Legend:
- Unmodified
- Added
- Removed
-
trunk/src/SDMath.cc
r502 r518 150 150 151 151 WeightType wtType = NONE; 152 convertWeightString(wtType, weightStr );152 convertWeightString(wtType, weightStr, True); 153 153 154 154 // Create output Table by cloning from the first table … … 219 219 // To get the right shape for the Tsys accumulator we need to 220 220 // access a column from the first table. The shape of this 221 // array must not change 222 223 Array<Float> tSysSum; 221 // array must not change. Note however that since the TSysSqSum 222 // array is used in a normalization process, and that I ignore the 223 // channel axis replication of values for now, it loses a dimension 224 225 Array<Float> tSysSum, tSysSqSum; 224 226 { 225 227 const Table& tabIn = in[0]->table(); 226 228 tSysCol.attach(tabIn,"TSYS"); 227 229 tSysSum.resize(tSysCol.shape(0)); 230 // 231 tSysSqSum.resize(shp2); 228 232 } 229 233 tSysSum =0.0; 234 tSysSqSum = 0.0; 230 235 Array<Float> tSys; 231 236 … … 306 311 // Normalize data in 'sum' accumulation array according to weighting scheme 307 312 308 normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);313 normalize(sum, sumSq, tSysSqSum, nPts, intSum, wtType, asap::ChanAxis, nAxesSub); 309 314 310 315 // Get ScanContainer for the first row of this averaged Scan … … 331 336 // 332 337 tSysSum =0.0; 338 tSysSqSum =0.0; 333 339 timeSum = 0.0; 334 340 intSum = 0.0; … … 348 354 // Accumulate 349 355 350 accumulate(timeSum, intSum, nAccum, sum, sumSq, nPts, tSysSum, 351 352 356 accumulate(timeSum, intSum, nAccum, sum, sumSq, nPts, tSysSum, tSysSqSum, 357 tSys, nInc, mask, time, interval, in, iTab, iRow, asap::ChanAxis, 358 nAxesSub, useMask, wtType); 353 359 // 354 360 oldSourceName = sourceName; … … 364 370 // Normalize data in 'sum' accumulation array according to weighting scheme 365 371 366 normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);372 normalize(sum, sumSq, tSysSqSum, nPts, intSum, wtType, asap::ChanAxis, nAxesSub); 367 373 368 374 // Create and fill container. The container we clone will be from … … 807 813 { 808 814 WeightType wtType = NONE; 809 convertWeightString(wtType, weightStr );815 convertWeightString(wtType, weightStr, False); 810 816 811 817 const uInt nRows = in.nRow(); … … 1232 1238 // 1233 1239 // phase in degrees 1234 // Applies to all Beams and IFs 1235 // Might want to optionally select on Beam/IF 1240 // assumes linear correlations 1236 1241 // 1237 1242 { 1238 1243 if (in.nPol() != 4) { 1239 1244 throw(AipsError("You must have 4 polarizations to run this function")); 1245 } 1246 // 1247 SDHeader sh = in.getSDHeader(); 1248 Instrument inst = SDAttr::convertInstrument (sh.antennaname, False); 1249 SDAttr sdAtt; 1250 if (sdAtt.feedPolType(inst) != LINEAR) { 1251 throw(AipsError("Only linear polarizations are supported")); 1240 1252 } 1241 1253 // … … 1284 1296 // 1285 1297 // phase in degrees 1286 // Applies to all Beams and IFs 1287 // Might want to optionally select on Beam/IF 1298 // assumes linear correlations 1288 1299 // 1289 1300 { 1290 1301 if (in.nPol() != 4) { 1291 1302 throw(AipsError("You must have 4 polarizations to run this function")); 1303 } 1304 // 1305 SDHeader sh = in.getSDHeader(); 1306 Instrument inst = SDAttr::convertInstrument (sh.antennaname, False); 1307 SDAttr sdAtt; 1308 if (sdAtt.feedPolType(inst) != LINEAR) { 1309 throw(AipsError("Only linear polarizations are supported")); 1292 1310 } 1293 1311 // … … 1700 1718 } 1701 1719 1720 void SDMath::accumulate(Double& timeSum, Double& intSum, Int& nAccum, 1721 MaskedArray<Float>& sum, Array<Float>& sumSq, 1722 Array<Float>& nPts, Array<Float>& tSysSum, 1723 Array<Float>& tSysSqSum, 1724 const Array<Float>& tSys, const Array<Float>& nInc, 1725 const Vector<Bool>& mask, Double time, Double interval, 1726 const Block<CountedPtr<SDMemTable> >& in, 1727 uInt iTab, uInt iRow, uInt axis, 1728 uInt nAxesSub, Bool useMask, 1729 WeightType wtType) const 1730 { 1731 1732 // Get data 1733 1734 MaskedArray<Float> dataIn(in[iTab]->rowAsMaskedArray(iRow)); 1735 Array<Float>& valuesIn = dataIn.getRWArray(); // writable reference 1736 const Array<Bool>& maskIn = dataIn.getMask(); // RO reference 1737 // 1738 if (wtType==NONE) { 1739 const MaskedArray<Float> n(nInc,dataIn.getMask()); 1740 nPts += n; // Only accumulates where mask==T 1741 } else if (wtType==TINT) { 1742 1743 // We are weighting the data by integration time. 1744 1745 valuesIn *= Float(interval); 1746 1747 } else if (wtType==VAR) { 1748 1749 // We are going to average the data, weighted by the noise for each pol, beam and IF. 1750 // So therefore we need to iterate through by spectrum (axis 3) 1751 1752 VectorIterator<Float> itData(valuesIn, axis); 1753 ReadOnlyVectorIterator<Bool> itMask(maskIn, axis); 1754 Float fac = 1.0; 1755 IPosition pos(nAxesSub,0); 1756 // 1757 while (!itData.pastEnd()) { 1758 1759 // Make MaskedArray of Vector, optionally apply OTF mask, and find scaling factor 1760 1761 if (useMask) { 1762 MaskedArray<Float> tmp(itData.vector(),mask&&itMask.vector()); 1763 fac = 1.0/variance(tmp); 1764 } else { 1765 MaskedArray<Float> tmp(itData.vector(),itMask.vector()); 1766 fac = 1.0/variance(tmp); 1767 } 1768 1769 // Scale data 1770 1771 itData.vector() *= fac; // Writes back into 'dataIn' 1772 // 1773 // Accumulate variance per if/pol/beam averaged over spectrum 1774 // This method to get pos2 from itData.pos() is only valid 1775 // because the spectral axis is the last one (so we can just 1776 // copy the first nAXesSub positions out) 1777 1778 pos = itData.pos().getFirst(nAxesSub); 1779 sumSq(pos) += fac; 1780 // 1781 itData.next(); 1782 itMask.next(); 1783 } 1784 } else if (wtType==TSYS) { 1785 1786 // We are going to average the data, weighted by 1/Tsys**2 for each pol, beam and IF. 1787 // So therefore we need to iterate through by spectrum (axis 3). Although 1788 // Tsys is stored as a vector of length nChan, the values are replicated. 