source: trunk/src/Scantable.cpp @ 2947

Last change on this file since 2947 was 2947, checked in by Takeshi Nakazato, 10 years ago

New Development: No

JIRA Issue: Yes CAS-6588

Ready for Test: Yes

Interface Changes: Yes/No?

What Interface Changed: Please list interface changes

Test Programs: List test programs

Put in Release Notes: Yes/No?

Module(s): Module Names change impacts.

Description: Describe your changes here...

flag and clip is updated so that channel flagging operation is not
applied if target row is flagged.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 159.8 KB
Line 
1//
2// C++ Implementation: Scantable
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2005-2013
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12#include <map>
13#include <sys/time.h>
14
15#include <atnf/PKSIO/SrcType.h>
16
17#include <casa/aips.h>
18#include <casa/iomanip.h>
19#include <casa/iostream.h>
20#include <casa/OS/File.h>
21#include <casa/OS/Path.h>
22#include <casa/Logging/LogIO.h>
23#include <casa/Arrays/Array.h>
24#include <casa/Arrays/ArrayAccessor.h>
25#include <casa/Arrays/ArrayLogical.h>
26#include <casa/Arrays/ArrayMath.h>
27#include <casa/Arrays/MaskArrMath.h>
28#include <casa/Arrays/Slice.h>
29#include <casa/Arrays/Vector.h>
30#include <casa/Arrays/VectorSTLIterator.h>
31#include <casa/BasicMath/Math.h>
32#include <casa/BasicSL/Constants.h>
33#include <casa/Containers/RecordField.h>
34#include <casa/Logging/LogIO.h>
35#include <casa/Quanta/MVAngle.h>
36#include <casa/Quanta/MVTime.h>
37#include <casa/Utilities/GenSort.h>
38
39#include <coordinates/Coordinates/CoordinateUtil.h>
40
41// needed to avoid error in .tcc
42#include <measures/Measures/MCDirection.h>
43//
44#include <measures/Measures/MDirection.h>
45#include <measures/Measures/MEpoch.h>
46#include <measures/Measures/MFrequency.h>
47#include <measures/Measures/MeasRef.h>
48#include <measures/Measures/MeasTable.h>
49#include <measures/TableMeasures/ScalarMeasColumn.h>
50#include <measures/TableMeasures/TableMeasDesc.h>
51#include <measures/TableMeasures/TableMeasRefDesc.h>
52#include <measures/TableMeasures/TableMeasValueDesc.h>
53
54#include <tables/Tables/ArrColDesc.h>
55#include <tables/Tables/ExprNode.h>
56#include <tables/Tables/ScaColDesc.h>
57#include <tables/Tables/SetupNewTab.h>
58#include <tables/Tables/TableCopy.h>
59#include <tables/Tables/TableDesc.h>
60#include <tables/Tables/TableIter.h>
61#include <tables/Tables/TableParse.h>
62#include <tables/Tables/TableRecord.h>
63#include <tables/Tables/TableRow.h>
64#include <tables/Tables/TableVector.h>
65
66#include "MathUtils.h"
67#include "STAttr.h"
68#include "STBaselineTable.h"
69#include "STLineFinder.h"
70#include "STPolCircular.h"
71#include "STPolLinear.h"
72#include "STPolStokes.h"
73#include "STUpgrade.h"
74#include "STFitter.h"
75#include "Scantable.h"
76
77#define debug 1
78
79using namespace casa;
80
81namespace asap {
82
83std::map<std::string, STPol::STPolFactory *> Scantable::factories_;
84
85void Scantable::initFactories() {
86  if ( factories_.empty() ) {
87    Scantable::factories_["linear"] = &STPolLinear::myFactory;
88    Scantable::factories_["circular"] = &STPolCircular::myFactory;
89    Scantable::factories_["stokes"] = &STPolStokes::myFactory;
90  }
91}
92
93Scantable::Scantable(Table::TableType ttype) :
94  type_(ttype)
95{
96  initFactories();
97  setupMainTable();
98  freqTable_ = STFrequencies(*this);
99  table_.rwKeywordSet().defineTable("FREQUENCIES", freqTable_.table());
100  weatherTable_ = STWeather(*this);
101  table_.rwKeywordSet().defineTable("WEATHER", weatherTable_.table());
102  focusTable_ = STFocus(*this);
103  table_.rwKeywordSet().defineTable("FOCUS", focusTable_.table());
104  tcalTable_ = STTcal(*this);
105  table_.rwKeywordSet().defineTable("TCAL", tcalTable_.table());
106  moleculeTable_ = STMolecules(*this);
107  table_.rwKeywordSet().defineTable("MOLECULES", moleculeTable_.table());
108  historyTable_ = STHistory(*this);
109  table_.rwKeywordSet().defineTable("HISTORY", historyTable_.table());
110  fitTable_ = STFit(*this);
111  table_.rwKeywordSet().defineTable("FIT", fitTable_.table());
112  table_.tableInfo().setType( "Scantable" ) ;
113  originalTable_ = table_;
114  attach();
115}
116
117Scantable::Scantable(const std::string& name, Table::TableType ttype) :
118  type_(ttype)
119{
120  initFactories();
121
122  Table tab(name, Table::Update);
123  uInt version = tab.keywordSet().asuInt("VERSION");
124  if (version != version_) {
125      STUpgrade upgrader(version_);
126      LogIO os( LogOrigin( "Scantable" ) ) ;
127      os << LogIO::WARN
128         << name << " data format version " << version
129         << " is deprecated" << endl
130         << "Running upgrade."<< endl 
131         << LogIO::POST ; 
132      std::string outname = upgrader.upgrade(name);
133      if ( outname != name ) {
134        os << LogIO::WARN
135           << "Data will be loaded from " << outname << " instead of "
136           << name << LogIO::POST ;
137        tab = Table(outname, Table::Update ) ;
138      }
139  }
140  if ( type_ == Table::Memory ) {
141    table_ = tab.copyToMemoryTable(generateName());
142  } else {
143    table_ = tab;
144  }
145  table_.tableInfo().setType( "Scantable" ) ;
146
147  attachSubtables();
148  originalTable_ = table_;
149  attach();
150}
151/*
152Scantable::Scantable(const std::string& name, Table::TableType ttype) :
153  type_(ttype)
154{
155  initFactories();
156  Table tab(name, Table::Update);
157  uInt version = tab.keywordSet().asuInt("VERSION");
158  if (version != version_) {
159    throw(AipsError("Unsupported version of ASAP file."));
