- Timestamp:
- 02/28/05 19:10:07 (20 years ago)
- Location:
- trunk/src
- Files:
-
- 3 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/src/SDFitter.cc
r483 r517 53 53 SDFitter::~SDFitter() 54 54 { 55 55 reset(); 56 56 } 57 57 58 58 void SDFitter::clear() 59 59 { 60 61 62 63 funcs_.resize(0, True);64 parameters_.resize();65 error_.resize();66 thefit_.resize();67 estimate_.resize();68 chisquared_ = 0.0; 69 } 60 for (uInt i=0;i< funcs_.nelements();++i) { 61 delete funcs_[i]; funcs_[i] = 0; 62 } 63 parameters_.resize(); 64 error_.resize(); 65 thefit_.resize(); 66 estimate_.resize(); 67 chisquared_ = 0.0; 68 } 69 70 70 void SDFitter::reset() 71 71 { 72 73 74 75 72 clear(); 73 x_.resize(); 74 y_.resize(); 75 m_.resize(); 76 76 } 77 77 78 78 79 79 bool SDFitter::computeEstimate() { 80 if (x_.nelements() == 0 || y_.nelements() == 0) 81 throw (AipsError("No x/y data specified.")); 82 83 if (dynamic_cast<Gaussian1D<Float>* >(funcs_[0]) == 0) 84 return false; 85 uInt n = funcs_.nelements(); 86 SpectralEstimate estimator(n); 87 estimator.setQ(5); 88 Int mn,mx; 89 mn = 0; 90 mx = m_.nelements()-1; 91 for (uInt i=0; i<m_.nelements();++i) { 92 if (m_[i]) { 93 mn = i; 94 break; 95 } 96 } 97 for (uInt j=m_.nelements()-1; j>=0;--j) { 98 if (m_[j]) { 99 mx = j; 100 break; 101 } 102 } 103 //mn = 0+x_.nelements()/10; 104 //mx = x_.nelements()-x_.nelements()/10; 105 estimator.setRegion(mn,mx); 106 //estimator.setWindowing(True); 107 SpectralList listGauss = estimator.estimate(x_, y_); 108 Gaussian1D<Float>* g; 109 parameters_.resize(n*3); 110 uInt count = 0; 111 for (uInt i=0; i<n;i++) { 112 g = dynamic_cast<Gaussian1D<Float>* >(funcs_[i]); 113 if (g) { 114 (*g)[0] = listGauss[i].getAmpl(); 115 (*g)[1] = listGauss[i].getCenter(); 116 (*g)[2] = listGauss[i].getFWHM(); 117 ++count; 118 } 119 } 120 estimate_.resize(); 121 listGauss.evaluate(estimate_,x_); 122 return true; 80 if (x_.nelements() == 0 || y_.nelements() == 0) 81 throw (AipsError("No x/y data specified.")); 82 83 if (dynamic_cast<Gaussian1D<Float>* >(funcs_[0]) == 0) 84 return false; 85 uInt n = funcs_.nelements(); 86 SpectralEstimate estimator(n); 87 estimator.setQ(5); 88 Int mn,mx; 89 mn = 0; 90 mx = m_.nelements()-1; 91 for (uInt i=0; i<m_.nelements();++i) { 92 if (m_[i]) { 93 mn = i; 94 break; 95 } 96 } 97 for (uInt j=m_.nelements()-1; j>=0;--j) { 98 if (m_[j]) { 99 mx = j; 100 break; 101 } 102 } 103 mn = 0+x_.nelements()/10; 104 mx = x_.nelements()-x_.nelements()/10; 105 estimator.setRegion(mn,mx); 106 //estimator.setWindowing(True); 107 SpectralList listGauss = estimator.estimate(x_, y_); 108 parameters_.resize(n*3); 109 Gaussian1D<Float>* g = 0; 110 for (uInt i=0; i<n;i++) { 111 g = dynamic_cast<Gaussian1D<Float>* >(funcs_[i]); 112 if (g) { 113 (*g)[0] = listGauss[i].getAmpl(); 114 (*g)[1] = listGauss[i].getCenter(); 115 (*g)[2] = listGauss[i].getFWHM(); 116 } 117 } 118 estimate_.resize(); 119 listGauss.evaluate(estimate_,x_); 120 return true; 123 121 } 124 122 125 123 std::vector<float> SDFitter::getEstimate() const 126 124 { 127 128 129 130 131 125 if (estimate_.nelements() == 0) 126 throw (AipsError("No estimate set.")); 127 std::vector<float> stlout; 128 estimate_.tovector(stlout); 129 return stlout; 132 130 } 133 131 … … 135 133 bool SDFitter::setExpression(const std::string& expr, int ncomp) 136 134 { 137 138 139 140 141 142 143 144 145 146 147 148 //cerr << " compiled functions not