source: trunk/python/scantable.py@ 2809

Last change on this file since 2809 was 2809, checked in by WataruKawasaki, 12 years ago

New Development: No

JIRA Issue: No

Ready for Test: Yes

Interface Changes: No

What Interface Changed:

Test Programs:

Put in Release Notes: No

Module(s): sd.scantable

Description: modified help texts of sub_baseline() and apply_bltable().


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 179.0 KB
Line 
1"""This module defines the scantable class."""
2
3import os
4import re
5import tempfile
6import numpy
7try:
8 from functools import wraps as wraps_dec
9except ImportError:
10 from asap.compatibility import wraps as wraps_dec
11
12from asap.env import is_casapy
13from asap._asap import Scantable
14from asap._asap import filler, msfiller
15from asap.parameters import rcParams
16from asap.logging import asaplog, asaplog_post_dec
17from asap.selector import selector
18from asap.linecatalog import linecatalog
19from asap.coordinate import coordinate
20from asap.utils import _n_bools, mask_not, mask_and, mask_or, page
21from asap.asapfitter import fitter
22
23def preserve_selection(func):
24 @wraps_dec(func)
25 def wrap(obj, *args, **kw):
26 basesel = obj.get_selection()
27 try:
28 val = func(obj, *args, **kw)
29 finally:
30 obj.set_selection(basesel)
31 return val
32 return wrap
33
34def is_scantable(filename):
35 """Is the given file a scantable?
36
37 Parameters:
38
39 filename: the name of the file/directory to test
40
41 """
42 if ( os.path.isdir(filename)
43 and os.path.exists(filename+'/table.info')
44 and os.path.exists(filename+'/table.dat') ):
45 f=open(filename+'/table.info')
46 l=f.readline()
47 f.close()
48 match_pattern = '^Type = (Scantable)? *$'
49 if re.match(match_pattern,l):
50 return True
51 else:
52 return False
53 else:
54 return False
55## return (os.path.isdir(filename)
56## and not os.path.exists(filename+'/table.f1')
57## and os.path.exists(filename+'/table.info'))
58
59def is_ms(filename):
60 """Is the given file a MeasurementSet?
61
62 Parameters:
63
64 filename: the name of the file/directory to test
65
66 """
67 if ( os.path.isdir(filename)
68 and os.path.exists(filename+'/table.info')
69 and os.path.exists(filename+'/table.dat') ):
70 f=open(filename+'/table.info')
71 l=f.readline()
72 f.close()
73 if ( l.find('Measurement Set') != -1 ):
74 return True
75 else:
76 return False
77 else:
78 return False
79
80def normalise_edge_param(edge):
81 """\
82 Convert a given edge value to a one-dimensional array that can be
83 given to baseline-fitting/subtraction functions.
84 The length of the output value will be an even because values for
85 the both sides of spectra are to be contained for each IF. When
86 the length is 2, the values will be applied to all IFs. If the length
87 is larger than 2, it will be 2*ifnos().
88 Accepted format of edge include:
89 * an integer - will be used for both sides of spectra of all IFs.
90 e.g. 10 is converted to [10,10]
91 * an empty list/tuple [] - converted to [0, 0] and used for all IFs.
92 * a list/tuple containing an integer - same as the above case.
93 e.g. [10] is converted to [10,10]
94 * a list/tuple containing two integers - will be used for all IFs.
95 e.g. [5,10] is output as it is. no need to convert.
96 * a list/tuple of lists/tuples containing TWO integers -
97 each element of edge will be used for each IF.
98 e.g. [[5,10],[15,20]] - [5,10] for IF[0] and [15,20] for IF[1].
99
100 If an element contains the same integer values, the input 'edge'
101 parameter can be given in a simpler shape in the following cases:
102 ** when len(edge)!=2
103 any elements containing the same values can be replaced
104 to single integers.
105 e.g. [[15,15]] can be simplified to [15] (or [15,15] or 15 also).
106 e.g. [[1,1],[2,2],[3,3]] can be simplified to [1,2,3].
107 ** when len(edge)=2
108 care is needed for this case: ONLY ONE of the
109 elements can be a single integer,
110 e.g. [[5,5],[10,10]] can be simplified to [5,[10,10]]
111 or [[5,5],10], but can NOT be simplified to [5,10].
112 when [5,10] given, it is interpreted as
113 [[5,10],[5,10],[5,10],...] instead, as shown before.
114 """
115 from asap import _is_sequence_or_number as _is_valid
116 if isinstance(edge, list) or isinstance(edge, tuple):
117 for edgepar in edge:
118 if not _is_valid(edgepar, int):
119 raise ValueError, "Each element of the 'edge' tuple has \
120 to be a pair of integers or an integer."
121 if isinstance(edgepar, list) or isinstance(edgepar, tuple):
122 if len(edgepar) != 2:
123 raise ValueError, "Each element of the 'edge' tuple has \
124 to be a pair of integers or an integer."
125 else:
126 if not _is_valid(edge, int):
127 raise ValueError, "Parameter 'edge' has to be an integer or a \
128 pair of integers specified as a tuple. \
129 Nested tuples are allowed \
130 to make individual selection for different IFs."
131
132
133 if isinstance(edge, int):
134 edge = [ edge, edge ] # e.g. 3 => [3,3]
135 elif isinstance(edge, list) or isinstance(edge, tuple):
136 if len(edge) == 0:
137 edge = [0, 0] # e.g. [] => [0,0]
138 elif len(edge) == 1:
139 if isinstance(edge[0], int):
140 edge = [ edge[0], edge[0] ] # e.g. [1] => [1,1]
141
142 commonedge = True
143 if len(edge) > 2: commonedge = False
144 else:
145 for edgepar in edge:
146 if isinstance(edgepar, list) or isinstance(edgepar, tuple):
147 commonedge = False
148 break
149
150 if commonedge:
151 if len(edge) > 1:
152 norm_edge = edge
153 else:
154 norm_edge = edge + edge
155 else:
156 norm_edge = []
157 for edgepar in edge:
158 if isinstance(edgepar, int):
159 norm_edge += [edgepar, edgepar]
160 else:
161 norm_edge += edgepar
162
163 return norm_edge
164
165def raise_fitting_failure_exception(e):
166 msg = "The fit failed, possibly because it didn't converge."
167 if rcParams["verbose"]:
168 asaplog.push(str(e))
169 asaplog.push(str(msg))
170 else:
171 raise RuntimeError(str(e)+'\n'+msg)
172
173def pack_progress_params(showprogress, minnrow):
174 return str(showprogress).lower() + ',' + str(minnrow)
175
176def pack_blinfo(blinfo, maxirow):
177 """\
178 convert a dictionary or a list of dictionaries of baseline info
179 into a list of comma-separated strings.
180 """
181 if isinstance(blinfo, dict):
182 res = do_pack_blinfo(blinfo, maxirow)
183 return [res] if res != '' else []
184 elif isinstance(blinfo, list) or isinstance(blinfo, tuple):
185 res = []
186 for i in xrange(len(blinfo)):
187 resi = do_pack_blinfo(blinfo[i], maxirow)
188 if resi != '':
189 res.append(resi)
190 return res
191
192def do_pack_blinfo(blinfo, maxirow):
193 """\
194 convert a dictionary of baseline info for a spectrum into
195 a comma-separated string.
196 """
197 dinfo = {}
198 for key in ['row', 'blfunc', 'masklist']:
199 if blinfo.has_key(key):
200 val = blinfo[key]
201 if key == 'row':
202 irow = val
203 if isinstance(val, list) or isinstance(val, tuple):
204 slval = []
205 for i in xrange(len(val)):
206 if isinstance(val[i], list) or isinstance(val[i], tuple):
207 for j in xrange(len(val[i])):
208 slval.append(str(val[i][j]))
209 else:
210 slval.append(str(val[i]))
211 sval = ",".join(slval)
212 else:
213 sval = str(val)
214
215 dinfo[key] = sval
216 else:
217 raise ValueError("'"+key+"' is missing in blinfo.")
218
219 if irow >= maxirow: return ''
220
221 for key in ['order', 'npiece', 'nwave']:
222 if blinfo.has_key(key):
223 val = blinfo[key]
224 if isinstance(val, list) or isinstance(val, tuple):
225 slval = []
226 for i in xrange(len(val)):
227 slval.append(str(val[i]))
228 sval = ",".join(slval)
229 else:
230 sval = str(val)
231 dinfo[key] = sval
232
233 blfunc = dinfo['blfunc']
234 fspec_keys = {'poly': 'order', 'chebyshev': 'order', 'cspline': 'npiece', 'sinusoid': 'nwave'}
235
236 fspec_key = fspec_keys[blfunc]
237 if not blinfo.has_key(fspec_key):
238 raise ValueError("'"+fspec_key+"' is missing in blinfo.")
239
240 clip_params_n = 0
241 for key in ['clipthresh', 'clipniter']:
242 if blinfo.has_key(key):
243 clip_params_n += 1
244 dinfo[key] = str(blinfo[key])
245
246 if clip_params_n == 0:
247 dinfo['clipthresh'] = '0.0'
248 dinfo['clipniter'] = '0'
249 elif clip_params_n != 2:
250 raise ValueError("both 'clipthresh' and 'clipniter' must be given for n-sigma clipping.")
251
252 lf_params_n = 0
253 for key in ['thresh', 'edge', 'chan_avg_limit']:
254 if blinfo.has_key(key):
255 lf_params_n += 1
256 val = blinfo[key]
257 if isinstance(val, list) or isinstance(val, tuple):
258 slval = []
259 for i in xrange(len(val)):
260 slval.append(str(val[i]))
261 sval = ",".join(slval)
262 else:
263 sval = str(val)
264 dinfo[key] = sval
265
266 if lf_params_n == 3:
267 dinfo['use_linefinder'] = 'true'
268 elif lf_params_n == 1:
269 dinfo['use_linefinder'] = 'false'
270 dinfo['thresh'] = ''
271 dinfo['edge'] = ''
272 dinfo['chan_avg_limit'] = ''
273 else:
274 raise ValueError("all of 'thresh', 'edge' and 'chan_avg_limit' must be given to use linefinder.")
275
276 slblinfo = [dinfo['row'], blfunc, dinfo[fspec_key], dinfo['masklist'], \
277 dinfo['clipthresh'], dinfo['clipniter'], \
278 dinfo['use_linefinder'], dinfo['thresh'], dinfo['edge'], dinfo['chan_avg_limit']]
279
280 return ":".join(slblinfo)
281
282def parse_fitresult(sres):
283 """\
284 Parse the returned value of apply_bltable() or sub_baseline() and
285 extract row number, the best-fit coefficients and rms, then pack
286 them into a dictionary.
287 The input value is generated by Scantable::packFittingResults() and
288 formatted as 'row:coeff[0],coeff[1],..,coeff[n-1]:rms'.
289 """
290 res = []
291 for i in xrange(len(sres)):
292 (srow, scoeff, srms) = sres[i].split(":")
293 row = int(srow)
294 rms = float(srms)
295 lscoeff = scoeff.split(",")
296 coeff = []
297 for j in xrange(len(lscoeff)):
298 coeff.append(float(lscoeff[j]))
299 res.append({'row': row, 'coeff': coeff, 'rms': rms})
300
301 return res
302
303class scantable(Scantable):
304 """\
305 The ASAP container for scans (single-dish data).
306 """
307
308 @asaplog_post_dec
309 def __init__(self, filename, average=None, unit=None, parallactify=None,
310 **args):
311 """\
312 Create a scantable from a saved one or make a reference
313
314 Parameters:
315
316 filename: the name of an asap table on disk
317 or
318 the name of a rpfits/sdfits/ms file
319 (integrations within scans are auto averaged
320 and the whole file is read) or
321 [advanced] a reference to an existing scantable
322
323 average: average all integrations withinb a scan on read.
324 The default (True) is taken from .asaprc.
325
326 unit: brightness unit; must be consistent with K or Jy.
327 Over-rides the default selected by the filler
328 (input rpfits/sdfits/ms) or replaces the value
329 in existing scantables
330
331 antenna: for MeasurementSet input data only:
332 Antenna selection. integer (id) or string
333 (name or id).
334
335 parallactify: Indicate that the data had been parallactified.
336 Default (false) is taken from rc file.
337
338 getpt: Whether to import direction from MS/POINTING
339 table properly or not.
340 This is effective only when filename is MS.
341 The default (True) is to import direction
342 from MS/POINTING.
343
344 freq_tolsr: Whether to convert frequency frame information
345 to LSRK or not.
346 This is effective only when filename is MS.
347 The default (False) is to import frequency
348 as is.
349
350 """
351 if average is None:
352 average = rcParams['scantable.autoaverage']
353 parallactify = parallactify or rcParams['scantable.parallactify']
354 varlist = vars()
355 from asap._asap import stmath
356 self._math = stmath( rcParams['insitu'] )
357 if isinstance(filename, Scantable):
358 Scantable.__init__(self, filename)
359 else:
360 if isinstance(filename, str):
361 filename = os.path.expandvars(filename)
362 filename = os.path.expanduser(filename)
363 if not os.path.exists(filename):
364 s = "File '%s' not found." % (filename)
365 raise IOError(s)
366 if is_scantable(filename):
367 ondisk = rcParams['scantable.storage'] == 'disk'
368 Scantable.__init__(self, filename, ondisk)
369 if unit is not None:
370 self.set_fluxunit(unit)
371 if average:
372 self._assign( self.average_time( scanav=True ) )
373 # do not reset to the default freqframe
374 #self.set_freqframe(rcParams['scantable.freqframe'])
375 elif is_ms(filename):
376 # Measurement Set
377 opts={'ms': {}}
378 mskeys=['getpt','antenna','freq_tolsr']
379 for key in mskeys:
380 if key in args.keys():
381 opts['ms'][key] = args[key]
382 self._fill([filename], unit, average, opts)
383 elif os.path.isfile(filename):
384 opts={'nro': {}}
385 nrokeys=['freqref']
386 for key in nrokeys:
387 if key in args.keys():
388 opts['nro'][key] = args[key]
389 self._fill([filename], unit, average, opts)
390 # only apply to new data not "copy constructor"
391 self.parallactify(parallactify)
392 else:
393 msg = "The given file '%s'is not a valid " \
394 "asap table." % (filename)
395 raise IOError(msg)
396 elif (isinstance(filename, list) or isinstance(filename, tuple)) \
397 and isinstance(filename[-1], str):
398 self._fill(filename, unit, average)
399 self.parallactify(parallactify)
400 self._add_history("scantable", varlist)
401
402 @asaplog_post_dec
403 def save(self, name=None, format=None, overwrite=False):
404 """\
405 Store the scantable on disk. This can be an asap (aips++) Table,
406 SDFITS or MS2 format.
407
408 Parameters:
409
410 name: the name of the outputfile. For format 'ASCII'
411 this is the root file name (data in 'name'.txt
412 and header in 'name'_header.txt)
413
414 format: an optional file format. Default is ASAP.
415 Allowed are:
416
417 * 'ASAP' (save as ASAP [aips++] Table),
418 * 'SDFITS' (save as SDFITS file)
419 * 'ASCII' (saves as ascii text file)
420 * 'MS2' (saves as an casacore MeasurementSet V2)
421 * 'FITS' (save as image FITS - not readable by
422 class)
423 * 'CLASS' (save as FITS readable by CLASS)
424
425 overwrite: If the file should be overwritten if it exists.
426 The default False is to return with warning
427 without writing the output. USE WITH CARE.
428
429 Example::
430
431 scan.save('myscan.asap')
432 scan.save('myscan.sdfits', 'SDFITS')
433
434 """
435 from os import path
436 format = format or rcParams['scantable.save']
437 suffix = '.'+format.lower()
438 if name is None or name == "":
439 name = 'scantable'+suffix
440 msg = "No filename given. Using default name %s..." % name
441 asaplog.push(msg)
442 name = path.expandvars(name)
443 if path.isfile(name) or path.isdir(name):
444 if not overwrite:
445 msg = "File %s exists." % name
446 raise IOError(msg)
447 format2 = format.upper()
448 if format2 == 'ASAP':
449 self._save(name)
450 elif format2 == 'MS2':
451 msopt = {'ms': {'overwrite': overwrite } }
452 from asap._asap import mswriter
453 writer = mswriter( self )
454 writer.write( name, msopt )
455 else:
456 from asap._asap import stwriter as stw
457 writer = stw(format2)
458 writer.write(self, name)
459 return
460
461 def copy(self):
462 """Return a copy of this scantable.
463
464 *Note*:
465
466 This makes a full (deep) copy. scan2 = scan1 makes a reference.
467
468 Example::
469
470 copiedscan = scan.copy()
471
472 """
473 sd = scantable(Scantable._copy(self))
474 return sd
475
476 def drop_scan(self, scanid=None):
477 """\
478 Return a new scantable where the specified scan number(s) has(have)
479 been dropped.
480
481 Parameters:
482
483 scanid: a (list of) scan number(s)
484
485 """
486 from asap import _is_sequence_or_number as _is_valid
487 from asap import _to_list
488 from asap import unique
489 if not _is_valid(scanid):
490 raise RuntimeError( 'Please specify a scanno to drop from the'
491 ' scantable' )
492 scanid = _to_list(scanid)
493 allscans = unique([ self.getscan(i) for i in range(self.nrow())])
494 for sid in scanid: allscans.remove(sid)
495 if len(allscans) == 0:
496 raise ValueError("Can't remove all scans")
497 sel = selector(scans=allscans)
498 return self._select_copy(sel)
499
500 def _select_copy(self, selection):
501 orig = self.get_selection()
502 self.set_selection(orig+selection)
503 cp = self.copy()
504 self.set_selection(orig)
505 return cp
506
507 def get_scan(self, scanid=None):
508 """\
509 Return a specific scan (by scanno) or collection of scans (by
510 source name) in a new scantable.
511
512 *Note*:
513
514 See scantable.drop_scan() for the inverse operation.
515
516 Parameters:
517
518 scanid: a (list of) scanno or a source name, unix-style
519 patterns are accepted for source name matching, e.g.
520 '*_R' gets all 'ref scans
521
522 Example::
523
524 # get all scans containing the source '323p459'
525 newscan = scan.get_scan('323p459')
526 # get all 'off' scans
527 refscans = scan.get_scan('*_R')
528 # get a susbset of scans by scanno (as listed in scan.summary())
529 newscan = scan.get_scan([0, 2, 7, 10])
530
531 """
532 if scanid is None:
533 raise RuntimeError( 'Please specify a scan no or name to '
534 'retrieve from the scantable' )
535 try:
536 bsel = self.get_selection()
537 sel = selector()
538 if type(scanid) is str:
539 sel.set_name(scanid)
540 return self._select_copy(sel)
541 elif type(scanid) is int:
542 sel.set_scans([scanid])
543 return self._select_copy(sel)
544 elif type(scanid) is list:
545 sel.set_scans(scanid)
546 return self._select_copy(sel)
547 else:
548 msg = "Illegal scanid type, use 'int' or 'list' if ints."
549 raise TypeError(msg)
550 except RuntimeError:
551 raise
552
553 def __str__(self):
554 tempFile = tempfile.NamedTemporaryFile()
555 Scantable._summary(self, tempFile.name)
556 tempFile.seek(0)
557 asaplog.clear()
558 return tempFile.file.read()
559
560 @asaplog_post_dec
561 def summary(self, filename=None):
562 """\
563 Print a summary of the contents of this scantable.
564
565 Parameters:
566
567 filename: the name of a file to write the putput to
568 Default - no file output
569
570 """
571 if filename is not None:
572 if filename is "":
573 filename = 'scantable_summary.txt'
574 from os.path import expandvars, isdir
575 filename = expandvars(filename)
576 if isdir(filename):
577 msg = "Illegal file name '%s'." % (filename)
578 raise IOError(msg)
579 else:
580 filename = ""
581 Scantable._summary(self, filename)
582
583 def get_spectrum(self, rowno):
584 """Return the spectrum for the current row in the scantable as a list.
