 | (input rpfits/sdfits/ms) or replaces the value | 
|---|
| 507 | in existing scantables | 
|---|
| 508 |  | 
|---|
| 509 | antenna:      for MeasurementSet input data only: | 
|---|
| 510 | Antenna selection. integer (id) or string | 
|---|
| 511 | (name or id). | 
|---|
| 512 |  | 
|---|
| 513 | parallactify: Indicate that the data had been parallactified. | 
|---|
| 514 | Default (false) is taken from rc file. | 
|---|
| 515 |  | 
|---|
| 516 | getpt:        Whether to import direction from MS/POINTING | 
|---|
| 517 | table properly or not. | 
|---|
| 518 | This is effective only when filename is MS. | 
|---|
| 519 | The default (True) is to import direction | 
|---|
| 520 | from MS/POINTING. | 
|---|
| 521 | """ | 
|---|
| 522 | if average is None: | 
|---|
| 523 | average = rcParams['scantable.autoaverage'] | 
|---|
| 524 | parallactify = parallactify or rcParams['scantable.parallactify'] | 
|---|
| 525 | varlist = vars() | 
|---|
| 526 | from asap._asap import stmath | 
|---|
| 527 | self._math = stmath( rcParams['insitu'] ) | 
|---|
| 528 | if isinstance(filename, Scantable): | 
|---|
| 529 | Scantable.__init__(self, filename) | 
|---|
| 530 | else: | 
|---|
| 531 | if isinstance(filename, str): | 
|---|
| 532 | filename = os.path.expandvars(filename) | 
|---|
| 533 | filename = os.path.expanduser(filename) | 
|---|
| 534 | if not os.path.exists(filename): | 
|---|
| 535 | s = "File '%s' not found." % (filename) | 
|---|
| 536 | raise IOError(s) | 
|---|
| 537 | if is_scantable(filename): | 
|---|
| 538 | ondisk = rcParams['scantable.storage'] == 'disk' | 
|---|
| 539 | Scantable.__init__(self, filename, ondisk) | 
|---|
| 540 | if unit is not None: | 
|---|
| 541 | self.set_fluxunit(unit) | 
|---|
| 542 | if average: | 
|---|
| 543 | self._assign( self.average_time( scanav=True ) ) | 
|---|
| 544 | # do not reset to the default freqframe | 
|---|
| 545 | #self.set_freqframe(rcParams['scantable.freqframe']) | 
|---|
| 546 | elif is_ms(filename): | 
|---|
| 547 | # Measurement Set | 
|---|
| 548 | opts={'ms': {}} | 
|---|
| 549 | mskeys=['getpt','antenna'] | 
|---|
| 550 | for key in mskeys: | 
|---|
| 551 | if key in args.keys(): | 
|---|
| 552 | opts['ms'][key] = args[key] | 
|---|
| 553 | self._fill([filename], unit, average, opts) | 
|---|
| 554 | elif os.path.isfile(filename): | 
|---|
| 555 | opts={'nro': {}} | 
|---|
| 556 | nrokeys=['freqref'] | 
|---|
| 557 | for key in nrokeys: | 
|---|
| 558 | if key in args.keys(): | 
|---|
| 559 | opts['nro'][key] = args[key] | 
|---|
| 560 | self._fill([filename], unit, average, opts) | 
|---|
| 561 | # only apply to new data not "copy constructor" | 
|---|
| 562 | self.parallactify(parallactify) | 
|---|
| 563 | else: | 
|---|
| 564 | msg = "The given file '%s'is not a valid " \ | 
|---|
| 565 | "asap table." % (filename) | 
|---|
| 566 | raise IOError(msg) | 
|---|
| 567 | elif (isinstance(filename, list) or isinstance(filename, tuple)) \ | 
|---|
| 568 | and isinstance(filename[-1], str): | 
|---|
| 569 | self._fill(filename, unit, average) | 
|---|
| 570 | self.parallactify(parallactify) | 
|---|
| 571 | self._add_history("scantable", varlist) | 
|---|
| 572 |  | 
|---|
| 573 | @asaplog_post_dec | 
|---|
| 574 | def save(self, name=None, format=None, overwrite=False): | 
|---|
| 575 | """\ | 
|---|
| 576 | Store the scantable on disk. This can be an asap (aips++) Table, | 
|---|
| 577 | SDFITS or MS2 format. | 
|---|
| 578 |  | 
|---|
| 579 | Parameters: | 
|---|
| 580 |  | 
|---|
| 581 | name:        the name of the outputfile. For format 'ASCII' | 
|---|
| 582 | this is the root file name (data in 'name'.txt | 
|---|
| 583 | and header in 'name'_header.txt) | 
|---|
| 584 |  | 
|---|
| 585 | format:      an optional file format. Default is ASAP. | 
|---|
| 586 | Allowed are: | 
|---|
| 587 |  | 
|---|
| 588 | * 'ASAP' (save as ASAP [aips++] Table), | 
|---|
| 589 | * 'SDFITS' (save as SDFITS file) | 
|---|
| 590 | * 'ASCII' (saves as ascii text file) | 
|---|
| 591 | * 'MS2' (saves as an casacore MeasurementSet V2) | 
|---|
| 592 | * 'FITS' (save as image FITS - not readable by | 
|---|
| 593 | class) | 
|---|
| 594 | * 'CLASS' (save as FITS readable by CLASS) | 
|---|
| 595 |  | 
|---|
| 596 | overwrite:   If the file should be overwritten if it exists. | 
|---|
| 597 | The default False is to return with warning | 
|---|
| 598 | without writing the output. USE WITH CARE. | 
|---|
| 599 |  | 
|---|
| 600 | Example:: | 
|---|
| 601 |  | 
|---|
| 602 | scan.save('myscan.asap') | 
|---|
| 603 | scan.save('myscan.sdfits', 'SDFITS') | 
|---|
| 604 |  | 
|---|
| 605 | """ | 
|---|
| 606 | from os import path | 
|---|
| 607 | format = format or rcParams['scantable.save'] | 
|---|
| 608 | suffix = '.'+format.lower() | 
|---|
| 609 | if name is None or name == "": | 
|---|
| 610 | name = 'scantable'+suffix | 
|---|
| 611 | msg = "No filename given. Using default name %s..." % name | 
|---|
| 612 | asaplog.push(msg) | 
|---|
| 613 | name = path.expandvars(name) | 
|---|
| 614 | if path.isfile(name) or path.isdir(name): | 
|---|
| 615 | if not overwrite: | 
|---|
| 616 | msg = "File %s exists." % name | 
|---|
| 617 | raise IOError(msg) | 
|---|
| 618 | format2 = format.upper() | 
|---|
| 619 | if format2 == 'ASAP': | 
|---|
| 620 | self._save(name) | 
|---|
| 621 | elif format2 == 'MS2': | 
|---|
| 622 | msopt = {'ms': {'overwrite': overwrite } } | 
|---|
| 623 | from asap._asap import mswriter | 
|---|
| 624 | writer = mswriter( self ) | 
|---|
| 625 | writer.write( name, msopt ) | 
|---|
| 626 | else: | 
|---|
| 627 | from asap._asap import stwriter as stw | 
|---|
| 628 | writer = stw(format2) | 
|---|
| 629 | writer.write(self, name) | 
|---|
| 630 | return | 
|---|
| 631 |  | 
|---|
| 632 | def copy(self): | 
|---|
| 633 | """Return a copy of this scantable. | 
|---|
| 634 |  | 
|---|
| 635 | *Note*: | 
|---|
| 636 |  | 
|---|
| 637 | This makes a full (deep) copy. scan2 = scan1 makes a reference. | 
|---|
| 638 |  | 
|---|
| 639 | Example:: | 
|---|
| 640 |  | 
|---|
| 641 | copiedscan = scan.copy() | 
|---|
| 642 |  | 
|---|
| 643 | """ | 
|---|
| 644 | sd = scantable(Scantable._copy(self)) | 
|---|
| 645 | return sd | 
|---|
| 646 |  | 
|---|
| 647 | def drop_scan(self, scanid=None): | 
|---|
| 648 | """\ | 
|---|
| 649 | Return a new scantable where the specified scan number(s) has(have) | 
|---|
| 650 | been dropped. | 
|---|
| 651 |  | 
|---|
| 652 | Parameters: | 
|---|
| 653 |  | 
|---|
| 654 | scanid:    a (list of) scan number(s) | 
|---|
| 655 |  | 
|---|
| 656 | """ | 
|---|
| 657 | from asap import _is_sequence_or_number as _is_valid | 
|---|
| 658 | from asap import _to_list | 
|---|
| 659 | from asap import unique | 
|---|
| 660 | if not _is_valid(scanid): | 
|---|
| 661 | raise RuntimeError( 'Please specify a scanno to drop from the' | 
|---|
| 662 | ' scantable' ) | 
|---|
| 663 | scanid = _to_list(scanid) | 
|---|
| 664 | allscans = unique([ self.getscan(i) for i in range(self.nrow())]) | 
|---|
| 665 | for sid in scanid: allscans.remove(sid) | 
|---|
| 666 | if len(allscans) == 0: | 
|---|
| 667 | raise ValueError("Can't remove all scans") | 
|---|
| 668 | sel = selector(scans=allscans) | 
|---|
| 669 | return self._select_copy(sel) | 
|---|
| 670 |  | 
|---|
| 671 | def _select_copy(self, selection): | 
|---|
| 672 | orig = self.get_selection() | 
|---|
| 673 | self.set_selection(orig+selection) | 
|---|
| 674 | cp = self.copy() | 
|---|
| 675 | self.set_selection(orig) | 
|---|
| 676 | return cp | 
|---|
| 677 |  | 
|---|
| 678 | def get_scan(self, scanid=None): | 
|---|
| 679 | """\ | 
|---|
| 680 | Return a specific scan (by scanno) or collection of scans (by | 
|---|
| 681 | source name) in a new scantable. | 
|---|
| 682 |  | 
|---|
| 683 | *Note*: | 
|---|
| 684 |  | 
|---|
| 685 | See scantable.drop_scan() for the inverse operation. | 
|---|
| 686 |  | 
|---|
| 687 | Parameters: | 
|---|
| 688 |  | 
|---|
| 689 | scanid:    a (list of) scanno or a source name, unix-style | 
|---|
| 690 | patterns are accepted for source name matching, e.g. | 
|---|
| 691 | '*_R' gets all 'ref scans | 
|---|
| 692 |  | 
|---|
| 693 | Example:: | 
|---|
| 694 |  | 
|---|
| 695 | # get all scans containing the source '323p459' | 
|---|
| 696 | newscan = scan.get_scan('323p459') | 
|---|
| 697 | # get all 'off' scans | 
|---|
| 698 | refscans = scan.get_scan('*_R') | 
|---|
| 699 | # get a susbset of scans by scanno (as listed in scan.summary()) | 
|---|
| 700 | newscan = scan.get_scan([0, 2, 7, 10]) | 
|---|
| 701 |  | 
|---|
| 702 | """ | 
|---|
| 703 | if scanid is None: | 
|---|
| 704 | raise RuntimeError( 'Please specify a scan no or name to ' | 
|---|
| 705 | 'retrieve from the scantable' ) | 
|---|
| 706 | try: | 
|---|
| 707 | bsel = self.get_selection() | 
|---|
| 708 | sel = selector() | 
|---|
| 709 | if type(scanid) is str: | 
|---|
| 710 | sel.set_name(scanid) | 
|---|
| 711 | return self._select_copy(sel) | 
|---|
| 712 | elif type(scanid) is int: | 
|---|
| 713 | sel.set_scans([scanid]) | 
|---|
| 714 | return self._select_copy(sel) | 
|---|
| 715 | elif type(scanid) is list: | 
|---|
| 716 | sel.set_scans(scanid) | 
|---|
| 717 | return self._select_copy(sel) | 
|---|
| 718 | else: | 
|---|
| 719 | msg = "Illegal scanid type, use 'int' or 'list' if ints." | 
|---|
| 720 | raise TypeError(msg) | 
|---|
| 721 | except RuntimeError: | 
|---|
| 722 | raise | 
|---|
| 723 |  | 
|---|
| 724 | def __str__(self): | 
|---|
| 725 | tempFile = tempfile.NamedTemporaryFile() | 
|---|
| 726 | Scantable._summary(self, tempFile.name) | 
|---|
| 727 | tempFile.seek(0) | 
|---|
| 728 | asaplog.clear() | 
|---|
| 729 | return tempFile.file.read() | 
|---|
| 730 |  | 
|---|
| 731 | @asaplog_post_dec | 
|---|
| 732 | def summary(self, filename=None): | 
|---|
| 733 | """\ | 
|---|
| 734 | Print a summary of the contents of this scantable. | 
|---|
| 735 |  | 
|---|
| 736 | Parameters: | 
|---|
| 737 |  | 
|---|
| 738 | filename:    the name of a file to write the putput to | 
|---|
| 739 | Default - no file output | 
|---|
| 740 |  | 
|---|
| 741 | """ | 
|---|
| 742 | if filename is not None: | 
|---|
| 743 | if filename is "": | 
|---|
| 744 | filename = 'scantable_summary.txt' | 
|---|
| 745 | from os.path import expandvars, isdir | 
|---|
| 746 | filename = expandvars(filename) | 
|---|
| 747 | if isdir(filename): | 
|---|
| 748 | msg = "Illegal file name '%s'." % (filename) | 
|---|
| 749 | raise IOError(msg) | 
|---|
| 750 | else: | 
|---|
| 751 | filename = "" | 
|---|
| 752 | Scantable._summary(self, filename) | 
|---|
| 753 |  | 
|---|
| 754 | def get_spectrum(self, rowno): | 
|---|
| 755 | """Return the spectrum for the current row in the scantable as a list. | 
|---|
| 756 |  | 
|---|
| 757 | Parameters: | 
|---|
| 758 |  | 
|---|
| 759 | rowno:   the row number to retrieve the spectrum from | 
|---|
| 760 |  | 
|---|
| 761 | """ | 
|---|
| 762 | return self._getspectrum(rowno) | 
|---|
| 763 |  | 
|---|
| 764 | def get_mask(self, rowno): | 
|---|
| 765 | """Return the mask for the current row in the scantable as a list. | 
|---|
| 766 |  | 
|---|
| 767 | Parameters: | 
|---|
| 768 |  | 
|---|
| 769 | rowno:   the row number to retrieve the mask from | 
|---|
| 770 |  | 
|---|
| 771 | """ | 
|---|
| 772 | return self._getmask(rowno) | 
|---|
| 773 |  | 
|---|
| 774 | def set_spectrum(self, spec, rowno): | 
|---|
| 775 | """Set the spectrum for the current row in the scantable. | 
|---|
| 776 |  | 
|---|
| 777 | Parameters: | 
|---|
| 778 |  | 
|---|
| 779 | spec:   the new spectrum | 
|---|
| 780 |  | 
|---|
| 781 | rowno:  the row number to set the spectrum for | 
|---|
| 782 |  | 
|---|
| 783 | """ | 
|---|
| 784 | assert(len(spec) == self.nchan(self.getif(rowno))) | 
|---|
| 785 | return self._setspectrum(spec, rowno) | 
|---|
| 786 |  | 
|---|
| 787 | def get_coordinate(self, rowno): | 
|---|
| 788 | """Return the (spectral) coordinate for a a given 'rowno'. | 
|---|
| 789 |  | 
|---|
| 790 | *Note*: | 
|---|
| 791 |  | 
|---|
| 792 | * This coordinate is only valid until a scantable method modifies | 
|---|
| 793 | the frequency axis. | 
|---|
| 794 | * This coordinate does contain the original frequency set-up | 
|---|
| 795 | NOT the new frame. The conversions however are done using the user | 
|---|
| 796 | specified frame (e.g. LSRK/TOPO). To get the 'real' coordinate, | 
|---|
| 797 | use scantable.freq_align first. Without it there is no closure, | 
|---|
| 798 | i.e.:: | 
|---|
| 799 |  | 
|---|
| 800 | c = myscan.get_coordinate(0) | 
|---|
| 801 | c.to_frequency(c.get_reference_pixel()) != c.get_reference_value() | 
|---|
| 802 |  | 
|---|
| 803 | Parameters: | 
|---|
| 804 |  | 
|---|
| 805 | rowno:    the row number for the spectral coordinate | 
|---|
| 806 |  | 
|---|
| 807 | """ | 
|---|
| 808 | return coordinate(Scantable.get_coordinate(self, rowno)) | 
|---|
| 809 |  | 
|---|
| 810 | def get_selection(self): | 
|---|
| 811 | """\ | 
|---|
| 812 | Get the selection object currently set on this scantable. | 
|---|
| 813 |  | 
|---|
| 814 | Example:: | 
|---|
| 815 |  | 
|---|
| 816 | sel = scan.get_selection() | 
|---|
| 817 | sel.set_ifs(0)              # select IF 0 | 
|---|
| 818 | scan.set_selection(sel)     # apply modified selection | 
|---|
| 819 |  | 
|---|
| 820 | """ | 
|---|
| 821 | return selector(self._getselection()) | 
|---|
| 822 |  | 
|---|
| 823 | def set_selection(self, selection=None, **kw): | 
|---|
| 824 | """\ | 
|---|
| 825 | Select a subset of the data. All following operations on this scantable | 
|---|
| 826 | are only applied to thi selection. | 
|---|
| 827 |  | 
|---|
| 828 | Parameters: | 
|---|
| 829 |  | 
|---|
| 830 | selection:    a selector object (default unset the selection), or | 
|---|
| 831 | any combination of 'pols', 'ifs', 'beams', 'scans', | 
|---|
| 832 | 'cycles', 'name', 'query' | 
|---|
| 833 |  | 
|---|
| 834 | Examples:: | 
|---|
| 835 |  | 
|---|
| 836 | sel = selector()         # create a selection object | 
|---|
| 837 | self.set_scans([0, 3])    # select SCANNO 0 and 3 | 
|---|
| 838 | scan.set_selection(sel)  # set the selection | 
|---|
| 839 | scan.summary()           # will only print summary of scanno 0 an 3 | 
|---|
| 840 | scan.set_selection()     # unset the selection | 
|---|
| 841 | # or the equivalent | 
|---|
| 842 | scan.set_selection(scans=[0,3]) | 
|---|
| 843 | scan.summary()           # will only print summary of scanno 0 an 3 | 
|---|
| 844 | scan.set_selection()     # unset the selection | 
|---|
| 845 |  | 
|---|
| 846 | """ | 
|---|
| 847 | if selection is None: | 
|---|
| 848 | # reset | 
|---|
| 849 | if len(kw) == 0: | 
|---|
| 850 | selection = selector() | 
|---|
| 851 | else: | 
|---|
| 852 | # try keywords | 
|---|
| 853 | for k in kw: | 
|---|
| 854 | if k not in selector.fields: | 
|---|
| 855 | raise KeyError("Invalid selection key '%s', " | 
|---|
| 856 | "valid keys are %s" % (k, | 
|---|
| 857 | selector.fields)) | 
|---|
| 858 | selection = selector(**kw) | 
|---|
| 859 | self._setselection(selection) | 
|---|
| 860 |  | 
|---|
| 861 | def get_row(self, row=0, insitu=None): | 
|---|
| 862 | """\ | 
|---|
| 863 | Select a row in the scantable. | 
|---|
| 864 | Return a scantable with single row. | 
|---|
| 865 |  | 
|---|
| 866 | Parameters: | 
|---|
| 867 |  | 
|---|
| 868 | row:    row no of integration, default is 0. | 
|---|
| 869 | insitu: if False a new scantable is returned. Otherwise, the | 
|---|
| 870 | scaling is done in-situ. The default is taken from .asaprc | 
|---|
| 871 | (False) | 
|---|
| 872 |  | 
|---|
| 873 | """ | 
|---|
| 874 | if insitu is None: | 
|---|
| 875 | insitu = rcParams['insitu'] | 
|---|
| 876 | if not insitu: | 
|---|
| 877 | workscan = self.copy() | 
|---|
| 878 | else: | 
|---|
| 879 | workscan = self | 
|---|
| 880 | # Select a row | 
|---|
| 881 | sel = selector() | 
|---|
| 882 | sel.set_rows([row]) | 
|---|
| 883 | workscan.set_selection(sel) | 
|---|
| 884 | if not workscan.nrow() == 1: | 
|---|
| 885 | msg = "Could not identify single row. %d rows selected." \ | 
|---|
| 886 | % (workscan.nrow()) | 
|---|
| 887 | raise RuntimeError(msg) | 
|---|
| 888 | if insitu: | 
|---|
| 889 | self._assign(workscan) | 
|---|
| 890 | else: | 
|---|
| 891 | return workscan | 
|---|
| 892 |  | 
|---|
| 893 | @asaplog_post_dec | 
|---|
| 894 | def stats(self, stat='stddev', mask=None, form='3.3f', row=None): | 
|---|
| 895 | """\ | 
|---|
| 896 | Determine the specified statistic of the current beam/if/pol | 
|---|
| 897 | Takes a 'mask' as an optional parameter to specify which | 
|---|
| 898 | channels should be excluded. | 
|---|
| 899 |  | 
|---|
| 900 | Parameters: | 
|---|
| 901 |  | 
|---|
| 902 | stat:    'min', 'max', 'min_abc', 'max_abc', 'sumsq', 'sum', | 
|---|
| 903 | 'mean', 'var', 'stddev', 'avdev', 'rms', 'median' | 
|---|
| 904 |  | 
|---|
| 905 | mask:    an optional mask specifying where the statistic | 
|---|
| 906 | should be determined. | 
|---|
| 907 |  | 
|---|
| 908 | form:    format string to print statistic values | 
|---|
| 909 |  | 
|---|
| 910 | row:     row number of spectrum to process. | 
|---|
| 911 | (default is None: for all rows) | 
|---|
| 912 |  | 
|---|
| 913 | Example: | 
|---|
| 914 | scan.set_unit('channel') | 
|---|
| 915 | msk = scan.create_mask([100, 200], [500, 600]) | 
|---|
| 916 | scan.stats(stat='mean', mask=m) | 
|---|
| 917 |  | 
|---|
| 918 | """ | 
|---|
| 919 | mask = mask or [] | 
|---|
| 920 | if not self._check_ifs(): | 
|---|
| 921 | raise ValueError("Cannot apply mask as the IFs have different " | 
|---|
| 922 | "number of channels. Please use setselection() " | 
|---|
| 923 | "to select individual IFs") | 
|---|
| 924 | rtnabc = False | 
|---|
| 925 | if stat.lower().endswith('_abc'): rtnabc = True | 
|---|
| 926 | getchan = False | 
|---|
| 927 | if stat.lower().startswith('min') or stat.lower().startswith('max'): | 
|---|
| 928 | chan = self._math._minmaxchan(self, mask, stat) | 
|---|
| 929 | getchan = True | 
|---|
| 930 | statvals = [] | 
|---|
| 931 | if not rtnabc: | 
|---|
| 932 | if row == None: | 
|---|
| 933 | statvals = self._math._stats(self, mask, stat) | 
|---|
| 934 | else: | 
|---|
| 935 | statvals = self._math._statsrow(self, mask, stat, int(row)) | 
|---|
| 936 |  | 
|---|
| 937 | #def cb(i): | 
|---|
| 938 | #    return statvals[i] | 
|---|
| 939 |  | 
|---|
| 940 | #return self._row_callback(cb, stat) | 
|---|
| 941 |  | 
|---|
| 942 | label=stat | 
|---|
| 943 | #callback=cb | 
|---|
| 944 | out = "" | 
|---|
| 945 | #outvec = [] | 
|---|
| 946 | sep = '-'*50 | 
|---|
| 947 |  | 
|---|
| 948 | if row == None: | 
|---|
| 949 | rows = xrange(self.nrow()) | 
|---|
| 950 | elif isinstance(row, int): | 
|---|
| 951 | rows = [ row ] | 
|---|
| 952 |  | 
|---|
| 953 | for i in rows: | 
|---|
| 954 | refstr = '' | 
|---|
| 955 | statunit= '' | 
|---|
| 956 | if getchan: | 
|---|
| 957 | qx, qy = self.chan2data(rowno=i, chan=chan[i]) | 
|---|
| 958 | if rtnabc: | 
|---|
| 959 | statvals.append(qx['value']) | 
|---|
| 960 | refstr = ('(value: %'+form) % (qy['value'])+' ['+qy['unit']+'])' | 
|---|
| 961 | statunit= '['+qx['unit']+']' | 
|---|
| 962 | else: | 
|---|
| 963 | refstr = ('(@ %'+form) % (qx['value'])+' ['+qx['unit']+'])' | 
|---|
| 964 |  | 
|---|
| 965 | tm = self._gettime(i) | 
|---|
| 966 | src = self._getsourcename(i) | 
|---|
| 967 | out += 'Scan[%d] (%s) ' % (self.getscan(i), src) | 
|---|
| 968 | out += 'Time[%s]:\n' % (tm) | 
|---|
| 969 | if self.nbeam(-1) > 1: out +=  ' Beam[%d] ' % (self.getbeam(i)) | 
|---|
| 970 | if self.nif(-1) > 1:   out +=  ' IF[%d] ' % (self.getif(i)) | 
|---|
| 971 | if self.npol(-1) > 1:  out +=  ' Pol[%d] ' % (self.getpol(i)) | 
|---|
| 972 | #outvec.append(callback(i)) | 
|---|
| 973 | if len(rows) > 1: | 
|---|
| 974 | # out += ('= %'+form) % (outvec[i]) +'   '+refstr+'\n' | 
|---|
| 975 | out += ('= %'+form) % (statvals[i]) +'   '+refstr+'\n' | 
|---|
| 976 | else: | 
|---|
| 977 | # out += ('= %'+form) % (outvec[0]) +'   '+refstr+'\n' | 
|---|
| 978 | out += ('= %'+form) % (statvals[0]) +'   '+refstr+'\n' | 
|---|
| 979 | out +=  sep+"\n" | 
|---|
| 980 |  | 
|---|
| 981 | import os | 
|---|
| 982 | if os.environ.has_key( 'USER' ): | 
|---|
| 983 | usr = os.environ['USER'] | 
|---|
| 984 | else: | 
|---|
| 985 | import commands | 
|---|
| 986 | usr = commands.getoutput( 'whoami' ) | 
|---|
| 987 | tmpfile = '/tmp/tmp_'+usr+'_casapy_asap_scantable_stats' | 
|---|
| 988 | f = open(tmpfile,'w') | 
|---|
| 989 | print >> f, sep | 
|---|
| 990 | print >> f, ' %s %s' % (label, statunit) | 
|---|
| 991 | print >> f, sep | 
|---|
| 992 | print >> f, out | 
|---|
| 993 | f.close() | 
|---|
| 994 | f = open(tmpfile,'r') | 
|---|
| 995 | x = f.readlines() | 
|---|
| 996 | f.close() | 
|---|
| 997 | asaplog.push(''.join(x), False) | 
|---|
| 998 |  | 
|---|
| 999 | return statvals | 
|---|
| 1000 |  | 
|---|
| 1001 | def chan2data(self, rowno=0, chan=0): | 
|---|
| 1002 | """\ | 
|---|
| 1003 | Returns channel/frequency/velocity and spectral value | 
|---|
| 1004 | at an arbitrary row and channel in the scantable. | 
|---|
| 1005 |  | 
|---|
| 1006 | Parameters: | 
|---|
| 1007 |  | 
|---|
| 1008 | rowno:   a row number in the scantable. Default is the | 
|---|
| 1009 | first row, i.e. rowno=0 | 
|---|
| 1010 |  | 
|---|
| 1011 | chan:    a channel in the scantable. Default is the first | 
|---|
| 1012 | channel, i.e. pos=0 | 
|---|
| 1013 |  | 
|---|
| 1014 | """ | 
|---|
| 1015 | if isinstance(rowno, int) and isinstance(chan, int): | 
|---|
| 1016 | qx = {'unit': self.get_unit(), | 
|---|
| 1017 | 'value': self._getabcissa(rowno)[chan]} | 
|---|
| 1018 | qy = {'unit': self.get_fluxunit(), | 
|---|
| 1019 | 'value': self._getspectrum(rowno)[chan]} | 
|---|
| 1020 | return qx, qy | 
|---|
| 1021 |  | 
|---|
| 1022 | def stddev(self, mask=None): | 
|---|
| 1023 | """\ | 
|---|
| 1024 | Determine the standard deviation of the current beam/if/pol | 
|---|
| 1025 | Takes a 'mask' as an optional parameter to specify which | 
|---|
| 1026 | channels should be excluded. | 
|---|
| 1027 |  | 
|---|
| 1028 | Parameters: | 
|---|
| 1029 |  | 
|---|
| 1030 | mask:    an optional mask specifying where the standard | 
|---|
| 1031 | deviation should be determined. | 
|---|
| 1032 |  | 
|---|
| 1033 | Example:: | 
|---|
| 1034 |  | 
|---|
| 1035 | scan.set_unit('channel') | 
|---|
| 1036 | msk = scan.create_mask([100, 200], [500, 600]) | 
|---|
| 1037 | scan.stddev(mask=m) | 
|---|
| 1038 |  | 
|---|
| 1039 | """ | 
|---|
| 1040 | return self.stats(stat='stddev', mask=mask); | 
|---|
| 1041 |  | 
|---|
| 1042 |  | 
|---|
| 1043 | def get_column_names(self): | 
|---|
| 1044 | """\ | 
|---|
| 1045 | Return a  list of column names, which can be used for selection. | 
|---|
| 1046 | """ | 
|---|
| 1047 | return list(Scantable.get_column_names(self)) | 
|---|
| 1048 |  | 
|---|
| 1049 | def get_tsys(self, row=-1): | 
|---|
| 1050 | """\ | 
|---|
| 1051 | Return the System temperatures. | 
|---|
| 1052 |  | 
|---|
| 1053 | Parameters: | 
|---|
| 1054 |  | 
|---|
| 1055 | row:    the rowno to get the information for. (default all rows) | 
|---|
| 1056 |  | 
|---|
| 1057 | Returns: | 
|---|
| 1058 |  | 
|---|
| 1059 | a list of Tsys values for the current selection | 
|---|
| 1060 |  | 
|---|
| 1061 | """ | 
|---|
| 1062 | if row > -1: | 
|---|
| 1063 | return self._get_column(self._gettsys, row) | 
|---|
| 1064 | return self._row_callback(self._gettsys, "Tsys") | 
|---|
| 1065 |  | 
|---|
| 1066 | def get_tsysspectrum(self, row=-1): | 
|---|
| 1067 | """\ | 
|---|
| 1068 | Return the channel dependent system temperatures. | 
|---|
| 1069 |  | 
|---|
| 1070 | Parameters: | 
|---|
| 1071 |  | 
|---|
| 1072 | row:    the rowno to get the information for. (default all rows) | 
|---|
| 1073 |  | 
|---|
| 1074 | Returns: | 
|---|
| 1075 |  | 
|---|
| 1076 | a list of Tsys values for the current selection | 
|---|
| 1077 |  | 
|---|
| 1078 | """ | 
|---|
| 1079 | return self._get_column( self._gettsysspectrum, row ) | 
|---|
| 1080 |  | 
|---|
| 1081 | def set_tsys(self, values, row=-1): | 
|---|
| 1082 | """\ | 
|---|
| 1083 | Set the Tsys value(s) of the given 'row' or the whole scantable | 
|---|
| 1084 | (selection). | 
|---|
| 1085 |  | 
|---|
| 1086 | Parameters: | 
|---|
| 1087 |  | 
|---|
| 1088 | values:    a scalar or list (if Tsys is a vector) of Tsys value(s) | 
|---|
| 1089 | row:       the row number to apply Tsys values to. | 
|---|
| 1090 | (default all rows) | 
|---|
| 1091 |  | 
|---|
| 1092 | """ | 
|---|
| 1093 |  | 
|---|
| 1094 | if not hasattr(values, "__len__"): | 
|---|
| 1095 | values = [values] | 
|---|
| 1096 | self._settsys(values, row) | 
|---|
| 1097 |  | 
|---|
| 1098 | def get_weather(self, row=-1): | 
|---|
| 1099 | """\ | 
|---|
| 1100 | Return the weather information. | 
|---|
| 1101 |  | 
|---|
| 1102 | Parameters: | 
|---|
| 1103 |  | 
|---|
| 1104 | row:    the rowno to get the information for. (default all rows) | 
|---|
| 1105 |  | 
|---|
| 1106 | Returns: | 
|---|
| 1107 |  | 
|---|
| 1108 | a dict or list of of dicts of values for the current selection | 
|---|
| 1109 |  | 
|---|
| 1110 | """ | 
|---|
| 1111 | if row >= len(self): | 
|---|
| 1112 | raise IndexError("row out of range") | 
|---|
| 1113 | values = self._get_column(self._get_weather, row) | 
|---|
| 1114 | if row > -1: | 
|---|
| 1115 | return {'temperature': values[0], | 
|---|
| 1116 | 'pressure': values[1], 'humidity' : values[2], | 
|---|
| 1117 | 'windspeed' : values[3], 'windaz' : values[4] | 
|---|
| 1118 | } | 
|---|
| 1119 | else: | 
|---|
| 1120 | out = [] | 
|---|
| 1121 | for r in values: | 
|---|
| 1122 | out.append({'temperature': r[0], | 
|---|
| 1123 | 'pressure': r[1], 'humidity' : r[2], | 
|---|
| 1124 | 'windspeed' : r[3], 'windaz' : r[4] | 
|---|
| 1125 | }) | 
|---|
| 1126 | return out | 
|---|
| 1127 |  | 
|---|
| 1128 | def _row_callback(self, callback, label): | 
|---|
| 1129 | out = "" | 
|---|
| 1130 | outvec = [] | 
|---|
| 1131 | sep = '-'*50 | 
|---|
| 1132 | for i in range(self.nrow()): | 
|---|
| 1133 | tm = self._gettime(i) | 
|---|
| 1134 | src = self._getsourcename(i) | 
|---|
| 1135 | out += 'Scan[%d] (%s) ' % (self.getscan(i), src) | 
|---|
| 1136 | out += 'Time[%s]:\n' % (tm) | 
|---|
| 1137 | if self.nbeam(-1) > 1: | 
|---|
| 1138 | out +=  ' Beam[%d] ' % (self.getbeam(i)) | 
|---|
| 1139 | if self.nif(-1) > 1: out +=  ' IF[%d] ' % (self.getif(i)) | 
|---|
| 1140 | if self.npol(-1) > 1: out +=  ' Pol[%d] ' % (self.getpol(i)) | 
|---|
| 1141 | outvec.append(callback(i)) | 
|---|
| 1142 | out += '= %3.3f\n' % (outvec[i]) | 
|---|
| 1143 | out +=  sep+'\n' | 
