source: trunk/python/scantable.py@ 2800

Last change on this file since 2800 was 2791, checked in by Malte Marquarding, 12 years ago

Ticket #289: added anility to set Tsys, both for scalar and vector values

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 178.5 KB
RevLine 
[1846]1"""This module defines the scantable class."""
2
[1697]3import os
[2751]4import re
[2315]5import tempfile
[1948]6import numpy
[1691]7try:
8 from functools import wraps as wraps_dec
9except ImportError:
10 from asap.compatibility import wraps as wraps_dec
11
[1824]12from asap.env import is_casapy
[876]13from asap._asap import Scantable
[2004]14from asap._asap import filler, msfiller
[1824]15from asap.parameters import rcParams
[1862]16from asap.logging import asaplog, asaplog_post_dec
[1824]17from asap.selector import selector
18from asap.linecatalog import linecatalog
[1600]19from asap.coordinate import coordinate
[1859]20from asap.utils import _n_bools, mask_not, mask_and, mask_or, page
[1907]21from asap.asapfitter import fitter
[102]22
[1689]23def preserve_selection(func):
[1691]24 @wraps_dec(func)
[1689]25 def wrap(obj, *args, **kw):
26 basesel = obj.get_selection()
[1857]27 try:
28 val = func(obj, *args, **kw)
29 finally:
30 obj.set_selection(basesel)
[1689]31 return val
32 return wrap
33
[1846]34def is_scantable(filename):
35 """Is the given file a scantable?
[1689]36
[1846]37 Parameters:
38
39 filename: the name of the file/directory to test
40
41 """
[1883]42 if ( os.path.isdir(filename)
43 and os.path.exists(filename+'/table.info')
44 and os.path.exists(filename+'/table.dat') ):
45 f=open(filename+'/table.info')
46 l=f.readline()
47 f.close()
[2753]48 match_pattern = '^Type = (Scantable)? *$'
[2751]49 if re.match(match_pattern,l):
[1883]50 return True
51 else:
52 return False
53 else:
54 return False
55## return (os.path.isdir(filename)
56## and not os.path.exists(filename+'/table.f1')
57## and os.path.exists(filename+'/table.info'))
[1697]58
[1883]59def is_ms(filename):
60 """Is the given file a MeasurementSet?
[1697]61
[1883]62 Parameters:
63
64 filename: the name of the file/directory to test
65
66 """
67 if ( os.path.isdir(filename)
68 and os.path.exists(filename+'/table.info')
69 and os.path.exists(filename+'/table.dat') ):
70 f=open(filename+'/table.info')
71 l=f.readline()
72 f.close()
73 if ( l.find('Measurement Set') != -1 ):
74 return True
75 else:
76 return False
77 else:
78 return False
[2186]79
80def normalise_edge_param(edge):
81 """\
82 Convert a given edge value to a one-dimensional array that can be
83 given to baseline-fitting/subtraction functions.
84 The length of the output value will be an even because values for
85 the both sides of spectra are to be contained for each IF. When
86 the length is 2, the values will be applied to all IFs. If the length
87 is larger than 2, it will be 2*ifnos().
88 Accepted format of edge include:
89 * an integer - will be used for both sides of spectra of all IFs.
90 e.g. 10 is converted to [10,10]
[2277]91 * an empty list/tuple [] - converted to [0, 0] and used for all IFs.
[2186]92 * a list/tuple containing an integer - same as the above case.
93 e.g. [10] is converted to [10,10]
94 * a list/tuple containing two integers - will be used for all IFs.
95 e.g. [5,10] is output as it is. no need to convert.
96 * a list/tuple of lists/tuples containing TWO integers -
97 each element of edge will be used for each IF.
[2277]98 e.g. [[5,10],[15,20]] - [5,10] for IF[0] and [15,20] for IF[1].
99
100 If an element contains the same integer values, the input 'edge'
101 parameter can be given in a simpler shape in the following cases:
[2186]102 ** when len(edge)!=2
[2277]103 any elements containing the same values can be replaced
104 to single integers.
105 e.g. [[15,15]] can be simplified to [15] (or [15,15] or 15 also).
106 e.g. [[1,1],[2,2],[3,3]] can be simplified to [1,2,3].
[2186]107 ** when len(edge)=2
108 care is needed for this case: ONLY ONE of the
109 elements can be a single integer,
110 e.g. [[5,5],[10,10]] can be simplified to [5,[10,10]]
[2277]111 or [[5,5],10], but can NOT be simplified to [5,10].
[2186]112 when [5,10] given, it is interpreted as
[2277]113 [[5,10],[5,10],[5,10],...] instead, as shown before.
[2186]114 """
115 from asap import _is_sequence_or_number as _is_valid
116 if isinstance(edge, list) or isinstance(edge, tuple):
117 for edgepar in edge:
118 if not _is_valid(edgepar, int):
119 raise ValueError, "Each element of the 'edge' tuple has \
120 to be a pair of integers or an integer."
121 if isinstance(edgepar, list) or isinstance(edgepar, tuple):
122 if len(edgepar) != 2:
123 raise ValueError, "Each element of the 'edge' tuple has \
124 to be a pair of integers or an integer."
125 else:
126 if not _is_valid(edge, int):
127 raise ValueError, "Parameter 'edge' has to be an integer or a \
128 pair of integers specified as a tuple. \
129 Nested tuples are allowed \
130 to make individual selection for different IFs."
131
132
133 if isinstance(edge, int):
134 edge = [ edge, edge ] # e.g. 3 => [3,3]
135 elif isinstance(edge, list) or isinstance(edge, tuple):
136 if len(edge) == 0:
137 edge = [0, 0] # e.g. [] => [0,0]
138 elif len(edge) == 1:
139 if isinstance(edge[0], int):
140 edge = [ edge[0], edge[0] ] # e.g. [1] => [1,1]
141
142 commonedge = True
143 if len(edge) > 2: commonedge = False
144 else:
145 for edgepar in edge:
146 if isinstance(edgepar, list) or isinstance(edgepar, tuple):
147 commonedge = False
148 break
149
150 if commonedge:
151 if len(edge) > 1:
152 norm_edge = edge
153 else:
154 norm_edge = edge + edge
155 else:
156 norm_edge = []
157 for edgepar in edge:
158 if isinstance(edgepar, int):
159 norm_edge += [edgepar, edgepar]
160 else:
161 norm_edge += edgepar
162
163 return norm_edge
164
165def raise_fitting_failure_exception(e):
166 msg = "The fit failed, possibly because it didn't converge."
167 if rcParams["verbose"]:
168 asaplog.push(str(e))
169 asaplog.push(str(msg))
170 else:
171 raise RuntimeError(str(e)+'\n'+msg)
172
[2189]173def pack_progress_params(showprogress, minnrow):
174 return str(showprogress).lower() + ',' + str(minnrow)
175
[2767]176def pack_blinfo(blinfo, maxirow):
177 """\
178 convert a dictionary or a list of dictionaries of baseline info
179 into a list of comma-separated strings.
180 """
181 if isinstance(blinfo, dict):
182 res = do_pack_blinfo(blinfo, maxirow)
183 return [res] if res != '' else []
184 elif isinstance(blinfo, list) or isinstance(blinfo, tuple):
185 res = []
186 for i in xrange(len(blinfo)):
187 resi = do_pack_blinfo(blinfo[i], maxirow)
188 if resi != '':
189 res.append(resi)
190 return res
191
192def do_pack_blinfo(blinfo, maxirow):
193 """\
194 convert a dictionary of baseline info for a spectrum into
195 a comma-separated string.
196 """
197 dinfo = {}
198 for key in ['row', 'blfunc', 'masklist']:
199 if blinfo.has_key(key):
200 val = blinfo[key]
201 if key == 'row':
202 irow = val
203 if isinstance(val, list) or isinstance(val, tuple):
204 slval = []
205 for i in xrange(len(val)):
206 if isinstance(val[i], list) or isinstance(val[i], tuple):
207 for j in xrange(len(val[i])):
208 slval.append(str(val[i][j]))
209 else:
210 slval.append(str(val[i]))
211 sval = ",".join(slval)
212 else:
213 sval = str(val)
214
215 dinfo[key] = sval
216 else:
217 raise ValueError("'"+key+"' is missing in blinfo.")
218
219 if irow >= maxirow: return ''
220
221 for key in ['order', 'npiece', 'nwave']:
222 if blinfo.has_key(key):
223 val = blinfo[key]
224 if isinstance(val, list) or isinstance(val, tuple):
225 slval = []
226 for i in xrange(len(val)):
227 slval.append(str(val[i]))
228 sval = ",".join(slval)
229 else:
230 sval = str(val)
231 dinfo[key] = sval
232
233 blfunc = dinfo['blfunc']
234 fspec_keys = {'poly': 'order', 'chebyshev': 'order', 'cspline': 'npiece', 'sinusoid': 'nwave'}
235
236 fspec_key = fspec_keys[blfunc]
237 if not blinfo.has_key(fspec_key):
238 raise ValueError("'"+fspec_key+"' is missing in blinfo.")
239
240 clip_params_n = 0
241 for key in ['clipthresh', 'clipniter']:
242 if blinfo.has_key(key):
243 clip_params_n += 1
244 dinfo[key] = str(blinfo[key])
245
246 if clip_params_n == 0:
247 dinfo['clipthresh'] = '0.0'
248 dinfo['clipniter'] = '0'
249 elif clip_params_n != 2:
250 raise ValueError("both 'clipthresh' and 'clipniter' must be given for n-sigma clipping.")
251
252 lf_params_n = 0
253 for key in ['thresh', 'edge', 'chan_avg_limit']:
254 if blinfo.has_key(key):
255 lf_params_n += 1
256 val = blinfo[key]
257 if isinstance(val, list) or isinstance(val, tuple):
258 slval = []
259 for i in xrange(len(val)):
260 slval.append(str(val[i]))
261 sval = ",".join(slval)
262 else:
263 sval = str(val)
264 dinfo[key] = sval
265
266 if lf_params_n == 3:
267 dinfo['use_linefinder'] = 'true'
268 elif lf_params_n == 1:
269 dinfo['use_linefinder'] = 'false'
270 dinfo['thresh'] = ''
271 dinfo['edge'] = ''
272 dinfo['chan_avg_limit'] = ''
273 else:
274 raise ValueError("all of 'thresh', 'edge' and 'chan_avg_limit' must be given to use linefinder.")
275
276 slblinfo = [dinfo['row'], blfunc, dinfo[fspec_key], dinfo['masklist'], \
277 dinfo['clipthresh'], dinfo['clipniter'], \
278 dinfo['use_linefinder'], dinfo['thresh'], dinfo['edge'], dinfo['chan_avg_limit']]
279
280 return ":".join(slblinfo)
281
282def parse_fitresult(sres):
283 """\
284 Parse the returned value of apply_bltable() or sub_baseline() and
285 extract row number, the best-fit coefficients and rms, then pack
286 them into a dictionary.
287 The input value is generated by Scantable::packFittingResults() and
288 formatted as 'row:coeff[0],coeff[1],..,coeff[n-1]:rms'.
289 """
290 res = []
291 for i in xrange(len(sres)):
292 (srow, scoeff, srms) = sres[i].split(":")
293 row = int(srow)
294 rms = float(srms)
295 lscoeff = scoeff.split(",")
296 coeff = []
297 for j in xrange(len(lscoeff)):
298 coeff.append(float(lscoeff[j]))
299 res.append({'row': row, 'coeff': coeff, 'rms': rms})
300
301 return res
302
[876]303class scantable(Scantable):
[1846]304 """\
305 The ASAP container for scans (single-dish data).
[102]306 """
[1819]307
[1862]308 @asaplog_post_dec
[2315]309 def __init__(self, filename, average=None, unit=None, parallactify=None,
310 **args):
[1846]311 """\
[102]312 Create a scantable from a saved one or make a reference
[1846]313
[102]314 Parameters:
[1846]315
316 filename: the name of an asap table on disk
317 or
318 the name of a rpfits/sdfits/ms file
319 (integrations within scans are auto averaged
320 and the whole file is read) or
321 [advanced] a reference to an existing scantable
322
323 average: average all integrations withinb a scan on read.
324 The default (True) is taken from .asaprc.
325
[484]326 unit: brightness unit; must be consistent with K or Jy.
[1846]327 Over-rides the default selected by the filler
328 (input rpfits/sdfits/ms) or replaces the value
329 in existing scantables
330
[1920]331 antenna: for MeasurementSet input data only:
[2349]332 Antenna selection. integer (id) or string
333 (name or id).
[1846]334
[2349]335 parallactify: Indicate that the data had been parallactified.
336 Default (false) is taken from rc file.
[1846]337
[2754]338 getpt: Whether to import direction from MS/POINTING
339 table properly or not.
340 This is effective only when filename is MS.
341 The default (True) is to import direction
342 from MS/POINTING.
343
344 freq_tolsr: Whether to convert frequency frame information
345 to LSRK or not.
346 This is effective only when filename is MS.
347 The default (False) is to import frequency
348 as is.
349
[710]350 """
[976]351 if average is None:
[710]352 average = rcParams['scantable.autoaverage']
[1593]353 parallactify = parallactify or rcParams['scantable.parallactify']
[1259]354 varlist = vars()
[876]355 from asap._asap import stmath
[1819]356 self._math = stmath( rcParams['insitu'] )
[876]357 if isinstance(filename, Scantable):
358 Scantable.__init__(self, filename)
[181]359 else:
[1697]360 if isinstance(filename, str):
[976]361 filename = os.path.expandvars(filename)
362 filename = os.path.expanduser(filename)
363 if not os.path.exists(filename):
364 s = "File '%s' not found." % (filename)
365 raise IOError(s)
[1697]366 if is_scantable(filename):
367 ondisk = rcParams['scantable.storage'] == 'disk'
368 Scantable.__init__(self, filename, ondisk)
369 if unit is not None:
370 self.set_fluxunit(unit)
[2008]371 if average:
372 self._assign( self.average_time( scanav=True ) )
[1819]373 # do not reset to the default freqframe
374 #self.set_freqframe(rcParams['scantable.freqframe'])
[1883]375 elif is_ms(filename):
[1916]376 # Measurement Set
377 opts={'ms': {}}
[2753]378 mskeys=['getpt','antenna','freq_tolsr']
[1916]379 for key in mskeys:
380 if key in args.keys():
381 opts['ms'][key] = args[key]
382 self._fill([filename], unit, average, opts)
[1893]383 elif os.path.isfile(filename):
[2761]384 opts={'nro': {}}
385 nrokeys=['freqref']
386 for key in nrokeys:
387 if key in args.keys():
388 opts['nro'][key] = args[key]
389 self._fill([filename], unit, average, opts)
[2350]390 # only apply to new data not "copy constructor"
391 self.parallactify(parallactify)
[1883]392 else:
[1819]393 msg = "The given file '%s'is not a valid " \
394 "asap table." % (filename)
[1859]395 raise IOError(msg)
[1118]396 elif (isinstance(filename, list) or isinstance(filename, tuple)) \
[976]397 and isinstance(filename[-1], str):
[1916]398 self._fill(filename, unit, average)
[1586]399 self.parallactify(parallactify)
[1259]400 self._add_history("scantable", varlist)
[102]401
[1862]402 @asaplog_post_dec
[876]403 def save(self, name=None, format=None, overwrite=False):
[1846]404 """\
[1280]405 Store the scantable on disk. This can be an asap (aips++) Table,
406 SDFITS or MS2 format.
[1846]407
[116]408 Parameters:
[1846]409
[2431]410 name: the name of the outputfile. For format 'ASCII'
[1093]411 this is the root file name (data in 'name'.txt
[497]412 and header in 'name'_header.txt)
[1855]413
[116]414 format: an optional file format. Default is ASAP.
[1855]415 Allowed are:
416
417 * 'ASAP' (save as ASAP [aips++] Table),
418 * 'SDFITS' (save as SDFITS file)
419 * 'ASCII' (saves as ascii text file)
420 * 'MS2' (saves as an casacore MeasurementSet V2)
[2315]421 * 'FITS' (save as image FITS - not readable by
422 class)
[1855]423 * 'CLASS' (save as FITS readable by CLASS)
424
[411]425 overwrite: If the file should be overwritten if it exists.
[256]426 The default False is to return with warning
[411]427 without writing the output. USE WITH CARE.
[1855]428
[1846]429 Example::
430
[116]431 scan.save('myscan.asap')
[1118]432 scan.save('myscan.sdfits', 'SDFITS')
[1846]433
[116]434 """
[411]435 from os import path
[1593]436 format = format or rcParams['scantable.save']
[256]437 suffix = '.'+format.lower()
[1118]438 if name is None or name == "":
[256]439 name = 'scantable'+suffix
[718]440 msg = "No filename given. Using default name %s..." % name
441 asaplog.push(msg)
[411]442 name = path.expandvars(name)
[256]443 if path.isfile(name) or path.isdir(name):
444 if not overwrite:
[718]445 msg = "File %s exists." % name
[1859]446 raise IOError(msg)
[451]447 format2 = format.upper()
448 if format2 == 'ASAP':
[116]449 self._save(name)
[2029]450 elif format2 == 'MS2':
451 msopt = {'ms': {'overwrite': overwrite } }
452 from asap._asap import mswriter
453 writer = mswriter( self )
454 writer.write( name, msopt )
[116]455 else:
[989]456 from asap._asap import stwriter as stw
[1118]457 writer = stw(format2)
458 writer.write(self, name)
[116]459 return
460
[102]461 def copy(self):
[1846]462 """Return a copy of this scantable.
463
464 *Note*:
465
[1348]466 This makes a full (deep) copy. scan2 = scan1 makes a reference.
[1846]467
468 Example::
469
[102]470 copiedscan = scan.copy()
[1846]471
[102]472 """
[876]473 sd = scantable(Scantable._copy(self))
[113]474 return sd
475
[1093]476 def drop_scan(self, scanid=None):
[1846]477 """\
[1093]478 Return a new scantable where the specified scan number(s) has(have)
479 been dropped.
[1846]480
[1093]481 Parameters:
[1846]482
[1093]483 scanid: a (list of) scan number(s)
[1846]484
[1093]485 """
486 from asap import _is_sequence_or_number as _is_valid
487 from asap import _to_list
488 from asap import unique
489 if not _is_valid(scanid):
[2315]490 raise RuntimeError( 'Please specify a scanno to drop from the'
491 ' scantable' )
[1859]492 scanid = _to_list(scanid)
493 allscans = unique([ self.getscan(i) for i in range(self.nrow())])
494 for sid in scanid: allscans.remove(sid)
495 if len(allscans) == 0:
496 raise ValueError("Can't remove all scans")
497 sel = selector(scans=allscans)
498 return self._select_copy(sel)
[1093]499
[1594]500 def _select_copy(self, selection):
501 orig = self.get_selection()
502 self.set_selection(orig+selection)
503 cp = self.copy()
504 self.set_selection(orig)
505 return cp
506
[102]507 def get_scan(self, scanid=None):
[1855]508 """\
[102]509 Return a specific scan (by scanno) or collection of scans (by
510 source name) in a new scantable.
[1846]511
512 *Note*:
513
[1348]514 See scantable.drop_scan() for the inverse operation.
[1846]515
[102]516 Parameters:
[1846]517
[513]518 scanid: a (list of) scanno or a source name, unix-style
519 patterns are accepted for source name matching, e.g.
520 '*_R' gets all 'ref scans
[1846]521
522 Example::
523
[513]524 # get all scans containing the source '323p459'
525 newscan = scan.get_scan('323p459')
526 # get all 'off' scans
527 refscans = scan.get_scan('*_R')
528 # get a susbset of scans by scanno (as listed in scan.summary())
[1118]529 newscan = scan.get_scan([0, 2, 7, 10])
[1846]530
[102]531 """
532 if scanid is None:
[1859]533 raise RuntimeError( 'Please specify a scan no or name to '
534 'retrieve from the scantable' )
[102]535 try:
[946]536 bsel = self.get_selection()
537 sel = selector()
[102]538 if type(scanid) is str:
[946]539 sel.set_name(scanid)
[1594]540 return self._select_copy(sel)
[102]541 elif type(scanid) is int:
[946]542 sel.set_scans([scanid])
[1594]543 return self._select_copy(sel)
[381]544 elif type(scanid) is list:
[946]545 sel.set_scans(scanid)
[1594]546 return self._select_copy(sel)
[381]547 else:
[718]548 msg = "Illegal scanid type, use 'int' or 'list' if ints."
[1859]549 raise TypeError(msg)
[102]550 except RuntimeError:
[1859]551 raise
[102]552
553 def __str__(self):
[2315]554 tempFile = tempfile.NamedTemporaryFile()
555 Scantable._summary(self, tempFile.name)
556 tempFile.seek(0)
557 asaplog.clear()
558 return tempFile.file.read()
[102]559
[2315]560 @asaplog_post_dec
[976]561 def summary(self, filename=None):
[1846]562 """\
[102]563 Print a summary of the contents of this scantable.
[1846]564
[102]565 Parameters:
[1846]566
[1931]567 filename: the name of a file to write the putput to
[102]568 Default - no file output
[1846]569
[102]570 """
571 if filename is not None:
[256]572 if filename is "":
573 filename = 'scantable_summary.txt'
[415]574 from os.path import expandvars, isdir
[411]575 filename = expandvars(filename)
[2286]576 if isdir(filename):
[718]577 msg = "Illegal file name '%s'." % (filename)
[1859]578 raise IOError(msg)
[2286]579 else:
580 filename = ""
581 Scantable._summary(self, filename)
[710]582
[1512]583 def get_spectrum(self, rowno):
[1471]584 """Return the spectrum for the current row in the scantable as a list.