585
586 Parameters:
587
588 rowno: the row number to retrieve the spectrum from
589
590 """
591 return self._getspectrum(rowno)
592
593 def get_mask(self, rowno):
594 """Return the mask for the current row in the scantable as a list.
595
596 Parameters:
597
598 rowno: the row number to retrieve the mask from
599
600 """
601 return self._getmask(rowno)
602
603 def set_spectrum(self, spec, rowno):
604 """Set the spectrum for the current row in the scantable.
605
606 Parameters:
607
608 spec: the new spectrum
609
610 rowno: the row number to set the spectrum for
611
612 """
613 assert(len(spec) == self.nchan(self.getif(rowno)))
614 return self._setspectrum(spec, rowno)
615
616 def get_coordinate(self, rowno):
617 """Return the (spectral) coordinate for a a given 'rowno'.
618
619 *Note*:
620
621 * This coordinate is only valid until a scantable method modifies
622 the frequency axis.
623 * This coordinate does contain the original frequency set-up
624 NOT the new frame. The conversions however are done using the user
625 specified frame (e.g. LSRK/TOPO). To get the 'real' coordinate,
626 use scantable.freq_align first. Without it there is no closure,
627 i.e.::
628
629 c = myscan.get_coordinate(0)
630 c.to_frequency(c.get_reference_pixel()) != c.get_reference_value()
631
632 Parameters:
633
634 rowno: the row number for the spectral coordinate
635
636 """
637 return coordinate(Scantable.get_coordinate(self, rowno))
638
639 def get_selection(self):
640 """\
641 Get the selection object currently set on this scantable.
642
643 Example::
644
645 sel = scan.get_selection()
646 sel.set_ifs(0) # select IF 0
647 scan.set_selection(sel) # apply modified selection
648
649 """
650 return selector(self._getselection())
651
652 def set_selection(self, selection=None, **kw):
653 """\
654 Select a subset of the data. All following operations on this scantable
655 are only applied to thi selection.
656
657 Parameters:
658
659 selection: a selector object (default unset the selection), or
660 any combination of 'pols', 'ifs', 'beams', 'scans',
661 'cycles', 'name', 'query'
662
663 Examples::
664
665 sel = selector() # create a selection object
666 self.set_scans([0, 3]) # select SCANNO 0 and 3
667 scan.set_selection(sel) # set the selection
668 scan.summary() # will only print summary of scanno 0 an 3
669 scan.set_selection() # unset the selection
670 # or the equivalent
671 scan.set_selection(scans=[0,3])
672 scan.summary() # will only print summary of scanno 0 an 3
673 scan.set_selection() # unset the selection
674
675 """
676 if selection is None:
677 # reset
678 if len(kw) == 0:
679 selection = selector()
680 else:
681 # try keywords
682 for k in kw:
683 if k not in selector.fields:
684 raise KeyError("Invalid selection key '%s', "
685 "valid keys are %s" % (k,
686 selector.fields))
687 selection = selector(**kw)
688 self._setselection(selection)
689
690 def get_row(self, row=0, insitu=None):
691 """\
692 Select a row in the scantable.
693 Return a scantable with single row.
694
695 Parameters:
696
697 row: row no of integration, default is 0.
698 insitu: if False a new scantable is returned. Otherwise, the
699 scaling is done in-situ. The default is taken from .asaprc
700 (False)
701
702 """
703 if insitu is None:
704 insitu = rcParams['insitu']
705 if not insitu:
706 workscan = self.copy()
707 else:
708 workscan = self
709 # Select a row
710 sel = selector()
711 sel.set_rows([row])
712 workscan.set_selection(sel)
713 if not workscan.nrow() == 1:
714 msg = "Could not identify single row. %d rows selected." \
715 % (workscan.nrow())
716 raise RuntimeError(msg)
717 if insitu:
718 self._assign(workscan)
719 else:
720 return workscan
721
722 @asaplog_post_dec
723 def stats(self, stat='stddev', mask=None, form='3.3f', row=None):
724 """\
725 Determine the specified statistic of the current beam/if/pol
726 Takes a 'mask' as an optional parameter to specify which
727 channels should be excluded.
728
729 Parameters:
730
731 stat: 'min', 'max', 'min_abc', 'max_abc', 'sumsq', 'sum',
732 'mean', 'var', 'stddev', 'avdev', 'rms', 'median'
733
734 mask: an optional mask specifying where the statistic
735 should be determined.
736
737 form: format string to print statistic values
738
739 row: row number of spectrum to process.
740 (default is None: for all rows)
741
742 Example:
743 scan.set_unit('channel')
744 msk = scan.create_mask([100, 200], [500, 600])
745 scan.stats(stat='mean', mask=m)
746
747 """
748 mask = mask or []
749 if not self._check_ifs():
750 raise ValueError("Cannot apply mask as the IFs have different "
751 "number of channels. Please use setselection() "
752 "to select individual IFs")
753 rtnabc = False
754 if stat.lower().endswith('_abc'): rtnabc = True
755 getchan = False
756 if stat.lower().startswith('min') or stat.lower().startswith('max'):
757 chan = self._math._minmaxchan(self, mask, stat)
758 getchan = True
759 statvals = []
760 if not rtnabc:
761 if row == None:
762 statvals = self._math._stats(self, mask, stat)
763 else:
764 statvals = self._math._statsrow(self, mask, stat, int(row))
765
766 #def cb(i):
767 # return statvals[i]
768
769 #return self._row_callback(cb, stat)
770
771 label=stat
772 #callback=cb
773 out = ""
774 #outvec = []
775 sep = '-'*50
776
777 if row == None:
778 rows = xrange(self.nrow())
779 elif isinstance(row, int):
780 rows = [ row ]
781
782 for i in rows:
783 refstr = ''
784 statunit= ''
785 if getchan:
786 qx, qy = self.chan2data(rowno=i, chan=chan[i])
787 if rtnabc:
788 statvals.append(qx['value'])
789 refstr = ('(value: %'+form) % (qy['value'])+' ['+qy['unit']+'])'
790 statunit= '['+qx['unit']+']'
791 else:
792 refstr = ('(@ %'+form) % (qx['value'])+' ['+qx['unit']+'])'
793
794 tm = self._gettime(i)
795 src = self._getsourcename(i)
796 out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
797 out += 'Time[%s]:\n' % (tm)
798 if self.nbeam(-1) > 1: out += ' Beam[%d] ' % (self.getbeam(i))
799 if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
800 if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
801 #outvec.append(callback(i))
802 if len(rows) > 1:
803 # out += ('= %'+form) % (outvec[i]) +' '+refstr+'\n'
804 out += ('= %'+form) % (statvals[i]) +' '+refstr+'\n'
805 else:
806 # out += ('= %'+form) % (outvec[0]) +' '+refstr+'\n'
807 out += ('= %'+form) % (statvals[0]) +' '+refstr+'\n'
808 out += sep+"\n"
809
810 import os
811 if os.environ.has_key( 'USER' ):
812 usr = os.environ['USER']
813 else:
814 import commands
815 usr = commands.getoutput( 'whoami' )
816 tmpfile = '/tmp/tmp_'+usr+'_casapy_asap_scantable_stats'
817 f = open(tmpfile,'w')
818 print >> f, sep
819 print >> f, ' %s %s' % (label, statunit)
820 print >> f, sep
821 print >> f, out
822 f.close()
823 f = open(tmpfile,'r')
824 x = f.readlines()
825 f.close()
826 asaplog.push(''.join(x), False)
827
828 return statvals
829
830 def chan2data(self, rowno=0, chan=0):
831 """\
832 Returns channel/frequency/velocity and spectral value
833 at an arbitrary row and channel in the scantable.
834
835 Parameters:
836
837 rowno: a row number in the scantable. Default is the
838 first row, i.e. rowno=0
839
840 chan: a channel in the scantable. Default is the first
841 channel, i.e. pos=0
842
843 """
844 if isinstance(rowno, int) and isinstance(chan, int):
845 qx = {'unit': self.get_unit(),
846 'value': self._getabcissa(rowno)[chan]}
847 qy = {'unit': self.get_fluxunit(),
848 'value': self._getspectrum(rowno)[chan]}
849 return qx, qy
850
851 def stddev(self, mask=None):
852 """\
853 Determine the standard deviation of the current beam/if/pol
854 Takes a 'mask' as an optional parameter to specify which
855 channels should be excluded.
856
857 Parameters:
858
859 mask: an optional mask specifying where the standard
860 deviation should be determined.
861
862 Example::
863
864 scan.set_unit('channel')
865 msk = scan.create_mask([100, 200], [500, 600])
866 scan.stddev(mask=m)
867
868 """
869 return self.stats(stat='stddev', mask=mask);
870
871
872 def get_column_names(self):
873 """\
874 Return a list of column names, which can be used for selection.
875 """
876 return list(Scantable.get_column_names(self))
877
878 def get_tsys(self, row=-1):
879 """\
880 Return the System temperatures.
881
882 Parameters:
883
884 row: the rowno to get the information for. (default all rows)
885
886 Returns:
887
888 a list of Tsys values for the current selection
889
890 """
891 if row > -1:
892 return self._get_column(self._gettsys, row)
893 return self._row_callback(self._gettsys, "Tsys")
894
895 def get_tsysspectrum(self, row=-1):
896 """\
897 Return the channel dependent system temperatures.
898
899 Parameters:
900
901 row: the rowno to get the information for. (default all rows)
902
903 Returns:
904
905 a list of Tsys values for the current selection
906
907 """
908 return self._get_column( self._gettsysspectrum, row )
909
910 def set_tsys(self, values, row=-1):
911 """\
912 Set the Tsys value(s) of the given 'row' or the whole scantable
913 (selection).
914
915 Parameters:
916
917 values: a scalar or list (if Tsys is a vector) of Tsys value(s)
918 row: the row number to apply Tsys values to.
919 (default all rows)
920
921 """
922
923 if not hasattr(values, "__len__"):
924 values = [values]
925 self._settsys(values, row)
926
927 def get_weather(self, row=-1):
928 """\
929 Return the weather informations.
930
931 Parameters:
932
933 row: the rowno to get the information for. (default all rows)
934
935 Returns:
936
937 a dict or list of of dicts of values for the current selection
938
939 """
940
941 values = self._get_column(self._get_weather, row)
942 if row > -1:
943 return {'temperature': values[0],
944 'pressure': values[1], 'humidity' : values[2],
945 'windspeed' : values[3], 'windaz' : values[4]
946 }
947 else:
948 out = []
949 for r in values:
950
951 out.append({'temperature': r[0],
952 'pressure': r[1], 'humidity' : r[2],
953 'windspeed' : r[3], 'windaz' : r[4]
954 })
955 return out
956
957 def _row_callback(self, callback, label):
958 out = ""
959 outvec = []
960 sep = '-'*50
961 for i in range(self.nrow()):
962 tm = self._gettime(i)
963 src = self._getsourcename(i)
964 out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
965 out += 'Time[%s]:\n' % (tm)
966 if self.nbeam(-1) > 1:
967 out += ' Beam[%d] ' % (self.getbeam(i))
968 if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
969 if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
970 outvec.append(callback(i))
971 out += '= %3.3f\n' % (outvec[i])
972 out += sep+'\n'
973
974 asaplog.push(sep)
975 asaplog.push(" %s" % (label))
976 asaplog.push(sep)
977 asaplog.push(out)
978 asaplog.post()
979 return outvec
980
981 def _get_column(self, callback, row=-1, *args):
982 """
983 """
984 if row == -1:
985 return [callback(i, *args) for i in range(self.nrow())]
986 else:
987 if 0 <= row < self.nrow():
988 return callback(row, *args)
989
990
991 def get_time(self, row=-1, asdatetime=False, prec=-1):
992 """\
993 Get a list of time stamps for the observations.
994 Return a datetime object or a string (default) for each
995 integration time stamp in the scantable.
996
997 Parameters:
998
999 row: row no of integration. Default -1 return all rows
1000
1001 asdatetime: return values as datetime objects rather than strings
1002
1003 prec: number of digits shown. Default -1 to automatic
1004 calculation.
1005 Note this number is equals to the digits of MVTime,
1006 i.e., 0<prec<3: dates with hh:: only,
1007 <5: with hh:mm:, <7 or 0: with hh:mm:ss,
1008 and 6> : with hh:mm:ss.tt... (prec-6 t's added)
1009
1010 """
1011 from datetime import datetime
1012 if prec < 0:
1013 # automagically set necessary precision +1
1014 prec = 7 - \
1015 numpy.floor(numpy.log10(numpy.min(self.get_inttime(row))))
1016 prec = max(6, int(prec))
1017 else:
1018 prec = max(0, prec)
1019 if asdatetime:
1020 #precision can be 1 millisecond at max
1021 prec = min(12, prec)
1022
1023 times = self._get_column(self._gettime, row, prec)
1024 if not asdatetime:
1025 return times
1026 format = "%Y/%m/%d/%H:%M:%S.%f"
1027 if prec < 7:
1028 nsub = 1 + (((6-prec)/2) % 3)
1029 substr = [".%f","%S","%M"]
1030 for i in range(nsub):
1031 format = format.replace(substr[i],"")
1032 if isinstance(times, list):
1033 return [datetime.strptime(i, format) for i in times]
1034 else:
1035 return datetime.strptime(times, format)
1036
1037
1038 def get_inttime(self, row=-1):
1039 """\
1040 Get a list of integration times for the observations.
1041 Return a time in seconds for each integration in the scantable.
1042
1043 Parameters:
1044
1045 row: row no of integration. Default -1 return all rows.
1046
1047 """
1048 return self._get_column(self._getinttime, row)
1049
1050
1051 def get_sourcename(self, row=-1):
1052 """\
1053 Get a list source names for the observations.
1054 Return a string for each integration in the scantable.
1055 Parameters:
1056
1057 row: row no of integration. Default -1 return all rows.
1058
1059 """
1060 return self._get_column(self._getsourcename, row)
1061
1062 def get_elevation(self, row=-1):
1063 """\
1064 Get a list of elevations for the observations.
1065 Return a float for each integration in the scantable.
1066
1067 Parameters:
1068
1069 row: row no of integration. Default -1 return all rows.
1070
1071 """
1072 return self._get_column(self._getelevation, row)
1073
1074 def get_azimuth(self, row=-1):
1075 """\
1076 Get a list of azimuths for the observations.
1077 Return a float for each integration in the scantable.
1078
1079 Parameters:
1080 row: row no of integration. Default -1 return all rows.
1081
1082 """
1083 return self._get_column(self._getazimuth, row)
1084
1085 def get_parangle(self, row=-1):
1086 """\
1087 Get a list of parallactic angles for the observations.
1088 Return a float for each integration in the scantable.
1089
1090 Parameters:
1091
1092 row: row no of integration. Default -1 return all rows.
1093
1094 """
1095 return self._get_column(self._getparangle, row)
1096
1097 def get_direction(self, row=-1):
1098 """
1099 Get a list of Positions on the sky (direction) for the observations.
1100 Return a string for each integration in the scantable.
1101
1102 Parameters:
1103
1104 row: row no of integration. Default -1 return all rows
1105
1106 """
1107 return self._get_column(self._getdirection, row)
1108
1109 def get_directionval(self, row=-1):
1110 """\
1111 Get a list of Positions on the sky (direction) for the observations.
1112 Return a float for each integration in the scantable.
1113
1114 Parameters:
1115
1116 row: row no of integration. Default -1 return all rows
1117
1118 """
1119 return self._get_column(self._getdirectionvec, row)
1120
1121 @asaplog_post_dec
1122 def set_unit(self, unit='channel'):
1123 """\
1124 Set the unit for all following operations on this scantable
1125
1126 Parameters:
1127
1128 unit: optional unit, default is 'channel'. Use one of '*Hz',
1129 'km/s', 'channel' or equivalent ''
1130
1131 """
1132 varlist = vars()
1133 if unit in ['', 'pixel', 'channel']:
1134 unit = ''
1135 inf = list(self._getcoordinfo())
1136 inf[0] = unit
1137 self._setcoordinfo(inf)
1138 self._add_history("set_unit", varlist)
1139
1140 @asaplog_post_dec
1141 def set_instrument(self, instr):
1142 """\
1143 Set the instrument for subsequent processing.
1144
1145 Parameters:
1146
1147 instr: Select from 'ATPKSMB', 'ATPKSHOH', 'ATMOPRA',
1148 'DSS-43' (Tid), 'CEDUNA', and 'HOBART'
1149
1150 """
1151 self._setInstrument(instr)
1152 self._add_history("set_instument", vars())
1153
1154 @asaplog_post_dec
1155 def set_feedtype(self, feedtype):
1156 """\
1157 Overwrite the feed type, which might not be set correctly.
1158
1159 Parameters:
1160
1161 feedtype: 'linear' or 'circular'
1162
1163 """
1164 self._setfeedtype(feedtype)
1165 self._add_history("set_feedtype", vars())
1166
1167 @asaplog_post_dec
1168 def set_doppler(self, doppler='RADIO'):
1169 """\
1170 Set the doppler for all following operations on this scantable.
1171
1172 Parameters:
1173
1174 doppler: One of 'RADIO', 'OPTICAL', 'Z', 'BETA', 'GAMMA'
1175
1176 """
1177 varlist = vars()
1178 inf = list(self._getcoordinfo())
1179 inf[2] = doppler
1180 self._setcoordinfo(inf)
1181 self._add_history("set_doppler", vars())
1182
1183 @asaplog_post_dec
1184 def set_freqframe(self, frame=None):
1185 """\
1186 Set the frame type of the Spectral Axis.
1187
1188 Parameters:
1189
1190 frame: an optional frame type, default 'LSRK'. Valid frames are:
1191 'TOPO', 'LSRD', 'LSRK', 'BARY',
1192 'GEO', 'GALACTO', 'LGROUP', 'CMB'
1193
1194 Example::
1195
1196 scan.set_freqframe('BARY')
1197
1198 """
1199 frame = frame or rcParams['scantable.freqframe']
1200 varlist = vars()
1201 # "REST" is not implemented in casacore
1202 #valid = ['REST', 'TOPO', 'LSRD', 'LSRK', 'BARY', \
1203 # 'GEO', 'GALACTO', 'LGROUP', 'CMB']
1204 valid = ['TOPO', 'LSRD', 'LSRK', 'BARY', \
1205 'GEO', 'GALACTO', 'LGROUP', 'CMB']
1206
1207 if frame in valid:
1208 inf = list(self._getcoordinfo())
1209 inf[1] = frame
1210 self._setcoordinfo(inf)
1211 self._add_history("set_freqframe", varlist)
1212 else:
1213 msg = "Please specify a valid freq type. Valid types are:\n", valid
1214 raise TypeError(msg)
1215
1216 @asaplog_post_dec
1217 def set_dirframe(self, frame=""):
1218 """\
1219 Set the frame type of the Direction on the sky.
1220
1221 Parameters:
1222
1223 frame: an optional frame type, default ''. Valid frames are:
1224 'J2000', 'B1950', 'GALACTIC'
1225
1226 Example:
1227
1228 scan.set_dirframe('GALACTIC')
1229
1230 """
1231 varlist = vars()
1232 Scantable.set_dirframe(self, frame)
1233 self._add_history("set_dirframe", varlist)
1234
1235 def get_unit(self):
1236 """\
1237 Get the default unit set in this scantable
1238
1239 Returns:
1240
1241 A unit string
1242
1243 """
1244 inf = self._getcoordinfo()
1245 unit = inf[0]
1246 if unit == '': unit = 'channel'
1247 return unit
1248
1249 @asaplog_post_dec
1250 def get_abcissa(self, rowno=0):
1251 """\
1252 Get the abcissa in the current coordinate setup for the currently
1253 selected Beam/IF/Pol
1254
1255 Parameters:
1256
1257 rowno: an optional row number in the scantable. Default is the
1258 first row, i.e. rowno=0
1259
1260 Returns:
1261
1262 The abcissa values and the format string (as a dictionary)
1263
1264 """
1265 abc = self._getabcissa(rowno)
1266 lbl = self._getabcissalabel(rowno)
1267 return abc, lbl
1268
1269 @asaplog_post_dec
1270 def flag(self, mask=None, unflag=False, row=-1):
1271 """\
1272 Flag the selected data using an optional channel mask.
1273
1274 Parameters:
1275
1276 mask: an optional channel mask, created with create_mask. Default
1277 (no mask) is all channels.