160  }
161  if ( type_ == Table::Memory ) {
162    table_ = tab.copyToMemoryTable(generateName());
163  } else {
164    table_ = tab;
165  }
166
167  attachSubtables();
168  originalTable_ = table_;
169  attach();
170}
171*/
172
173Scantable::Scantable( const Scantable& other, bool clear )
174{
175  // with or without data
176  String newname = String(generateName());
177  type_ = other.table_.tableType();
178  if ( other.table_.tableType() == Table::Memory ) {
179      if ( clear ) {
180        table_ = TableCopy::makeEmptyMemoryTable(newname,
181                                                 other.table_, True);
182      } else {
183        table_ = other.table_.copyToMemoryTable(newname);
184      }
185  } else {
186      other.table_.deepCopy(newname, Table::New, False,
187                            other.table_.endianFormat(),
188                            Bool(clear));
189      table_ = Table(newname, Table::Update);
190      table_.markForDelete();
191  }
192  table_.tableInfo().setType( "Scantable" ) ;
193  /// @todo reindex SCANNO, recompute nbeam, nif, npol
194  if ( clear ) copySubtables(other);
195  attachSubtables();
196  originalTable_ = table_;
197  attach();
198}
199
200void Scantable::copySubtables(const Scantable& other) {
201  Table t = table_.rwKeywordSet().asTable("FREQUENCIES");
202  TableCopy::copyRows(t, other.freqTable_.table());
203  t = table_.rwKeywordSet().asTable("FOCUS");
204  TableCopy::copyRows(t, other.focusTable_.table());
205  t = table_.rwKeywordSet().asTable("WEATHER");
206  TableCopy::copyRows(t, other.weatherTable_.table());
207  t = table_.rwKeywordSet().asTable("TCAL");
208  TableCopy::copyRows(t, other.tcalTable_.table());
209  t = table_.rwKeywordSet().asTable("MOLECULES");
210  TableCopy::copyRows(t, other.moleculeTable_.table());
211  t = table_.rwKeywordSet().asTable("HISTORY");
212  TableCopy::copyRows(t, other.historyTable_.table());
213  t = table_.rwKeywordSet().asTable("FIT");
214  TableCopy::copyRows(t, other.fitTable_.table());
215}
216
217void Scantable::attachSubtables()
218{
219  freqTable_ = STFrequencies(table_);
220  focusTable_ = STFocus(table_);
221  weatherTable_ = STWeather(table_);
222  tcalTable_ = STTcal(table_);
223  moleculeTable_ = STMolecules(table_);
224  historyTable_ = STHistory(table_);
225  fitTable_ = STFit(table_);
226}
227
228Scantable::~Scantable()
229{
230}
231
232void Scantable::setupMainTable()
233{
234  TableDesc td("", "1", TableDesc::Scratch);
235  td.comment() = "An ASAP Scantable";
236  td.rwKeywordSet().define("VERSION", uInt(version_));
237
238  // n Cycles
239  td.addColumn(ScalarColumnDesc<uInt>("SCANNO"));
240  // new index every nBeam x nIF x nPol
241  td.addColumn(ScalarColumnDesc<uInt>("CYCLENO"));
242
243  td.addColumn(ScalarColumnDesc<uInt>("BEAMNO"));
244  td.addColumn(ScalarColumnDesc<uInt>("IFNO"));
245  // linear, circular, stokes
246  td.rwKeywordSet().define("POLTYPE", String("linear"));
247  td.addColumn(ScalarColumnDesc<uInt>("POLNO"));
248
249  td.addColumn(ScalarColumnDesc<uInt>("FREQ_ID"));
250  td.addColumn(ScalarColumnDesc<uInt>("MOLECULE_ID"));
251
252  ScalarColumnDesc<Int> refbeamnoColumn("REFBEAMNO");
253  refbeamnoColumn.setDefault(Int(-1));
254  td.addColumn(refbeamnoColumn);
255
256  ScalarColumnDesc<uInt> flagrowColumn("FLAGROW");
257  flagrowColumn.setDefault(uInt(0));
258  td.addColumn(flagrowColumn);
259
260  td.addColumn(ScalarColumnDesc<Double>("TIME"));
261  TableMeasRefDesc measRef(MEpoch::UTC); // UTC as default
262  TableMeasValueDesc measVal(td, "TIME");
263  TableMeasDesc<MEpoch> mepochCol(measVal, measRef);
264  mepochCol.write(td);
265
266  td.addColumn(ScalarColumnDesc<Double>("INTERVAL"));
267
268  td.addColumn(ScalarColumnDesc<String>("SRCNAME"));
269  // Type of source (on=0, off=1, other=-1)
270  ScalarColumnDesc<Int> stypeColumn("SRCTYPE");
271  stypeColumn.setDefault(Int(-1));
272  td.addColumn(stypeColumn);
273  td.addColumn(ScalarColumnDesc<String>("FIELDNAME"));
274
275  //The actual Data Vectors
276  td.addColumn(ArrayColumnDesc<Float>("SPECTRA"));
277  td.addColumn(ArrayColumnDesc<uChar>("FLAGTRA"));
278  td.addColumn(ArrayColumnDesc<Float>("TSYS"));
279
280  td.addColumn(ArrayColumnDesc<Double>("DIRECTION",
281                                       IPosition(1,2),
282                                       ColumnDesc::Direct));
283  TableMeasRefDesc mdirRef(MDirection::J2000); // default
284  TableMeasValueDesc tmvdMDir(td, "DIRECTION");
285  // the TableMeasDesc gives the column a type
286  TableMeasDesc<MDirection> mdirCol(tmvdMDir, mdirRef);
287  // a uder set table type e.g. GALCTIC, B1950 ...
288  td.rwKeywordSet().define("DIRECTIONREF", String("J2000"));
289  // writing create the measure column
290  mdirCol.write(td);
291  td.addColumn(ScalarColumnDesc<Float>("AZIMUTH"));
292  td.addColumn(ScalarColumnDesc<Float>("ELEVATION"));
293  td.addColumn(ScalarColumnDesc<Float>("OPACITY"));
294
295  td.addColumn(ScalarColumnDesc<uInt>("TCAL_ID"));
296  ScalarColumnDesc<Int> fitColumn("FIT_ID");
297  fitColumn.setDefault(Int(-1));
298  td.addColumn(fitColumn);
299
300  td.addColumn(ScalarColumnDesc<uInt>("FOCUS_ID"));
301  td.addColumn(ScalarColumnDesc<uInt>("WEATHER_ID"));
302
303  // columns which just get dragged along, as they aren't used in asap
304  td.addColumn(ScalarColumnDesc<Double>("SRCVELOCITY"));
305  td.addColumn(ArrayColumnDesc<Double>("SRCPROPERMOTION"));
306  td.addColumn(ArrayColumnDesc<Double>("SRCDIRECTION"));
307  td.addColumn(ArrayColumnDesc<Double>("SCANRATE"));
308
309  td.rwKeywordSet().define("OBSMODE", String(""));
310
311  // Now create Table SetUp from the description.