|---|
| 1144 |  | 
|---|
| 1145 | asaplog.push(sep) | 
|---|
| 1146 | asaplog.push(" %s" % (label)) | 
|---|
| 1147 | asaplog.push(sep) | 
|---|
| 1148 | asaplog.push(out) | 
|---|
| 1149 | asaplog.post() | 
|---|
| 1150 | return outvec | 
|---|
| 1151 |  | 
|---|
| 1152 | def _get_column(self, callback, row=-1, *args): | 
|---|
| 1153 | """ | 
|---|
| 1154 | """ | 
|---|
| 1155 | if row == -1: | 
|---|
| 1156 | return [callback(i, *args) for i in range(self.nrow())] | 
|---|
| 1157 | else: | 
|---|
| 1158 | if  0 <= row < self.nrow(): | 
|---|
| 1159 | return callback(row, *args) | 
|---|
| 1160 |  | 
|---|
| 1161 |  | 
|---|
| 1162 | def get_time(self, row=-1, asdatetime=False, prec=-1): | 
|---|
| 1163 | """\ | 
|---|
| 1164 | Get a list of time stamps for the observations. | 
|---|
| 1165 | Return a datetime object or a string (default) for each | 
|---|
| 1166 | integration time stamp in the scantable. | 
|---|
| 1167 |  | 
|---|
| 1168 | Parameters: | 
|---|
| 1169 |  | 
|---|
| 1170 | row:          row no of integration. Default -1 return all rows | 
|---|
| 1171 |  | 
|---|
| 1172 | asdatetime:   return values as datetime objects rather than strings | 
|---|
| 1173 |  | 
|---|
| 1174 | prec:         number of digits shown. Default -1 to automatic | 
|---|
| 1175 | calculation. | 
|---|
| 1176 | Note this number is equals to the digits of MVTime, | 
|---|
| 1177 | i.e., 0<prec<3: dates with hh:: only, | 
|---|
| 1178 | <5: with hh:mm:, <7 or 0: with hh:mm:ss, | 
|---|
| 1179 | and 6> : with hh:mm:ss.tt... (prec-6 t's added) | 
|---|
| 1180 |  | 
|---|
| 1181 | """ | 
|---|
| 1182 | from datetime import datetime | 
|---|
| 1183 | if prec < 0: | 
|---|
| 1184 | # automagically set necessary precision +1 | 
|---|
| 1185 | prec = 7 - \ | 
|---|
| 1186 | numpy.floor(numpy.log10(numpy.min(self.get_inttime(row)))) | 
|---|
| 1187 | prec = max(6, int(prec)) | 
|---|
| 1188 | else: | 
|---|
| 1189 | prec = max(0, prec) | 
|---|
| 1190 | if asdatetime: | 
|---|
| 1191 | #precision can be 1 millisecond at max | 
|---|
| 1192 | prec = min(12, prec) | 
|---|
| 1193 |  | 
|---|
| 1194 | times = self._get_column(self._gettime, row, prec) | 
|---|
| 1195 | if not asdatetime: | 
|---|
| 1196 | return times | 
|---|
| 1197 | format = "%Y/%m/%d/%H:%M:%S.%f" | 
|---|
| 1198 | if prec < 7: | 
|---|
| 1199 | nsub = 1 + (((6-prec)/2) % 3) | 
|---|
| 1200 | substr = [".%f","%S","%M"] | 
|---|
| 1201 | for i in range(nsub): | 
|---|
| 1202 | format = format.replace(substr[i],"") | 
|---|
| 1203 | if isinstance(times, list): | 
|---|
| 1204 | return [datetime.strptime(i, format) for i in times] | 
|---|
| 1205 | else: | 
|---|
| 1206 | return datetime.strptime(times, format) | 
|---|
| 1207 |  | 
|---|
| 1208 |  | 
|---|
| 1209 | def get_inttime(self, row=-1): | 
|---|
| 1210 | """\ | 
|---|
| 1211 | Get a list of integration times for the observations. | 
|---|
| 1212 | Return a time in seconds for each integration in the scantable. | 
|---|
| 1213 |  | 
|---|
| 1214 | Parameters: | 
|---|
| 1215 |  | 
|---|
| 1216 | row:    row no of integration. Default -1 return all rows. | 
|---|
| 1217 |  | 
|---|
| 1218 | """ | 
|---|
| 1219 | return self._get_column(self._getinttime, row) | 
|---|
| 1220 |  | 
|---|
| 1221 |  | 
|---|
| 1222 | def get_sourcename(self, row=-1): | 
|---|
| 1223 | """\ | 
|---|
| 1224 | Get a list source names for the observations. | 
|---|
| 1225 | Return a string for each integration in the scantable. | 
|---|
| 1226 | Parameters: | 
|---|
| 1227 |  | 
|---|
| 1228 | row:    row no of integration. Default -1 return all rows. | 
|---|
| 1229 |  | 
|---|
| 1230 | """ | 
|---|
| 1231 | return self._get_column(self._getsourcename, row) | 
|---|
| 1232 |  | 
|---|
| 1233 | def get_elevation(self, row=-1): | 
|---|
| 1234 | """\ | 
|---|
| 1235 | Get a list of elevations for the observations. | 
|---|
| 1236 | Return a float for each integration in the scantable. | 
|---|
| 1237 |  | 
|---|
| 1238 | Parameters: | 
|---|
| 1239 |  | 
|---|
| 1240 | row:    row no of integration. Default -1 return all rows. | 
|---|
| 1241 |  | 
|---|
| 1242 | """ | 
|---|
| 1243 | return self._get_column(self._getelevation, row) | 
|---|
| 1244 |  | 
|---|
| 1245 | def get_azimuth(self, row=-1): | 
|---|
| 1246 | """\ | 
|---|
| 1247 | Get a list of azimuths for the observations. | 
|---|
| 1248 | Return a float for each integration in the scantable. | 
|---|
| 1249 |  | 
|---|
| 1250 | Parameters: | 
|---|
| 1251 | row:    row no of integration. Default -1 return all rows. | 
|---|
| 1252 |  | 
|---|
| 1253 | """ | 
|---|
| 1254 | return self._get_column(self._getazimuth, row) | 
|---|
| 1255 |  | 
|---|
| 1256 | def get_parangle(self, row=-1): | 
|---|
| 1257 | """\ | 
|---|
| 1258 | Get a list of parallactic angles for the observations. | 
|---|
| 1259 | Return a float for each integration in the scantable. | 
|---|
| 1260 |  | 
|---|
| 1261 | Parameters: | 
|---|
| 1262 |  | 
|---|
| 1263 | row:    row no of integration. Default -1 return all rows. | 
|---|
| 1264 |  | 
|---|
| 1265 | """ | 
|---|
| 1266 | return self._get_column(self._getparangle, row) | 
|---|
| 1267 |  | 
|---|
| 1268 | def get_direction(self, row=-1): | 
|---|
| 1269 | """ | 
|---|
| 1270 | Get a list of Positions on the sky (direction) for the observations. | 
|---|
| 1271 | Return a string for each integration in the scantable. | 
|---|
| 1272 |  | 
|---|
| 1273 | Parameters: | 
|---|
| 1274 |  | 
|---|
| 1275 | row:    row no of integration. Default -1 return all rows | 
|---|
| 1276 |  | 
|---|
| 1277 | """ | 
|---|
| 1278 | return self._get_column(self._getdirection, row) | 
|---|
| 1279 |  | 
|---|
| 1280 | def get_directionval(self, row=-1): | 
|---|
| 1281 | """\ | 
|---|
| 1282 | Get a list of Positions on the sky (direction) for the observations. | 
|---|
| 1283 | Return a float for each integration in the scantable. | 
|---|
| 1284 |  | 
|---|
| 1285 | Parameters: | 
|---|
| 1286 |  | 
|---|
| 1287 | row:    row no of integration. Default -1 return all rows | 
|---|
| 1288 |  | 
|---|
| 1289 | """ | 
|---|
| 1290 | return self._get_column(self._getdirectionvec, row) | 
|---|
| 1291 |  | 
|---|
| 1292 | @asaplog_post_dec | 
|---|
| 1293 | def set_unit(self, unit='channel'): | 
|---|
| 1294 | """\ | 
|---|
| 1295 | Set the unit for all following operations on this scantable | 
|---|
| 1296 |  | 
|---|
| 1297 | Parameters: | 
|---|
| 1298 |  | 
|---|
| 1299 | unit:    optional unit, default is 'channel'. Use one of '*Hz', | 
|---|
| 1300 | 'km/s', 'channel' or equivalent '' | 
|---|
| 1301 |  | 
|---|
| 1302 | """ | 
|---|
| 1303 | varlist = vars() | 
|---|
| 1304 | if unit in ['', 'pixel', 'channel']: | 
|---|
| 1305 | unit = '' | 
|---|
| 1306 | inf = list(self._getcoordinfo()) | 
|---|
| 1307 | inf[0] = unit | 
|---|
| 1308 | self._setcoordinfo(inf) | 
|---|
| 1309 | self._add_history("set_unit", varlist) | 
|---|
| 1310 |  | 
|---|
| 1311 | @asaplog_post_dec | 
|---|
| 1312 | def set_instrument(self, instr): | 
|---|
| 1313 | """\ | 
|---|
| 1314 | Set the instrument for subsequent processing. | 
|---|
| 1315 |  | 
|---|
| 1316 | Parameters: | 
|---|
| 1317 |  | 
|---|
| 1318 | instr:    Select from 'ATPKSMB', 'ATPKSHOH', 'ATMOPRA', | 
|---|
| 1319 | 'DSS-43' (Tid), 'CEDUNA', and 'HOBART' | 
|---|
| 1320 |  | 
|---|
| 1321 | """ | 
|---|
| 1322 | self._setInstrument(instr) | 
|---|
| 1323 | self._add_history("set_instument", vars()) | 
|---|
| 1324 |  | 
|---|
| 1325 | @asaplog_post_dec | 
|---|
| 1326 | def set_feedtype(self, feedtype): | 
|---|
| 1327 | """\ | 
|---|
| 1328 | Overwrite the feed type, which might not be set correctly. | 
|---|
| 1329 |  | 
|---|
| 1330 | Parameters: | 
|---|
| 1331 |  | 
|---|
| 1332 | feedtype:     'linear' or 'circular' | 
|---|
| 1333 |  | 
|---|
| 1334 | """ | 
|---|
| 1335 | self._setfeedtype(feedtype) | 
|---|
| 1336 | self._add_history("set_feedtype", vars()) | 
|---|
| 1337 |  | 
|---|
| 1338 | @asaplog_post_dec | 
|---|
| 1339 | def get_doppler(self): | 
|---|
| 1340 | """\ | 
|---|
| 1341 | Get the doppler. | 
|---|
| 1342 | """ | 
|---|
| 1343 | return self._getcoordinfo()[2] | 
|---|
| 1344 |  | 
|---|
| 1345 | @asaplog_post_dec | 
|---|
| 1346 | def set_doppler(self, doppler='RADIO'): | 
|---|
| 1347 | """\ | 
|---|
| 1348 | Set the doppler for all following operations on this scantable. | 
|---|
| 1349 |  | 
|---|
| 1350 | Parameters: | 
|---|
| 1351 |  | 
|---|
| 1352 | doppler:    One of 'RADIO', 'OPTICAL', 'Z', 'BETA', 'GAMMA' | 
|---|
| 1353 |  | 
|---|
| 1354 | """ | 
|---|
| 1355 | varlist = vars() | 
|---|
| 1356 | inf = list(self._getcoordinfo()) | 
|---|
| 1357 | inf[2] = doppler | 
|---|
| 1358 | self._setcoordinfo(inf) | 
|---|
| 1359 | self._add_history("set_doppler", vars()) | 
|---|
| 1360 |  | 
|---|
| 1361 | @asaplog_post_dec | 
|---|
| 1362 | def set_freqframe(self, frame=None): | 
|---|
| 1363 | """\ | 
|---|
| 1364 | Set the frame type of the Spectral Axis. | 
|---|
| 1365 |  | 
|---|
| 1366 | Parameters: | 
|---|
| 1367 |  | 
|---|
| 1368 | frame:   an optional frame type, default 'LSRK'. Valid frames are: | 
|---|
| 1369 | 'TOPO', 'LSRD', 'LSRK', 'BARY', | 
|---|
| 1370 | 'GEO', 'GALACTO', 'LGROUP', 'CMB' | 
|---|
| 1371 |  | 
|---|
| 1372 | Example:: | 
|---|
| 1373 |  | 
|---|
| 1374 | scan.set_freqframe('BARY') | 
|---|
| 1375 |  | 
|---|
| 1376 | """ | 
|---|
| 1377 | frame = frame or rcParams['scantable.freqframe'] | 
|---|
| 1378 | varlist = vars() | 
|---|
| 1379 | # "REST" is not implemented in casacore | 
|---|
| 1380 | #valid = ['REST', 'TOPO', 'LSRD', 'LSRK', 'BARY', \ | 
|---|
| 1381 | #           'GEO', 'GALACTO', 'LGROUP', 'CMB'] | 
|---|
| 1382 | valid = ['TOPO', 'LSRD', 'LSRK', 'BARY', \ | 
|---|
| 1383 | 'GEO', 'GALACTO', 'LGROUP', 'CMB'] | 
|---|
| 1384 |  | 
|---|
| 1385 | if frame in valid: | 
|---|
| 1386 | inf = list(self._getcoordinfo()) | 
|---|
| 1387 | inf[1] = frame | 
|---|
| 1388 | self._setcoordinfo(inf) | 
|---|
| 1389 | self._add_history("set_freqframe", varlist) | 
|---|
| 1390 | else: | 
|---|
| 1391 | msg  = "Please specify a valid freq type. Valid types are:\n", valid | 
|---|
| 1392 | raise TypeError(msg) | 
|---|
| 1393 |  | 
|---|
| 1394 | @asaplog_post_dec | 
|---|
| 1395 | def set_dirframe(self, frame=""): | 
|---|
| 1396 | """\ | 
|---|
| 1397 | Set the frame type of the Direction on the sky. | 
|---|
| 1398 |  | 
|---|
| 1399 | Parameters: | 
|---|
| 1400 |  | 
|---|
| 1401 | frame:   an optional frame type, default ''. Valid frames are: | 
|---|
| 1402 | 'J2000', 'B1950', 'GALACTIC' | 
|---|
| 1403 |  | 
|---|
| 1404 | Example: | 
|---|
| 1405 |  | 
|---|
| 1406 | scan.set_dirframe('GALACTIC') | 
|---|
| 1407 |  | 
|---|
| 1408 | """ | 
|---|
| 1409 | varlist = vars() | 
|---|
| 1410 | Scantable.set_dirframe(self, frame) | 
|---|
| 1411 | self._add_history("set_dirframe", varlist) | 
|---|
| 1412 |  | 
|---|
| 1413 | def get_unit(self): | 
|---|
| 1414 | """\ | 
|---|
| 1415 | Get the default unit set in this scantable | 
|---|
| 1416 |  | 
|---|
| 1417 | Returns: | 
|---|
| 1418 |  | 
|---|
| 1419 | A unit string | 
|---|
| 1420 |  | 
|---|
| 1421 | """ | 
|---|
| 1422 | inf = self._getcoordinfo() | 
|---|
| 1423 | unit = inf[0] | 
|---|
| 1424 | if unit == '': unit = 'channel' | 
|---|
| 1425 | return unit | 
|---|
| 1426 |  | 
|---|
| 1427 | @asaplog_post_dec | 
|---|
| 1428 | def get_abcissa(self, rowno=0): | 
|---|
| 1429 | """\ | 
|---|
| 1430 | Get the abcissa in the current coordinate setup for the currently | 
|---|
| 1431 | selected Beam/IF/Pol | 
|---|
| 1432 |  | 
|---|
| 1433 | Parameters: | 
|---|
| 1434 |  | 
|---|
| 1435 | rowno:    an optional row number in the scantable. Default is the | 
|---|
| 1436 | first row, i.e. rowno=0 | 
|---|
| 1437 |  | 
|---|
| 1438 | Returns: | 
|---|
| 1439 |  | 
|---|
| 1440 | The abcissa values and the format string (as a dictionary) | 
|---|
| 1441 |  | 
|---|
| 1442 | """ | 
|---|
| 1443 | abc = self._getabcissa(rowno) | 
|---|
| 1444 | lbl = self._getabcissalabel(rowno) | 
|---|
| 1445 | return abc, lbl | 
|---|
| 1446 |  | 
|---|
| 1447 | @asaplog_post_dec | 
|---|
| 1448 | def flag(self, mask=None, unflag=False, row=-1): | 
|---|
| 1449 | """\ | 
|---|
| 1450 | Flag the selected data using an optional channel mask. | 
|---|
| 1451 |  | 
|---|
| 1452 | Parameters: | 
|---|
| 1453 |  | 
|---|
| 1454 | mask:   an optional channel mask, created with create_mask. Default | 
|---|
| 1455 | (no mask) is all channels. | 
|---|
| 1456 |  | 
|---|
| 1457 | unflag:    if True, unflag the data | 
|---|
| 1458 |  | 
|---|
| 1459 | row:    an optional row number in the scantable. | 
|---|
| 1460 | Default -1 flags all rows | 
|---|
| 1461 |  | 
|---|
| 1462 | """ | 
|---|
| 1463 | varlist = vars() | 
|---|
| 1464 | mask = mask or [] | 
|---|
| 1465 | self._flag(row, mask, unflag) | 
|---|
| 1466 | self._add_history("flag", varlist) | 
|---|
| 1467 |  | 
|---|
| 1468 | @asaplog_post_dec | 
|---|
| 1469 | def flag_row(self, rows=None, unflag=False): | 
|---|
| 1470 | """\ | 
|---|
| 1471 | Flag the selected data in row-based manner. | 
|---|
| 1472 |  | 
|---|
| 1473 | Parameters: | 
|---|
| 1474 |  | 
|---|
| 1475 | rows:   list of row numbers to be flagged. Default is no row | 
|---|
| 1476 | (must be explicitly specified to execute row-based | 
|---|
| 1477 | flagging). | 
|---|
| 1478 |  | 
|---|
| 1479 | unflag: if True, unflag the data. | 
|---|
| 1480 |  | 
|---|
| 1481 | """ | 
|---|
| 1482 | varlist = vars() | 
|---|
| 1483 | if rows is None: | 
|---|
| 1484 | rows = [] | 
|---|
| 1485 | self._flag_row(rows, unflag) | 
|---|
| 1486 | self._add_history("flag_row", varlist) | 
|---|
| 1487 |  | 
|---|
| 1488 | @asaplog_post_dec | 
|---|
| 1489 | def clip(self, uthres=None, dthres=None, clipoutside=True, unflag=False): | 
|---|
| 1490 | """\ | 
|---|
| 1491 | Flag the selected data outside a specified range (in channel-base) | 
|---|
| 1492 |  | 
|---|
| 1493 | Parameters: | 
|---|
| 1494 |  | 
|---|
| 1495 | uthres:      upper threshold. | 
|---|
| 1496 |  | 
|---|
| 1497 | dthres:      lower threshold | 
|---|
| 1498 |  | 
|---|
| 1499 | clipoutside: True for flagging data outside the range | 
|---|
| 1500 | [dthres:uthres]. | 
|---|
| 1501 | False for flagging data inside the range. | 
|---|
| 1502 |  | 
|---|
| 1503 | unflag:      if True, unflag the data. | 
|---|
| 1504 |  | 
|---|
| 1505 | """ | 
|---|
| 1506 | varlist = vars() | 
|---|
| 1507 | self._clip(uthres, dthres, clipoutside, unflag) | 
|---|
| 1508 | self._add_history("clip", varlist) | 
|---|
| 1509 |  | 
|---|
| 1510 | @asaplog_post_dec | 
|---|
| 1511 | def lag_flag(self, start, end, unit="MHz", insitu=None): | 
|---|
| 1512 | """\ | 
|---|
| 1513 | Flag the data in 'lag' space by providing a frequency to remove. | 
|---|
| 1514 | Flagged data in the scantable get interpolated over the region. | 
|---|
| 1515 | No taper is applied. | 
|---|
| 1516 |  | 
|---|
| 1517 | Parameters: | 
|---|
| 1518 |  | 
|---|
| 1519 | start:    the start frequency (really a period within the | 
|---|
| 1520 | bandwidth)  or period to remove | 
|---|
| 1521 |  | 
|---|
| 1522 | end:      the end frequency or period to remove | 
|---|
| 1523 |  | 
|---|
| 1524 | unit:     the frequency unit (default 'MHz') or '' for | 
|---|
| 1525 | explicit lag channels | 
|---|
| 1526 |  | 
|---|
| 1527 | *Notes*: | 
|---|
| 1528 |  | 
|---|
| 1529 | It is recommended to flag edges of the band or strong | 
|---|
| 1530 | signals beforehand. | 
|---|
| 1531 |  | 
|---|
| 1532 | """ | 
|---|
| 1533 | if insitu is None: insitu = rcParams['insitu'] | 
|---|
| 1534 | self._math._setinsitu(insitu) | 
|---|
| 1535 | varlist = vars() | 
|---|
| 1536 | base = { "GHz": 1000000000., "MHz": 1000000., "kHz": 1000., "Hz": 1.} | 
|---|
| 1537 | if not (unit == "" or base.has_key(unit)): | 
|---|
| 1538 | raise ValueError("%s is not a valid unit." % unit) | 
|---|
| 1539 | if unit == "": | 
|---|
| 1540 | s = scantable(self._math._lag_flag(self, start, end, "lags")) | 
|---|
| 1541 | else: | 
|---|
| 1542 | s = scantable(self._math._lag_flag(self, start*base[unit], | 
|---|
| 1543 | end*base[unit], "frequency")) | 
|---|
| 1544 | s._add_history("lag_flag", varlist) | 
|---|
| 1545 | if insitu: | 
|---|
| 1546 | self._assign(s) | 
|---|
| 1547 | else: | 
|---|
| 1548 | return s | 
|---|
| 1549 |  | 
|---|
| 1550 | @asaplog_post_dec | 
|---|
| 1551 | def fft(self, rowno=None, mask=None, getrealimag=False): | 
|---|
| 1552 | """\ | 
|---|
| 1553 | Apply FFT to the spectra. | 
|---|
| 1554 | Flagged data in the scantable get interpolated over the region. | 
|---|
| 1555 |  | 
|---|
| 1556 | Parameters: | 
|---|
| 1557 |  | 
|---|
| 1558 | rowno:          The row number(s) to be processed. int, list | 
|---|
| 1559 | and tuple are accepted. By default (None), FFT | 
|---|
| 1560 | is applied to the whole data. | 
|---|
| 1561 |  | 
|---|
| 1562 | mask:           Auxiliary channel mask(s). Given as a boolean | 
|---|
| 1563 | list, it is applied to all specified rows. | 
|---|
| 1564 | A list of boolean lists can also be used to | 
|---|
| 1565 | apply different masks. In the latter case, the | 
|---|
| 1566 | length of 'mask' must be the same as that of | 
|---|
| 1567 | 'rowno'. The default is None. | 
|---|
| 1568 |  | 
|---|
| 1569 | getrealimag:    If True, returns the real and imaginary part | 
|---|
| 1570 | values of the complex results. | 
|---|
| 1571 | If False (the default), returns the amplitude | 
|---|
| 1572 | (absolute value) normalised with Ndata/2 and | 
|---|
| 1573 | phase (argument, in unit of radian). | 
|---|
| 1574 |  | 
|---|
| 1575 | Returns: | 
|---|
| 1576 |  | 
|---|
| 1577 | A list of dictionaries containing the results for each spectrum. | 
|---|
| 1578 | Each dictionary contains two values, the real and the imaginary | 
|---|
| 1579 | parts when getrealimag = True, or the amplitude(absolute value) | 
|---|
| 1580 | and the phase(argument) when getrealimag = False. The key for | 
|---|
| 1581 | these values are 'real' and 'imag', or 'ampl' and 'phase', | 
|---|
| 1582 | respectively. | 
|---|
| 1583 | """ | 
|---|
| 1584 | if rowno is None: | 
|---|
| 1585 | rowno = [] | 
|---|
| 1586 | if isinstance(rowno, int): | 
|---|
| 1587 | rowno = [rowno] | 
|---|
| 1588 | elif not (isinstance(rowno, list) or isinstance(rowno, tuple)): | 
|---|
| 1589 | raise TypeError("The row number(s) must be int, list or tuple.") | 
|---|
| 1590 | if len(rowno) == 0: rowno = [i for i in xrange(self.nrow())] | 
|---|
| 1591 |  | 
|---|
| 1592 | usecommonmask = True | 
|---|
| 1593 |  | 
|---|
| 1594 | if mask is None: | 
|---|
| 1595 | mask = [] | 
|---|
| 1596 | if isinstance(mask, list) or isinstance(mask, tuple): | 
|---|
| 1597 | if len(mask) == 0: | 
|---|
| 1598 | mask = [[]] | 
|---|
| 1599 | else: | 
|---|
| 1600 | if isinstance(mask[0], bool): | 
|---|
| 1601 | if len(mask) != self.nchan(self.getif(rowno[0])): | 
|---|
| 1602 | raise ValueError("The spectra and the mask have " | 
|---|
| 1603 | "different length.") | 
|---|
| 1604 | mask = [mask] | 
|---|
| 1605 | elif isinstance(mask[0], list) or isinstance(mask[0], tuple): | 
|---|
| 1606 | usecommonmask = False | 
|---|
| 1607 | if len(mask) != len(rowno): | 
|---|
| 1608 | raise ValueError("When specifying masks for each " | 
|---|
| 1609 | "spectrum, the numbers of them " | 
|---|
| 1610 | "must be identical.") | 
|---|
| 1611 | for i in xrange(mask): | 
|---|
| 1612 | if len(mask[i]) != self.nchan(self.getif(rowno[i])): | 
|---|
| 1613 | raise ValueError("The spectra and the mask have " | 
|---|
| 1614 | "different length.") | 
|---|
| 1615 | else: | 
|---|
| 1616 | raise TypeError("The mask must be a boolean list or " | 
|---|
| 1617 | "a list of boolean list.") | 
|---|
| 1618 | else: | 
|---|
| 1619 | raise TypeError("The mask must be a boolean list or a list of " | 
|---|
| 1620 | "boolean list.") | 
|---|
| 1621 |  | 
|---|
| 1622 | res = [] | 
|---|
| 1623 |  | 
|---|
| 1624 | imask = 0 | 
|---|
| 1625 | for whichrow in rowno: | 
|---|
| 1626 | fspec = self._fft(whichrow, mask[imask], getrealimag) | 
|---|
| 1627 | nspec = len(fspec) | 
|---|
| 1628 |  | 
|---|
| 1629 | i = 0 | 
|---|
| 1630 | v1 = [] | 
|---|
| 1631 | v2 = [] | 
|---|
| 1632 | reselem = {"real":[],"imag":[]} if getrealimag \ | 
|---|
| 1633 | else {"ampl":[],"phase":[]} | 
|---|
| 1634 |  | 
|---|
| 1635 | while (i < nspec): | 
|---|
| 1636 | v1.append(fspec[i]) | 
|---|
| 1637 | v2.append(fspec[i+1]) | 
|---|
| 1638 | i += 2 | 
|---|
| 1639 |  | 
|---|
| 1640 | if getrealimag: | 
|---|
| 1641 | reselem["real"]  += v1 | 
|---|
| 1642 | reselem["imag"]  += v2 | 
|---|
| 1643 | else: | 
|---|
| 1644 | reselem["ampl"]  += v1 | 
|---|
| 1645 | reselem["phase"] += v2 | 
|---|
| 1646 |  | 
|---|
| 1647 | res.append(reselem) | 
|---|
| 1648 |  | 
|---|
| 1649 | if not usecommonmask: | 
|---|
| 1650 | imask += 1 | 
|---|
| 1651 |  | 
|---|
| 1652 | return res | 
|---|
| 1653 |  | 
|---|
| 1654 | @asaplog_post_dec | 
|---|
| 1655 | def create_mask(self, *args, **kwargs): | 
|---|
| 1656 | """\ | 
|---|
| 1657 | Compute and return a mask based on [min, max] windows. | 
|---|
| 1658 | The specified windows are to be INCLUDED, when the mask is | 
|---|
| 1659 | applied. | 
|---|
| 1660 |  | 
|---|
| 1661 | Parameters: | 
|---|
| 1662 |  | 
|---|
| 1663 | [min, max], [min2, max2], ... | 
|---|
| 1664 | Pairs of start/end points (inclusive)specifying the regions | 
|---|
| 1665 | to be masked | 
|---|
| 1666 |  | 
|---|
| 1667 | invert:     optional argument. If specified as True, | 
|---|
| 1668 | return an inverted mask, i.e. the regions | 
|---|
| 1669 | specified are EXCLUDED | 
|---|
| 1670 |  | 
|---|
| 1671 | row:        create the mask using the specified row for | 
|---|
| 1672 | unit conversions, default is row=0 | 
|---|
| 1673 | only necessary if frequency varies over rows. | 
|---|
| 1674 |  | 
|---|
| 1675 | Examples:: | 
|---|
| 1676 |  | 
|---|
| 1677 | scan.set_unit('channel') | 
|---|
| 1678 | # a) | 
|---|
| 1679 | msk = scan.create_mask([400, 500], [800, 900]) | 
|---|
| 1680 | # masks everything outside 400 and 500 | 
|---|
| 1681 | # and 800 and 900 in the unit 'channel' | 
|---|
| 1682 |  | 
|---|
| 1683 | # b) | 
|---|
| 1684 | msk = scan.create_mask([400, 500], [800, 900], invert=True) | 
|---|
| 1685 | # masks the regions between 400 and 500 | 
|---|
| 1686 | # and 800 and 900 in the unit 'channel' | 
|---|
| 1687 |  | 
|---|
| 1688 | # c) | 
|---|
| 1689 | #mask only channel 400 | 
|---|
| 1690 | msk =  scan.create_mask([400]) | 
|---|
| 1691 |  | 
|---|
| 1692 | """ | 
|---|
| 1693 | row = kwargs.get("row", 0) | 
|---|
| 1694 | data = self._getabcissa(row) | 
|---|
| 1695 | u = self._getcoordinfo()[0] | 
|---|
| 1696 | if u == "": | 
|---|
| 1697 | u = "channel" | 
|---|
| 1698 | msg = "The current mask window unit is %s" % u | 
|---|
| 1699 | i = self._check_ifs() | 
|---|
| 1700 | if not i: | 
|---|
| 1701 | msg += "\nThis mask is only valid for IF=%d" % (self.getif(i)) | 
|---|
| 1702 | asaplog.push(msg) | 
|---|
| 1703 | n = len(data) | 
|---|
| 1704 | msk = _n_bools(n, False) | 
|---|
| 1705 | # test if args is a 'list' or a 'normal *args - UGLY!!! | 
|---|
| 1706 |  | 
|---|
| 1707 | ws = (isinstance(args[-1][-1], int) | 
|---|
| 1708 | or isinstance(args[-1][-1], float)) and args or args[0] | 
|---|
| 1709 | for window in ws: | 
|---|
| 1710 | if len(window) == 1: | 
|---|
| 1711 | window = [window[0], window[0]] | 
|---|
| 1712 | if len(window) == 0 or  len(window) > 2: | 
|---|
| 1713 | raise ValueError("A window needs to be defined as " | 
|---|
| 1714 | "[start(, end)]") | 
|---|
| 1715 | if window[0] > window[1]: | 
|---|
| 1716 | tmp = window[0] | 
|---|
| 1717 | window[0] = window[1] | 
|---|
| 1718 | window[1] = tmp | 
|---|
| 1719 | for i in range(n): | 
|---|
| 1720 | if data[i] >= window[0] and data[i] <= window[1]: | 
|---|
| 1721 | msk[i] = True | 
|---|
| 1722 | if kwargs.has_key('invert'): | 
|---|
| 1723 | if kwargs.get('invert'): | 
|---|
| 1724 | msk = mask_not(msk) | 
|---|
| 1725 | return msk | 
|---|
| 1726 |  | 
|---|
| 1727 | def get_masklist(self, mask=None, row=0, silent=False): | 
|---|
| 1728 | """\ | 
|---|
| 1729 | Compute and return a list of mask windows, [min, max]. | 
|---|
| 1730 |  | 
|---|
| 1731 | Parameters: | 
|---|
| 1732 |  | 
|---|
| 1733 | mask:       channel mask, created with create_mask. | 
|---|
| 1734 |  | 
|---|
| 1735 | row:        calcutate the masklist using the specified row | 
|---|
| 1736 | for unit conversions, default is row=0 | 
|---|
| 1737 | only necessary if frequency varies over rows. | 
|---|
| 1738 |  | 
|---|
| 1739 | Returns: | 
|---|
| 1740 |  | 
|---|
| 1741 | [min, max], [min2, max2], ... | 
|---|
| 1742 | Pairs of start/end points (inclusive)specifying | 
|---|
| 1743 | the masked regions | 
|---|
| 1744 |  | 
|---|
| 1745 | """ | 
|---|
| 1746 | if not (isinstance(mask,list) or isinstance(mask, tuple)): | 
|---|
| 1747 | raise TypeError("The mask should be list or tuple.") | 
|---|
| 1748 | if len(mask) <= 0: | 
|---|
| 1749 | raise TypeError("The mask elements should be > 0") | 
|---|
| 1750 | data = self._getabcissa(row) | 
|---|
| 1751 | if len(data) != len(mask): | 
|---|
| 1752 | msg = "Number of channels in scantable != number of mask elements" | 
|---|
| 1753 | raise TypeError(msg) | 
|---|
| 1754 | u = self._getcoordinfo()[0] | 
|---|
| 1755 | if u == "": | 
|---|
| 1756 | u = "channel" | 
|---|
| 1757 | msg = "The current mask window unit is %s" % u | 
|---|
| 1758 | i = self._check_ifs() | 
|---|
| 1759 | if not i: | 
|---|
| 1760 | msg += "\nThis mask is only valid for IF=%d" % (self.getif(i)) | 
|---|
| 1761 | if not silent: | 
|---|
| 1762 | asaplog.push(msg) | 
|---|
| 1763 | masklist = [] | 
|---|
| 1764 | ist, ien = None, None | 
|---|
| 1765 | ist, ien=self.get_mask_indices(mask) | 
|---|
| 1766 | if ist is not None and ien is not None: | 
|---|
| 1767 | for i in xrange(len(ist)): | 
|---|
| 1768 | range=[data[ist[i]],data[ien[i]]] | 
|---|
| 1769 | range.sort() | 
|---|
| 1770 | masklist.append([range[0],range[1]]) | 
|---|
| 1771 | return masklist | 
|---|
| 1772 |  | 
|---|
| 1773 | def get_mask_indices(self, mask=None): | 
|---|
| 1774 | """\ | 
|---|
| 1775 | Compute and Return lists of mask start indices and mask end indices. | 
|---|
| 1776 |  | 
|---|
| 1777 | Parameters: | 
|---|
| 1778 |  | 
|---|
| 1779 | mask:       channel mask, created with create_mask. | 
|---|
| 1780 |  | 
|---|
| 1781 | Returns: | 
|---|
| 1782 |  | 
|---|
| 1783 | List of mask start indices and that of mask end indices, | 
|---|
| 1784 | i.e., [istart1,istart2,....], [iend1,iend2,....]. | 