1278
1279 unflag: if True, unflag the data
1280
1281 row: an optional row number in the scantable.
1282 Default -1 flags all rows
1283
1284 """
1285 varlist = vars()
1286 mask = mask or []
1287 self._flag(row, mask, unflag)
1288 self._add_history("flag", varlist)
1289
1290 @asaplog_post_dec
1291 def flag_row(self, rows=None, unflag=False):
1292 """\
1293 Flag the selected data in row-based manner.
1294
1295 Parameters:
1296
1297 rows: list of row numbers to be flagged. Default is no row
1298 (must be explicitly specified to execute row-based
1299 flagging).
1300
1301 unflag: if True, unflag the data.
1302
1303 """
1304 varlist = vars()
1305 if rows is None:
1306 rows = []
1307 self._flag_row(rows, unflag)
1308 self._add_history("flag_row", varlist)
1309
1310 @asaplog_post_dec
1311 def clip(self, uthres=None, dthres=None, clipoutside=True, unflag=False):
1312 """\
1313 Flag the selected data outside a specified range (in channel-base)
1314
1315 Parameters:
1316
1317 uthres: upper threshold.
1318
1319 dthres: lower threshold
1320
1321 clipoutside: True for flagging data outside the range
1322 [dthres:uthres].
1323 False for flagging data inside the range.
1324
1325 unflag: if True, unflag the data.
1326
1327 """
1328 varlist = vars()
1329 self._clip(uthres, dthres, clipoutside, unflag)
1330 self._add_history("clip", varlist)
1331
1332 @asaplog_post_dec
1333 def lag_flag(self, start, end, unit="MHz", insitu=None):
1334 """\
1335 Flag the data in 'lag' space by providing a frequency to remove.
1336 Flagged data in the scantable get interpolated over the region.
1337 No taper is applied.
1338
1339 Parameters:
1340
1341 start: the start frequency (really a period within the
1342 bandwidth) or period to remove
1343
1344 end: the end frequency or period to remove
1345
1346 unit: the frequency unit (default 'MHz') or '' for
1347 explicit lag channels
1348
1349 *Notes*:
1350
1351 It is recommended to flag edges of the band or strong
1352 signals beforehand.
1353
1354 """
1355 if insitu is None: insitu = rcParams['insitu']
1356 self._math._setinsitu(insitu)
1357 varlist = vars()
1358 base = { "GHz": 1000000000., "MHz": 1000000., "kHz": 1000., "Hz": 1.}
1359 if not (unit == "" or base.has_key(unit)):
1360 raise ValueError("%s is not a valid unit." % unit)
1361 if unit == "":
1362 s = scantable(self._math._lag_flag(self, start, end, "lags"))
1363 else:
1364 s = scantable(self._math._lag_flag(self, start*base[unit],
1365 end*base[unit], "frequency"))
1366 s._add_history("lag_flag", varlist)
1367 if insitu:
1368 self._assign(s)
1369 else:
1370 return s
1371
1372 @asaplog_post_dec
1373 def fft(self, rowno=None, mask=None, getrealimag=False):
1374 """\
1375 Apply FFT to the spectra.
1376 Flagged data in the scantable get interpolated over the region.
1377
1378 Parameters:
1379
1380 rowno: The row number(s) to be processed. int, list
1381 and tuple are accepted. By default (None), FFT
1382 is applied to the whole data.
1383
1384 mask: Auxiliary channel mask(s). Given as a boolean
1385 list, it is applied to all specified rows.
1386 A list of boolean lists can also be used to
1387 apply different masks. In the latter case, the
1388 length of 'mask' must be the same as that of
1389 'rowno'. The default is None.
1390
1391 getrealimag: If True, returns the real and imaginary part
1392 values of the complex results.
1393 If False (the default), returns the amplitude
1394 (absolute value) normalised with Ndata/2 and
1395 phase (argument, in unit of radian).
1396
1397 Returns:
1398
1399 A list of dictionaries containing the results for each spectrum.
1400 Each dictionary contains two values, the real and the imaginary
1401 parts when getrealimag = True, or the amplitude(absolute value)
1402 and the phase(argument) when getrealimag = False. The key for
1403 these values are 'real' and 'imag', or 'ampl' and 'phase',
1404 respectively.
1405 """
1406 if rowno is None:
1407 rowno = []
1408 if isinstance(rowno, int):
1409 rowno = [rowno]
1410 elif not (isinstance(rowno, list) or isinstance(rowno, tuple)):
1411 raise TypeError("The row number(s) must be int, list or tuple.")
1412 if len(rowno) == 0: rowno = [i for i in xrange(self.nrow())]
1413
1414 usecommonmask = True
1415
1416 if mask is None:
1417 mask = []
1418 if isinstance(mask, list) or isinstance(mask, tuple):
1419 if len(mask) == 0:
1420 mask = [[]]
1421 else:
1422 if isinstance(mask[0], bool):
1423 if len(mask) != self.nchan(self.getif(rowno[0])):
1424 raise ValueError("The spectra and the mask have "
1425 "different length.")
1426 mask = [mask]
1427 elif isinstance(mask[0], list) or isinstance(mask[0], tuple):
1428 usecommonmask = False
1429 if len(mask) != len(rowno):
1430 raise ValueError("When specifying masks for each "
1431 "spectrum, the numbers of them "
1432 "must be identical.")
1433 for i in xrange(mask):
1434 if len(mask[i]) != self.nchan(self.getif(rowno[i])):
1435 raise ValueError("The spectra and the mask have "
1436 "different length.")
1437 else:
1438 raise TypeError("The mask must be a boolean list or "
1439 "a list of boolean list.")
1440 else:
1441 raise TypeError("The mask must be a boolean list or a list of "
1442 "boolean list.")
1443
1444 res = []
1445
1446 imask = 0
1447 for whichrow in rowno:
1448 fspec = self._fft(whichrow, mask[imask], getrealimag)
1449 nspec = len(fspec)
1450
1451 i = 0
1452 v1 = []
1453 v2 = []
1454 reselem = {"real":[],"imag":[]} if getrealimag \
1455 else {"ampl":[],"phase":[]}
1456
1457 while (i < nspec):
1458 v1.append(fspec[i])
1459 v2.append(fspec[i+1])
1460 i += 2
1461
1462 if getrealimag:
1463 reselem["real"] += v1
1464 reselem["imag"] += v2
1465 else:
1466 reselem["ampl"] += v1
1467 reselem["phase"] += v2
1468
1469 res.append(reselem)
1470
1471 if not usecommonmask:
1472 imask += 1
1473
1474 return res
1475
1476 @asaplog_post_dec
1477 def create_mask(self, *args, **kwargs):
1478 """\
1479 Compute and return a mask based on [min, max] windows.
1480 The specified windows are to be INCLUDED, when the mask is
1481 applied.
1482
1483 Parameters:
1484
1485 [min, max], [min2, max2], ...
1486 Pairs of start/end points (inclusive)specifying the regions
1487 to be masked
1488
1489 invert: optional argument. If specified as True,
1490 return an inverted mask, i.e. the regions
1491 specified are EXCLUDED
1492
1493 row: create the mask using the specified row for
1494 unit conversions, default is row=0
1495 only necessary if frequency varies over rows.
1496
1497 Examples::
1498
1499 scan.set_unit('channel')
1500 # a)
1501 msk = scan.create_mask([400, 500], [800, 900])
1502 # masks everything outside 400 and 500
1503 # and 800 and 900 in the unit 'channel'
1504
1505 # b)
1506 msk = scan.create_mask([400, 500], [800, 900], invert=True)
1507 # masks the regions between 400 and 500
1508 # and 800 and 900 in the unit 'channel'
1509
1510 # c)
1511 #mask only channel 400
1512 msk = scan.create_mask([400])
1513
1514 """
1515 row = kwargs.get("row", 0)
1516 data = self._getabcissa(row)
1517 u = self._getcoordinfo()[0]
1518 if u == "":
1519 u = "channel"
1520 msg = "The current mask window unit is %s" % u
1521 i = self._check_ifs()
1522 if not i:
1523 msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
1524 asaplog.push(msg)
1525 n = len(data)
1526 msk = _n_bools(n, False)
1527 # test if args is a 'list' or a 'normal *args - UGLY!!!
1528
1529 ws = (isinstance(args[-1][-1], int)
1530 or isinstance(args[-1][-1], float)) and args or args[0]
1531 for window in ws:
1532 if len(window) == 1:
1533 window = [window[0], window[0]]
1534 if len(window) == 0 or len(window) > 2:
1535 raise ValueError("A window needs to be defined as "
1536 "[start(, end)]")
1537 if window[0] > window[1]:
1538 tmp = window[0]
1539 window[0] = window[1]
1540 window[1] = tmp
1541 for i in range(n):
1542 if data[i] >= window[0] and data[i] <= window[1]:
1543 msk[i] = True
1544 if kwargs.has_key('invert'):
1545 if kwargs.get('invert'):
1546 msk = mask_not(msk)
1547 return msk
1548
1549 def get_masklist(self, mask=None, row=0, silent=False):
1550 """\
1551 Compute and return a list of mask windows, [min, max].
1552
1553 Parameters:
1554
1555 mask: channel mask, created with create_mask.
1556
1557 row: calcutate the masklist using the specified row
1558 for unit conversions, default is row=0
1559 only necessary if frequency varies over rows.
1560
1561 Returns:
1562
1563 [min, max], [min2, max2], ...
1564 Pairs of start/end points (inclusive)specifying
1565 the masked regions
1566
1567 """
1568 if not (isinstance(mask,list) or isinstance(mask, tuple)):
1569 raise TypeError("The mask should be list or tuple.")
1570 if len(mask) <= 0:
1571 raise TypeError("The mask elements should be > 0")
1572 data = self._getabcissa(row)
1573 if len(data) != len(mask):
1574 msg = "Number of channels in scantable != number of mask elements"
1575 raise TypeError(msg)
1576 u = self._getcoordinfo()[0]
1577 if u == "":
1578 u = "channel"
1579 msg = "The current mask window unit is %s" % u
1580 i = self._check_ifs()
1581 if not i:
1582 msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
1583 if not silent:
1584 asaplog.push(msg)
1585 masklist = []
1586 ist, ien = None, None
1587 ist, ien=self.get_mask_indices(mask)
1588 if ist is not None and ien is not None:
1589 for i in xrange(len(ist)):
1590 range=[data[ist[i]],data[ien[i]]]
1591 range.sort()
1592 masklist.append([range[0],range[1]])
1593 return masklist
1594
1595 def get_mask_indices(self, mask=None):
1596 """\
1597 Compute and Return lists of mask start indices and mask end indices.
1598
1599 Parameters:
1600
1601 mask: channel mask, created with create_mask.
1602
1603 Returns:
1604
1605 List of mask start indices and that of mask end indices,
1606 i.e., [istart1,istart2,....], [iend1,iend2,....].
1607
1608 """
1609 if not (isinstance(mask,list) or isinstance(mask, tuple)):
1610 raise TypeError("The mask should be list or tuple.")
1611 if len(mask) <= 0:
1612 raise TypeError("The mask elements should be > 0")
1613 istart = []
1614 iend = []
1615 if mask[0]:
1616 istart.append(0)
1617 for i in range(len(mask)-1):
1618 if not mask[i] and mask[i+1]:
1619 istart.append(i+1)
1620 elif mask[i] and not mask[i+1]:
1621 iend.append(i)
1622 if mask[len(mask)-1]:
1623 iend.append(len(mask)-1)
1624 if len(istart) != len(iend):
1625 raise RuntimeError("Numbers of mask start != mask end.")
1626 for i in range(len(istart)):
1627 if istart[i] > iend[i]:
1628 raise RuntimeError("Mask start index > mask end index")
1629 break
1630 return istart,iend
1631
1632 @asaplog_post_dec
1633 def parse_maskexpr(self, maskstring):
1634 """
1635 Parse CASA type mask selection syntax (IF dependent).
1636
1637 Parameters:
1638 maskstring : A string mask selection expression.
1639 A comma separated selections mean different IF -
1640 channel combinations. IFs and channel selections
1641 are partitioned by a colon, ':'.
1642 examples:
1643 '' = all IFs (all channels)
1644 '<2,4~6,9' = IFs 0,1,4,5,6,9 (all channels)
1645 '3:3~45;60' = channels 3 to 45 and 60 in IF 3
1646 '0~1:2~6,8' = channels 2 to 6 in IFs 0,1, and
1647 all channels in IF8
1648 Returns:
1649 A dictionary of selected (valid) IF and masklist pairs,
1650 e.g. {'0': [[50,250],[350,462]], '2': [[100,400],[550,974]]}
1651 """
1652 if not isinstance(maskstring,str):
1653 asaplog.post()
1654 asaplog.push("Mask expression should be a string.")
1655 asaplog.post("ERROR")
1656
1657 valid_ifs = self.getifnos()
1658 frequnit = self.get_unit()
1659 seldict = {}
1660 if maskstring == "":
1661 maskstring = str(valid_ifs)[1:-1]
1662 ## split each selection "IF range[:CHAN range]"
1663 sellist = maskstring.split(',')
1664 for currselstr in sellist:
1665 selset = currselstr.split(':')
1666 # spw and mask string (may include ~, < or >)
1667 spwmasklist = self._parse_selection(selset[0], typestr='integer',
1668 minval=min(valid_ifs),
1669 maxval=max(valid_ifs))
1670 for spwlist in spwmasklist:
1671 selspws = []
1672 for ispw in range(spwlist[0],spwlist[1]+1):
1673 # Put into the list only if ispw exists
1674 if valid_ifs.count(ispw):
1675 selspws.append(ispw)
1676 del spwmasklist, spwlist
1677
1678 # parse frequency mask list
1679 if len(selset) > 1:
1680 freqmasklist = self._parse_selection(selset[1], typestr='float',
1681 offset=0.)
1682 else:
1683 # want to select the whole spectrum
1684 freqmasklist = [None]
1685
1686 ## define a dictionary of spw - masklist combination
1687 for ispw in selspws:
1688 #print "working on", ispw
1689 spwstr = str(ispw)
1690 if len(selspws) == 0:
1691 # empty spw
1692 continue
1693 else:
1694 ## want to get min and max of the spw and
1695 ## offset to set for '<' and '>'
1696 if frequnit == 'channel':
1697 minfreq = 0
1698 maxfreq = self.nchan(ifno=ispw)
1699 offset = 0.5
1700 else:
1701 ## This is ugly part. need improvement
1702 for ifrow in xrange(self.nrow()):
1703 if self.getif(ifrow) == ispw:
1704 #print "IF",ispw,"found in row =",ifrow
1705 break
1706 freqcoord = self.get_coordinate(ifrow)
1707 freqs = self._getabcissa(ifrow)
1708 minfreq = min(freqs)
1709 maxfreq = max(freqs)
1710 if len(freqs) == 1:
1711 offset = 0.5
1712 elif frequnit.find('Hz') > 0:
1713 offset = abs(freqcoord.to_frequency(1,
1714 unit=frequnit)
1715 -freqcoord.to_frequency(0,
1716 unit=frequnit)
1717 )*0.5
1718 elif frequnit.find('m/s') > 0:
1719 offset = abs(freqcoord.to_velocity(1,
1720 unit=frequnit)
1721 -freqcoord.to_velocity(0,
1722 unit=frequnit)
1723 )*0.5
1724 else:
1725 asaplog.post()
1726 asaplog.push("Invalid frequency unit")
1727 asaplog.post("ERROR")
1728 del freqs, freqcoord, ifrow
1729 for freq in freqmasklist:
1730 selmask = freq or [minfreq, maxfreq]
1731 if selmask[0] == None:
1732 ## selection was "<freq[1]".
1733 if selmask[1] < minfreq:
1734 ## avoid adding region selection
1735 selmask = None
1736 else:
1737 selmask = [minfreq,selmask[1]-offset]
1738 elif selmask[1] == None:
1739 ## selection was ">freq[0]"
1740 if selmask[0] > maxfreq:
1741 ## avoid adding region selection
1742 selmask = None
1743 else:
1744 selmask = [selmask[0]+offset,maxfreq]
1745 if selmask:
1746 if not seldict.has_key(spwstr):
1747 # new spw selection
1748 seldict[spwstr] = []
1749 seldict[spwstr] += [selmask]
1750 del minfreq,maxfreq,offset,freq,selmask
1751 del spwstr
1752 del freqmasklist
1753 del valid_ifs
1754 if len(seldict) == 0:
1755 asaplog.post()
1756 asaplog.push("No valid selection in the mask expression: "
1757 +maskstring)
1758 asaplog.post("WARN")
1759 return None
1760 msg = "Selected masklist:\n"
1761 for sif, lmask in seldict.iteritems():
1762 msg += " IF"+sif+" - "+str(lmask)+"\n"
1763 asaplog.push(msg)
1764 return seldict
1765
1766 @asaplog_post_dec
1767 def parse_idx_selection(self, mode, selexpr):
1768 """
1769 Parse CASA type mask selection syntax of SCANNO, IFNO, POLNO,
1770 BEAMNO, and row number
1771
1772 Parameters:
1773 mode : which column to select.
1774 ['scan',|'if'|'pol'|'beam'|'row']
1775 selexpr : A comma separated selection expression.
1776 examples:
1777 '' = all (returns [])
1778 '<2,4~6,9' = indices less than 2, 4 to 6 and 9
1779 (returns [0,1,4,5,6,9])
1780 Returns:
1781 A List of selected indices
1782 """
1783 if selexpr == "":
1784 return []
1785 valid_modes = {'s': 'scan', 'i': 'if', 'p': 'pol',
1786 'b': 'beam', 'r': 'row'}
1787 smode = mode.lower()[0]
1788 if not (smode in valid_modes.keys()):
1789 msg = "Invalid mode '%s'. Valid modes are %s" %\
1790 (mode, str(valid_modes.values()))
1791 asaplog.post()
1792 asaplog.push(msg)
1793 asaplog.post("ERROR")
1794 mode = valid_modes[smode]
1795 minidx = None
1796 maxidx = None
1797 if smode == 'r':
1798 minidx = 0
1799 maxidx = self.nrow()
1800 else:
1801 idx = getattr(self,"get"+mode+"nos")()
1802 minidx = min(idx)
1803 maxidx = max(idx)
1804 del idx
1805 sellist = selexpr.split(',')
1806 idxlist = []
1807 for currselstr in sellist:
1808 # single range (may include ~, < or >)
1809 currlist = self._parse_selection(currselstr, typestr='integer',
1810 minval=minidx,maxval=maxidx)
1811 for thelist in currlist:
1812 idxlist += range(thelist[0],thelist[1]+1)
1813 msg = "Selected %s: %s" % (mode.upper()+"NO", str(idxlist))
1814 asaplog.push(msg)
1815 return idxlist
1816
1817 def _parse_selection(self, selstr, typestr='float', offset=0.,
1818 minval=None, maxval=None):
1819 """
1820 Parameters:
1821 selstr : The Selection string, e.g., '<3;5~7;100~103;9'
1822 typestr : The type of the values in returned list
1823 ('integer' or 'float')
1824 offset : The offset value to subtract from or add to
1825 the boundary value if the selection string
1826 includes '<' or '>' [Valid only for typestr='float']
1827 minval, maxval : The minimum/maximum values to set if the
1828 selection string includes '<' or '>'.