[1846]585
[1471]586 Parameters:
[1846]587
[1573]588 rowno: the row number to retrieve the spectrum from
[1846]589
[1471]590 """
591 return self._getspectrum(rowno)
[946]592
[1471]593 def get_mask(self, rowno):
594 """Return the mask for the current row in the scantable as a list.
[1846]595
[1471]596 Parameters:
[1846]597
[1573]598 rowno: the row number to retrieve the mask from
[1846]599
[1471]600 """
601 return self._getmask(rowno)
602
603 def set_spectrum(self, spec, rowno):
[1938]604 """Set the spectrum for the current row in the scantable.
[1846]605
[1471]606 Parameters:
[1846]607
[1855]608 spec: the new spectrum
[1846]609
[1855]610 rowno: the row number to set the spectrum for
611
[1471]612 """
[2348]613 assert(len(spec) == self.nchan(self.getif(rowno)))
[1471]614 return self._setspectrum(spec, rowno)
615
[1600]616 def get_coordinate(self, rowno):
617 """Return the (spectral) coordinate for a a given 'rowno'.
[1846]618
619 *Note*:
620
[1600]621 * This coordinate is only valid until a scantable method modifies
622 the frequency axis.
623 * This coordinate does contain the original frequency set-up
624 NOT the new frame. The conversions however are done using the user
625 specified frame (e.g. LSRK/TOPO). To get the 'real' coordinate,
626 use scantable.freq_align first. Without it there is no closure,
[1846]627 i.e.::
[1600]628
[1846]629 c = myscan.get_coordinate(0)
630 c.to_frequency(c.get_reference_pixel()) != c.get_reference_value()
631
[1600]632 Parameters:
[1846]633
[1600]634 rowno: the row number for the spectral coordinate
635
636 """
637 return coordinate(Scantable.get_coordinate(self, rowno))
638
[946]639 def get_selection(self):
[1846]640 """\
[1005]641 Get the selection object currently set on this scantable.
[1846]642
643 Example::
644
[1005]645 sel = scan.get_selection()
646 sel.set_ifs(0) # select IF 0
647 scan.set_selection(sel) # apply modified selection
[1846]648
[946]649 """
650 return selector(self._getselection())
651
[1576]652 def set_selection(self, selection=None, **kw):
[1846]653 """\
[1005]654 Select a subset of the data. All following operations on this scantable
655 are only applied to thi selection.
[1846]656
[1005]657 Parameters:
[1697]658
[1846]659 selection: a selector object (default unset the selection), or
[2431]660 any combination of 'pols', 'ifs', 'beams', 'scans',
661 'cycles', 'name', 'query'
[1697]662
[1846]663 Examples::
[1697]664
[1005]665 sel = selector() # create a selection object
[1118]666 self.set_scans([0, 3]) # select SCANNO 0 and 3
[1005]667 scan.set_selection(sel) # set the selection
668 scan.summary() # will only print summary of scanno 0 an 3
669 scan.set_selection() # unset the selection
[1697]670 # or the equivalent
671 scan.set_selection(scans=[0,3])
672 scan.summary() # will only print summary of scanno 0 an 3
673 scan.set_selection() # unset the selection
[1846]674
[946]675 """
[1576]676 if selection is None:
677 # reset
678 if len(kw) == 0:
679 selection = selector()
680 else:
681 # try keywords
682 for k in kw:
683 if k not in selector.fields:
[2320]684 raise KeyError("Invalid selection key '%s', "
685 "valid keys are %s" % (k,
686 selector.fields))
[1576]687 selection = selector(**kw)
[946]688 self._setselection(selection)
689
[1819]690 def get_row(self, row=0, insitu=None):
[1846]691 """\
[1819]692 Select a row in the scantable.
693 Return a scantable with single row.
[1846]694
[1819]695 Parameters:
[1846]696
697 row: row no of integration, default is 0.
698 insitu: if False a new scantable is returned. Otherwise, the
699 scaling is done in-situ. The default is taken from .asaprc
700 (False)
701
[1819]702 """
[2349]703 if insitu is None:
704 insitu = rcParams['insitu']
[1819]705 if not insitu:
706 workscan = self.copy()
707 else:
708 workscan = self
709 # Select a row
[2349]710 sel = selector()
[1992]711 sel.set_rows([row])
[1819]712 workscan.set_selection(sel)
713 if not workscan.nrow() == 1:
[2349]714 msg = "Could not identify single row. %d rows selected." \
715 % (workscan.nrow())
[1819]716 raise RuntimeError(msg)
717 if insitu:
718 self._assign(workscan)
719 else:
720 return workscan
721
[1862]722 @asaplog_post_dec
[1907]723 def stats(self, stat='stddev', mask=None, form='3.3f', row=None):
[1846]724 """\
[135]725 Determine the specified statistic of the current beam/if/pol
[102]726 Takes a 'mask' as an optional parameter to specify which
727 channels should be excluded.
[1846]728
[102]729 Parameters:
[1846]730
[1819]731 stat: 'min', 'max', 'min_abc', 'max_abc', 'sumsq', 'sum',
732 'mean', 'var', 'stddev', 'avdev', 'rms', 'median'
[1855]733
[135]734 mask: an optional mask specifying where the statistic
[102]735 should be determined.
[1855]736
[1819]737 form: format string to print statistic values
[1846]738
[1907]739 row: row number of spectrum to process.
740 (default is None: for all rows)
[1846]741
[1907]742 Example:
[113]743 scan.set_unit('channel')
[1118]744 msk = scan.create_mask([100, 200], [500, 600])
[135]745 scan.stats(stat='mean', mask=m)
[1846]746
[102]747 """
[1593]748 mask = mask or []
[876]749 if not self._check_ifs():
[1118]750 raise ValueError("Cannot apply mask as the IFs have different "
751 "number of channels. Please use setselection() "
752 "to select individual IFs")
[1819]753 rtnabc = False
754 if stat.lower().endswith('_abc'): rtnabc = True
755 getchan = False
756 if stat.lower().startswith('min') or stat.lower().startswith('max'):
757 chan = self._math._minmaxchan(self, mask, stat)
758 getchan = True
759 statvals = []
[1907]760 if not rtnabc:
761 if row == None:
762 statvals = self._math._stats(self, mask, stat)
763 else:
764 statvals = self._math._statsrow(self, mask, stat, int(row))
[256]765
[1819]766 #def cb(i):
767 # return statvals[i]
[256]768
[1819]769 #return self._row_callback(cb, stat)
[102]770
[1819]771 label=stat
772 #callback=cb
773 out = ""
774 #outvec = []
775 sep = '-'*50
[1907]776
777 if row == None:
778 rows = xrange(self.nrow())
779 elif isinstance(row, int):
780 rows = [ row ]
781
782 for i in rows:
[1819]783 refstr = ''
784 statunit= ''
785 if getchan:
786 qx, qy = self.chan2data(rowno=i, chan=chan[i])
787 if rtnabc:
788 statvals.append(qx['value'])
789 refstr = ('(value: %'+form) % (qy['value'])+' ['+qy['unit']+'])'
790 statunit= '['+qx['unit']+']'
791 else:
792 refstr = ('(@ %'+form) % (qx['value'])+' ['+qx['unit']+'])'
793
794 tm = self._gettime(i)
795 src = self._getsourcename(i)
796 out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
797 out += 'Time[%s]:\n' % (tm)
[1907]798 if self.nbeam(-1) > 1: out += ' Beam[%d] ' % (self.getbeam(i))
799 if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
800 if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
[1819]801 #outvec.append(callback(i))
[1907]802 if len(rows) > 1:
803 # out += ('= %'+form) % (outvec[i]) +' '+refstr+'\n'
804 out += ('= %'+form) % (statvals[i]) +' '+refstr+'\n'
805 else:
806 # out += ('= %'+form) % (outvec[0]) +' '+refstr+'\n'
807 out += ('= %'+form) % (statvals[0]) +' '+refstr+'\n'
[1819]808 out += sep+"\n"
809
[1859]810 import os
811 if os.environ.has_key( 'USER' ):
812 usr = os.environ['USER']
813 else:
814 import commands
815 usr = commands.getoutput( 'whoami' )
816 tmpfile = '/tmp/tmp_'+usr+'_casapy_asap_scantable_stats'
817 f = open(tmpfile,'w')
818 print >> f, sep
819 print >> f, ' %s %s' % (label, statunit)
820 print >> f, sep
821 print >> f, out
822 f.close()
823 f = open(tmpfile,'r')
824 x = f.readlines()
825 f.close()
826 asaplog.push(''.join(x), False)
827
[1819]828 return statvals
829
830 def chan2data(self, rowno=0, chan=0):
[1846]831 """\
[1819]832 Returns channel/frequency/velocity and spectral value
833 at an arbitrary row and channel in the scantable.
[1846]834
[1819]835 Parameters:
[1846]836
[1819]837 rowno: a row number in the scantable. Default is the
838 first row, i.e. rowno=0
[1855]839
[1819]840 chan: a channel in the scantable. Default is the first
841 channel, i.e. pos=0
[1846]842
[1819]843 """
844 if isinstance(rowno, int) and isinstance(chan, int):
845 qx = {'unit': self.get_unit(),
846 'value': self._getabcissa(rowno)[chan]}
847 qy = {'unit': self.get_fluxunit(),
848 'value': self._getspectrum(rowno)[chan]}
849 return qx, qy
850
[1118]851 def stddev(self, mask=None):
[1846]852 """\
[135]853 Determine the standard deviation of the current beam/if/pol
854 Takes a 'mask' as an optional parameter to specify which
855 channels should be excluded.
[1846]856
[135]857 Parameters:
[1846]858
[135]859 mask: an optional mask specifying where the standard
860 deviation should be determined.
861
[1846]862 Example::
863
[135]864 scan.set_unit('channel')
[1118]865 msk = scan.create_mask([100, 200], [500, 600])
[135]866 scan.stddev(mask=m)
[1846]867
[135]868 """
[1118]869 return self.stats(stat='stddev', mask=mask);
[135]870
[1003]871
[1259]872 def get_column_names(self):
[1846]873 """\
[1003]874 Return a list of column names, which can be used for selection.
875 """
[1259]876 return list(Scantable.get_column_names(self))
[1003]877
[1730]878 def get_tsys(self, row=-1):
[1846]879 """\
[113]880 Return the System temperatures.
[1846]881
882 Parameters:
883
884 row: the rowno to get the information for. (default all rows)
885
[113]886 Returns:
[1846]887
[876]888 a list of Tsys values for the current selection
[1846]889
[113]890 """
[1730]891 if row > -1:
892 return self._get_column(self._gettsys, row)
[876]893 return self._row_callback(self._gettsys, "Tsys")
[256]894
[2406]895 def get_tsysspectrum(self, row=-1):
896 """\
897 Return the channel dependent system temperatures.
[1730]898
[2406]899 Parameters:
900
901 row: the rowno to get the information for. (default all rows)
902
903 Returns:
904
905 a list of Tsys values for the current selection
906
907 """
908 return self._get_column( self._gettsysspectrum, row )
909
[2791]910 def set_tsys(self, values, row=-1):
911 """\
912 Set the Tsys value(s) of the given 'row' or the whole scantable
913 (selection).
914
915 Parameters:
916
917 values: a scalar or list (if Tsys is a vector) of Tsys value(s)
918 row: the row number to apply Tsys values to.
919 (default all rows)
920
921 """
922
923 if not hasattr(values, "__len__"):
924 values = [values]
925 self._settsys(values, row)
926
[1730]927 def get_weather(self, row=-1):
[1846]928 """\
929 Return the weather informations.
930
931 Parameters:
932
933 row: the rowno to get the information for. (default all rows)
934
935 Returns:
936
937 a dict or list of of dicts of values for the current selection
938
939 """
940
[1730]941 values = self._get_column(self._get_weather, row)
942 if row > -1:
943 return {'temperature': values[0],
944 'pressure': values[1], 'humidity' : values[2],
945 'windspeed' : values[3], 'windaz' : values[4]
946 }
947 else:
948 out = []
949 for r in values:
950
951 out.append({'temperature': r[0],
952 'pressure': r[1], 'humidity' : r[2],
953 'windspeed' : r[3], 'windaz' : r[4]
954 })
955 return out
956
[876]957 def _row_callback(self, callback, label):
958 out = ""
[1118]959 outvec = []
[1590]960 sep = '-'*50
[876]961 for i in range(self.nrow()):
962 tm = self._gettime(i)
963 src = self._getsourcename(i)
[1590]964 out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
[876]965 out += 'Time[%s]:\n' % (tm)
[1590]966 if self.nbeam(-1) > 1:
967 out += ' Beam[%d] ' % (self.getbeam(i))
968 if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
969 if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
[876]970 outvec.append(callback(i))
971 out += '= %3.3f\n' % (outvec[i])
[1590]972 out += sep+'\n'
[1859]973
974 asaplog.push(sep)
975 asaplog.push(" %s" % (label))
976 asaplog.push(sep)
977 asaplog.push(out)
[1861]978 asaplog.post()
[1175]979 return outvec
[256]980
[1947]981 def _get_column(self, callback, row=-1, *args):
[1070]982 """
983 """
984 if row == -1:
[1947]985 return [callback(i, *args) for i in range(self.nrow())]
[1070]986 else:
[1819]987 if 0 <= row < self.nrow():
[1947]988 return callback(row, *args)
[256]989
[1070]990
[1948]991 def get_time(self, row=-1, asdatetime=False, prec=-1):
[1846]992 """\
[113]993 Get a list of time stamps for the observations.
[1938]994 Return a datetime object or a string (default) for each
995 integration time stamp in the scantable.
[1846]996
[113]997 Parameters:
[1846]998
[1348]999 row: row no of integration. Default -1 return all rows
[1855]1000
[1348]1001 asdatetime: return values as datetime objects rather than strings
[1846]1002
[2349]1003 prec: number of digits shown. Default -1 to automatic
1004 calculation.
[1948]1005 Note this number is equals to the digits of MVTime,
1006 i.e., 0<prec<3: dates with hh:: only,
1007 <5: with hh:mm:, <7 or 0: with hh:mm:ss,
[1947]1008 and 6> : with hh:mm:ss.tt... (prec-6 t's added)
1009
[113]1010 """
[1175]1011 from datetime import datetime
[1948]1012 if prec < 0:
1013 # automagically set necessary precision +1
[2349]1014 prec = 7 - \
1015 numpy.floor(numpy.log10(numpy.min(self.get_inttime(row))))
[1948]1016 prec = max(6, int(prec))
1017 else:
1018 prec = max(0, prec)
1019 if asdatetime:
1020 #precision can be 1 millisecond at max
1021 prec = min(12, prec)
1022
[1947]1023 times = self._get_column(self._gettime, row, prec)
[1348]1024 if not asdatetime:
[1392]1025 return times
[1947]1026 format = "%Y/%m/%d/%H:%M:%S.%f"
1027 if prec < 7:
1028 nsub = 1 + (((6-prec)/2) % 3)
1029 substr = [".%f","%S","%M"]
1030 for i in range(nsub):
1031 format = format.replace(substr[i],"")
[1175]1032 if isinstance(times, list):
[1947]1033 return [datetime.strptime(i, format) for i in times]
[1175]1034 else:
[1947]1035 return datetime.strptime(times, format)
[102]1036
[1348]1037
1038 def get_inttime(self, row=-1):
[1846]1039 """\
[1348]1040 Get a list of integration times for the observations.
1041 Return a time in seconds for each integration in the scantable.
[1846]1042
[1348]1043 Parameters:
[1846]1044
[1348]1045 row: row no of integration. Default -1 return all rows.
[1846]1046
[1348]1047 """
[1573]1048 return self._get_column(self._getinttime, row)
[1348]1049
[1573]1050
[714]1051 def get_sourcename(self, row=-1):
[1846]1052 """\
[794]1053 Get a list source names for the observations.
[714]1054 Return a string for each integration in the scantable.
1055 Parameters:
[1846]1056
[1348]1057 row: row no of integration. Default -1 return all rows.
[1846]1058
[714]1059 """
[1070]1060 return self._get_column(self._getsourcename, row)
[714]1061
[794]1062 def get_elevation(self, row=-1):
[1846]1063 """\
[794]1064 Get a list of elevations for the observations.
1065 Return a float for each integration in the scantable.
[1846]1066
[794]1067 Parameters:
[1846]1068
[1348]1069 row: row no of integration. Default -1 return all rows.
[1846]1070
[794]1071 """
[1070]1072 return self._get_column(self._getelevation, row)
[794]1073
1074 def get_azimuth(self, row=-1):
[1846]1075 """\
[794]1076 Get a list of azimuths for the observations.
1077 Return a float for each integration in the scantable.
[1846]1078
[794]1079 Parameters:
[1348]1080 row: row no of integration. Default -1 return all rows.
[1846]1081
[794]1082 """
[1070]1083 return self._get_column(self._getazimuth, row)
[794]1084
1085 def get_parangle(self, row=-1):
[1846]1086 """\
[794]1087 Get a list of parallactic angles for the observations.
1088 Return a float for each integration in the scantable.
[1846]1089
[794]1090 Parameters:
[1846]1091
[1348]1092 row: row no of integration. Default -1 return all rows.
[1846]1093
[794]1094 """
[1070]1095 return self._get_column(self._getparangle, row)
[794]1096
[1070]1097 def get_direction(self, row=-1):
1098 """
1099 Get a list of Positions on the sky (direction) for the observations.
[1594]1100 Return a string for each integration in the scantable.
[1855]1101
[1070]1102 Parameters:
[1855]1103
[1070]1104 row: row no of integration. Default -1 return all rows
[1855]1105
[1070]1106 """
1107 return self._get_column(self._getdirection, row)
1108
[1391]1109 def get_directionval(self, row=-1):
[1846]1110 """\
[1391]1111 Get a list of Positions on the sky (direction) for the observations.
1112 Return a float for each integration in the scantable.
[1846]1113
[1391]1114 Parameters:
[1846]1115
[1391]1116 row: row no of integration. Default -1 return all rows
[1846]1117
[1391]1118 """
1119 return self._get_column(self._getdirectionvec, row)
1120
[1862]1121 @asaplog_post_dec
[102]1122 def set_unit(self, unit='channel'):
[1846]1123 """\
[102]1124 Set the unit for all following operations on this scantable
[1846]1125
[102]1126 Parameters:
[1846]1127
1128 unit: optional unit, default is 'channel'. Use one of '*Hz',
1129 'km/s', 'channel' or equivalent ''
1130
[102]1131 """
[484]1132 varlist = vars()
[1118]1133 if unit in ['', 'pixel', 'channel']:
[113]1134 unit = ''
1135 inf = list(self._getcoordinfo())
1136 inf[0] = unit
1137 self._setcoordinfo(inf)
[1118]1138 self._add_history("set_unit", varlist)
[113]1139
[1862]1140 @asaplog_post_dec
[484]1141 def set_instrument(self, instr):
[1846]1142 """\
[1348]1143 Set the instrument for subsequent processing.
[1846]1144
[358]1145 Parameters:
[1846]1146
[710]1147 instr: Select from 'ATPKSMB', 'ATPKSHOH', 'ATMOPRA',
[407]1148 'DSS-43' (Tid), 'CEDUNA', and 'HOBART'
[1846]1149
[358]1150 """
1151 self._setInstrument(instr)
[1118]1152 self._add_history("set_instument", vars())
[358]1153
[1862]1154 @asaplog_post_dec
[1190]1155 def set_feedtype(self, feedtype):
[1846]1156 """\
[1190]1157 Overwrite the feed type, which might not be set correctly.
[1846]1158
[1190]1159 Parameters:
[1846]1160
[1190]1161 feedtype: 'linear' or 'circular'
[1846]1162
[1190]1163 """
1164 self._setfeedtype(feedtype)
1165 self._add_history("set_feedtype", vars())
1166
[1862]1167 @asaplog_post_dec
[276]1168 def set_doppler(self, doppler='RADIO'):
[1846]1169 """\
[276]1170 Set the doppler for all following operations on this scantable.
[1846]1171
[276]1172 Parameters:
[1846]1173
[276]1174 doppler: One of 'RADIO', 'OPTICAL', 'Z', 'BETA', 'GAMMA'
[1846]1175
[276]1176 """
[484]1177 varlist = vars()
[276]1178 inf = list(self._getcoordinfo())
1179 inf[2] = doppler
1180 self._setcoordinfo(inf)
[1118]1181 self._add_history("set_doppler", vars())
[710]1182
[1862]1183 @asaplog_post_dec
[226]1184 def set_freqframe(self, frame=None):
[1846]1185 """\
[113]1186 Set the frame type of the Spectral Axis.
[1846]1187
[113]1188 Parameters:
[1846]1189
[591]1190 frame: an optional frame type, default 'LSRK'. Valid frames are:
[1819]1191 'TOPO', 'LSRD', 'LSRK', 'BARY',
[1118]1192 'GEO', 'GALACTO', 'LGROUP', 'CMB'
[1846]1193
1194 Example::
1195
[113]1196 scan.set_freqframe('BARY')
[1846]1197
[113]1198 """
[1593]1199 frame = frame or rcParams['scantable.freqframe']
[484]1200 varlist = vars()
[1819]1201 # "REST" is not implemented in casacore
1202 #valid = ['REST', 'TOPO', 'LSRD', 'LSRK', 'BARY', \
1203 # 'GEO', 'GALACTO', 'LGROUP', 'CMB']
1204 valid = ['TOPO', 'LSRD', 'LSRK', 'BARY', \
[1118]1205 'GEO', 'GALACTO', 'LGROUP', 'CMB']
[591]1206
[989]1207 if frame in valid:
[113]1208 inf = list(self._getcoordinfo())
1209 inf[1] = frame
1210 self._setcoordinfo(inf)
[1118]1211 self._add_history("set_freqframe", varlist)
[102]1212 else:
[1118]1213 msg = "Please specify a valid freq type. Valid types are:\n", valid
[1859]1214 raise TypeError(msg)
[710]1215
[1862]1216 @asaplog_post_dec
[989]1217 def set_dirframe(self, frame=""):
[1846]1218 """\
[989]1219 Set the frame type of the Direction on the sky.