312  SetupNewTable aNewTab(generateName(), td, Table::Scratch);
313  table_ = Table(aNewTab, type_, 0);
314  originalTable_ = table_;
315}
316
317void Scantable::attach()
318{
319  timeCol_.attach(table_, "TIME");
320  srcnCol_.attach(table_, "SRCNAME");
321  srctCol_.attach(table_, "SRCTYPE");
322  specCol_.attach(table_, "SPECTRA");
323  flagsCol_.attach(table_, "FLAGTRA");
324  tsysCol_.attach(table_, "TSYS");
325  cycleCol_.attach(table_,"CYCLENO");
326  scanCol_.attach(table_, "SCANNO");
327  beamCol_.attach(table_, "BEAMNO");
328  ifCol_.attach(table_, "IFNO");
329  polCol_.attach(table_, "POLNO");
330  integrCol_.attach(table_, "INTERVAL");
331  azCol_.attach(table_, "AZIMUTH");
332  elCol_.attach(table_, "ELEVATION");
333  dirCol_.attach(table_, "DIRECTION");
334  fldnCol_.attach(table_, "FIELDNAME");
335  rbeamCol_.attach(table_, "REFBEAMNO");
336
337  mweatheridCol_.attach(table_,"WEATHER_ID");
338  mfitidCol_.attach(table_,"FIT_ID");
339  mfreqidCol_.attach(table_, "FREQ_ID");
340  mtcalidCol_.attach(table_, "TCAL_ID");
341  mfocusidCol_.attach(table_, "FOCUS_ID");
342  mmolidCol_.attach(table_, "MOLECULE_ID");
343
344  //Add auxiliary column for row-based flagging (CAS-1433 Wataru Kawasaki)
345  attachAuxColumnDef(flagrowCol_, "FLAGROW", 0);
346
347}
348
349template<class T, class T2>
350void Scantable::attachAuxColumnDef(ScalarColumn<T>& col,
351                                   const String& colName,
352                                   const T2& defValue)
353{
354  try {
355    col.attach(table_, colName);
356  } catch (TableError& err) {
357    String errMesg = err.getMesg();
358    if (errMesg == "Table column " + colName + " is unknown") {
359      table_.addColumn(ScalarColumnDesc<T>(colName));
360      col.attach(table_, colName);
361      col.fillColumn(static_cast<T>(defValue));
362    } else {
363      throw;
364    }
365  } catch (...) {
366    throw;
367  }
368}
369
370template<class T, class T2>
371void Scantable::attachAuxColumnDef(ArrayColumn<T>& col,
372                                   const String& colName,
373                                   const Array<T2>& defValue)
374{
375  try {
376    col.attach(table_, colName);
377  } catch (TableError& err) {
378    String errMesg = err.getMesg();
379    if (errMesg == "Table column " + colName + " is unknown") {
380      table_.addColumn(ArrayColumnDesc<T>(colName));
381      col.attach(table_, colName);
382
383      int size = 0;
384      ArrayIterator<T2>& it = defValue.begin();
385      while (it != defValue.end()) {
386        ++size;
387        ++it;
388      }
389      IPosition ip(1, size);
390      Array<T>& arr(ip);
391      for (int i = 0; i < size; ++i)
392        arr[i] = static_cast<T>(defValue[i]);
393
394      col.fillColumn(arr);
395    } else {
396      throw;
397    }
398  } catch (...) {
399    throw;
400  }
401}
402
403void Scantable::setHeader(const STHeader& sdh)
404{
405  table_.rwKeywordSet().define("nIF", sdh.nif);
406  table_.rwKeywordSet().define("nBeam", sdh.nbeam);
407  table_.rwKeywordSet().define("nPol", sdh.npol);
408  table_.rwKeywordSet().define("nChan", sdh.nchan);
409  table_.rwKeywordSet().define("Observer", sdh.observer);
410  table_.rwKeywordSet().define("Project", sdh.project);
411  table_.rwKeywordSet().define("Obstype", sdh.obstype);
412  table_.rwKeywordSet().define("AntennaName", sdh.antennaname);
413  table_.rwKeywordSet().define("AntennaPosition", sdh.antennaposition);
414  table_.rwKeywordSet().define("Equinox", sdh.equinox);
415  table_.rwKeywordSet().define("FreqRefFrame", sdh.freqref);
416  table_.rwKeywordSet().define("FreqRefVal", sdh.reffreq);
417  table_.rwKeywordSet().define("Bandwidth", sdh.bandwidth);
418  table_.rwKeywordSet().define("UTC", sdh.utc);
419  table_.rwKeywordSet().define("FluxUnit", sdh.fluxunit);
420  table_.rwKeywordSet().define("Epoch", sdh.epoch);
421  table_.rwKeywordSet().define("POLTYPE", sdh.poltype);
422}
423
424STHeader Scantable::getHeader() const
425{
426  STHeader sdh;
427  table_.keywordSet().get("nBeam",sdh.nbeam);
428  table_.keywordSet().get("nIF",sdh.nif);
429  table_.keywordSet().get("nPol",sdh.npol);
430  table_.keywordSet().get("nChan",sdh.nchan);
431  table_.keywordSet().get("Observer", sdh.observer);
432  table_.keywordSet().get("Project", sdh.project);
433  table_.keywordSet().get("Obstype", sdh.obstype);
434  table_.keywordSet().get("AntennaName", sdh.antennaname);
435  table_.keywordSet().get("AntennaPosition", sdh.antennaposition);
436  table_.keywordSet().get("Equinox", sdh.equinox);
437  table_.keywordSet().get("FreqRefFrame", sdh.freqref);
438  table_.keywordSet().get("FreqRefVal", sdh.reffreq);
439  table_.keywordSet().get("Bandwidth", sdh.bandwidth);
440  table_.keywordSet().get("UTC", sdh.utc);
441  table_.keywordSet().get("FluxUnit", sdh.fluxunit);
442  table_.keywordSet().get("Epoch", sdh.epoch);
443  table_.keywordSet().get("POLTYPE", sdh.poltype);
444  return sdh;
445}
446
447void Scantable::setSourceType( int stype )
448{
449  if ( stype < 0 || stype > 1 )
450    throw(AipsError("Illegal sourcetype."));
451  TableVector<Int> tabvec(table_, "SRCTYPE");
452  tabvec = Int(stype);
453}
454
455void Scantable::setSourceName( const std::string& name )
456{
457  TableVector<String> tabvec(table_, "SRCNAME");
458  tabvec = name;
459}
460
461bool Scantable::conformant( const Scantable& other )
462{
463  return this->getHeader().conformant(other.getHeader());
464}
465
466
467
468std::string Scantable::formatSec(Double x) const
469{
470  Double xcop = x;
471  MVTime mvt(xcop/24./3600.);  // make days
472
473  if (x < 59.95)
474    return  String("      ") + mvt.string(MVTime::TIME_CLEAN_NO_HM, 7)+"s";
475  else if (x < 3599.95)
476    return String("   ") + mvt.string(MVTime::TIME_CLEAN_NO_H,7)+" ";
477  else {
478    ostringstream oss;
479    oss << setw(2) << std::right << setprecision(1) << mvt.hour();
480    oss << ":" << mvt.string(MVTime::TIME_CLEAN_NO_H,7) << " ";
481    return String(oss);
482  }
483};
484
485std::string Scantable::formatDirection(const MDirection& md) const
486{
487  Vector<Double> t = md.getAngle(Unit(String("rad"))).getValue();
488  Int prec = 7;
489
490  String ref = md.getRefString();
491  MVAngle mvLon(t[0]);
492  String sLon = mvLon.string(MVAngle::TIME,prec);
493  uInt tp = md.getRef().getType();
494  if (tp == MDirection::GALACTIC ||
495      tp == MDirection::SUPERGAL ) {
496    sLon = mvLon(0.0).string(MVAngle::ANGLE_CLEAN,prec);
497  }
498  MVAngle mvLat(t[1]);
499  String sLat = mvLat.string(MVAngle::ANGLE+MVAngle::DIG2,prec);
500  return  ref + String(" ") + sLon + String(" ") + sLat;
501}
502
503
504std::string Scantable::getFluxUnit() const
505{
506  return table_.keywordSet().asString("FluxUnit");
507}
508
509void Scantable::setFluxUnit(const std::string& unit)
510{
511  String tmp(unit);
512  Unit tU(tmp);
513  if (tU==Unit("K") || tU==Unit("Jy")) {
514     table_.rwKeywordSet().define(String("FluxUnit"), tmp);
515  } else {
516     throw AipsError("Illegal unit - must be compatible with Jy or K");
517  }
518}
519
520void Scantable::setInstrument(const std::string& name)
521{
522  bool throwIt = true;
523  // create an Instrument to see if this is valid
524  STAttr::convertInstrument(name, throwIt);
525  String nameU(name);
526  nameU.upcase();
527  table_.rwKeywordSet().define(String("AntennaName"), nameU);
528}
529
530void Scantable::setFeedType(const std::string& feedtype)
531{
532  if ( Scantable::factories_.find(feedtype) ==  Scantable::factories_.end() ) {
533    std::string msg = "Illegal feed type "+ feedtype;
534    throw(casa::AipsError(msg));
535  }
536  table_.rwKeywordSet().define(String("POLTYPE"), feedtype);
537}
538
539MPosition Scantable::getAntennaPosition() const
540{
541  Vector<Double> antpos;
542  table_.keywordSet().get("AntennaPosition", antpos);
543  MVPosition mvpos(antpos(0),antpos(1),antpos(2));
544  return MPosition(mvpos);
545}
546
547void Scantable::makePersistent(const std::string& filename)
548{
549  String inname(filename);
550  Path path(inname);
551  /// @todo reindex SCANNO, recompute nbeam, nif, npol
552  inname = path.expandedName();
553  // 2011/03/04 TN
554  // We can comment out this workaround since the essential bug is
555  // fixed in casacore (r20889 in google code).