|---|
| 1785 |  | 
|---|
| 1786 | """ | 
|---|
| 1787 | if not (isinstance(mask,list) or isinstance(mask, tuple)): | 
|---|
| 1788 | raise TypeError("The mask should be list or tuple.") | 
|---|
| 1789 | if len(mask) <= 0: | 
|---|
| 1790 | raise TypeError("The mask elements should be > 0") | 
|---|
| 1791 | istart = [] | 
|---|
| 1792 | iend = [] | 
|---|
| 1793 | if mask[0]: | 
|---|
| 1794 | istart.append(0) | 
|---|
| 1795 | for i in range(len(mask)-1): | 
|---|
| 1796 | if not mask[i] and mask[i+1]: | 
|---|
| 1797 | istart.append(i+1) | 
|---|
| 1798 | elif mask[i] and not mask[i+1]: | 
|---|
| 1799 | iend.append(i) | 
|---|
| 1800 | if mask[len(mask)-1]: | 
|---|
| 1801 | iend.append(len(mask)-1) | 
|---|
| 1802 | if len(istart) != len(iend): | 
|---|
| 1803 | raise RuntimeError("Numbers of mask start != mask end.") | 
|---|
| 1804 | for i in range(len(istart)): | 
|---|
| 1805 | if istart[i] > iend[i]: | 
|---|
| 1806 | raise RuntimeError("Mask start index > mask end index") | 
|---|
| 1807 | break | 
|---|
| 1808 | return istart,iend | 
|---|
| 1809 |  | 
|---|
| 1810 | @asaplog_post_dec | 
|---|
| 1811 | def parse_spw_selection(self, selectstring, restfreq=None, frame=None, doppler=None): | 
|---|
| 1812 | """ | 
|---|
| 1813 | Parse MS type spw/channel selection syntax. | 
|---|
| 1814 |  | 
|---|
| 1815 | Parameters: | 
|---|
| 1816 | selectstring : A string expression of spw and channel selection. | 
|---|
| 1817 | Comma-separated expressions mean different spw - | 
|---|
| 1818 | channel combinations. Spws and channel selections | 
|---|
| 1819 | are partitioned by a colon ':'. In a single | 
|---|
| 1820 | selection expression, you can put multiple values | 
|---|
| 1821 | separated by semicolons ';'. Both for spw and | 
|---|
| 1822 | channel selection, allowed cases include single | 
|---|
| 1823 | value, blank('') or asterisk('*') to specify all | 
|---|
| 1824 | available values, two values connected with a | 
|---|
| 1825 | tilde ('~') to specify an inclusive range. Unit | 
|---|
| 1826 | strings for frequency or velocity can be added to | 
|---|
| 1827 | the tilde-connected values. For channel selection | 
|---|
| 1828 | expression, placing a '<' or a '>' is possible to | 
|---|
| 1829 | specify a semi-infinite interval as well. | 
|---|
| 1830 |  | 
|---|
| 1831 | examples: | 
|---|
| 1832 | '' or '*'   = all spws (all channels) | 
|---|
| 1833 | '<2,4~6,9'  = Spws 0,1,4,5,6,9 (all channels) | 
|---|
| 1834 | '3:3~45;60' = channels 3 to 45 and 60 in spw 3 | 
|---|
| 1835 | '0~1:2~6,8' = channels 2 to 6 in spws 0,1, and | 
|---|
| 1836 | all channels in spw8 | 
|---|
| 1837 | '1.3~1.5GHz' = all spws that fall in or have at | 
|---|
| 1838 | least some overwrap with frequency | 
|---|
| 1839 | range between 1.3GHz and 1.5GHz. | 
|---|
| 1840 | '1.3~1.5GHz:1.3~1.5GHz' = channels that fall | 
|---|
| 1841 | between the specified | 
|---|
| 1842 | frequency range in spws | 
|---|
| 1843 | that fall in or have | 
|---|
| 1844 | overwrap with the | 
|---|
| 1845 | specified frequency | 
|---|
| 1846 | range. | 
|---|
| 1847 | '1:-200~250km/s' = channels that fall between the | 
|---|
| 1848 | specified velocity range in | 
|---|
| 1849 | spw 1. | 
|---|
| 1850 | restfreq: the rest frequency. | 
|---|
| 1851 | examples: '115.2712GHz', 115271201800.0 | 
|---|
| 1852 | frame:   an optional frame type, default 'LSRK'. Valid frames are: | 
|---|
| 1853 | 'TOPO', 'LSRD', 'LSRK', 'BARY', | 
|---|
| 1854 | 'GEO', 'GALACTO', 'LGROUP', 'CMB' | 
|---|
| 1855 | doppler: one of 'RADIO', 'OPTICAL', 'Z', 'BETA', 'GAMMA' | 
|---|
| 1856 | Returns: | 
|---|
| 1857 | A dictionary of selected (valid) spw and masklist pairs, | 
|---|
| 1858 | e.g. {'0': [[50,250],[350,462]], '2': [[100,400],[550,974]]} | 
|---|
| 1859 | """ | 
|---|
| 1860 | if not isinstance(selectstring, str): | 
|---|
| 1861 | asaplog.post() | 
|---|
| 1862 | asaplog.push("Expression of spw/channel selection must be a string.") | 
|---|
| 1863 | asaplog.post("ERROR") | 
|---|
| 1864 |  | 
|---|
| 1865 | orig_unit = self.get_unit() | 
|---|
| 1866 | self.set_unit('channel') | 
|---|
| 1867 |  | 
|---|
| 1868 | if restfreq is not None: | 
|---|
| 1869 | orig_molids = self._getmolidcol_list() | 
|---|
| 1870 | set_restfreq(self, restfreq) | 
|---|
| 1871 |  | 
|---|
| 1872 | orig_coord = self._getcoordinfo() | 
|---|
| 1873 |  | 
|---|
| 1874 | if frame is not None: | 
|---|
| 1875 | orig_frame = orig_coord[1] | 
|---|
| 1876 | self.set_freqframe(frame) | 
|---|
| 1877 |  | 
|---|
| 1878 | if doppler is not None: | 
|---|
| 1879 | orig_doppler = orig_coord[2] | 
|---|
| 1880 | self.set_doppler(doppler) | 
|---|
| 1881 |  | 
|---|
| 1882 | valid_ifs = self.getifnos() | 
|---|
| 1883 |  | 
|---|
| 1884 | comma_sep = selectstring.split(",") | 
|---|
| 1885 | res = {} | 
|---|
| 1886 |  | 
|---|
| 1887 | for cms_elem in comma_sep: | 
|---|
| 1888 | colon_sep = cms_elem.split(":") | 
|---|
| 1889 |  | 
|---|
| 1890 | if (len(colon_sep) > 2): | 
|---|
| 1891 | raise RuntimeError("Invalid selection expression: more than two colons!") | 
|---|
| 1892 |  | 
|---|
| 1893 | # parse spw expression and store result in spw_list. | 
|---|
| 1894 | # allowed cases include '', '*', 'a', '<a', '>a', 'a~b', | 
|---|
| 1895 | # 'a~b*Hz' (where * can be '', 'k', 'M', 'G' etc.), | 
|---|
| 1896 | # 'a~b*m/s' (where * can be '' or 'k') and also | 
|---|
| 1897 | # several of the above expressions connected with ';'. | 
|---|
| 1898 |  | 
|---|
| 1899 | spw_list = [] | 
|---|
| 1900 |  | 
|---|
| 1901 | semicolon_sep = colon_sep[0].split(";") | 
|---|
| 1902 |  | 
|---|
| 1903 | for scs_elem in semicolon_sep: | 
|---|
| 1904 | scs_elem = scs_elem.strip() | 
|---|
| 1905 |  | 
|---|
| 1906 | lt_sep = scs_elem.split("<") | 
|---|
| 1907 | gt_sep = scs_elem.split(">") | 
|---|
| 1908 | ti_sep = scs_elem.split("~") | 
|---|
| 1909 |  | 
|---|
| 1910 | lt_sep_length = len(lt_sep) | 
|---|
| 1911 | gt_sep_length = len(gt_sep) | 
|---|
| 1912 | ti_sep_length = len(ti_sep) | 
|---|
| 1913 |  | 
|---|
| 1914 | len_product = lt_sep_length * gt_sep_length * ti_sep_length | 
|---|
| 1915 |  | 
|---|
| 1916 | if (len_product > 2): | 
|---|
| 1917 | # '<', '>' and '~' must not coexist in a single spw expression | 
|---|
| 1918 |  | 
|---|
| 1919 | raise RuntimeError("Invalid spw selection.") | 
|---|
| 1920 |  | 
|---|
| 1921 | elif (len_product == 1): | 
|---|
| 1922 | # '', '*', or single spw number. | 
|---|
| 1923 |  | 
|---|
| 1924 | if (scs_elem == "") or (scs_elem == "*"): | 
|---|
| 1925 | spw_list = valid_ifs[:] # deep copy | 
|---|
| 1926 |  | 
|---|
| 1927 | else: # single number | 
|---|
| 1928 | expr = int(scs_elem) | 
|---|
| 1929 | spw_list.append(expr) | 
|---|
| 1930 | if expr not in valid_ifs: | 
|---|
| 1931 | asaplog.push("Invalid spw given. Ignored.") | 
|---|
| 1932 |  | 
|---|
| 1933 | else: # (len_product == 2) | 
|---|
| 1934 | # namely, one of '<', '>' or '~' appears just once. | 
|---|
| 1935 |  | 
|---|
| 1936 | if (lt_sep_length == 2): # '<a' | 
|---|
| 1937 | if is_number(lt_sep[1]): | 
|---|
| 1938 | no_valid_spw = True | 
|---|
| 1939 | for i in valid_ifs: | 
|---|
| 1940 | if (i < float(lt_sep[1])): | 
|---|
| 1941 | spw_list.append(i) | 
|---|
| 1942 | no_valid_spw = False | 
|---|
| 1943 |  | 
|---|
| 1944 | if no_valid_spw: | 
|---|
| 1945 | raise ValueError("Invalid spw selection ('<" + str(lt_sep[1]) + "').") | 
|---|
| 1946 |  | 
|---|
| 1947 | else: | 
|---|
| 1948 | raise RuntimeError("Invalid spw selection.") | 
|---|
| 1949 |  | 
|---|
| 1950 | elif (gt_sep_length == 2): # '>a' | 
|---|
| 1951 | if is_number(gt_sep[1]): | 
|---|
| 1952 | no_valid_spw = True | 
|---|
| 1953 | for i in valid_ifs: | 
|---|
| 1954 | if (i > float(gt_sep[1])): | 
|---|
| 1955 | spw_list.append(i) | 
|---|
| 1956 | no_valid_spw = False | 
|---|
| 1957 |  | 
|---|
| 1958 | if no_valid_spw: | 
|---|
| 1959 | raise ValueError("Invalid spw selection ('>" + str(gt_sep[1]) + "').") | 
|---|
| 1960 |  | 
|---|
| 1961 | else: | 
|---|
| 1962 | raise RuntimeError("Invalid spw selection.") | 
|---|
| 1963 |  | 
|---|
| 1964 | else: # (ti_sep_length == 2) where both boundaries inclusive | 
|---|
| 1965 | expr0 = ti_sep[0].strip() | 
|---|
| 1966 | expr1 = ti_sep[1].strip() | 
|---|
| 1967 |  | 
|---|
| 1968 | if is_number(expr0) and is_number(expr1): | 
|---|
| 1969 | # 'a~b' | 
|---|
| 1970 | expr_pmin = min(float(expr0), float(expr1)) | 
|---|
| 1971 | expr_pmax = max(float(expr0), float(expr1)) | 
|---|
| 1972 | has_invalid_spw = False | 
|---|
| 1973 | no_valid_spw = True | 
|---|
| 1974 |  | 
|---|
| 1975 | for i in valid_ifs: | 
|---|
| 1976 | if (expr_pmin <= i) and (i <= expr_pmax): | 
|---|
| 1977 | spw_list.append(i) | 
|---|
| 1978 | no_valid_spw = False | 
|---|
| 1979 | else: | 
|---|
| 1980 | has_invalid_spw = True | 
|---|
| 1981 |  | 
|---|
| 1982 | if has_invalid_spw: | 
|---|
| 1983 | msg = "Invalid spw is given. Ignored." | 
|---|
| 1984 | asaplog.push(msg) | 
|---|
| 1985 | asaplog.post() | 
|---|
| 1986 |  | 
|---|
| 1987 | if no_valid_spw: | 
|---|
| 1988 | raise ValueError("No valid spw in range ('" + str(expr_pmin) + "~" + str(expr_pmax) + "').") | 
|---|
| 1989 |  | 
|---|
| 1990 | elif is_number(expr0) and is_frequency(expr1): | 
|---|
| 1991 | # 'a~b*Hz' | 
|---|
| 1992 | (expr_f0, expr_f1) = get_freq_by_string(expr0, expr1) | 
|---|
| 1993 | no_valid_spw = True | 
|---|
| 1994 |  | 
|---|
| 1995 | for coord in self._get_coordinate_list(): | 
|---|
| 1996 | expr_p0 = coord['coord'].to_pixel(expr_f0) | 
|---|
| 1997 | expr_p1 = coord['coord'].to_pixel(expr_f1) | 
|---|
| 1998 | expr_pmin = min(expr_p0, expr_p1) | 
|---|
| 1999 | expr_pmax = max(expr_p0, expr_p1) | 
|---|
| 2000 |  | 
|---|
| 2001 | spw = coord['if'] | 
|---|
| 2002 | pmin = 0.0 | 
|---|
| 2003 | pmax = float(self.nchan(spw) - 1) | 
|---|
| 2004 |  | 
|---|
| 2005 | if ((expr_pmax - pmin)*(expr_pmin - pmax) <= 0.0): | 
|---|
| 2006 | spw_list.append(spw) | 
|---|
| 2007 | no_valid_spw = False | 
|---|
| 2008 |  | 
|---|
| 2009 | if no_valid_spw: | 
|---|
| 2010 | raise ValueError("No valid spw in range ('" + str(expr0) + "~" + str(expr1) + "').") | 
|---|
| 2011 |  | 
|---|
| 2012 | elif is_number(expr0) and is_velocity(expr1): | 
|---|
| 2013 | # 'a~b*m/s' | 
|---|
| 2014 | (expr_v0, expr_v1) = get_velocity_by_string(expr0, expr1) | 
|---|
| 2015 | expr_vmin = min(expr_v0, expr_v1) | 
|---|
| 2016 | expr_vmax = max(expr_v0, expr_v1) | 
|---|
| 2017 | no_valid_spw = True | 
|---|
| 2018 |  | 
|---|
| 2019 | for coord in self._get_coordinate_list(): | 
|---|
| 2020 | spw = coord['if'] | 
|---|
| 2021 |  | 
|---|
| 2022 | pmin = 0.0 | 
|---|
| 2023 | pmax = float(self.nchan(spw) - 1) | 
|---|
| 2024 |  | 
|---|
| 2025 | vel0 = coord['coord'].to_velocity(pmin) | 
|---|
| 2026 | vel1 = coord['coord'].to_velocity(pmax) | 
|---|
| 2027 |  | 
|---|
| 2028 | vmin = min(vel0, vel1) | 
|---|
| 2029 | vmax = max(vel0, vel1) | 
|---|
| 2030 |  | 
|---|
| 2031 | if ((expr_vmax - vmin)*(expr_vmin - vmax) <= 0.0): | 
|---|
| 2032 | spw_list.append(spw) | 
|---|
| 2033 | no_valid_spw = False | 
|---|
| 2034 |  | 
|---|
| 2035 | if no_valid_spw: | 
|---|
| 2036 | raise ValueError("No valid spw in range ('" + str(expr0) + "~" + str(expr1) + "').") | 
|---|
| 2037 |  | 
|---|
| 2038 | else: | 
|---|
| 2039 | # cases such as 'aGHz~bkm/s' are not allowed now | 
|---|
| 2040 | raise RuntimeError("Invalid spw selection.") | 
|---|
| 2041 |  | 
|---|
| 2042 | # check spw list and remove invalid ones. | 
|---|
| 2043 | # if no valid spw left, emit ValueError. | 
|---|
| 2044 | if len(spw_list) == 0: | 
|---|
| 2045 | raise ValueError("No valid spw in given range.") | 
|---|
| 2046 |  | 
|---|
| 2047 | # parse channel expression and store the result in crange_list. | 
|---|
| 2048 | # allowed cases include '', 'a~b', 'a*Hz~b*Hz' (where * can be | 
|---|
| 2049 | # '', 'k', 'M', 'G' etc.), 'a*m/s~b*m/s' (where * can be '' or 'k') | 
|---|
| 2050 | # and also several of the above expressions connected with ';'. | 
|---|
| 2051 |  | 
|---|
| 2052 | for spw in spw_list: | 
|---|
| 2053 | pmin = 0.0 | 
|---|
| 2054 | pmax = float(self.nchan(spw) - 1) | 
|---|
| 2055 |  | 
|---|
| 2056 | molid = self._getmolidcol_list()[self.get_first_rowno_by_if(spw)] | 
|---|
| 2057 |  | 
|---|
| 2058 | if (len(colon_sep) == 1): | 
|---|
| 2059 | # no expression for channel selection, | 
|---|
| 2060 | # which means all channels are to be selected. | 
|---|
| 2061 | crange_list = [[pmin, pmax]] | 
|---|
| 2062 |  | 
|---|
| 2063 | else: # (len(colon_sep) == 2) | 
|---|
| 2064 | crange_list = [] | 
|---|
| 2065 |  | 
|---|
| 2066 | found = False | 
|---|
| 2067 | for i in self._get_coordinate_list(): | 
|---|
| 2068 | if (i['if'] == spw): | 
|---|
| 2069 | coord = i['coord'] | 
|---|
| 2070 | found = True | 
|---|
| 2071 | break | 
|---|
| 2072 |  | 
|---|
| 2073 | if found: | 
|---|
| 2074 | semicolon_sep = colon_sep[1].split(";") | 
|---|
| 2075 | for scs_elem in semicolon_sep: | 
|---|
| 2076 | scs_elem = scs_elem.strip() | 
|---|
| 2077 |  | 
|---|
| 2078 | ti_sep = scs_elem.split("~") | 
|---|
| 2079 | ti_sep_length = len(ti_sep) | 
|---|
| 2080 |  | 
|---|
| 2081 | if (ti_sep_length > 2): | 
|---|
| 2082 | raise RuntimeError("Invalid channel selection.") | 
|---|
| 2083 |  | 
|---|
| 2084 | elif (ti_sep_length == 1): | 
|---|
| 2085 | if (scs_elem == "") or (scs_elem == "*"): | 
|---|
| 2086 | # '' and '*' for all channels | 
|---|
| 2087 | crange_list = [[pmin, pmax]] | 
|---|
| 2088 | break | 
|---|
| 2089 | elif (is_number(scs_elem)): | 
|---|
| 2090 | # single channel given | 
|---|
| 2091 | crange_list.append([float(scs_elem), float(scs_elem)]) | 
|---|
| 2092 | else: | 
|---|
| 2093 | raise RuntimeError("Invalid channel selection.") | 
|---|
| 2094 |  | 
|---|
| 2095 | else: #(ti_sep_length == 2) | 
|---|
| 2096 | expr0 = ti_sep[0].strip() | 
|---|
| 2097 | expr1 = ti_sep[1].strip() | 
|---|
| 2098 |  | 
|---|
| 2099 | if is_number(expr0) and is_number(expr1): | 
|---|
| 2100 | # 'a~b' | 
|---|
| 2101 | expr_pmin = min(float(expr0), float(expr1)) | 
|---|
| 2102 | expr_pmax = max(float(expr0), float(expr1)) | 
|---|
| 2103 |  | 
|---|
| 2104 | elif is_number(expr0) and is_frequency(expr1): | 
|---|
| 2105 | # 'a~b*Hz' | 
|---|
| 2106 | (expr_f0, expr_f1) = get_freq_by_string(expr0, expr1) | 
|---|
| 2107 | expr_p0 = coord.to_pixel(expr_f0) | 
|---|
| 2108 | expr_p1 = coord.to_pixel(expr_f1) | 
|---|
| 2109 | expr_pmin = min(expr_p0, expr_p1) | 
|---|
| 2110 | expr_pmax = max(expr_p0, expr_p1) | 
|---|
| 2111 |  | 
|---|
| 2112 | elif is_number(expr0) and is_velocity(expr1): | 
|---|
| 2113 | # 'a~b*m/s' | 
|---|
| 2114 | restf = self.get_restfreqs()[molid][0] | 
|---|
| 2115 | (expr_v0, expr_v1) = get_velocity_by_string(expr0, expr1) | 
|---|
| 2116 | dppl = self.get_doppler() | 
|---|
| 2117 | expr_f0 = get_frequency_by_velocity(restf, expr_v0, dppl) | 
|---|
| 2118 | expr_f1 = get_frequency_by_velocity(restf, expr_v1, dppl) | 
|---|
| 2119 | expr_p0 = coord.to_pixel(expr_f0) | 
|---|
| 2120 | expr_p1 = coord.to_pixel(expr_f1) | 
|---|
| 2121 | expr_pmin = min(expr_p0, expr_p1) | 
|---|
| 2122 | expr_pmax = max(expr_p0, expr_p1) | 
|---|
| 2123 |  | 
|---|
| 2124 | else: | 
|---|
| 2125 | # cases such as 'aGHz~bkm/s' are not allowed now | 
|---|
| 2126 | raise RuntimeError("Invalid channel selection.") | 
|---|
| 2127 |  | 
|---|
| 2128 | cmin = max(pmin, expr_pmin) | 
|---|
| 2129 | cmax = min(pmax, expr_pmax) | 
|---|
| 2130 | # if the given range of channel selection has overwrap with | 
|---|
| 2131 | # that of current spw, output the overwrap area. | 
|---|
| 2132 | if (cmin <= cmax): | 
|---|
| 2133 | cmin = float(int(cmin + 0.5)) | 
|---|
| 2134 | cmax = float(int(cmax + 0.5)) | 
|---|
| 2135 | crange_list.append([cmin, cmax]) | 
|---|
| 2136 |  | 
|---|
| 2137 | if (len(crange_list) == 0): | 
|---|
| 2138 | crange_list.append([]) | 
|---|
| 2139 |  | 
|---|
| 2140 | if (len(crange_list[0]) > 0): | 
|---|
| 2141 | if res.has_key(spw): | 
|---|
| 2142 | res[spw].extend(crange_list) | 
|---|
| 2143 | else: | 
|---|
| 2144 | res[spw] = crange_list | 
|---|
| 2145 |  | 
|---|
| 2146 | for spw in res.keys(): | 
|---|
| 2147 | if spw in valid_ifs: | 
|---|
| 2148 | # remove duplicated chennal ranges | 
|---|
| 2149 | for i in reversed(xrange(len(res[spw]))): | 
|---|
| 2150 | for j in xrange(i): | 
|---|
| 2151 | if ((res[spw][i][0]-res[spw][j][1])*(res[spw][i][1]-res[spw][j][0]) <= 0): | 
|---|
| 2152 | res[spw][j][0] = min(res[spw][i][0], res[spw][j][0]) | 
|---|
| 2153 | res[spw][j][1] = max(res[spw][i][1], res[spw][j][1]) | 
|---|
| 2154 | res[spw].pop(i) | 
|---|
| 2155 | break | 
|---|
| 2156 | else: | 
|---|
| 2157 | del res[spw] | 
|---|
| 2158 |  | 
|---|
| 2159 | if len(res) == 0: | 
|---|
| 2160 | raise RuntimeError("No valid spw.") | 
|---|
| 2161 |  | 
|---|
| 2162 | # restore original values | 
|---|
| 2163 | self.set_unit(orig_unit) | 
|---|
| 2164 | if restfreq is not None: | 
|---|
| 2165 | self._setmolidcol_list(orig_molids) | 
|---|
| 2166 | if frame is not None: | 
|---|
| 2167 | self.set_freqframe(orig_frame) | 
|---|
| 2168 | if doppler is not None: | 
|---|
| 2169 | self.set_doppler(orig_doppler) | 
|---|
| 2170 |  | 
|---|
| 2171 | return res | 
|---|
| 2172 |  | 
|---|
| 2173 | @asaplog_post_dec | 
|---|
| 2174 | def get_first_rowno_by_if(self, ifno): | 
|---|
| 2175 | found = False | 
|---|
| 2176 | for irow in xrange(self.nrow()): | 
|---|
| 2177 | if (self.getif(irow) == ifno): | 
|---|
| 2178 | res = irow | 
|---|
| 2179 | found = True | 
|---|
| 2180 | break | 
|---|
| 2181 |  | 
|---|
| 2182 | if not found: raise RuntimeError("No valid spw.") | 
|---|
| 2183 |  | 
|---|
| 2184 | return res | 
|---|
| 2185 |  | 
|---|
| 2186 | @asaplog_post_dec | 
|---|
| 2187 | def _get_coordinate_list(self): | 
|---|
| 2188 | res = [] | 
|---|
| 2189 | spws = self.getifnos() | 
|---|
| 2190 | for spw in spws: | 
|---|
| 2191 | elem = {} | 
|---|
| 2192 | elem['if']    = spw | 
|---|
| 2193 | elem['coord'] = self.get_coordinate(self.get_first_rowno_by_if(spw)) | 
|---|
| 2194 | res.append(elem) | 
|---|
| 2195 |  | 
|---|
| 2196 | return res | 
|---|
| 2197 |  | 
|---|
| 2198 | @asaplog_post_dec | 
|---|
| 2199 | def parse_maskexpr(self, maskstring): | 
|---|
| 2200 | """ | 
|---|
| 2201 | Parse CASA type mask selection syntax (IF dependent). | 
|---|
| 2202 |  | 
|---|
| 2203 | Parameters: | 
|---|
| 2204 | maskstring : A string mask selection expression. | 
|---|
| 2205 | A comma separated selections mean different IF - | 
|---|
| 2206 | channel combinations. IFs and channel selections | 
|---|
| 2207 | are partitioned by a colon, ':'. | 
|---|
| 2208 | examples: | 
|---|
| 2209 | ''          = all IFs (all channels) | 
|---|
| 2210 | '<2,4~6,9'  = IFs 0,1,4,5,6,9 (all channels) | 
|---|
| 2211 | '3:3~45;60' = channels 3 to 45 and 60 in IF 3 | 
|---|
| 2212 | '0~1:2~6,8' = channels 2 to 6 in IFs 0,1, and | 
|---|
| 2213 | all channels in IF8 | 
|---|
| 2214 | Returns: | 
|---|
| 2215 | A dictionary of selected (valid) IF and masklist pairs, | 
|---|
| 2216 | e.g. {'0': [[50,250],[350,462]], '2': [[100,400],[550,974]]} | 
|---|
| 2217 | """ | 
|---|
| 2218 | if not isinstance(maskstring,str): | 
|---|
| 2219 | asaplog.post() | 
|---|
| 2220 | asaplog.push("Mask expression should be a string.") | 
|---|
| 2221 | asaplog.post("ERROR") | 
|---|
| 2222 |  | 
|---|
| 2223 | valid_ifs = self.getifnos() | 
|---|
| 2224 | frequnit = self.get_unit() | 
|---|
| 2225 | seldict = {} | 
|---|
| 2226 | if maskstring == "": | 
|---|
| 2227 | maskstring = str(valid_ifs)[1:-1] | 
|---|
| 2228 | ## split each selection "IF range[:CHAN range]" | 
|---|
| 2229 | # split maskstring by "<spaces>,<spaces>" | 
|---|
| 2230 | comma_sep = re.compile('\s*,\s*') | 
|---|
| 2231 | sellist = comma_sep.split(maskstring) | 
|---|
| 2232 | # separator by "<spaces>:<spaces>" | 
|---|
| 2233 | collon_sep = re.compile('\s*:\s*') | 
|---|
| 2234 | for currselstr in sellist: | 
|---|
| 2235 | selset = collon_sep.split(currselstr) | 
|---|
| 2236 | # spw and mask string (may include ~, < or >) | 
|---|
| 2237 | spwmasklist = self._parse_selection(selset[0], typestr='integer', | 
|---|
| 2238 | minval=min(valid_ifs), | 
|---|
| 2239 | maxval=max(valid_ifs)) | 
|---|
| 2240 | for spwlist in spwmasklist: | 
|---|
| 2241 | selspws = [] | 
|---|
| 2242 | for ispw in range(spwlist[0],spwlist[1]+1): | 
|---|
| 2243 | # Put into the list only if ispw exists | 
|---|
| 2244 | if valid_ifs.count(ispw): | 
|---|
| 2245 | selspws.append(ispw) | 
|---|
| 2246 | del spwmasklist, spwlist | 
|---|
| 2247 |  | 
|---|
| 2248 | # parse frequency mask list | 
|---|
| 2249 | if len(selset) > 1: | 
|---|
| 2250 | freqmasklist = self._parse_selection(selset[1], typestr='float', | 
|---|
| 2251 | offset=0.) | 
|---|
| 2252 | else: | 
|---|
| 2253 | # want to select the whole spectrum | 
|---|
| 2254 | freqmasklist = [None] | 
|---|
| 2255 |  | 
|---|
| 2256 | ## define a dictionary of spw - masklist combination | 
|---|
| 2257 | for ispw in selspws: | 
|---|
| 2258 | #print "working on", ispw | 
|---|
| 2259 | spwstr = str(ispw) | 
|---|
| 2260 | if len(selspws) == 0: | 
|---|
| 2261 | # empty spw | 
|---|
| 2262 | continue | 
|---|
| 2263 | else: | 
|---|
| 2264 | ## want to get min and max of the spw and | 
|---|
| 2265 | ## offset to set for '<' and '>' | 
|---|
| 2266 | if frequnit == 'channel': | 
|---|
| 2267 | minfreq = 0 | 
|---|
| 2268 | maxfreq = self.nchan(ifno=ispw) | 
|---|
| 2269 | offset = 0.5 | 
|---|
| 2270 | else: | 
|---|
| 2271 | ## This is ugly part. need improvement | 
|---|
| 2272 | for ifrow in xrange(self.nrow()): | 
|---|
| 2273 | if self.getif(ifrow) == ispw: | 
|---|
| 2274 | #print "IF",ispw,"found in row =",ifrow | 
|---|
| 2275 | break | 
|---|
| 2276 | freqcoord = self.get_coordinate(ifrow) | 
|---|
| 2277 | freqs = self._getabcissa(ifrow) | 
|---|
| 2278 | minfreq = min(freqs) | 
|---|
| 2279 | maxfreq = max(freqs) | 
|---|
| 2280 | if len(freqs) == 1: | 
|---|
| 2281 | offset = 0.5 | 
|---|
| 2282 | elif frequnit.find('Hz') > 0: | 
|---|
| 2283 | offset = abs(freqcoord.to_frequency(1, | 
|---|
| 2284 | unit=frequnit) | 
|---|
| 2285 | -freqcoord.to_frequency(0, | 
|---|
| 2286 | unit=frequnit) | 
|---|
| 2287 | )*0.5 | 
|---|
| 2288 | elif frequnit.find('m/s') > 0: | 
|---|
| 2289 | offset = abs(freqcoord.to_velocity(1, | 
|---|
| 2290 | unit=frequnit) | 
|---|
| 2291 | -freqcoord.to_velocity(0, | 
|---|
| 2292 | unit=frequnit) | 
|---|
| 2293 | )*0.5 | 
|---|
| 2294 | else: | 
|---|
| 2295 | asaplog.post() | 
|---|
| 2296 | asaplog.push("Invalid frequency unit") | 
|---|
| 2297 | asaplog.post("ERROR") | 
|---|
| 2298 | del freqs, freqcoord, ifrow | 
|---|
| 2299 | for freq in freqmasklist: | 
|---|
| 2300 | selmask = freq or [minfreq, maxfreq] | 
|---|
| 2301 | if selmask[0] == None: | 
|---|
| 2302 | ## selection was "<freq[1]". | 
|---|
| 2303 | if selmask[1] < minfreq: | 
|---|
| 2304 | ## avoid adding region selection | 
|---|
| 2305 | selmask = None | 
|---|
| 2306 | else: | 
|---|
| 2307 | selmask = [minfreq,selmask[1]-offset] | 
|---|
| 2308 | elif selmask[1] == None: | 
|---|
| 2309 | ## selection was ">freq[0]" | 
|---|
| 2310 | if selmask[0] > maxfreq: | 
|---|
| 2311 | ## avoid adding region selection | 
|---|
| 2312 | selmask = None | 
|---|
| 2313 | else: | 
|---|
| 2314 | selmask = [selmask[0]+offset,maxfreq] | 
|---|
| 2315 | if selmask: | 
|---|
| 2316 | if not seldict.has_key(spwstr): | 
|---|
| 2317 | # new spw selection | 
|---|
| 2318 | seldict[spwstr] = [] | 
|---|
| 2319 | seldict[spwstr] += [selmask] | 
|---|
| 2320 | del minfreq,maxfreq,offset,freq,selmask | 
|---|
| 2321 | del spwstr | 
|---|
| 2322 | del freqmasklist | 
|---|
| 2323 | del valid_ifs | 
|---|
| 2324 | if len(seldict) == 0: | 
|---|
| 2325 | asaplog.post() | 
|---|
| 2326 | asaplog.push("No valid selection in the mask expression: " | 
|---|
| 2327 | +maskstring) | 
|---|
| 2328 | asaplog.post("WARN") | 
|---|
| 2329 | return None | 
|---|
| 2330 | msg = "Selected masklist:\n" | 
|---|
| 2331 | for sif, lmask in seldict.iteritems(): | 
|---|
| 2332 | msg += "   IF"+sif+" - "+str(lmask)+"\n" | 
|---|
| 2333 | asaplog.push(msg) | 
|---|
| 2334 | return seldict | 
|---|
| 2335 |  | 
|---|
| 2336 | @asaplog_post_dec | 
|---|
| 2337 | def parse_idx_selection(self, mode, selexpr): | 
|---|
| 2338 | """ | 
|---|
| 2339 | Parse CASA type mask selection syntax of SCANNO, IFNO, POLNO, | 
|---|
| 2340 | BEAMNO, and row number | 
|---|
| 2341 |  | 
|---|
| 2342 | Parameters: | 
|---|
| 2343 | mode       : which column to select. | 
|---|
| 2344 | ['scan',|'if'|'pol'|'beam'|'row'] | 
|---|
| 2345 | selexpr    : A comma separated selection expression. | 
|---|
| 2346 | examples: | 
|---|
| 2347 | ''          = all (returns []) | 
|---|
| 2348 | '<2,4~6,9'  = indices less than 2, 4 to 6 and 9 | 
|---|
| 2349 | (returns [0,1,4,5,6,9]) | 
|---|
| 2350 | Returns: | 
|---|
| 2351 | A List of selected indices | 
|---|
| 2352 | """ | 
|---|
| 2353 | if selexpr == "": | 
|---|
| 2354 | return [] | 
|---|
| 2355 | valid_modes = {'s': 'scan', 'i': 'if', 'p': 'pol', | 
|---|
| 2356 | 'b': 'beam', 'r': 'row'} | 
|---|
| 2357 | smode =  mode.lower()[0] | 
|---|
| 2358 | if not (smode in valid_modes.keys()): | 
|---|
| 2359 | msg = "Invalid mode '%s'. Valid modes are %s" %\ | 
|---|
| 2360 | (mode, str(valid_modes.values())) | 
|---|
| 2361 | asaplog.post() | 
|---|
| 2362 | asaplog.push(msg) | 
|---|
| 2363 | asaplog.post("ERROR") | 
|---|
| 2364 | mode = valid_modes[smode] | 
|---|
| 2365 | minidx = None | 
|---|
| 2366 | maxidx = None | 
|---|
| 2367 | if smode == 'r': | 
|---|
| 2368 | minidx = 0 | 
|---|
| 2369 | maxidx = self.nrow() | 
|---|
| 2370 | else: | 
|---|
| 2371 | idx = getattr(self,"get"+mode+"nos")() | 
|---|
| 2372 | minidx = min(idx) | 
|---|
| 2373 | maxidx = max(idx) | 
|---|
| 2374 | del idx | 
|---|
| 2375 | # split selexpr by "<spaces>,<spaces>" | 
|---|
| 2376 | comma_sep = re.compile('\s*,\s*') | 
|---|
| 2377 | sellist = comma_sep.split(selexpr) | 
|---|
| 2378 | idxlist = [] | 
|---|
| 2379 | for currselstr in sellist: | 
|---|
| 2380 | # single range (may include ~, < or >) | 
|---|
| 2381 | currlist = self._parse_selection(currselstr, typestr='integer', | 
|---|
| 2382 | minval=minidx,maxval=maxidx) | 
|---|
| 2383 | for thelist in currlist: | 
|---|
| 2384 | idxlist += range(thelist[0],thelist[1]+1) | 
|---|
| 2385 | # remove duplicated elements after first ones | 
|---|
| 2386 | for i in reversed(xrange(len(idxlist))): | 
|---|
| 2387 | if idxlist.index(idxlist[i]) < i: | 
|---|
| 2388 | idxlist.pop(i) | 