[1846]1220
[989]1221 Parameters:
[1846]1222
[989]1223 frame: an optional frame type, default ''. Valid frames are:
1224 'J2000', 'B1950', 'GALACTIC'
[1846]1225
1226 Example:
1227
[989]1228 scan.set_dirframe('GALACTIC')
[1846]1229
[989]1230 """
1231 varlist = vars()
[1859]1232 Scantable.set_dirframe(self, frame)
[1118]1233 self._add_history("set_dirframe", varlist)
[989]1234
[113]1235 def get_unit(self):
[1846]1236 """\
[113]1237 Get the default unit set in this scantable
[1846]1238
[113]1239 Returns:
[1846]1240
[113]1241 A unit string
[1846]1242
[113]1243 """
1244 inf = self._getcoordinfo()
1245 unit = inf[0]
1246 if unit == '': unit = 'channel'
1247 return unit
[102]1248
[1862]1249 @asaplog_post_dec
[158]1250 def get_abcissa(self, rowno=0):
[1846]1251 """\
[158]1252 Get the abcissa in the current coordinate setup for the currently
[113]1253 selected Beam/IF/Pol
[1846]1254
[113]1255 Parameters:
[1846]1256
[226]1257 rowno: an optional row number in the scantable. Default is the
1258 first row, i.e. rowno=0
[1846]1259
[113]1260 Returns:
[1846]1261
[1348]1262 The abcissa values and the format string (as a dictionary)
[1846]1263
[113]1264 """
[256]1265 abc = self._getabcissa(rowno)
[710]1266 lbl = self._getabcissalabel(rowno)
[158]1267 return abc, lbl
[113]1268
[1862]1269 @asaplog_post_dec
[2322]1270 def flag(self, mask=None, unflag=False, row=-1):
[1846]1271 """\
[1001]1272 Flag the selected data using an optional channel mask.
[1846]1273
[1001]1274 Parameters:
[1846]1275
[1001]1276 mask: an optional channel mask, created with create_mask. Default
1277 (no mask) is all channels.
[1855]1278
[1819]1279 unflag: if True, unflag the data
[1846]1280
[2322]1281 row: an optional row number in the scantable.
1282 Default -1 flags all rows
1283
[1001]1284 """
1285 varlist = vars()
[1593]1286 mask = mask or []
[1994]1287 self._flag(row, mask, unflag)
[1001]1288 self._add_history("flag", varlist)
1289
[1862]1290 @asaplog_post_dec
[2322]1291 def flag_row(self, rows=None, unflag=False):
[1846]1292 """\
[1819]1293 Flag the selected data in row-based manner.
[1846]1294
[1819]1295 Parameters:
[1846]1296
[1843]1297 rows: list of row numbers to be flagged. Default is no row
[2322]1298 (must be explicitly specified to execute row-based
1299 flagging).
[1855]1300
[1819]1301 unflag: if True, unflag the data.
[1846]1302
[1819]1303 """
1304 varlist = vars()
[2322]1305 if rows is None:
1306 rows = []
[1859]1307 self._flag_row(rows, unflag)
[1819]1308 self._add_history("flag_row", varlist)
1309
[1862]1310 @asaplog_post_dec
[1819]1311 def clip(self, uthres=None, dthres=None, clipoutside=True, unflag=False):
[1846]1312 """\
[1819]1313 Flag the selected data outside a specified range (in channel-base)
[1846]1314
[1819]1315 Parameters:
[1846]1316
[1819]1317 uthres: upper threshold.
[1855]1318
[1819]1319 dthres: lower threshold
[1846]1320
[2322]1321 clipoutside: True for flagging data outside the range
1322 [dthres:uthres].
[1928]1323 False for flagging data inside the range.
[1855]1324
[1846]1325 unflag: if True, unflag the data.
1326
[1819]1327 """
1328 varlist = vars()
[1859]1329 self._clip(uthres, dthres, clipoutside, unflag)
[1819]1330 self._add_history("clip", varlist)
1331
[1862]1332 @asaplog_post_dec
[1584]1333 def lag_flag(self, start, end, unit="MHz", insitu=None):
[1846]1334 """\
[1192]1335 Flag the data in 'lag' space by providing a frequency to remove.
[2177]1336 Flagged data in the scantable get interpolated over the region.
[1192]1337 No taper is applied.
[1846]1338
[1192]1339 Parameters:
[1846]1340
[1579]1341 start: the start frequency (really a period within the
1342 bandwidth) or period to remove
[1855]1343
[1579]1344 end: the end frequency or period to remove
[1855]1345
[2431]1346 unit: the frequency unit (default 'MHz') or '' for
[1579]1347 explicit lag channels
[1846]1348
1349 *Notes*:
1350
[1579]1351 It is recommended to flag edges of the band or strong
[1348]1352 signals beforehand.
[1846]1353
[1192]1354 """
1355 if insitu is None: insitu = rcParams['insitu']
1356 self._math._setinsitu(insitu)
1357 varlist = vars()
[1579]1358 base = { "GHz": 1000000000., "MHz": 1000000., "kHz": 1000., "Hz": 1.}
1359 if not (unit == "" or base.has_key(unit)):
[1192]1360 raise ValueError("%s is not a valid unit." % unit)
[1859]1361 if unit == "":
1362 s = scantable(self._math._lag_flag(self, start, end, "lags"))
1363 else:
1364 s = scantable(self._math._lag_flag(self, start*base[unit],
1365 end*base[unit], "frequency"))
[1192]1366 s._add_history("lag_flag", varlist)
1367 if insitu:
1368 self._assign(s)
1369 else:
1370 return s
[1001]1371
[1862]1372 @asaplog_post_dec
[2349]1373 def fft(self, rowno=None, mask=None, getrealimag=False):
[2177]1374 """\
1375 Apply FFT to the spectra.
1376 Flagged data in the scantable get interpolated over the region.
1377
1378 Parameters:
[2186]1379
1380 rowno: The row number(s) to be processed. int, list
[2349]1381 and tuple are accepted. By default (None), FFT
[2186]1382 is applied to the whole data.
1383
1384 mask: Auxiliary channel mask(s). Given as a boolean
1385 list, it is applied to all specified rows.
1386 A list of boolean lists can also be used to
1387 apply different masks. In the latter case, the
1388 length of 'mask' must be the same as that of
[2349]1389 'rowno'. The default is None.
[2177]1390
1391 getrealimag: If True, returns the real and imaginary part
1392 values of the complex results.
1393 If False (the default), returns the amplitude
1394 (absolute value) normalised with Ndata/2 and
1395 phase (argument, in unit of radian).
1396
1397 Returns:
1398
[2186]1399 A list of dictionaries containing the results for each spectrum.
1400 Each dictionary contains two values, the real and the imaginary
1401 parts when getrealimag = True, or the amplitude(absolute value)
1402 and the phase(argument) when getrealimag = False. The key for
1403 these values are 'real' and 'imag', or 'ampl' and 'phase',
[2177]1404 respectively.
1405 """
[2349]1406 if rowno is None:
1407 rowno = []
[2177]1408 if isinstance(rowno, int):
1409 rowno = [rowno]
1410 elif not (isinstance(rowno, list) or isinstance(rowno, tuple)):
[2186]1411 raise TypeError("The row number(s) must be int, list or tuple.")
1412 if len(rowno) == 0: rowno = [i for i in xrange(self.nrow())]
1413
[2411]1414 usecommonmask = True
1415
1416 if mask is None:
1417 mask = []
1418 if isinstance(mask, list) or isinstance(mask, tuple):
1419 if len(mask) == 0:
1420 mask = [[]]
1421 else:
1422 if isinstance(mask[0], bool):
1423 if len(mask) != self.nchan(self.getif(rowno[0])):
1424 raise ValueError("The spectra and the mask have "
1425 "different length.")
1426 mask = [mask]
1427 elif isinstance(mask[0], list) or isinstance(mask[0], tuple):
1428 usecommonmask = False
1429 if len(mask) != len(rowno):
1430 raise ValueError("When specifying masks for each "
1431 "spectrum, the numbers of them "
1432 "must be identical.")
1433 for i in xrange(mask):
1434 if len(mask[i]) != self.nchan(self.getif(rowno[i])):
1435 raise ValueError("The spectra and the mask have "
1436 "different length.")
1437 else:
1438 raise TypeError("The mask must be a boolean list or "
1439 "a list of boolean list.")
1440 else:
[2349]1441 raise TypeError("The mask must be a boolean list or a list of "
1442 "boolean list.")
[2186]1443
1444 res = []
1445
1446 imask = 0
1447 for whichrow in rowno:
1448 fspec = self._fft(whichrow, mask[imask], getrealimag)
1449 nspec = len(fspec)
[2177]1450
[2349]1451 i = 0
1452 v1 = []
1453 v2 = []
1454 reselem = {"real":[],"imag":[]} if getrealimag \
1455 else {"ampl":[],"phase":[]}
[2177]1456
[2186]1457 while (i < nspec):
1458 v1.append(fspec[i])
1459 v2.append(fspec[i+1])
[2349]1460 i += 2
[2186]1461
[2177]1462 if getrealimag:
[2186]1463 reselem["real"] += v1
1464 reselem["imag"] += v2
[2177]1465 else:
[2186]1466 reselem["ampl"] += v1
1467 reselem["phase"] += v2
[2177]1468
[2186]1469 res.append(reselem)
1470
[2349]1471 if not usecommonmask:
1472 imask += 1
[2186]1473
[2177]1474 return res
1475
1476 @asaplog_post_dec
[113]1477 def create_mask(self, *args, **kwargs):
[1846]1478 """\
[1118]1479 Compute and return a mask based on [min, max] windows.
[189]1480 The specified windows are to be INCLUDED, when the mask is
[113]1481 applied.
[1846]1482
[102]1483 Parameters:
[1846]1484
[1118]1485 [min, max], [min2, max2], ...
[1024]1486 Pairs of start/end points (inclusive)specifying the regions
[102]1487 to be masked
[1855]1488
[189]1489 invert: optional argument. If specified as True,
1490 return an inverted mask, i.e. the regions
1491 specified are EXCLUDED
[1855]1492
[513]1493 row: create the mask using the specified row for
1494 unit conversions, default is row=0
1495 only necessary if frequency varies over rows.
[1846]1496
1497 Examples::
1498
[113]1499 scan.set_unit('channel')
[1846]1500 # a)
[1118]1501 msk = scan.create_mask([400, 500], [800, 900])
[189]1502 # masks everything outside 400 and 500
[113]1503 # and 800 and 900 in the unit 'channel'
1504
[1846]1505 # b)
[1118]1506 msk = scan.create_mask([400, 500], [800, 900], invert=True)
[189]1507 # masks the regions between 400 and 500
[113]1508 # and 800 and 900 in the unit 'channel'
[1846]1509
1510 # c)
1511 #mask only channel 400
[1554]1512 msk = scan.create_mask([400])
[1846]1513
[102]1514 """
[1554]1515 row = kwargs.get("row", 0)
[513]1516 data = self._getabcissa(row)
[113]1517 u = self._getcoordinfo()[0]
[1859]1518 if u == "":
1519 u = "channel"
1520 msg = "The current mask window unit is %s" % u
1521 i = self._check_ifs()
1522 if not i:
1523 msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
1524 asaplog.push(msg)
[2348]1525 n = len(data)
[1295]1526 msk = _n_bools(n, False)
[710]1527 # test if args is a 'list' or a 'normal *args - UGLY!!!
1528
[2349]1529 ws = (isinstance(args[-1][-1], int)
1530 or isinstance(args[-1][-1], float)) and args or args[0]
[710]1531 for window in ws:
[1554]1532 if len(window) == 1:
1533 window = [window[0], window[0]]
1534 if len(window) == 0 or len(window) > 2:
[2349]1535 raise ValueError("A window needs to be defined as "
1536 "[start(, end)]")
[1545]1537 if window[0] > window[1]:
1538 tmp = window[0]
1539 window[0] = window[1]
1540 window[1] = tmp
[102]1541 for i in range(n):
[1024]1542 if data[i] >= window[0] and data[i] <= window[1]:
[1295]1543 msk[i] = True
[113]1544 if kwargs.has_key('invert'):
1545 if kwargs.get('invert'):
[1295]1546 msk = mask_not(msk)
[102]1547 return msk
[710]1548
[1931]1549 def get_masklist(self, mask=None, row=0, silent=False):
[1846]1550 """\
[1819]1551 Compute and return a list of mask windows, [min, max].
[1846]1552
[1819]1553 Parameters:
[1846]1554
[1819]1555 mask: channel mask, created with create_mask.
[1855]1556
[1819]1557 row: calcutate the masklist using the specified row
1558 for unit conversions, default is row=0
1559 only necessary if frequency varies over rows.
[1846]1560
[1819]1561 Returns:
[1846]1562
[1819]1563 [min, max], [min2, max2], ...
1564 Pairs of start/end points (inclusive)specifying
1565 the masked regions
[1846]1566
[1819]1567 """
1568 if not (isinstance(mask,list) or isinstance(mask, tuple)):
1569 raise TypeError("The mask should be list or tuple.")
[2427]1570 if len(mask) <= 0:
1571 raise TypeError("The mask elements should be > 0")
[2348]1572 data = self._getabcissa(row)
1573 if len(data) != len(mask):
[1819]1574 msg = "Number of channels in scantable != number of mask elements"
1575 raise TypeError(msg)
1576 u = self._getcoordinfo()[0]
[1859]1577 if u == "":
1578 u = "channel"
1579 msg = "The current mask window unit is %s" % u
1580 i = self._check_ifs()
1581 if not i:
1582 msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
[1931]1583 if not silent:
1584 asaplog.push(msg)
[2349]1585 masklist = []
[1819]1586 ist, ien = None, None
1587 ist, ien=self.get_mask_indices(mask)
1588 if ist is not None and ien is not None:
1589 for i in xrange(len(ist)):
1590 range=[data[ist[i]],data[ien[i]]]
1591 range.sort()
1592 masklist.append([range[0],range[1]])
1593 return masklist
1594
1595 def get_mask_indices(self, mask=None):
[1846]1596 """\
[1819]1597 Compute and Return lists of mask start indices and mask end indices.
[1855]1598
1599 Parameters:
1600
[1819]1601 mask: channel mask, created with create_mask.
[1846]1602
[1819]1603 Returns:
[1846]1604
[1819]1605 List of mask start indices and that of mask end indices,
1606 i.e., [istart1,istart2,....], [iend1,iend2,....].
[1846]1607
[1819]1608 """
1609 if not (isinstance(mask,list) or isinstance(mask, tuple)):
1610 raise TypeError("The mask should be list or tuple.")
[2427]1611 if len(mask) <= 0:
1612 raise TypeError("The mask elements should be > 0")
[2349]1613 istart = []
1614 iend = []
1615 if mask[0]:
1616 istart.append(0)
[1819]1617 for i in range(len(mask)-1):
1618 if not mask[i] and mask[i+1]:
1619 istart.append(i+1)
1620 elif mask[i] and not mask[i+1]:
1621 iend.append(i)
[2349]1622 if mask[len(mask)-1]:
1623 iend.append(len(mask)-1)
[1819]1624 if len(istart) != len(iend):
1625 raise RuntimeError("Numbers of mask start != mask end.")
1626 for i in range(len(istart)):
1627 if istart[i] > iend[i]:
1628 raise RuntimeError("Mask start index > mask end index")
1629 break
1630 return istart,iend
1631
[2013]1632 @asaplog_post_dec
[2349]1633 def parse_maskexpr(self, maskstring):
[2013]1634 """
1635 Parse CASA type mask selection syntax (IF dependent).
1636
1637 Parameters:
1638 maskstring : A string mask selection expression.
1639 A comma separated selections mean different IF -
1640 channel combinations. IFs and channel selections
1641 are partitioned by a colon, ':'.
1642 examples:
[2015]1643 '' = all IFs (all channels)
[2013]1644 '<2,4~6,9' = IFs 0,1,4,5,6,9 (all channels)
1645 '3:3~45;60' = channels 3 to 45 and 60 in IF 3
1646 '0~1:2~6,8' = channels 2 to 6 in IFs 0,1, and
1647 all channels in IF8
1648 Returns:
1649 A dictionary of selected (valid) IF and masklist pairs,
1650 e.g. {'0': [[50,250],[350,462]], '2': [[100,400],[550,974]]}
1651 """
1652 if not isinstance(maskstring,str):
1653 asaplog.post()
[2611]1654 asaplog.push("Mask expression should be a string.")
[2013]1655 asaplog.post("ERROR")
1656
1657 valid_ifs = self.getifnos()
1658 frequnit = self.get_unit()
1659 seldict = {}
[2015]1660 if maskstring == "":
1661 maskstring = str(valid_ifs)[1:-1]
[2611]1662 ## split each selection "IF range[:CHAN range]"
[2013]1663 sellist = maskstring.split(',')
1664 for currselstr in sellist:
1665 selset = currselstr.split(':')
1666 # spw and mask string (may include ~, < or >)
[2349]1667 spwmasklist = self._parse_selection(selset[0], typestr='integer',
[2611]1668 minval=min(valid_ifs),
[2349]1669 maxval=max(valid_ifs))
[2013]1670 for spwlist in spwmasklist:
1671 selspws = []
1672 for ispw in range(spwlist[0],spwlist[1]+1):
1673 # Put into the list only if ispw exists
1674 if valid_ifs.count(ispw):
1675 selspws.append(ispw)
1676 del spwmasklist, spwlist
1677
1678 # parse frequency mask list
1679 if len(selset) > 1:
[2349]1680 freqmasklist = self._parse_selection(selset[1], typestr='float',
1681 offset=0.)
[2013]1682 else:
1683 # want to select the whole spectrum
1684 freqmasklist = [None]
1685
1686 ## define a dictionary of spw - masklist combination
1687 for ispw in selspws:
1688 #print "working on", ispw
1689 spwstr = str(ispw)
1690 if len(selspws) == 0:
1691 # empty spw
1692 continue
1693 else:
1694 ## want to get min and max of the spw and
1695 ## offset to set for '<' and '>'
1696 if frequnit == 'channel':
1697 minfreq = 0
1698 maxfreq = self.nchan(ifno=ispw)
1699 offset = 0.5
1700 else:
1701 ## This is ugly part. need improvement
1702 for ifrow in xrange(self.nrow()):
1703 if self.getif(ifrow) == ispw:
1704 #print "IF",ispw,"found in row =",ifrow
1705 break
1706 freqcoord = self.get_coordinate(ifrow)
1707 freqs = self._getabcissa(ifrow)
1708 minfreq = min(freqs)
1709 maxfreq = max(freqs)
1710 if len(freqs) == 1:
1711 offset = 0.5
1712 elif frequnit.find('Hz') > 0:
[2349]1713 offset = abs(freqcoord.to_frequency(1,
1714 unit=frequnit)
1715 -freqcoord.to_frequency(0,
1716 unit=frequnit)
1717 )*0.5
[2013]1718 elif frequnit.find('m/s') > 0:
[2349]1719 offset = abs(freqcoord.to_velocity(1,
1720 unit=frequnit)
1721 -freqcoord.to_velocity(0,
1722 unit=frequnit)
1723 )*0.5
[2013]1724 else:
1725 asaplog.post()
1726 asaplog.push("Invalid frequency unit")
1727 asaplog.post("ERROR")
1728 del freqs, freqcoord, ifrow
1729 for freq in freqmasklist:
1730 selmask = freq or [minfreq, maxfreq]
1731 if selmask[0] == None:
1732 ## selection was "<freq[1]".
1733 if selmask[1] < minfreq:
1734 ## avoid adding region selection
1735 selmask = None
1736 else:
1737 selmask = [minfreq,selmask[1]-offset]
1738 elif selmask[1] == None:
1739 ## selection was ">freq[0]"
1740 if selmask[0] > maxfreq:
1741 ## avoid adding region selection
1742 selmask = None
1743 else:
1744 selmask = [selmask[0]+offset,maxfreq]
1745 if selmask:
1746 if not seldict.has_key(spwstr):
1747 # new spw selection
1748 seldict[spwstr] = []
1749 seldict[spwstr] += [selmask]
1750 del minfreq,maxfreq,offset,freq,selmask
1751 del spwstr
1752 del freqmasklist
1753 del valid_ifs
1754 if len(seldict) == 0:
1755 asaplog.post()
[2349]1756 asaplog.push("No valid selection in the mask expression: "
1757 +maskstring)
[2013]1758 asaplog.post("WARN")
1759 return None
1760 msg = "Selected masklist:\n"
1761 for sif, lmask in seldict.iteritems():
1762 msg += " IF"+sif+" - "+str(lmask)+"\n"
1763 asaplog.push(msg)
1764 return seldict
1765
[2611]1766 @asaplog_post_dec
1767 def parse_idx_selection(self, mode, selexpr):
1768 """
1769 Parse CASA type mask selection syntax of SCANNO, IFNO, POLNO,
1770 BEAMNO, and row number
1771
1772 Parameters:
1773 mode : which column to select.
1774 ['scan',|'if'|'pol'|'beam'|'row']
1775 selexpr : A comma separated selection expression.