1829 The list element is filled with None by default.
1830 Returns:
1831 A list of min/max pair of selections.
1832 Example:
1833 _parse_selection('<3;5~7;9',typestr='int',minval=0)
1834 --> returns [[0,2],[5,7],[9,9]]
1835 _parse_selection('<3;5~7;9',typestr='float',offset=0.5,minval=0)
1836 --> returns [[0.,2.5],[5.0,7.0],[9.,9.]]
1837 """
1838 selgroups = selstr.split(';')
1839 sellists = []
1840 if typestr.lower().startswith('int'):
1841 formatfunc = int
1842 offset = 1
1843 else:
1844 formatfunc = float
1845
1846 for currsel in selgroups:
1847 if currsel.find('~') > 0:
1848 # val0 <= x <= val1
1849 minsel = formatfunc(currsel.split('~')[0].strip())
1850 maxsel = formatfunc(currsel.split('~')[1].strip())
1851 elif currsel.strip().find('<=') > -1:
1852 bound = currsel.split('<=')
1853 try: # try "x <= val"
1854 minsel = minval
1855 maxsel = formatfunc(bound[1].strip())
1856 except ValueError: # now "val <= x"
1857 minsel = formatfunc(bound[0].strip())
1858 maxsel = maxval
1859 elif currsel.strip().find('>=') > -1:
1860 bound = currsel.split('>=')
1861 try: # try "x >= val"
1862 minsel = formatfunc(bound[1].strip())
1863 maxsel = maxval
1864 except ValueError: # now "val >= x"
1865 minsel = minval
1866 maxsel = formatfunc(bound[0].strip())
1867 elif currsel.strip().find('<') > -1:
1868 bound = currsel.split('<')
1869 try: # try "x < val"
1870 minsel = minval
1871 maxsel = formatfunc(bound[1].strip()) \
1872 - formatfunc(offset)
1873 except ValueError: # now "val < x"
1874 minsel = formatfunc(bound[0].strip()) \
1875 + formatfunc(offset)
1876 maxsel = maxval
1877 elif currsel.strip().find('>') > -1:
1878 bound = currsel.split('>')
1879 try: # try "x > val"
1880 minsel = formatfunc(bound[1].strip()) \
1881 + formatfunc(offset)
1882 maxsel = maxval
1883 except ValueError: # now "val > x"
1884 minsel = minval
1885 maxsel = formatfunc(bound[0].strip()) \
1886 - formatfunc(offset)
1887 else:
1888 minsel = formatfunc(currsel)
1889 maxsel = formatfunc(currsel)
1890 sellists.append([minsel,maxsel])
1891 return sellists
1892
1893# def get_restfreqs(self):
1894# """
1895# Get the restfrequency(s) stored in this scantable.
1896# The return value(s) are always of unit 'Hz'
1897# Parameters:
1898# none
1899# Returns:
1900# a list of doubles
1901# """
1902# return list(self._getrestfreqs())
1903
1904 def get_restfreqs(self, ids=None):
1905 """\
1906 Get the restfrequency(s) stored in this scantable.
1907 The return value(s) are always of unit 'Hz'
1908
1909 Parameters:
1910
1911 ids: (optional) a list of MOLECULE_ID for that restfrequency(s) to
1912 be retrieved
1913
1914 Returns:
1915
1916 dictionary containing ids and a list of doubles for each id
1917
1918 """
1919 if ids is None:
1920 rfreqs = {}
1921 idlist = self.getmolnos()
1922 for i in idlist:
1923 rfreqs[i] = list(self._getrestfreqs(i))
1924 return rfreqs
1925 else:
1926 if type(ids) == list or type(ids) == tuple:
1927 rfreqs = {}
1928 for i in ids:
1929 rfreqs[i] = list(self._getrestfreqs(i))
1930 return rfreqs
1931 else:
1932 return list(self._getrestfreqs(ids))
1933
1934 @asaplog_post_dec
1935 def set_restfreqs(self, freqs=None, unit='Hz'):
1936 """\
1937 Set or replace the restfrequency specified and
1938 if the 'freqs' argument holds a scalar,
1939 then that rest frequency will be applied to all the selected
1940 data. If the 'freqs' argument holds
1941 a vector, then it MUST be of equal or smaller length than
1942 the number of IFs (and the available restfrequencies will be
1943 replaced by this vector). In this case, *all* data have
1944 the restfrequency set per IF according
1945 to the corresponding value you give in the 'freqs' vector.
1946 E.g. 'freqs=[1e9, 2e9]' would mean IF 0 gets restfreq 1e9 and
1947 IF 1 gets restfreq 2e9.
1948
1949 You can also specify the frequencies via a linecatalog.
1950
1951 Parameters:
1952
1953 freqs: list of rest frequency values or string idenitfiers
1954
1955 unit: unit for rest frequency (default 'Hz')
1956
1957
1958 Example::
1959
1960 # set the given restfrequency for the all currently selected IFs
1961 scan.set_restfreqs(freqs=1.4e9)
1962 # set restfrequencies for the n IFs (n > 1) in the order of the
1963 # list, i.e
1964 # IF0 -> 1.4e9, IF1 -> 1.41e9, IF3 -> 1.42e9
1965 # len(list_of_restfreqs) == nIF
1966 # for nIF == 1 the following will set multiple restfrequency for
1967 # that IF
1968 scan.set_restfreqs(freqs=[1.4e9, 1.41e9, 1.42e9])
1969 # set multiple restfrequencies per IF. as a list of lists where
1970 # the outer list has nIF elements, the inner s arbitrary
1971 scan.set_restfreqs(freqs=[[1.4e9, 1.41e9], [1.67e9]])
1972
1973 *Note*:
1974
1975 To do more sophisticate Restfrequency setting, e.g. on a
1976 source and IF basis, use scantable.set_selection() before using
1977 this function::
1978
1979 # provided your scantable is called scan
1980 selection = selector()
1981 selection.set_name('ORION*')
1982 selection.set_ifs([1])
1983 scan.set_selection(selection)
1984 scan.set_restfreqs(freqs=86.6e9)
1985
1986 """
1987 varlist = vars()
1988 from asap import linecatalog
1989 # simple value
1990 if isinstance(freqs, int) or isinstance(freqs, float):
1991 self._setrestfreqs([freqs], [""], unit)
1992 # list of values
1993 elif isinstance(freqs, list) or isinstance(freqs, tuple):
1994 # list values are scalars
1995 if isinstance(freqs[-1], int) or isinstance(freqs[-1], float):
1996 if len(freqs) == 1:
1997 self._setrestfreqs(freqs, [""], unit)
1998 else:
1999 # allow the 'old' mode of setting mulitple IFs
2000 savesel = self._getselection()
2001 sel = self.get_selection()
2002 iflist = self.getifnos()
2003 if len(freqs)>len(iflist):
2004 raise ValueError("number of elements in list of list "
2005 "exeeds the current IF selections")
2006 iflist = self.getifnos()
2007 for i, fval in enumerate(freqs):
2008 sel.set_ifs(iflist[i])
2009 self._setselection(sel)
2010 self._setrestfreqs([fval], [""], unit)
2011 self._setselection(savesel)
2012
2013 # list values are dict, {'value'=, 'name'=)
2014 elif isinstance(freqs[-1], dict):
2015 values = []
2016 names = []
2017 for d in freqs:
2018 values.append(d["value"])
2019 names.append(d["name"])
2020 self._setrestfreqs(values, names, unit)
2021 elif isinstance(freqs[-1], list) or isinstance(freqs[-1], tuple):
2022 savesel = self._getselection()
2023 sel = self.get_selection()
2024 iflist = self.getifnos()
2025 if len(freqs)>len(iflist):
2026 raise ValueError("number of elements in list of list exeeds"
2027 " the current IF selections")
2028 for i, fval in enumerate(freqs):
2029 sel.set_ifs(iflist[i])
2030 self._setselection(sel)
2031 self._setrestfreqs(fval, [""], unit)
2032 self._setselection(savesel)
2033 # freqs are to be taken from a linecatalog
2034 elif isinstance(freqs, linecatalog):
2035 savesel = self._getselection()
2036 sel = self.get_selection()
2037 for i in xrange(freqs.nrow()):
2038 sel.set_ifs(iflist[i])
2039 self._setselection(sel)
2040 self._setrestfreqs([freqs.get_frequency(i)],
2041 [freqs.get_name(i)], "MHz")
2042 # ensure that we are not iterating past nIF
2043 if i == self.nif()-1: break
2044 self._setselection(savesel)
2045 else:
2046 return
2047 self._add_history("set_restfreqs", varlist)
2048
2049 @asaplog_post_dec
2050 def shift_refpix(self, delta):
2051 """\
2052 Shift the reference pixel of the Spectra Coordinate by an
2053 integer amount.
2054
2055 Parameters:
2056
2057 delta: the amount to shift by
2058
2059 *Note*:
2060
2061 Be careful using this with broadband data.
2062
2063 """
2064 varlist = vars()
2065 Scantable.shift_refpix(self, delta)
2066 s._add_history("shift_refpix", varlist)
2067
2068 @asaplog_post_dec
2069 def history(self, filename=None):
2070 """\
2071 Print the history. Optionally to a file.
2072
2073 Parameters:
2074
2075 filename: The name of the file to save the history to.
2076
2077 """
2078 hist = list(self._gethistory())
2079 out = "-"*80
2080 for h in hist:
2081 if h.startswith("---"):
2082 out = "\n".join([out, h])
2083 else:
2084 items = h.split("##")
2085 date = items[0]
2086 func = items[1]
2087 items = items[2:]
2088 out += "\n"+date+"\n"
2089 out += "Function: %s\n Parameters:" % (func)
2090 for i in items:
2091 if i == '':
2092 continue
2093 s = i.split("=")
2094 out += "\n %s = %s" % (s[0], s[1])
2095 out = "\n".join([out, "-"*80])
2096 if filename is not None:
2097 if filename is "":
2098 filename = 'scantable_history.txt'
2099 import os
2100 filename = os.path.expandvars(os.path.expanduser(filename))
2101 if not os.path.isdir(filename):
2102 data = open(filename, 'w')
2103 data.write(out)
2104 data.close()
2105 else:
2106 msg = "Illegal file name '%s'." % (filename)
2107 raise IOError(msg)
2108 return page(out)
2109
2110 #
2111 # Maths business
2112 #
2113 @asaplog_post_dec
2114 def average_time(self, mask=None, scanav=False, weight='tint', align=False):
2115 """\
2116 Return the (time) weighted average of a scan. Scans will be averaged
2117 only if the source direction (RA/DEC) is within 1' otherwise
2118
2119 *Note*:
2120
2121 in channels only - align if necessary
2122
2123 Parameters:
2124
2125 mask: an optional mask (only used for 'var' and 'tsys'
2126 weighting)
2127
2128 scanav: True averages each scan separately
2129 False (default) averages all scans together,
2130
2131 weight: Weighting scheme.
2132 'none' (mean no weight)
2133 'var' (1/var(spec) weighted)
2134 'tsys' (1/Tsys**2 weighted)
2135 'tint' (integration time weighted)
2136 'tintsys' (Tint/Tsys**2)
2137 'median' ( median averaging)
2138 The default is 'tint'
2139
2140 align: align the spectra in velocity before averaging. It takes
2141 the time of the first spectrum as reference time.
2142
2143 Example::
2144
2145 # time average the scantable without using a mask
2146 newscan = scan.average_time()
2147
2148 """
2149 varlist = vars()
2150 weight = weight or 'TINT'
2151 mask = mask or ()
2152 scanav = (scanav and 'SCAN') or 'NONE'
2153 scan = (self, )
2154
2155 if align:
2156 scan = (self.freq_align(insitu=False), )
2157 s = None
2158 if weight.upper() == 'MEDIAN':
2159 s = scantable(self._math._averagechannel(scan[0], 'MEDIAN',
2160 scanav))
2161 else:
2162 s = scantable(self._math._average(scan, mask, weight.upper(),
2163 scanav))
2164 s._add_history("average_time", varlist)
2165 return s
2166
2167 @asaplog_post_dec
2168 def convert_flux(self, jyperk=None, eta=None, d=None, insitu=None):
2169 """\
2170 Return a scan where all spectra are converted to either
2171 Jansky or Kelvin depending upon the flux units of the scan table.
2172 By default the function tries to look the values up internally.
2173 If it can't find them (or if you want to over-ride), you must
2174 specify EITHER jyperk OR eta (and D which it will try to look up
2175 also if you don't set it). jyperk takes precedence if you set both.
2176
2177 Parameters:
2178
2179 jyperk: the Jy / K conversion factor
2180
2181 eta: the aperture efficiency
2182
2183 d: the geometric diameter (metres)
2184
2185 insitu: if False a new scantable is returned.
2186 Otherwise, the scaling is done in-situ
2187 The default is taken from .asaprc (False)
2188
2189 """
2190 if insitu is None: insitu = rcParams['insitu']
2191 self._math._setinsitu(insitu)
2192 varlist = vars()
2193 jyperk = jyperk or -1.0
2194 d = d or -1.0
2195 eta = eta or -1.0
2196 s = scantable(self._math._convertflux(self, d, eta, jyperk))
2197 s._add_history("convert_flux", varlist)
2198 if insitu: self._assign(s)
2199 else: return s
2200
2201 @asaplog_post_dec
2202 def gain_el(self, poly=None, filename="", method="linear", insitu=None):
2203 """\
2204 Return a scan after applying a gain-elevation correction.
2205 The correction can be made via either a polynomial or a
2206 table-based interpolation (and extrapolation if necessary).
2207 You specify polynomial coefficients, an ascii table or neither.
2208 If you specify neither, then a polynomial correction will be made
2209 with built in coefficients known for certain telescopes (an error
2210 will occur if the instrument is not known).
2211 The data and Tsys are *divided* by the scaling factors.
2212
2213 Parameters:
2214
2215 poly: Polynomial coefficients (default None) to compute a
2216 gain-elevation correction as a function of
2217 elevation (in degrees).
2218
2219 filename: The name of an ascii file holding correction factors.
2220 The first row of the ascii file must give the column
2221 names and these MUST include columns
2222 'ELEVATION' (degrees) and 'FACTOR' (multiply data
2223 by this) somewhere.
2224 The second row must give the data type of the
2225 column. Use 'R' for Real and 'I' for Integer.
2226 An example file would be
2227 (actual factors are arbitrary) :
2228
2229 TIME ELEVATION FACTOR
2230 R R R
2231 0.1 0 0.8
2232 0.2 20 0.85
2233 0.3 40 0.9
2234 0.4 60 0.85
2235 0.5 80 0.8
2236 0.6 90 0.75
2237
2238 method: Interpolation method when correcting from a table.
2239 Values are 'nearest', 'linear' (default), 'cubic'
2240 and 'spline'
2241
2242 insitu: if False a new scantable is returned.
2243 Otherwise, the scaling is done in-situ
2244 The default is taken from .asaprc (False)
2245
2246 """
2247
2248 if insitu is None: insitu = rcParams['insitu']
2249 self._math._setinsitu(insitu)
2250 varlist = vars()
2251 poly = poly or ()
2252 from os.path import expandvars
2253 filename = expandvars(filename)
2254 s = scantable(self._math._gainel(self, poly, filename, method))
2255 s._add_history("gain_el", varlist)
2256 if insitu:
2257 self._assign(s)
2258 else:
2259 return s
2260
2261 @asaplog_post_dec
2262 def freq_align(self, reftime=None, method='cubic', insitu=None):
2263 """\
2264 Return a scan where all rows have been aligned in frequency/velocity.
2265 The alignment frequency frame (e.g. LSRK) is that set by function
2266 set_freqframe.
2267
2268 Parameters:
2269
2270 reftime: reference time to align at. By default, the time of
2271 the first row of data is used.
2272
2273 method: Interpolation method for regridding the spectra.
2274 Choose from 'nearest', 'linear', 'cubic' (default)
2275 and 'spline'
2276
2277 insitu: if False a new scantable is returned.
2278 Otherwise, the scaling is done in-situ
2279 The default is taken from .asaprc (False)
2280
2281 """
2282 if insitu is None: insitu = rcParams["insitu"]
2283 oldInsitu = self._math._insitu()
2284 self._math._setinsitu(insitu)
2285 varlist = vars()
2286 reftime = reftime or ""
2287 s = scantable(self._math._freq_align(self, reftime, method))
2288 s._add_history("freq_align", varlist)
2289 self._math._setinsitu(oldInsitu)
2290 if insitu:
2291 self._assign(s)
2292 else:
2293 return s
2294
2295 @asaplog_post_dec
2296 def opacity(self, tau=None, insitu=None):
2297 """\
2298 Apply an opacity correction. The data
2299 and Tsys are multiplied by the correction factor.
2300
2301 Parameters:
2302
2303 tau: (list of) opacity from which the correction factor is
2304 exp(tau*ZD)
2305 where ZD is the zenith-distance.
2306 If a list is provided, it has to be of length nIF,
2307 nIF*nPol or 1 and in order of IF/POL, e.g.
2308 [opif0pol0, opif0pol1, opif1pol0 ...]
2309 if tau is `None` the opacities are determined from a
2310 model.
2311
2312 insitu: if False a new scantable is returned.
2313 Otherwise, the scaling is done in-situ
2314 The default is taken from .asaprc (False)
2315
2316 """
2317 if insitu is None:
2318 insitu = rcParams['insitu']
2319 self._math._setinsitu(insitu)
2320 varlist = vars()
2321 if not hasattr(tau, "__len__"):
2322 tau = [tau]
2323 s = scantable(self._math._opacity(self, tau))
2324 s._add_history("opacity", varlist)
2325 if insitu:
2326 self._assign(s)
2327 else:
2328 return s
2329
2330 @asaplog_post_dec
2331 def bin(self, width=5, insitu=None):
2332 """\
2333 Return a scan where all spectra have been binned up.
2334
2335 Parameters:
2336
2337 width: The bin width (default=5) in pixels
2338
2339 insitu: if False a new scantable is returned.
2340 Otherwise, the scaling is done in-situ
2341 The default is taken from .asaprc (False)
2342
2343 """
2344 if insitu is None:
2345 insitu = rcParams['insitu']
2346 self._math._setinsitu(insitu)
2347 varlist = vars()
2348 s = scantable(self._math._bin(self, width))
2349 s._add_history("bin", varlist)
2350 if insitu:
2351 self._assign(s)
2352 else:
2353 return s
2354
2355 @asaplog_post_dec
2356 def reshape(self, first, last, insitu=None):
2357 """Resize the band by providing first and last channel.