556  table_.deepCopy(inname, Table::New);
557//   // WORKAROUND !!! for Table bug
558//   // Remove when fixed in casacore
559//   if ( table_.tableType() == Table::Memory  && !selector_.empty() ) {
560//     Table tab = table_.copyToMemoryTable(generateName());
561//     tab.deepCopy(inname, Table::New);
562//     tab.markForDelete();
563//
564//   } else {
565//     table_.deepCopy(inname, Table::New);
566//   }
567}
568
569int Scantable::nbeam( int scanno ) const
570{
571  if ( scanno < 0 ) {
572    Int n;
573    table_.keywordSet().get("nBeam",n);
574    return int(n);
575  } else {
576    // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
577    Table t = table_(table_.col("SCANNO") == scanno);
578    ROTableRow row(t);
579    const TableRecord& rec = row.get(0);
580    Table subt = t( t.col("IFNO") == Int(rec.asuInt("IFNO"))
581                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
582                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
583    ROTableVector<uInt> v(subt, "BEAMNO");
584    return int(v.nelements());
585  }
586  return 0;
587}
588
589int Scantable::nif( int scanno ) const
590{
591  if ( scanno < 0 ) {
592    Int n;
593    table_.keywordSet().get("nIF",n);
594    return int(n);
595  } else {
596    // take the first POLNO,BEAMNO,CYCLENO as nbeam shouldn't vary with these
597    Table t = table_(table_.col("SCANNO") == scanno);
598    ROTableRow row(t);
599    const TableRecord& rec = row.get(0);
600    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
601                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
602                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
603    if ( subt.nrow() == 0 ) return 0;
604    ROTableVector<uInt> v(subt, "IFNO");
605    return int(v.nelements());
606  }
607  return 0;
608}
609
610int Scantable::npol( int scanno ) const
611{
612  if ( scanno < 0 ) {
613    Int n;
614    table_.keywordSet().get("nPol",n);
615    return n;
616  } else {
617    // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
618    Table t = table_(table_.col("SCANNO") == scanno);
619    ROTableRow row(t);
620    const TableRecord& rec = row.get(0);
621    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
622                    && t.col("IFNO") == Int(rec.asuInt("IFNO"))
623                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
624    if ( subt.nrow() == 0 ) return 0;
625    ROTableVector<uInt> v(subt, "POLNO");
626    return int(v.nelements());
627  }
628  return 0;
629}
630
631int Scantable::ncycle( int scanno ) const
632{
633  if ( scanno < 0 ) {
634    Block<String> cols(2);
635    cols[0] = "SCANNO";
636    cols[1] = "CYCLENO";
637    TableIterator it(table_, cols);
638    int n = 0;
639    while ( !it.pastEnd() ) {
640      ++n;
641      ++it;
642    }
643    return n;
644  } else {
645    Table t = table_(table_.col("SCANNO") == scanno);
646    ROTableRow row(t);
647    const TableRecord& rec = row.get(0);
648    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
649                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
650                    && t.col("IFNO") == Int(rec.asuInt("IFNO")) );
651    if ( subt.nrow() == 0 ) return 0;
652    return int(subt.nrow());
653  }
654  return 0;
655}
656
657
658int Scantable::nrow( int scanno ) const
659{
660  return int(table_.nrow());
661}
662
663int Scantable::nchan( int ifno ) const
664{
665  if ( ifno < 0 ) {
666    Int n;
667    table_.keywordSet().get("nChan",n);
668    return int(n);
669  } else {
670    // take the first SCANNO,POLNO,BEAMNO,CYCLENO as nbeam shouldn't
671    // vary with these
672    Table t = table_(table_.col("IFNO") == ifno, 1);
673    if ( t.nrow() == 0 ) return 0;
674    ROArrayColumn<Float> v(t, "SPECTRA");
675    return v.shape(0)(0);
676  }
677  return 0;
678}
679
680int Scantable::nscan() const {
681  Vector<uInt> scannos(scanCol_.getColumn());
682  uInt nout = genSort( scannos, Sort::Ascending,
683                       Sort::QuickSort|Sort::NoDuplicates );
684  return int(nout);
685}
686
687int Scantable::getChannels(int whichrow) const
688{
689  return specCol_.shape(whichrow)(0);
690}
691
692int Scantable::getBeam(int whichrow) const
693{
694  return beamCol_(whichrow);
695}
696
697std::vector<uint> Scantable::getNumbers(const ScalarColumn<uInt>& col) const
698{
699  Vector<uInt> nos(col.getColumn());
700  uInt n = genSort( nos, Sort::Ascending, Sort::QuickSort|Sort::NoDuplicates );
701  nos.resize(n, True);
702  std::vector<uint> stlout;
703  nos.tovector(stlout);
704  return stlout;
705}
706
707int Scantable::getIF(int whichrow) const
708{
709  return ifCol_(whichrow);
710}
711
712int Scantable::getPol(int whichrow) const
713{
714  return polCol_(whichrow);
715}
716
717std::string Scantable::formatTime(const MEpoch& me, bool showdate) const
718{
719  return formatTime(me, showdate, 0);
720}
721
722std::string Scantable::formatTime(const MEpoch& me, bool showdate, uInt prec) const
723{
724  MVTime mvt(me.getValue());
725  if (showdate)
726    //mvt.setFormat(MVTime::YMD);
727    mvt.setFormat(MVTime::YMD, prec);
728  else
729    //mvt.setFormat(MVTime::TIME);
730    mvt.setFormat(MVTime::TIME, prec);
731  ostringstream oss;
732  oss << mvt;
733  return String(oss);
734}
735
736void Scantable::calculateAZEL()
737
738  LogIO os( LogOrigin( "Scantable", "calculateAZEL()", WHERE ) ) ;
739  MPosition mp = getAntennaPosition();
740  MEpoch::ROScalarColumn timeCol(table_, "TIME");
741  ostringstream oss;
742  oss << mp;
743  os << "Computed azimuth/elevation using " << endl
744     << String(oss) << endl;
745  for (Int i=0; i<nrow(); ++i) {
746    MEpoch me = timeCol(i);
747    MDirection md = getDirection(i);
748    os  << " Time: " << formatTime(me,False)
749        << " Direction: " << formatDirection(md)
750         << endl << "     => ";
751    MeasFrame frame(mp, me);
752    Vector<Double> azel =
753        MDirection::Convert(md, MDirection::Ref(MDirection::AZEL,
754                                                frame)