1776 examples:
1777 '' = all (returns [])
1778 '<2,4~6,9' = indices less than 2, 4 to 6 and 9
1779 (returns [0,1,4,5,6,9])
1780 Returns:
1781 A List of selected indices
1782 """
1783 if selexpr == "":
1784 return []
1785 valid_modes = {'s': 'scan', 'i': 'if', 'p': 'pol',
1786 'b': 'beam', 'r': 'row'}
1787 smode = mode.lower()[0]
1788 if not (smode in valid_modes.keys()):
1789 msg = "Invalid mode '%s'. Valid modes are %s" %\
1790 (mode, str(valid_modes.values()))
1791 asaplog.post()
1792 asaplog.push(msg)
1793 asaplog.post("ERROR")
1794 mode = valid_modes[smode]
1795 minidx = None
1796 maxidx = None
1797 if smode == 'r':
1798 minidx = 0
1799 maxidx = self.nrow()
1800 else:
1801 idx = getattr(self,"get"+mode+"nos")()
1802 minidx = min(idx)
1803 maxidx = max(idx)
1804 del idx
1805 sellist = selexpr.split(',')
1806 idxlist = []
1807 for currselstr in sellist:
1808 # single range (may include ~, < or >)
1809 currlist = self._parse_selection(currselstr, typestr='integer',
1810 minval=minidx,maxval=maxidx)
1811 for thelist in currlist:
1812 idxlist += range(thelist[0],thelist[1]+1)
1813 msg = "Selected %s: %s" % (mode.upper()+"NO", str(idxlist))
1814 asaplog.push(msg)
1815 return idxlist
1816
[2349]1817 def _parse_selection(self, selstr, typestr='float', offset=0.,
[2351]1818 minval=None, maxval=None):
[2013]1819 """
1820 Parameters:
1821 selstr : The Selection string, e.g., '<3;5~7;100~103;9'
1822 typestr : The type of the values in returned list
1823 ('integer' or 'float')
1824 offset : The offset value to subtract from or add to
1825 the boundary value if the selection string
[2611]1826 includes '<' or '>' [Valid only for typestr='float']
[2013]1827 minval, maxval : The minimum/maximum values to set if the
1828 selection string includes '<' or '>'.
1829 The list element is filled with None by default.
1830 Returns:
1831 A list of min/max pair of selections.
1832 Example:
[2611]1833 _parse_selection('<3;5~7;9',typestr='int',minval=0)
1834 --> returns [[0,2],[5,7],[9,9]]
1835 _parse_selection('<3;5~7;9',typestr='float',offset=0.5,minval=0)
1836 --> returns [[0.,2.5],[5.0,7.0],[9.,9.]]
[2013]1837 """
1838 selgroups = selstr.split(';')
1839 sellists = []
1840 if typestr.lower().startswith('int'):
1841 formatfunc = int
[2611]1842 offset = 1
[2013]1843 else:
1844 formatfunc = float
1845
1846 for currsel in selgroups:
1847 if currsel.find('~') > 0:
[2611]1848 # val0 <= x <= val1
[2013]1849 minsel = formatfunc(currsel.split('~')[0].strip())
1850 maxsel = formatfunc(currsel.split('~')[1].strip())
[2611]1851 elif currsel.strip().find('<=') > -1:
1852 bound = currsel.split('<=')
1853 try: # try "x <= val"
1854 minsel = minval
1855 maxsel = formatfunc(bound[1].strip())
1856 except ValueError: # now "val <= x"
1857 minsel = formatfunc(bound[0].strip())
1858 maxsel = maxval
1859 elif currsel.strip().find('>=') > -1:
1860 bound = currsel.split('>=')
1861 try: # try "x >= val"
1862 minsel = formatfunc(bound[1].strip())
1863 maxsel = maxval
1864 except ValueError: # now "val >= x"
1865 minsel = minval
1866 maxsel = formatfunc(bound[0].strip())
1867 elif currsel.strip().find('<') > -1:
1868 bound = currsel.split('<')
1869 try: # try "x < val"
1870 minsel = minval
1871 maxsel = formatfunc(bound[1].strip()) \
1872 - formatfunc(offset)
1873 except ValueError: # now "val < x"
1874 minsel = formatfunc(bound[0].strip()) \
[2013]1875 + formatfunc(offset)
[2611]1876 maxsel = maxval
1877 elif currsel.strip().find('>') > -1:
1878 bound = currsel.split('>')
1879 try: # try "x > val"
1880 minsel = formatfunc(bound[1].strip()) \
1881 + formatfunc(offset)
1882 maxsel = maxval
1883 except ValueError: # now "val > x"
1884 minsel = minval
1885 maxsel = formatfunc(bound[0].strip()) \
1886 - formatfunc(offset)
[2013]1887 else:
1888 minsel = formatfunc(currsel)
1889 maxsel = formatfunc(currsel)
1890 sellists.append([minsel,maxsel])
1891 return sellists
1892
[1819]1893# def get_restfreqs(self):
1894# """
1895# Get the restfrequency(s) stored in this scantable.
1896# The return value(s) are always of unit 'Hz'
1897# Parameters:
1898# none
1899# Returns:
1900# a list of doubles
1901# """
1902# return list(self._getrestfreqs())
1903
1904 def get_restfreqs(self, ids=None):
[1846]1905 """\
[256]1906 Get the restfrequency(s) stored in this scantable.
1907 The return value(s) are always of unit 'Hz'
[1846]1908
[256]1909 Parameters:
[1846]1910
[1819]1911 ids: (optional) a list of MOLECULE_ID for that restfrequency(s) to
1912 be retrieved
[1846]1913
[256]1914 Returns:
[1846]1915
[1819]1916 dictionary containing ids and a list of doubles for each id
[1846]1917
[256]1918 """
[1819]1919 if ids is None:
[2349]1920 rfreqs = {}
[1819]1921 idlist = self.getmolnos()
1922 for i in idlist:
[2349]1923 rfreqs[i] = list(self._getrestfreqs(i))
[1819]1924 return rfreqs
1925 else:
[2349]1926 if type(ids) == list or type(ids) == tuple:
1927 rfreqs = {}
[1819]1928 for i in ids:
[2349]1929 rfreqs[i] = list(self._getrestfreqs(i))
[1819]1930 return rfreqs
1931 else:
1932 return list(self._getrestfreqs(ids))
[102]1933
[2349]1934 @asaplog_post_dec
[931]1935 def set_restfreqs(self, freqs=None, unit='Hz'):
[1846]1936 """\
[931]1937 Set or replace the restfrequency specified and
[1938]1938 if the 'freqs' argument holds a scalar,
[931]1939 then that rest frequency will be applied to all the selected
1940 data. If the 'freqs' argument holds
1941 a vector, then it MUST be of equal or smaller length than
1942 the number of IFs (and the available restfrequencies will be
1943 replaced by this vector). In this case, *all* data have
1944 the restfrequency set per IF according
1945 to the corresponding value you give in the 'freqs' vector.
[1118]1946 E.g. 'freqs=[1e9, 2e9]' would mean IF 0 gets restfreq 1e9 and
[931]1947 IF 1 gets restfreq 2e9.
[1846]1948
[1395]1949 You can also specify the frequencies via a linecatalog.
[1153]1950
[931]1951 Parameters:
[1846]1952
[931]1953 freqs: list of rest frequency values or string idenitfiers
[1855]1954
[931]1955 unit: unit for rest frequency (default 'Hz')
[402]1956
[1846]1957
1958 Example::
1959
[1819]1960 # set the given restfrequency for the all currently selected IFs
[931]1961 scan.set_restfreqs(freqs=1.4e9)
[1845]1962 # set restfrequencies for the n IFs (n > 1) in the order of the
1963 # list, i.e
1964 # IF0 -> 1.4e9, IF1 -> 1.41e9, IF3 -> 1.42e9
1965 # len(list_of_restfreqs) == nIF
1966 # for nIF == 1 the following will set multiple restfrequency for
1967 # that IF
[1819]1968 scan.set_restfreqs(freqs=[1.4e9, 1.41e9, 1.42e9])
[1845]1969 # set multiple restfrequencies per IF. as a list of lists where
1970 # the outer list has nIF elements, the inner s arbitrary
1971 scan.set_restfreqs(freqs=[[1.4e9, 1.41e9], [1.67e9]])
[391]1972
[1846]1973 *Note*:
[1845]1974
[931]1975 To do more sophisticate Restfrequency setting, e.g. on a
1976 source and IF basis, use scantable.set_selection() before using
[1846]1977 this function::
[931]1978
[1846]1979 # provided your scantable is called scan
1980 selection = selector()
[2431]1981 selection.set_name('ORION*')
[1846]1982 selection.set_ifs([1])
1983 scan.set_selection(selection)
1984 scan.set_restfreqs(freqs=86.6e9)
1985
[931]1986 """
1987 varlist = vars()
[1157]1988 from asap import linecatalog
1989 # simple value
[1118]1990 if isinstance(freqs, int) or isinstance(freqs, float):
[1845]1991 self._setrestfreqs([freqs], [""], unit)
[1157]1992 # list of values
[1118]1993 elif isinstance(freqs, list) or isinstance(freqs, tuple):
[1157]1994 # list values are scalars
[1118]1995 if isinstance(freqs[-1], int) or isinstance(freqs[-1], float):
[1845]1996 if len(freqs) == 1:
1997 self._setrestfreqs(freqs, [""], unit)
1998 else:
1999 # allow the 'old' mode of setting mulitple IFs
2000 savesel = self._getselection()
[2599]2001 sel = self.get_selection()
[1845]2002 iflist = self.getifnos()
2003 if len(freqs)>len(iflist):
2004 raise ValueError("number of elements in list of list "
2005 "exeeds the current IF selections")
2006 iflist = self.getifnos()
2007 for i, fval in enumerate(freqs):
2008 sel.set_ifs(iflist[i])
2009 self._setselection(sel)
2010 self._setrestfreqs([fval], [""], unit)
2011 self._setselection(savesel)
2012
2013 # list values are dict, {'value'=, 'name'=)
[1157]2014 elif isinstance(freqs[-1], dict):
[1845]2015 values = []
2016 names = []
2017 for d in freqs:
2018 values.append(d["value"])
2019 names.append(d["name"])
2020 self._setrestfreqs(values, names, unit)
[1819]2021 elif isinstance(freqs[-1], list) or isinstance(freqs[-1], tuple):
[1157]2022 savesel = self._getselection()
[2599]2023 sel = self.get_selection()
[1322]2024 iflist = self.getifnos()
[1819]2025 if len(freqs)>len(iflist):
[1845]2026 raise ValueError("number of elements in list of list exeeds"
2027 " the current IF selections")
2028 for i, fval in enumerate(freqs):
[1322]2029 sel.set_ifs(iflist[i])
[1259]2030 self._setselection(sel)
[1845]2031 self._setrestfreqs(fval, [""], unit)
[1157]2032 self._setselection(savesel)
2033 # freqs are to be taken from a linecatalog
[1153]2034 elif isinstance(freqs, linecatalog):
2035 savesel = self._getselection()
[2599]2036 sel = self.get_selection()
[1153]2037 for i in xrange(freqs.nrow()):
[1322]2038 sel.set_ifs(iflist[i])
[1153]2039 self._setselection(sel)
[1845]2040 self._setrestfreqs([freqs.get_frequency(i)],
2041 [freqs.get_name(i)], "MHz")
[1153]2042 # ensure that we are not iterating past nIF
2043 if i == self.nif()-1: break
2044 self._setselection(savesel)
[931]2045 else:
2046 return
2047 self._add_history("set_restfreqs", varlist)
2048
[2349]2049 @asaplog_post_dec
[1360]2050 def shift_refpix(self, delta):
[1846]2051 """\
[1589]2052 Shift the reference pixel of the Spectra Coordinate by an
2053 integer amount.
[1846]2054
[1589]2055 Parameters:
[1846]2056
[1589]2057 delta: the amount to shift by
[1846]2058
2059 *Note*:
2060
[1589]2061 Be careful using this with broadband data.
[1846]2062
[1360]2063 """
[2349]2064 varlist = vars()
[1731]2065 Scantable.shift_refpix(self, delta)
[2349]2066 s._add_history("shift_refpix", varlist)
[931]2067
[1862]2068 @asaplog_post_dec
[1259]2069 def history(self, filename=None):
[1846]2070 """\
[1259]2071 Print the history. Optionally to a file.
[1846]2072
[1348]2073 Parameters:
[1846]2074
[1928]2075 filename: The name of the file to save the history to.
[1846]2076
[1259]2077 """
[484]2078 hist = list(self._gethistory())
[794]2079 out = "-"*80
[484]2080 for h in hist:
[489]2081 if h.startswith("---"):
[1857]2082 out = "\n".join([out, h])
[489]2083 else:
2084 items = h.split("##")
2085 date = items[0]
2086 func = items[1]
2087 items = items[2:]
[794]2088 out += "\n"+date+"\n"
2089 out += "Function: %s\n Parameters:" % (func)
[489]2090 for i in items:
[1938]2091 if i == '':
2092 continue
[489]2093 s = i.split("=")
[1118]2094 out += "\n %s = %s" % (s[0], s[1])
[1857]2095 out = "\n".join([out, "-"*80])
[1259]2096 if filename is not None:
2097 if filename is "":
2098 filename = 'scantable_history.txt'
2099 import os
2100 filename = os.path.expandvars(os.path.expanduser(filename))
2101 if not os.path.isdir(filename):
2102 data = open(filename, 'w')
2103 data.write(out)
2104 data.close()
2105 else:
2106 msg = "Illegal file name '%s'." % (filename)
[1859]2107 raise IOError(msg)
2108 return page(out)
[2349]2109
[513]2110 #
2111 # Maths business
2112 #
[1862]2113 @asaplog_post_dec
[931]2114 def average_time(self, mask=None, scanav=False, weight='tint', align=False):
[1846]2115 """\
[2349]2116 Return the (time) weighted average of a scan. Scans will be averaged
2117 only if the source direction (RA/DEC) is within 1' otherwise
[1846]2118
2119 *Note*:
2120
[1070]2121 in channels only - align if necessary
[1846]2122
[513]2123 Parameters:
[1846]2124
[513]2125 mask: an optional mask (only used for 'var' and 'tsys'
2126 weighting)
[1855]2127
[558]2128 scanav: True averages each scan separately
2129 False (default) averages all scans together,
[1855]2130
[1099]2131 weight: Weighting scheme.
2132 'none' (mean no weight)
2133 'var' (1/var(spec) weighted)
2134 'tsys' (1/Tsys**2 weighted)
2135 'tint' (integration time weighted)
2136 'tintsys' (Tint/Tsys**2)
2137 'median' ( median averaging)
[535]2138 The default is 'tint'
[1855]2139
[931]2140 align: align the spectra in velocity before averaging. It takes
2141 the time of the first spectrum as reference time.
[1846]2142
2143 Example::
2144
[513]2145 # time average the scantable without using a mask
[710]2146 newscan = scan.average_time()
[1846]2147
[513]2148 """
2149 varlist = vars()
[1593]2150 weight = weight or 'TINT'
2151 mask = mask or ()
2152 scanav = (scanav and 'SCAN') or 'NONE'
[1118]2153 scan = (self, )
[1859]2154
2155 if align:
2156 scan = (self.freq_align(insitu=False), )
2157 s = None
2158 if weight.upper() == 'MEDIAN':
2159 s = scantable(self._math._averagechannel(scan[0], 'MEDIAN',
2160 scanav))
2161 else:
2162 s = scantable(self._math._average(scan, mask, weight.upper(),
2163 scanav))
[1099]2164 s._add_history("average_time", varlist)
[513]2165 return s
[710]2166
[1862]2167 @asaplog_post_dec
[876]2168 def convert_flux(self, jyperk=None, eta=None, d=None, insitu=None):
[1846]2169 """\
[513]2170 Return a scan where all spectra are converted to either
2171 Jansky or Kelvin depending upon the flux units of the scan table.
2172 By default the function tries to look the values up internally.
2173 If it can't find them (or if you want to over-ride), you must
2174 specify EITHER jyperk OR eta (and D which it will try to look up
2175 also if you don't set it). jyperk takes precedence if you set both.
[1846]2176
[513]2177 Parameters:
[1846]2178
[513]2179 jyperk: the Jy / K conversion factor
[1855]2180
[513]2181 eta: the aperture efficiency
[1855]2182
[1928]2183 d: the geometric diameter (metres)
[1855]2184
[513]2185 insitu: if False a new scantable is returned.
2186 Otherwise, the scaling is done in-situ
2187 The default is taken from .asaprc (False)
[1846]2188
[513]2189 """
2190 if insitu is None: insitu = rcParams['insitu']
[876]2191 self._math._setinsitu(insitu)
[513]2192 varlist = vars()
[1593]2193 jyperk = jyperk or -1.0
2194 d = d or -1.0
2195 eta = eta or -1.0
[876]2196 s = scantable(self._math._convertflux(self, d, eta, jyperk))
2197 s._add_history("convert_flux", varlist)
2198 if insitu: self._assign(s)
2199 else: return s
[513]2200
[1862]2201 @asaplog_post_dec
[876]2202 def gain_el(self, poly=None, filename="", method="linear", insitu=None):
[1846]2203 """\
[513]2204 Return a scan after applying a gain-elevation correction.
2205 The correction can be made via either a polynomial or a
2206 table-based interpolation (and extrapolation if necessary).
2207 You specify polynomial coefficients, an ascii table or neither.
2208 If you specify neither, then a polynomial correction will be made
2209 with built in coefficients known for certain telescopes (an error
2210 will occur if the instrument is not known).
2211 The data and Tsys are *divided* by the scaling factors.
[1846]2212
[513]2213 Parameters:
[1846]2214
[513]2215 poly: Polynomial coefficients (default None) to compute a
2216 gain-elevation correction as a function of
2217 elevation (in degrees).
[1855]2218
[513]2219 filename: The name of an ascii file holding correction factors.
2220 The first row of the ascii file must give the column
2221 names and these MUST include columns
[2431]2222 'ELEVATION' (degrees) and 'FACTOR' (multiply data
[513]2223 by this) somewhere.
2224 The second row must give the data type of the
2225 column. Use 'R' for Real and 'I' for Integer.
2226 An example file would be
2227 (actual factors are arbitrary) :
2228
2229 TIME ELEVATION FACTOR
2230 R R R
2231 0.1 0 0.8
2232 0.2 20 0.85
2233 0.3 40 0.9
2234 0.4 60 0.85
2235 0.5 80 0.8
2236 0.6 90 0.75
[1855]2237
[513]2238 method: Interpolation method when correcting from a table.
[2431]2239 Values are 'nearest', 'linear' (default), 'cubic'
2240 and 'spline'
[1855]2241
[513]2242 insitu: if False a new scantable is returned.
2243 Otherwise, the scaling is done in-situ
2244 The default is taken from .asaprc (False)
[1846]2245
[513]2246 """
2247
2248 if insitu is None: insitu = rcParams['insitu']
[876]2249 self._math._setinsitu(insitu)
[513]2250 varlist = vars()
[1593]2251 poly = poly or ()
[513]2252 from os.path import expandvars
2253 filename = expandvars(filename)
[876]2254 s = scantable(self._math._gainel(self, poly, filename, method))
2255 s._add_history("gain_el", varlist)
[1593]2256 if insitu:
2257 self._assign(s)
2258 else:
2259 return s
[710]2260
[1862]2261 @asaplog_post_dec
[931]2262 def freq_align(self, reftime=None, method='cubic', insitu=None):
[1846]2263 """\
[513]2264 Return a scan where all rows have been aligned in frequency/velocity.
2265 The alignment frequency frame (e.g. LSRK) is that set by function
2266 set_freqframe.
[1846]2267
[513]2268 Parameters:
[1855]2269
[513]2270 reftime: reference time to align at. By default, the time of
2271 the first row of data is used.
[1855]2272
[513]2273 method: Interpolation method for regridding the spectra.
[2431]2274 Choose from 'nearest', 'linear', 'cubic' (default)
2275 and 'spline'
[1855]2276
[513]2277 insitu: if False a new scantable is returned.
2278 Otherwise, the scaling is done in-situ
2279 The default is taken from .asaprc (False)
[1846]2280
[513]2281 """
[931]2282 if insitu is None: insitu = rcParams["insitu"]
[2429]2283 oldInsitu = self._math._insitu()
[876]2284 self._math._setinsitu(insitu)
[513]2285 varlist = vars()
[1593]2286 reftime = reftime or ""
[931]2287 s = scantable(self._math._freq_align(self, reftime, method))
[876]2288 s._add_history("freq_align", varlist)
[2429]2289 self._math._setinsitu(oldInsitu)
[2349]2290 if insitu:
2291 self._assign(s)
2292 else:
2293 return s
[513]2294
[1862]2295 @asaplog_post_dec
[1725]2296 def opacity(self, tau=None, insitu=None):
[1846]2297 """\
[513]2298 Apply an opacity correction. The data
2299 and Tsys are multiplied by the correction factor.
[1846]2300
[513]2301 Parameters:
[1855]2302
[1689]2303 tau: (list of) opacity from which the correction factor is
[513]2304 exp(tau*ZD)
[1689]2305 where ZD is the zenith-distance.
2306 If a list is provided, it has to be of length nIF,
2307 nIF*nPol or 1 and in order of IF/POL, e.g.
2308 [opif0pol0, opif0pol1, opif1pol0 ...]
[1725]2309 if tau is `None` the opacities are determined from a
2310 model.
[1855]2311
[513]2312 insitu: if False a new scantable is returned.
2313 Otherwise, the scaling is done in-situ
2314 The default is taken from .asaprc (False)
[1846]2315
[513]2316 """
[2349]2317 if insitu is None:
2318 insitu = rcParams['insitu']
[876]2319 self._math._setinsitu(insitu)
[513]2320 varlist = vars()
[1689]2321 if not hasattr(tau, "__len__"):
2322 tau = [tau]
[876]2323 s = scantable(self._math._opacity(self, tau))
2324 s._add_history("opacity", varlist)
[2349]2325 if insitu:
2326 self._assign(s)
2327 else:
2328 return s
[513]2329
[1862]2330 @asaplog_post_dec
[513]2331 def bin(self, width=5, insitu=None):
[1846]2332 """\
[513]2333 Return a scan where all spectra have been binned up.