|---|
| 2389 | msg = "Selected %s: %s" % (mode.upper()+"NO", str(idxlist)) | 
|---|
| 2390 | asaplog.push(msg) | 
|---|
| 2391 | return idxlist | 
|---|
| 2392 |  | 
|---|
| 2393 | def _parse_selection(self, selstr, typestr='float', offset=0., | 
|---|
| 2394 | minval=None, maxval=None): | 
|---|
| 2395 | """ | 
|---|
| 2396 | Parameters: | 
|---|
| 2397 | selstr :    The Selection string, e.g., '<3;5~7;100~103;9' | 
|---|
| 2398 | typestr :   The type of the values in returned list | 
|---|
| 2399 | ('integer' or 'float') | 
|---|
| 2400 | offset :    The offset value to subtract from or add to | 
|---|
| 2401 | the boundary value if the selection string | 
|---|
| 2402 | includes '<' or '>' [Valid only for typestr='float'] | 
|---|
| 2403 | minval, maxval :  The minimum/maximum values to set if the | 
|---|
| 2404 | selection string includes '<' or '>'. | 
|---|
| 2405 | The list element is filled with None by default. | 
|---|
| 2406 | Returns: | 
|---|
| 2407 | A list of min/max pair of selections. | 
|---|
| 2408 | Example: | 
|---|
| 2409 | _parse_selection('<3;5~7;9',typestr='int',minval=0) | 
|---|
| 2410 | --> returns [[0,2],[5,7],[9,9]] | 
|---|
| 2411 | _parse_selection('<3;5~7;9',typestr='float',offset=0.5,minval=0) | 
|---|
| 2412 | --> returns [[0.,2.5],[5.0,7.0],[9.,9.]] | 
|---|
| 2413 | """ | 
|---|
| 2414 | # split selstr by '<spaces>;<spaces>' | 
|---|
| 2415 | semi_sep = re.compile('\s*;\s*') | 
|---|
| 2416 | selgroups = semi_sep.split(selstr) | 
|---|
| 2417 | sellists = [] | 
|---|
| 2418 | if typestr.lower().startswith('int'): | 
|---|
| 2419 | formatfunc = int | 
|---|
| 2420 | offset = 1 | 
|---|
| 2421 | else: | 
|---|
| 2422 | formatfunc = float | 
|---|
| 2423 |  | 
|---|
| 2424 | for currsel in  selgroups: | 
|---|
| 2425 | if currsel.strip() == '*' or len(currsel.strip()) == 0: | 
|---|
| 2426 | minsel = minval | 
|---|
| 2427 | maxsel = maxval | 
|---|
| 2428 | if currsel.find('~') > 0: | 
|---|
| 2429 | # val0 <= x <= val1 | 
|---|
| 2430 | minsel = formatfunc(currsel.split('~')[0].strip()) | 
|---|
| 2431 | maxsel = formatfunc(currsel.split('~')[1].strip()) | 
|---|
| 2432 | elif currsel.strip().find('<=') > -1: | 
|---|
| 2433 | bound = currsel.split('<=') | 
|---|
| 2434 | try: # try "x <= val" | 
|---|
| 2435 | minsel = minval | 
|---|
| 2436 | maxsel = formatfunc(bound[1].strip()) | 
|---|
| 2437 | except ValueError: # now "val <= x" | 
|---|
| 2438 | minsel = formatfunc(bound[0].strip()) | 
|---|
| 2439 | maxsel = maxval | 
|---|
| 2440 | elif currsel.strip().find('>=') > -1: | 
|---|
| 2441 | bound = currsel.split('>=') | 
|---|
| 2442 | try: # try "x >= val" | 
|---|
| 2443 | minsel = formatfunc(bound[1].strip()) | 
|---|
| 2444 | maxsel = maxval | 
|---|
| 2445 | except ValueError: # now "val >= x" | 
|---|
| 2446 | minsel = minval | 
|---|
| 2447 | maxsel = formatfunc(bound[0].strip()) | 
|---|
| 2448 | elif currsel.strip().find('<') > -1: | 
|---|
| 2449 | bound = currsel.split('<') | 
|---|
| 2450 | try: # try "x < val" | 
|---|
| 2451 | minsel = minval | 
|---|
| 2452 | maxsel = formatfunc(bound[1].strip()) \ | 
|---|
| 2453 | - formatfunc(offset) | 
|---|
| 2454 | except ValueError: # now "val < x" | 
|---|
| 2455 | minsel = formatfunc(bound[0].strip()) \ | 
|---|
| 2456 | + formatfunc(offset) | 
|---|
| 2457 | maxsel = maxval | 
|---|
| 2458 | elif currsel.strip().find('>') > -1: | 
|---|
| 2459 | bound = currsel.split('>') | 
|---|
| 2460 | try: # try "x > val" | 
|---|
| 2461 | minsel = formatfunc(bound[1].strip()) \ | 
|---|
| 2462 | + formatfunc(offset) | 
|---|
| 2463 | maxsel = maxval | 
|---|
| 2464 | except ValueError: # now "val > x" | 
|---|
| 2465 | minsel = minval | 
|---|
| 2466 | maxsel = formatfunc(bound[0].strip()) \ | 
|---|
| 2467 | - formatfunc(offset) | 
|---|
| 2468 | else: | 
|---|
| 2469 | minsel = formatfunc(currsel) | 
|---|
| 2470 | maxsel = formatfunc(currsel) | 
|---|
| 2471 | sellists.append([minsel,maxsel]) | 
|---|
| 2472 | return sellists | 
|---|
| 2473 |  | 
|---|
| 2474 | #    def get_restfreqs(self): | 
|---|
| 2475 | #        """ | 
|---|
| 2476 | #        Get the restfrequency(s) stored in this scantable. | 
|---|
| 2477 | #        The return value(s) are always of unit 'Hz' | 
|---|
| 2478 | #        Parameters: | 
|---|
| 2479 | #            none | 
|---|
| 2480 | #        Returns: | 
|---|
| 2481 | #            a list of doubles | 
|---|
| 2482 | #        """ | 
|---|
| 2483 | #        return list(self._getrestfreqs()) | 
|---|
| 2484 |  | 
|---|
| 2485 | def get_restfreqs(self, ids=None): | 
|---|
| 2486 | """\ | 
|---|
| 2487 | Get the restfrequency(s) stored in this scantable. | 
|---|
| 2488 | The return value(s) are always of unit 'Hz' | 
|---|
| 2489 |  | 
|---|
| 2490 | Parameters: | 
|---|
| 2491 |  | 
|---|
| 2492 | ids: (optional) a list of MOLECULE_ID for that restfrequency(s) to | 
|---|
| 2493 | be retrieved | 
|---|
| 2494 |  | 
|---|
| 2495 | Returns: | 
|---|
| 2496 |  | 
|---|
| 2497 | dictionary containing ids and a list of doubles for each id | 
|---|
| 2498 |  | 
|---|
| 2499 | """ | 
|---|
| 2500 | if ids is None: | 
|---|
| 2501 | rfreqs = {} | 
|---|
| 2502 | idlist = self.getmolnos() | 
|---|
| 2503 | for i in idlist: | 
|---|
| 2504 | rfreqs[i] = list(self._getrestfreqs(i)) | 
|---|
| 2505 | return rfreqs | 
|---|
| 2506 | else: | 
|---|
| 2507 | if type(ids) == list or type(ids) == tuple: | 
|---|
| 2508 | rfreqs = {} | 
|---|
| 2509 | for i in ids: | 
|---|
| 2510 | rfreqs[i] = list(self._getrestfreqs(i)) | 
|---|
| 2511 | return rfreqs | 
|---|
| 2512 | else: | 
|---|
| 2513 | return list(self._getrestfreqs(ids)) | 
|---|
| 2514 |  | 
|---|
| 2515 | @asaplog_post_dec | 
|---|
| 2516 | def set_restfreqs(self, freqs=None, unit='Hz'): | 
|---|
| 2517 | """\ | 
|---|
| 2518 | Set or replace the restfrequency specified and | 
|---|
| 2519 | if the 'freqs' argument holds a scalar, | 
|---|
| 2520 | then that rest frequency will be applied to all the selected | 
|---|
| 2521 | data.  If the 'freqs' argument holds | 
|---|
| 2522 | a vector, then it MUST be of equal or smaller length than | 
|---|
| 2523 | the number of IFs (and the available restfrequencies will be | 
|---|
| 2524 | replaced by this vector).  In this case, *all* data have | 
|---|
| 2525 | the restfrequency set per IF according | 
|---|
| 2526 | to the corresponding value you give in the 'freqs' vector. | 
|---|
| 2527 | E.g. 'freqs=[1e9, 2e9]'  would mean IF 0 gets restfreq 1e9 and | 
|---|
| 2528 | IF 1 gets restfreq 2e9. | 
|---|
| 2529 |  | 
|---|
| 2530 | You can also specify the frequencies via a linecatalog. | 
|---|
| 2531 |  | 
|---|
| 2532 | Parameters: | 
|---|
| 2533 |  | 
|---|
| 2534 | freqs:   list of rest frequency values or string idenitfiers | 
|---|
| 2535 |  | 
|---|
| 2536 | unit:    unit for rest frequency (default 'Hz') | 
|---|
| 2537 |  | 
|---|
| 2538 |  | 
|---|
| 2539 | Example:: | 
|---|
| 2540 |  | 
|---|
| 2541 | # set the given restfrequency for the all currently selected IFs | 
|---|
| 2542 | scan.set_restfreqs(freqs=1.4e9) | 
|---|
| 2543 | # set restfrequencies for the n IFs  (n > 1) in the order of the | 
|---|
| 2544 | # list, i.e | 
|---|
| 2545 | # IF0 -> 1.4e9, IF1 ->  1.41e9, IF3 -> 1.42e9 | 
|---|
| 2546 | # len(list_of_restfreqs) == nIF | 
|---|
| 2547 | # for nIF == 1 the following will set multiple restfrequency for | 
|---|
| 2548 | # that IF | 
|---|
| 2549 | scan.set_restfreqs(freqs=[1.4e9, 1.41e9, 1.42e9]) | 
|---|
| 2550 | # set multiple restfrequencies per IF. as a list of lists where | 
|---|
| 2551 | # the outer list has nIF elements, the inner s arbitrary | 
|---|
| 2552 | scan.set_restfreqs(freqs=[[1.4e9, 1.41e9], [1.67e9]]) | 
|---|
| 2553 |  | 
|---|
| 2554 | *Note*: | 
|---|
| 2555 |  | 
|---|
| 2556 | To do more sophisticate Restfrequency setting, e.g. on a | 
|---|
| 2557 | source and IF basis, use scantable.set_selection() before using | 
|---|
| 2558 | this function:: | 
|---|
| 2559 |  | 
|---|
| 2560 | # provided your scantable is called scan | 
|---|
| 2561 | selection = selector() | 
|---|
| 2562 | selection.set_name('ORION*') | 
|---|
| 2563 | selection.set_ifs([1]) | 
|---|
| 2564 | scan.set_selection(selection) | 
|---|
| 2565 | scan.set_restfreqs(freqs=86.6e9) | 
|---|
| 2566 |  | 
|---|
| 2567 | """ | 
|---|
| 2568 | varlist = vars() | 
|---|
| 2569 | from asap import linecatalog | 
|---|
| 2570 | # simple  value | 
|---|
| 2571 | if isinstance(freqs, int) or isinstance(freqs, float): | 
|---|
| 2572 | self._setrestfreqs([freqs], [""], unit) | 
|---|
| 2573 | # list of values | 
|---|
| 2574 | elif isinstance(freqs, list) or isinstance(freqs, tuple): | 
|---|
| 2575 | # list values are scalars | 
|---|
| 2576 | if isinstance(freqs[-1], int) or isinstance(freqs[-1], float): | 
|---|
| 2577 | if len(freqs) == 1: | 
|---|
| 2578 | self._setrestfreqs(freqs, [""], unit) | 
|---|
| 2579 | else: | 
|---|
| 2580 | # allow the 'old' mode of setting mulitple IFs | 
|---|
| 2581 | savesel = self._getselection() | 
|---|
| 2582 | sel = self.get_selection() | 
|---|
| 2583 | iflist = self.getifnos() | 
|---|
| 2584 | if len(freqs)>len(iflist): | 
|---|
| 2585 | raise ValueError("number of elements in list of list " | 
|---|
| 2586 | "exeeds the current IF selections") | 
|---|
| 2587 | iflist = self.getifnos() | 
|---|
| 2588 | for i, fval in enumerate(freqs): | 
|---|
| 2589 | sel.set_ifs(iflist[i]) | 
|---|
| 2590 | self._setselection(sel) | 
|---|
| 2591 | self._setrestfreqs([fval], [""], unit) | 
|---|
| 2592 | self._setselection(savesel) | 
|---|
| 2593 |  | 
|---|
| 2594 | # list values are dict, {'value'=, 'name'=) | 
|---|
| 2595 | elif isinstance(freqs[-1], dict): | 
|---|
| 2596 | values = [] | 
|---|
| 2597 | names = [] | 
|---|
| 2598 | for d in freqs: | 
|---|
| 2599 | values.append(d["value"]) | 
|---|
| 2600 | names.append(d["name"]) | 
|---|
| 2601 | self._setrestfreqs(values, names, unit) | 
|---|
| 2602 | elif isinstance(freqs[-1], list) or isinstance(freqs[-1], tuple): | 
|---|
| 2603 | savesel = self._getselection() | 
|---|
| 2604 | sel = self.get_selection() | 
|---|
| 2605 | iflist = self.getifnos() | 
|---|
| 2606 | if len(freqs)>len(iflist): | 
|---|
| 2607 | raise ValueError("number of elements in list of list exeeds" | 
|---|
| 2608 | " the current IF selections") | 
|---|
| 2609 | for i, fval in enumerate(freqs): | 
|---|
| 2610 | sel.set_ifs(iflist[i]) | 
|---|
| 2611 | self._setselection(sel) | 
|---|
| 2612 | self._setrestfreqs(fval, [""], unit) | 
|---|
| 2613 | self._setselection(savesel) | 
|---|
| 2614 | # freqs are to be taken from a linecatalog | 
|---|
| 2615 | elif isinstance(freqs, linecatalog): | 
|---|
| 2616 | savesel = self._getselection() | 
|---|
| 2617 | sel = self.get_selection() | 
|---|
| 2618 | for i in xrange(freqs.nrow()): | 
|---|
| 2619 | sel.set_ifs(iflist[i]) | 
|---|
| 2620 | self._setselection(sel) | 
|---|
| 2621 | self._setrestfreqs([freqs.get_frequency(i)], | 
|---|
| 2622 | [freqs.get_name(i)], "MHz") | 
|---|
| 2623 | # ensure that we are not iterating past nIF | 
|---|
| 2624 | if i == self.nif()-1: break | 
|---|
| 2625 | self._setselection(savesel) | 
|---|
| 2626 | else: | 
|---|
| 2627 | return | 
|---|
| 2628 | self._add_history("set_restfreqs", varlist) | 
|---|
| 2629 |  | 
|---|
| 2630 | @asaplog_post_dec | 
|---|
| 2631 | def shift_refpix(self, delta): | 
|---|
| 2632 | """\ | 
|---|
| 2633 | Shift the reference pixel of the Spectra Coordinate by an | 
|---|
| 2634 | integer amount. | 
|---|
| 2635 |  | 
|---|
| 2636 | Parameters: | 
|---|
| 2637 |  | 
|---|
| 2638 | delta:   the amount to shift by | 
|---|
| 2639 |  | 
|---|
| 2640 | *Note*: | 
|---|
| 2641 |  | 
|---|
| 2642 | Be careful using this with broadband data. | 
|---|
| 2643 |  | 
|---|
| 2644 | """ | 
|---|
| 2645 | varlist = vars() | 
|---|
| 2646 | Scantable.shift_refpix(self, delta) | 
|---|
| 2647 | s._add_history("shift_refpix", varlist) | 
|---|
| 2648 |  | 
|---|
| 2649 | @asaplog_post_dec | 
|---|
| 2650 | def history(self, filename=None, nrows=-1, start=0): | 
|---|
| 2651 | """\ | 
|---|
| 2652 | Print the history. Optionally to a file. | 
|---|
| 2653 |  | 
|---|
| 2654 | Parameters: | 
|---|
| 2655 |  | 
|---|
| 2656 | filename:    The name of the file to save the history to. | 
|---|
| 2657 |  | 
|---|
| 2658 | """ | 
|---|
| 2659 | n = self._historylength() | 
|---|
| 2660 | if nrows == -1: | 
|---|
| 2661 | nrows = n | 
|---|
| 2662 | if start+nrows > n: | 
|---|
| 2663 | nrows = nrows-start | 
|---|
| 2664 | if n > 1000 and nrows == n: | 
|---|
| 2665 | nrows = 1000 | 
|---|
| 2666 | start = n-1000 | 
|---|
| 2667 | asaplog.push("Warning: History has {0} entries. Displaying last " | 
|---|
| 2668 | "1000".format(n)) | 
|---|
| 2669 | hist = list(self._gethistory(nrows, start)) | 
|---|
| 2670 | out = "-"*80 | 
|---|
| 2671 | for h in hist: | 
|---|
| 2672 | if not h.strip(): | 
|---|
| 2673 | continue | 
|---|
| 2674 | if h.find("---") >-1: | 
|---|
| 2675 | continue | 
|---|
| 2676 | else: | 
|---|
| 2677 | items = h.split("##") | 
|---|
| 2678 | date = items[0] | 
|---|
| 2679 | func = items[1] | 
|---|
| 2680 | items = items[2:] | 
|---|
| 2681 | out += "\n"+date+"\n" | 
|---|
| 2682 | out += "Function: %s\n  Parameters:" % (func) | 
|---|
| 2683 | for i in items: | 
|---|
| 2684 | if i == '': | 
|---|
| 2685 | continue | 
|---|
| 2686 | s = i.split("=") | 
|---|
| 2687 | out += "\n   %s = %s" % (s[0], s[1]) | 
|---|
| 2688 | out = "\n".join([out, "*"*80]) | 
|---|
| 2689 | if filename is not None: | 
|---|
| 2690 | if filename is "": | 
|---|
| 2691 | filename = 'scantable_history.txt' | 
|---|
| 2692 | filename = os.path.expandvars(os.path.expanduser(filename)) | 
|---|
| 2693 | if not os.path.isdir(filename): | 
|---|
| 2694 | data = open(filename, 'w') | 
|---|
| 2695 | data.write(out) | 
|---|
| 2696 | data.close() | 
|---|
| 2697 | else: | 
|---|
| 2698 | msg = "Illegal file name '%s'." % (filename) | 
|---|
| 2699 | raise IOError(msg) | 
|---|
| 2700 | return page(out) | 
|---|
| 2701 |  | 
|---|
| 2702 | # | 
|---|
| 2703 | # Maths business | 
|---|
| 2704 | # | 
|---|
| 2705 | @asaplog_post_dec | 
|---|
| 2706 | def average_time(self, mask=None, scanav=False, weight='tint', align=False, | 
|---|
| 2707 | avmode="NONE"): | 
|---|
| 2708 | """\ | 
|---|
| 2709 | Return the (time) weighted average of a scan. Scans will be averaged | 
|---|
| 2710 | only if the source direction (RA/DEC) is within 1' otherwise | 
|---|
| 2711 |  | 
|---|
| 2712 | *Note*: | 
|---|
| 2713 |  | 
|---|
| 2714 | in channels only - align if necessary | 
|---|
| 2715 |  | 
|---|
| 2716 | Parameters: | 
|---|
| 2717 |  | 
|---|
| 2718 | mask:     an optional mask (only used for 'var' and 'tsys' | 
|---|
| 2719 | weighting) | 
|---|
| 2720 |  | 
|---|
| 2721 | scanav:   True averages each scan separately | 
|---|
| 2722 | False (default) averages all scans together, | 
|---|
| 2723 |  | 
|---|
| 2724 | weight:   Weighting scheme. | 
|---|
| 2725 | 'none'     (mean no weight) | 
|---|
| 2726 | 'var'      (1/var(spec) weighted) | 
|---|
| 2727 | 'tsys'     (1/Tsys**2 weighted) | 
|---|
| 2728 | 'tint'     (integration time weighted) | 
|---|
| 2729 | 'tintsys'  (Tint/Tsys**2) | 
|---|
| 2730 | 'median'   ( median averaging) | 
|---|
| 2731 | The default is 'tint' | 
|---|
| 2732 |  | 
|---|
| 2733 | align:    align the spectra in velocity before averaging. It takes | 
|---|
| 2734 | the time of the first spectrum as reference time. | 
|---|
| 2735 | avmode:   'SOURCE' - also select by source name -  or | 
|---|
| 2736 | 'NONE' (default). Not applicable for scanav=True or | 
|---|
| 2737 | weight=median | 
|---|
| 2738 |  | 
|---|
| 2739 | Example:: | 
|---|
| 2740 |  | 
|---|
| 2741 | # time average the scantable without using a mask | 
|---|
| 2742 | newscan = scan.average_time() | 
|---|
| 2743 |  | 
|---|
| 2744 | """ | 
|---|
| 2745 | varlist = vars() | 
|---|
| 2746 | weight = weight or 'TINT' | 
|---|
| 2747 | mask = mask or () | 
|---|
| 2748 | scanav = (scanav and 'SCAN') or avmode.upper() | 
|---|
| 2749 | scan = (self, ) | 
|---|
| 2750 |  | 
|---|
| 2751 | if align: | 
|---|
| 2752 | scan = (self.freq_align(insitu=False), ) | 
|---|
| 2753 | asaplog.push("Note: Alignment is don on a source-by-source basis") | 
|---|
| 2754 | asaplog.push("Note: Averaging (by default) is not") | 
|---|
| 2755 | # we need to set it to SOURCE averaging here | 
|---|
| 2756 | s = None | 
|---|
| 2757 | if weight.upper() == 'MEDIAN': | 
|---|
| 2758 | s = scantable(self._math._averagechannel(scan[0], 'MEDIAN', | 
|---|
| 2759 | scanav)) | 
|---|
| 2760 | else: | 
|---|
| 2761 | s = scantable(self._math._average(scan, mask, weight.upper(), | 
|---|
| 2762 | scanav)) | 
|---|
| 2763 | s._add_history("average_time", varlist) | 
|---|
| 2764 | return s | 
|---|
| 2765 |  | 
|---|
| 2766 | @asaplog_post_dec | 
|---|
| 2767 | def convert_flux(self, jyperk=None, eta=None, d=None, insitu=None): | 
|---|
| 2768 | """\ | 
|---|
| 2769 | Return a scan where all spectra are converted to either | 
|---|
| 2770 | Jansky or Kelvin depending upon the flux units of the scan table. | 
|---|
| 2771 | By default the function tries to look the values up internally. | 
|---|
| 2772 | If it can't find them (or if you want to over-ride), you must | 
|---|
| 2773 | specify EITHER jyperk OR eta (and D which it will try to look up | 
|---|
| 2774 | also if you don't set it). jyperk takes precedence if you set both. | 
|---|
| 2775 |  | 
|---|
| 2776 | Parameters: | 
|---|
| 2777 |  | 
|---|
| 2778 | jyperk:      the Jy / K conversion factor | 
|---|
| 2779 |  | 
|---|
| 2780 | eta:         the aperture efficiency | 
|---|
| 2781 |  | 
|---|
| 2782 | d:           the geometric diameter (metres) | 
|---|
| 2783 |  | 
|---|
| 2784 | insitu:      if False a new scantable is returned. | 
|---|
| 2785 | Otherwise, the scaling is done in-situ | 
|---|
| 2786 | The default is taken from .asaprc (False) | 
|---|
| 2787 |  | 
|---|
| 2788 | """ | 
|---|
| 2789 | if insitu is None: insitu = rcParams['insitu'] | 
|---|
| 2790 | self._math._setinsitu(insitu) | 
|---|
| 2791 | varlist = vars() | 
|---|
| 2792 | jyperk = jyperk or -1.0 | 
|---|
| 2793 | d = d or -1.0 | 
|---|
| 2794 | eta = eta or -1.0 | 
|---|
| 2795 | s = scantable(self._math._convertflux(self, d, eta, jyperk)) | 
|---|
| 2796 | s._add_history("convert_flux", varlist) | 
|---|
| 2797 | if insitu: self._assign(s) | 
|---|
| 2798 | else: return s | 
|---|
| 2799 |  | 
|---|
| 2800 | @asaplog_post_dec | 
|---|
| 2801 | def gain_el(self, poly=None, filename="", method="linear", insitu=None): | 
|---|
| 2802 | """\ | 
|---|
| 2803 | Return a scan after applying a gain-elevation correction. | 
|---|
| 2804 | The correction can be made via either a polynomial or a | 
|---|
| 2805 | table-based interpolation (and extrapolation if necessary). | 
|---|
| 2806 | You specify polynomial coefficients, an ascii table or neither. | 
|---|
| 2807 | If you specify neither, then a polynomial correction will be made | 
|---|
| 2808 | with built in coefficients known for certain telescopes (an error | 
|---|
| 2809 | will occur if the instrument is not known). | 
|---|
| 2810 | The data and Tsys are *divided* by the scaling factors. | 
|---|
| 2811 |  | 
|---|
| 2812 | Parameters: | 
|---|
| 2813 |  | 
|---|
| 2814 | poly:        Polynomial coefficients (default None) to compute a | 
|---|
| 2815 | gain-elevation correction as a function of | 
|---|
| 2816 | elevation (in degrees). | 
|---|
| 2817 |  | 
|---|
| 2818 | filename:    The name of an ascii file holding correction factors. | 
|---|
| 2819 | The first row of the ascii file must give the column | 
|---|
| 2820 | names and these MUST include columns | 
|---|
| 2821 | 'ELEVATION' (degrees) and 'FACTOR' (multiply data | 
|---|
| 2822 | by this) somewhere. | 
|---|
| 2823 | The second row must give the data type of the | 
|---|
| 2824 | column. Use 'R' for Real and 'I' for Integer. | 
|---|
| 2825 | An example file would be | 
|---|
| 2826 | (actual factors are arbitrary) : | 
|---|
| 2827 |  | 
|---|
| 2828 | TIME ELEVATION FACTOR | 
|---|
| 2829 | R R R | 
|---|
| 2830 | 0.1 0 0.8 | 
|---|
| 2831 | 0.2 20 0.85 | 
|---|
| 2832 | 0.3 40 0.9 | 
|---|
| 2833 | 0.4 60 0.85 | 
|---|
| 2834 | 0.5 80 0.8 | 
|---|
| 2835 | 0.6 90 0.75 | 
|---|
| 2836 |  | 
|---|
| 2837 | method:      Interpolation method when correcting from a table. | 
|---|
| 2838 | Values are  'nearest', 'linear' (default), 'cubic' | 
|---|
| 2839 | and 'spline' | 
|---|
| 2840 |  | 
|---|
| 2841 | insitu:      if False a new scantable is returned. | 
|---|
| 2842 | Otherwise, the scaling is done in-situ | 
|---|
| 2843 | The default is taken from .asaprc (False) | 
|---|
| 2844 |  | 
|---|
| 2845 | """ | 
|---|
| 2846 |  | 
|---|
| 2847 | if insitu is None: insitu = rcParams['insitu'] | 
|---|
| 2848 | self._math._setinsitu(insitu) | 
|---|
| 2849 | varlist = vars() | 
|---|
| 2850 | poly = poly or () | 
|---|
| 2851 | from os.path import expandvars | 
|---|
| 2852 | filename = expandvars(filename) | 
|---|
| 2853 | s = scantable(self._math._gainel(self, poly, filename, method)) | 
|---|
| 2854 | s._add_history("gain_el", varlist) | 
|---|
| 2855 | if insitu: | 
|---|
| 2856 | self._assign(s) | 
|---|
| 2857 | else: | 
|---|
| 2858 | return s | 
|---|
| 2859 |  | 
|---|
| 2860 | @asaplog_post_dec | 
|---|
| 2861 | def freq_align(self, reftime=None, method='cubic', insitu=None): | 
|---|
| 2862 | """\ | 
|---|
| 2863 | Return a scan where all rows have been aligned in frequency/velocity. | 
|---|
| 2864 | The alignment frequency frame (e.g. LSRK) is that set by function | 
|---|
| 2865 | set_freqframe. | 
|---|
| 2866 |  | 
|---|
| 2867 | Parameters: | 
|---|
| 2868 |  | 
|---|
| 2869 | reftime:     reference time to align at. By default, the time of | 
|---|
| 2870 | the first row of data is used. | 
|---|
| 2871 |  | 
|---|
| 2872 | method:      Interpolation method for regridding the spectra. | 
|---|
| 2873 | Choose from 'nearest', 'linear', 'cubic' (default) | 
|---|
| 2874 | and 'spline' | 
|---|
| 2875 |  | 
|---|
| 2876 | insitu:      if False a new scantable is returned. | 
|---|
| 2877 | Otherwise, the scaling is done in-situ | 
|---|
| 2878 | The default is taken from .asaprc (False) | 
|---|
| 2879 |  | 
|---|
| 2880 | """ | 
|---|
| 2881 | if insitu is None: insitu = rcParams["insitu"] | 
|---|
| 2882 | oldInsitu = self._math._insitu() | 
|---|
| 2883 | self._math._setinsitu(insitu) | 
|---|
| 2884 | varlist = vars() | 
|---|
| 2885 | reftime = reftime or "" | 
|---|
| 2886 | s = scantable(self._math._freq_align(self, reftime, method)) | 
|---|
| 2887 | s._add_history("freq_align", varlist) | 
|---|
| 2888 | self._math._setinsitu(oldInsitu) | 
|---|
| 2889 | if insitu: | 
|---|
| 2890 | self._assign(s) | 
|---|
| 2891 | else: | 
|---|
| 2892 | return s | 
|---|
| 2893 |  | 
|---|
| 2894 | @asaplog_post_dec | 
|---|
| 2895 | def opacity(self, tau=None, insitu=None): | 
|---|
| 2896 | """\ | 
|---|
| 2897 | Apply an opacity correction. The data | 
|---|
| 2898 | and Tsys are multiplied by the correction factor. | 
|---|
| 2899 |  | 
|---|
| 2900 | Parameters: | 
|---|
| 2901 |  | 
|---|
| 2902 | tau:         (list of) opacity from which the correction factor is | 
|---|
| 2903 | exp(tau*ZD) | 
|---|
| 2904 | where ZD is the zenith-distance. | 
|---|
| 2905 | If a list is provided, it has to be of length nIF, | 
|---|
| 2906 | nIF*nPol or 1 and in order of IF/POL, e.g. | 
|---|
| 2907 | [opif0pol0, opif0pol1, opif1pol0 ...] | 
|---|
| 2908 | if tau is `None` the opacities are determined from a | 
|---|
| 2909 | model. | 
|---|
| 2910 |  | 
|---|
| 2911 | insitu:      if False a new scantable is returned. | 
|---|
| 2912 | Otherwise, the scaling is done in-situ | 
|---|
| 2913 | The default is taken from .asaprc (False) | 
|---|
| 2914 |  | 
|---|
| 2915 | """ | 
|---|
| 2916 | if insitu is None: | 
|---|
| 2917 | insitu = rcParams['insitu'] | 
|---|
| 2918 | self._math._setinsitu(insitu) | 
|---|
| 2919 | varlist = vars() | 
|---|
| 2920 | if not hasattr(tau, "__len__"): | 
|---|
| 2921 | tau = [tau] | 
|---|
| 2922 | s = scantable(self._math._opacity(self, tau)) | 
|---|
| 2923 | s._add_history("opacity", varlist) | 
|---|
| 2924 | if insitu: | 
|---|
| 2925 | self._assign(s) | 
|---|
| 2926 | else: | 
|---|
| 2927 | return s | 
|---|
| 2928 |  | 
|---|
| 2929 | @asaplog_post_dec | 
|---|
| 2930 | def bin(self, width=5, insitu=None): | 
|---|
| 2931 | """\ | 
|---|
| 2932 | Return a scan where all spectra have been binned up. | 
|---|
| 2933 |  | 
|---|
| 2934 | Parameters: | 
|---|
| 2935 |  | 
|---|
| 2936 | width:       The bin width (default=5) in pixels | 
|---|
| 2937 |  | 
|---|
| 2938 | insitu:      if False a new scantable is returned. | 
|---|
| 2939 | Otherwise, the scaling is done in-situ | 
|---|
| 2940 | The default is taken from .asaprc (False) | 
|---|
| 2941 |  | 
|---|
| 2942 | """ | 
|---|
| 2943 | if insitu is None: | 
|---|
| 2944 | insitu = rcParams['insitu'] | 
|---|
| 2945 | self._math._setinsitu(insitu) | 
|---|
| 2946 | varlist = vars() | 
|---|
| 2947 | s = scantable(self._math._bin(self, width)) | 
|---|
| 2948 | s._add_history("bin", varlist) | 
|---|
| 2949 | if insitu: | 
|---|
| 2950 | self._assign(s) | 
|---|
| 2951 | else: | 
|---|
| 2952 | return s | 
|---|
| 2953 |  | 
|---|
| 2954 | @asaplog_post_dec | 
|---|
| 2955 | def reshape(self, first, last, insitu=None): | 
|---|
| 2956 | """Resize the band by providing first and last channel. | 
|---|
| 2957 | This will cut off all channels outside [first, last]. | 
|---|
| 2958 | """ | 
|---|
| 2959 | if insitu is None: | 
|---|
| 2960 | insitu = rcParams['insitu'] | 
|---|
| 2961 | varlist = vars() | 
|---|
| 2962 | if last < 0: | 
|---|
| 2963 | last = self.nchan()-1 + last | 
|---|
| 2964 | s = None | 
|---|
| 2965 | if insitu: | 
|---|
| 2966 | s = self | 
|---|
| 2967 | else: | 
|---|
| 2968 | s = self.copy() | 
|---|
| 2969 | s._reshape(first,last) | 
|---|
| 2970 | s._add_history("reshape", varlist) | 
|---|
| 2971 | if not insitu: | 
|---|
| 2972 | return s | 
|---|
| 2973 |  | 
|---|
| 2974 | @asaplog_post_dec | 
|---|
| 2975 | def resample(self, width=5, method='cubic', insitu=None): | 
|---|
| 2976 | """\ | 
|---|
| 2977 | Return a scan where all spectra have been binned up. | 
|---|
| 2978 |  | 
|---|
| 2979 | Parameters: | 
|---|
| 2980 |  | 
|---|
| 2981 | width:       The bin width (default=5) in pixels | 
|---|
| 2982 |  | 
|---|
| 2983 | method:      Interpolation method when correcting from a table. | 
|---|
| 2984 | Values are  'nearest', 'linear', 'cubic' (default) | 
|---|