755                            )().getAngle("rad").getValue();
756    azCol_.put(i,Float(azel[0]));
757    elCol_.put(i,Float(azel[1]));
758    os << "azel: " << azel[0]/C::pi*180.0 << " "
759       << azel[1]/C::pi*180.0 << " (deg)" << LogIO::POST;
760  }
761}
762
763void Scantable::clip(const Float uthres, const Float dthres, bool clipoutside, bool unflag)
764{
765  Vector<uInt> flagrow = flagrowCol_.getColumn();
766  for (uInt i=0; i<table_.nrow(); ++i) {
767    // apply flag only when specified row is vaild
768    if (flagrow[i] == 0) {
769      Vector<uChar> flgs = flagsCol_(i);
770      srchChannelsToClip(i, uthres, dthres, clipoutside, unflag, flgs);
771      flagsCol_.put(i, flgs);
772    }
773  }
774}
775
776std::vector<bool> Scantable::getClipMask(int whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag)
777{
778  Vector<uChar> flags;
779  flagsCol_.get(uInt(whichrow), flags);
780  srchChannelsToClip(uInt(whichrow), uthres, dthres, clipoutside, unflag, flags);
781  Vector<Bool> bflag(flags.shape());
782  convertArray(bflag, flags);
783  //bflag = !bflag;
784
785  std::vector<bool> mask;
786  bflag.tovector(mask);
787  return mask;
788}
789
790void Scantable::srchChannelsToClip(uInt whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag,
791                                   Vector<uChar> flgs)
792{
793    Vector<Float> spcs = specCol_(whichrow);
794    uInt nchannel = spcs.nelements();
795    if (spcs.nelements() != nchannel) {
796      throw(AipsError("Data has incorrect number of channels"));
797    }
798    uChar userflag = 1 << 7;
799    if (unflag) {
800      userflag = 0 << 7;
801    }
802    if (clipoutside) {
803      for (uInt j = 0; j < nchannel; ++j) {
804        Float spc = spcs(j);
805        if ((spc >= uthres) || (spc <= dthres)) {
806          flgs(j) = userflag;
807        }
808      }
809    } else {
810      for (uInt j = 0; j < nchannel; ++j) {
811        Float spc = spcs(j);
812        if ((spc < uthres) && (spc > dthres)) {
813          flgs(j) = userflag;
814        }
815      }
816    }
817}
818
819
820void Scantable::flag( int whichrow, const std::vector<bool>& msk, bool unflag ) {
821  std::vector<bool>::const_iterator it;
822  uInt ntrue = 0;
823  if (whichrow >= int(table_.nrow()) ) {
824    throw(AipsError("Invalid row number"));
825  }
826  for (it = msk.begin(); it != msk.end(); ++it) {
827    if ( *it ) {
828      ntrue++;
829    }
830  }
831  //if ( selector_.empty()  && (msk.size() == 0 || msk.size() == ntrue) )
832  if ( whichrow == -1 && !unflag && selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
833    throw(AipsError("Trying to flag whole scantable."));
834  uChar userflag = 1 << 7;
835  if ( unflag ) {
836    userflag = 0 << 7;
837  }
838  if (whichrow > -1 ) {
839    // apply flag only when specified row is vaild
840    if (flagrowCol_(whichrow) == 0) {
841      applyChanFlag(uInt(whichrow), msk, userflag);
842    }
843  } else {
844    for ( uInt i=0; i<table_.nrow(); ++i) {
845      // apply flag only when specified row is vaild
846      if (flagrowCol_(i) == 0) {
847        applyChanFlag(i, msk, userflag);
848      }
849    }
850  }
851}
852
853void Scantable::applyChanFlag( uInt whichrow, const std::vector<bool>& msk, uChar flagval )
854{
855  if (whichrow >= table_.nrow() ) {
856    throw( casa::indexError<int>( whichrow, "asap::Scantable::applyChanFlag: Invalid row number" ) );
857  }
858  Vector<uChar> flgs = flagsCol_(whichrow);
859  if ( msk.size() == 0 ) {
860    flgs = flagval;
861    flagsCol_.put(whichrow, flgs);
862    return;
863  }
864  if ( int(msk.size()) != nchan( getIF(whichrow) ) ) {
865    throw(AipsError("Mask has incorrect number of channels."));
866  }
867  if ( flgs.nelements() != msk.size() ) {
868    throw(AipsError("Mask has incorrect number of channels."
869                    " Probably varying with IF. Please flag per IF"));
870  }
871  std::vector<bool>::const_iterator it;
872  uInt j = 0;
873  for (it = msk.begin(); it != msk.end(); ++it) {
874    if ( *it ) {
875      flgs(j) = flagval;
876    }
877    ++j;
878  }
879  flagsCol_.put(whichrow, flgs);
880}
881
882void Scantable::flagRow(const std::vector<uInt>& rows, bool unflag)
883{
884  if (selector_.empty() && (rows.size() == table_.nrow()) && !unflag)
885    throw(AipsError("Trying to flag whole scantable."));
886
887  uInt rowflag = (unflag ? 0 : 1);
888  std::vector<uInt>::const_iterator it;
889  for (it = rows.begin(); it != rows.end(); ++it)
890    flagrowCol_.put(*it, rowflag);
891}
892
893std::vector<bool> Scantable::getMask(int whichrow) const
894{
895  Vector<uChar> flags;
896  flagsCol_.get(uInt(whichrow), flags);
897  Vector<Bool> bflag(flags.shape());
898  convertArray(bflag, flags);
899  bflag = !bflag;
900  std::vector<bool> mask;
901  bflag.tovector(mask);
902  return mask;
903}
904
905std::vector<float> Scantable::getSpectrum( int whichrow,
906                                           const std::string& poltype ) const
907{
908  LogIO os( LogOrigin( "Scantable", "getSpectrum()", WHERE ) ) ;
909
910  String ptype = poltype;
911  if (poltype == "" ) ptype = getPolType();
912  if ( whichrow  < 0 || whichrow >= nrow() )
913    throw(AipsError("Illegal row number."));
914  std::vector<float> out;
915  Vector<Float> arr;
916  uInt requestedpol = polCol_(whichrow);
917  String basetype = getPolType();
918  if ( ptype == basetype ) {
919    specCol_.get(whichrow, arr);
920  } else {
921    CountedPtr<STPol> stpol(STPol::getPolClass(Scantable::factories_,
922                                               basetype));
923    uInt row = uInt(whichrow);
924    stpol->setSpectra(getPolMatrix(row));
925    Float fang,fhand;
926    fang = focusTable_.getTotalAngle(mfocusidCol_(row));
927    fhand = focusTable_.getFeedHand(mfocusidCol_(row));
928    stpol->setPhaseCorrections(fang, fhand);
929    arr = stpol->getSpectrum(requestedpol, ptype);
930  }
931  if ( arr.nelements() == 0 )
932   
933    os << "Not enough polarisations present to do the conversion."