[1846]2334
[1348]2335 Parameters:
[1846]2336
[513]2337 width: The bin width (default=5) in pixels
[1855]2338
[513]2339 insitu: if False a new scantable is returned.
2340 Otherwise, the scaling is done in-situ
2341 The default is taken from .asaprc (False)
[1846]2342
[513]2343 """
[2349]2344 if insitu is None:
2345 insitu = rcParams['insitu']
[876]2346 self._math._setinsitu(insitu)
[513]2347 varlist = vars()
[876]2348 s = scantable(self._math._bin(self, width))
[1118]2349 s._add_history("bin", varlist)
[1589]2350 if insitu:
2351 self._assign(s)
2352 else:
2353 return s
[513]2354
[1862]2355 @asaplog_post_dec
[2672]2356 def reshape(self, first, last, insitu=None):
2357 """Resize the band by providing first and last channel.
2358 This will cut off all channels outside [first, last].
2359 """
2360 if insitu is None:
2361 insitu = rcParams['insitu']
2362 varlist = vars()
2363 if last < 0:
2364 last = self.nchan()-1 + last
2365 s = None
2366 if insitu:
2367 s = self
2368 else:
2369 s = self.copy()
2370 s._reshape(first,last)
2371 s._add_history("reshape", varlist)
2372 if not insitu:
2373 return s
2374
2375 @asaplog_post_dec
[513]2376 def resample(self, width=5, method='cubic', insitu=None):
[1846]2377 """\
[1348]2378 Return a scan where all spectra have been binned up.
[1573]2379
[1348]2380 Parameters:
[1846]2381
[513]2382 width: The bin width (default=5) in pixels
[1855]2383
[513]2384 method: Interpolation method when correcting from a table.
[2431]2385 Values are 'nearest', 'linear', 'cubic' (default)
2386 and 'spline'
[1855]2387
[513]2388 insitu: if False a new scantable is returned.
2389 Otherwise, the scaling is done in-situ
2390 The default is taken from .asaprc (False)
[1846]2391
[513]2392 """
[2349]2393 if insitu is None:
2394 insitu = rcParams['insitu']
[876]2395 self._math._setinsitu(insitu)
[513]2396 varlist = vars()
[876]2397 s = scantable(self._math._resample(self, method, width))
[1118]2398 s._add_history("resample", varlist)
[2349]2399 if insitu:
2400 self._assign(s)
2401 else:
2402 return s
[513]2403
[1862]2404 @asaplog_post_dec
[946]2405 def average_pol(self, mask=None, weight='none'):
[1846]2406 """\
[946]2407 Average the Polarisations together.
[1846]2408
[946]2409 Parameters:
[1846]2410
[946]2411 mask: An optional mask defining the region, where the
2412 averaging will be applied. The output will have all
2413 specified points masked.
[1855]2414
[946]2415 weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
2416 weighted), or 'tsys' (1/Tsys**2 weighted)
[1846]2417
[946]2418 """
2419 varlist = vars()
[1593]2420 mask = mask or ()
[1010]2421 s = scantable(self._math._averagepol(self, mask, weight.upper()))
[1118]2422 s._add_history("average_pol", varlist)
[992]2423 return s
[513]2424
[1862]2425 @asaplog_post_dec
[1145]2426 def average_beam(self, mask=None, weight='none'):
[1846]2427 """\
[1145]2428 Average the Beams together.
[1846]2429
[1145]2430 Parameters:
2431 mask: An optional mask defining the region, where the
2432 averaging will be applied. The output will have all
2433 specified points masked.
[1855]2434
[1145]2435 weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
2436 weighted), or 'tsys' (1/Tsys**2 weighted)
[1846]2437
[1145]2438 """
2439 varlist = vars()
[1593]2440 mask = mask or ()
[1145]2441 s = scantable(self._math._averagebeams(self, mask, weight.upper()))
2442 s._add_history("average_beam", varlist)
2443 return s
2444
[1586]2445 def parallactify(self, pflag):
[1846]2446 """\
[1843]2447 Set a flag to indicate whether this data should be treated as having
[1617]2448 been 'parallactified' (total phase == 0.0)
[1846]2449
[1617]2450 Parameters:
[1855]2451
[1843]2452 pflag: Bool indicating whether to turn this on (True) or
[1617]2453 off (False)
[1846]2454
[1617]2455 """
[1586]2456 varlist = vars()
2457 self._parallactify(pflag)
2458 self._add_history("parallactify", varlist)
2459
[1862]2460 @asaplog_post_dec
[992]2461 def convert_pol(self, poltype=None):
[1846]2462 """\
[992]2463 Convert the data to a different polarisation type.
[1565]2464 Note that you will need cross-polarisation terms for most conversions.
[1846]2465
[992]2466 Parameters:
[1855]2467
[992]2468 poltype: The new polarisation type. Valid types are:
[2431]2469 'linear', 'circular', 'stokes' and 'linpol'
[1846]2470
[992]2471 """
2472 varlist = vars()
[1859]2473 s = scantable(self._math._convertpol(self, poltype))
[1118]2474 s._add_history("convert_pol", varlist)
[992]2475 return s
2476
[1862]2477 @asaplog_post_dec
[2269]2478 def smooth(self, kernel="hanning", width=5.0, order=2, plot=False,
2479 insitu=None):
[1846]2480 """\
[513]2481 Smooth the spectrum by the specified kernel (conserving flux).
[1846]2482
[513]2483 Parameters:
[1846]2484
[513]2485 kernel: The type of smoothing kernel. Select from
[1574]2486 'hanning' (default), 'gaussian', 'boxcar', 'rmedian'
2487 or 'poly'
[1855]2488
[513]2489 width: The width of the kernel in pixels. For hanning this is
2490 ignored otherwise it defauls to 5 pixels.
2491 For 'gaussian' it is the Full Width Half
2492 Maximum. For 'boxcar' it is the full width.
[1574]2493 For 'rmedian' and 'poly' it is the half width.
[1855]2494
[1574]2495 order: Optional parameter for 'poly' kernel (default is 2), to
2496 specify the order of the polnomial. Ignored by all other
2497 kernels.
[1855]2498
[1819]2499 plot: plot the original and the smoothed spectra.
2500 In this each indivual fit has to be approved, by
2501 typing 'y' or 'n'
[1855]2502
[513]2503 insitu: if False a new scantable is returned.
2504 Otherwise, the scaling is done in-situ
2505 The default is taken from .asaprc (False)
[1846]2506
[513]2507 """
2508 if insitu is None: insitu = rcParams['insitu']
[876]2509 self._math._setinsitu(insitu)
[513]2510 varlist = vars()
[1819]2511
2512 if plot: orgscan = self.copy()
2513
[1574]2514 s = scantable(self._math._smooth(self, kernel.lower(), width, order))
[876]2515 s._add_history("smooth", varlist)
[1819]2516
[2610]2517 action = 'H'
[1819]2518 if plot:
[2150]2519 from asap.asapplotter import new_asaplot
2520 theplot = new_asaplot(rcParams['plotter.gui'])
[2535]2521 from matplotlib import rc as rcp
2522 rcp('lines', linewidth=1)
[2150]2523 theplot.set_panels()
[1819]2524 ylab=s._get_ordinate_label()
[2150]2525 #theplot.palette(0,["#777777","red"])
[1819]2526 for r in xrange(s.nrow()):
2527 xsm=s._getabcissa(r)
2528 ysm=s._getspectrum(r)
2529 xorg=orgscan._getabcissa(r)
2530 yorg=orgscan._getspectrum(r)
[2610]2531 if action != "N": #skip plotting if rejecting all
2532 theplot.clear()
2533 theplot.hold()
2534 theplot.set_axes('ylabel',ylab)
2535 theplot.set_axes('xlabel',s._getabcissalabel(r))
2536 theplot.set_axes('title',s._getsourcename(r))
2537 theplot.set_line(label='Original',color="#777777")
2538 theplot.plot(xorg,yorg)
2539 theplot.set_line(label='Smoothed',color="red")
2540 theplot.plot(xsm,ysm)
2541 ### Ugly part for legend
2542 for i in [0,1]:
2543 theplot.subplots[0]['lines'].append(
2544 [theplot.subplots[0]['axes'].lines[i]]
2545 )
2546 theplot.release()
2547 ### Ugly part for legend
2548 theplot.subplots[0]['lines']=[]
2549 res = self._get_verify_action("Accept smoothing?",action)
2550 #print "IF%d, POL%d: got result = %s" %(s.getif(r),s.getpol(r),res)
2551 if r == 0: action = None
2552 #res = raw_input("Accept smoothing ([y]/n): ")
[1819]2553 if res.upper() == 'N':
[2610]2554 # reject for the current rows
[1819]2555 s._setspectrum(yorg, r)
[2610]2556 elif res.upper() == 'R':
2557 # reject all the following rows
2558 action = "N"
2559 s._setspectrum(yorg, r)
2560 elif res.upper() == 'A':
2561 # accept all the following rows
2562 break
[2150]2563 theplot.quit()
2564 del theplot
[1819]2565 del orgscan
2566
[876]2567 if insitu: self._assign(s)
2568 else: return s
[513]2569
[2186]2570 @asaplog_post_dec
[2435]2571 def regrid_channel(self, width=5, plot=False, insitu=None):
2572 """\
2573 Regrid the spectra by the specified channel width
2574
2575 Parameters:
2576
2577 width: The channel width (float) of regridded spectra
2578 in the current spectral unit.
2579
2580 plot: [NOT IMPLEMENTED YET]
2581 plot the original and the regridded spectra.
2582 In this each indivual fit has to be approved, by
2583 typing 'y' or 'n'
2584
2585 insitu: if False a new scantable is returned.
2586 Otherwise, the scaling is done in-situ
2587 The default is taken from .asaprc (False)
2588
2589 """
2590 if insitu is None: insitu = rcParams['insitu']
2591 varlist = vars()
2592
2593 if plot:
2594 asaplog.post()
2595 asaplog.push("Verification plot is not implemtnetd yet.")
2596 asaplog.post("WARN")
2597
2598 s = self.copy()
2599 s._regrid_specchan(width)
2600
2601 s._add_history("regrid_channel", varlist)
2602
2603# if plot:
2604# from asap.asapplotter import new_asaplot
2605# theplot = new_asaplot(rcParams['plotter.gui'])
[2535]2606# from matplotlib import rc as rcp
2607# rcp('lines', linewidth=1)
[2435]2608# theplot.set_panels()
2609# ylab=s._get_ordinate_label()
2610# #theplot.palette(0,["#777777","red"])
2611# for r in xrange(s.nrow()):
2612# xsm=s._getabcissa(r)
2613# ysm=s._getspectrum(r)
2614# xorg=orgscan._getabcissa(r)
2615# yorg=orgscan._getspectrum(r)
2616# theplot.clear()
2617# theplot.hold()
2618# theplot.set_axes('ylabel',ylab)
2619# theplot.set_axes('xlabel',s._getabcissalabel(r))
2620# theplot.set_axes('title',s._getsourcename(r))
2621# theplot.set_line(label='Original',color="#777777")
2622# theplot.plot(xorg,yorg)
2623# theplot.set_line(label='Smoothed',color="red")
2624# theplot.plot(xsm,ysm)
2625# ### Ugly part for legend
2626# for i in [0,1]:
2627# theplot.subplots[0]['lines'].append(
2628# [theplot.subplots[0]['axes'].lines[i]]
2629# )
2630# theplot.release()
2631# ### Ugly part for legend
2632# theplot.subplots[0]['lines']=[]
2633# res = raw_input("Accept smoothing ([y]/n): ")
2634# if res.upper() == 'N':
2635# s._setspectrum(yorg, r)
2636# theplot.quit()
2637# del theplot
2638# del orgscan
2639
2640 if insitu: self._assign(s)
2641 else: return s
2642
2643 @asaplog_post_dec
[2186]2644 def _parse_wn(self, wn):
2645 if isinstance(wn, list) or isinstance(wn, tuple):
2646 return wn
2647 elif isinstance(wn, int):
2648 return [ wn ]
2649 elif isinstance(wn, str):
[2277]2650 if '-' in wn: # case 'a-b' : return [a,a+1,...,b-1,b]
[2186]2651 val = wn.split('-')
2652 val = [int(val[0]), int(val[1])]
2653 val.sort()
2654 res = [i for i in xrange(val[0], val[1]+1)]
[2277]2655 elif wn[:2] == '<=' or wn[:2] == '=<': # cases '<=a','=<a' : return [0,1,...,a-1,a]
[2186]2656 val = int(wn[2:])+1
2657 res = [i for i in xrange(val)]
[2277]2658 elif wn[-2:] == '>=' or wn[-2:] == '=>': # cases 'a>=','a=>' : return [0,1,...,a-1,a]
[2186]2659 val = int(wn[:-2])+1
2660 res = [i for i in xrange(val)]
[2277]2661 elif wn[0] == '<': # case '<a' : return [0,1,...,a-2,a-1]
[2186]2662 val = int(wn[1:])
2663 res = [i for i in xrange(val)]
[2277]2664 elif wn[-1] == '>': # case 'a>' : return [0,1,...,a-2,a-1]
[2186]2665 val = int(wn[:-1])
2666 res = [i for i in xrange(val)]
[2411]2667 elif wn[:2] == '>=' or wn[:2] == '=>': # cases '>=a','=>a' : return [a,-999], which is
2668 # then interpreted in C++
2669 # side as [a,a+1,...,a_nyq]
2670 # (CAS-3759)
[2186]2671 val = int(wn[2:])
[2411]2672 res = [val, -999]
2673 #res = [i for i in xrange(val, self.nchan()/2+1)]
2674 elif wn[-2:] == '<=' or wn[-2:] == '=<': # cases 'a<=','a=<' : return [a,-999], which is
2675 # then interpreted in C++
2676 # side as [a,a+1,...,a_nyq]
2677 # (CAS-3759)
[2186]2678 val = int(wn[:-2])
[2411]2679 res = [val, -999]
2680 #res = [i for i in xrange(val, self.nchan()/2+1)]
2681 elif wn[0] == '>': # case '>a' : return [a+1,-999], which is
2682 # then interpreted in C++
2683 # side as [a+1,a+2,...,a_nyq]
2684 # (CAS-3759)
[2186]2685 val = int(wn[1:])+1
[2411]2686 res = [val, -999]
2687 #res = [i for i in xrange(val, self.nchan()/2+1)]
2688 elif wn[-1] == '<': # case 'a<' : return [a+1,-999], which is
2689 # then interpreted in C++
2690 # side as [a+1,a+2,...,a_nyq]
2691 # (CAS-3759)
[2186]2692 val = int(wn[:-1])+1
[2411]2693 res = [val, -999]
2694 #res = [i for i in xrange(val, self.nchan()/2+1)]
[2012]2695
[2186]2696 return res
2697 else:
2698 msg = 'wrong value given for addwn/rejwn'
2699 raise RuntimeError(msg)
2700
[2713]2701 @asaplog_post_dec
[2767]2702 def apply_bltable(self, insitu=None, inbltable=None, outbltable=None, overwrite=None):
2703 """\
2704 Subtract baseline based on parameters written in Baseline Table.
2705
2706 Parameters:
2707 insitu: if False a new scantable is returned.
2708 Otherwise, the scaling is done in-situ
2709 The default is taken from .asaprc (False)
2710 inbltable: name of input baseline table. The row number of
2711 scantable and that of inbltable must be
2712 identical.
2713 outbltable: name of output baseline table where baseline
2714 parameters and fitting results recorded.
2715 default is ''(no output).
2716 overwrite: if True, overwrites the existing baseline table
2717 specified in outbltable.
2718 default is False.
2719 """
2720
2721 try:
2722 varlist = vars()
2723 if inbltable is None: raise ValueError("bltable missing.")
2724 if outbltable is None: outbltable = ''
2725 if overwrite is None: overwrite = False
2726
2727 if insitu is None: insitu = rcParams['insitu']
2728 if insitu:
2729 workscan = self
2730 else:
2731 workscan = self.copy()
2732
2733 sres = workscan._apply_bltable(inbltable,
2734 outbltable,
2735 os.path.exists(outbltable),
2736 overwrite)
2737 res = parse_fitresult(sres)
2738
2739 workscan._add_history('apply_bltable', varlist)
2740
2741 if insitu:
2742 self._assign(workscan)
2743 return res
2744 else:
2745 return {'scantable': workscan, 'fitresults': res}
2746
2747 except RuntimeError, e:
2748 raise_fitting_failure_exception(e)
2749
2750 @asaplog_post_dec
2751 def sub_baseline(self, insitu=None, blinfo=None, bltable=None, overwrite=None):
2752 """\
2753 Subtract baseline based on parameters written in the input list.
2754
2755 Parameters:
2756 insitu: if False a new scantable is returned.
2757 Otherwise, the scaling is done in-situ
2758 The default is taken from .asaprc (False)
2759 blinfo: baseline parameter set stored in a dictionary
2760 or a list of dictionary. Each dictionary
2761 corresponds to each spectrum and must contain
2762 the following keys and values:
2763 'row': row number,
2764 'blfunc': function name. available ones include
2765 'poly', 'chebyshev', 'cspline' and
2766 'sinusoid',
2767 'order': maximum order of polynomial. needed
2768 if blfunc='poly' or 'chebyshev',
2769 'npiece': number or piecewise polynomial.
2770 needed if blfunc='cspline',
2771 'nwave': a list of sinusoidal wave numbers.
2772 needed if blfunc='sinusoid', and
2773 'masklist': min-max windows for channel mask.
2774 the specified ranges will be used
2775 for fitting.
2776 bltable: name of output baseline table where baseline
2777 parameters and fitting results recorded.
2778 default is ''(no output).
2779 overwrite: if True, overwrites the existing baseline table
2780 specified in bltable.
2781 default is False.
2782
2783 Example:
2784 sub_baseline(blinfo=[{'row':0, 'blfunc':'poly', 'order':5,
2785 'masklist':[[10,350],[352,510]]},
2786 {'row':1, 'blfunc':'cspline', 'npiece':3,
2787 'masklist':[[3,16],[19,404],[407,511]]}
2788 ])
2789
2790 the first spectrum (row=0) will be fitted with polynomial
2791 of order=5 and the next one (row=1) will be fitted with cubic
2792 spline consisting of 3 pieces.
2793 """
2794
2795 try:
2796 varlist = vars()
2797 if blinfo is None: blinfo = []
2798 if bltable is None: bltable = ''
2799 if overwrite is None: overwrite = False
2800
2801 if insitu is None: insitu = rcParams['insitu']
2802 if insitu:
2803 workscan = self
2804 else:
2805 workscan = self.copy()
2806
2807 nrow = workscan.nrow()
2808
2809 in_blinfo = pack_blinfo(blinfo=blinfo, maxirow=nrow)
2810
2811 print "in_blinfo=< "+ str(in_blinfo)+" >"
2812
2813 sres = workscan._sub_baseline(in_blinfo,
2814 bltable,
2815 os.path.exists(bltable),
2816 overwrite)
2817 res = parse_fitresult(sres)
2818
2819 workscan._add_history('sub_baseline', varlist)
2820
2821 if insitu:
2822 self._assign(workscan)
2823 return res
2824 else:
2825 return {'scantable': workscan, 'fitresults': res}
2826
2827 except RuntimeError, e:
2828 raise_fitting_failure_exception(e)
2829
2830 @asaplog_post_dec
[2713]2831 def calc_aic(self, value=None, blfunc=None, order=None, mask=None,
2832 whichrow=None, uselinefinder=None, edge=None,
2833 threshold=None, chan_avg_limit=None):
2834 """\
2835 Calculates and returns model selection criteria for a specified
2836 baseline model and a given spectrum data.
2837 Available values include Akaike Information Criterion (AIC), the
2838 corrected Akaike Information Criterion (AICc) by Sugiura(1978),
2839 Bayesian Information Criterion (BIC) and the Generalised Cross
2840 Validation (GCV).
[2186]2841
[2713]2842 Parameters:
2843 value: name of model selection criteria to calculate.
2844 available ones include 'aic', 'aicc', 'bic' and
2845 'gcv'. default is 'aicc'.
2846 blfunc: baseline function name. available ones include
2847 'chebyshev', 'cspline' and 'sinusoid'.
2848 default is 'chebyshev'.
2849 order: parameter for basline function. actually stands for
2850 order of polynomial (order) for 'chebyshev',
2851 number of spline pieces (npiece) for 'cspline' and
2852 maximum wave number for 'sinusoid', respectively.
2853 default is 5 (which is also the default order value
2854 for [auto_]chebyshev_baseline()).
2855 mask: an optional mask. default is [].
2856 whichrow: row number. default is 0 (the first row)
2857 uselinefinder: use sd.linefinder() to flag out line regions
2858 default is True.
2859 edge: an optional number of channel to drop at
2860 the edge of spectrum. If only one value is
2861 specified, the same number will be dropped
2862 from both sides of the spectrum. Default
2863 is to keep all channels. Nested tuples
2864 represent individual edge selection for
2865 different IFs (a number of spectral channels
2866 can be different)
2867 default is (0, 0).
2868 threshold: the threshold used by line finder. It is
2869 better to keep it large as only strong lines
2870 affect the baseline solution.
2871 default is 3.
2872 chan_avg_limit: a maximum number of consequtive spectral
2873 channels to average during the search of
2874 weak and broad lines. The default is no
2875 averaging (and no search for weak lines).
2876 If such lines can affect the fitted baseline
2877 (e.g. a high order polynomial is fitted),
2878 increase this parameter (usually values up
2879 to 8 are reasonable). Most users of this
2880 method should find the default value sufficient.
2881 default is 1.