2358 This will cut off all channels outside [first, last].
2359 """
2360 if insitu is None:
2361 insitu = rcParams['insitu']
2362 varlist = vars()
2363 if last < 0:
2364 last = self.nchan()-1 + last
2365 s = None
2366 if insitu:
2367 s = self
2368 else:
2369 s = self.copy()
2370 s._reshape(first,last)
2371 s._add_history("reshape", varlist)
2372 if not insitu:
2373 return s
2374
2375 @asaplog_post_dec
2376 def resample(self, width=5, method='cubic', insitu=None):
2377 """\
2378 Return a scan where all spectra have been binned up.
2379
2380 Parameters:
2381
2382 width: The bin width (default=5) in pixels
2383
2384 method: Interpolation method when correcting from a table.
2385 Values are 'nearest', 'linear', 'cubic' (default)
2386 and 'spline'
2387
2388 insitu: if False a new scantable is returned.
2389 Otherwise, the scaling is done in-situ
2390 The default is taken from .asaprc (False)
2391
2392 """
2393 if insitu is None:
2394 insitu = rcParams['insitu']
2395 self._math._setinsitu(insitu)
2396 varlist = vars()
2397 s = scantable(self._math._resample(self, method, width))
2398 s._add_history("resample", varlist)
2399 if insitu:
2400 self._assign(s)
2401 else:
2402 return s
2403
2404 @asaplog_post_dec
2405 def average_pol(self, mask=None, weight='none'):
2406 """\
2407 Average the Polarisations together.
2408
2409 Parameters:
2410
2411 mask: An optional mask defining the region, where the
2412 averaging will be applied. The output will have all
2413 specified points masked.
2414
2415 weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
2416 weighted), or 'tsys' (1/Tsys**2 weighted)
2417
2418 """
2419 varlist = vars()
2420 mask = mask or ()
2421 s = scantable(self._math._averagepol(self, mask, weight.upper()))
2422 s._add_history("average_pol", varlist)
2423 return s
2424
2425 @asaplog_post_dec
2426 def average_beam(self, mask=None, weight='none'):
2427 """\
2428 Average the Beams together.
2429
2430 Parameters:
2431 mask: An optional mask defining the region, where the
2432 averaging will be applied. The output will have all
2433 specified points masked.
2434
2435 weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
2436 weighted), or 'tsys' (1/Tsys**2 weighted)
2437
2438 """
2439 varlist = vars()
2440 mask = mask or ()
2441 s = scantable(self._math._averagebeams(self, mask, weight.upper()))
2442 s._add_history("average_beam", varlist)
2443 return s
2444
2445 def parallactify(self, pflag):
2446 """\
2447 Set a flag to indicate whether this data should be treated as having
2448 been 'parallactified' (total phase == 0.0)
2449
2450 Parameters:
2451
2452 pflag: Bool indicating whether to turn this on (True) or
2453 off (False)
2454
2455 """
2456 varlist = vars()
2457 self._parallactify(pflag)
2458 self._add_history("parallactify", varlist)
2459
2460 @asaplog_post_dec
2461 def convert_pol(self, poltype=None):
2462 """\
2463 Convert the data to a different polarisation type.
2464 Note that you will need cross-polarisation terms for most conversions.
2465
2466 Parameters:
2467
2468 poltype: The new polarisation type. Valid types are:
2469 'linear', 'circular', 'stokes' and 'linpol'
2470
2471 """
2472 varlist = vars()
2473 s = scantable(self._math._convertpol(self, poltype))
2474 s._add_history("convert_pol", varlist)
2475 return s
2476
2477 @asaplog_post_dec
2478 def smooth(self, kernel="hanning", width=5.0, order=2, plot=False,
2479 insitu=None):
2480 """\
2481 Smooth the spectrum by the specified kernel (conserving flux).
2482
2483 Parameters:
2484
2485 kernel: The type of smoothing kernel. Select from
2486 'hanning' (default), 'gaussian', 'boxcar', 'rmedian'
2487 or 'poly'
2488
2489 width: The width of the kernel in pixels. For hanning this is
2490 ignored otherwise it defauls to 5 pixels.
2491 For 'gaussian' it is the Full Width Half
2492 Maximum. For 'boxcar' it is the full width.
2493 For 'rmedian' and 'poly' it is the half width.
2494
2495 order: Optional parameter for 'poly' kernel (default is 2), to
2496 specify the order of the polnomial. Ignored by all other
2497 kernels.
2498
2499 plot: plot the original and the smoothed spectra.
2500 In this each indivual fit has to be approved, by
2501 typing 'y' or 'n'
2502
2503 insitu: if False a new scantable is returned.
2504 Otherwise, the scaling is done in-situ
2505 The default is taken from .asaprc (False)
2506
2507 """
2508 if insitu is None: insitu = rcParams['insitu']
2509 self._math._setinsitu(insitu)
2510 varlist = vars()
2511
2512 if plot: orgscan = self.copy()
2513
2514 s = scantable(self._math._smooth(self, kernel.lower(), width, order))
2515 s._add_history("smooth", varlist)
2516
2517 action = 'H'
2518 if plot:
2519 from asap.asapplotter import new_asaplot
2520 theplot = new_asaplot(rcParams['plotter.gui'])
2521 from matplotlib import rc as rcp
2522 rcp('lines', linewidth=1)
2523 theplot.set_panels()
2524 ylab=s._get_ordinate_label()
2525 #theplot.palette(0,["#777777","red"])
2526 for r in xrange(s.nrow()):
2527 xsm=s._getabcissa(r)
2528 ysm=s._getspectrum(r)
2529 xorg=orgscan._getabcissa(r)
2530 yorg=orgscan._getspectrum(r)
2531 if action != "N": #skip plotting if rejecting all
2532 theplot.clear()
2533 theplot.hold()
2534 theplot.set_axes('ylabel',ylab)
2535 theplot.set_axes('xlabel',s._getabcissalabel(r))
2536 theplot.set_axes('title',s._getsourcename(r))
2537 theplot.set_line(label='Original',color="#777777")
2538 theplot.plot(xorg,yorg)
2539 theplot.set_line(label='Smoothed',color="red")
2540 theplot.plot(xsm,ysm)
2541 ### Ugly part for legend
2542 for i in [0,1]:
2543 theplot.subplots[0]['lines'].append(
2544 [theplot.subplots[0]['axes'].lines[i]]
2545 )
2546 theplot.release()
2547 ### Ugly part for legend
2548 theplot.subplots[0]['lines']=[]
2549 res = self._get_verify_action("Accept smoothing?",action)
2550 #print "IF%d, POL%d: got result = %s" %(s.getif(r),s.getpol(r),res)
2551 if r == 0: action = None
2552 #res = raw_input("Accept smoothing ([y]/n): ")
2553 if res.upper() == 'N':
2554 # reject for the current rows
2555 s._setspectrum(yorg, r)
2556 elif res.upper() == 'R':
2557 # reject all the following rows
2558 action = "N"
2559 s._setspectrum(yorg, r)
2560 elif res.upper() == 'A':
2561 # accept all the following rows
2562 break
2563 theplot.quit()
2564 del theplot
2565 del orgscan
2566
2567 if insitu: self._assign(s)
2568 else: return s
2569
2570 @asaplog_post_dec
2571 def regrid_channel(self, width=5, plot=False, insitu=None):
2572 """\
2573 Regrid the spectra by the specified channel width
2574
2575 Parameters:
2576
2577 width: The channel width (float) of regridded spectra
2578 in the current spectral unit.
2579
2580 plot: [NOT IMPLEMENTED YET]
2581 plot the original and the regridded spectra.
2582 In this each indivual fit has to be approved, by
2583 typing 'y' or 'n'
2584
2585 insitu: if False a new scantable is returned.
2586 Otherwise, the scaling is done in-situ
2587 The default is taken from .asaprc (False)
2588
2589 """
2590 if insitu is None: insitu = rcParams['insitu']
2591 varlist = vars()
2592
2593 if plot:
2594 asaplog.post()
2595 asaplog.push("Verification plot is not implemtnetd yet.")
2596 asaplog.post("WARN")
2597
2598 s = self.copy()
2599 s._regrid_specchan(width)
2600
2601 s._add_history("regrid_channel", varlist)
2602
2603# if plot:
2604# from asap.asapplotter import new_asaplot
2605# theplot = new_asaplot(rcParams['plotter.gui'])
2606# from matplotlib import rc as rcp
2607# rcp('lines', linewidth=1)
2608# theplot.set_panels()
2609# ylab=s._get_ordinate_label()
2610# #theplot.palette(0,["#777777","red"])
2611# for r in xrange(s.nrow()):
2612# xsm=s._getabcissa(r)
2613# ysm=s._getspectrum(r)
2614# xorg=orgscan._getabcissa(r)
2615# yorg=orgscan._getspectrum(r)
2616# theplot.clear()
2617# theplot.hold()
2618# theplot.set_axes('ylabel',ylab)
2619# theplot.set_axes('xlabel',s._getabcissalabel(r))
2620# theplot.set_axes('title',s._getsourcename(r))
2621# theplot.set_line(label='Original',color="#777777")
2622# theplot.plot(xorg,yorg)
2623# theplot.set_line(label='Smoothed',color="red")
2624# theplot.plot(xsm,ysm)
2625# ### Ugly part for legend
2626# for i in [0,1]:
2627# theplot.subplots[0]['lines'].append(
2628# [theplot.subplots[0]['axes'].lines[i]]
2629# )
2630# theplot.release()
2631# ### Ugly part for legend
2632# theplot.subplots[0]['lines']=[]
2633# res = raw_input("Accept smoothing ([y]/n): ")
2634# if res.upper() == 'N':
2635# s._setspectrum(yorg, r)
2636# theplot.quit()
2637# del theplot
2638# del orgscan
2639
2640 if insitu: self._assign(s)
2641 else: return s
2642
2643 @asaplog_post_dec
2644 def _parse_wn(self, wn):
2645 if isinstance(wn, list) or isinstance(wn, tuple):
2646 return wn
2647 elif isinstance(wn, int):
2648 return [ wn ]
2649 elif isinstance(wn, str):
2650 if '-' in wn: # case 'a-b' : return [a,a+1,...,b-1,b]
2651 val = wn.split('-')
2652 val = [int(val[0]), int(val[1])]
2653 val.sort()
2654 res = [i for i in xrange(val[0], val[1]+1)]
2655 elif wn[:2] == '<=' or wn[:2] == '=<': # cases '<=a','=<a' : return [0,1,...,a-1,a]
2656 val = int(wn[2:])+1
2657 res = [i for i in xrange(val)]
2658 elif wn[-2:] == '>=' or wn[-2:] == '=>': # cases 'a>=','a=>' : return [0,1,...,a-1,a]
2659 val = int(wn[:-2])+1
2660 res = [i for i in xrange(val)]
2661 elif wn[0] == '<': # case '<a' : return [0,1,...,a-2,a-1]
2662 val = int(wn[1:])
2663 res = [i for i in xrange(val)]
2664 elif wn[-1] == '>': # case 'a>' : return [0,1,...,a-2,a-1]
2665 val = int(wn[:-1])
2666 res = [i for i in xrange(val)]
2667 elif wn[:2] == '>=' or wn[:2] == '=>': # cases '>=a','=>a' : return [a,-999], which is
2668 # then interpreted in C++
2669 # side as [a,a+1,...,a_nyq]
2670 # (CAS-3759)
2671 val = int(wn[2:])
2672 res = [val, -999]
2673 #res = [i for i in xrange(val, self.nchan()/2+1)]
2674 elif wn[-2:] == '<=' or wn[-2:] == '=<': # cases 'a<=','a=<' : return [a,-999], which is
2675 # then interpreted in C++
2676 # side as [a,a+1,...,a_nyq]
2677 # (CAS-3759)
2678 val = int(wn[:-2])
2679 res = [val, -999]
2680 #res = [i for i in xrange(val, self.nchan()/2+1)]
2681 elif wn[0] == '>': # case '>a' : return [a+1,-999], which is
2682 # then interpreted in C++
2683 # side as [a+1,a+2,...,a_nyq]
2684 # (CAS-3759)
2685 val = int(wn[1:])+1
2686 res = [val, -999]
2687 #res = [i for i in xrange(val, self.nchan()/2+1)]
2688 elif wn[-1] == '<': # case 'a<' : return [a+1,-999], which is
2689 # then interpreted in C++
2690 # side as [a+1,a+2,...,a_nyq]
2691 # (CAS-3759)
2692 val = int(wn[:-1])+1
2693 res = [val, -999]
2694 #res = [i for i in xrange(val, self.nchan()/2+1)]
2695
2696 return res
2697 else:
2698 msg = 'wrong value given for addwn/rejwn'
2699 raise RuntimeError(msg)
2700
2701 @asaplog_post_dec
2702 def apply_bltable(self, insitu=None, inbltable=None, outbltable=None, overwrite=None):
2703 """\
2704 Subtract baseline based on parameters written in Baseline Table.
2705
2706 Parameters:
2707 insitu: if True, baseline fitting/subtraction is done
2708 in-situ and fitting results is returned. If
2709 False, a dictionary containing new scantable
2710 (with baseline subtracted) and fitting results
2711 is returned.
2712 The default is taken from .asaprc (False)
2713 inbltable: name of input baseline table. The row number of
2714 scantable and that of inbltable must be
2715 identical.
2716 outbltable: name of output baseline table where baseline
2717 parameters and fitting results recorded.
2718 default is ''(no output).
2719 overwrite: if True when an existing baseline table is
2720 specified for outbltable, overwrites it.
2721 Otherwise there is no harm.
2722 default is False.
2723 """
2724
2725 try:
2726 varlist = vars()
2727 if inbltable is None: raise ValueError("bltable missing.")
2728 if outbltable is None: outbltable = ''
2729 if overwrite is None: overwrite = False
2730
2731 if insitu is None: insitu = rcParams['insitu']
2732 if insitu:
2733 workscan = self
2734 else:
2735 workscan = self.copy()
2736
2737 sres = workscan._apply_bltable(inbltable,
2738 outbltable,
2739 os.path.exists(outbltable),
2740 overwrite)
2741 res = parse_fitresult(sres)
2742
2743 workscan._add_history('apply_bltable', varlist)
2744
2745 if insitu:
2746 self._assign(workscan)
2747 return res
2748 else:
2749 return {'scantable': workscan, 'fitresults': res}
2750
2751 except RuntimeError, e:
2752 raise_fitting_failure_exception(e)
2753
2754 @asaplog_post_dec
2755 def sub_baseline(self, insitu=None, blinfo=None, bltable=None, overwrite=None):
2756 """\
2757 Subtract baseline based on parameters written in the input list.
2758
2759 Parameters:
2760 insitu: if True, baseline fitting/subtraction is done
2761 in-situ and fitting results is returned. If
2762 False, a dictionary containing new scantable
2763 (with baseline subtracted) and fitting results
2764 is returned.
2765 The default is taken from .asaprc (False)
2766 blinfo: baseline parameter set stored in a dictionary
2767 or a list of dictionary. Each dictionary
2768 corresponds to each spectrum and must contain
2769 the following keys and values:
2770 'row': row number,
2771 'blfunc': function name. available ones include
2772 'poly', 'chebyshev', 'cspline' and
2773 'sinusoid',
2774 'order': maximum order of polynomial. needed
2775 if blfunc='poly' or 'chebyshev',
2776 'npiece': number or piecewise polynomial.
2777 needed if blfunc='cspline',
2778 'nwave': a list of sinusoidal wave numbers.
2779 needed if blfunc='sinusoid', and
2780 'masklist': min-max windows for channel mask.
2781 the specified ranges will be used
2782 for fitting.
2783 bltable: name of output baseline table where baseline
2784 parameters and fitting results recorded.
2785 default is ''(no output).
2786 overwrite: if True when an existing baseline table is
2787 specified for bltable, overwrites it.
2788 Otherwise there is no harm.
2789 default is False.
2790
2791 Example:
2792 sub_baseline(blinfo=[{'row':0, 'blfunc':'poly', 'order':5,
2793 'masklist':[[10,350],[352,510]]},
2794 {'row':1, 'blfunc':'cspline', 'npiece':3,
2795 'masklist':[[3,16],[19,404],[407,511]]}
2796 ])
2797
2798 the first spectrum (row=0) will be fitted with polynomial
2799 of order=5 and the next one (row=1) will be fitted with cubic
2800 spline consisting of 3 pieces.
2801 """
2802
2803 try:
2804 varlist = vars()
2805 if blinfo is None: blinfo = []
2806 if bltable is None: bltable = ''
2807 if overwrite is None: overwrite = False
2808
2809 if insitu is None: insitu = rcParams['insitu']
2810 if insitu:
2811 workscan = self
2812 else:
2813 workscan = self.copy()
2814
2815 nrow = workscan.nrow()
2816
2817 in_blinfo = pack_blinfo(blinfo=blinfo, maxirow=nrow)
2818
2819 print "in_blinfo=< "+ str(in_blinfo)+" >"
2820
2821 sres = workscan._sub_baseline(in_blinfo,
2822 bltable,
2823 os.path.exists(bltable),
2824 overwrite)
2825 res = parse_fitresult(sres)
2826
2827 workscan._add_history('sub_baseline', varlist)
2828
2829 if insitu:
2830 self._assign(workscan)
2831 return res
2832 else:
2833 return {'scantable': workscan, 'fitresults': res}
2834
2835 except RuntimeError, e:
2836 raise_fitting_failure_exception(e)
2837
2838 @asaplog_post_dec
2839 def calc_aic(self, value=None, blfunc=None, order=None, mask=None,
2840 whichrow=None, uselinefinder=None, edge=None,
2841 threshold=None, chan_avg_limit=None):
2842 """\
2843 Calculates and returns model selection criteria for a specified
2844 baseline model and a given spectrum data.
2845 Available values include Akaike Information Criterion (AIC), the
2846 corrected Akaike Information Criterion (AICc) by Sugiura(1978),
2847 Bayesian Information Criterion (BIC) and the Generalised Cross
2848 Validation (GCV).
2849
2850 Parameters:
2851 value: name of model selection criteria to calculate.
2852 available ones include 'aic', 'aicc', 'bic' and
2853 'gcv'. default is 'aicc'.
2854 blfunc: baseline function name. available ones include
2855 'chebyshev', 'cspline' and 'sinusoid'.
2856 default is 'chebyshev'.
2857 order: parameter for basline function. actually stands for
2858 order of polynomial (order) for 'chebyshev',
2859 number of spline pieces (npiece) for 'cspline' and
2860 maximum wave number for 'sinusoid', respectively.
2861 default is 5 (which is also the default order value
2862 for [auto_]chebyshev_baseline()).
2863 mask: an optional mask. default is [].
2864 whichrow: row number. default is 0 (the first row)
2865 uselinefinder: use sd.linefinder() to flag out line regions
2866 default is True.
2867 edge: an optional number of channel to drop at
2868 the edge of spectrum. If only one value is
2869 specified, the same number will be dropped
2870 from both sides of the spectrum. Default
2871 is to keep all channels. Nested tuples
2872 represent individual edge selection for
2873 different IFs (a number of spectral channels
2874 can be different)
2875 default is (0, 0).
2876 threshold: the threshold used by line finder. It is
2877 better to keep it large as only strong lines
2878 affect the baseline solution.
2879 default is 3.
2880 chan_avg_limit: a maximum number of consequtive spectral
2881 channels to average during the search of
2882 weak and broad lines. The default is no
2883 averaging (and no search for weak lines).
2884 If such lines can affect the fitted baseline
2885 (e.g. a high order polynomial is fitted),
2886 increase this parameter (usually values up
2887 to 8 are reasonable). Most users of this
2888 method should find the default value sufficient.
2889 default is 1.