934       << LogIO::POST;
935  arr.tovector(out);
936  return out;
937}
938
939void Scantable::setSpectrum( const std::vector<float>& spec,
940                                   int whichrow )
941{
942  Vector<Float> spectrum(spec);
943  Vector<Float> arr;
944  specCol_.get(whichrow, arr);
945  if ( spectrum.nelements() != arr.nelements() )
946    throw AipsError("The spectrum has incorrect number of channels.");
947  specCol_.put(whichrow, spectrum);
948}
949
950
951String Scantable::generateName()
952{
953  return (File::newUniqueName("./","temp")).baseName();
954}
955
956const casa::Table& Scantable::table( ) const
957{
958  return table_;
959}
960
961casa::Table& Scantable::table( )
962{
963  return table_;
964}
965
966std::string Scantable::getPolType() const
967{
968  return table_.keywordSet().asString("POLTYPE");
969}
970
971void Scantable::unsetSelection()
972{
973  table_ = originalTable_;
974  attach();
975  selector_.reset();
976}
977
978void Scantable::setSelection( const STSelector& selection )
979{
980  Table tab = const_cast<STSelector&>(selection).apply(originalTable_);
981  if ( tab.nrow() == 0 ) {
982    throw(AipsError("Selection contains no data. Not applying it."));
983  }
984  table_ = tab;
985  attach();
986//   tab.rwKeywordSet().define("nBeam",(Int)(getBeamNos().size())) ;
987//   vector<uint> selectedIFs = getIFNos() ;
988//   Int newnIF = selectedIFs.size() ;
989//   tab.rwKeywordSet().define("nIF",newnIF) ;
990//   if ( newnIF != 0 ) {
991//     Int newnChan = 0 ;
992//     for ( Int i = 0 ; i < newnIF ; i++ ) {
993//       Int nChan = nchan( selectedIFs[i] ) ;
994//       if ( newnChan > nChan )
995//         newnChan = nChan ;
996//     }
997//     tab.rwKeywordSet().define("nChan",newnChan) ;
998//   }
999//   tab.rwKeywordSet().define("nPol",(Int)(getPolNos().size())) ;
1000  selector_ = selection;
1001}
1002
1003
1004std::string Scantable::headerSummary()
1005{
1006  // Format header info
1007//   STHeader sdh;
1008//   sdh = getHeader();
1009//   sdh.print();
1010  ostringstream oss;
1011  oss.flags(std::ios_base::left);
1012  String tmp;
1013  // Project
1014  table_.keywordSet().get("Project", tmp);
1015  oss << setw(15) << "Project:" << tmp << endl;
1016  // Observation date
1017  oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1018  // Observer
1019  oss << setw(15) << "Observer:"
1020      << table_.keywordSet().asString("Observer") << endl;
1021  // Antenna Name
1022  table_.keywordSet().get("AntennaName", tmp);
1023  oss << setw(15) << "Antenna Name:" << tmp << endl;
1024  // Obs type
1025  table_.keywordSet().get("Obstype", tmp);
1026  // Records (nrow)
1027  oss << setw(15) << "Data Records:" << table_.nrow() << " rows" << endl;
1028  oss << setw(15) << "Obs. Type:" << tmp << endl;
1029  // Beams, IFs, Polarizations, and Channels
1030  oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1031      << setw(15) << "IFs:" << setw(4) << nif() << endl
1032      << setw(15) << "Polarisations:" << setw(4) << npol()
1033      << "(" << getPolType() << ")" << endl
1034      << setw(15) << "Channels:" << nchan() << endl;
1035  // Flux unit
1036  table_.keywordSet().get("FluxUnit", tmp);
1037  oss << setw(15) << "Flux Unit:" << tmp << endl;
1038  // Abscissa Unit
1039  oss << setw(15) << "Abscissa:" << getAbcissaLabel(0) << endl;
1040  // Selection
1041  oss << selector_.print() << endl;
1042
1043  return String(oss);
1044}
1045
1046void Scantable::summary( const std::string& filename )
1047{
1048  ostringstream oss;
1049  ofstream ofs;
1050  LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1051
1052  if (filename != "")
1053    ofs.open( filename.c_str(),  ios::out );
1054
1055  oss << endl;
1056  oss << asap::SEPERATOR << endl;
1057  oss << " Scan Table Summary" << endl;
1058  oss << asap::SEPERATOR << endl;
1059
1060  // Format header info
1061  oss << headerSummary();
1062  oss << endl;
1063
1064  if (table_.nrow() <= 0){
1065    oss << asap::SEPERATOR << endl;
1066    oss << "The MAIN table is empty: there are no data!!!" << endl;
1067    oss << asap::SEPERATOR << endl;
1068
1069    ols << String(oss) << LogIO::POST;
1070    if (ofs) {
1071      ofs << String(oss) << flush;
1072      ofs.close();
1073    }
1074    return;
1075  }
1076
1077
1078
1079  // main table
1080  String dirtype = "Position ("
1081                  + getDirectionRefString()
1082                  + ")";
1083  oss.flags(std::ios_base::left);
1084  oss << setw(5) << "Scan"
1085      << setw(15) << "Source"
1086      << setw(35) << "Time range"
1087      << setw(2) << "" << setw(7) << "Int[s]"
1088      << setw(7) << "Record"
1089      << setw(8) << "SrcType"
1090      << setw(8) << "FreqIDs"
1091      << setw(7) << "MolIDs" << endl;
1092  oss << setw(7)<< "" << setw(6) << "Beam"
1093      << setw(23) << dirtype << endl;
1094
1095  oss << asap::SEPERATOR << endl;
1096
1097  // Flush summary and clear up the string
1098  ols << String(oss) << LogIO::POST;
1099  if (ofs) ofs << String(oss) << flush;
1100  oss.str("");
1101  oss.clear();
1102
1103
1104  // Get Freq_ID map
1105  ROScalarColumn<uInt> ftabIds(frequencies().table(), "ID");
1106  Int nfid = ftabIds.nrow();
1107  if (nfid <= 0){
1108    oss << "FREQUENCIES subtable is empty: there are no data!!!" << endl;
1109    oss << asap::SEPERATOR << endl;
1110
1111    ols << String(oss) << LogIO::POST;
1112    if (ofs) {
1113      ofs << String(oss) << flush;
1114      ofs.close();
1115    }
1116    return;
1117  }
1118  // Storages of overall IFNO, POLNO, and nchan per FREQ_ID
1119  // the orders are identical to ID in FREQ subtable
1120  Block< Vector<uInt> > ifNos(nfid), polNos(nfid);
1121  Vector<Int> fIdchans(nfid,-1);
1122  Vector<Double> fIdfreq0(nfid,-1);
1123  Vector<Double> fIdfcent(nfid,-1);
1124  map<uInt, Int> fidMap;  // (FREQ_ID, row # in FREQ subtable) pair
1125  for (Int i=0; i < nfid; i++){
1126   // fidMap[freqId] returns row number in FREQ subtable
1127   fidMap.insert(pair<uInt, Int>(ftabIds(i),i));
1128   ifNos[i] = Vector<uInt>();
1129   polNos[i] = Vector<uInt>();
1130  }
1131
1132  TableIterator iter(table_, "SCANNO");
1133
1134  // Vars for keeping track of time, freqids, molIds in a SCANNO
1135  //Vector<uInt> freqids;
1136  //Vector<uInt> molids;
1137  Vector<uInt> beamids(1,0);
1138  Vector<MDirection> beamDirs;
1139  Vector<Int> stypeids(1,0);
1140  Vector<String> stypestrs;
1141  Int nfreq(1);
1142  Int nmol(1);
1143  uInt nbeam(1);
1144  uInt nstype(1);
1145
1146  Double btime(0.0), etime(0.0);
1147  Double meanIntTim(0.0);
1148
1149  uInt currFreqId(0), ftabRow(0);
1150  Int iflen(0), pollen(0);
1151
1152  while (!iter.pastEnd()) {
1153    Table subt = iter.table();
1154    uInt snrow = subt.nrow();
1155    ROTableRow row(subt);
1156    const TableRecord& rec = row.get(0);
1157
1158    // relevant columns
1159    ROScalarColumn<Double> mjdCol(subt,"TIME");
1160    ROScalarColumn<Double> intervalCol(subt,"INTERVAL");
1161    MDirection::ROScalarColumn dirCol(subt,"DIRECTION");
1162
1163    ScalarColumn<uInt> freqIdCol(subt,"FREQ_ID");
1164    ScalarColumn<uInt> molIdCol(subt,"MOLECULE_ID");