| 2985 | and 'spline' | 
|---|
| 2986 |  | 
|---|
| 2987 | insitu:      if False a new scantable is returned. | 
|---|
| 2988 | Otherwise, the scaling is done in-situ | 
|---|
| 2989 | The default is taken from .asaprc (False) | 
|---|
| 2990 |  | 
|---|
| 2991 | """ | 
|---|
| 2992 | if insitu is None: | 
|---|
| 2993 | insitu = rcParams['insitu'] | 
|---|
| 2994 | self._math._setinsitu(insitu) | 
|---|
| 2995 | varlist = vars() | 
|---|
| 2996 | s = scantable(self._math._resample(self, method, width)) | 
|---|
| 2997 | s._add_history("resample", varlist) | 
|---|
| 2998 | if insitu: | 
|---|
| 2999 | self._assign(s) | 
|---|
| 3000 | else: | 
|---|
| 3001 | return s | 
|---|
| 3002 |  | 
|---|
| 3003 | @asaplog_post_dec | 
|---|
| 3004 | def average_pol(self, mask=None, weight='none'): | 
|---|
| 3005 | """\ | 
|---|
| 3006 | Average the Polarisations together. | 
|---|
| 3007 |  | 
|---|
| 3008 | Parameters: | 
|---|
| 3009 |  | 
|---|
| 3010 | mask:        An optional mask defining the region, where the | 
|---|
| 3011 | averaging will be applied. The output will have all | 
|---|
| 3012 | specified points masked. | 
|---|
| 3013 |  | 
|---|
| 3014 | weight:      Weighting scheme. 'none' (default), 'var' (1/var(spec) | 
|---|
| 3015 | weighted), or 'tsys' (1/Tsys**2 weighted) | 
|---|
| 3016 |  | 
|---|
| 3017 | """ | 
|---|
| 3018 | varlist = vars() | 
|---|
| 3019 | mask = mask or () | 
|---|
| 3020 | s = scantable(self._math._averagepol(self, mask, weight.upper())) | 
|---|
| 3021 | s._add_history("average_pol", varlist) | 
|---|
| 3022 | return s | 
|---|
| 3023 |  | 
|---|
| 3024 | @asaplog_post_dec | 
|---|
| 3025 | def average_beam(self, mask=None, weight='none'): | 
|---|
| 3026 | """\ | 
|---|
| 3027 | Average the Beams together. | 
|---|
| 3028 |  | 
|---|
| 3029 | Parameters: | 
|---|
| 3030 | mask:        An optional mask defining the region, where the | 
|---|
| 3031 | averaging will be applied. The output will have all | 
|---|
| 3032 | specified points masked. | 
|---|
| 3033 |  | 
|---|
| 3034 | weight:      Weighting scheme. 'none' (default), 'var' (1/var(spec) | 
|---|
| 3035 | weighted), or 'tsys' (1/Tsys**2 weighted) | 
|---|
| 3036 |  | 
|---|
| 3037 | """ | 
|---|
| 3038 | varlist = vars() | 
|---|
| 3039 | mask = mask or () | 
|---|
| 3040 | s = scantable(self._math._averagebeams(self, mask, weight.upper())) | 
|---|
| 3041 | s._add_history("average_beam", varlist) | 
|---|
| 3042 | return s | 
|---|
| 3043 |  | 
|---|
| 3044 | def parallactify(self, pflag): | 
|---|
| 3045 | """\ | 
|---|
| 3046 | Set a flag to indicate whether this data should be treated as having | 
|---|
| 3047 | been 'parallactified' (total phase == 0.0) | 
|---|
| 3048 |  | 
|---|
| 3049 | Parameters: | 
|---|
| 3050 |  | 
|---|
| 3051 | pflag:  Bool indicating whether to turn this on (True) or | 
|---|
| 3052 | off (False) | 
|---|
| 3053 |  | 
|---|
| 3054 | """ | 
|---|
| 3055 | varlist = vars() | 
|---|
| 3056 | self._parallactify(pflag) | 
|---|
| 3057 | self._add_history("parallactify", varlist) | 
|---|
| 3058 |  | 
|---|
| 3059 | @asaplog_post_dec | 
|---|
| 3060 | def convert_pol(self, poltype=None): | 
|---|
| 3061 | """\ | 
|---|
| 3062 | Convert the data to a different polarisation type. | 
|---|
| 3063 | Note that you will need cross-polarisation terms for most conversions. | 
|---|
| 3064 |  | 
|---|
| 3065 | Parameters: | 
|---|
| 3066 |  | 
|---|
| 3067 | poltype:    The new polarisation type. Valid types are: | 
|---|
| 3068 | 'linear', 'circular', 'stokes' and 'linpol' | 
|---|
| 3069 |  | 
|---|
| 3070 | """ | 
|---|
| 3071 | varlist = vars() | 
|---|
| 3072 | s = scantable(self._math._convertpol(self, poltype)) | 
|---|
| 3073 | s._add_history("convert_pol", varlist) | 
|---|
| 3074 | return s | 
|---|
| 3075 |  | 
|---|
| 3076 | @asaplog_post_dec | 
|---|
| 3077 | def smooth(self, kernel="hanning", width=5.0, order=2, plot=False, | 
|---|
| 3078 | insitu=None): | 
|---|
| 3079 | """\ | 
|---|
| 3080 | Smooth the spectrum by the specified kernel (conserving flux). | 
|---|
| 3081 |  | 
|---|
| 3082 | Parameters: | 
|---|
| 3083 |  | 
|---|
| 3084 | kernel:     The type of smoothing kernel. Select from | 
|---|
| 3085 | 'hanning' (default), 'gaussian', 'boxcar', 'rmedian' | 
|---|
| 3086 | or 'poly' | 
|---|
| 3087 |  | 
|---|
| 3088 | width:      The width of the kernel in pixels. For hanning this is | 
|---|
| 3089 | ignored otherwise it defauls to 5 pixels. | 
|---|
| 3090 | For 'gaussian' it is the Full Width Half | 
|---|
| 3091 | Maximum. For 'boxcar' it is the full width. | 
|---|
| 3092 | For 'rmedian' and 'poly' it is the half width. | 
|---|
| 3093 |  | 
|---|
| 3094 | order:      Optional parameter for 'poly' kernel (default is 2), to | 
|---|
| 3095 | specify the order of the polnomial. Ignored by all other | 
|---|
| 3096 | kernels. | 
|---|
| 3097 |  | 
|---|
| 3098 | plot:       plot the original and the smoothed spectra. | 
|---|
| 3099 | In this each indivual fit has to be approved, by | 
|---|
| 3100 | typing 'y' or 'n' | 
|---|
| 3101 |  | 
|---|
| 3102 | insitu:     if False a new scantable is returned. | 
|---|
| 3103 | Otherwise, the scaling is done in-situ | 
|---|
| 3104 | The default is taken from .asaprc (False) | 
|---|
| 3105 |  | 
|---|
| 3106 | """ | 
|---|
| 3107 | if insitu is None: insitu = rcParams['insitu'] | 
|---|
| 3108 | self._math._setinsitu(insitu) | 
|---|
| 3109 | varlist = vars() | 
|---|
| 3110 |  | 
|---|
| 3111 | if plot: orgscan = self.copy() | 
|---|
| 3112 |  | 
|---|
| 3113 | s = scantable(self._math._smooth(self, kernel.lower(), width, order)) | 
|---|
| 3114 | s._add_history("smooth", varlist) | 
|---|
| 3115 |  | 
|---|
| 3116 | action = 'H' | 
|---|
| 3117 | if plot: | 
|---|
| 3118 | from asap.asapplotter import new_asaplot | 
|---|
| 3119 | theplot = new_asaplot(rcParams['plotter.gui']) | 
|---|
| 3120 | from matplotlib import rc as rcp | 
|---|
| 3121 | rcp('lines', linewidth=1) | 
|---|
| 3122 | theplot.set_panels() | 
|---|
| 3123 | ylab=s._get_ordinate_label() | 
|---|
| 3124 | #theplot.palette(0,["#777777","red"]) | 
|---|
| 3125 | for r in xrange(s.nrow()): | 
|---|
| 3126 | xsm=s._getabcissa(r) | 
|---|
| 3127 | ysm=s._getspectrum(r) | 
|---|
| 3128 | xorg=orgscan._getabcissa(r) | 
|---|
| 3129 | yorg=orgscan._getspectrum(r) | 
|---|
| 3130 | if action != "N": #skip plotting if rejecting all | 
|---|
| 3131 | theplot.clear() | 
|---|
| 3132 | theplot.hold() | 
|---|
| 3133 | theplot.set_axes('ylabel',ylab) | 
|---|
| 3134 | theplot.set_axes('xlabel',s._getabcissalabel(r)) | 
|---|
| 3135 | theplot.set_axes('title',s._getsourcename(r)) | 
|---|
| 3136 | theplot.set_line(label='Original',color="#777777") | 
|---|
| 3137 | theplot.plot(xorg,yorg) | 
|---|
| 3138 | theplot.set_line(label='Smoothed',color="red") | 
|---|
| 3139 | theplot.plot(xsm,ysm) | 
|---|
| 3140 | ### Ugly part for legend | 
|---|
| 3141 | for i in [0,1]: | 
|---|
| 3142 | theplot.subplots[0]['lines'].append( | 
|---|
| 3143 | [theplot.subplots[0]['axes'].lines[i]] | 
|---|
| 3144 | ) | 
|---|
| 3145 | theplot.release() | 
|---|
| 3146 | ### Ugly part for legend | 
|---|
| 3147 | theplot.subplots[0]['lines']=[] | 
|---|
| 3148 | res = self._get_verify_action("Accept smoothing?",action) | 
|---|
| 3149 | #print "IF%d, POL%d: got result = %s" %(s.getif(r),s.getpol(r),res) | 
|---|
| 3150 | if r == 0: action = None | 
|---|
| 3151 | #res = raw_input("Accept smoothing ([y]/n): ") | 
|---|
| 3152 | if res.upper() == 'N': | 
|---|
| 3153 | # reject for the current rows | 
|---|
| 3154 | s._setspectrum(yorg, r) | 
|---|
| 3155 | elif res.upper() == 'R': | 
|---|
| 3156 | # reject all the following rows | 
|---|
| 3157 | action = "N" | 
|---|
| 3158 | s._setspectrum(yorg, r) | 
|---|
| 3159 | elif res.upper() == 'A': | 
|---|
| 3160 | # accept all the following rows | 
|---|
| 3161 | break | 
|---|
| 3162 | theplot.quit() | 
|---|
| 3163 | del theplot | 
|---|
| 3164 | del orgscan | 
|---|
| 3165 |  | 
|---|
| 3166 | if insitu: self._assign(s) | 
|---|
| 3167 | else: return s | 
|---|
| 3168 |  | 
|---|
| 3169 | @asaplog_post_dec | 
|---|
| 3170 | def regrid_channel(self, width=5, plot=False, insitu=None): | 
|---|
| 3171 | """\ | 
|---|
| 3172 | Regrid the spectra by the specified channel width | 
|---|
| 3173 |  | 
|---|
| 3174 | Parameters: | 
|---|
| 3175 |  | 
|---|
| 3176 | width:      The channel width (float) of regridded spectra | 
|---|
| 3177 | in the current spectral unit. | 
|---|
| 3178 |  | 
|---|
| 3179 | plot:       [NOT IMPLEMENTED YET] | 
|---|
| 3180 | plot the original and the regridded spectra. | 
|---|
| 3181 | In this each indivual fit has to be approved, by | 
|---|
| 3182 | typing 'y' or 'n' | 
|---|
| 3183 |  | 
|---|
| 3184 | insitu:     if False a new scantable is returned. | 
|---|
| 3185 | Otherwise, the scaling is done in-situ | 
|---|
| 3186 | The default is taken from .asaprc (False) | 
|---|
| 3187 |  | 
|---|
| 3188 | """ | 
|---|
| 3189 | if insitu is None: insitu = rcParams['insitu'] | 
|---|
| 3190 | varlist = vars() | 
|---|
| 3191 |  | 
|---|
| 3192 | if plot: | 
|---|
| 3193 | asaplog.post() | 
|---|
| 3194 | asaplog.push("Verification plot is not implemtnetd yet.") | 
|---|
| 3195 | asaplog.post("WARN") | 
|---|
| 3196 |  | 
|---|
| 3197 | s = self.copy() | 
|---|
| 3198 | s._regrid_specchan(width) | 
|---|
| 3199 |  | 
|---|
| 3200 | s._add_history("regrid_channel", varlist) | 
|---|
| 3201 |  | 
|---|
| 3202 | #         if plot: | 
|---|
| 3203 | #             from asap.asapplotter import new_asaplot | 
|---|
| 3204 | #             theplot = new_asaplot(rcParams['plotter.gui']) | 
|---|
| 3205 | #             from matplotlib import rc as rcp | 
|---|
| 3206 | #             rcp('lines', linewidth=1) | 
|---|
| 3207 | #             theplot.set_panels() | 
|---|
| 3208 | #             ylab=s._get_ordinate_label() | 
|---|
| 3209 | #             #theplot.palette(0,["#777777","red"]) | 
|---|
| 3210 | #             for r in xrange(s.nrow()): | 
|---|
| 3211 | #                 xsm=s._getabcissa(r) | 
|---|
| 3212 | #                 ysm=s._getspectrum(r) | 
|---|
| 3213 | #                 xorg=orgscan._getabcissa(r) | 
|---|
| 3214 | #                 yorg=orgscan._getspectrum(r) | 
|---|
| 3215 | #                 theplot.clear() | 
|---|
| 3216 | #                 theplot.hold() | 
|---|
| 3217 | #                 theplot.set_axes('ylabel',ylab) | 
|---|
| 3218 | #                 theplot.set_axes('xlabel',s._getabcissalabel(r)) | 
|---|
| 3219 | #                 theplot.set_axes('title',s._getsourcename(r)) | 
|---|
| 3220 | #                 theplot.set_line(label='Original',color="#777777") | 
|---|
| 3221 | #                 theplot.plot(xorg,yorg) | 
|---|
| 3222 | #                 theplot.set_line(label='Smoothed',color="red") | 
|---|
| 3223 | #                 theplot.plot(xsm,ysm) | 
|---|
| 3224 | #                 ### Ugly part for legend | 
|---|
| 3225 | #                 for i in [0,1]: | 
|---|
| 3226 | #                     theplot.subplots[0]['lines'].append( | 
|---|
| 3227 | #                         [theplot.subplots[0]['axes'].lines[i]] | 
|---|
| 3228 | #                         ) | 
|---|
| 3229 | #                 theplot.release() | 
|---|
| 3230 | #                 ### Ugly part for legend | 
|---|
| 3231 | #                 theplot.subplots[0]['lines']=[] | 
|---|
| 3232 | #                 res = raw_input("Accept smoothing ([y]/n): ") | 
|---|
| 3233 | #                 if res.upper() == 'N': | 
|---|
| 3234 | #                     s._setspectrum(yorg, r) | 
|---|
| 3235 | #             theplot.quit() | 
|---|
| 3236 | #             del theplot | 
|---|
| 3237 | #             del orgscan | 
|---|
| 3238 |  | 
|---|
| 3239 | if insitu: self._assign(s) | 
|---|
| 3240 | else: return s | 
|---|
| 3241 |  | 
|---|
| 3242 | @asaplog_post_dec | 
|---|
| 3243 | def _parse_wn(self, wn): | 
|---|
| 3244 | if isinstance(wn, list) or isinstance(wn, tuple): | 
|---|
| 3245 | return wn | 
|---|
| 3246 | elif isinstance(wn, int): | 
|---|
| 3247 | return [ wn ] | 
|---|
| 3248 | elif isinstance(wn, str): | 
|---|
| 3249 | if '-' in wn:                            # case 'a-b' : return [a,a+1,...,b-1,b] | 
|---|
| 3250 | val = wn.split('-') | 
|---|
| 3251 | val = [int(val[0]), int(val[1])] | 
|---|
| 3252 | val.sort() | 
|---|
| 3253 | res = [i for i in xrange(val[0], val[1]+1)] | 
|---|
| 3254 | elif wn[:2] == '<=' or wn[:2] == '=<':   # cases '<=a','=<a' : return [0,1,...,a-1,a] | 
|---|
| 3255 | val = int(wn[2:])+1 | 
|---|
| 3256 | res = [i for i in xrange(val)] | 
|---|
| 3257 | elif wn[-2:] == '>=' or wn[-2:] == '=>': # cases 'a>=','a=>' : return [0,1,...,a-1,a] | 
|---|
| 3258 | val = int(wn[:-2])+1 | 
|---|
| 3259 | res = [i for i in xrange(val)] | 
|---|
| 3260 | elif wn[0] == '<':                       # case '<a' :         return [0,1,...,a-2,a-1] | 
|---|
| 3261 | val = int(wn[1:]) | 
|---|
| 3262 | res = [i for i in xrange(val)] | 
|---|
| 3263 | elif wn[-1] == '>':                      # case 'a>' :         return [0,1,...,a-2,a-1] | 
|---|
| 3264 | val = int(wn[:-1]) | 
|---|
| 3265 | res = [i for i in xrange(val)] | 
|---|
| 3266 | elif wn[:2] == '>=' or wn[:2] == '=>':   # cases '>=a','=>a' : return [a,-999], which is | 
|---|
| 3267 | #                     then interpreted in C++ | 
|---|
| 3268 | #                     side as [a,a+1,...,a_nyq] | 
|---|
| 3269 | #                     (CAS-3759) | 
|---|
| 3270 | val = int(wn[2:]) | 
|---|
| 3271 | res = [val, -999] | 
|---|
| 3272 | #res = [i for i in xrange(val, self.nchan()/2+1)] | 
|---|
| 3273 | elif wn[-2:] == '<=' or wn[-2:] == '=<': # cases 'a<=','a=<' : return [a,-999], which is | 
|---|
| 3274 | #                     then interpreted in C++ | 
|---|
| 3275 | #                     side as [a,a+1,...,a_nyq] | 
|---|
| 3276 | #                     (CAS-3759) | 
|---|
| 3277 | val = int(wn[:-2]) | 
|---|
| 3278 | res = [val, -999] | 
|---|
| 3279 | #res = [i for i in xrange(val, self.nchan()/2+1)] | 
|---|
| 3280 | elif wn[0] == '>':                       # case '>a' :         return [a+1,-999], which is | 
|---|
| 3281 | #                     then interpreted in C++ | 
|---|
| 3282 | #                     side as [a+1,a+2,...,a_nyq] | 
|---|
| 3283 | #                     (CAS-3759) | 
|---|
| 3284 | val = int(wn[1:])+1 | 
|---|
| 3285 | res = [val, -999] | 
|---|
| 3286 | #res = [i for i in xrange(val, self.nchan()/2+1)] | 
|---|
| 3287 | elif wn[-1] == '<':                      # case 'a<' :         return [a+1,-999], which is | 
|---|
| 3288 | #                     then interpreted in C++ | 
|---|
| 3289 | #                     side as [a+1,a+2,...,a_nyq] | 
|---|
| 3290 | #                     (CAS-3759) | 
|---|
| 3291 | val = int(wn[:-1])+1 | 
|---|
| 3292 | res = [val, -999] | 
|---|
| 3293 | #res = [i for i in xrange(val, self.nchan()/2+1)] | 
|---|
| 3294 |  | 
|---|
| 3295 | return res | 
|---|
| 3296 | else: | 
|---|
| 3297 | msg = 'wrong value given for addwn/rejwn' | 
|---|
| 3298 | raise RuntimeError(msg) | 
|---|
| 3299 |  | 
|---|
| 3300 | @asaplog_post_dec | 
|---|
| 3301 | def apply_bltable(self, insitu=None, retfitres=None, inbltable=None, outbltable=None, overwrite=None): | 
|---|
| 3302 | """\ | 
|---|
| 3303 | Subtract baseline based on parameters written in Baseline Table. | 
|---|
| 3304 |  | 
|---|
| 3305 | Parameters: | 
|---|
| 3306 | insitu:        if True, baseline fitting/subtraction is done | 
|---|
| 3307 | in-situ. If False, a new scantable with | 
|---|
| 3308 | baseline subtracted is returned. Actually, | 
|---|
| 3309 | format of the returned value depends on both | 
|---|
| 3310 | insitu and retfitres (see below). | 
|---|
| 3311 | The default is taken from .asaprc (False) | 
|---|
| 3312 | retfitres:     if True, the results of baseline fitting (i.e., | 
|---|
| 3313 | coefficients and rms) are returned. | 
|---|
| 3314 | default is False. | 
|---|
| 3315 | The format of the returned value of this | 
|---|
| 3316 | function varies as follows: | 
|---|
| 3317 | (1) in case insitu=True and retfitres=True: | 
|---|
| 3318 | fitting result. | 
|---|
| 3319 | (2) in case insitu=True and retfitres=False: | 
|---|
| 3320 | None. | 
|---|
| 3321 | (3) in case insitu=False and retfitres=True: | 
|---|
| 3322 | a dictionary containing a new scantable | 
|---|
| 3323 | (with baseline subtracted) and the fitting | 
|---|
| 3324 | results. | 
|---|
| 3325 | (4) in case insitu=False and retfitres=False: | 
|---|
| 3326 | a new scantable (with baseline subtracted). | 
|---|
| 3327 | inbltable:     name of input baseline table. The row number of | 
|---|
| 3328 | scantable and that of inbltable must be | 
|---|
| 3329 | identical. | 
|---|
| 3330 | outbltable:    name of output baseline table where baseline | 
|---|
| 3331 | parameters and fitting results recorded. | 
|---|
| 3332 | default is ''(no output). | 
|---|
| 3333 | overwrite:     if True when an existing baseline table is | 
|---|
| 3334 | specified for outbltable, overwrites it. | 
|---|
| 3335 | Otherwise there is no harm. | 
|---|
| 3336 | default is False. | 
|---|
| 3337 | """ | 
|---|
| 3338 |  | 
|---|
| 3339 | try: | 
|---|
| 3340 | varlist = vars() | 
|---|
| 3341 | if retfitres      is None: retfitres      = False | 
|---|
| 3342 | if inbltable      is None: raise ValueError("bltable missing.") | 
|---|
| 3343 | if outbltable     is None: outbltable     = '' | 
|---|
| 3344 | if overwrite      is None: overwrite      = False | 
|---|
| 3345 |  | 
|---|
| 3346 | if insitu is None: insitu = rcParams['insitu'] | 
|---|
| 3347 | if insitu: | 
|---|
| 3348 | workscan = self | 
|---|
| 3349 | else: | 
|---|
| 3350 | workscan = self.copy() | 
|---|
| 3351 |  | 
|---|
| 3352 | sres = workscan._apply_bltable(inbltable, | 
|---|
| 3353 | retfitres, | 
|---|
| 3354 | outbltable, | 
|---|
| 3355 | os.path.exists(outbltable), | 
|---|
| 3356 | overwrite) | 
|---|
| 3357 | if retfitres: res = parse_fitresult(sres) | 
|---|
| 3358 |  | 
|---|
| 3359 | workscan._add_history('apply_bltable', varlist) | 
|---|
| 3360 |  | 
|---|
| 3361 | if insitu: | 
|---|
| 3362 | self._assign(workscan) | 
|---|
| 3363 | if retfitres: | 
|---|
| 3364 | return res | 
|---|
| 3365 | else: | 
|---|
| 3366 | return None | 
|---|
| 3367 | else: | 
|---|
| 3368 | if retfitres: | 
|---|
| 3369 | return {'scantable': workscan, 'fitresults': res} | 
|---|
| 3370 | else: | 
|---|
| 3371 | return workscan | 
|---|
| 3372 |  | 
|---|
| 3373 | except RuntimeError, e: | 
|---|
| 3374 | raise_fitting_failure_exception(e) | 
|---|
| 3375 |  | 
|---|
| 3376 | @asaplog_post_dec | 
|---|
| 3377 | def sub_baseline(self, insitu=None, retfitres=None, blinfo=None, bltable=None, overwrite=None): | 
|---|
| 3378 | """\ | 
|---|
| 3379 | Subtract baseline based on parameters written in the input list. | 
|---|
| 3380 |  | 
|---|
| 3381 | Parameters: | 
|---|
| 3382 | insitu:        if True, baseline fitting/subtraction is done | 
|---|
| 3383 | in-situ. If False, a new scantable with | 
|---|
| 3384 | baseline subtracted is returned. Actually, | 
|---|
| 3385 | format of the returned value depends on both | 
|---|
| 3386 | insitu and retfitres (see below). | 
|---|
| 3387 | The default is taken from .asaprc (False) | 
|---|
| 3388 | retfitres:     if True, the results of baseline fitting (i.e., | 
|---|
| 3389 | coefficients and rms) are returned. | 
|---|
| 3390 | default is False. | 
|---|
| 3391 | The format of the returned value of this | 
|---|
| 3392 | function varies as follows: | 
|---|
| 3393 | (1) in case insitu=True and retfitres=True: | 
|---|
| 3394 | fitting result. | 
|---|
| 3395 | (2) in case insitu=True and retfitres=False: | 
|---|
| 3396 | None. | 
|---|
| 3397 | (3) in case insitu=False and retfitres=True: | 
|---|
| 3398 | a dictionary containing a new scantable | 
|---|
| 3399 | (with baseline subtracted) and the fitting | 
|---|
| 3400 | results. | 
|---|
| 3401 | (4) in case insitu=False and retfitres=False: | 
|---|
| 3402 | a new scantable (with baseline subtracted). | 
|---|
| 3403 | blinfo:        baseline parameter set stored in a dictionary | 
|---|
| 3404 | or a list of dictionary. Each dictionary | 
|---|
| 3405 | corresponds to each spectrum and must contain | 
|---|
| 3406 | the following keys and values: | 
|---|
| 3407 | 'row': row number, | 
|---|
| 3408 | 'blfunc': function name. available ones include | 
|---|
| 3409 | 'poly', 'chebyshev', 'cspline' and | 
|---|
| 3410 | 'sinusoid', | 
|---|
| 3411 | 'order': maximum order of polynomial. needed | 
|---|
| 3412 | if blfunc='poly' or 'chebyshev', | 
|---|
| 3413 | 'npiece': number or piecewise polynomial. | 
|---|
| 3414 | needed if blfunc='cspline', | 
|---|
| 3415 | 'nwave': a list of sinusoidal wave numbers. | 
|---|
| 3416 | needed if blfunc='sinusoid', and | 
|---|
| 3417 | 'masklist': min-max windows for channel mask. | 
|---|
| 3418 | the specified ranges will be used | 
|---|
| 3419 | for fitting. | 
|---|
| 3420 | bltable:       name of output baseline table where baseline | 
|---|
| 3421 | parameters and fitting results recorded. | 
|---|
| 3422 | default is ''(no output). | 
|---|
| 3423 | overwrite:     if True when an existing baseline table is | 
|---|
| 3424 | specified for bltable, overwrites it. | 
|---|
| 3425 | Otherwise there is no harm. | 
|---|
| 3426 | default is False. | 
|---|
| 3427 |  | 
|---|
| 3428 | Example: | 
|---|
| 3429 | sub_baseline(blinfo=[{'row':0, 'blfunc':'poly', 'order':5, | 
|---|
| 3430 | 'masklist':[[10,350],[352,510]]}, | 
|---|
| 3431 | {'row':1, 'blfunc':'cspline', 'npiece':3, | 
|---|
| 3432 | 'masklist':[[3,16],[19,404],[407,511]]} | 
|---|
| 3433 | ]) | 
|---|
| 3434 |  | 
|---|
| 3435 | the first spectrum (row=0) will be fitted with polynomial | 
|---|
| 3436 | of order=5 and the next one (row=1) will be fitted with cubic | 
|---|
| 3437 | spline consisting of 3 pieces. | 
|---|
| 3438 | """ | 
|---|
| 3439 |  | 
|---|
| 3440 | try: | 
|---|
| 3441 | varlist = vars() | 
|---|
| 3442 | if retfitres      is None: retfitres      = False | 
|---|
| 3443 | if blinfo         is None: blinfo         = [] | 
|---|
| 3444 | if bltable        is None: bltable        = '' | 
|---|
| 3445 | if overwrite      is None: overwrite      = False | 
|---|
| 3446 |  | 
|---|
| 3447 | if insitu is None: insitu = rcParams['insitu'] | 
|---|
| 3448 | if insitu: | 
|---|
| 3449 | workscan = self | 
|---|
| 3450 | else: | 
|---|
| 3451 | workscan = self.copy() | 
|---|
| 3452 |  | 
|---|
| 3453 | nrow = workscan.nrow() | 
|---|
| 3454 |  | 
|---|
| 3455 | in_blinfo = pack_blinfo(blinfo=blinfo, maxirow=nrow) | 
|---|
| 3456 |  | 
|---|
| 3457 | print "in_blinfo=< "+ str(in_blinfo)+" >" | 
|---|
| 3458 |  | 
|---|
| 3459 | sres = workscan._sub_baseline(in_blinfo, | 
|---|
| 3460 | retfitres, | 
|---|
| 3461 | bltable, | 
|---|
| 3462 | os.path.exists(bltable), | 
|---|
| 3463 | overwrite) | 
|---|
| 3464 | if retfitres: res = parse_fitresult(sres) | 
|---|
| 3465 |  | 
|---|
| 3466 | workscan._add_history('sub_baseline', varlist) | 
|---|
| 3467 |  | 
|---|
| 3468 | if insitu: | 
|---|
| 3469 | self._assign(workscan) | 
|---|
| 3470 | if retfitres: | 
|---|
| 3471 | return res | 
|---|
| 3472 | else: | 
|---|
| 3473 | return None | 
|---|
| 3474 | else: | 
|---|
| 3475 | if retfitres: | 
|---|
| 3476 | return {'scantable': workscan, 'fitresults': res} | 
|---|
| 3477 | else: | 
|---|
| 3478 | return workscan | 
|---|
| 3479 |  | 
|---|
| 3480 | except RuntimeError, e: | 
|---|
| 3481 | raise_fitting_failure_exception(e) | 
|---|
| 3482 |  | 
|---|
| 3483 | @asaplog_post_dec | 
|---|
| 3484 | def calc_aic(self, value=None, blfunc=None, order=None, mask=None, | 
|---|
| 3485 | whichrow=None, uselinefinder=None, edge=None, | 
|---|
| 3486 | threshold=None, chan_avg_limit=None): | 
|---|
| 3487 | """\ | 
|---|
| 3488 | Calculates and returns model selection criteria for a specified | 
|---|
| 3489 | baseline model and a given spectrum data. | 
|---|
| 3490 | Available values include Akaike Information Criterion (AIC), the | 
|---|
| 3491 | corrected Akaike Information Criterion (AICc) by Sugiura(1978), | 
|---|
| 3492 | Bayesian Information Criterion (BIC) and the Generalised Cross | 
|---|
| 3493 | Validation (GCV). | 
|---|
| 3494 |  | 
|---|
| 3495 | Parameters: | 
|---|
| 3496 | value:         name of model selection criteria to calculate. | 
|---|
| 3497 | available ones include 'aic', 'aicc', 'bic' and | 
|---|
| 3498 | 'gcv'. default is 'aicc'. | 
|---|
| 3499 | blfunc:        baseline function name. available ones include | 
|---|
| 3500 | 'chebyshev', 'cspline' and 'sinusoid'. | 
|---|
| 3501 | default is 'chebyshev'. | 
|---|
| 3502 | order:         parameter for basline function. actually stands for | 
|---|
| 3503 | order of polynomial (order) for 'chebyshev', | 
|---|
| 3504 | number of spline pieces (npiece) for 'cspline' and | 
|---|
| 3505 | maximum wave number for 'sinusoid', respectively. | 
|---|
| 3506 | default is 5 (which is also the default order value | 
|---|
| 3507 | for [auto_]chebyshev_baseline()). | 
|---|
| 3508 | mask:          an optional mask. default is []. | 
|---|
| 3509 | whichrow:      row number. default is 0 (the first row) | 
|---|
| 3510 | uselinefinder: use sd.linefinder() to flag out line regions | 
|---|
| 3511 | default is True. | 
|---|
| 3512 | edge:           an optional number of channel to drop at | 
|---|
| 3513 | the edge of spectrum. If only one value is | 
|---|
| 3514 | specified, the same number will be dropped | 
|---|
| 3515 | from both sides of the spectrum. Default | 
|---|
| 3516 | is to keep all channels. Nested tuples | 
|---|
| 3517 | represent individual edge selection for | 
|---|
| 3518 | different IFs (a number of spectral channels | 
|---|
| 3519 | can be different) | 
|---|
| 3520 | default is (0, 0). | 
|---|
| 3521 | threshold:      the threshold used by line finder. It is | 
|---|
| 3522 | better to keep it large as only strong lines | 
|---|
| 3523 | affect the baseline solution. | 
|---|
| 3524 | default is 3. | 
|---|
| 3525 | chan_avg_limit: a maximum number of consequtive spectral | 
|---|
| 3526 | channels to average during the search of | 
|---|
| 3527 | weak and broad lines. The default is no | 
|---|
| 3528 | averaging (and no search for weak lines). | 
|---|
| 3529 | If such lines can affect the fitted baseline | 
|---|
| 3530 | (e.g. a high order polynomial is fitted), | 
|---|
| 3531 | increase this parameter (usually values up | 
|---|
| 3532 | to 8 are reasonable). Most users of this | 
|---|
| 3533 | method should find the default value sufficient. | 
|---|
| 3534 | default is 1. | 