2890
2891 Example:
2892 aic = scan.calc_aic(blfunc='chebyshev', order=5, whichrow=0)
2893 """
2894
2895 try:
2896 varlist = vars()
2897
2898 if value is None: value = 'aicc'
2899 if blfunc is None: blfunc = 'chebyshev'
2900 if order is None: order = 5
2901 if mask is None: mask = []
2902 if whichrow is None: whichrow = 0
2903 if uselinefinder is None: uselinefinder = True
2904 if edge is None: edge = (0, 0)
2905 if threshold is None: threshold = 3
2906 if chan_avg_limit is None: chan_avg_limit = 1
2907
2908 return self._calc_aic(value, blfunc, order, mask,
2909 whichrow, uselinefinder, edge,
2910 threshold, chan_avg_limit)
2911
2912 except RuntimeError, e:
2913 raise_fitting_failure_exception(e)
2914
2915 @asaplog_post_dec
2916 def sinusoid_baseline(self, mask=None, applyfft=None,
2917 fftmethod=None, fftthresh=None,
2918 addwn=None, rejwn=None,
2919 insitu=None,
2920 clipthresh=None, clipniter=None,
2921 plot=None,
2922 getresidual=None,
2923 showprogress=None, minnrow=None,
2924 outlog=None,
2925 blfile=None, csvformat=None,
2926 bltable=None):
2927 """\
2928 Return a scan which has been baselined (all rows) with sinusoidal
2929 functions.
2930
2931 Parameters:
2932 mask: an optional mask
2933 applyfft: if True use some method, such as FFT, to find
2934 strongest sinusoidal components in the wavenumber
2935 domain to be used for baseline fitting.
2936 default is True.
2937 fftmethod: method to find the strong sinusoidal components.
2938 now only 'fft' is available and it is the default.
2939 fftthresh: the threshold to select wave numbers to be used for
2940 fitting from the distribution of amplitudes in the
2941 wavenumber domain.
2942 both float and string values accepted.
2943 given a float value, the unit is set to sigma.
2944 for string values, allowed formats include:
2945 'xsigma' or 'x' (= x-sigma level. e.g.,
2946 '3sigma'), or
2947 'topx' (= the x strongest ones, e.g. 'top5').
2948 default is 3.0 (unit: sigma).
2949 addwn: the additional wave numbers to be used for fitting.
2950 list or integer value is accepted to specify every
2951 wave numbers. also string value can be used in case
2952 you need to specify wave numbers in a certain range,
2953 e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b),
2954 '<a' (= 0,1,...,a-2,a-1),
2955 '>=a' (= a, a+1, ... up to the maximum wave
2956 number corresponding to the Nyquist
2957 frequency for the case of FFT).
2958 default is [0].
2959 rejwn: the wave numbers NOT to be used for fitting.
2960 can be set just as addwn but has higher priority:
2961 wave numbers which are specified both in addwn
2962 and rejwn will NOT be used. default is [].
2963 insitu: if False a new scantable is returned.
2964 Otherwise, the scaling is done in-situ
2965 The default is taken from .asaprc (False)
2966 clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
2967 clipniter: maximum number of iteration of 'clipthresh'-sigma
2968 clipping (default is 0)
2969 plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
2970 plot the fit and the residual. In this each
2971 indivual fit has to be approved, by typing 'y'
2972 or 'n'
2973 getresidual: if False, returns best-fit values instead of
2974 residual. (default is True)
2975 showprogress: show progress status for large data.
2976 default is True.
2977 minnrow: minimum number of input spectra to show.
2978 default is 1000.
2979 outlog: Output the coefficients of the best-fit
2980 function to logger (default is False)
2981 blfile: Name of a text file in which the best-fit
2982 parameter values to be written
2983 (default is '': no file/logger output)
2984 csvformat: if True blfile is csv-formatted, default is False.
2985 bltable: name of a baseline table where fitting results
2986 (coefficients, rms, etc.) are to be written.
2987 if given, fitting results will NOT be output to
2988 scantable (insitu=True) or None will be
2989 returned (insitu=False).
2990 (default is "": no table output)
2991
2992 Example:
2993 # return a scan baselined by a combination of sinusoidal curves
2994 # having wave numbers in spectral window up to 10,
2995 # also with 3-sigma clipping, iteration up to 4 times
2996 bscan = scan.sinusoid_baseline(addwn='<=10',clipthresh=3.0,clipniter=4)
2997
2998 Note:
2999 The best-fit parameter values output in logger and/or blfile are now
3000 based on specunit of 'channel'.
3001 """
3002
3003 try:
3004 varlist = vars()
3005
3006 if insitu is None: insitu = rcParams['insitu']
3007 if insitu:
3008 workscan = self
3009 else:
3010 workscan = self.copy()
3011
3012 if mask is None: mask = []
3013 if applyfft is None: applyfft = True
3014 if fftmethod is None: fftmethod = 'fft'
3015 if fftthresh is None: fftthresh = 3.0
3016 if addwn is None: addwn = [0]
3017 if rejwn is None: rejwn = []
3018 if clipthresh is None: clipthresh = 3.0
3019 if clipniter is None: clipniter = 0
3020 if plot is None: plot = False
3021 if getresidual is None: getresidual = True
3022 if showprogress is None: showprogress = True
3023 if minnrow is None: minnrow = 1000
3024 if outlog is None: outlog = False
3025 if blfile is None: blfile = ''
3026 if csvformat is None: csvformat = False
3027 if bltable is None: bltable = ''
3028
3029 sapplyfft = 'true' if applyfft else 'false'
3030 fftinfo = ','.join([sapplyfft, fftmethod.lower(), str(fftthresh).lower()])
3031
3032 scsvformat = 'T' if csvformat else 'F'
3033
3034 #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method.
3035 workscan._sinusoid_baseline(mask,
3036 fftinfo,
3037 #applyfft, fftmethod.lower(),
3038 #str(fftthresh).lower(),
3039 workscan._parse_wn(addwn),
3040 workscan._parse_wn(rejwn),
3041 clipthresh, clipniter,
3042 getresidual,
3043 pack_progress_params(showprogress,
3044 minnrow),
3045 outlog, scsvformat+blfile,
3046 bltable)
3047 workscan._add_history('sinusoid_baseline', varlist)
3048
3049 if bltable == '':
3050 if insitu:
3051 self._assign(workscan)
3052 else:
3053 return workscan
3054 else:
3055 if not insitu:
3056 return None
3057
3058 except RuntimeError, e:
3059 raise_fitting_failure_exception(e)
3060
3061
3062 @asaplog_post_dec
3063 def auto_sinusoid_baseline(self, mask=None, applyfft=None,
3064 fftmethod=None, fftthresh=None,
3065 addwn=None, rejwn=None,
3066 insitu=None,
3067 clipthresh=None, clipniter=None,
3068 edge=None, threshold=None, chan_avg_limit=None,
3069 plot=None,
3070 getresidual=None,
3071 showprogress=None, minnrow=None,
3072 outlog=None,
3073 blfile=None, csvformat=None,
3074 bltable=None):
3075 """\
3076 Return a scan which has been baselined (all rows) with sinusoidal
3077 functions.
3078 Spectral lines are detected first using linefinder and masked out
3079 to avoid them affecting the baseline solution.
3080
3081 Parameters:
3082 mask: an optional mask retreived from scantable
3083 applyfft: if True use some method, such as FFT, to find
3084 strongest sinusoidal components in the wavenumber
3085 domain to be used for baseline fitting.
3086 default is True.
3087 fftmethod: method to find the strong sinusoidal components.
3088 now only 'fft' is available and it is the default.
3089 fftthresh: the threshold to select wave numbers to be used for
3090 fitting from the distribution of amplitudes in the
3091 wavenumber domain.
3092 both float and string values accepted.
3093 given a float value, the unit is set to sigma.
3094 for string values, allowed formats include:
3095 'xsigma' or 'x' (= x-sigma level. e.g.,
3096 '3sigma'), or
3097 'topx' (= the x strongest ones, e.g. 'top5').
3098 default is 3.0 (unit: sigma).
3099 addwn: the additional wave numbers to be used for fitting.
3100 list or integer value is accepted to specify every
3101 wave numbers. also string value can be used in case
3102 you need to specify wave numbers in a certain range,
3103 e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b),
3104 '<a' (= 0,1,...,a-2,a-1),
3105 '>=a' (= a, a+1, ... up to the maximum wave
3106 number corresponding to the Nyquist
3107 frequency for the case of FFT).
3108 default is [0].
3109 rejwn: the wave numbers NOT to be used for fitting.
3110 can be set just as addwn but has higher priority:
3111 wave numbers which are specified both in addwn
3112 and rejwn will NOT be used. default is [].
3113 insitu: if False a new scantable is returned.
3114 Otherwise, the scaling is done in-situ
3115 The default is taken from .asaprc (False)
3116 clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
3117 clipniter: maximum number of iteration of 'clipthresh'-sigma
3118 clipping (default is 0)
3119 edge: an optional number of channel to drop at
3120 the edge of spectrum. If only one value is
3121 specified, the same number will be dropped
3122 from both sides of the spectrum. Default
3123 is to keep all channels. Nested tuples
3124 represent individual edge selection for
3125 different IFs (a number of spectral channels
3126 can be different)
3127 threshold: the threshold used by line finder. It is
3128 better to keep it large as only strong lines
3129 affect the baseline solution.
3130 chan_avg_limit: a maximum number of consequtive spectral
3131 channels to average during the search of
3132 weak and broad lines. The default is no
3133 averaging (and no search for weak lines).
3134 If such lines can affect the fitted baseline
3135 (e.g. a high order polynomial is fitted),
3136 increase this parameter (usually values up
3137 to 8 are reasonable). Most users of this
3138 method should find the default value sufficient.
3139 plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
3140 plot the fit and the residual. In this each
3141 indivual fit has to be approved, by typing 'y'
3142 or 'n'
3143 getresidual: if False, returns best-fit values instead of
3144 residual. (default is True)
3145 showprogress: show progress status for large data.
3146 default is True.
3147 minnrow: minimum number of input spectra to show.
3148 default is 1000.
3149 outlog: Output the coefficients of the best-fit
3150 function to logger (default is False)
3151 blfile: Name of a text file in which the best-fit
3152 parameter values to be written
3153 (default is "": no file/logger output)
3154 csvformat: if True blfile is csv-formatted, default is False.
3155 bltable: name of a baseline table where fitting results
3156 (coefficients, rms, etc.) are to be written.
3157 if given, fitting results will NOT be output to
3158 scantable (insitu=True) or None will be
3159 returned (insitu=False).
3160 (default is "": no table output)
3161
3162 Example:
3163 bscan = scan.auto_sinusoid_baseline(addwn='<=10', insitu=False)
3164
3165 Note:
3166 The best-fit parameter values output in logger and/or blfile are now
3167 based on specunit of 'channel'.
3168 """
3169
3170 try:
3171 varlist = vars()
3172
3173 if insitu is None: insitu = rcParams['insitu']
3174 if insitu:
3175 workscan = self
3176 else:
3177 workscan = self.copy()
3178
3179 if mask is None: mask = []
3180 if applyfft is None: applyfft = True
3181 if fftmethod is None: fftmethod = 'fft'
3182 if fftthresh is None: fftthresh = 3.0
3183 if addwn is None: addwn = [0]
3184 if rejwn is None: rejwn = []
3185 if clipthresh is None: clipthresh = 3.0
3186 if clipniter is None: clipniter = 0
3187 if edge is None: edge = (0,0)
3188 if threshold is None: threshold = 3
3189 if chan_avg_limit is None: chan_avg_limit = 1
3190 if plot is None: plot = False
3191 if getresidual is None: getresidual = True
3192 if showprogress is None: showprogress = True
3193 if minnrow is None: minnrow = 1000
3194 if outlog is None: outlog = False
3195 if blfile is None: blfile = ''
3196 if csvformat is None: csvformat = False
3197 if bltable is None: bltable = ''
3198
3199 sapplyfft = 'true' if applyfft else 'false'
3200 fftinfo = ','.join([sapplyfft, fftmethod.lower(), str(fftthresh).lower()])
3201
3202 scsvformat = 'T' if csvformat else 'F'
3203
3204 #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method.
3205 workscan._auto_sinusoid_baseline(mask,
3206 fftinfo,
3207 workscan._parse_wn(addwn),
3208 workscan._parse_wn(rejwn),
3209 clipthresh, clipniter,
3210 normalise_edge_param(edge),
3211 threshold, chan_avg_limit,
3212 getresidual,
3213 pack_progress_params(showprogress,
3214 minnrow),
3215 outlog, scsvformat+blfile, bltable)
3216 workscan._add_history("auto_sinusoid_baseline", varlist)
3217
3218 if bltable == '':
3219 if insitu:
3220 self._assign(workscan)
3221 else:
3222 return workscan
3223 else:
3224 if not insitu:
3225 return None
3226
3227 except RuntimeError, e:
3228 raise_fitting_failure_exception(e)
3229
3230 @asaplog_post_dec
3231 def cspline_baseline(self, mask=None, npiece=None, insitu=None,
3232 clipthresh=None, clipniter=None, plot=None,
3233 getresidual=None, showprogress=None, minnrow=None,
3234 outlog=None, blfile=None, csvformat=None,
3235 bltable=None):
3236 """\
3237 Return a scan which has been baselined (all rows) by cubic spline
3238 function (piecewise cubic polynomial).
3239
3240 Parameters:
3241 mask: An optional mask
3242 npiece: Number of pieces. (default is 2)
3243 insitu: If False a new scantable is returned.
3244 Otherwise, the scaling is done in-situ
3245 The default is taken from .asaprc (False)
3246 clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
3247 clipniter: maximum number of iteration of 'clipthresh'-sigma
3248 clipping (default is 0)
3249 plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
3250 plot the fit and the residual. In this each
3251 indivual fit has to be approved, by typing 'y'
3252 or 'n'
3253 getresidual: if False, returns best-fit values instead of
3254 residual. (default is True)
3255 showprogress: show progress status for large data.
3256 default is True.
3257 minnrow: minimum number of input spectra to show.
3258 default is 1000.
3259 outlog: Output the coefficients of the best-fit
3260 function to logger (default is False)
3261 blfile: Name of a text file in which the best-fit
3262 parameter values to be written
3263 (default is "": no file/logger output)
3264 csvformat: if True blfile is csv-formatted, default is False.
3265 bltable: name of a baseline table where fitting results
3266 (coefficients, rms, etc.) are to be written.
3267 if given, fitting results will NOT be output to
3268 scantable (insitu=True) or None will be
3269 returned (insitu=False).
3270 (default is "": no table output)
3271
3272 Example:
3273 # return a scan baselined by a cubic spline consisting of 2 pieces
3274 # (i.e., 1 internal knot),
3275 # also with 3-sigma clipping, iteration up to 4 times
3276 bscan = scan.cspline_baseline(npiece=2,clipthresh=3.0,clipniter=4)
3277
3278 Note:
3279 The best-fit parameter values output in logger and/or blfile are now
3280 based on specunit of 'channel'.
3281 """
3282
3283 try:
3284 varlist = vars()
3285
3286 if insitu is None: insitu = rcParams['insitu']
3287 if insitu:
3288 workscan = self
3289 else:
3290 workscan = self.copy()
3291
3292 if mask is None: mask = []
3293 if npiece is None: npiece = 2
3294 if clipthresh is None: clipthresh = 3.0
3295 if clipniter is None: clipniter = 0
3296 if plot is None: plot = False
3297 if getresidual is None: getresidual = True
3298 if showprogress is None: showprogress = True
3299 if minnrow is None: minnrow = 1000
3300 if outlog is None: outlog = False
3301 if blfile is None: blfile = ''
3302 if csvformat is None: csvformat = False
3303 if bltable is None: bltable = ''
3304
3305 scsvformat = 'T' if csvformat else 'F'
3306
3307 #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
3308 workscan._cspline_baseline(mask, npiece,
3309 clipthresh, clipniter,
3310 getresidual,
3311 pack_progress_params(showprogress,
3312 minnrow),
3313 outlog, scsvformat+blfile,
3314 bltable)
3315 workscan._add_history("cspline_baseline", varlist)
3316
3317 if bltable == '':
3318 if insitu:
3319 self._assign(workscan)
3320 else:
3321 return workscan
3322 else:
3323 if not insitu:
3324 return None
3325
3326 except RuntimeError, e:
3327 raise_fitting_failure_exception(e)
3328
3329 @asaplog_post_dec
3330 def auto_cspline_baseline(self, mask=None, npiece=None, insitu=None,
3331 clipthresh=None, clipniter=None,
3332 edge=None, threshold=None, chan_avg_limit=None,
3333 getresidual=None, plot=None,
3334 showprogress=None, minnrow=None, outlog=None,
3335 blfile=None, csvformat=None, bltable=None):
3336 """\
3337 Return a scan which has been baselined (all rows) by cubic spline
3338 function (piecewise cubic polynomial).
3339 Spectral lines are detected first using linefinder and masked out
3340 to avoid them affecting the baseline solution.
3341
3342 Parameters:
3343 mask: an optional mask retreived from scantable
3344 npiece: Number of pieces. (default is 2)
3345 insitu: if False a new scantable is returned.
3346 Otherwise, the scaling is done in-situ
3347 The default is taken from .asaprc (False)
3348 clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
3349 clipniter: maximum number of iteration of 'clipthresh'-sigma
3350 clipping (default is 0)
3351 edge: an optional number of channel to drop at
3352 the edge of spectrum. If only one value is
3353 specified, the same number will be dropped
3354 from both sides of the spectrum. Default
3355 is to keep all channels. Nested tuples
3356 represent individual edge selection for
3357 different IFs (a number of spectral channels
3358 can be different)
3359 threshold: the threshold used by line finder. It is
3360 better to keep it large as only strong lines
3361 affect the baseline solution.
3362 chan_avg_limit: a maximum number of consequtive spectral
3363 channels to average during the search of
3364 weak and broad lines. The default is no
3365 averaging (and no search for weak lines).
3366 If such lines can affect the fitted baseline
3367 (e.g. a high order polynomial is fitted),
3368 increase this parameter (usually values up
3369 to 8 are reasonable). Most users of this
3370 method should find the default value sufficient.
3371 plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
3372 plot the fit and the residual. In this each
3373 indivual fit has to be approved, by typing 'y'
3374 or 'n'
3375 getresidual: if False, returns best-fit values instead of
3376 residual. (default is True)
3377 showprogress: show progress status for large data.
3378 default is True.
3379 minnrow: minimum number of input spectra to show.
3380 default is 1000.
3381 outlog: Output the coefficients of the best-fit
3382 function to logger (default is False)
3383 blfile: Name of a text file in which the best-fit
3384 parameter values to be written
3385 (default is "": no file/logger output)
3386 csvformat: if True blfile is csv-formatted, default is False.
3387 bltable: name of a baseline table where fitting results
3388 (coefficients, rms, etc.) are to be written.
3389 if given, fitting results will NOT be output to
3390 scantable (insitu=True) or None will be
3391 returned (insitu=False).
3392 (default is "": no table output)
3393
3394 Example:
3395 bscan = scan.auto_cspline_baseline(npiece=3, insitu=False)
3396
3397 Note:
3398 The best-fit parameter values output in logger and/or blfile are now
3399 based on specunit of 'channel'.