yet implemented" << endl;149 150 151 152 153 };154 135 clear(); 136 if (expr == "gauss") { 137 if (ncomp < 1) throw (AipsError("Need at least one gaussian to fit.")); 138 funcs_.resize(ncomp); 139 for (Int k=0; k<ncomp; ++k) { 140 funcs_[k] = new Gaussian1D<Float>(); 141 } 142 } else if (expr == "poly") { 143 funcs_.resize(1); 144 funcs_[0] = new Polynomial<Float>(ncomp); 145 } else { 146 cerr << " compiled functions not yet implemented" << endl; 147 //funcs_.resize(1); 148 //funcs_[0] = new CompiledFunction<Float>(); 149 //funcs_[0]->setFunction(String(expr)); 150 return false; 151 } 152 return true; 155 153 } 156 154 … … 278 276 279 277 bool SDFitter::fit() { 280 NonLinearFitLM<Float> fitter; 281 //CompiledFunction<AutoDiff<Float> > comp; 282 //Polynomial<AutoDiff<Float> > poly; 283 CompoundFunction<AutoDiff<Float> > func; 284 if (dynamic_cast<Gaussian1D<Float>* >(funcs_[0]) != 0) { 285 //computeEstimates(); 286 for (uInt i=0; i<funcs_.nelements(); i++) { 287 Gaussian1D<AutoDiff<Float> > gauss;//(*funcs_[i]); 288 289 for (uInt j=0; j<funcs_[i]->nparameters(); j++) { 290 gauss[j] = AutoDiff<Float>((*funcs_[i])[j], 291 gauss.nparameters(), j); 292 gauss.mask(j) = funcs_[i]->mask(j); 293 } 294 295 func.addFunction(gauss); 296 } 297 } else if (dynamic_cast<Polynomial<Float>* >(funcs_[0]) != 0) { 298 Polynomial<AutoDiff<Float> > poly(funcs_[0]->nparameters()-1); 299 //Polynomial<AutoDiff<Float> > poly(*funcs_[0]); 300 for (uInt j=0; j<funcs_[0]->nparameters(); j++) { 301 poly[j] = AutoDiff<Float>(0, poly.nparameters(), j); 302 poly.mask(j) = funcs_[0]->mask(j); 303 } 304 func.addFunction(poly); 305 } else if (dynamic_cast<CompiledFunction<Float>* >(funcs_[0]) != 0) { 306 307 // CompiledFunction<AutoDiff<Float> > comp; 308 // for (uInt j=0; j<funcs_[0]->nparameters(); j++) { 309 // comp[j] = AutoDiff<Float>(0, comp.nparameters(), j); 310 // comp.mask(j) = funcs_[0]->mask(j); 311 // } 312 // func.addFunction(comp); 313 314 cout << "NYI." << endl; 315 } else { 316 throw(AipsError("Fitter not set up correctly.")); 317 } 318 fitter.setFunction(func); 319 fitter.setMaxIter(50+funcs_.nelements()*10); 320 // Convergence criterium 321 fitter.setCriteria(0.001); 322 323 // Fit 324 Vector<Float> sigma(x_.nelements()); 325 sigma = 1.0; 326 327 parameters_.resize(); 328 parameters_ = fitter.fit(x_, y_, sigma, &m_); 329 330 error_.resize(); 331 error_ = fitter.errors(); 332 333 chisquared_ = fitter.getChi2(); 334 335 residual_.resize(); 336 residual_ = y_; 337 fitter.residual(residual_,x_); 338 339 // use fitter.residual(model=True) to get the model 340 thefit_.resize(x_.nelements()); 341 fitter.residual(thefit_,x_,True); 342 return true; 343 } 278 NonLinearFitLM<Float> fitter; 279 CompoundFunction<Float> func; 280 const uInt n = funcs_.nelements(); 281 for (uInt i=0; i<n; ++i) { 282 func.addFunction(*funcs_[i]); 283 } 284 fitter.setFunction(func); 285 fitter.setMaxIter(50+n*10); 286 // Convergence criterium 287 fitter.setCriteria(0.001); 288 289 // Fit 290 Vector<Float> sigma(x_.nelements()); 291 sigma = 1.0; 292 293 parameters_.resize(); 294 parameters_ = fitter.fit(x_, y_, sigma, &m_); 295 std::vector<float> ps; 296 parameters_.tovector(ps); 297 setParameters(ps); 298 error_.resize(); 299 error_ = fitter.errors(); 300 301 chisquared_ = fitter.getChi2(); 302 303 residual_.resize(); 304 residual_ = y_; 305 fitter.residual(residual_,x_); 306 307 // use fitter.residual(model=True) to get the model 308 thefit_.resize(x_.nelements()); 309 fitter.residual(thefit_,x_,True); 310 return true; 311 } 312 313 314 std::vector<float> SDFitter::evaluate(int whichComp) const 315 { 316 std::vector<float> stlout; 317 uInt idx = uInt(whichComp); 318 Float y; 319 if ( idx < funcs_.nelements() ) { 320 for (uInt i=0; i<x_.nelements(); ++i) { 321 y = (*funcs_[idx])(x_[i]); 322 stlout.push_back(float(y)); 323 } 324 } 325 return stlout; 326 } 327 -