1165    ROScalarColumn<uInt> beamCol(subt,"BEAMNO");
1166    ROScalarColumn<Int> stypeCol(subt,"SRCTYPE");
1167
1168    ROScalarColumn<uInt> ifNoCol(subt,"IFNO");
1169    ROScalarColumn<uInt> polNoCol(subt,"POLNO");
1170
1171
1172    // Times
1173    meanIntTim = sum(intervalCol.getColumn()) / (double) snrow;
1174    minMax(btime, etime, mjdCol.getColumn());
1175    etime += meanIntTim/C::day;
1176
1177    // MOLECULE_ID and FREQ_ID
1178    Vector<uInt> molids(getNumbers(molIdCol));
1179    molids.shape(nmol);
1180
1181    Vector<uInt> freqids(getNumbers(freqIdCol));
1182    freqids.shape(nfreq);
1183
1184    // Add first beamid, and srcNames
1185    beamids.resize(1,False);
1186    beamDirs.resize(1,False);
1187    beamids(0)=beamCol(0);
1188    beamDirs(0)=dirCol(0);
1189    nbeam = 1;
1190
1191    stypeids.resize(1,False);
1192    stypeids(0)=stypeCol(0);
1193    nstype = 1;
1194
1195    // Global listings of nchan/IFNO/POLNO per FREQ_ID
1196    currFreqId=freqIdCol(0);
1197    ftabRow = fidMap[currFreqId];
1198    // Assumes an identical number of channels per FREQ_ID
1199    if (fIdchans(ftabRow) < 0 ) {
1200      RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1201      fIdchans(ftabRow)=(*spec).shape()(0);
1202    }
1203    if (fIdfreq0(ftabRow) < 0 ) {
1204      SpectralCoordinate spc = frequencies().getSpectralCoordinate(ftabRow);
1205      Double fs, fe;
1206      spc.toWorld(fs, 0);
1207      spc.toWorld(fe, fIdchans(ftabRow)-1);
1208      fIdfreq0(ftabRow) = fs;
1209      fIdfcent(ftabRow) = 0.5 * ( fs + fe );
1210    }
1211    // Should keep ifNos and polNos form the previous SCANNO
1212    if ( !anyEQ(ifNos[ftabRow],ifNoCol(0)) ) {
1213      ifNos[ftabRow].shape(iflen);
1214      iflen++;
1215      ifNos[ftabRow].resize(iflen,True);
1216      ifNos[ftabRow](iflen-1) = ifNoCol(0);
1217    }
1218    if ( !anyEQ(polNos[ftabRow],polNoCol(0)) ) {
1219      polNos[ftabRow].shape(pollen);
1220      pollen++;
1221      polNos[ftabRow].resize(pollen,True);
1222      polNos[ftabRow](pollen-1) = polNoCol(0);
1223    }
1224
1225    for (uInt i=1; i < snrow; i++){
1226      // Need to list BEAMNO and DIRECTION in the same order
1227      if ( !anyEQ(beamids,beamCol(i)) ) {
1228        nbeam++;
1229        beamids.resize(nbeam,True);
1230        beamids(nbeam-1)=beamCol(i);
1231        beamDirs.resize(nbeam,True);
1232        beamDirs(nbeam-1)=dirCol(i);
1233      }
1234
1235      // SRCTYPE is Int (getNumber takes only uInt)
1236      if ( !anyEQ(stypeids,stypeCol(i)) ) {
1237        nstype++;
1238        stypeids.resize(nstype,True);
1239        stypeids(nstype-1)=stypeCol(i);
1240      }
1241
1242      // Global listings of nchan/IFNO/POLNO per FREQ_ID
1243      currFreqId=freqIdCol(i);
1244      ftabRow = fidMap[currFreqId];
1245      if (fIdchans(ftabRow) < 0 ) {
1246        const TableRecord& rec = row.get(i);
1247        RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1248        fIdchans(ftabRow) = (*spec).shape()(0);
1249      }
1250      if (fIdfreq0(ftabRow) < 0 ) {
1251        SpectralCoordinate spc = frequencies().getSpectralCoordinate(ftabRow);
1252        Double fs, fe;
1253        spc.toWorld(fs, 0);
1254        spc.toWorld(fe, fIdchans(ftabRow)-1);
1255        fIdfreq0(ftabRow) = fs;
1256        fIdfcent(ftabRow) = 5.e-1 * ( fs + fe );
1257      }
1258      if ( !anyEQ(ifNos[ftabRow],ifNoCol(i)) ) {
1259        ifNos[ftabRow].shape(iflen);
1260        iflen++;
1261        ifNos[ftabRow].resize(iflen,True);
1262        ifNos[ftabRow](iflen-1) = ifNoCol(i);
1263      }
1264      if ( !anyEQ(polNos[ftabRow],polNoCol(i)) ) {
1265        polNos[ftabRow].shape(pollen);
1266        pollen++;
1267        polNos[ftabRow].resize(pollen,True);
1268        polNos[ftabRow](pollen-1) = polNoCol(i);
1269      }
1270    } // end of row iteration
1271
1272    stypestrs.resize(nstype,False);
1273    for (uInt j=0; j < nstype; j++)
1274      stypestrs(j) = SrcType::getName(stypeids(j));
1275
1276    // Format Scan summary
1277    oss << setw(4) << std::right << rec.asuInt("SCANNO")
1278        << std::left << setw(1) << ""
1279        << setw(15) << rec.asString("SRCNAME")
1280        << setw(21) << MVTime(btime).string(MVTime::YMD,7)
1281        << setw(3) << " - " << MVTime(etime).string(MVTime::TIME,7)
1282        << setw(3) << "" << setw(6) << meanIntTim << setw(1) << ""
1283        << std::right << setw(5) << snrow << setw(2) << ""
1284        << std::left << stypestrs << setw(1) << ""
1285        << freqids << setw(1) << ""
1286        << molids  << endl;
1287    // Format Beam summary
1288    for (uInt j=0; j < nbeam; j++) {
1289      oss << setw(7) << "" << setw(6) << beamids(j) << setw(1) << ""
1290          << formatDirection(beamDirs(j)) << endl;
1291    }
1292    // Flush summary every scan and clear up the string
1293    ols << String(oss) << LogIO::POST;
1294    if (ofs) ofs << String(oss) << flush;
1295    oss.str("");
1296    oss.clear();
1297
1298    ++iter;
1299  } // end of scan iteration
1300  oss << asap::SEPERATOR << endl;
1301 
1302  // List FRECUENCIES Table (using STFrequencies.print may be slow)
1303  oss << "FREQUENCIES: " << nfreq << endl;
1304//   oss << std::right << setw(5) << "ID" << setw(2) << ""
1305//       << std::left  << setw(5) << "IFNO" << setw(2) << ""
1306//       << setw(8) << "Frame"
1307//       << setw(16) << "RefVal"
1308//       << setw(7) << "RefPix"
1309//       << setw(15) << "Increment"
1310//       << setw(9) << "Channels"
1311//       << setw(6) << "POLNOs" << endl;
1312//   Int tmplen;
1313//   for (Int i=0; i < nfid; i++){
1314//     // List row=i of FREQUENCIES subtable
1315//     ifNos[i].shape(tmplen);
1316//     if (tmplen >= 1) {
1317//       oss << std::right << setw(5) << ftabIds(i) << setw(2) << ""
1318//        << setw(3) << ifNos[i](0) << setw(1) << ""
1319//        << std::left << setw(46) << frequencies().print(ftabIds(i))
1320//        << setw(2) << ""
1321//        << std::right << setw(8) << fIdchans[i] << setw(2) << ""
1322//        << std::left << polNos[i];
1323//       if (tmplen > 1) {
1324//      oss  << " (" << tmplen << " chains)";
1325//       }
1326//       oss << endl;
1327//     }
1328  oss << std::right << setw(4) << "ID" << setw(2) << ""
1329      << std::left  << setw(9) << "IFNO(SPW)" << setw(2) << ""
1330      << setw(8) << "#Chans"
1331      << setw(8) << "Frame"
1332      << setw(12) << "Ch0[MHz]"
1333      << setw(14) << "ChanWid[kHz]"
1334      << setw(14) << "Center[MHz]"
1335      << setw(6) << "POLNOs" << endl;
1336  Int tmplen;
1337  for (Int i=0; i < nfid; i++){
1338    // List row=i of FREQUENCIES subtable
1339    ifNos[i].shape(tmplen);
1340    Double refpix, refval, increment ;
1341    if (tmplen >= 1) {
1342      freqTable_.getEntry( refpix, refval, increment, ftabIds(i) ) ;
1343      oss << std::right << setw(4) << ftabIds(i) << setw(2) << ""
1344          << std::left << setw(9) << ifNos[i](0) << setw(2) << ""
1345          << std::right << setw(6) << fIdchans[i] << setw(2) << ""
1346          << setw(6) << frequencies().getFrameString(true)
1347          << setw(2) << ""