3400 """
3401
3402 try:
3403 varlist = vars()
3404
3405 if insitu is None: insitu = rcParams['insitu']
3406 if insitu:
3407 workscan = self
3408 else:
3409 workscan = self.copy()
3410
3411 #if mask is None: mask = [True for i in xrange(workscan.nchan())]
3412 if mask is None: mask = []
3413 if npiece is None: npiece = 2
3414 if clipthresh is None: clipthresh = 3.0
3415 if clipniter is None: clipniter = 0
3416 if edge is None: edge = (0, 0)
3417 if threshold is None: threshold = 3
3418 if chan_avg_limit is None: chan_avg_limit = 1
3419 if plot is None: plot = False
3420 if getresidual is None: getresidual = True
3421 if showprogress is None: showprogress = True
3422 if minnrow is None: minnrow = 1000
3423 if outlog is None: outlog = False
3424 if blfile is None: blfile = ''
3425 if csvformat is None: csvformat = False
3426 if bltable is None: bltable = ''
3427
3428 scsvformat = 'T' if csvformat else 'F'
3429
3430 #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
3431 workscan._auto_cspline_baseline(mask, npiece,
3432 clipthresh, clipniter,
3433 normalise_edge_param(edge),
3434 threshold,
3435 chan_avg_limit, getresidual,
3436 pack_progress_params(showprogress,
3437 minnrow),
3438 outlog,
3439 scsvformat+blfile,
3440 bltable)
3441 workscan._add_history("auto_cspline_baseline", varlist)
3442
3443 if bltable == '':
3444 if insitu:
3445 self._assign(workscan)
3446 else:
3447 return workscan
3448 else:
3449 if not insitu:
3450 return None
3451
3452 except RuntimeError, e:
3453 raise_fitting_failure_exception(e)
3454
3455 @asaplog_post_dec
3456 def chebyshev_baseline(self, mask=None, order=None, insitu=None,
3457 clipthresh=None, clipniter=None, plot=None,
3458 getresidual=None, showprogress=None, minnrow=None,
3459 outlog=None, blfile=None, csvformat=None,
3460 bltable=None):
3461 """\
3462 Return a scan which has been baselined (all rows) by Chebyshev polynomials.
3463
3464 Parameters:
3465 mask: An optional mask
3466 order: the maximum order of Chebyshev polynomial (default is 5)
3467 insitu: If False a new scantable is returned.
3468 Otherwise, the scaling is done in-situ
3469 The default is taken from .asaprc (False)
3470 clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
3471 clipniter: maximum number of iteration of 'clipthresh'-sigma
3472 clipping (default is 0)
3473 plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
3474 plot the fit and the residual. In this each
3475 indivual fit has to be approved, by typing 'y'
3476 or 'n'
3477 getresidual: if False, returns best-fit values instead of
3478 residual. (default is True)
3479 showprogress: show progress status for large data.
3480 default is True.
3481 minnrow: minimum number of input spectra to show.
3482 default is 1000.
3483 outlog: Output the coefficients of the best-fit
3484 function to logger (default is False)
3485 blfile: Name of a text file in which the best-fit
3486 parameter values to be written
3487 (default is "": no file/logger output)
3488 csvformat: if True blfile is csv-formatted, default is False.
3489 bltable: name of a baseline table where fitting results
3490 (coefficients, rms, etc.) are to be written.
3491 if given, fitting results will NOT be output to
3492 scantable (insitu=True) or None will be
3493 returned (insitu=False).
3494 (default is "": no table output)
3495
3496 Example:
3497 # return a scan baselined by a cubic spline consisting of 2 pieces
3498 # (i.e., 1 internal knot),
3499 # also with 3-sigma clipping, iteration up to 4 times
3500 bscan = scan.cspline_baseline(npiece=2,clipthresh=3.0,clipniter=4)
3501
3502 Note:
3503 The best-fit parameter values output in logger and/or blfile are now
3504 based on specunit of 'channel'.
3505 """
3506
3507 try:
3508 varlist = vars()
3509
3510 if insitu is None: insitu = rcParams['insitu']
3511 if insitu:
3512 workscan = self
3513 else:
3514 workscan = self.copy()
3515
3516 if mask is None: mask = []
3517 if order is None: order = 5
3518 if clipthresh is None: clipthresh = 3.0
3519 if clipniter is None: clipniter = 0
3520 if plot is None: plot = False
3521 if getresidual is None: getresidual = True
3522 if showprogress is None: showprogress = True
3523 if minnrow is None: minnrow = 1000
3524 if outlog is None: outlog = False
3525 if blfile is None: blfile = ''
3526 if csvformat is None: csvformat = False
3527 if bltable is None: bltable = ''
3528
3529 scsvformat = 'T' if csvformat else 'F'
3530
3531 #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
3532 workscan._chebyshev_baseline(mask, order,
3533 clipthresh, clipniter,
3534 getresidual,
3535 pack_progress_params(showprogress,
3536 minnrow),
3537 outlog, scsvformat+blfile,
3538 bltable)
3539 workscan._add_history("chebyshev_baseline", varlist)
3540
3541 if bltable == '':
3542 if insitu:
3543 self._assign(workscan)
3544 else:
3545 return workscan
3546 else:
3547 if not insitu:
3548 return None
3549
3550 except RuntimeError, e:
3551 raise_fitting_failure_exception(e)
3552
3553 @asaplog_post_dec
3554 def auto_chebyshev_baseline(self, mask=None, order=None, insitu=None,
3555 clipthresh=None, clipniter=None,
3556 edge=None, threshold=None, chan_avg_limit=None,
3557 getresidual=None, plot=None,
3558 showprogress=None, minnrow=None, outlog=None,
3559 blfile=None, csvformat=None, bltable=None):
3560 """\
3561 Return a scan which has been baselined (all rows) by Chebyshev polynomials.
3562 Spectral lines are detected first using linefinder and masked out
3563 to avoid them affecting the baseline solution.
3564
3565 Parameters:
3566 mask: an optional mask retreived from scantable
3567 order: the maximum order of Chebyshev polynomial (default is 5)
3568 insitu: if False a new scantable is returned.
3569 Otherwise, the scaling is done in-situ
3570 The default is taken from .asaprc (False)
3571 clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
3572 clipniter: maximum number of iteration of 'clipthresh'-sigma
3573 clipping (default is 0)
3574 edge: an optional number of channel to drop at
3575 the edge of spectrum. If only one value is
3576 specified, the same number will be dropped
3577 from both sides of the spectrum. Default
3578 is to keep all channels. Nested tuples
3579 represent individual edge selection for
3580 different IFs (a number of spectral channels
3581 can be different)
3582 threshold: the threshold used by line finder. It is
3583 better to keep it large as only strong lines
3584 affect the baseline solution.
3585 chan_avg_limit: a maximum number of consequtive spectral
3586 channels to average during the search of
3587 weak and broad lines. The default is no
3588 averaging (and no search for weak lines).
3589 If such lines can affect the fitted baseline
3590 (e.g. a high order polynomial is fitted),
3591 increase this parameter (usually values up
3592 to 8 are reasonable). Most users of this
3593 method should find the default value sufficient.
3594 plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
3595 plot the fit and the residual. In this each
3596 indivual fit has to be approved, by typing 'y'
3597 or 'n'
3598 getresidual: if False, returns best-fit values instead of
3599 residual. (default is True)
3600 showprogress: show progress status for large data.
3601 default is True.
3602 minnrow: minimum number of input spectra to show.
3603 default is 1000.
3604 outlog: Output the coefficients of the best-fit
3605 function to logger (default is False)
3606 blfile: Name of a text file in which the best-fit
3607 parameter values to be written
3608 (default is "": no file/logger output)
3609 csvformat: if True blfile is csv-formatted, default is False.
3610 bltable: name of a baseline table where fitting results
3611 (coefficients, rms, etc.) are to be written.
3612 if given, fitting results will NOT be output to
3613 scantable (insitu=True) or None will be
3614 returned (insitu=False).
3615 (default is "": no table output)
3616
3617 Example:
3618 bscan = scan.auto_cspline_baseline(npiece=3, insitu=False)
3619
3620 Note:
3621 The best-fit parameter values output in logger and/or blfile are now
3622 based on specunit of 'channel'.
3623 """
3624
3625 try:
3626 varlist = vars()
3627
3628 if insitu is None: insitu = rcParams['insitu']
3629 if insitu:
3630 workscan = self
3631 else:
3632 workscan = self.copy()
3633
3634 if mask is None: mask = []
3635 if order is None: order = 5
3636 if clipthresh is None: clipthresh = 3.0
3637 if clipniter is None: clipniter = 0
3638 if edge is None: edge = (0, 0)
3639 if threshold is None: threshold = 3
3640 if chan_avg_limit is None: chan_avg_limit = 1
3641 if plot is None: plot = False
3642 if getresidual is None: getresidual = True
3643 if showprogress is None: showprogress = True
3644 if minnrow is None: minnrow = 1000
3645 if outlog is None: outlog = False
3646 if blfile is None: blfile = ''
3647 if csvformat is None: csvformat = False
3648 if bltable is None: bltable = ''
3649
3650 scsvformat = 'T' if csvformat else 'F'
3651
3652 #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
3653 workscan._auto_chebyshev_baseline(mask, order,
3654 clipthresh, clipniter,
3655 normalise_edge_param(edge),
3656 threshold,
3657 chan_avg_limit, getresidual,
3658 pack_progress_params(showprogress,
3659 minnrow),
3660 outlog, scsvformat+blfile,
3661 bltable)
3662 workscan._add_history("auto_chebyshev_baseline", varlist)
3663
3664 if bltable == '':
3665 if insitu:
3666 self._assign(workscan)
3667 else:
3668 return workscan
3669 else:
3670 if not insitu:
3671 return None
3672
3673 except RuntimeError, e:
3674 raise_fitting_failure_exception(e)
3675
3676 @asaplog_post_dec
3677 def poly_baseline(self, mask=None, order=None, insitu=None,
3678 clipthresh=None, clipniter=None, plot=None,
3679 getresidual=None, showprogress=None, minnrow=None,
3680 outlog=None, blfile=None, csvformat=None,
3681 bltable=None):
3682 """\
3683 Return a scan which has been baselined (all rows) by a polynomial.
3684 Parameters:
3685 mask: an optional mask
3686 order: the order of the polynomial (default is 0)
3687 insitu: if False a new scantable is returned.
3688 Otherwise, the scaling is done in-situ
3689 The default is taken from .asaprc (False)
3690 clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
3691 clipniter: maximum number of iteration of 'clipthresh'-sigma
3692 clipping (default is 0)
3693 plot: plot the fit and the residual. In this each
3694 indivual fit has to be approved, by typing 'y'
3695 or 'n'
3696 getresidual: if False, returns best-fit values instead of
3697 residual. (default is True)
3698 showprogress: show progress status for large data.
3699 default is True.
3700 minnrow: minimum number of input spectra to show.
3701 default is 1000.
3702 outlog: Output the coefficients of the best-fit
3703 function to logger (default is False)
3704 blfile: Name of a text file in which the best-fit
3705 parameter values to be written
3706 (default is "": no file/logger output)
3707 csvformat: if True blfile is csv-formatted, default is False.
3708 bltable: name of a baseline table where fitting results
3709 (coefficients, rms, etc.) are to be written.
3710 if given, fitting results will NOT be output to
3711 scantable (insitu=True) or None will be
3712 returned (insitu=False).
3713 (default is "": no table output)
3714
3715 Example:
3716 # return a scan baselined by a third order polynomial,
3717 # not using a mask
3718 bscan = scan.poly_baseline(order=3)
3719 """
3720
3721 try:
3722 varlist = vars()
3723
3724 if insitu is None:
3725 insitu = rcParams["insitu"]
3726 if insitu:
3727 workscan = self
3728 else:
3729 workscan = self.copy()
3730
3731 if mask is None: mask = []
3732 if order is None: order = 0
3733 if clipthresh is None: clipthresh = 3.0
3734 if clipniter is None: clipniter = 0
3735 if plot is None: plot = False
3736 if getresidual is None: getresidual = True
3737 if showprogress is None: showprogress = True
3738 if minnrow is None: minnrow = 1000
3739 if outlog is None: outlog = False
3740 if blfile is None: blfile = ''
3741 if csvformat is None: csvformat = False
3742 if bltable is None: bltable = ''
3743
3744 scsvformat = 'T' if csvformat else 'F'
3745
3746 if plot:
3747 outblfile = (blfile != "") and \
3748 os.path.exists(os.path.expanduser(
3749 os.path.expandvars(blfile))
3750 )
3751 if outblfile:
3752 blf = open(blfile, "a")
3753
3754 f = fitter()
3755 f.set_function(lpoly=order)
3756
3757 rows = xrange(workscan.nrow())
3758 #if len(rows) > 0: workscan._init_blinfo()
3759
3760 action = "H"
3761 for r in rows:
3762 f.x = workscan._getabcissa(r)
3763 f.y = workscan._getspectrum(r)
3764 if mask:
3765 f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
3766 else: # mask=None
3767 f.mask = workscan._getmask(r)
3768
3769 f.data = None
3770 f.fit()
3771
3772 if action != "Y": # skip plotting when accepting all
3773 f.plot(residual=True)
3774 #accept_fit = raw_input("Accept fit ( [y]/n ): ")
3775 #if accept_fit.upper() == "N":
3776 # #workscan._append_blinfo(None, None, None)
3777 # continue
3778 accept_fit = self._get_verify_action("Accept fit?",action)
3779 if r == 0: action = None
3780 if accept_fit.upper() == "N":
3781 continue
3782 elif accept_fit.upper() == "R":
3783 break
3784 elif accept_fit.upper() == "A":
3785 action = "Y"
3786
3787 blpars = f.get_parameters()
3788 masklist = workscan.get_masklist(f.mask, row=r, silent=True)
3789 #workscan._append_blinfo(blpars, masklist, f.mask)
3790 workscan._setspectrum((f.fitter.getresidual()
3791 if getresidual else f.fitter.getfit()), r)
3792
3793 if outblfile:
3794 rms = workscan.get_rms(f.mask, r)
3795 dataout = \
3796 workscan.format_blparams_row(blpars["params"],
3797 blpars["fixed"],
3798 rms, str(masklist),
3799 r, True, csvformat)
3800 blf.write(dataout)
3801
3802 f._p.unmap()
3803 f._p = None
3804
3805 if outblfile:
3806 blf.close()
3807 else:
3808 workscan._poly_baseline(mask, order,
3809 clipthresh, clipniter, #
3810 getresidual,
3811 pack_progress_params(showprogress,
3812 minnrow),
3813 outlog, scsvformat+blfile,
3814 bltable) #
3815
3816 workscan._add_history("poly_baseline", varlist)
3817
3818 if insitu:
3819 self._assign(workscan)
3820 else:
3821 return workscan
3822
3823 except RuntimeError, e:
3824 raise_fitting_failure_exception(e)
3825
3826 @asaplog_post_dec
3827 def auto_poly_baseline(self, mask=None, order=None, insitu=None,
3828 clipthresh=None, clipniter=None,
3829 edge=None, threshold=None, chan_avg_limit=None,
3830 getresidual=None, plot=None,
3831 showprogress=None, minnrow=None, outlog=None,
3832 blfile=None, csvformat=None, bltable=None):
3833 """\
3834 Return a scan which has been baselined (all rows) by a polynomial.
3835 Spectral lines are detected first using linefinder and masked out
3836 to avoid them affecting the baseline solution.
3837
3838 Parameters:
3839 mask: an optional mask retreived from scantable
3840 order: the order of the polynomial (default is 0)
3841 insitu: if False a new scantable is returned.
3842 Otherwise, the scaling is done in-situ
3843 The default is taken from .asaprc (False)
3844 clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
3845 clipniter: maximum number of iteration of 'clipthresh'-sigma
3846 clipping (default is 0)
3847 edge: an optional number of channel to drop at
3848 the edge of spectrum. If only one value is
3849 specified, the same number will be dropped
3850 from both sides of the spectrum. Default
3851 is to keep all channels. Nested tuples
3852 represent individual edge selection for
3853 different IFs (a number of spectral channels
3854 can be different)
3855 threshold: the threshold used by line finder. It is
3856 better to keep it large as only strong lines
3857 affect the baseline solution.
3858 chan_avg_limit: a maximum number of consequtive spectral
3859 channels to average during the search of
3860 weak and broad lines. The default is no
3861 averaging (and no search for weak lines).
3862 If such lines can affect the fitted baseline
3863 (e.g. a high order polynomial is fitted),
3864 increase this parameter (usually values up
3865 to 8 are reasonable). Most users of this
3866 method should find the default value sufficient.
3867 plot: plot the fit and the residual. In this each
3868 indivual fit has to be approved, by typing 'y'
3869 or 'n'
3870 getresidual: if False, returns best-fit values instead of
3871 residual. (default is True)
3872 showprogress: show progress status for large data.
3873 default is True.
3874 minnrow: minimum number of input spectra to show.
3875 default is 1000.
3876 outlog: Output the coefficients of the best-fit
3877 function to logger (default is False)
3878 blfile: Name of a text file in which the best-fit
3879 parameter values to be written
3880 (default is "": no file/logger output)
3881 csvformat: if True blfile is csv-formatted, default is False.
3882 bltable: name of a baseline table where fitting results
3883 (coefficients, rms, etc.) are to be written.
3884 if given, fitting results will NOT be output to
3885 scantable (insitu=True) or None will be
3886 returned (insitu=False).
3887 (default is "": no table output)
3888
3889 Example:
3890 bscan = scan.auto_poly_baseline(order=7, insitu=False)
3891 """
3892
3893 try:
3894 varlist = vars()
3895
3896 if insitu is None:
3897 insitu = rcParams['insitu']
3898 if insitu:
3899 workscan = self
3900 else:
3901 workscan = self.copy()
3902
3903 if mask is None: mask = []
3904 if order is None: order = 0
3905 if clipthresh is None: clipthresh = 3.0
3906 if clipniter is None: clipniter = 0
3907 if edge is None: edge = (0, 0)
3908 if threshold is None: threshold = 3
3909 if chan_avg_limit is None: chan_avg_limit = 1
3910 if plot is None: plot = False
3911 if getresidual is None: getresidual = True
3912 if showprogress is None: showprogress = True
3913 if minnrow is None: minnrow = 1000
3914 if outlog is None: outlog = False
3915 if blfile is None: blfile = ''
3916 if csvformat is None: csvformat = False
3917 if bltable is None: bltable = ''
3918
3919 scsvformat = 'T' if csvformat else 'F'
3920
3921 edge = normalise_edge_param(edge)
3922
3923 if plot:
3924 outblfile = (blfile != "") and \
3925 os.path.exists(os.path.expanduser(os.path.expandvars(blfile)))
3926 if outblfile: blf = open(blfile, "a")
3927
3928 from asap.asaplinefind import linefinder
3929 fl = linefinder()
3930 fl.set_options(threshold=threshold, avg_limit=chan_avg_limit)
3931 fl.set_scan(workscan)
3932
3933 f = fitter()
3934 f.set_function(lpoly=order)
3935
3936 rows = xrange(workscan.nrow())
3937 #if len(rows) > 0: workscan._init_blinfo()
3938
3939 action = "H"
3940 for r in rows:
3941 idx = 2*workscan.getif(r)
3942 if mask:
3943 msk = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
3944 else: # mask=None
3945 msk = workscan._getmask(r)
3946 fl.find_lines(r, msk, edge[idx:idx+2])
3947
3948 f.x = workscan._getabcissa(r)
3949 f.y = workscan._getspectrum(r)
3950 f.mask = fl.get_mask()
3951 f.data = None
3952 f.fit()
3953
3954 if action != "Y": # skip plotting when accepting all
3955 f.plot(residual=True)
3956 #accept_fit = raw_input("Accept fit ( [y]/n ): ")
3957 accept_fit = self._get_verify_action("Accept fit?",action)
3958 if r == 0: action = None
3959 if accept_fit.upper() == "N":
3960 #workscan._append_blinfo(None, None, None)
3961 continue
3962 elif accept_fit.upper() == "R":
3963 break
3964 elif accept_fit.upper() == "A":
3965 action = "Y"
3966
3967 blpars = f.get_parameters()
3968 masklist = workscan.get_masklist(f.mask, row=r, silent=True)
3969 #workscan._append_blinfo(blpars, masklist, f.mask)
3970 workscan._setspectrum(
3971 (f.fitter.getresidual() if getresidual
3972 else f.fitter.getfit()), r
3973 )
3974
3975 if outblfile:
3976 rms = workscan.get_rms(f.mask, r)
3977 dataout = \
3978 workscan.format_blparams_row(blpars["params"],
3979 blpars["fixed"],
3980 rms, str(masklist),
3981 r, True, csvformat)
3982 blf.write(dataout)
3983
3984 f._p.unmap()
3985 f._p = None
3986
3987 if outblfile: blf.close()
3988 else:
3989 workscan._auto_poly_baseline(mask, order,
3990 clipthresh, clipniter,
3991 edge, threshold,
3992 chan_avg_limit, getresidual,
3993 pack_progress_params(showprogress,
3994 minnrow),
3995 outlog, scsvformat+blfile,
3996 bltable)
3997 workscan._add_history("auto_poly_baseline", varlist)
3998
3999 if bltable == '':
4000 if insitu:
4001 self._assign(workscan)
4002 else:
4003 return workscan
4004 else:
4005 if not insitu:
4006 return None
4007
4008 except RuntimeError, e:
4009 raise_fitting_failure_exception(e)
4010
4011 def _init_blinfo(self):
4012 """\
4013 Initialise the following three auxiliary members:
4014 blpars : parameters of the best-fit baseline,
4015 masklists : mask data (edge positions of masked channels) and
4016 actualmask : mask data (in boolean list),
4017 to keep for use later (including output to logger/text files).