trunk/src/SDFitter.h
r125 r517 44 44 class SDFitter { 45 45 public: 46 SDFitter(); 47 virtual ~SDFitter(); 48 // allowed "gauss" and "poly". ncomp is either numvber of gaussions 49 // or order of the polynomial 50 bool setExpression(const std::string& expr, int ncomp=1); 51 bool setData(std::vector<float> absc, std::vector<float> spec, 52 std::vector<bool> mask); 53 bool setParameters(std::vector<float> params); 54 bool setFixedParameters(std::vector<bool> fixed); 55 56 std::vector<float> getResidual() const; 57 std::vector<float> getFit() const; 58 std::vector<float> getParameters() const; 59 std::vector<bool> getFixedParameters() const; 60 61 std::vector<float> getEstimate() const; 62 std::vector<float> getErrors() const; 63 float getChisquared() const; 64 void reset(); 65 bool fit(); 66 bool computeEstimate(); 67 //std::vector<float> getEstimate() const; 46 SDFitter(); 47 virtual ~SDFitter(); 48 // allowed "gauss" and "poly". ncomp is either numvber of gaussions 49 // or order of the polynomial 50 bool setExpression(const std::string& expr, int ncomp=1); 51 bool setData(std::vector<float> absc, std::vector<float> spec, 52 std::vector<bool> mask); 53 bool setParameters(std::vector<float> params); 54 bool setFixedParameters(std::vector<bool> fixed); 55 56 std::vector<float> getResidual() const; 57 std::vector<float> getFit() const; 58 std::vector<float> getParameters() const; 59 std::vector<bool> getFixedParameters() const; 60 61 std::vector<float> getEstimate() const; 62 std::vector<float> getErrors() const; 63 float getChisquared() const; 64 void reset(); 65 bool fit(); 66 bool computeEstimate(); 67 68 std::vector<float> evaluate(int whichComp) const; 68 69 private: 69 void clear(); 70 casa::Vector<casa::Float> x_; 71 casa::Vector<casa::Float> y_; 72 casa::Vector<casa::Bool> m_; 73 casa::PtrBlock<casa::Function<casa::Float>* > funcs_; 74 casa::CompoundFunction<casa::Float> cfunc_; 75 //Bool estimateSet_; 76 casa::Float chisquared_; 77 casa::Vector<casa::Float> parameters_; 78 casa::Vector<casa::Bool> fixedpar_; 79 80 casa::Vector<casa::Float> error_; 81 casa::Vector<casa::Float> thefit_; 82 casa::Vector<casa::Float> residual_; 83 casa::Vector<casa::Float> estimate_; 70 void clear(); 71 casa::Vector<casa::Float> x_; 72 casa::Vector<casa::Float> y_; 73 casa::Vector<casa::Bool> m_; 74 casa::PtrBlock<casa::Function<casa::Float>* > funcs_; 75 //Bool estimateSet_; 76 casa::Float chisquared_; 77 casa::Vector<casa::Float> parameters_; 78 casa::Vector<casa::Bool> fixedpar_; 79 80 casa::Vector<casa::Float> error_; 81 casa::Vector<casa::Float> thefit_; 82 casa::Vector<casa::Float> residual_; 83 casa::Vector<casa::Float> estimate_; 84 84 }; 85 85 -
trunk/src/python_SDFitter.cc
r125 r517 55 55 .def("reset", &SDFitter::reset) 56 56 .def("fit", &SDFitter::fit) 57 .def("evaluate", &SDFitter::evaluate) 57 58 ; 58 59 };
Note:
See TracChangeset
for help on using the changeset viewer.