1789 // We will take a short cut and just use the value from the first channel 1790 // for now. 1791 // 1792 VectorIterator<Float> itData(valuesIn, axis); 1793 ReadOnlyVectorIterator<Float> itTSys(tSys, axis); 1794 Float fac = 1.0; 1795 IPosition pos(nAxesSub,0); 1796 // 1797 while (!itData.pastEnd()) { 1798 Float t = itTSys.vector()[0]; 1799 fac = 1.0/t/t; 1800 1801 // Scale data 1802 1803 itData.vector() *= fac; // Writes back into 'dataIn' 1804 // 1805 // Accumulate Tsys per if/pol/beam averaged over spectrum 1806 // This method to get pos2 from itData.pos() is only valid 1807 // because the spectral axis is the last one (so we can just 1808 // copy the first nAXesSub positions out) 1809 1810 pos = itData.pos().getFirst(nAxesSub); 1811 tSysSqSum(pos) += fac; 1812 // 1813 itData.next(); 1814 itTSys.next(); 1815 } 1816 } 1817 1818 // Accumulate sum of (possibly scaled) data 1819 1820 sum += dataIn; 1821 1822 // Accumulate Tsys, time, and interval 1823 1824 tSysSum += tSys; 1825 timeSum += time; 1826 intSum += interval; 1827 nAccum += 1; 1828 } 1829 1830 1702 1831 void SDMath::normalize(MaskedArray<Float>& sum, 1703 const Array<Float>& sumSq, 1704 const Array<Float>& nPts, 1705 WeightType wtType, Int axis, 1706 Int nAxesSub) const 1832 const Array<Float>& sumSq, 1833 const Array<Float>& tSysSqSum, 1834 const Array<Float>& nPts, 1835 Double intSum, 1836 WeightType wtType, Int axis, 1837 Int nAxesSub) const 1707 1838 { 1708 1839 IPosition pos2(nAxesSub,0); … … 1716 1847 MaskedArray<Float> t(nPts, (nPts>Float(0.0))); 1717 1848 sum /= t; 1849 } else if (wtType==TINT) { 1850 1851 // Average by sum of Tint 1852 1853 sum /= Float(intSum); 1718 1854 } else if (wtType==VAR) { 1719 1855 … … 1729 1865 } 1730 1866 } else if (wtType==TSYS) { 1731 } 1732 } 1733 1734 1735 void SDMath::accumulate(Double& timeSum, Double& intSum, Int& nAccum, 1736 MaskedArray<Float>& sum, Array<Float>& sumSq, 1737 Array<Float>& nPts, Array<Float>& tSysSum, 1738 const Array<Float>& tSys, const Array<Float>& nInc, 1739 const Vector<Bool>& mask, Double time, Double interval, 1740 const Block<CountedPtr<SDMemTable> >& in, 1741 uInt iTab, uInt iRow, uInt axis, 1742 uInt nAxesSub, Bool useMask, 1743 WeightType wtType) const 1744 { 1745 1746 // Get data 1747 1748 MaskedArray<Float> dataIn(in[iTab]->rowAsMaskedArray(iRow)); 1749 Array<Float>& valuesIn = dataIn.getRWArray(); // writable reference 1750 const Array<Bool>& maskIn = dataIn.getMask(); // RO reference 1751 // 1752 if (wtType==NONE) { 1753 const MaskedArray<Float> n(nInc,dataIn.getMask()); 1754 nPts += n; // Only accumulates where mask==T 1755 } else if (wtType==VAR) { 1756 1757 // We are going to average the data, weighted by the noise for each pol, beam and IF. 1758 // So therefore we need to iterate through by spectrum (axis 3) 1759 1760 VectorIterator<Float> itData(valuesIn, axis); 1761 ReadOnlyVectorIterator<Bool> itMask(maskIn, axis); 1762 Float fac = 1.0; 1763 IPosition pos(nAxesSub,0); 1764 // 1867 1868 // Normalize each spectrum by sum(1/Tsys**2) where the pseudo 1869 // replication over channel for Tsys has been dropped. 1870 1871 Array<Float>& data = sum.getRWArray(); 1872 VectorIterator<Float> itData(data, axis); 1765 1873 while (!itData.pastEnd()) { 1766 1767 // Make MaskedArray of Vector, optionally apply OTF mask, and find scaling factor 1768 1769 if (useMask) { 1770 MaskedArray<Float> tmp(itData.vector(),mask&&itMask.vector()); 1771 fac = 1.0/variance(tmp); 1772 } else { 1773 MaskedArray<Float> tmp(itData.vector(),itMask.vector()); 1774 fac = 1.0/variance(tmp); 1775 } 1776 1777 // Scale data 1778 1779 itData.vector() *= fac; // Writes back into 'dataIn' 1780 // 1781 // Accumulate