|---|
| 3535 |  | 
|---|
| 3536 | Example: | 
|---|
| 3537 | aic = scan.calc_aic(blfunc='chebyshev', order=5, whichrow=0) | 
|---|
| 3538 | """ | 
|---|
| 3539 |  | 
|---|
| 3540 | try: | 
|---|
| 3541 | varlist = vars() | 
|---|
| 3542 |  | 
|---|
| 3543 | if value          is None: value          = 'aicc' | 
|---|
| 3544 | if blfunc         is None: blfunc         = 'chebyshev' | 
|---|
| 3545 | if order          is None: order          = 5 | 
|---|
| 3546 | if mask           is None: mask           = [] | 
|---|
| 3547 | if whichrow       is None: whichrow       = 0 | 
|---|
| 3548 | if uselinefinder  is None: uselinefinder  = True | 
|---|
| 3549 | if edge           is None: edge           = (0, 0) | 
|---|
| 3550 | if threshold      is None: threshold      = 3 | 
|---|
| 3551 | if chan_avg_limit is None: chan_avg_limit = 1 | 
|---|
| 3552 |  | 
|---|
| 3553 | return self._calc_aic(value, blfunc, order, mask, | 
|---|
| 3554 | whichrow, uselinefinder, edge, | 
|---|
| 3555 | threshold, chan_avg_limit) | 
|---|
| 3556 |  | 
|---|
| 3557 | except RuntimeError, e: | 
|---|
| 3558 | raise_fitting_failure_exception(e) | 
|---|
| 3559 |  | 
|---|
| 3560 | @asaplog_post_dec | 
|---|
| 3561 | def sinusoid_baseline(self, mask=None, applyfft=None, | 
|---|
| 3562 | fftmethod=None, fftthresh=None, | 
|---|
| 3563 | addwn=None, rejwn=None, | 
|---|
| 3564 | insitu=None, | 
|---|
| 3565 | clipthresh=None, clipniter=None, | 
|---|
| 3566 | plot=None, | 
|---|
| 3567 | getresidual=None, | 
|---|
| 3568 | showprogress=None, minnrow=None, | 
|---|
| 3569 | outlog=None, | 
|---|
| 3570 | blfile=None, csvformat=None, | 
|---|
| 3571 | bltable=None): | 
|---|
| 3572 | """\ | 
|---|
| 3573 | Return a scan which has been baselined (all rows) with sinusoidal | 
|---|
| 3574 | functions. | 
|---|
| 3575 |  | 
|---|
| 3576 | Parameters: | 
|---|
| 3577 | mask:          an optional mask | 
|---|
| 3578 | applyfft:      if True use some method, such as FFT, to find | 
|---|
| 3579 | strongest sinusoidal components in the wavenumber | 
|---|
| 3580 | domain to be used for baseline fitting. | 
|---|
| 3581 | default is True. | 
|---|
| 3582 | fftmethod:     method to find the strong sinusoidal components. | 
|---|
| 3583 | now only 'fft' is available and it is the default. | 
|---|
| 3584 | fftthresh:     the threshold to select wave numbers to be used for | 
|---|
| 3585 | fitting from the distribution of amplitudes in the | 
|---|
| 3586 | wavenumber domain. | 
|---|
| 3587 | both float and string values accepted. | 
|---|
| 3588 | given a float value, the unit is set to sigma. | 
|---|
| 3589 | for string values, allowed formats include: | 
|---|
| 3590 | 'xsigma' or 'x' (= x-sigma level. e.g., | 
|---|
| 3591 | '3sigma'), or | 
|---|
| 3592 | 'topx' (= the x strongest ones, e.g. 'top5'). | 
|---|
| 3593 | default is 3.0 (unit: sigma). | 
|---|
| 3594 | addwn:         the additional wave numbers to be used for fitting. | 
|---|
| 3595 | list or integer value is accepted to specify every | 
|---|
| 3596 | wave numbers. also string value can be used in case | 
|---|
| 3597 | you need to specify wave numbers in a certain range, | 
|---|
| 3598 | e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b), | 
|---|
| 3599 | '<a'  (= 0,1,...,a-2,a-1), | 
|---|
| 3600 | '>=a' (= a, a+1, ... up to the maximum wave | 
|---|
| 3601 | number corresponding to the Nyquist | 
|---|
| 3602 | frequency for the case of FFT). | 
|---|
| 3603 | default is [0]. | 
|---|
| 3604 | rejwn:         the wave numbers NOT to be used for fitting. | 
|---|
| 3605 | can be set just as addwn but has higher priority: | 
|---|
| 3606 | wave numbers which are specified both in addwn | 
|---|
| 3607 | and rejwn will NOT be used. default is []. | 
|---|
| 3608 | insitu:        if False a new scantable is returned. | 
|---|
| 3609 | Otherwise, the scaling is done in-situ | 
|---|
| 3610 | The default is taken from .asaprc (False) | 
|---|
| 3611 | clipthresh:    Clipping threshold. (default is 3.0, unit: sigma) | 
|---|
| 3612 | clipniter:     maximum number of iteration of 'clipthresh'-sigma | 
|---|
| 3613 | clipping (default is 0) | 
|---|
| 3614 | plot:      *** CURRENTLY UNAVAILABLE, ALWAYS FALSE *** | 
|---|
| 3615 | plot the fit and the residual. In this each | 
|---|
| 3616 | indivual fit has to be approved, by typing 'y' | 
|---|
| 3617 | or 'n' | 
|---|
| 3618 | getresidual:   if False, returns best-fit values instead of | 
|---|
| 3619 | residual. (default is True) | 
|---|
| 3620 | showprogress:  show progress status for large data. | 
|---|
| 3621 | default is True. | 
|---|
| 3622 | minnrow:       minimum number of input spectra to show. | 
|---|
| 3623 | default is 1000. | 
|---|
| 3624 | outlog:        Output the coefficients of the best-fit | 
|---|
| 3625 | function to logger (default is False) | 
|---|
| 3626 | blfile:        Name of a text file in which the best-fit | 
|---|
| 3627 | parameter values to be written | 
|---|
| 3628 | (default is '': no file/logger output) | 
|---|
| 3629 | csvformat:     if True blfile is csv-formatted, default is False. | 
|---|
| 3630 | bltable:       name of a baseline table where fitting results | 
|---|
| 3631 | (coefficients, rms, etc.) are to be written. | 
|---|
| 3632 | if given, fitting results will NOT be output to | 
|---|
| 3633 | scantable (insitu=True) or None will be | 
|---|
| 3634 | returned (insitu=False). | 
|---|
| 3635 | (default is "": no table output) | 
|---|
| 3636 |  | 
|---|
| 3637 | Example: | 
|---|
| 3638 | # return a scan baselined by a combination of sinusoidal curves | 
|---|
| 3639 | # having wave numbers in spectral window up to 10, | 
|---|
| 3640 | # also with 3-sigma clipping, iteration up to 4 times | 
|---|
| 3641 | bscan = scan.sinusoid_baseline(addwn='<=10',clipthresh=3.0,clipniter=4) | 
|---|
| 3642 |  | 
|---|
| 3643 | Note: | 
|---|
| 3644 | The best-fit parameter values output in logger and/or blfile are now | 
|---|
| 3645 | based on specunit of 'channel'. | 
|---|
| 3646 | """ | 
|---|
| 3647 |  | 
|---|
| 3648 | try: | 
|---|
| 3649 | varlist = vars() | 
|---|
| 3650 |  | 
|---|
| 3651 | if insitu is None: insitu = rcParams['insitu'] | 
|---|
| 3652 | if insitu: | 
|---|
| 3653 | workscan = self | 
|---|
| 3654 | else: | 
|---|
| 3655 | workscan = self.copy() | 
|---|
| 3656 |  | 
|---|
| 3657 | if mask          is None: mask          = [] | 
|---|
| 3658 | if applyfft      is None: applyfft      = True | 
|---|
| 3659 | if fftmethod     is None: fftmethod     = 'fft' | 
|---|
| 3660 | if fftthresh     is None: fftthresh     = 3.0 | 
|---|
| 3661 | if addwn         is None: addwn         = [0] | 
|---|
| 3662 | if rejwn         is None: rejwn         = [] | 
|---|
| 3663 | if clipthresh    is None: clipthresh    = 3.0 | 
|---|
| 3664 | if clipniter     is None: clipniter     = 0 | 
|---|
| 3665 | if plot          is None: plot          = False | 
|---|
| 3666 | if getresidual   is None: getresidual   = True | 
|---|
| 3667 | if showprogress  is None: showprogress  = True | 
|---|
| 3668 | if minnrow       is None: minnrow       = 1000 | 
|---|
| 3669 | if outlog        is None: outlog        = False | 
|---|
| 3670 | if blfile        is None: blfile        = '' | 
|---|
| 3671 | if csvformat     is None: csvformat     = False | 
|---|
| 3672 | if bltable       is None: bltable       = '' | 
|---|
| 3673 |  | 
|---|
| 3674 | sapplyfft = 'true' if applyfft else 'false' | 
|---|
| 3675 | fftinfo = ','.join([sapplyfft, fftmethod.lower(), str(fftthresh).lower()]) | 
|---|
| 3676 |  | 
|---|
| 3677 | scsvformat = 'T' if csvformat else 'F' | 
|---|
| 3678 |  | 
|---|
| 3679 | #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method. | 
|---|
| 3680 | workscan._sinusoid_baseline(mask, | 
|---|
| 3681 | fftinfo, | 
|---|
| 3682 | #applyfft, fftmethod.lower(), | 
|---|
| 3683 | #str(fftthresh).lower(), | 
|---|
| 3684 | workscan._parse_wn(addwn), | 
|---|
| 3685 | workscan._parse_wn(rejwn), | 
|---|
| 3686 | clipthresh, clipniter, | 
|---|
| 3687 | getresidual, | 
|---|
| 3688 | pack_progress_params(showprogress, | 
|---|
| 3689 | minnrow), | 
|---|
| 3690 | outlog, scsvformat+blfile, | 
|---|
| 3691 | bltable) | 
|---|
| 3692 | workscan._add_history('sinusoid_baseline', varlist) | 
|---|
| 3693 |  | 
|---|
| 3694 | if bltable == '': | 
|---|
| 3695 | if insitu: | 
|---|
| 3696 | self._assign(workscan) | 
|---|
| 3697 | else: | 
|---|
| 3698 | return workscan | 
|---|
| 3699 | else: | 
|---|
| 3700 | if not insitu: | 
|---|
| 3701 | return None | 
|---|
| 3702 |  | 
|---|
| 3703 | except RuntimeError, e: | 
|---|
| 3704 | raise_fitting_failure_exception(e) | 
|---|
| 3705 |  | 
|---|
| 3706 |  | 
|---|
| 3707 | @asaplog_post_dec | 
|---|
| 3708 | def auto_sinusoid_baseline(self, mask=None, applyfft=None, | 
|---|
| 3709 | fftmethod=None, fftthresh=None, | 
|---|
| 3710 | addwn=None, rejwn=None, | 
|---|
| 3711 | insitu=None, | 
|---|
| 3712 | clipthresh=None, clipniter=None, | 
|---|
| 3713 | edge=None, threshold=None, chan_avg_limit=None, | 
|---|
| 3714 | plot=None, | 
|---|
| 3715 | getresidual=None, | 
|---|
| 3716 | showprogress=None, minnrow=None, | 
|---|
| 3717 | outlog=None, | 
|---|
| 3718 | blfile=None, csvformat=None, | 
|---|
| 3719 | bltable=None): | 
|---|
| 3720 | """\ | 
|---|
| 3721 | Return a scan which has been baselined (all rows) with sinusoidal | 
|---|
| 3722 | functions. | 
|---|
| 3723 | Spectral lines are detected first using linefinder and masked out | 
|---|
| 3724 | to avoid them affecting the baseline solution. | 
|---|
| 3725 |  | 
|---|
| 3726 | Parameters: | 
|---|
| 3727 | mask:           an optional mask retreived from scantable | 
|---|
| 3728 | applyfft:       if True use some method, such as FFT, to find | 
|---|
| 3729 | strongest sinusoidal components in the wavenumber | 
|---|
| 3730 | domain to be used for baseline fitting. | 
|---|
| 3731 | default is True. | 
|---|
| 3732 | fftmethod:      method to find the strong sinusoidal components. | 
|---|
| 3733 | now only 'fft' is available and it is the default. | 
|---|
| 3734 | fftthresh:      the threshold to select wave numbers to be used for | 
|---|
| 3735 | fitting from the distribution of amplitudes in the | 
|---|
| 3736 | wavenumber domain. | 
|---|
| 3737 | both float and string values accepted. | 
|---|
| 3738 | given a float value, the unit is set to sigma. | 
|---|
| 3739 | for string values, allowed formats include: | 
|---|
| 3740 | 'xsigma' or 'x' (= x-sigma level. e.g., | 
|---|
| 3741 | '3sigma'), or | 
|---|
| 3742 | 'topx' (= the x strongest ones, e.g. 'top5'). | 
|---|
| 3743 | default is 3.0 (unit: sigma). | 
|---|
| 3744 | addwn:          the additional wave numbers to be used for fitting. | 
|---|
| 3745 | list or integer value is accepted to specify every | 
|---|
| 3746 | wave numbers. also string value can be used in case | 
|---|
| 3747 | you need to specify wave numbers in a certain range, | 
|---|
| 3748 | e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b), | 
|---|
| 3749 | '<a'  (= 0,1,...,a-2,a-1), | 
|---|
| 3750 | '>=a' (= a, a+1, ... up to the maximum wave | 
|---|
| 3751 | number corresponding to the Nyquist | 
|---|
| 3752 | frequency for the case of FFT). | 
|---|
| 3753 | default is [0]. | 
|---|
| 3754 | rejwn:          the wave numbers NOT to be used for fitting. | 
|---|
| 3755 | can be set just as addwn but has higher priority: | 
|---|
| 3756 | wave numbers which are specified both in addwn | 
|---|
| 3757 | and rejwn will NOT be used. default is []. | 
|---|
| 3758 | insitu:         if False a new scantable is returned. | 
|---|
| 3759 | Otherwise, the scaling is done in-situ | 
|---|
| 3760 | The default is taken from .asaprc (False) | 
|---|
| 3761 | clipthresh:     Clipping threshold. (default is 3.0, unit: sigma) | 
|---|
| 3762 | clipniter:      maximum number of iteration of 'clipthresh'-sigma | 
|---|
| 3763 | clipping (default is 0) | 
|---|
| 3764 | edge:           an optional number of channel to drop at | 
|---|
| 3765 | the edge of spectrum. If only one value is | 
|---|
| 3766 | specified, the same number will be dropped | 
|---|
| 3767 | from both sides of the spectrum. Default | 
|---|
| 3768 | is to keep all channels. Nested tuples | 
|---|
| 3769 | represent individual edge selection for | 
|---|
| 3770 | different IFs (a number of spectral channels | 
|---|
| 3771 | can be different) | 
|---|
| 3772 | threshold:      the threshold used by line finder. It is | 
|---|
| 3773 | better to keep it large as only strong lines | 
|---|
| 3774 | affect the baseline solution. | 
|---|
| 3775 | chan_avg_limit: a maximum number of consequtive spectral | 
|---|
| 3776 | channels to average during the search of | 
|---|
| 3777 | weak and broad lines. The default is no | 
|---|
| 3778 | averaging (and no search for weak lines). | 
|---|
| 3779 | If such lines can affect the fitted baseline | 
|---|
| 3780 | (e.g. a high order polynomial is fitted), | 
|---|
| 3781 | increase this parameter (usually values up | 
|---|
| 3782 | to 8 are reasonable). Most users of this | 
|---|
| 3783 | method should find the default value sufficient. | 
|---|
| 3784 | plot:       *** CURRENTLY UNAVAILABLE, ALWAYS FALSE *** | 
|---|
| 3785 | plot the fit and the residual. In this each | 
|---|
| 3786 | indivual fit has to be approved, by typing 'y' | 
|---|
| 3787 | or 'n' | 
|---|
| 3788 | getresidual:    if False, returns best-fit values instead of | 
|---|
| 3789 | residual. (default is True) | 
|---|
| 3790 | showprogress:   show progress status for large data. | 
|---|
| 3791 | default is True. | 
|---|
| 3792 | minnrow:        minimum number of input spectra to show. | 
|---|
| 3793 | default is 1000. | 
|---|
| 3794 | outlog:         Output the coefficients of the best-fit | 
|---|
| 3795 | function to logger (default is False) | 
|---|
| 3796 | blfile:         Name of a text file in which the best-fit | 
|---|
| 3797 | parameter values to be written | 
|---|
| 3798 | (default is "": no file/logger output) | 
|---|
| 3799 | csvformat:      if True blfile is csv-formatted, default is False. | 
|---|
| 3800 | bltable:        name of a baseline table where fitting results | 
|---|
| 3801 | (coefficients, rms, etc.) are to be written. | 
|---|
| 3802 | if given, fitting results will NOT be output to | 
|---|
| 3803 | scantable (insitu=True) or None will be | 
|---|
| 3804 | returned (insitu=False). | 
|---|
| 3805 | (default is "": no table output) | 
|---|
| 3806 |  | 
|---|
| 3807 | Example: | 
|---|
| 3808 | bscan = scan.auto_sinusoid_baseline(addwn='<=10', insitu=False) | 
|---|
| 3809 |  | 
|---|
| 3810 | Note: | 
|---|
| 3811 | The best-fit parameter values output in logger and/or blfile are now | 
|---|
| 3812 | based on specunit of 'channel'. | 
|---|
| 3813 | """ | 
|---|
| 3814 |  | 
|---|
| 3815 | try: | 
|---|
| 3816 | varlist = vars() | 
|---|
| 3817 |  | 
|---|
| 3818 | if insitu is None: insitu = rcParams['insitu'] | 
|---|
| 3819 | if insitu: | 
|---|
| 3820 | workscan = self | 
|---|
| 3821 | else: | 
|---|
| 3822 | workscan = self.copy() | 
|---|
| 3823 |  | 
|---|
| 3824 | if mask           is None: mask           = [] | 
|---|
| 3825 | if applyfft       is None: applyfft       = True | 
|---|
| 3826 | if fftmethod      is None: fftmethod      = 'fft' | 
|---|
| 3827 | if fftthresh      is None: fftthresh      = 3.0 | 
|---|
| 3828 | if addwn          is None: addwn          = [0] | 
|---|
| 3829 | if rejwn          is None: rejwn          = [] | 
|---|
| 3830 | if clipthresh     is None: clipthresh     = 3.0 | 
|---|
| 3831 | if clipniter      is None: clipniter      = 0 | 
|---|
| 3832 | if edge           is None: edge           = (0,0) | 
|---|
| 3833 | if threshold      is None: threshold      = 3 | 
|---|
| 3834 | if chan_avg_limit is None: chan_avg_limit = 1 | 
|---|
| 3835 | if plot           is None: plot           = False | 
|---|
| 3836 | if getresidual    is None: getresidual    = True | 
|---|
| 3837 | if showprogress   is None: showprogress   = True | 
|---|
| 3838 | if minnrow        is None: minnrow        = 1000 | 
|---|
| 3839 | if outlog         is None: outlog         = False | 
|---|
| 3840 | if blfile         is None: blfile         = '' | 
|---|
| 3841 | if csvformat      is None: csvformat      = False | 
|---|
| 3842 | if bltable        is None: bltable        = '' | 
|---|
| 3843 |  | 
|---|
| 3844 | sapplyfft = 'true' if applyfft else 'false' | 
|---|
| 3845 | fftinfo = ','.join([sapplyfft, fftmethod.lower(), str(fftthresh).lower()]) | 
|---|
| 3846 |  | 
|---|
| 3847 | scsvformat = 'T' if csvformat else 'F' | 
|---|
| 3848 |  | 
|---|
| 3849 | #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method. | 
|---|
| 3850 | workscan._auto_sinusoid_baseline(mask, | 
|---|
| 3851 | fftinfo, | 
|---|
| 3852 | workscan._parse_wn(addwn), | 
|---|
| 3853 | workscan._parse_wn(rejwn), | 
|---|
| 3854 | clipthresh, clipniter, | 
|---|
| 3855 | normalise_edge_param(edge), | 
|---|
| 3856 | threshold, chan_avg_limit, | 
|---|
| 3857 | getresidual, | 
|---|
| 3858 | pack_progress_params(showprogress, | 
|---|
| 3859 | minnrow), | 
|---|
| 3860 | outlog, scsvformat+blfile, bltable) | 
|---|
| 3861 | workscan._add_history("auto_sinusoid_baseline", varlist) | 
|---|
| 3862 |  | 
|---|
| 3863 | if bltable == '': | 
|---|
| 3864 | if insitu: | 
|---|
| 3865 | self._assign(workscan) | 
|---|
| 3866 | else: | 
|---|
| 3867 | return workscan | 
|---|
| 3868 | else: | 
|---|
| 3869 | if not insitu: | 
|---|
| 3870 | return None | 
|---|
| 3871 |  | 
|---|
| 3872 | except RuntimeError, e: | 
|---|
| 3873 | raise_fitting_failure_exception(e) | 
|---|
| 3874 |  | 
|---|
| 3875 | @asaplog_post_dec | 
|---|
| 3876 | def cspline_baseline(self, mask=None, npiece=None, insitu=None, | 
|---|
| 3877 | clipthresh=None, clipniter=None, plot=None, | 
|---|
| 3878 | getresidual=None, showprogress=None, minnrow=None, | 
|---|
| 3879 | outlog=None, blfile=None, csvformat=None, | 
|---|
| 3880 | bltable=None): | 
|---|
| 3881 | """\ | 
|---|
| 3882 | Return a scan which has been baselined (all rows) by cubic spline | 
|---|
| 3883 | function (piecewise cubic polynomial). | 
|---|
| 3884 |  | 
|---|
| 3885 | Parameters: | 
|---|
| 3886 | mask:         An optional mask | 
|---|
| 3887 | npiece:       Number of pieces. (default is 2) | 
|---|
| 3888 | insitu:       If False a new scantable is returned. | 
|---|
| 3889 | Otherwise, the scaling is done in-situ | 
|---|
| 3890 | The default is taken from .asaprc (False) | 
|---|
| 3891 | clipthresh:   Clipping threshold. (default is 3.0, unit: sigma) | 
|---|
| 3892 | clipniter:    maximum number of iteration of 'clipthresh'-sigma | 
|---|
| 3893 | clipping (default is 0) | 
|---|
| 3894 | plot:     *** CURRENTLY UNAVAILABLE, ALWAYS FALSE *** | 
|---|
| 3895 | plot the fit and the residual. In this each | 
|---|
| 3896 | indivual fit has to be approved, by typing 'y' | 
|---|
| 3897 | or 'n' | 
|---|
| 3898 | getresidual:  if False, returns best-fit values instead of | 
|---|
| 3899 | residual. (default is True) | 
|---|
| 3900 | showprogress: show progress status for large data. | 
|---|
| 3901 | default is True. | 
|---|
| 3902 | minnrow:      minimum number of input spectra to show. | 
|---|
| 3903 | default is 1000. | 
|---|
| 3904 | outlog:       Output the coefficients of the best-fit | 
|---|
| 3905 | function to logger (default is False) | 
|---|
| 3906 | blfile:       Name of a text file in which the best-fit | 
|---|
| 3907 | parameter values to be written | 
|---|
| 3908 | (default is "": no file/logger output) | 
|---|
| 3909 | csvformat:    if True blfile is csv-formatted, default is False. | 
|---|
| 3910 | bltable:      name of a baseline table where fitting results | 
|---|
| 3911 | (coefficients, rms, etc.) are to be written. | 
|---|
| 3912 | if given, fitting results will NOT be output to | 
|---|
| 3913 | scantable (insitu=True) or None will be | 
|---|
| 3914 | returned (insitu=False). | 
|---|
| 3915 | (default is "": no table output) | 
|---|
| 3916 |  | 
|---|
| 3917 | Example: | 
|---|
| 3918 | # return a scan baselined by a cubic spline consisting of 2 pieces | 
|---|
| 3919 | # (i.e., 1 internal knot), | 
|---|
| 3920 | # also with 3-sigma clipping, iteration up to 4 times | 
|---|
| 3921 | bscan = scan.cspline_baseline(npiece=2,clipthresh=3.0,clipniter=4) | 
|---|
| 3922 |  | 
|---|
| 3923 | Note: | 
|---|
| 3924 | The best-fit parameter values output in logger and/or blfile are now | 
|---|
| 3925 | based on specunit of 'channel'. | 
|---|
| 3926 | """ | 
|---|
| 3927 |  | 
|---|
| 3928 | try: | 
|---|
| 3929 | varlist = vars() | 
|---|
| 3930 |  | 
|---|
| 3931 | if insitu is None: insitu = rcParams['insitu'] | 
|---|
| 3932 | if insitu: | 
|---|
| 3933 | workscan = self | 
|---|
| 3934 | else: | 
|---|
| 3935 | workscan = self.copy() | 
|---|
| 3936 |  | 
|---|
| 3937 | if mask         is None: mask         = [] | 
|---|
| 3938 | if npiece       is None: npiece       = 2 | 
|---|
| 3939 | if clipthresh   is None: clipthresh   = 3.0 | 
|---|
| 3940 | if clipniter    is None: clipniter    = 0 | 
|---|
| 3941 | if plot         is None: plot         = False | 
|---|
| 3942 | if getresidual  is None: getresidual  = True | 
|---|
| 3943 | if showprogress is None: showprogress = True | 
|---|
| 3944 | if minnrow      is None: minnrow      = 1000 | 
|---|
| 3945 | if outlog       is None: outlog       = False | 
|---|
| 3946 | if blfile       is None: blfile       = '' | 
|---|
| 3947 | if csvformat    is None: csvformat    = False | 
|---|
| 3948 | if bltable      is None: bltable      = '' | 
|---|
| 3949 |  | 
|---|
| 3950 | scsvformat = 'T' if csvformat else 'F' | 
|---|
| 3951 |  | 
|---|
| 3952 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method. | 
|---|
| 3953 | workscan._cspline_baseline(mask, npiece, | 
|---|
| 3954 | clipthresh, clipniter, | 
|---|
| 3955 | getresidual, | 
|---|
| 3956 | pack_progress_params(showprogress, | 
|---|
| 3957 | minnrow), | 
|---|
| 3958 | outlog, scsvformat+blfile, | 
|---|
| 3959 | bltable) | 
|---|
| 3960 | workscan._add_history("cspline_baseline", varlist) | 
|---|
| 3961 |  | 
|---|
| 3962 | if bltable == '': | 
|---|
| 3963 | if insitu: | 
|---|
| 3964 | self._assign(workscan) | 
|---|
| 3965 | else: | 
|---|
| 3966 | return workscan | 
|---|
| 3967 | else: | 
|---|
| 3968 | if not insitu: | 
|---|
| 3969 | return None | 
|---|
| 3970 |  | 
|---|
| 3971 | except RuntimeError, e: | 
|---|
| 3972 | raise_fitting_failure_exception(e) | 
|---|
| 3973 |  | 
|---|
| 3974 | @asaplog_post_dec | 
|---|
| 3975 | def auto_cspline_baseline(self, mask=None, npiece=None, insitu=None, | 
|---|
| 3976 | clipthresh=None, clipniter=None, | 
|---|
| 3977 | edge=None, threshold=None, chan_avg_limit=None, | 
|---|
| 3978 | getresidual=None, plot=None, | 
|---|
| 3979 | showprogress=None, minnrow=None, outlog=None, | 
|---|
| 3980 | blfile=None, csvformat=None, bltable=None): | 
|---|
| 3981 | """\ | 
|---|
| 3982 | Return a scan which has been baselined (all rows) by cubic spline | 
|---|
| 3983 | function (piecewise cubic polynomial). | 
|---|
| 3984 | Spectral lines are detected first using linefinder and masked out | 
|---|
| 3985 | to avoid them affecting the baseline solution. | 
|---|
| 3986 |  | 
|---|
| 3987 | Parameters: | 
|---|
| 3988 | mask:           an optional mask retreived from scantable | 
|---|
| 3989 | npiece:         Number of pieces. (default is 2) | 
|---|
| 3990 | insitu:         if False a new scantable is returned. | 
|---|
| 3991 | Otherwise, the scaling is done in-situ | 
|---|
| 3992 | The default is taken from .asaprc (False) | 
|---|
| 3993 | clipthresh:     Clipping threshold. (default is 3.0, unit: sigma) | 
|---|
| 3994 | clipniter:      maximum number of iteration of 'clipthresh'-sigma | 
|---|
| 3995 | clipping (default is 0) | 
|---|
| 3996 | edge:           an optional number of channel to drop at | 
|---|
| 3997 | the edge of spectrum. If only one value is | 
|---|
| 3998 | specified, the same number will be dropped | 
|---|
| 3999 | from both sides of the spectrum. Default | 
|---|
| 4000 | is to keep all channels. Nested tuples | 
|---|
| 4001 | represent individual edge selection for | 
|---|
| 4002 | different IFs (a number of spectral channels | 
|---|
| 4003 | can be different) | 
|---|
| 4004 | threshold:      the threshold used by line finder. It is | 
|---|
| 4005 | better to keep it large as only strong lines | 
|---|
| 4006 | affect the baseline solution. | 
|---|
| 4007 | chan_avg_limit: a maximum number of consequtive spectral | 
|---|
| 4008 | channels to average during the search of | 
|---|
| 4009 | weak and broad lines. The default is no | 
|---|
| 4010 | averaging (and no search for weak lines). | 
|---|
| 4011 | If such lines can affect the fitted baseline | 
|---|
| 4012 | (e.g. a high order polynomial is fitted), | 
|---|
| 4013 | increase this parameter (usually values up | 
|---|
| 4014 | to 8 are reasonable). Most users of this | 
|---|
| 4015 | method should find the default value sufficient. | 
|---|
| 4016 | plot:       *** CURRENTLY UNAVAILABLE, ALWAYS FALSE *** | 
|---|
| 4017 | plot the fit and the residual. In this each | 
|---|
| 4018 | indivual fit has to be approved, by typing 'y' | 
|---|
| 4019 | or 'n' | 
|---|
| 4020 | getresidual:    if False, returns best-fit values instead of | 
|---|
| 4021 | residual. (default is True) | 
|---|
| 4022 | showprogress:   show progress status for large data. | 
|---|
| 4023 | default is True. | 
|---|
| 4024 | minnrow:        minimum number of input spectra to show. | 
|---|
| 4025 | default is 1000. | 
|---|
| 4026 | outlog:         Output the coefficients of the best-fit | 
|---|
| 4027 | function to logger (default is False) | 
|---|
| 4028 | blfile:         Name of a text file in which the best-fit | 
|---|
| 4029 | parameter values to be written | 
|---|
| 4030 | (default is "": no file/logger output) | 
|---|
| 4031 | csvformat:      if True blfile is csv-formatted, default is False. | 
|---|
| 4032 | bltable:        name of a baseline table where fitting results | 
|---|
| 4033 | (coefficients, rms, etc.) are to be written. | 
|---|
| 4034 | if given, fitting results will NOT be output to | 
|---|
| 4035 | scantable (insitu=True) or None will be | 
|---|
| 4036 | returned (insitu=False). | 
|---|
| 4037 | (default is "": no table output) | 
|---|
| 4038 |  | 
|---|
| 4039 | Example: | 
|---|
| 4040 | bscan = scan.auto_cspline_baseline(npiece=3, insitu=False) | 
|---|
| 4041 |  | 
|---|
| 4042 | Note: | 
|---|
| 4043 | The best-fit parameter values output in logger and/or blfile are now | 
|---|