2882
2883 Example:
2884 aic = scan.calc_aic(blfunc='chebyshev', order=5, whichrow=0)
2885 """
2886
2887 try:
2888 varlist = vars()
2889
2890 if value is None: value = 'aicc'
2891 if blfunc is None: blfunc = 'chebyshev'
2892 if order is None: order = 5
2893 if mask is None: mask = []
2894 if whichrow is None: whichrow = 0
2895 if uselinefinder is None: uselinefinder = True
2896 if edge is None: edge = (0, 0)
2897 if threshold is None: threshold = 3
2898 if chan_avg_limit is None: chan_avg_limit = 1
2899
2900 return self._calc_aic(value, blfunc, order, mask,
2901 whichrow, uselinefinder, edge,
2902 threshold, chan_avg_limit)
2903
2904 except RuntimeError, e:
2905 raise_fitting_failure_exception(e)
2906
[1862]2907 @asaplog_post_dec
[2771]2908 def sinusoid_baseline(self, mask=None, applyfft=None,
[2269]2909 fftmethod=None, fftthresh=None,
[2771]2910 addwn=None, rejwn=None,
2911 insitu=None,
2912 clipthresh=None, clipniter=None,
2913 plot=None,
2914 getresidual=None,
2915 showprogress=None, minnrow=None,
2916 outlog=None,
[2767]2917 blfile=None, csvformat=None,
2918 bltable=None):
[2047]2919 """\
[2349]2920 Return a scan which has been baselined (all rows) with sinusoidal
2921 functions.
2922
[2047]2923 Parameters:
[2186]2924 mask: an optional mask
2925 applyfft: if True use some method, such as FFT, to find
2926 strongest sinusoidal components in the wavenumber
2927 domain to be used for baseline fitting.
2928 default is True.
2929 fftmethod: method to find the strong sinusoidal components.
2930 now only 'fft' is available and it is the default.
2931 fftthresh: the threshold to select wave numbers to be used for
2932 fitting from the distribution of amplitudes in the
2933 wavenumber domain.
2934 both float and string values accepted.
2935 given a float value, the unit is set to sigma.
2936 for string values, allowed formats include:
[2349]2937 'xsigma' or 'x' (= x-sigma level. e.g.,
2938 '3sigma'), or
[2186]2939 'topx' (= the x strongest ones, e.g. 'top5').
2940 default is 3.0 (unit: sigma).
2941 addwn: the additional wave numbers to be used for fitting.
2942 list or integer value is accepted to specify every
2943 wave numbers. also string value can be used in case
2944 you need to specify wave numbers in a certain range,
2945 e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b),
2946 '<a' (= 0,1,...,a-2,a-1),
2947 '>=a' (= a, a+1, ... up to the maximum wave
2948 number corresponding to the Nyquist
2949 frequency for the case of FFT).
[2411]2950 default is [0].
[2186]2951 rejwn: the wave numbers NOT to be used for fitting.
2952 can be set just as addwn but has higher priority:
2953 wave numbers which are specified both in addwn
2954 and rejwn will NOT be used. default is [].
[2771]2955 insitu: if False a new scantable is returned.
2956 Otherwise, the scaling is done in-situ
2957 The default is taken from .asaprc (False)
[2081]2958 clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
[2349]2959 clipniter: maximum number of iteration of 'clipthresh'-sigma
2960 clipping (default is 0)
[2081]2961 plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
2962 plot the fit and the residual. In this each
2963 indivual fit has to be approved, by typing 'y'
2964 or 'n'
2965 getresidual: if False, returns best-fit values instead of
2966 residual. (default is True)
[2189]2967 showprogress: show progress status for large data.
2968 default is True.
2969 minnrow: minimum number of input spectra to show.
2970 default is 1000.
[2081]2971 outlog: Output the coefficients of the best-fit
2972 function to logger (default is False)
2973 blfile: Name of a text file in which the best-fit
2974 parameter values to be written
[2186]2975 (default is '': no file/logger output)
[2641]2976 csvformat: if True blfile is csv-formatted, default is False.
[2767]2977 bltable: name of a baseline table where fitting results
2978 (coefficients, rms, etc.) are to be written.
2979 if given, fitting results will NOT be output to
2980 scantable (insitu=True) or None will be
2981 returned (insitu=False).
2982 (default is "": no table output)
[2047]2983
2984 Example:
[2349]2985 # return a scan baselined by a combination of sinusoidal curves
2986 # having wave numbers in spectral window up to 10,
[2047]2987 # also with 3-sigma clipping, iteration up to 4 times
[2186]2988 bscan = scan.sinusoid_baseline(addwn='<=10',clipthresh=3.0,clipniter=4)
[2081]2989
2990 Note:
2991 The best-fit parameter values output in logger and/or blfile are now
2992 based on specunit of 'channel'.
[2047]2993 """
2994
[2186]2995 try:
2996 varlist = vars()
[2047]2997
[2186]2998 if insitu is None: insitu = rcParams['insitu']
2999 if insitu:
3000 workscan = self
3001 else:
3002 workscan = self.copy()
3003
[2410]3004 if mask is None: mask = []
[2186]3005 if applyfft is None: applyfft = True
3006 if fftmethod is None: fftmethod = 'fft'
3007 if fftthresh is None: fftthresh = 3.0
[2411]3008 if addwn is None: addwn = [0]
[2186]3009 if rejwn is None: rejwn = []
3010 if clipthresh is None: clipthresh = 3.0
3011 if clipniter is None: clipniter = 0
3012 if plot is None: plot = False
3013 if getresidual is None: getresidual = True
[2189]3014 if showprogress is None: showprogress = True
3015 if minnrow is None: minnrow = 1000
[2186]3016 if outlog is None: outlog = False
3017 if blfile is None: blfile = ''
[2641]3018 if csvformat is None: csvformat = False
[2767]3019 if bltable is None: bltable = ''
[2047]3020
[2767]3021 sapplyfft = 'true' if applyfft else 'false'
3022 fftinfo = ','.join([sapplyfft, fftmethod.lower(), str(fftthresh).lower()])
[2641]3023
[2767]3024 scsvformat = 'T' if csvformat else 'F'
3025
[2081]3026 #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method.
[2767]3027 workscan._sinusoid_baseline(mask,
3028 fftinfo,
3029 #applyfft, fftmethod.lower(),
3030 #str(fftthresh).lower(),
[2349]3031 workscan._parse_wn(addwn),
[2643]3032 workscan._parse_wn(rejwn),
3033 clipthresh, clipniter,
3034 getresidual,
[2349]3035 pack_progress_params(showprogress,
[2641]3036 minnrow),
[2767]3037 outlog, scsvformat+blfile,
3038 bltable)
[2186]3039 workscan._add_history('sinusoid_baseline', varlist)
[2767]3040
3041 if bltable == '':
3042 if insitu:
3043 self._assign(workscan)
3044 else:
3045 return workscan
[2047]3046 else:
[2767]3047 if not insitu:
3048 return None
[2047]3049
3050 except RuntimeError, e:
[2186]3051 raise_fitting_failure_exception(e)
[2047]3052
3053
[2186]3054 @asaplog_post_dec
[2771]3055 def auto_sinusoid_baseline(self, mask=None, applyfft=None,
[2349]3056 fftmethod=None, fftthresh=None,
[2771]3057 addwn=None, rejwn=None,
3058 insitu=None,
3059 clipthresh=None, clipniter=None,
3060 edge=None, threshold=None, chan_avg_limit=None,
3061 plot=None,
3062 getresidual=None,
3063 showprogress=None, minnrow=None,
3064 outlog=None,
[2767]3065 blfile=None, csvformat=None,
3066 bltable=None):
[2047]3067 """\
[2349]3068 Return a scan which has been baselined (all rows) with sinusoidal
3069 functions.
[2047]3070 Spectral lines are detected first using linefinder and masked out
3071 to avoid them affecting the baseline solution.
3072
3073 Parameters:
[2189]3074 mask: an optional mask retreived from scantable
3075 applyfft: if True use some method, such as FFT, to find
3076 strongest sinusoidal components in the wavenumber
3077 domain to be used for baseline fitting.
3078 default is True.
3079 fftmethod: method to find the strong sinusoidal components.
3080 now only 'fft' is available and it is the default.
3081 fftthresh: the threshold to select wave numbers to be used for
3082 fitting from the distribution of amplitudes in the
3083 wavenumber domain.
3084 both float and string values accepted.
3085 given a float value, the unit is set to sigma.
3086 for string values, allowed formats include:
[2349]3087 'xsigma' or 'x' (= x-sigma level. e.g.,
3088 '3sigma'), or
[2189]3089 'topx' (= the x strongest ones, e.g. 'top5').
3090 default is 3.0 (unit: sigma).
3091 addwn: the additional wave numbers to be used for fitting.
3092 list or integer value is accepted to specify every
3093 wave numbers. also string value can be used in case
3094 you need to specify wave numbers in a certain range,
3095 e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b),
3096 '<a' (= 0,1,...,a-2,a-1),
3097 '>=a' (= a, a+1, ... up to the maximum wave
3098 number corresponding to the Nyquist
3099 frequency for the case of FFT).
[2411]3100 default is [0].
[2189]3101 rejwn: the wave numbers NOT to be used for fitting.
3102 can be set just as addwn but has higher priority:
3103 wave numbers which are specified both in addwn
3104 and rejwn will NOT be used. default is [].
[2771]3105 insitu: if False a new scantable is returned.
3106 Otherwise, the scaling is done in-situ
3107 The default is taken from .asaprc (False)
[2189]3108 clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
[2349]3109 clipniter: maximum number of iteration of 'clipthresh'-sigma
3110 clipping (default is 0)
[2189]3111 edge: an optional number of channel to drop at
3112 the edge of spectrum. If only one value is
3113 specified, the same number will be dropped
3114 from both sides of the spectrum. Default
3115 is to keep all channels. Nested tuples
3116 represent individual edge selection for
3117 different IFs (a number of spectral channels
3118 can be different)
3119 threshold: the threshold used by line finder. It is
3120 better to keep it large as only strong lines
3121 affect the baseline solution.
3122 chan_avg_limit: a maximum number of consequtive spectral
3123 channels to average during the search of
3124 weak and broad lines. The default is no
3125 averaging (and no search for weak lines).
3126 If such lines can affect the fitted baseline
3127 (e.g. a high order polynomial is fitted),
3128 increase this parameter (usually values up
3129 to 8 are reasonable). Most users of this
3130 method should find the default value sufficient.
3131 plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
3132 plot the fit and the residual. In this each
3133 indivual fit has to be approved, by typing 'y'
3134 or 'n'
3135 getresidual: if False, returns best-fit values instead of
3136 residual. (default is True)
3137 showprogress: show progress status for large data.
3138 default is True.
3139 minnrow: minimum number of input spectra to show.
3140 default is 1000.
3141 outlog: Output the coefficients of the best-fit
3142 function to logger (default is False)
3143 blfile: Name of a text file in which the best-fit
3144 parameter values to be written
3145 (default is "": no file/logger output)
[2641]3146 csvformat: if True blfile is csv-formatted, default is False.
[2767]3147 bltable: name of a baseline table where fitting results
3148 (coefficients, rms, etc.) are to be written.
3149 if given, fitting results will NOT be output to
3150 scantable (insitu=True) or None will be
3151 returned (insitu=False).
3152 (default is "": no table output)
[2047]3153
3154 Example:
[2186]3155 bscan = scan.auto_sinusoid_baseline(addwn='<=10', insitu=False)
[2081]3156
3157 Note:
3158 The best-fit parameter values output in logger and/or blfile are now
3159 based on specunit of 'channel'.
[2047]3160 """
3161
[2186]3162 try:
3163 varlist = vars()
[2047]3164
[2186]3165 if insitu is None: insitu = rcParams['insitu']
3166 if insitu:
3167 workscan = self
[2047]3168 else:
[2186]3169 workscan = self.copy()
3170
[2410]3171 if mask is None: mask = []
[2186]3172 if applyfft is None: applyfft = True
3173 if fftmethod is None: fftmethod = 'fft'
3174 if fftthresh is None: fftthresh = 3.0
[2411]3175 if addwn is None: addwn = [0]
[2186]3176 if rejwn is None: rejwn = []
3177 if clipthresh is None: clipthresh = 3.0
3178 if clipniter is None: clipniter = 0
3179 if edge is None: edge = (0,0)
3180 if threshold is None: threshold = 3
3181 if chan_avg_limit is None: chan_avg_limit = 1
3182 if plot is None: plot = False
3183 if getresidual is None: getresidual = True
[2189]3184 if showprogress is None: showprogress = True
3185 if minnrow is None: minnrow = 1000
[2186]3186 if outlog is None: outlog = False
3187 if blfile is None: blfile = ''
[2641]3188 if csvformat is None: csvformat = False
[2767]3189 if bltable is None: bltable = ''
[2047]3190
[2767]3191 sapplyfft = 'true' if applyfft else 'false'
3192 fftinfo = ','.join([sapplyfft, fftmethod.lower(), str(fftthresh).lower()])
[2641]3193
[2767]3194 scsvformat = 'T' if csvformat else 'F'
3195
[2277]3196 #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method.
[2767]3197 workscan._auto_sinusoid_baseline(mask,
3198 fftinfo,
[2349]3199 workscan._parse_wn(addwn),
3200 workscan._parse_wn(rejwn),
3201 clipthresh, clipniter,
3202 normalise_edge_param(edge),
3203 threshold, chan_avg_limit,
3204 getresidual,
3205 pack_progress_params(showprogress,
3206 minnrow),
[2767]3207 outlog, scsvformat+blfile, bltable)
[2047]3208 workscan._add_history("auto_sinusoid_baseline", varlist)
[2767]3209
3210 if bltable == '':
3211 if insitu:
3212 self._assign(workscan)
3213 else:
3214 return workscan
[2047]3215 else:
[2767]3216 if not insitu:
3217 return None
[2047]3218
3219 except RuntimeError, e:
[2186]3220 raise_fitting_failure_exception(e)
[2047]3221
3222 @asaplog_post_dec
[2771]3223 def cspline_baseline(self, mask=None, npiece=None, insitu=None,
[2349]3224 clipthresh=None, clipniter=None, plot=None,
3225 getresidual=None, showprogress=None, minnrow=None,
[2767]3226 outlog=None, blfile=None, csvformat=None,
3227 bltable=None):
[1846]3228 """\
[2349]3229 Return a scan which has been baselined (all rows) by cubic spline
3230 function (piecewise cubic polynomial).
3231
[513]3232 Parameters:
[2771]3233 mask: An optional mask
3234 npiece: Number of pieces. (default is 2)
[2189]3235 insitu: If False a new scantable is returned.
3236 Otherwise, the scaling is done in-situ
3237 The default is taken from .asaprc (False)
3238 clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
[2349]3239 clipniter: maximum number of iteration of 'clipthresh'-sigma
3240 clipping (default is 0)
[2189]3241 plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
3242 plot the fit and the residual. In this each
3243 indivual fit has to be approved, by typing 'y'
3244 or 'n'
3245 getresidual: if False, returns best-fit values instead of
3246 residual. (default is True)
3247 showprogress: show progress status for large data.
3248 default is True.
3249 minnrow: minimum number of input spectra to show.
3250 default is 1000.
3251 outlog: Output the coefficients of the best-fit
3252 function to logger (default is False)
3253 blfile: Name of a text file in which the best-fit
3254 parameter values to be written
3255 (default is "": no file/logger output)
[2641]3256 csvformat: if True blfile is csv-formatted, default is False.
[2767]3257 bltable: name of a baseline table where fitting results
3258 (coefficients, rms, etc.) are to be written.
3259 if given, fitting results will NOT be output to
3260 scantable (insitu=True) or None will be
3261 returned (insitu=False).
3262 (default is "": no table output)
[1846]3263
[2012]3264 Example:
[2349]3265 # return a scan baselined by a cubic spline consisting of 2 pieces
3266 # (i.e., 1 internal knot),
[2012]3267 # also with 3-sigma clipping, iteration up to 4 times
3268 bscan = scan.cspline_baseline(npiece=2,clipthresh=3.0,clipniter=4)
[2081]3269
3270 Note:
3271 The best-fit parameter values output in logger and/or blfile are now
3272 based on specunit of 'channel'.
[2012]3273 """
3274
[2186]3275 try:
3276 varlist = vars()
3277
3278 if insitu is None: insitu = rcParams['insitu']
3279 if insitu:
3280 workscan = self
3281 else:
3282 workscan = self.copy()
[1855]3283
[2410]3284 if mask is None: mask = []
[2189]3285 if npiece is None: npiece = 2
3286 if clipthresh is None: clipthresh = 3.0
3287 if clipniter is None: clipniter = 0
3288 if plot is None: plot = False
3289 if getresidual is None: getresidual = True
3290 if showprogress is None: showprogress = True
3291 if minnrow is None: minnrow = 1000
3292 if outlog is None: outlog = False
3293 if blfile is None: blfile = ''
[2767]3294 if csvformat is None: csvformat = False
3295 if bltable is None: bltable = ''
[1855]3296
[2767]3297 scsvformat = 'T' if csvformat else 'F'
[2641]3298
[2012]3299 #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
[2767]3300 workscan._cspline_baseline(mask, npiece,
3301 clipthresh, clipniter,
[2349]3302 getresidual,
3303 pack_progress_params(showprogress,
[2641]3304 minnrow),
[2767]3305 outlog, scsvformat+blfile,
3306 bltable)
[2012]3307 workscan._add_history("cspline_baseline", varlist)
[2767]3308
3309 if bltable == '':
3310 if insitu:
3311 self._assign(workscan)
3312 else:
3313 return workscan
[2012]3314 else:
[2767]3315 if not insitu:
3316 return None
[2012]3317
3318 except RuntimeError, e:
[2186]3319 raise_fitting_failure_exception(e)
[1855]3320
[2186]3321 @asaplog_post_dec
[2771]3322 def auto_cspline_baseline(self, mask=None, npiece=None, insitu=None,
[2349]3323 clipthresh=None, clipniter=None,
3324 edge=None, threshold=None, chan_avg_limit=None,
3325 getresidual=None, plot=None,
3326 showprogress=None, minnrow=None, outlog=None,
[2767]3327 blfile=None, csvformat=None, bltable=None):
[2012]3328 """\
3329 Return a scan which has been baselined (all rows) by cubic spline
3330 function (piecewise cubic polynomial).
3331 Spectral lines are detected first using linefinder and masked out
3332 to avoid them affecting the baseline solution.
3333
3334 Parameters:
[2771]3335 mask: an optional mask retreived from scantable
3336 npiece: Number of pieces. (default is 2)
[2189]3337 insitu: if False a new scantable is returned.
3338 Otherwise, the scaling is done in-situ
3339 The default is taken from .asaprc (False)
3340 clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
[2349]3341 clipniter: maximum number of iteration of 'clipthresh'-sigma
3342 clipping (default is 0)
[2189]3343 edge: an optional number of channel to drop at
3344 the edge of spectrum. If only one value is
3345 specified, the same number will be dropped
3346 from both sides of the spectrum. Default
3347 is to keep all channels. Nested tuples
3348 represent individual edge selection for
3349 different IFs (a number of spectral channels
3350 can be different)
3351 threshold: the threshold used by line finder. It is
3352 better to keep it large as only strong lines
3353 affect the baseline solution.
3354 chan_avg_limit: a maximum number of consequtive spectral
3355 channels to average during the search of
3356 weak and broad lines. The default is no
3357 averaging (and no search for weak lines).
3358 If such lines can affect the fitted baseline
3359 (e.g. a high order polynomial is fitted),
3360 increase this parameter (usually values up
3361 to 8 are reasonable). Most users of this
3362 method should find the default value sufficient.
3363 plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
3364 plot the fit and the residual. In this each
3365 indivual fit has to be approved, by typing 'y'
3366 or 'n'
3367 getresidual: if False, returns best-fit values instead of
3368 residual. (default is True)
3369 showprogress: show progress status for large data.
3370 default is True.
3371 minnrow: minimum number of input spectra to show.
3372 default is 1000.
3373 outlog: Output the coefficients of the best-fit
3374 function to logger (default is False)
3375 blfile: Name of a text file in which the best-fit
3376 parameter values to be written
3377 (default is "": no file/logger output)
[2641]3378 csvformat: if True blfile is csv-formatted, default is False.
[2767]3379 bltable: name of a baseline table where fitting results
3380 (coefficients, rms, etc.) are to be written.
3381 if given, fitting results will NOT be output to
3382 scantable (insitu=True) or None will be
3383 returned (insitu=False).
3384 (default is "": no table output)
[1846]3385
[1907]3386 Example:
[2012]3387 bscan = scan.auto_cspline_baseline(npiece=3, insitu=False)
[2081]3388
3389 Note:
3390 The best-fit parameter values output in logger and/or blfile are now
3391 based on specunit of 'channel'.