variance per if/pol/beam averaged over spectrum 1782 // This method to get pos2 from itData.pos() is only valid 1783 // because the spectral axis is the last one (so we can just 1784 // copy the first nAXesSub positions out) 1785 1786 pos = itData.pos().getFirst(nAxesSub); 1787 sumSq(pos) += fac; 1788 // 1789 itData.next(); 1790 itMask.next(); 1874 pos2 = itData.pos().getFirst(nAxesSub); 1875 itData.vector() /= tSysSqSum(pos2); 1876 itData.next(); 1791 1877 } 1792 } else if (wtType==TSYS) { 1793 } 1794 1795 // Accumulate sum of (possibly scaled) data 1796 1797 sum += dataIn; 1798 1799 // Accumulate Tsys, time, and interval 1800 1801 tSysSum += tSys; 1802 timeSum += time; 1803 intSum += interval; 1804 nAccum += 1; 1805 } 1878 } 1879 } 1880 1881 1806 1882 1807 1883 … … 1835 1911 1836 1912 1837 void SDMath::convertWeightString(WeightType& wtType, const String& weightStr) const 1913 void SDMath::convertWeightString(WeightType& wtType, const String& weightStr, 1914 Bool listType) const 1838 1915 { 1839 1916 String tStr(weightStr); 1840 1917 tStr.upcase(); 1918 String msg; 1841 1919 if (tStr.contains(String("NONE"))) { 1842 1920 wtType = NONE; 1921 msg = String("Weighting type selected : None"); 1843 1922 } else if (tStr.contains(String("VAR"))) { 1844 1923 wtType = VAR; 1924 msg = String("Weighting type selected : Variance"); 1925 } else if (tStr.contains(String("TINT"))) { 1926 wtType = TINT; 1927 msg = String("Weighting type selected : Tnt"); 1845 1928 } else if (tStr.contains(String("TSYS"))) { 1846 1929 wtType = TSYS; 1847 throw(AipsError("T_sys weighting not yet implemented"));1930 msg = String("Weighting type selected : Tsys"); 1848 1931 } else { 1849 throw(AipsError("Unrecognized weighting type")); 1850 } 1932 msg = String("Weighting type selected : None"); 1933 throw(AipsError("Unrecognized weighting type")); 1934 } 1935 // 1936 if (listType) cout << msg << endl; 1851 1937 } 1852 1938 -
trunk/src/SDMath.h
r502 r518 136 136 // Weighting type for time averaging 137 137 138 enum WeightType {NONE,VAR,TSYS };138 enum WeightType {NONE,VAR,TSYS,TINT}; 139 139 140 140 // Function to use accumulate data during time averaging … … 143 143 casa::MaskedArray<casa::Float>& sum, casa::Array<casa::Float>& sumSq, 144 144 casa::Array<casa::Float>& nPts, casa::Array<casa::Float>& tSysSum, 145 casa::Array<casa::Float>& tSysSqSum, 145 146 const casa::Array<casa::Float>& tSys, const casa::Array<casa::Float>& nInc, 146 147 const casa::Vector<casa::Bool>& mask, casa::Double time, casa::Double interval, … … 155 156 // Convert weight string to enum value 156 157 157 void convertWeightString (WeightType& wt, const casa::String& weightStr) const; 158 void convertWeightString (WeightType& wt, const casa::String& weightStr, 159 casa::Bool listType) const; 158 160 159 161 // Convert interpolation type string … … 233 235 void normalize (casa::MaskedArray<casa::Float>& data, 234 236 const casa::Array<casa::Float>& sumSq, 237 const casa::Array<casa::Float>& tSysSumSq, 235 238 const casa::Array<casa::Float>& nPts, 239 casa::Double intSum, 236 240 WeightType wtType, casa::Int axis, casa::Int nAxes) const; 237 241
Note:
See TracChangeset
for help on using the changeset viewer.