| 4044 | based on specunit of 'channel'. | 
|---|
| 4045 | """ | 
|---|
| 4046 |  | 
|---|
| 4047 | try: | 
|---|
| 4048 | varlist = vars() | 
|---|
| 4049 |  | 
|---|
| 4050 | if insitu is None: insitu = rcParams['insitu'] | 
|---|
| 4051 | if insitu: | 
|---|
| 4052 | workscan = self | 
|---|
| 4053 | else: | 
|---|
| 4054 | workscan = self.copy() | 
|---|
| 4055 |  | 
|---|
| 4056 | #if mask           is None: mask           = [True for i in xrange(workscan.nchan())] | 
|---|
| 4057 | if mask           is None: mask           = [] | 
|---|
| 4058 | if npiece         is None: npiece         = 2 | 
|---|
| 4059 | if clipthresh     is None: clipthresh     = 3.0 | 
|---|
| 4060 | if clipniter      is None: clipniter      = 0 | 
|---|
| 4061 | if edge           is None: edge           = (0, 0) | 
|---|
| 4062 | if threshold      is None: threshold      = 3 | 
|---|
| 4063 | if chan_avg_limit is None: chan_avg_limit = 1 | 
|---|
| 4064 | if plot           is None: plot           = False | 
|---|
| 4065 | if getresidual    is None: getresidual    = True | 
|---|
| 4066 | if showprogress   is None: showprogress   = True | 
|---|
| 4067 | if minnrow        is None: minnrow        = 1000 | 
|---|
| 4068 | if outlog         is None: outlog         = False | 
|---|
| 4069 | if blfile         is None: blfile         = '' | 
|---|
| 4070 | if csvformat      is None: csvformat      = False | 
|---|
| 4071 | if bltable        is None: bltable        = '' | 
|---|
| 4072 |  | 
|---|
| 4073 | scsvformat = 'T' if csvformat else 'F' | 
|---|
| 4074 |  | 
|---|
| 4075 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method. | 
|---|
| 4076 | workscan._auto_cspline_baseline(mask, npiece, | 
|---|
| 4077 | clipthresh, clipniter, | 
|---|
| 4078 | normalise_edge_param(edge), | 
|---|
| 4079 | threshold, | 
|---|
| 4080 | chan_avg_limit, getresidual, | 
|---|
| 4081 | pack_progress_params(showprogress, | 
|---|
| 4082 | minnrow), | 
|---|
| 4083 | outlog, | 
|---|
| 4084 | scsvformat+blfile, | 
|---|
| 4085 | bltable) | 
|---|
| 4086 | workscan._add_history("auto_cspline_baseline", varlist) | 
|---|
| 4087 |  | 
|---|
| 4088 | if bltable == '': | 
|---|
| 4089 | if insitu: | 
|---|
| 4090 | self._assign(workscan) | 
|---|
| 4091 | else: | 
|---|
| 4092 | return workscan | 
|---|
| 4093 | else: | 
|---|
| 4094 | if not insitu: | 
|---|
| 4095 | return None | 
|---|
| 4096 |  | 
|---|
| 4097 | except RuntimeError, e: | 
|---|
| 4098 | raise_fitting_failure_exception(e) | 
|---|
| 4099 |  | 
|---|
| 4100 | @asaplog_post_dec | 
|---|
| 4101 | def chebyshev_baseline(self, mask=None, order=None, insitu=None, | 
|---|
| 4102 | clipthresh=None, clipniter=None, plot=None, | 
|---|
| 4103 | getresidual=None, showprogress=None, minnrow=None, | 
|---|
| 4104 | outlog=None, blfile=None, csvformat=None, | 
|---|
| 4105 | bltable=None): | 
|---|
| 4106 | """\ | 
|---|
| 4107 | Return a scan which has been baselined (all rows) by Chebyshev polynomials. | 
|---|
| 4108 |  | 
|---|
| 4109 | Parameters: | 
|---|
| 4110 | mask:         An optional mask | 
|---|
| 4111 | order:        the maximum order of Chebyshev polynomial (default is 5) | 
|---|
| 4112 | insitu:       If False a new scantable is returned. | 
|---|
| 4113 | Otherwise, the scaling is done in-situ | 
|---|
| 4114 | The default is taken from .asaprc (False) | 
|---|
| 4115 | clipthresh:   Clipping threshold. (default is 3.0, unit: sigma) | 
|---|
| 4116 | clipniter:    maximum number of iteration of 'clipthresh'-sigma | 
|---|
| 4117 | clipping (default is 0) | 
|---|
| 4118 | plot:     *** CURRENTLY UNAVAILABLE, ALWAYS FALSE *** | 
|---|
| 4119 | plot the fit and the residual. In this each | 
|---|
| 4120 | indivual fit has to be approved, by typing 'y' | 
|---|
| 4121 | or 'n' | 
|---|
| 4122 | getresidual:  if False, returns best-fit values instead of | 
|---|
| 4123 | residual. (default is True) | 
|---|
| 4124 | showprogress: show progress status for large data. | 
|---|
| 4125 | default is True. | 
|---|
| 4126 | minnrow:      minimum number of input spectra to show. | 
|---|
| 4127 | default is 1000. | 
|---|
| 4128 | outlog:       Output the coefficients of the best-fit | 
|---|
| 4129 | function to logger (default is False) | 
|---|
| 4130 | blfile:       Name of a text file in which the best-fit | 
|---|
| 4131 | parameter values to be written | 
|---|
| 4132 | (default is "": no file/logger output) | 
|---|
| 4133 | csvformat:    if True blfile is csv-formatted, default is False. | 
|---|
| 4134 | bltable:      name of a baseline table where fitting results | 
|---|
| 4135 | (coefficients, rms, etc.) are to be written. | 
|---|
| 4136 | if given, fitting results will NOT be output to | 
|---|
| 4137 | scantable (insitu=True) or None will be | 
|---|
| 4138 | returned (insitu=False). | 
|---|
| 4139 | (default is "": no table output) | 
|---|
| 4140 |  | 
|---|
| 4141 | Example: | 
|---|
| 4142 | # return a scan baselined by a cubic spline consisting of 2 pieces | 
|---|
| 4143 | # (i.e., 1 internal knot), | 
|---|
| 4144 | # also with 3-sigma clipping, iteration up to 4 times | 
|---|
| 4145 | bscan = scan.cspline_baseline(npiece=2,clipthresh=3.0,clipniter=4) | 
|---|
| 4146 |  | 
|---|
| 4147 | Note: | 
|---|
| 4148 | The best-fit parameter values output in logger and/or blfile are now | 
|---|
| 4149 | based on specunit of 'channel'. | 
|---|
| 4150 | """ | 
|---|
| 4151 |  | 
|---|
| 4152 | try: | 
|---|
| 4153 | varlist = vars() | 
|---|
| 4154 |  | 
|---|
| 4155 | if insitu is None: insitu = rcParams['insitu'] | 
|---|
| 4156 | if insitu: | 
|---|
| 4157 | workscan = self | 
|---|
| 4158 | else: | 
|---|
| 4159 | workscan = self.copy() | 
|---|
| 4160 |  | 
|---|
| 4161 | if mask         is None: mask         = [] | 
|---|
| 4162 | if order        is None: order        = 5 | 
|---|
| 4163 | if clipthresh   is None: clipthresh   = 3.0 | 
|---|
| 4164 | if clipniter    is None: clipniter    = 0 | 
|---|
| 4165 | if plot         is None: plot         = False | 
|---|
| 4166 | if getresidual  is None: getresidual  = True | 
|---|
| 4167 | if showprogress is None: showprogress = True | 
|---|
| 4168 | if minnrow      is None: minnrow      = 1000 | 
|---|
| 4169 | if outlog       is None: outlog       = False | 
|---|
| 4170 | if blfile       is None: blfile       = '' | 
|---|
| 4171 | if csvformat    is None: csvformat    = False | 
|---|
| 4172 | if bltable      is None: bltable      = '' | 
|---|
| 4173 |  | 
|---|
| 4174 | scsvformat = 'T' if csvformat else 'F' | 
|---|
| 4175 |  | 
|---|
| 4176 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method. | 
|---|
| 4177 | workscan._chebyshev_baseline(mask, order, | 
|---|
| 4178 | clipthresh, clipniter, | 
|---|
| 4179 | getresidual, | 
|---|
| 4180 | pack_progress_params(showprogress, | 
|---|
| 4181 | minnrow), | 
|---|
| 4182 | outlog, scsvformat+blfile, | 
|---|
| 4183 | bltable) | 
|---|
| 4184 | workscan._add_history("chebyshev_baseline", varlist) | 
|---|
| 4185 |  | 
|---|
| 4186 | if bltable == '': | 
|---|
| 4187 | if insitu: | 
|---|
| 4188 | self._assign(workscan) | 
|---|
| 4189 | else: | 
|---|
| 4190 | return workscan | 
|---|
| 4191 | else: | 
|---|
| 4192 | if not insitu: | 
|---|
| 4193 | return None | 
|---|
| 4194 |  | 
|---|
| 4195 | except RuntimeError, e: | 
|---|
| 4196 | raise_fitting_failure_exception(e) | 
|---|
| 4197 |  | 
|---|
| 4198 | @asaplog_post_dec | 
|---|
| 4199 | def auto_chebyshev_baseline(self, mask=None, order=None, insitu=None, | 
|---|
| 4200 | clipthresh=None, clipniter=None, | 
|---|
| 4201 | edge=None, threshold=None, chan_avg_limit=None, | 
|---|
| 4202 | getresidual=None, plot=None, | 
|---|
| 4203 | showprogress=None, minnrow=None, outlog=None, | 
|---|
| 4204 | blfile=None, csvformat=None, bltable=None): | 
|---|
| 4205 | """\ | 
|---|
| 4206 | Return a scan which has been baselined (all rows) by Chebyshev polynomials. | 
|---|
| 4207 | Spectral lines are detected first using linefinder and masked out | 
|---|
| 4208 | to avoid them affecting the baseline solution. | 
|---|
| 4209 |  | 
|---|
| 4210 | Parameters: | 
|---|
| 4211 | mask:           an optional mask retreived from scantable | 
|---|
| 4212 | order:          the maximum order of Chebyshev polynomial (default is 5) | 
|---|
| 4213 | insitu:         if False a new scantable is returned. | 
|---|
| 4214 | Otherwise, the scaling is done in-situ | 
|---|
| 4215 | The default is taken from .asaprc (False) | 
|---|
| 4216 | clipthresh:     Clipping threshold. (default is 3.0, unit: sigma) | 
|---|
| 4217 | clipniter:      maximum number of iteration of 'clipthresh'-sigma | 
|---|
| 4218 | clipping (default is 0) | 
|---|
| 4219 | edge:           an optional number of channel to drop at | 
|---|
| 4220 | the edge of spectrum. If only one value is | 
|---|
| 4221 | specified, the same number will be dropped | 
|---|
| 4222 | from both sides of the spectrum. Default | 
|---|
| 4223 | is to keep all channels. Nested tuples | 
|---|
| 4224 | represent individual edge selection for | 
|---|
| 4225 | different IFs (a number of spectral channels | 
|---|
| 4226 | can be different) | 
|---|
| 4227 | threshold:      the threshold used by line finder. It is | 
|---|
| 4228 | better to keep it large as only strong lines | 
|---|
| 4229 | affect the baseline solution. | 
|---|
| 4230 | chan_avg_limit: a maximum number of consequtive spectral | 
|---|
| 4231 | channels to average during the search of | 
|---|
| 4232 | weak and broad lines. The default is no | 
|---|
| 4233 | averaging (and no search for weak lines). | 
|---|
| 4234 | If such lines can affect the fitted baseline | 
|---|
| 4235 | (e.g. a high order polynomial is fitted), | 
|---|
| 4236 | increase this parameter (usually values up | 
|---|
| 4237 | to 8 are reasonable). Most users of this | 
|---|
| 4238 | method should find the default value sufficient. | 
|---|
| 4239 | plot:       *** CURRENTLY UNAVAILABLE, ALWAYS FALSE *** | 
|---|
| 4240 | plot the fit and the residual. In this each | 
|---|
| 4241 | indivual fit has to be approved, by typing 'y' | 
|---|
| 4242 | or 'n' | 
|---|
| 4243 | getresidual:    if False, returns best-fit values instead of | 
|---|
| 4244 | residual. (default is True) | 
|---|
| 4245 | showprogress:   show progress status for large data. | 
|---|
| 4246 | default is True. | 
|---|
| 4247 | minnrow:        minimum number of input spectra to show. | 
|---|
| 4248 | default is 1000. | 
|---|
| 4249 | outlog:         Output the coefficients of the best-fit | 
|---|
| 4250 | function to logger (default is False) | 
|---|
| 4251 | blfile:         Name of a text file in which the best-fit | 
|---|
| 4252 | parameter values to be written | 
|---|
| 4253 | (default is "": no file/logger output) | 
|---|
| 4254 | csvformat:      if True blfile is csv-formatted, default is False. | 
|---|
| 4255 | bltable:        name of a baseline table where fitting results | 
|---|
| 4256 | (coefficients, rms, etc.) are to be written. | 
|---|
| 4257 | if given, fitting results will NOT be output to | 
|---|
| 4258 | scantable (insitu=True) or None will be | 
|---|
| 4259 | returned (insitu=False). | 
|---|
| 4260 | (default is "": no table output) | 
|---|
| 4261 |  | 
|---|
| 4262 | Example: | 
|---|
| 4263 | bscan = scan.auto_cspline_baseline(npiece=3, insitu=False) | 
|---|
| 4264 |  | 
|---|
| 4265 | Note: | 
|---|
| 4266 | The best-fit parameter values output in logger and/or blfile are now | 
|---|
| 4267 | based on specunit of 'channel'. | 
|---|
| 4268 | """ | 
|---|
| 4269 |  | 
|---|
| 4270 | try: | 
|---|
| 4271 | varlist = vars() | 
|---|
| 4272 |  | 
|---|
| 4273 | if insitu is None: insitu = rcParams['insitu'] | 
|---|
| 4274 | if insitu: | 
|---|
| 4275 | workscan = self | 
|---|
| 4276 | else: | 
|---|
| 4277 | workscan = self.copy() | 
|---|
| 4278 |  | 
|---|
| 4279 | if mask           is None: mask           = [] | 
|---|
| 4280 | if order          is None: order          = 5 | 
|---|
| 4281 | if clipthresh     is None: clipthresh     = 3.0 | 
|---|
| 4282 | if clipniter      is None: clipniter      = 0 | 
|---|
| 4283 | if edge           is None: edge           = (0, 0) | 
|---|
| 4284 | if threshold      is None: threshold      = 3 | 
|---|
| 4285 | if chan_avg_limit is None: chan_avg_limit = 1 | 
|---|
| 4286 | if plot           is None: plot           = False | 
|---|
| 4287 | if getresidual    is None: getresidual    = True | 
|---|
| 4288 | if showprogress   is None: showprogress   = True | 
|---|
| 4289 | if minnrow        is None: minnrow        = 1000 | 
|---|
| 4290 | if outlog         is None: outlog         = False | 
|---|
| 4291 | if blfile         is None: blfile         = '' | 
|---|
| 4292 | if csvformat      is None: csvformat      = False | 
|---|
| 4293 | if bltable        is None: bltable        = '' | 
|---|
| 4294 |  | 
|---|
| 4295 | scsvformat = 'T' if csvformat else 'F' | 
|---|
| 4296 |  | 
|---|
| 4297 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method. | 
|---|
| 4298 | workscan._auto_chebyshev_baseline(mask, order, | 
|---|
| 4299 | clipthresh, clipniter, | 
|---|
| 4300 | normalise_edge_param(edge), | 
|---|
| 4301 | threshold, | 
|---|
| 4302 | chan_avg_limit, getresidual, | 
|---|
| 4303 | pack_progress_params(showprogress, | 
|---|
| 4304 | minnrow), | 
|---|
| 4305 | outlog, scsvformat+blfile, | 
|---|
| 4306 | bltable) | 
|---|
| 4307 | workscan._add_history("auto_chebyshev_baseline", varlist) | 
|---|
| 4308 |  | 
|---|
| 4309 | if bltable == '': | 
|---|
| 4310 | if insitu: | 
|---|
| 4311 | self._assign(workscan) | 
|---|
| 4312 | else: | 
|---|
| 4313 | return workscan | 
|---|
| 4314 | else: | 
|---|
| 4315 | if not insitu: | 
|---|
| 4316 | return None | 
|---|
| 4317 |  | 
|---|
| 4318 | except RuntimeError, e: | 
|---|
| 4319 | raise_fitting_failure_exception(e) | 
|---|
| 4320 |  | 
|---|
| 4321 | @asaplog_post_dec | 
|---|
| 4322 | def poly_baseline(self, mask=None, order=None, insitu=None, | 
|---|
| 4323 | clipthresh=None, clipniter=None, plot=None, | 
|---|
| 4324 | getresidual=None, showprogress=None, minnrow=None, | 
|---|
| 4325 | outlog=None, blfile=None, csvformat=None, | 
|---|
| 4326 | bltable=None): | 
|---|
| 4327 | """\ | 
|---|
| 4328 | Return a scan which has been baselined (all rows) by a polynomial. | 
|---|
| 4329 | Parameters: | 
|---|
| 4330 | mask:         an optional mask | 
|---|
| 4331 | order:        the order of the polynomial (default is 0) | 
|---|
| 4332 | insitu:       if False a new scantable is returned. | 
|---|
| 4333 | Otherwise, the scaling is done in-situ | 
|---|
| 4334 | The default is taken from .asaprc (False) | 
|---|
| 4335 | clipthresh:   Clipping threshold. (default is 3.0, unit: sigma) | 
|---|
| 4336 | clipniter:    maximum number of iteration of 'clipthresh'-sigma | 
|---|
| 4337 | clipping (default is 0) | 
|---|
| 4338 | plot:         plot the fit and the residual. In this each | 
|---|
| 4339 | indivual fit has to be approved, by typing 'y' | 
|---|
| 4340 | or 'n' | 
|---|
| 4341 | getresidual:  if False, returns best-fit values instead of | 
|---|
| 4342 | residual. (default is True) | 
|---|
| 4343 | showprogress: show progress status for large data. | 
|---|
| 4344 | default is True. | 
|---|
| 4345 | minnrow:      minimum number of input spectra to show. | 
|---|
| 4346 | default is 1000. | 
|---|
| 4347 | outlog:       Output the coefficients of the best-fit | 
|---|
| 4348 | function to logger (default is False) | 
|---|
| 4349 | blfile:       Name of a text file in which the best-fit | 
|---|
| 4350 | parameter values to be written | 
|---|
| 4351 | (default is "": no file/logger output) | 
|---|
| 4352 | csvformat:    if True blfile is csv-formatted, default is False. | 
|---|
| 4353 | bltable:      name of a baseline table where fitting results | 
|---|
| 4354 | (coefficients, rms, etc.) are to be written. | 
|---|
| 4355 | if given, fitting results will NOT be output to | 
|---|
| 4356 | scantable (insitu=True) or None will be | 
|---|
| 4357 | returned (insitu=False). | 
|---|
| 4358 | (default is "": no table output) | 
|---|
| 4359 |  | 
|---|
| 4360 | Example: | 
|---|
| 4361 | # return a scan baselined by a third order polynomial, | 
|---|
| 4362 | # not using a mask | 
|---|
| 4363 | bscan = scan.poly_baseline(order=3) | 
|---|
| 4364 | """ | 
|---|
| 4365 |  | 
|---|
| 4366 | try: | 
|---|
| 4367 | varlist = vars() | 
|---|
| 4368 |  | 
|---|
| 4369 | if insitu is None: | 
|---|
| 4370 | insitu = rcParams["insitu"] | 
|---|
| 4371 | if insitu: | 
|---|
| 4372 | workscan = self | 
|---|
| 4373 | else: | 
|---|
| 4374 | workscan = self.copy() | 
|---|
| 4375 |  | 
|---|
| 4376 | if mask         is None: mask         = [] | 
|---|
| 4377 | if order        is None: order        = 0 | 
|---|
| 4378 | if clipthresh   is None: clipthresh   = 3.0 | 
|---|
| 4379 | if clipniter    is None: clipniter    = 0 | 
|---|
| 4380 | if plot         is None: plot         = False | 
|---|
| 4381 | if getresidual  is None: getresidual  = True | 
|---|
| 4382 | if showprogress is None: showprogress = True | 
|---|
| 4383 | if minnrow      is None: minnrow      = 1000 | 
|---|
| 4384 | if outlog       is None: outlog       = False | 
|---|
| 4385 | if blfile       is None: blfile       = '' | 
|---|
| 4386 | if csvformat    is None: csvformat    = False | 
|---|
| 4387 | if bltable      is None: bltable      = '' | 
|---|
| 4388 |  | 
|---|
| 4389 | scsvformat = 'T' if csvformat else 'F' | 
|---|
| 4390 |  | 
|---|
| 4391 | if plot: | 
|---|
| 4392 | outblfile = (blfile != "") and \ | 
|---|
| 4393 | os.path.exists(os.path.expanduser( | 
|---|
| 4394 | os.path.expandvars(blfile)) | 
|---|
| 4395 | ) | 
|---|
| 4396 | if outblfile: | 
|---|
| 4397 | blf = open(blfile, "a") | 
|---|
| 4398 |  | 
|---|
| 4399 | f = fitter() | 
|---|
| 4400 | f.set_function(lpoly=order) | 
|---|
| 4401 |  | 
|---|
| 4402 | rows = xrange(workscan.nrow()) | 
|---|
| 4403 | #if len(rows) > 0: workscan._init_blinfo() | 
|---|
| 4404 |  | 
|---|
| 4405 | action = "H" | 
|---|
| 4406 | for r in rows: | 
|---|
| 4407 | f.x = workscan._getabcissa(r) | 
|---|
| 4408 | f.y = workscan._getspectrum(r) | 
|---|
| 4409 | if mask: | 
|---|
| 4410 | f.mask = mask_and(mask, workscan._getmask(r))    # (CAS-1434) | 
|---|
| 4411 | else: # mask=None | 
|---|
| 4412 | f.mask = workscan._getmask(r) | 
|---|
| 4413 |  | 
|---|
| 4414 | f.data = None | 
|---|
| 4415 | f.fit() | 
|---|
| 4416 |  | 
|---|
| 4417 | if action != "Y": # skip plotting when accepting all | 
|---|
| 4418 | f.plot(residual=True) | 
|---|
| 4419 | #accept_fit = raw_input("Accept fit ( [y]/n ): ") | 
|---|
| 4420 | #if accept_fit.upper() == "N": | 
|---|
| 4421 | #    #workscan._append_blinfo(None, None, None) | 
|---|
| 4422 | #    continue | 
|---|
| 4423 | accept_fit = self._get_verify_action("Accept fit?",action) | 
|---|
| 4424 | if r == 0: action = None | 
|---|
| 4425 | if accept_fit.upper() == "N": | 
|---|
| 4426 | continue | 
|---|
| 4427 | elif accept_fit.upper() == "R": | 
|---|
| 4428 | break | 
|---|
| 4429 | elif accept_fit.upper() == "A": | 
|---|
| 4430 | action = "Y" | 
|---|
| 4431 |  | 
|---|
| 4432 | blpars = f.get_parameters() | 
|---|
| 4433 | masklist = workscan.get_masklist(f.mask, row=r, silent=True) | 
|---|
| 4434 | #workscan._append_blinfo(blpars, masklist, f.mask) | 
|---|
| 4435 | workscan._setspectrum((f.fitter.getresidual() | 
|---|
| 4436 | if getresidual else f.fitter.getfit()), r) | 
|---|
| 4437 |  | 
|---|
| 4438 | if outblfile: | 
|---|
| 4439 | rms = workscan.get_rms(f.mask, r) | 
|---|
| 4440 | dataout = \ | 
|---|
| 4441 | workscan.format_blparams_row(blpars["params"], | 
|---|
| 4442 | blpars["fixed"], | 
|---|
| 4443 | rms, str(masklist), | 
|---|
| 4444 | r, True, csvformat) | 
|---|
| 4445 | blf.write(dataout) | 
|---|
| 4446 |  | 
|---|
| 4447 | f._p.unmap() | 
|---|
| 4448 | f._p = None | 
|---|
| 4449 |  | 
|---|
| 4450 | if outblfile: | 
|---|
| 4451 | blf.close() | 
|---|
| 4452 | else: | 
|---|
| 4453 | workscan._poly_baseline(mask, order, | 
|---|
| 4454 | clipthresh, clipniter, # | 
|---|
| 4455 | getresidual, | 
|---|
| 4456 | pack_progress_params(showprogress, | 
|---|
| 4457 | minnrow), | 
|---|
| 4458 | outlog, scsvformat+blfile, | 
|---|
| 4459 | bltable)  # | 
|---|
| 4460 |  | 
|---|
| 4461 | workscan._add_history("poly_baseline", varlist) | 
|---|
| 4462 |  | 
|---|
| 4463 | if insitu: | 
|---|
| 4464 | self._assign(workscan) | 
|---|
| 4465 | else: | 
|---|
| 4466 | return workscan | 
|---|
| 4467 |  | 
|---|
| 4468 | except RuntimeError, e: | 
|---|
| 4469 | raise_fitting_failure_exception(e) | 
|---|
| 4470 |  | 
|---|
| 4471 | @asaplog_post_dec | 
|---|
| 4472 | def auto_poly_baseline(self, mask=None, order=None, insitu=None, | 
|---|
| 4473 | clipthresh=None, clipniter=None, | 
|---|
| 4474 | edge=None, threshold=None, chan_avg_limit=None, | 
|---|
| 4475 | getresidual=None, plot=None, | 
|---|
| 4476 | showprogress=None, minnrow=None, outlog=None, | 
|---|
| 4477 | blfile=None, csvformat=None, bltable=None): | 
|---|
| 4478 | """\ | 
|---|
| 4479 | Return a scan which has been baselined (all rows) by a polynomial. | 
|---|
| 4480 | Spectral lines are detected first using linefinder and masked out | 
|---|
| 4481 | to avoid them affecting the baseline solution. | 
|---|
| 4482 |  | 
|---|
| 4483 | Parameters: | 
|---|
| 4484 | mask:           an optional mask retreived from scantable | 
|---|
| 4485 | order:          the order of the polynomial (default is 0) | 
|---|
| 4486 | insitu:         if False a new scantable is returned. | 
|---|
| 4487 | Otherwise, the scaling is done in-situ | 
|---|
| 4488 | The default is taken from .asaprc (False) | 
|---|
| 4489 | clipthresh:     Clipping threshold. (default is 3.0, unit: sigma) | 
|---|
| 4490 | clipniter:      maximum number of iteration of 'clipthresh'-sigma | 
|---|
| 4491 | clipping (default is 0) | 
|---|
| 4492 | edge:           an optional number of channel to drop at | 
|---|
| 4493 | the edge of spectrum. If only one value is | 
|---|
| 4494 | specified, the same number will be dropped | 
|---|
| 4495 | from both sides of the spectrum. Default | 
|---|
| 4496 | is to keep all channels. Nested tuples | 
|---|
| 4497 | represent individual edge selection for | 
|---|
| 4498 | different IFs (a number of spectral channels | 
|---|
| 4499 | can be different) | 
|---|
| 4500 | threshold:      the threshold used by line finder. It is | 
|---|
| 4501 | better to keep it large as only strong lines | 
|---|
| 4502 | affect the baseline solution. | 
|---|
| 4503 | chan_avg_limit: a maximum number of consequtive spectral | 
|---|
| 4504 | channels to average during the search of | 
|---|
| 4505 | weak and broad lines. The default is no | 
|---|
| 4506 | averaging (and no search for weak lines). | 
|---|
| 4507 | If such lines can affect the fitted baseline | 
|---|
| 4508 | (e.g. a high order polynomial is fitted), | 
|---|
| 4509 | increase this parameter (usually values up | 
|---|
| 4510 | to 8 are reasonable). Most users of this | 
|---|
| 4511 | method should find the default value sufficient. | 
|---|
| 4512 | plot:           plot the fit and the residual. In this each | 
|---|
| 4513 | indivual fit has to be approved, by typing 'y' | 
|---|
| 4514 | or 'n' | 
|---|
| 4515 | getresidual:    if False, returns best-fit values instead of | 
|---|
| 4516 | residual. (default is True) | 
|---|
| 4517 | showprogress:   show progress status for large data. | 
|---|
| 4518 | default is True. | 
|---|
| 4519 | minnrow:        minimum number of input spectra to show. | 
|---|
| 4520 | default is 1000. | 
|---|
| 4521 | outlog:         Output the coefficients of the best-fit | 
|---|
| 4522 | function to logger (default is False) | 
|---|
| 4523 | blfile:         Name of a text file in which the best-fit | 
|---|
| 4524 | parameter values to be written | 
|---|
| 4525 | (default is "": no file/logger output) | 
|---|
| 4526 | csvformat:      if True blfile is csv-formatted, default is False. | 
|---|
| 4527 | bltable:        name of a baseline table where fitting results | 
|---|
| 4528 | (coefficients, rms, etc.) are to be written. | 
|---|
| 4529 | if given, fitting results will NOT be output to | 
|---|
| 4530 | scantable (insitu=True) or None will be | 
|---|
| 4531 | returned (insitu=False). | 
|---|
| 4532 | (default is "": no table output) | 
|---|
| 4533 |  | 
|---|
| 4534 | Example: | 
|---|
| 4535 | bscan = scan.auto_poly_baseline(order=7, insitu=False) | 
|---|
| 4536 | """ | 
|---|
| 4537 |  | 
|---|
| 4538 | try: | 
|---|
| 4539 | varlist = vars() | 
|---|
| 4540 |  | 
|---|
| 4541 | if insitu is None: | 
|---|
| 4542 | insitu = rcParams['insitu'] | 
|---|
| 4543 | if insitu: | 
|---|
| 4544 | workscan = self | 
|---|
| 4545 | else: | 
|---|
| 4546 | workscan = self.copy() | 
|---|
| 4547 |  | 
|---|
| 4548 | if mask           is None: mask           = [] | 
|---|
| 4549 | if order          is None: order          = 0 | 
|---|
| 4550 | if clipthresh     is None: clipthresh     = 3.0 | 
|---|
| 4551 | if clipniter      is None: clipniter      = 0 | 
|---|
| 4552 | if edge           is None: edge           = (0, 0) | 
|---|
| 4553 | if threshold      is None: threshold      = 3 | 
|---|
| 4554 | if chan_avg_limit is None: chan_avg_limit = 1 | 
|---|
| 4555 | if plot           is None: plot           = False | 
|---|
| 4556 | if getresidual    is None: getresidual    = True | 
|---|
| 4557 | if showprogress   is None: showprogress   = True | 
|---|
| 4558 | if minnrow        is None: minnrow        = 1000 | 
|---|
| 4559 | if outlog         is None: outlog         = False | 
|---|
| 4560 | if blfile         is None: blfile         = '' | 
|---|
| 4561 | if csvformat      is None: csvformat      = False | 
|---|
| 4562 | if bltable        is None: bltable        = '' | 
|---|
| 4563 |  | 
|---|
| 4564 | scsvformat = 'T' if csvformat else 'F' | 
|---|
| 4565 |  | 
|---|
| 4566 | edge = normalise_edge_param(edge) | 
|---|
| 4567 |  | 
|---|
| 4568 | if plot: | 
|---|
| 4569 | outblfile = (blfile != "") and \ | 
|---|
| 4570 | os.path.exists(os.path.expanduser(os.path.expandvars(blfile))) | 
|---|
| 4571 | if outblfile: blf = open(blfile, "a") | 
|---|
| 4572 |  | 
|---|
| 4573 | from asap.asaplinefind import linefinder | 
|---|
| 4574 | fl = linefinder() | 
|---|
| 4575 | fl.set_options(threshold=threshold, avg_limit=chan_avg_limit) | 
|---|
| 4576 | fl.set_scan(workscan) | 
|---|
| 4577 |  | 
|---|
| 4578 | f = fitter() | 
|---|
| 4579 | f.set_function(lpoly=order) | 
|---|
| 4580 |  | 
|---|
| 4581 | rows = xrange(workscan.nrow()) | 
|---|