4018 Used by poly_baseline() and auto_poly_baseline() in case of
4019 'plot=True'.
4020 """
4021 self.blpars = []
4022 self.masklists = []
4023 self.actualmask = []
4024 return
4025
4026 def _append_blinfo(self, data_blpars, data_masklists, data_actualmask):
4027 """\
4028 Append baseline-fitting related info to blpars, masklist and
4029 actualmask.
4030 """
4031 self.blpars.append(data_blpars)
4032 self.masklists.append(data_masklists)
4033 self.actualmask.append(data_actualmask)
4034 return
4035
4036 @asaplog_post_dec
4037 def rotate_linpolphase(self, angle):
4038 """\
4039 Rotate the phase of the complex polarization O=Q+iU correlation.
4040 This is always done in situ in the raw data. So if you call this
4041 function more than once then each call rotates the phase further.
4042
4043 Parameters:
4044
4045 angle: The angle (degrees) to rotate (add) by.
4046
4047 Example::
4048
4049 scan.rotate_linpolphase(2.3)
4050
4051 """
4052 varlist = vars()
4053 self._math._rotate_linpolphase(self, angle)
4054 self._add_history("rotate_linpolphase", varlist)
4055 return
4056
4057 @asaplog_post_dec
4058 def rotate_xyphase(self, angle):
4059 """\
4060 Rotate the phase of the XY correlation. This is always done in situ
4061 in the data. So if you call this function more than once
4062 then each call rotates the phase further.
4063
4064 Parameters:
4065
4066 angle: The angle (degrees) to rotate (add) by.
4067
4068 Example::
4069
4070 scan.rotate_xyphase(2.3)
4071
4072 """
4073 varlist = vars()
4074 self._math._rotate_xyphase(self, angle)
4075 self._add_history("rotate_xyphase", varlist)
4076 return
4077
4078 @asaplog_post_dec
4079 def swap_linears(self):
4080 """\
4081 Swap the linear polarisations XX and YY, or better the first two
4082 polarisations as this also works for ciculars.
4083 """
4084 varlist = vars()
4085 self._math._swap_linears(self)
4086 self._add_history("swap_linears", varlist)
4087 return
4088
4089 @asaplog_post_dec
4090 def invert_phase(self):
4091 """\
4092 Invert the phase of the complex polarisation
4093 """
4094 varlist = vars()
4095 self._math._invert_phase(self)
4096 self._add_history("invert_phase", varlist)
4097 return
4098
4099 @asaplog_post_dec
4100 def add(self, offset, insitu=None):
4101 """\
4102 Return a scan where all spectra have the offset added
4103
4104 Parameters:
4105
4106 offset: the offset
4107
4108 insitu: if False a new scantable is returned.
4109 Otherwise, the scaling is done in-situ
4110 The default is taken from .asaprc (False)
4111
4112 """
4113 if insitu is None: insitu = rcParams['insitu']
4114 self._math._setinsitu(insitu)
4115 varlist = vars()
4116 s = scantable(self._math._unaryop(self, offset, "ADD", False))
4117 s._add_history("add", varlist)
4118 if insitu:
4119 self._assign(s)
4120 else:
4121 return s
4122
4123 @asaplog_post_dec
4124 def scale(self, factor, tsys=True, insitu=None):
4125 """\
4126
4127 Return a scan where all spectra are scaled by the given 'factor'
4128
4129 Parameters:
4130
4131 factor: the scaling factor (float or 1D float list)
4132
4133 insitu: if False a new scantable is returned.
4134 Otherwise, the scaling is done in-situ
4135 The default is taken from .asaprc (False)
4136
4137 tsys: if True (default) then apply the operation to Tsys
4138 as well as the data
4139
4140 """
4141 if insitu is None: insitu = rcParams['insitu']
4142 self._math._setinsitu(insitu)
4143 varlist = vars()
4144 s = None
4145 import numpy
4146 if isinstance(factor, list) or isinstance(factor, numpy.ndarray):
4147 if isinstance(factor[0], list) or isinstance(factor[0],
4148 numpy.ndarray):
4149 from asapmath import _array2dOp
4150 s = _array2dOp( self, factor, "MUL", tsys, insitu )
4151 else:
4152 s = scantable( self._math._arrayop( self, factor,
4153 "MUL", tsys ) )
4154 else:
4155 s = scantable(self._math._unaryop(self, factor, "MUL", tsys))
4156 s._add_history("scale", varlist)
4157 if insitu:
4158 self._assign(s)
4159 else:
4160 return s
4161
4162 @preserve_selection
4163 def set_sourcetype(self, match, matchtype="pattern",
4164 sourcetype="reference"):
4165 """\
4166 Set the type of the source to be an source or reference scan
4167 using the provided pattern.
4168
4169 Parameters:
4170
4171 match: a Unix style pattern, regular expression or selector
4172
4173 matchtype: 'pattern' (default) UNIX style pattern or
4174 'regex' regular expression
4175
4176 sourcetype: the type of the source to use (source/reference)
4177
4178 """
4179 varlist = vars()
4180 stype = -1
4181 if sourcetype.lower().startswith("r") or sourcetype.lower() == "off":
4182 stype = 1
4183 elif sourcetype.lower().startswith("s") or sourcetype.lower() == "on":
4184 stype = 0
4185 else:
4186 raise ValueError("Illegal sourcetype use s(ource)/on or r(eference)/off")
4187 if matchtype.lower().startswith("p"):
4188 matchtype = "pattern"
4189 elif matchtype.lower().startswith("r"):
4190 matchtype = "regex"
4191 else:
4192 raise ValueError("Illegal matchtype, use p(attern) or r(egex)")
4193 sel = selector()
4194 if isinstance(match, selector):
4195 sel = match
4196 else:
4197 sel.set_query("SRCNAME=%s('%s')" % (matchtype, match))
4198 self.set_selection(sel)
4199 self._setsourcetype(stype)
4200 self._add_history("set_sourcetype", varlist)
4201
4202 @asaplog_post_dec
4203 @preserve_selection
4204 def auto_quotient(self, preserve=True, mode='paired', verify=False):
4205 """\
4206 This function allows to build quotients automatically.
4207 It assumes the observation to have the same number of
4208 "ons" and "offs"
4209
4210 Parameters:
4211
4212 preserve: you can preserve (default) the continuum or
4213 remove it. The equations used are
4214
4215 preserve: Output = Toff * (on/off) - Toff
4216
4217 remove: Output = Toff * (on/off) - Ton
4218
4219 mode: the on/off detection mode
4220 'paired' (default)
4221 identifies 'off' scans by the
4222 trailing '_R' (Mopra/Parkes) or
4223 '_e'/'_w' (Tid) and matches
4224 on/off pairs from the observing pattern
4225 'time'
4226 finds the closest off in time
4227
4228 .. todo:: verify argument is not implemented
4229
4230 """
4231 varlist = vars()
4232 modes = ["time", "paired"]
4233 if not mode in modes:
4234 msg = "please provide valid mode. Valid modes are %s" % (modes)
4235 raise ValueError(msg)
4236 s = None
4237 if mode.lower() == "paired":
4238 sel = self.get_selection()
4239 sel.set_query("SRCTYPE==psoff")
4240 self.set_selection(sel)
4241 offs = self.copy()
4242 sel.set_query("SRCTYPE==pson")
4243 self.set_selection(sel)
4244 ons = self.copy()
4245 s = scantable(self._math._quotient(ons, offs, preserve))
4246 elif mode.lower() == "time":
4247 s = scantable(self._math._auto_quotient(self, mode, preserve))
4248 s._add_history("auto_quotient", varlist)
4249 return s
4250
4251 @asaplog_post_dec
4252 def mx_quotient(self, mask = None, weight='median', preserve=True):
4253 """\
4254 Form a quotient using "off" beams when observing in "MX" mode.
4255
4256 Parameters:
4257
4258 mask: an optional mask to be used when weight == 'stddev'
4259
4260 weight: How to average the off beams. Default is 'median'.
4261
4262 preserve: you can preserve (default) the continuum or
4263 remove it. The equations used are:
4264
4265 preserve: Output = Toff * (on/off) - Toff
4266
4267 remove: Output = Toff * (on/off) - Ton
4268
4269 """
4270 mask = mask or ()
4271 varlist = vars()
4272 on = scantable(self._math._mx_extract(self, 'on'))
4273 preoff = scantable(self._math._mx_extract(self, 'off'))
4274 off = preoff.average_time(mask=mask, weight=weight, scanav=False)
4275 from asapmath import quotient
4276 q = quotient(on, off, preserve)
4277 q._add_history("mx_quotient", varlist)
4278 return q
4279
4280 @asaplog_post_dec
4281 def freq_switch(self, insitu=None):
4282 """\
4283 Apply frequency switching to the data.
4284
4285 Parameters:
4286
4287 insitu: if False a new scantable is returned.
4288 Otherwise, the swictching is done in-situ
4289 The default is taken from .asaprc (False)
4290
4291 """
4292 if insitu is None: insitu = rcParams['insitu']
4293 self._math._setinsitu(insitu)
4294 varlist = vars()
4295 s = scantable(self._math._freqswitch(self))
4296 s._add_history("freq_switch", varlist)
4297 if insitu:
4298 self._assign(s)
4299 else:
4300 return s
4301
4302 @asaplog_post_dec
4303 def recalc_azel(self):
4304 """Recalculate the azimuth and elevation for each position."""
4305 varlist = vars()
4306 self._recalcazel()
4307 self._add_history("recalc_azel", varlist)
4308 return
4309
4310 @asaplog_post_dec
4311 def __add__(self, other):
4312 """
4313 implicit on all axes and on Tsys
4314 """
4315 varlist = vars()
4316 s = self.__op( other, "ADD" )
4317 s._add_history("operator +", varlist)
4318 return s
4319
4320 @asaplog_post_dec
4321 def __sub__(self, other):
4322 """
4323 implicit on all axes and on Tsys
4324 """
4325 varlist = vars()
4326 s = self.__op( other, "SUB" )
4327 s._add_history("operator -", varlist)
4328 return s
4329
4330 @asaplog_post_dec
4331 def __mul__(self, other):
4332 """
4333 implicit on all axes and on Tsys
4334 """
4335 varlist = vars()
4336 s = self.__op( other, "MUL" ) ;
4337 s._add_history("operator *", varlist)
4338 return s
4339
4340
4341 @asaplog_post_dec
4342 def __div__(self, other):
4343 """
4344 implicit on all axes and on Tsys
4345 """
4346 varlist = vars()
4347 s = self.__op( other, "DIV" )
4348 s._add_history("operator /", varlist)
4349 return s
4350
4351 @asaplog_post_dec
4352 def __op( self, other, mode ):
4353 s = None
4354 if isinstance(other, scantable):
4355 s = scantable(self._math._binaryop(self, other, mode))
4356 elif isinstance(other, float):
4357 if other == 0.0:
4358 raise ZeroDivisionError("Dividing by zero is not recommended")
4359 s = scantable(self._math._unaryop(self, other, mode, False))
4360 elif isinstance(other, list) or isinstance(other, numpy.ndarray):
4361 if isinstance(other[0], list) \
4362 or isinstance(other[0], numpy.ndarray):
4363 from asapmath import _array2dOp
4364 s = _array2dOp( self, other, mode, False )
4365 else:
4366 s = scantable( self._math._arrayop( self, other,
4367 mode, False ) )
4368 else:
4369 raise TypeError("Other input is not a scantable or float value")
4370 return s
4371
4372 @asaplog_post_dec
4373 def get_fit(self, row=0):
4374 """\
4375 Print or return the stored fits for a row in the scantable
4376
4377 Parameters:
4378
4379 row: the row which the fit has been applied to.
4380
4381 """
4382 if row > self.nrow():
4383 return
4384 from asap.asapfit import asapfit
4385 fit = asapfit(self._getfit(row))
4386 asaplog.push( '%s' %(fit) )
4387 return fit.as_dict()
4388
4389 @preserve_selection
4390 def flag_nans(self):
4391 """\
4392 Utility function to flag NaN values in the scantable.
4393 """
4394 import numpy
4395 basesel = self.get_selection()
4396 for i in range(self.nrow()):
4397 sel = self.get_row_selector(i)
4398 self.set_selection(basesel+sel)
4399 nans = numpy.isnan(self._getspectrum(0))
4400 if numpy.any(nans):
4401 bnans = [ bool(v) for v in nans]
4402 self.flag(bnans)
4403
4404 def get_row_selector(self, rowno):
4405 return selector(rows=[rowno])
4406
4407 def _add_history(self, funcname, parameters):
4408 if not rcParams['scantable.history']:
4409 return
4410 # create date
4411 sep = "##"
4412 from datetime import datetime
4413 dstr = datetime.now().strftime('%Y/%m/%d %H:%M:%S')
4414 hist = dstr+sep
4415 hist += funcname+sep#cdate+sep
4416 if parameters.has_key('self'):
4417 del parameters['self']
4418 for k, v in parameters.iteritems():
4419 if type(v) is dict:
4420 for k2, v2 in v.iteritems():
4421 hist += k2
4422 hist += "="
4423 if isinstance(v2, scantable):
4424 hist += 'scantable'
4425 elif k2 == 'mask':
4426 if isinstance(v2, list) or isinstance(v2, tuple):
4427 hist += str(self._zip_mask(v2))
4428 else:
4429 hist += str(v2)
4430 else:
4431 hist += str(v2)
4432 else:
4433 hist += k
4434 hist += "="
4435 if isinstance(v, scantable):
4436 hist += 'scantable'
4437 elif k == 'mask':
4438 if isinstance(v, list) or isinstance(v, tuple):
4439 hist += str(self._zip_mask(v))
4440 else:
4441 hist += str(v)
4442 else:
4443 hist += str(v)
4444 hist += sep
4445 hist = hist[:-2] # remove trailing '##'
4446 self._addhistory(hist)
4447
4448
4449 def _zip_mask(self, mask):
4450 mask = list(mask)
4451 i = 0
4452 segments = []
4453 while mask[i:].count(1):
4454 i += mask[i:].index(1)
4455 if mask[i:].count(0):
4456 j = i + mask[i:].index(0)
4457 else:
4458 j = len(mask)
4459 segments.append([i, j])
4460 i = j
4461 return segments
4462
4463 def _get_ordinate_label(self):
4464 fu = "("+self.get_fluxunit()+")"
4465 import re
4466 lbl = "Intensity"
4467 if re.match(".K.", fu):
4468 lbl = "Brightness Temperature "+ fu
4469 elif re.match(".Jy.", fu):
4470 lbl = "Flux density "+ fu
4471 return lbl
4472
4473 def _check_ifs(self):
4474# return len(set([self.nchan(i) for i in self.getifnos()])) == 1
4475 nchans = [self.nchan(i) for i in self.getifnos()]
4476 nchans = filter(lambda t: t > 0, nchans)
4477 return (sum(nchans)/len(nchans) == nchans[0])
4478
4479 @asaplog_post_dec
4480 def _fill(self, names, unit, average, opts={}):
4481 first = True
4482 fullnames = []
4483 for name in names:
4484 name = os.path.expandvars(name)
4485 name = os.path.expanduser(name)
4486 if not os.path.exists(name):
4487 msg = "File '%s' does not exists" % (name)
4488 raise IOError(msg)
4489 fullnames.append(name)
4490 if average:
4491 asaplog.push('Auto averaging integrations')
4492 stype = int(rcParams['scantable.storage'].lower() == 'disk')
4493 for name in fullnames:
4494 tbl = Scantable(stype)
4495 if is_ms( name ):
4496 r = msfiller( tbl )
4497 else:
4498 r = filler( tbl )
4499 msg = "Importing %s..." % (name)
4500 asaplog.push(msg, False)
4501 r.open(name, opts)
4502 rx = rcParams['scantable.reference']
4503 r.setreferenceexpr(rx)
4504 r.fill()
4505 if average:
4506 tbl = self._math._average((tbl, ), (), 'NONE', 'SCAN')
4507 if not first:
4508 tbl = self._math._merge([self, tbl])
4509 Scantable.__init__(self, tbl)
4510 r.close()
4511 del r, tbl
4512 first = False
4513 #flush log
4514 asaplog.post()
4515 if unit is not None:
4516 self.set_fluxunit(unit)
4517 if not is_casapy():
4518 self.set_freqframe(rcParams['scantable.freqframe'])
4519
4520 def _get_verify_action( self, msg, action=None ):
4521 valid_act = ['Y', 'N', 'A', 'R']
4522 if not action or not isinstance(action, str):
4523 action = raw_input("%s [Y/n/a/r] (h for help): " % msg)
4524 if action == '':
4525 return "Y"
4526 elif (action.upper()[0] in valid_act):
4527 return action.upper()[0]
4528 elif (action.upper()[0] in ['H','?']):
4529 print "Available actions of verification [Y|n|a|r]"
4530 print " Y : Yes for current data (default)"
4531 print " N : No for current data"
4532 print " A : Accept all in the following and exit from verification"
4533 print " R : Reject all in the following and exit from verification"
4534 print " H or ?: help (show this message)"
4535 return self._get_verify_action(msg)
4536 else:
4537 return 'Y'
4538
4539 def __getitem__(self, key):
4540 if key < 0:
4541 key += self.nrow()
4542 if key >= self.nrow():
4543 raise IndexError("Row index out of range.")
4544 return self._getspectrum(key)
4545
4546 def __setitem__(self, key, value):
4547 if key < 0:
4548 key += self.nrow()
4549 if key >= self.nrow():
4550 raise IndexError("Row index out of range.")
4551 if not hasattr(value, "__len__") or \
4552 len(value) > self.nchan(self.getif(key)):
4553 raise ValueError("Spectrum length doesn't match.")
4554 return self._setspectrum(value, key)
4555
4556 def __len__(self):
4557 return self.nrow()
4558
4559 def __iter__(self):
4560 for i in range(len(self)):
4561 yield self[i]
Note: See TracBrowser for help on using the repository browser.