[2012]3392 """
[1846]3393
[2186]3394 try:
3395 varlist = vars()
[2012]3396
[2186]3397 if insitu is None: insitu = rcParams['insitu']
3398 if insitu:
3399 workscan = self
[1391]3400 else:
[2186]3401 workscan = self.copy()
3402
[2410]3403 #if mask is None: mask = [True for i in xrange(workscan.nchan())]
3404 if mask is None: mask = []
[2186]3405 if npiece is None: npiece = 2
3406 if clipthresh is None: clipthresh = 3.0
3407 if clipniter is None: clipniter = 0
3408 if edge is None: edge = (0, 0)
3409 if threshold is None: threshold = 3
3410 if chan_avg_limit is None: chan_avg_limit = 1
3411 if plot is None: plot = False
3412 if getresidual is None: getresidual = True
[2189]3413 if showprogress is None: showprogress = True
3414 if minnrow is None: minnrow = 1000
[2186]3415 if outlog is None: outlog = False
3416 if blfile is None: blfile = ''
[2641]3417 if csvformat is None: csvformat = False
[2767]3418 if bltable is None: bltable = ''
[1819]3419
[2767]3420 scsvformat = 'T' if csvformat else 'F'
[2641]3421
[2277]3422 #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
[2767]3423 workscan._auto_cspline_baseline(mask, npiece,
3424 clipthresh, clipniter,
[2269]3425 normalise_edge_param(edge),
3426 threshold,
3427 chan_avg_limit, getresidual,
3428 pack_progress_params(showprogress,
3429 minnrow),
[2767]3430 outlog,
3431 scsvformat+blfile,
3432 bltable)
[2012]3433 workscan._add_history("auto_cspline_baseline", varlist)
[2767]3434
3435 if bltable == '':
3436 if insitu:
3437 self._assign(workscan)
3438 else:
3439 return workscan
[1856]3440 else:
[2767]3441 if not insitu:
3442 return None
[2012]3443
3444 except RuntimeError, e:
[2186]3445 raise_fitting_failure_exception(e)
[513]3446
[1931]3447 @asaplog_post_dec
[2771]3448 def chebyshev_baseline(self, mask=None, order=None, insitu=None,
[2645]3449 clipthresh=None, clipniter=None, plot=None,
3450 getresidual=None, showprogress=None, minnrow=None,
[2767]3451 outlog=None, blfile=None, csvformat=None,
3452 bltable=None):
[2645]3453 """\
3454 Return a scan which has been baselined (all rows) by Chebyshev polynomials.
3455
3456 Parameters:
[2771]3457 mask: An optional mask
3458 order: the maximum order of Chebyshev polynomial (default is 5)
[2645]3459 insitu: If False a new scantable is returned.
3460 Otherwise, the scaling is done in-situ
3461 The default is taken from .asaprc (False)
3462 clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
3463 clipniter: maximum number of iteration of 'clipthresh'-sigma
3464 clipping (default is 0)
3465 plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
3466 plot the fit and the residual. In this each
3467 indivual fit has to be approved, by typing 'y'
3468 or 'n'
3469 getresidual: if False, returns best-fit values instead of
3470 residual. (default is True)
3471 showprogress: show progress status for large data.
3472 default is True.
3473 minnrow: minimum number of input spectra to show.
3474 default is 1000.
3475 outlog: Output the coefficients of the best-fit
3476 function to logger (default is False)
3477 blfile: Name of a text file in which the best-fit
3478 parameter values to be written
3479 (default is "": no file/logger output)
3480 csvformat: if True blfile is csv-formatted, default is False.
[2767]3481 bltable: name of a baseline table where fitting results
3482 (coefficients, rms, etc.) are to be written.
3483 if given, fitting results will NOT be output to
3484 scantable (insitu=True) or None will be
3485 returned (insitu=False).
3486 (default is "": no table output)
[2645]3487
3488 Example:
3489 # return a scan baselined by a cubic spline consisting of 2 pieces
3490 # (i.e., 1 internal knot),
3491 # also with 3-sigma clipping, iteration up to 4 times
3492 bscan = scan.cspline_baseline(npiece=2,clipthresh=3.0,clipniter=4)
3493
3494 Note:
3495 The best-fit parameter values output in logger and/or blfile are now
3496 based on specunit of 'channel'.
3497 """
3498
3499 try:
3500 varlist = vars()
3501
3502 if insitu is None: insitu = rcParams['insitu']
3503 if insitu:
3504 workscan = self
3505 else:
3506 workscan = self.copy()
3507
3508 if mask is None: mask = []
3509 if order is None: order = 5
3510 if clipthresh is None: clipthresh = 3.0
3511 if clipniter is None: clipniter = 0
3512 if plot is None: plot = False
3513 if getresidual is None: getresidual = True
3514 if showprogress is None: showprogress = True
3515 if minnrow is None: minnrow = 1000
3516 if outlog is None: outlog = False
3517 if blfile is None: blfile = ''
[2767]3518 if csvformat is None: csvformat = False
3519 if bltable is None: bltable = ''
[2645]3520
[2767]3521 scsvformat = 'T' if csvformat else 'F'
[2645]3522
3523 #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
[2767]3524 workscan._chebyshev_baseline(mask, order,
3525 clipthresh, clipniter,
[2645]3526 getresidual,
3527 pack_progress_params(showprogress,
3528 minnrow),
[2767]3529 outlog, scsvformat+blfile,
3530 bltable)
[2645]3531 workscan._add_history("chebyshev_baseline", varlist)
[2767]3532
3533 if bltable == '':
3534 if insitu:
3535 self._assign(workscan)
3536 else:
3537 return workscan
[2645]3538 else:
[2767]3539 if not insitu:
3540 return None
[2645]3541
3542 except RuntimeError, e:
3543 raise_fitting_failure_exception(e)
3544
3545 @asaplog_post_dec
[2771]3546 def auto_chebyshev_baseline(self, mask=None, order=None, insitu=None,
[2645]3547 clipthresh=None, clipniter=None,
3548 edge=None, threshold=None, chan_avg_limit=None,
3549 getresidual=None, plot=None,
3550 showprogress=None, minnrow=None, outlog=None,
[2767]3551 blfile=None, csvformat=None, bltable=None):
[2645]3552 """\
3553 Return a scan which has been baselined (all rows) by Chebyshev polynomials.
3554 Spectral lines are detected first using linefinder and masked out
3555 to avoid them affecting the baseline solution.
3556
3557 Parameters:
[2771]3558 mask: an optional mask retreived from scantable
3559 order: the maximum order of Chebyshev polynomial (default is 5)
[2645]3560 insitu: if False a new scantable is returned.
3561 Otherwise, the scaling is done in-situ
3562 The default is taken from .asaprc (False)
3563 clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
3564 clipniter: maximum number of iteration of 'clipthresh'-sigma
3565 clipping (default is 0)
3566 edge: an optional number of channel to drop at
3567 the edge of spectrum. If only one value is
3568 specified, the same number will be dropped
3569 from both sides of the spectrum. Default
3570 is to keep all channels. Nested tuples
3571 represent individual edge selection for
3572 different IFs (a number of spectral channels
3573 can be different)
3574 threshold: the threshold used by line finder. It is
3575 better to keep it large as only strong lines
3576 affect the baseline solution.
3577 chan_avg_limit: a maximum number of consequtive spectral
3578 channels to average during the search of
3579 weak and broad lines. The default is no
3580 averaging (and no search for weak lines).
3581 If such lines can affect the fitted baseline
3582 (e.g. a high order polynomial is fitted),
3583 increase this parameter (usually values up
3584 to 8 are reasonable). Most users of this
3585 method should find the default value sufficient.
3586 plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
3587 plot the fit and the residual. In this each
3588 indivual fit has to be approved, by typing 'y'
3589 or 'n'
3590 getresidual: if False, returns best-fit values instead of
3591 residual. (default is True)
3592 showprogress: show progress status for large data.
3593 default is True.
3594 minnrow: minimum number of input spectra to show.
3595 default is 1000.
3596 outlog: Output the coefficients of the best-fit
3597 function to logger (default is False)
3598 blfile: Name of a text file in which the best-fit
3599 parameter values to be written
3600 (default is "": no file/logger output)
3601 csvformat: if True blfile is csv-formatted, default is False.
[2767]3602 bltable: name of a baseline table where fitting results
3603 (coefficients, rms, etc.) are to be written.
3604 if given, fitting results will NOT be output to
3605 scantable (insitu=True) or None will be
3606 returned (insitu=False).
3607 (default is "": no table output)
[2645]3608
3609 Example:
3610 bscan = scan.auto_cspline_baseline(npiece=3, insitu=False)
3611
3612 Note:
3613 The best-fit parameter values output in logger and/or blfile are now
3614 based on specunit of 'channel'.
3615 """
3616
3617 try:
3618 varlist = vars()
3619
3620 if insitu is None: insitu = rcParams['insitu']
3621 if insitu:
3622 workscan = self
3623 else:
3624 workscan = self.copy()
3625
3626 if mask is None: mask = []
3627 if order is None: order = 5
3628 if clipthresh is None: clipthresh = 3.0
3629 if clipniter is None: clipniter = 0
3630 if edge is None: edge = (0, 0)
3631 if threshold is None: threshold = 3
3632 if chan_avg_limit is None: chan_avg_limit = 1
3633 if plot is None: plot = False
3634 if getresidual is None: getresidual = True
3635 if showprogress is None: showprogress = True
3636 if minnrow is None: minnrow = 1000
3637 if outlog is None: outlog = False
3638 if blfile is None: blfile = ''
3639 if csvformat is None: csvformat = False
[2767]3640 if bltable is None: bltable = ''
[2645]3641
[2767]3642 scsvformat = 'T' if csvformat else 'F'
[2645]3643
3644 #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
[2767]3645 workscan._auto_chebyshev_baseline(mask, order,
3646 clipthresh, clipniter,
[2645]3647 normalise_edge_param(edge),
3648 threshold,
3649 chan_avg_limit, getresidual,
3650 pack_progress_params(showprogress,
3651 minnrow),
[2767]3652 outlog, scsvformat+blfile,
3653 bltable)
[2645]3654 workscan._add_history("auto_chebyshev_baseline", varlist)
[2767]3655
3656 if bltable == '':
3657 if insitu:
3658 self._assign(workscan)
3659 else:
3660 return workscan
[2645]3661 else:
[2767]3662 if not insitu:
3663 return None
[2645]3664
3665 except RuntimeError, e:
3666 raise_fitting_failure_exception(e)
3667
3668 @asaplog_post_dec
[2771]3669 def poly_baseline(self, mask=None, order=None, insitu=None,
[2767]3670 clipthresh=None, clipniter=None, plot=None,
[2269]3671 getresidual=None, showprogress=None, minnrow=None,
[2767]3672 outlog=None, blfile=None, csvformat=None,
3673 bltable=None):
[1907]3674 """\
3675 Return a scan which has been baselined (all rows) by a polynomial.
3676 Parameters:
[2771]3677 mask: an optional mask
3678 order: the order of the polynomial (default is 0)
[2189]3679 insitu: if False a new scantable is returned.
3680 Otherwise, the scaling is done in-situ
3681 The default is taken from .asaprc (False)
[2767]3682 clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
3683 clipniter: maximum number of iteration of 'clipthresh'-sigma
3684 clipping (default is 0)
[2189]3685 plot: plot the fit and the residual. In this each
3686 indivual fit has to be approved, by typing 'y'
3687 or 'n'
3688 getresidual: if False, returns best-fit values instead of
3689 residual. (default is True)
3690 showprogress: show progress status for large data.
3691 default is True.
3692 minnrow: minimum number of input spectra to show.
3693 default is 1000.
3694 outlog: Output the coefficients of the best-fit
3695 function to logger (default is False)
3696 blfile: Name of a text file in which the best-fit
3697 parameter values to be written
3698 (default is "": no file/logger output)
[2641]3699 csvformat: if True blfile is csv-formatted, default is False.
[2767]3700 bltable: name of a baseline table where fitting results
3701 (coefficients, rms, etc.) are to be written.
3702 if given, fitting results will NOT be output to
3703 scantable (insitu=True) or None will be
3704 returned (insitu=False).
3705 (default is "": no table output)
[2012]3706
[1907]3707 Example:
3708 # return a scan baselined by a third order polynomial,
3709 # not using a mask
3710 bscan = scan.poly_baseline(order=3)
3711 """
[1931]3712
[2186]3713 try:
3714 varlist = vars()
[1931]3715
[2269]3716 if insitu is None:
3717 insitu = rcParams["insitu"]
[2186]3718 if insitu:
3719 workscan = self
3720 else:
3721 workscan = self.copy()
[1907]3722
[2410]3723 if mask is None: mask = []
[2189]3724 if order is None: order = 0
[2767]3725 if clipthresh is None: clipthresh = 3.0
3726 if clipniter is None: clipniter = 0
[2189]3727 if plot is None: plot = False
3728 if getresidual is None: getresidual = True
3729 if showprogress is None: showprogress = True
3730 if minnrow is None: minnrow = 1000
3731 if outlog is None: outlog = False
[2767]3732 if blfile is None: blfile = ''
[2641]3733 if csvformat is None: csvformat = False
[2767]3734 if bltable is None: bltable = ''
[1907]3735
[2767]3736 scsvformat = 'T' if csvformat else 'F'
[2641]3737
[2012]3738 if plot:
[2269]3739 outblfile = (blfile != "") and \
[2349]3740 os.path.exists(os.path.expanduser(
3741 os.path.expandvars(blfile))
3742 )
[2269]3743 if outblfile:
3744 blf = open(blfile, "a")
[2012]3745
[1907]3746 f = fitter()
3747 f.set_function(lpoly=order)
[2186]3748
3749 rows = xrange(workscan.nrow())
3750 #if len(rows) > 0: workscan._init_blinfo()
[2610]3751
3752 action = "H"
[1907]3753 for r in rows:
3754 f.x = workscan._getabcissa(r)
3755 f.y = workscan._getspectrum(r)
[2541]3756 if mask:
3757 f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
3758 else: # mask=None
3759 f.mask = workscan._getmask(r)
3760
[1907]3761 f.data = None
3762 f.fit()
[2541]3763
[2610]3764 if action != "Y": # skip plotting when accepting all
3765 f.plot(residual=True)
3766 #accept_fit = raw_input("Accept fit ( [y]/n ): ")
3767 #if accept_fit.upper() == "N":
3768 # #workscan._append_blinfo(None, None, None)
3769 # continue
3770 accept_fit = self._get_verify_action("Accept fit?",action)
3771 if r == 0: action = None
[1907]3772 if accept_fit.upper() == "N":
3773 continue
[2610]3774 elif accept_fit.upper() == "R":
3775 break
3776 elif accept_fit.upper() == "A":
3777 action = "Y"
[2012]3778
3779 blpars = f.get_parameters()
3780 masklist = workscan.get_masklist(f.mask, row=r, silent=True)
3781 #workscan._append_blinfo(blpars, masklist, f.mask)
[2269]3782 workscan._setspectrum((f.fitter.getresidual()
3783 if getresidual else f.fitter.getfit()), r)
[1907]3784
[2012]3785 if outblfile:
3786 rms = workscan.get_rms(f.mask, r)
[2269]3787 dataout = \
3788 workscan.format_blparams_row(blpars["params"],
3789 blpars["fixed"],
3790 rms, str(masklist),
[2641]3791 r, True, csvformat)
[2012]3792 blf.write(dataout)
3793
[1907]3794 f._p.unmap()
3795 f._p = None
[2012]3796
[2349]3797 if outblfile:
3798 blf.close()
[1907]3799 else:
[2767]3800 workscan._poly_baseline(mask, order,
3801 clipthresh, clipniter, #
3802 getresidual,
[2269]3803 pack_progress_params(showprogress,
3804 minnrow),
[2767]3805 outlog, scsvformat+blfile,
3806 bltable) #
[1907]3807
3808 workscan._add_history("poly_baseline", varlist)
3809
3810 if insitu:
3811 self._assign(workscan)
3812 else:
3813 return workscan
3814
[1919]3815 except RuntimeError, e:
[2186]3816 raise_fitting_failure_exception(e)
[1907]3817
[2186]3818 @asaplog_post_dec
[2771]3819 def auto_poly_baseline(self, mask=None, order=None, insitu=None,
[2767]3820 clipthresh=None, clipniter=None,
3821 edge=None, threshold=None, chan_avg_limit=None,
3822 getresidual=None, plot=None,
3823 showprogress=None, minnrow=None, outlog=None,
3824 blfile=None, csvformat=None, bltable=None):
[1846]3825 """\
[1931]3826 Return a scan which has been baselined (all rows) by a polynomial.
[880]3827 Spectral lines are detected first using linefinder and masked out
3828 to avoid them affecting the baseline solution.
3829
3830 Parameters:
[2771]3831 mask: an optional mask retreived from scantable
3832 order: the order of the polynomial (default is 0)
[2189]3833 insitu: if False a new scantable is returned.
3834 Otherwise, the scaling is done in-situ
3835 The default is taken from .asaprc (False)
[2767]3836 clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
3837 clipniter: maximum number of iteration of 'clipthresh'-sigma
3838 clipping (default is 0)
[2189]3839 edge: an optional number of channel to drop at
3840 the edge of spectrum. If only one value is
3841 specified, the same number will be dropped
3842 from both sides of the spectrum. Default
3843 is to keep all channels. Nested tuples
3844 represent individual edge selection for
3845 different IFs (a number of spectral channels
3846 can be different)
3847 threshold: the threshold used by line finder. It is
3848 better to keep it large as only strong lines
3849 affect the baseline solution.
3850 chan_avg_limit: a maximum number of consequtive spectral
3851 channels to average during the search of
3852 weak and broad lines. The default is no
3853 averaging (and no search for weak lines).
3854 If such lines can affect the fitted baseline
3855 (e.g. a high order polynomial is fitted),
3856 increase this parameter (usually values up
3857 to 8 are reasonable). Most users of this
3858 method should find the default value sufficient.
3859 plot: plot the fit and the residual. In this each
3860 indivual fit has to be approved, by typing 'y'
3861 or 'n'
3862 getresidual: if False, returns best-fit values instead of
3863 residual. (default is True)
3864 showprogress: show progress status for large data.
3865 default is True.
3866 minnrow: minimum number of input spectra to show.
3867 default is 1000.
3868 outlog: Output the coefficients of the best-fit
3869 function to logger (default is False)
3870 blfile: Name of a text file in which the best-fit
3871 parameter values to be written
3872 (default is "": no file/logger output)
[2641]3873 csvformat: if True blfile is csv-formatted, default is False.
[2767]3874 bltable: name of a baseline table where fitting results
3875 (coefficients, rms, etc.) are to be written.
3876 if given, fitting results will NOT be output to
3877 scantable (insitu=True) or None will be
3878 returned (insitu=False).
3879 (default is "": no table output)
[1846]3880
[2012]3881 Example:
3882 bscan = scan.auto_poly_baseline(order=7, insitu=False)
3883 """
[880]3884
[2186]3885 try:
3886 varlist = vars()
[1846]3887
[2269]3888 if insitu is None:
3889 insitu = rcParams['insitu']
[2186]3890 if insitu:
3891 workscan = self
3892 else:
3893 workscan = self.copy()
[1846]3894
[2410]3895 if mask is None: mask = []
[2186]3896 if order is None: order = 0
[2767]3897 if clipthresh is None: clipthresh = 3.0
3898 if clipniter is None: clipniter = 0
[2186]3899 if edge is None: edge = (0, 0)
3900 if threshold is None: threshold = 3
3901 if chan_avg_limit is None: chan_avg_limit = 1
3902 if plot is None: plot = False
3903 if getresidual is None: getresidual = True
[2189]3904 if showprogress is None: showprogress = True
3905 if minnrow is None: minnrow = 1000
[2186]3906 if outlog is None: outlog = False
3907 if blfile is None: blfile = ''
[2641]3908 if csvformat is None: csvformat = False
[2767]3909 if bltable is None: bltable = ''
[1846]3910
[2767]3911 scsvformat = 'T' if csvformat else 'F'
[2641]3912
[2186]3913 edge = normalise_edge_param(edge)
[880]3914
[2012]3915 if plot:
[2269]3916 outblfile = (blfile != "") and \
3917 os.path.exists(os.path.expanduser(os.path.expandvars(blfile)))
[2012]3918 if outblfile: blf = open(blfile, "a")
3919
[2186]3920 from asap.asaplinefind import linefinder
[2012]3921 fl = linefinder()
[2269]3922 fl.set_options(threshold=threshold, avg_limit=chan_avg_limit)
[2012]3923 fl.set_scan(workscan)
[2186]3924
[2012]3925 f = fitter()
3926 f.set_function(lpoly=order)
[880]3927
[2186]3928 rows = xrange(workscan.nrow())
3929 #if len(rows) > 0: workscan._init_blinfo()
[2610]3930
3931 action = "H"
[2012]3932 for r in rows:
[2186]3933 idx = 2*workscan.getif(r)
[2541]3934 if mask:
3935 msk = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
3936 else: # mask=None
3937 msk = workscan._getmask(r)
3938 fl.find_lines(r, msk, edge[idx:idx+2])
[907]3939
[2012]3940 f.x = workscan._getabcissa(r)
3941 f.y = workscan._getspectrum(r)
3942 f.mask = fl.get_mask()
3943 f.data = None
3944 f.fit()
3945
[2610]3946 if action != "Y": # skip plotting when accepting all
3947 f.plot(residual=True)
3948 #accept_fit = raw_input("Accept fit ( [y]/n ): ")
3949 accept_fit = self._get_verify_action("Accept fit?",action)
3950 if r == 0: action = None
[2012]3951 if accept_fit.upper() == "N":
3952 #workscan._append_blinfo(None, None, None)
3953 continue
[2610]3954 elif accept_fit.upper() == "R":
3955 break
3956 elif accept_fit.upper() == "A":
3957 action = "Y"
[2012]3958
3959 blpars = f.get_parameters()
3960 masklist = workscan.get_masklist(f.mask, row=r, silent=True)
3961 #workscan._append_blinfo(blpars, masklist, f.mask)
[2349]3962 workscan._setspectrum(
3963 (f.fitter.getresidual() if getresidual
3964 else f.fitter.getfit()), r
3965 )
[2012]3966
3967 if outblfile:
3968 rms = workscan.get_rms(f.mask, r)
[2269]3969 dataout = \
3970 workscan.format_blparams_row(blpars["params"],
3971 blpars["fixed"],
3972 rms, str(masklist),
[2641]3973 r, True, csvformat)
[2012]3974 blf.write(dataout)
3975
3976 f._p.unmap()
3977 f._p = None
3978
3979 if outblfile: blf.close()
3980 else:
[2767]3981 workscan._auto_poly_baseline(mask, order,
3982 clipthresh, clipniter,
3983 edge, threshold,
[2269]3984 chan_avg_limit, getresidual,
3985 pack_progress_params(showprogress,
3986 minnrow),
[2767]3987 outlog, scsvformat+blfile,
3988 bltable)
3989 workscan._add_history("auto_poly_baseline", varlist)
[2012]3990
[2767]3991 if bltable == '':
3992 if insitu:
3993 self._assign(workscan)
3994 else:
3995 return workscan
[2012]3996 else:
[2767]3997 if not insitu:
3998 return None
[2012]3999
4000 except RuntimeError, e:
[2186]4001 raise_fitting_failure_exception(e)
[2012]4002
4003 def _init_blinfo(self):
4004 """\
4005 Initialise the following three auxiliary members:
4006 blpars : parameters of the best-fit baseline,
4007 masklists : mask data (edge positions of masked channels) and
4008 actualmask : mask data (in boolean list),
4009 to keep for use later (including output to logger/text files).