| 4582 | #if len(rows) > 0: workscan._init_blinfo() | 
|---|
| 4583 |  | 
|---|
| 4584 | action = "H" | 
|---|
| 4585 | for r in rows: | 
|---|
| 4586 | idx = 2*workscan.getif(r) | 
|---|
| 4587 | if mask: | 
|---|
| 4588 | msk = mask_and(mask, workscan._getmask(r)) # (CAS-1434) | 
|---|
| 4589 | else: # mask=None | 
|---|
| 4590 | msk = workscan._getmask(r) | 
|---|
| 4591 | fl.find_lines(r, msk, edge[idx:idx+2]) | 
|---|
| 4592 |  | 
|---|
| 4593 | f.x = workscan._getabcissa(r) | 
|---|
| 4594 | f.y = workscan._getspectrum(r) | 
|---|
| 4595 | f.mask = fl.get_mask() | 
|---|
| 4596 | f.data = None | 
|---|
| 4597 | f.fit() | 
|---|
| 4598 |  | 
|---|
| 4599 | if action != "Y": # skip plotting when accepting all | 
|---|
| 4600 | f.plot(residual=True) | 
|---|
| 4601 | #accept_fit = raw_input("Accept fit ( [y]/n ): ") | 
|---|
| 4602 | accept_fit = self._get_verify_action("Accept fit?",action) | 
|---|
| 4603 | if r == 0: action = None | 
|---|
| 4604 | if accept_fit.upper() == "N": | 
|---|
| 4605 | #workscan._append_blinfo(None, None, None) | 
|---|
| 4606 | continue | 
|---|
| 4607 | elif accept_fit.upper() == "R": | 
|---|
| 4608 | break | 
|---|
| 4609 | elif accept_fit.upper() == "A": | 
|---|
| 4610 | action = "Y" | 
|---|
| 4611 |  | 
|---|
| 4612 | blpars = f.get_parameters() | 
|---|
| 4613 | masklist = workscan.get_masklist(f.mask, row=r, silent=True) | 
|---|
| 4614 | #workscan._append_blinfo(blpars, masklist, f.mask) | 
|---|
| 4615 | workscan._setspectrum( | 
|---|
| 4616 | (f.fitter.getresidual() if getresidual | 
|---|
| 4617 | else f.fitter.getfit()), r | 
|---|
| 4618 | ) | 
|---|
| 4619 |  | 
|---|
| 4620 | if outblfile: | 
|---|
| 4621 | rms = workscan.get_rms(f.mask, r) | 
|---|
| 4622 | dataout = \ | 
|---|
| 4623 | workscan.format_blparams_row(blpars["params"], | 
|---|
| 4624 | blpars["fixed"], | 
|---|
| 4625 | rms, str(masklist), | 
|---|
| 4626 | r, True, csvformat) | 
|---|
| 4627 | blf.write(dataout) | 
|---|
| 4628 |  | 
|---|
| 4629 | f._p.unmap() | 
|---|
| 4630 | f._p = None | 
|---|
| 4631 |  | 
|---|
| 4632 | if outblfile: blf.close() | 
|---|
| 4633 | else: | 
|---|
| 4634 | workscan._auto_poly_baseline(mask, order, | 
|---|
| 4635 | clipthresh, clipniter, | 
|---|
| 4636 | edge, threshold, | 
|---|
| 4637 | chan_avg_limit, getresidual, | 
|---|
| 4638 | pack_progress_params(showprogress, | 
|---|
| 4639 | minnrow), | 
|---|
| 4640 | outlog, scsvformat+blfile, | 
|---|
| 4641 | bltable) | 
|---|
| 4642 | workscan._add_history("auto_poly_baseline", varlist) | 
|---|
| 4643 |  | 
|---|
| 4644 | if bltable == '': | 
|---|
| 4645 | if insitu: | 
|---|
| 4646 | self._assign(workscan) | 
|---|
| 4647 | else: | 
|---|
| 4648 | return workscan | 
|---|
| 4649 | else: | 
|---|
| 4650 | if not insitu: | 
|---|
| 4651 | return None | 
|---|
| 4652 |  | 
|---|
| 4653 | except RuntimeError, e: | 
|---|
| 4654 | raise_fitting_failure_exception(e) | 
|---|
| 4655 |  | 
|---|
| 4656 | def _init_blinfo(self): | 
|---|
| 4657 | """\ | 
|---|
| 4658 | Initialise the following three auxiliary members: | 
|---|
| 4659 | blpars : parameters of the best-fit baseline, | 
|---|
| 4660 | masklists : mask data (edge positions of masked channels) and | 
|---|
| 4661 | actualmask : mask data (in boolean list), | 
|---|
| 4662 | to keep for use later (including output to logger/text files). | 
|---|
| 4663 | Used by poly_baseline() and auto_poly_baseline() in case of | 
|---|
| 4664 | 'plot=True'. | 
|---|
| 4665 | """ | 
|---|
| 4666 | self.blpars = [] | 
|---|
| 4667 | self.masklists = [] | 
|---|
| 4668 | self.actualmask = [] | 
|---|
| 4669 | return | 
|---|
| 4670 |  | 
|---|
| 4671 | def _append_blinfo(self, data_blpars, data_masklists, data_actualmask): | 
|---|
| 4672 | """\ | 
|---|
| 4673 | Append baseline-fitting related info to blpars, masklist and | 
|---|
| 4674 | actualmask. | 
|---|
| 4675 | """ | 
|---|
| 4676 | self.blpars.append(data_blpars) | 
|---|
| 4677 | self.masklists.append(data_masklists) | 
|---|
| 4678 | self.actualmask.append(data_actualmask) | 
|---|
| 4679 | return | 
|---|
| 4680 |  | 
|---|
| 4681 | @asaplog_post_dec | 
|---|
| 4682 | def rotate_linpolphase(self, angle): | 
|---|
| 4683 | """\ | 
|---|
| 4684 | Rotate the phase of the complex polarization O=Q+iU correlation. | 
|---|
| 4685 | This is always done in situ in the raw data.  So if you call this | 
|---|
| 4686 | function more than once then each call rotates the phase further. | 
|---|
| 4687 |  | 
|---|
| 4688 | Parameters: | 
|---|
| 4689 |  | 
|---|
| 4690 | angle:   The angle (degrees) to rotate (add) by. | 
|---|
| 4691 |  | 
|---|
| 4692 | Example:: | 
|---|
| 4693 |  | 
|---|
| 4694 | scan.rotate_linpolphase(2.3) | 
|---|
| 4695 |  | 
|---|
| 4696 | """ | 
|---|
| 4697 | varlist = vars() | 
|---|
| 4698 | self._math._rotate_linpolphase(self, angle) | 
|---|
| 4699 | self._add_history("rotate_linpolphase", varlist) | 
|---|
| 4700 | return | 
|---|
| 4701 |  | 
|---|
| 4702 | @asaplog_post_dec | 
|---|
| 4703 | def rotate_xyphase(self, angle): | 
|---|
| 4704 | """\ | 
|---|
| 4705 | Rotate the phase of the XY correlation.  This is always done in situ | 
|---|
| 4706 | in the data.  So if you call this function more than once | 
|---|
| 4707 | then each call rotates the phase further. | 
|---|
| 4708 |  | 
|---|
| 4709 | Parameters: | 
|---|
| 4710 |  | 
|---|
| 4711 | angle:   The angle (degrees) to rotate (add) by. | 
|---|
| 4712 |  | 
|---|
| 4713 | Example:: | 
|---|
| 4714 |  | 
|---|
| 4715 | scan.rotate_xyphase(2.3) | 
|---|
| 4716 |  | 
|---|
| 4717 | """ | 
|---|
| 4718 | varlist = vars() | 
|---|
| 4719 | self._math._rotate_xyphase(self, angle) | 
|---|
| 4720 | self._add_history("rotate_xyphase", varlist) | 
|---|
| 4721 | return | 
|---|
| 4722 |  | 
|---|
| 4723 | @asaplog_post_dec | 
|---|
| 4724 | def swap_linears(self): | 
|---|
| 4725 | """\ | 
|---|
| 4726 | Swap the linear polarisations XX and YY, or better the first two | 
|---|
| 4727 | polarisations as this also works for ciculars. | 
|---|
| 4728 | """ | 
|---|
| 4729 | varlist = vars() | 
|---|
| 4730 | self._math._swap_linears(self) | 
|---|
| 4731 | self._add_history("swap_linears", varlist) | 
|---|
| 4732 | return | 
|---|
| 4733 |  | 
|---|
| 4734 | @asaplog_post_dec | 
|---|
| 4735 | def invert_phase(self): | 
|---|
| 4736 | """\ | 
|---|
| 4737 | Invert the phase of the complex polarisation | 
|---|
| 4738 | """ | 
|---|
| 4739 | varlist = vars() | 
|---|
| 4740 | self._math._invert_phase(self) | 
|---|
| 4741 | self._add_history("invert_phase", varlist) | 
|---|
| 4742 | return | 
|---|
| 4743 |  | 
|---|
| 4744 | @asaplog_post_dec | 
|---|
| 4745 | def add(self, offset, insitu=None): | 
|---|
| 4746 | """\ | 
|---|
| 4747 | Return a scan where all spectra have the offset added | 
|---|
| 4748 |  | 
|---|
| 4749 | Parameters: | 
|---|
| 4750 |  | 
|---|
| 4751 | offset:      the offset | 
|---|
| 4752 |  | 
|---|
| 4753 | insitu:      if False a new scantable is returned. | 
|---|
| 4754 | Otherwise, the scaling is done in-situ | 
|---|
| 4755 | The default is taken from .asaprc (False) | 
|---|
| 4756 |  | 
|---|
| 4757 | """ | 
|---|
| 4758 | if insitu is None: insitu = rcParams['insitu'] | 
|---|
| 4759 | self._math._setinsitu(insitu) | 
|---|
| 4760 | varlist = vars() | 
|---|
| 4761 | s = scantable(self._math._unaryop(self, offset, "ADD", False)) | 
|---|
| 4762 | s._add_history("add", varlist) | 
|---|
| 4763 | if insitu: | 
|---|
| 4764 | self._assign(s) | 
|---|
| 4765 | else: | 
|---|
| 4766 | return s | 
|---|
| 4767 |  | 
|---|
| 4768 | @asaplog_post_dec | 
|---|
| 4769 | def scale(self, factor, tsys=True, insitu=None): | 
|---|
| 4770 | """\ | 
|---|
| 4771 |  | 
|---|
| 4772 | Return a scan where all spectra are scaled by the given 'factor' | 
|---|
| 4773 |  | 
|---|
| 4774 | Parameters: | 
|---|
| 4775 |  | 
|---|
| 4776 | factor:      the scaling factor (float or 1D float list) | 
|---|
| 4777 |  | 
|---|
| 4778 | insitu:      if False a new scantable is returned. | 
|---|
| 4779 | Otherwise, the scaling is done in-situ | 
|---|
| 4780 | The default is taken from .asaprc (False) | 
|---|
| 4781 |  | 
|---|
| 4782 | tsys:        if True (default) then apply the operation to Tsys | 
|---|
| 4783 | as well as the data | 
|---|
| 4784 |  | 
|---|
| 4785 | """ | 
|---|
| 4786 | if insitu is None: insitu = rcParams['insitu'] | 
|---|
| 4787 | self._math._setinsitu(insitu) | 
|---|
| 4788 | varlist = vars() | 
|---|
| 4789 | s = None | 
|---|
| 4790 | import numpy | 
|---|
| 4791 | if isinstance(factor, list) or isinstance(factor, numpy.ndarray): | 
|---|
| 4792 | if isinstance(factor[0], list) or isinstance(factor[0], | 
|---|
| 4793 | numpy.ndarray): | 
|---|
| 4794 | from asapmath import _array2dOp | 
|---|
| 4795 | s = _array2dOp( self, factor, "MUL", tsys, insitu ) | 
|---|
| 4796 | else: | 
|---|
| 4797 | s = scantable( self._math._arrayop( self, factor, | 
|---|
| 4798 | "MUL", tsys ) ) | 
|---|
| 4799 | else: | 
|---|
| 4800 | s = scantable(self._math._unaryop(self, factor, "MUL", tsys)) | 
|---|
| 4801 | s._add_history("scale", varlist) | 
|---|
| 4802 | if insitu: | 
|---|
| 4803 | self._assign(s) | 
|---|
| 4804 | else: | 
|---|
| 4805 | return s | 
|---|
| 4806 |  | 
|---|
| 4807 | @preserve_selection | 
|---|
| 4808 | def set_sourcetype(self, match, matchtype="pattern", | 
|---|
| 4809 | sourcetype="reference"): | 
|---|
| 4810 | """\ | 
|---|
| 4811 | Set the type of the source to be an source or reference scan | 
|---|
| 4812 | using the provided pattern. | 
|---|
| 4813 |  | 
|---|
| 4814 | Parameters: | 
|---|
| 4815 |  | 
|---|
| 4816 | match:          a Unix style pattern, regular expression or selector | 
|---|
| 4817 |  | 
|---|
| 4818 | matchtype:      'pattern' (default) UNIX style pattern or | 
|---|
| 4819 | 'regex' regular expression | 
|---|
| 4820 |  | 
|---|
| 4821 | sourcetype:     the type of the source to use (source/reference) | 
|---|
| 4822 |  | 
|---|
| 4823 | """ | 
|---|
| 4824 | varlist = vars() | 
|---|
| 4825 | stype = -1 | 
|---|
| 4826 | if sourcetype.lower().startswith("r") or sourcetype.lower() == "off": | 
|---|
| 4827 | stype = 1 | 
|---|
| 4828 | elif sourcetype.lower().startswith("s") or sourcetype.lower() == "on": | 
|---|
| 4829 | stype = 0 | 
|---|
| 4830 | else: | 
|---|
| 4831 | raise ValueError("Illegal sourcetype use s(ource)/on or r(eference)/off") | 
|---|
| 4832 | if matchtype.lower().startswith("p"): | 
|---|
| 4833 | matchtype = "pattern" | 
|---|
| 4834 | elif matchtype.lower().startswith("r"): | 
|---|
| 4835 | matchtype = "regex" | 
|---|
| 4836 | else: | 
|---|
| 4837 | raise ValueError("Illegal matchtype, use p(attern) or r(egex)") | 
|---|
| 4838 | sel = selector() | 
|---|
| 4839 | if isinstance(match, selector): | 
|---|
| 4840 | sel = match | 
|---|
| 4841 | else: | 
|---|
| 4842 | sel.set_query("SRCNAME=%s('%s')" % (matchtype, match)) | 
|---|
| 4843 | self.set_selection(sel) | 
|---|
| 4844 | self._setsourcetype(stype) | 
|---|
| 4845 | self._add_history("set_sourcetype", varlist) | 
|---|
| 4846 |  | 
|---|
| 4847 |  | 
|---|
| 4848 | def set_sourcename(self, name): | 
|---|
| 4849 | varlist = vars() | 
|---|
| 4850 | self._setsourcename(name) | 
|---|
| 4851 | self._add_history("set_sourcename", varlist) | 
|---|
| 4852 |  | 
|---|
| 4853 | @asaplog_post_dec | 
|---|
| 4854 | @preserve_selection | 
|---|
| 4855 | def auto_quotient(self, preserve=True, mode='paired', verify=False): | 
|---|
| 4856 | """\ | 
|---|
| 4857 | This function allows to build quotients automatically. | 
|---|
| 4858 | It assumes the observation to have the same number of | 
|---|
| 4859 | "ons" and "offs" | 
|---|
| 4860 |  | 
|---|
| 4861 | Parameters: | 
|---|
| 4862 |  | 
|---|
| 4863 | preserve:       you can preserve (default) the continuum or | 
|---|
| 4864 | remove it.  The equations used are | 
|---|
| 4865 |  | 
|---|
| 4866 | preserve: Output = Toff * (on/off) - Toff | 
|---|
| 4867 |  | 
|---|
| 4868 | remove:   Output = Toff * (on/off) - Ton | 
|---|
| 4869 |  | 
|---|
| 4870 | mode:           the on/off detection mode | 
|---|
| 4871 | 'paired' (default) | 
|---|
| 4872 | identifies 'off' scans by the | 
|---|
| 4873 | trailing '_R' (Mopra/Parkes) or | 
|---|
| 4874 | '_e'/'_w' (Tid) and matches | 
|---|
| 4875 | on/off pairs from the observing pattern | 
|---|
| 4876 | 'time' | 
|---|
| 4877 | finds the closest off in time | 
|---|
| 4878 |  | 
|---|
| 4879 | .. todo:: verify argument is not implemented | 
|---|
| 4880 |  | 
|---|
| 4881 | """ | 
|---|
| 4882 | varlist = vars() | 
|---|
| 4883 | modes = ["time", "paired"] | 
|---|
| 4884 | if not mode in modes: | 
|---|
| 4885 | msg = "please provide valid mode. Valid modes are %s" % (modes) | 
|---|
| 4886 | raise ValueError(msg) | 
|---|
| 4887 | s = None | 
|---|
| 4888 | if mode.lower() == "paired": | 
|---|
| 4889 | from asap._asap import srctype | 
|---|
| 4890 | sel = self.get_selection() | 
|---|
| 4891 | #sel.set_query("SRCTYPE==psoff") | 
|---|
| 4892 | sel.set_types(srctype.psoff) | 
|---|
| 4893 | self.set_selection(sel) | 
|---|
| 4894 | offs = self.copy() | 
|---|
| 4895 | #sel.set_query("SRCTYPE==pson") | 
|---|
| 4896 | sel.set_types(srctype.pson) | 
|---|
| 4897 | self.set_selection(sel) | 
|---|
| 4898 | ons = self.copy() | 
|---|
| 4899 | s = scantable(self._math._quotient(ons, offs, preserve)) | 
|---|
| 4900 | elif mode.lower() == "time": | 
|---|
| 4901 | s = scantable(self._math._auto_quotient(self, mode, preserve)) | 
|---|
| 4902 | s._add_history("auto_quotient", varlist) | 
|---|
| 4903 | return s | 
|---|
| 4904 |  | 
|---|
| 4905 | @asaplog_post_dec | 
|---|
| 4906 | def mx_quotient(self, mask = None, weight='median', preserve=True): | 
|---|
| 4907 | """\ | 
|---|
| 4908 | Form a quotient using "off" beams when observing in "MX" mode. | 
|---|
| 4909 |  | 
|---|
| 4910 | Parameters: | 
|---|
| 4911 |  | 
|---|
| 4912 | mask:           an optional mask to be used when weight == 'stddev' | 
|---|
| 4913 |  | 
|---|
| 4914 | weight:         How to average the off beams.  Default is 'median'. | 
|---|
| 4915 |  | 
|---|
| 4916 | preserve:       you can preserve (default) the continuum or | 
|---|
| 4917 | remove it.  The equations used are: | 
|---|
| 4918 |  | 
|---|
| 4919 | preserve: Output = Toff * (on/off) - Toff | 
|---|
| 4920 |  | 
|---|
| 4921 | remove:   Output = Toff * (on/off) - Ton | 
|---|
| 4922 |  | 
|---|
| 4923 | """ | 
|---|
| 4924 | mask = mask or () | 
|---|
| 4925 | varlist = vars() | 
|---|
| 4926 | on = scantable(self._math._mx_extract(self, 'on')) | 
|---|
| 4927 | preoff = scantable(self._math._mx_extract(self, 'off')) | 
|---|
| 4928 | off = preoff.average_time(mask=mask, weight=weight, scanav=False) | 
|---|
| 4929 | from asapmath  import quotient | 
|---|
| 4930 | q = quotient(on, off, preserve) | 
|---|
| 4931 | q._add_history("mx_quotient", varlist) | 
|---|
| 4932 | return q | 
|---|
| 4933 |  | 
|---|
| 4934 | @asaplog_post_dec | 
|---|
| 4935 | def freq_switch(self, insitu=None): | 
|---|
| 4936 | """\ | 
|---|
| 4937 | Apply frequency switching to the data. | 
|---|
| 4938 |  | 
|---|
| 4939 | Parameters: | 
|---|
| 4940 |  | 
|---|
| 4941 | insitu:      if False a new scantable is returned. | 
|---|
| 4942 | Otherwise, the swictching is done in-situ | 
|---|
| 4943 | The default is taken from .asaprc (False) | 
|---|
| 4944 |  | 
|---|
| 4945 | """ | 
|---|
| 4946 | if insitu is None: insitu = rcParams['insitu'] | 
|---|
| 4947 | self._math._setinsitu(insitu) | 
|---|
| 4948 | varlist = vars() | 
|---|
| 4949 | s = scantable(self._math._freqswitch(self)) | 
|---|
| 4950 | s._add_history("freq_switch", varlist) | 
|---|
| 4951 | if insitu: | 
|---|
| 4952 | self._assign(s) | 
|---|
| 4953 | else: | 
|---|
| 4954 | return s | 
|---|
| 4955 |  | 
|---|
| 4956 | @asaplog_post_dec | 
|---|
| 4957 | def recalc_azel(self): | 
|---|
| 4958 | """Recalculate the azimuth and elevation for each position.""" | 
|---|
| 4959 | varlist = vars() | 
|---|
| 4960 | self._recalcazel() | 
|---|
| 4961 | self._add_history("recalc_azel", varlist) | 
|---|
| 4962 | return | 
|---|
| 4963 |  | 
|---|
| 4964 | @asaplog_post_dec | 
|---|
| 4965 | def __add__(self, other): | 
|---|
| 4966 | """ | 
|---|
| 4967 | implicit on all axes and on Tsys | 
|---|
| 4968 | """ | 
|---|
| 4969 | varlist = vars() | 
|---|
| 4970 | s = self.__op( other, "ADD" ) | 
|---|
| 4971 | s._add_history("operator +", varlist) | 
|---|
| 4972 | return s | 
|---|
| 4973 |  | 
|---|
| 4974 | @asaplog_post_dec | 
|---|
| 4975 | def __sub__(self, other): | 
|---|
| 4976 | """ | 
|---|
| 4977 | implicit on all axes and on Tsys | 
|---|
| 4978 | """ | 
|---|
| 4979 | varlist = vars() | 
|---|
| 4980 | s = self.__op( other, "SUB" ) | 
|---|
| 4981 | s._add_history("operator -", varlist) | 
|---|
| 4982 | return s | 
|---|
| 4983 |  | 
|---|
| 4984 | @asaplog_post_dec | 
|---|
| 4985 | def __mul__(self, other): | 
|---|
| 4986 | """ | 
|---|
| 4987 | implicit on all axes and on Tsys | 
|---|
| 4988 | """ | 
|---|
| 4989 | varlist = vars() | 
|---|
| 4990 | s = self.__op( other, "MUL" ) ; | 
|---|
| 4991 | s._add_history("operator *", varlist) | 
|---|
| 4992 | return s | 
|---|
| 4993 |  | 
|---|
| 4994 |  | 
|---|
| 4995 | @asaplog_post_dec | 
|---|
| 4996 | def __div__(self, other): | 
|---|
| 4997 | """ | 
|---|
| 4998 | implicit on all axes and on Tsys | 
|---|
| 4999 | """ | 
|---|
| 5000 | varlist = vars() | 
|---|
| 5001 | s = self.__op( other, "DIV" ) | 
|---|
| 5002 | s._add_history("operator /", varlist) | 
|---|
| 5003 | return s | 
|---|
| 5004 |  | 
|---|
| 5005 | @asaplog_post_dec | 
|---|
| 5006 | def __op( self, other, mode ): | 
|---|
| 5007 | s = None | 
|---|
| 5008 | if isinstance(other, scantable): | 
|---|
| 5009 | s = scantable(self._math._binaryop(self, other, mode)) | 
|---|
| 5010 | elif isinstance(other, float): | 
|---|
| 5011 | if other == 0.0: | 
|---|
| 5012 | raise ZeroDivisionError("Dividing by zero is not recommended") | 
|---|
| 5013 | s = scantable(self._math._unaryop(self, other, mode, False)) | 
|---|
| 5014 | elif isinstance(other, list) or isinstance(other, numpy.ndarray): | 
|---|
| 5015 | if isinstance(other[0], list) \ | 
|---|
| 5016 | or isinstance(other[0], numpy.ndarray): | 
|---|
| 5017 | from asapmath import _array2dOp | 
|---|
| 5018 | s = _array2dOp( self, other, mode, False ) | 
|---|
| 5019 | else: | 
|---|
| 5020 | s = scantable( self._math._arrayop( self, other, | 
|---|
| 5021 | mode, False ) ) | 
|---|
| 5022 | else: | 
|---|
| 5023 | raise TypeError("Other input is not a scantable or float value") | 
|---|
| 5024 | return s | 
|---|
| 5025 |  | 
|---|
| 5026 | @asaplog_post_dec | 
|---|
| 5027 | def get_fit(self, row=0): | 
|---|
| 5028 | """\ | 
|---|
| 5029 | Print or return the stored fits for a row in the scantable | 
|---|
| 5030 |  | 
|---|
| 5031 | Parameters: | 
|---|
| 5032 |  | 
|---|
| 5033 | row:    the row which the fit has been applied to. | 
|---|
| 5034 |  | 
|---|
| 5035 | """ | 
|---|
| 5036 | if row > self.nrow(): | 
|---|
| 5037 | return | 
|---|
| 5038 | from asap.asapfit import asapfit | 
|---|
| 5039 | fit = asapfit(self._getfit(row)) | 
|---|
| 5040 | asaplog.push( '%s' %(fit) ) | 
|---|
| 5041 | return fit.as_dict() | 
|---|
| 5042 |  | 
|---|
| 5043 | @preserve_selection | 
|---|
| 5044 | def flag_nans(self): | 
|---|
| 5045 | """\ | 
|---|
| 5046 | Utility function to flag NaN values in the scantable. | 
|---|
| 5047 | """ | 
|---|
| 5048 | import numpy | 
|---|
| 5049 | basesel = self.get_selection() | 
|---|
| 5050 | for i in range(self.nrow()): | 
|---|
| 5051 | sel = self.get_row_selector(i) | 
|---|
| 5052 | self.set_selection(basesel+sel) | 
|---|
| 5053 | nans = numpy.isnan(self._getspectrum(0)) | 
|---|
| 5054 | if numpy.any(nans): | 
|---|
| 5055 | bnans = [ bool(v) for v in nans] | 
|---|
| 5056 | self.flag(bnans) | 
|---|
| 5057 |  | 
|---|
| 5058 | self.set_selection(basesel) | 
|---|
| 5059 |  | 
|---|
| 5060 | def get_row_selector(self, rowno): | 
|---|
| 5061 | return selector(rows=[rowno]) | 
|---|
| 5062 |  | 
|---|
| 5063 | def _add_history(self, funcname, parameters): | 
|---|
| 5064 | if not rcParams['scantable.history']: | 
|---|
| 5065 | return | 
|---|
| 5066 | # create date | 
|---|
| 5067 | sep = "##" | 
|---|
| 5068 | from datetime import datetime | 
|---|
| 5069 | dstr = datetime.now().strftime('%Y/%m/%d %H:%M:%S') | 
|---|
| 5070 | hist = dstr+sep | 
|---|
| 5071 | hist += funcname+sep#cdate+sep | 
|---|
| 5072 | if parameters.has_key('self'): | 
|---|
| 5073 | del parameters['self'] | 
|---|
| 5074 | for k, v in parameters.iteritems(): | 
|---|
| 5075 | if type(v) is dict: | 
|---|
| 5076 | for k2, v2 in v.iteritems(): | 
|---|
| 5077 | hist += k2 | 
|---|
| 5078 | hist += "=" | 
|---|
| 5079 | if isinstance(v2, scantable): | 
|---|
| 5080 | hist += 'scantable' | 
|---|
| 5081 | elif k2 == 'mask': | 
|---|
| 5082 | if isinstance(v2, list) or isinstance(v2, tuple): | 
|---|
| 5083 | hist += str(self._zip_mask(v2)) | 
|---|
| 5084 | else: | 
|---|
| 5085 | hist += str(v2) | 
|---|
| 5086 | else: | 
|---|
| 5087 | hist += str(v2) | 
|---|
| 5088 | else: | 
|---|
| 5089 | hist += k | 
|---|
| 5090 | hist += "=" | 
|---|
| 5091 | if isinstance(v, scantable): | 
|---|
| 5092 | hist += 'scantable' | 
|---|
| 5093 | elif k == 'mask': | 
|---|
| 5094 | if isinstance(v, list) or isinstance(v, tuple): | 
|---|
| 5095 | hist += str(self._zip_mask(v)) | 
|---|
| 5096 | else: | 
|---|
| 5097 | hist += str(v) | 
|---|
| 5098 | else: | 
|---|
| 5099 | hist += str(v) | 
|---|
| 5100 | hist += sep | 
|---|
| 5101 | hist = hist[:-2] # remove trailing '##' | 
|---|
| 5102 | self._addhistory(hist) | 
|---|
| 5103 |  | 
|---|
| 5104 |  | 
|---|
| 5105 | def _zip_mask(self, mask): | 
|---|
| 5106 | mask = list(mask) | 
|---|
| 5107 | i = 0 | 
|---|
| 5108 | segments = [] | 
|---|
| 5109 | while mask[i:].count(1): | 
|---|
| 5110 | i += mask[i:].index(1) | 
|---|
| 5111 | if mask[i:].count(0): | 
|---|
| 5112 | j = i + mask[i:].index(0) | 
|---|
| 5113 | else: | 
|---|
| 5114 | j = len(mask) | 
|---|
| 5115 | segments.append([i, j]) | 
|---|
| 5116 | i = j | 
|---|
| 5117 | return segments | 
|---|
| 5118 |  | 
|---|
| 5119 | def _get_ordinate_label(self): | 
|---|
| 5120 | fu = "("+self.get_fluxunit()+")" | 
|---|
| 5121 | import re | 
|---|
| 5122 | lbl = "Intensity" | 
|---|
| 5123 | if re.match(".K.", fu): | 
|---|
| 5124 | lbl = "Brightness Temperature "+ fu | 
|---|
| 5125 | elif re.match(".Jy.", fu): | 
|---|
| 5126 | lbl = "Flux density "+ fu | 
|---|
| 5127 | return lbl | 
|---|
| 5128 |  | 
|---|
| 5129 | def _check_ifs(self): | 
|---|
| 5130 | #        return len(set([self.nchan(i) for i in self.getifnos()])) == 1 | 
|---|
| 5131 | nchans = [self.nchan(i) for i in self.getifnos()] | 
|---|
| 5132 | nchans = filter(lambda t: t > 0, nchans) | 
|---|
| 5133 | return (sum(nchans)/len(nchans) == nchans[0]) | 
|---|
| 5134 |  | 
|---|
| 5135 | @asaplog_post_dec | 
|---|
| 5136 | def _fill(self, names, unit, average, opts={}): | 
|---|
| 5137 | first = True | 
|---|
| 5138 | fullnames = [] | 
|---|
| 5139 | for name in names: | 
|---|
| 5140 | name = os.path.expandvars(name) | 
|---|
| 5141 | name = os.path.expanduser(name) | 
|---|
| 5142 | if not os.path.exists(name): | 
|---|
| 5143 | msg = "File '%s' does not exists" % (name) | 
|---|
| 5144 | raise IOError(msg) | 
|---|
| 5145 | fullnames.append(name) | 
|---|
| 5146 | if average: | 
|---|
| 5147 | asaplog.push('Auto averaging integrations') | 
|---|
| 5148 | stype = int(rcParams['scantable.storage'].lower() == 'disk') | 
|---|
| 5149 | for name in fullnames: | 
|---|
| 5150 | tbl = Scantable(stype) | 
|---|
| 5151 | if is_ms( name ): | 
|---|
| 5152 | r = msfiller( tbl ) | 
|---|
| 5153 | else: | 
|---|
| 5154 | r = filler( tbl ) | 
|---|
| 5155 | msg = "Importing %s..." % (name) | 
|---|
| 5156 | asaplog.push(msg, False) | 
|---|
| 5157 | r.open(name, opts) | 
|---|
| 5158 | rx = rcParams['scantable.reference'] | 
|---|
| 5159 | r.setreferenceexpr(rx) | 
|---|
| 5160 | r.fill() | 
|---|
| 5161 | if average: | 
|---|
| 5162 | tbl = self._math._average((tbl, ), (), 'NONE', 'SCAN') | 
|---|
| 5163 | if not first: | 
|---|
| 5164 | tbl = self._math._merge([self, tbl]) | 
|---|
| 5165 | Scantable.__init__(self, tbl) | 
|---|
| 5166 | r.close() | 
|---|
| 5167 | del r, tbl | 
|---|
| 5168 | first = False | 
|---|
| 5169 | #flush log | 
|---|
| 5170 | asaplog.post() | 
|---|
| 5171 | if unit is not None: | 
|---|
| 5172 | self.set_fluxunit(unit) | 
|---|
| 5173 | if not is_casapy(): | 
|---|
| 5174 | self.set_freqframe(rcParams['scantable.freqframe']) | 
|---|
| 5175 |  | 
|---|
| 5176 | def _get_verify_action( self, msg, action=None ): | 
|---|
| 5177 | valid_act = ['Y', 'N', 'A', 'R'] | 
|---|
| 5178 | if not action or not isinstance(action, str): | 
|---|
| 5179 | action = raw_input("%s [Y/n/a/r] (h for help): " % msg) | 
|---|
| 5180 | if action == '': | 
|---|
| 5181 | return "Y" | 
|---|
| 5182 | elif (action.upper()[0] in valid_act): | 
|---|
| 5183 | return action.upper()[0] | 
|---|
| 5184 | elif (action.upper()[0] in ['H','?']): | 
|---|
| 5185 | print "Available actions of verification [Y|n|a|r]" | 
|---|
| 5186 | print " Y : Yes for current data (default)" | 
|---|
| 5187 | print " N : No for current data" | 
|---|
| 5188 | print " A : Accept all in the following and exit from verification" | 
|---|
| 5189 | print " R : Reject all in the following and exit from verification" | 
|---|
| 5190 | print " H or ?: help (show this message)" | 
|---|
| 5191 | return self._get_verify_action(msg) | 
|---|
| 5192 | else: | 
|---|
| 5193 | return 'Y' | 
|---|
| 5194 |  | 
|---|
| 5195 | def __getitem__(self, key): | 
|---|
| 5196 | if key < 0: | 
|---|
| 5197 | key += self.nrow() | 
|---|
| 5198 | if key >= self.nrow(): | 
|---|
| 5199 | raise IndexError("Row index out of range.") | 
|---|
| 5200 | return self._getspectrum(key) | 
|---|
| 5201 |  | 
|---|
| 5202 | def __setitem__(self, key, value): | 
|---|
| 5203 | if key < 0: | 
|---|
| 5204 | key += self.nrow() | 
|---|
| 5205 | if key >= self.nrow(): | 
|---|
| 5206 | raise IndexError("Row index out of range.") | 
|---|
| 5207 | if not hasattr(value, "__len__") or \ | 
|---|
| 5208 | len(value) > self.nchan(self.getif(key)): | 
|---|
| 5209 | raise ValueError("Spectrum length doesn't match.") | 
|---|
| 5210 | return self._setspectrum(value, key) | 
|---|
| 5211 |  | 
|---|
| 5212 | def __len__(self): | 
|---|
| 5213 | return self.nrow() | 
|---|
| 5214 |  | 
|---|
| 5215 | def __iter__(self): | 
|---|
| 5216 | for i in range(len(self)): | 
|---|
| 5217 | yield self[i] | 
|---|