4010 Used by poly_baseline() and auto_poly_baseline() in case of
4011 'plot=True'.
4012 """
4013 self.blpars = []
4014 self.masklists = []
4015 self.actualmask = []
4016 return
[880]4017
[2012]4018 def _append_blinfo(self, data_blpars, data_masklists, data_actualmask):
4019 """\
4020 Append baseline-fitting related info to blpars, masklist and
4021 actualmask.
4022 """
4023 self.blpars.append(data_blpars)
4024 self.masklists.append(data_masklists)
4025 self.actualmask.append(data_actualmask)
4026 return
4027
[1862]4028 @asaplog_post_dec
[914]4029 def rotate_linpolphase(self, angle):
[1846]4030 """\
[914]4031 Rotate the phase of the complex polarization O=Q+iU correlation.
4032 This is always done in situ in the raw data. So if you call this
4033 function more than once then each call rotates the phase further.
[1846]4034
[914]4035 Parameters:
[1846]4036
[914]4037 angle: The angle (degrees) to rotate (add) by.
[1846]4038
4039 Example::
4040
[914]4041 scan.rotate_linpolphase(2.3)
[1846]4042
[914]4043 """
4044 varlist = vars()
[936]4045 self._math._rotate_linpolphase(self, angle)
[914]4046 self._add_history("rotate_linpolphase", varlist)
4047 return
[710]4048
[1862]4049 @asaplog_post_dec
[914]4050 def rotate_xyphase(self, angle):
[1846]4051 """\
[914]4052 Rotate the phase of the XY correlation. This is always done in situ
4053 in the data. So if you call this function more than once
4054 then each call rotates the phase further.
[1846]4055
[914]4056 Parameters:
[1846]4057
[914]4058 angle: The angle (degrees) to rotate (add) by.
[1846]4059
4060 Example::
4061
[914]4062 scan.rotate_xyphase(2.3)
[1846]4063
[914]4064 """
4065 varlist = vars()
[936]4066 self._math._rotate_xyphase(self, angle)
[914]4067 self._add_history("rotate_xyphase", varlist)
4068 return
4069
[1862]4070 @asaplog_post_dec
[914]4071 def swap_linears(self):
[1846]4072 """\
[1573]4073 Swap the linear polarisations XX and YY, or better the first two
[1348]4074 polarisations as this also works for ciculars.
[914]4075 """
4076 varlist = vars()
[936]4077 self._math._swap_linears(self)
[914]4078 self._add_history("swap_linears", varlist)
4079 return
4080
[1862]4081 @asaplog_post_dec
[914]4082 def invert_phase(self):
[1846]4083 """\
[914]4084 Invert the phase of the complex polarisation
4085 """
4086 varlist = vars()
[936]4087 self._math._invert_phase(self)
[914]4088 self._add_history("invert_phase", varlist)
4089 return
4090
[1862]4091 @asaplog_post_dec
[876]4092 def add(self, offset, insitu=None):
[1846]4093 """\
[513]4094 Return a scan where all spectra have the offset added
[1846]4095
[513]4096 Parameters:
[1846]4097
[513]4098 offset: the offset
[1855]4099
[513]4100 insitu: if False a new scantable is returned.
4101 Otherwise, the scaling is done in-situ
4102 The default is taken from .asaprc (False)
[1846]4103
[513]4104 """
4105 if insitu is None: insitu = rcParams['insitu']
[876]4106 self._math._setinsitu(insitu)
[513]4107 varlist = vars()
[876]4108 s = scantable(self._math._unaryop(self, offset, "ADD", False))
[1118]4109 s._add_history("add", varlist)
[876]4110 if insitu:
4111 self._assign(s)
4112 else:
[513]4113 return s
4114
[1862]4115 @asaplog_post_dec
[1308]4116 def scale(self, factor, tsys=True, insitu=None):
[1846]4117 """\
4118
[1938]4119 Return a scan where all spectra are scaled by the given 'factor'
[1846]4120
[513]4121 Parameters:
[1846]4122
[1819]4123 factor: the scaling factor (float or 1D float list)
[1855]4124
[513]4125 insitu: if False a new scantable is returned.
4126 Otherwise, the scaling is done in-situ
4127 The default is taken from .asaprc (False)
[1855]4128
[513]4129 tsys: if True (default) then apply the operation to Tsys
4130 as well as the data
[1846]4131
[513]4132 """
4133 if insitu is None: insitu = rcParams['insitu']
[876]4134 self._math._setinsitu(insitu)
[513]4135 varlist = vars()
[1819]4136 s = None
4137 import numpy
4138 if isinstance(factor, list) or isinstance(factor, numpy.ndarray):
[2320]4139 if isinstance(factor[0], list) or isinstance(factor[0],
4140 numpy.ndarray):
[1819]4141 from asapmath import _array2dOp
[2320]4142 s = _array2dOp( self, factor, "MUL", tsys, insitu )
[1819]4143 else:
[2320]4144 s = scantable( self._math._arrayop( self, factor,
4145 "MUL", tsys ) )
[1819]4146 else:
[2320]4147 s = scantable(self._math._unaryop(self, factor, "MUL", tsys))
[1118]4148 s._add_history("scale", varlist)
[876]4149 if insitu:
4150 self._assign(s)
4151 else:
[513]4152 return s
4153
[2349]4154 @preserve_selection
4155 def set_sourcetype(self, match, matchtype="pattern",
[1504]4156 sourcetype="reference"):
[1846]4157 """\
[1502]4158 Set the type of the source to be an source or reference scan
[1846]4159 using the provided pattern.
4160
[1502]4161 Parameters:
[1846]4162
[1504]4163 match: a Unix style pattern, regular expression or selector
[1855]4164
[1504]4165 matchtype: 'pattern' (default) UNIX style pattern or
4166 'regex' regular expression
[1855]4167
[1502]4168 sourcetype: the type of the source to use (source/reference)
[1846]4169
[1502]4170 """
4171 varlist = vars()
4172 stype = -1
[2480]4173 if sourcetype.lower().startswith("r") or sourcetype.lower() == "off":
[1502]4174 stype = 1
[2480]4175 elif sourcetype.lower().startswith("s") or sourcetype.lower() == "on":
[1502]4176 stype = 0
[1504]4177 else:
[2480]4178 raise ValueError("Illegal sourcetype use s(ource)/on or r(eference)/off")
[1504]4179 if matchtype.lower().startswith("p"):
4180 matchtype = "pattern"
4181 elif matchtype.lower().startswith("r"):
4182 matchtype = "regex"
4183 else:
4184 raise ValueError("Illegal matchtype, use p(attern) or r(egex)")
[1502]4185 sel = selector()
4186 if isinstance(match, selector):
4187 sel = match
4188 else:
[2480]4189 sel.set_query("SRCNAME=%s('%s')" % (matchtype, match))
4190 self.set_selection(sel)
[1502]4191 self._setsourcetype(stype)
[1573]4192 self._add_history("set_sourcetype", varlist)
[1502]4193
[1862]4194 @asaplog_post_dec
[1857]4195 @preserve_selection
[1819]4196 def auto_quotient(self, preserve=True, mode='paired', verify=False):
[1846]4197 """\
[670]4198 This function allows to build quotients automatically.
[1819]4199 It assumes the observation to have the same number of
[670]4200 "ons" and "offs"
[1846]4201
[670]4202 Parameters:
[1846]4203
[710]4204 preserve: you can preserve (default) the continuum or
4205 remove it. The equations used are
[1857]4206
[670]4207 preserve: Output = Toff * (on/off) - Toff
[1857]4208
[1070]4209 remove: Output = Toff * (on/off) - Ton
[1855]4210
[1573]4211 mode: the on/off detection mode
[1348]4212 'paired' (default)
4213 identifies 'off' scans by the
4214 trailing '_R' (Mopra/Parkes) or
4215 '_e'/'_w' (Tid) and matches
4216 on/off pairs from the observing pattern
[1502]4217 'time'
4218 finds the closest off in time
[1348]4219
[1857]4220 .. todo:: verify argument is not implemented
4221
[670]4222 """
[1857]4223 varlist = vars()
[1348]4224 modes = ["time", "paired"]
[670]4225 if not mode in modes:
[876]4226 msg = "please provide valid mode. Valid modes are %s" % (modes)
4227 raise ValueError(msg)
[1348]4228 s = None
4229 if mode.lower() == "paired":
[1857]4230 sel = self.get_selection()
[1875]4231 sel.set_query("SRCTYPE==psoff")
[1356]4232 self.set_selection(sel)
[1348]4233 offs = self.copy()
[1875]4234 sel.set_query("SRCTYPE==pson")
[1356]4235 self.set_selection(sel)
[1348]4236 ons = self.copy()
4237 s = scantable(self._math._quotient(ons, offs, preserve))
4238 elif mode.lower() == "time":
4239 s = scantable(self._math._auto_quotient(self, mode, preserve))
[1118]4240 s._add_history("auto_quotient", varlist)
[876]4241 return s
[710]4242
[1862]4243 @asaplog_post_dec
[1145]4244 def mx_quotient(self, mask = None, weight='median', preserve=True):
[1846]4245 """\
[1143]4246 Form a quotient using "off" beams when observing in "MX" mode.
[1846]4247
[1143]4248 Parameters:
[1846]4249
[1145]4250 mask: an optional mask to be used when weight == 'stddev'
[1855]4251
[1143]4252 weight: How to average the off beams. Default is 'median'.
[1855]4253
[1145]4254 preserve: you can preserve (default) the continuum or
[1855]4255 remove it. The equations used are:
[1846]4256
[1855]4257 preserve: Output = Toff * (on/off) - Toff
4258
4259 remove: Output = Toff * (on/off) - Ton
4260
[1217]4261 """
[1593]4262 mask = mask or ()
[1141]4263 varlist = vars()
4264 on = scantable(self._math._mx_extract(self, 'on'))
[1143]4265 preoff = scantable(self._math._mx_extract(self, 'off'))
4266 off = preoff.average_time(mask=mask, weight=weight, scanav=False)
[1217]4267 from asapmath import quotient
[1145]4268 q = quotient(on, off, preserve)
[1143]4269 q._add_history("mx_quotient", varlist)
[1217]4270 return q
[513]4271
[1862]4272 @asaplog_post_dec
[718]4273 def freq_switch(self, insitu=None):
[1846]4274 """\
[718]4275 Apply frequency switching to the data.
[1846]4276
[718]4277 Parameters:
[1846]4278
[718]4279 insitu: if False a new scantable is returned.
4280 Otherwise, the swictching is done in-situ
4281 The default is taken from .asaprc (False)
[1846]4282
[718]4283 """
4284 if insitu is None: insitu = rcParams['insitu']
[876]4285 self._math._setinsitu(insitu)
[718]4286 varlist = vars()
[876]4287 s = scantable(self._math._freqswitch(self))
[1118]4288 s._add_history("freq_switch", varlist)
[1856]4289 if insitu:
4290 self._assign(s)
4291 else:
4292 return s
[718]4293
[1862]4294 @asaplog_post_dec
[780]4295 def recalc_azel(self):
[1846]4296 """Recalculate the azimuth and elevation for each position."""
[780]4297 varlist = vars()
[876]4298 self._recalcazel()
[780]4299 self._add_history("recalc_azel", varlist)
4300 return
4301
[1862]4302 @asaplog_post_dec
[513]4303 def __add__(self, other):
[2574]4304 """
4305 implicit on all axes and on Tsys
4306 """
[513]4307 varlist = vars()
[2574]4308 s = self.__op( other, "ADD" )
[513]4309 s._add_history("operator +", varlist)
4310 return s
4311
[1862]4312 @asaplog_post_dec
[513]4313 def __sub__(self, other):
4314 """
4315 implicit on all axes and on Tsys
4316 """
4317 varlist = vars()
[2574]4318 s = self.__op( other, "SUB" )
[513]4319 s._add_history("operator -", varlist)
4320 return s
[710]4321
[1862]4322 @asaplog_post_dec
[513]4323 def __mul__(self, other):
4324 """
4325 implicit on all axes and on Tsys
4326 """
4327 varlist = vars()
[2574]4328 s = self.__op( other, "MUL" ) ;
[513]4329 s._add_history("operator *", varlist)
4330 return s
4331
[710]4332
[1862]4333 @asaplog_post_dec
[513]4334 def __div__(self, other):
4335 """
4336 implicit on all axes and on Tsys
4337 """
4338 varlist = vars()
[2574]4339 s = self.__op( other, "DIV" )
4340 s._add_history("operator /", varlist)
4341 return s
4342
4343 @asaplog_post_dec
4344 def __op( self, other, mode ):
[513]4345 s = None
4346 if isinstance(other, scantable):
[2574]4347 s = scantable(self._math._binaryop(self, other, mode))
[513]4348 elif isinstance(other, float):
4349 if other == 0.0:
[718]4350 raise ZeroDivisionError("Dividing by zero is not recommended")
[2574]4351 s = scantable(self._math._unaryop(self, other, mode, False))
[2144]4352 elif isinstance(other, list) or isinstance(other, numpy.ndarray):
[2349]4353 if isinstance(other[0], list) \
4354 or isinstance(other[0], numpy.ndarray):
[2144]4355 from asapmath import _array2dOp
[2574]4356 s = _array2dOp( self, other, mode, False )
[2144]4357 else:
[2574]4358 s = scantable( self._math._arrayop( self, other,
4359 mode, False ) )
[513]4360 else:
[718]4361 raise TypeError("Other input is not a scantable or float value")
[513]4362 return s
4363
[1862]4364 @asaplog_post_dec
[530]4365 def get_fit(self, row=0):
[1846]4366 """\
[530]4367 Print or return the stored fits for a row in the scantable
[1846]4368
[530]4369 Parameters:
[1846]4370
[530]4371 row: the row which the fit has been applied to.
[1846]4372
[530]4373 """
4374 if row > self.nrow():
4375 return
[976]4376 from asap.asapfit import asapfit
[530]4377 fit = asapfit(self._getfit(row))
[1859]4378 asaplog.push( '%s' %(fit) )
4379 return fit.as_dict()
[530]4380
[2349]4381 @preserve_selection
[1483]4382 def flag_nans(self):
[1846]4383 """\
[1483]4384 Utility function to flag NaN values in the scantable.
4385 """
4386 import numpy
4387 basesel = self.get_selection()
4388 for i in range(self.nrow()):
[1589]4389 sel = self.get_row_selector(i)
4390 self.set_selection(basesel+sel)
[1483]4391 nans = numpy.isnan(self._getspectrum(0))
4392 if numpy.any(nans):
4393 bnans = [ bool(v) for v in nans]
4394 self.flag(bnans)
4395
[1588]4396 def get_row_selector(self, rowno):
[1992]4397 return selector(rows=[rowno])
[1573]4398
[484]4399 def _add_history(self, funcname, parameters):
[1435]4400 if not rcParams['scantable.history']:
4401 return
[484]4402 # create date
4403 sep = "##"
4404 from datetime import datetime
4405 dstr = datetime.now().strftime('%Y/%m/%d %H:%M:%S')
4406 hist = dstr+sep
4407 hist += funcname+sep#cdate+sep
[2349]4408 if parameters.has_key('self'):
4409 del parameters['self']
[1118]4410 for k, v in parameters.iteritems():
[484]4411 if type(v) is dict:
[1118]4412 for k2, v2 in v.iteritems():
[484]4413 hist += k2
4414 hist += "="
[1118]4415 if isinstance(v2, scantable):
[484]4416 hist += 'scantable'
4417 elif k2 == 'mask':
[1118]4418 if isinstance(v2, list) or isinstance(v2, tuple):
[513]4419 hist += str(self._zip_mask(v2))
4420 else:
4421 hist += str(v2)
[484]4422 else:
[513]4423 hist += str(v2)
[484]4424 else:
4425 hist += k
4426 hist += "="
[1118]4427 if isinstance(v, scantable):
[484]4428 hist += 'scantable'
4429 elif k == 'mask':
[1118]4430 if isinstance(v, list) or isinstance(v, tuple):
[513]4431 hist += str(self._zip_mask(v))
4432 else:
4433 hist += str(v)
[484]4434 else:
4435 hist += str(v)
4436 hist += sep
4437 hist = hist[:-2] # remove trailing '##'
4438 self._addhistory(hist)
4439
[710]4440
[484]4441 def _zip_mask(self, mask):
4442 mask = list(mask)
4443 i = 0
4444 segments = []
4445 while mask[i:].count(1):
4446 i += mask[i:].index(1)
4447 if mask[i:].count(0):
4448 j = i + mask[i:].index(0)
4449 else:
[710]4450 j = len(mask)
[1118]4451 segments.append([i, j])
[710]4452 i = j
[484]4453 return segments
[714]4454
[626]4455 def _get_ordinate_label(self):
4456 fu = "("+self.get_fluxunit()+")"
4457 import re
4458 lbl = "Intensity"
[1118]4459 if re.match(".K.", fu):
[626]4460 lbl = "Brightness Temperature "+ fu
[1118]4461 elif re.match(".Jy.", fu):
[626]4462 lbl = "Flux density "+ fu
4463 return lbl
[710]4464
[876]4465 def _check_ifs(self):
[2349]4466# return len(set([self.nchan(i) for i in self.getifnos()])) == 1
[1986]4467 nchans = [self.nchan(i) for i in self.getifnos()]
[2004]4468 nchans = filter(lambda t: t > 0, nchans)
[876]4469 return (sum(nchans)/len(nchans) == nchans[0])
[976]4470
[1862]4471 @asaplog_post_dec
[1916]4472 def _fill(self, names, unit, average, opts={}):
[976]4473 first = True
4474 fullnames = []
4475 for name in names:
4476 name = os.path.expandvars(name)
4477 name = os.path.expanduser(name)
4478 if not os.path.exists(name):
4479 msg = "File '%s' does not exists" % (name)
4480 raise IOError(msg)
4481 fullnames.append(name)
4482 if average:
4483 asaplog.push('Auto averaging integrations')
[1079]4484 stype = int(rcParams['scantable.storage'].lower() == 'disk')
[976]4485 for name in fullnames:
[1073]4486 tbl = Scantable(stype)
[2004]4487 if is_ms( name ):
4488 r = msfiller( tbl )
4489 else:
4490 r = filler( tbl )
[976]4491 msg = "Importing %s..." % (name)
[1118]4492 asaplog.push(msg, False)
[2349]4493 r.open(name, opts)
[2480]4494 rx = rcParams['scantable.reference']
4495 r.setreferenceexpr(rx)
[1843]4496 r.fill()
[976]4497 if average:
[1118]4498 tbl = self._math._average((tbl, ), (), 'NONE', 'SCAN')
[976]4499 if not first:
4500 tbl = self._math._merge([self, tbl])
4501 Scantable.__init__(self, tbl)
[1843]4502 r.close()
[1118]4503 del r, tbl
[976]4504 first = False
[1861]4505 #flush log
4506 asaplog.post()
[976]4507 if unit is not None:
4508 self.set_fluxunit(unit)
[1824]4509 if not is_casapy():
4510 self.set_freqframe(rcParams['scantable.freqframe'])
[976]4511
[2610]4512 def _get_verify_action( self, msg, action=None ):
4513 valid_act = ['Y', 'N', 'A', 'R']
4514 if not action or not isinstance(action, str):
4515 action = raw_input("%s [Y/n/a/r] (h for help): " % msg)
4516 if action == '':
4517 return "Y"
4518 elif (action.upper()[0] in valid_act):
4519 return action.upper()[0]
4520 elif (action.upper()[0] in ['H','?']):
4521 print "Available actions of verification [Y|n|a|r]"
4522 print " Y : Yes for current data (default)"
4523 print " N : No for current data"
4524 print " A : Accept all in the following and exit from verification"
4525 print " R : Reject all in the following and exit from verification"
4526 print " H or ?: help (show this message)"
4527 return self._get_verify_action(msg)
4528 else:
4529 return 'Y'
[2012]4530
[1402]4531 def __getitem__(self, key):
4532 if key < 0:
4533 key += self.nrow()
4534 if key >= self.nrow():
4535 raise IndexError("Row index out of range.")
4536 return self._getspectrum(key)
4537
4538 def __setitem__(self, key, value):
4539 if key < 0:
4540 key += self.nrow()
4541 if key >= self.nrow():
4542 raise IndexError("Row index out of range.")
4543 if not hasattr(value, "__len__") or \
4544 len(value) > self.nchan(self.getif(key)):
4545 raise ValueError("Spectrum length doesn't match.")
4546 return self._setspectrum(value, key)
4547
4548 def __len__(self):
4549 return self.nrow()
4550
4551 def __iter__(self):
4552 for i in range(len(self)):
4553 yield self[i]
Note: See TracBrowser for help on using the repository browser.