1348          << setw(10) << std::setprecision(9) << (fIdfreq0[i]*1.e-6) << setw(2) << ""
1349          << setw(12) << (increment*1.e-3) << setw(2) << ""
1350          << setw(12) << (fIdfcent[i]*1.e-6) << setw(2) << ""
1351          << std::left << polNos[i];
1352      if (tmplen > 1) {
1353        oss  << " (" << tmplen << " chains)";
1354      }
1355      oss << endl;
1356    }
1357   
1358  }
1359  oss << asap::SEPERATOR << endl;
1360
1361  // List MOLECULES Table (currently lists all rows)
1362  oss << "MOLECULES: " << endl;
1363  if (molecules().nrow() <= 0) {
1364    oss << "   MOLECULES subtable is empty: there are no data" << endl;
1365  } else {
1366    ROTableRow row(molecules().table());
1367    oss << std::right << setw(5) << "ID"
1368        << std::left << setw(3) << ""
1369        << setw(18) << "RestFreq"
1370        << setw(15) << "Name" << endl;
1371    for (Int i=0; i < molecules().nrow(); i++){
1372      const TableRecord& rec=row.get(i);
1373      oss << std::right << setw(5) << rec.asuInt("ID")
1374          << std::left << setw(3) << ""
1375          << rec.asArrayDouble("RESTFREQUENCY") << setw(1) << ""
1376          << rec.asArrayString("NAME") << endl;
1377    }
1378  }
1379  oss << asap::SEPERATOR << endl;
1380  ols << String(oss) << LogIO::POST;
1381  if (ofs) {
1382    ofs << String(oss) << flush;
1383    ofs.close();
1384  }
1385  //  return String(oss);
1386}
1387
1388
1389std::string Scantable::oldheaderSummary()
1390{
1391  // Format header info
1392//   STHeader sdh;
1393//   sdh = getHeader();
1394//   sdh.print();
1395  ostringstream oss;
1396  oss.flags(std::ios_base::left);
1397  oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1398      << setw(15) << "IFs:" << setw(4) << nif() << endl
1399      << setw(15) << "Polarisations:" << setw(4) << npol()
1400      << "(" << getPolType() << ")" << endl
1401      << setw(15) << "Channels:" << nchan() << endl;
1402  String tmp;
1403  oss << setw(15) << "Observer:"
1404      << table_.keywordSet().asString("Observer") << endl;
1405  oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1406  table_.keywordSet().get("Project", tmp);
1407  oss << setw(15) << "Project:" << tmp << endl;
1408  table_.keywordSet().get("Obstype", tmp);
1409  oss << setw(15) << "Obs. Type:" << tmp << endl;
1410  table_.keywordSet().get("AntennaName", tmp);
1411  oss << setw(15) << "Antenna Name:" << tmp << endl;
1412  table_.keywordSet().get("FluxUnit", tmp);
1413  oss << setw(15) << "Flux Unit:" << tmp << endl;
1414  int nid = moleculeTable_.nrow();
1415  Bool firstline = True;
1416  oss << setw(15) << "Rest Freqs:";
1417  for (int i=0; i<nid; i++) {
1418    Table t = table_(table_.col("MOLECULE_ID") == i, 1);
1419      if (t.nrow() >  0) {
1420          Vector<Double> vec(moleculeTable_.getRestFrequency(i));
1421          if (vec.nelements() > 0) {
1422               if (firstline) {
1423                   oss << setprecision(10) << vec << " [Hz]" << endl;
1424                   firstline=False;
1425               }
1426               else{
1427                   oss << setw(15)<<" " << setprecision(10) << vec << " [Hz]" << endl;
1428               }
1429          } else {
1430              oss << "none" << endl;
1431          }
1432      }
1433  }
1434
1435  oss << setw(15) << "Abcissa:" << getAbcissaLabel(0) << endl;
1436  oss << selector_.print() << endl;
1437  return String(oss);
1438}
1439
1440  //std::string Scantable::summary( const std::string& filename )
1441void Scantable::oldsummary( const std::string& filename )
1442{
1443  ostringstream oss;
1444  ofstream ofs;
1445  LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1446
1447  if (filename != "")
1448    ofs.open( filename.c_str(),  ios::out );
1449
1450  oss << endl;
1451  oss << asap::SEPERATOR << endl;
1452  oss << " Scan Table Summary" << endl;
1453  oss << asap::SEPERATOR << endl;
1454
1455  // Format header info
1456  oss << oldheaderSummary();
1457  oss << endl;
1458
1459  // main table
1460  String dirtype = "Position ("
1461                  + getDirectionRefString()
1462                  + ")";
1463  oss.flags(std::ios_base::left);
1464  oss << setw(5) << "Scan" << setw(15) << "Source"
1465      << setw(10) << "Time" << setw(18) << "Integration"
1466      << setw(15) << "Source Type" << endl;
1467  oss << setw(5) << "" << setw(5) << "Beam" << setw(3) << "" << dirtype << endl;
1468  oss << setw(10) << "" << setw(3) << "IF" << setw(3) << ""
1469      << setw(8) << "Frame" << setw(16)
1470      << "RefVal" << setw(10) << "RefPix" << setw(12) << "Increment"
1471      << setw(7) << "Channels"
1472      << endl;
1473  oss << asap::SEPERATOR << endl;
1474
1475  // Flush summary and clear up the string
1476  ols << String(oss) << LogIO::POST;
1477  if (ofs) ofs << String(oss) << flush;
1478  oss.str("");
1479  oss.clear();
1480
1481  TableIterator iter(table_, "SCANNO");
1482  while (!iter.pastEnd()) {
1483    Table subt = iter.table();
1484    ROTableRow row(subt);
1485    MEpoch::ROScalarColumn timeCol(subt,"TIME");
1486    const TableRecord& rec = row.get(0);
1487    oss << setw(4) << std::right << rec.asuInt("SCANNO")
1488        << std::left << setw(1) << ""
1489        << setw(15) << rec.asString("SRCNAME")
1490        << setw(10) << formatTime(timeCol(0), false);
1491    // count the cycles in the scan
1492    TableIterator cyciter(subt, "CYCLENO");
1493    int nint = 0;
1494    while (!cyciter.pastEnd()) {
1495      ++nint;
1496      ++cyciter;
1497    }
1498    oss << setw(3) << std::right << nint  << setw(3) << " x " << std::left
1499        << setw(11) <<  formatSec(rec.asFloat("INTERVAL")) << setw(1) << ""
1500        << setw(15) << SrcType::getName(rec.asInt("SRCTYPE")) << endl;
1501
1502    TableIterator biter(subt, "BEAMNO");
1503    while (!biter.pastEnd()) {
1504      Table bsubt = biter.table();
1505      ROTableRow brow(bsubt);
1506      const TableRecord& brec = brow.get(0);
1507      uInt row0 = bsubt.rowNumbers(table_)[0];
1508      oss << setw(5) << "" <<  setw(4) << std::right << brec.asuInt("BEAMNO")<< std::left;
1509      oss  << setw(4) << ""  << formatDirection(getDirection(row0)) << endl;
1510      TableIterator iiter(bsubt, "IFNO");
1511      while (!iiter.pastEnd()) {
1512        Table isubt = iiter.table();
1513        ROTableRow irow(isubt);
1514        const TableRecord& irec = irow.get(0);
1515        oss << setw(9) << "";
1516        oss << setw(3) << std::right << irec.asuInt("IFNO") << std::left
1517            << setw(1) << "" << frequencies().print(irec.asuInt("FREQ_ID"))
1518            << setw(3) << "" << nchan(irec.asuInt("IFNO"))
1519            << endl;
1520
1521        ++iiter;
1522      }
1523      ++biter;
1524    }
1525    // Flush summary every scan and clear up the string
1526    ols << String(oss) << LogIO::POST;
1527    if (ofs) ofs << String(oss) << flush;
1528    oss.str("");
1529    oss.clear();
1530
1531    ++iter;
1532  }
1533  oss << asap::SEPERATOR << endl;
1534  ols << String(oss) << LogIO::POST;
1535  if (ofs) {
1536    ofs << String(oss) << flush;
1537    ofs.close();
1538  }
1539  //  return String(oss);
1540}
1541
1542// std::string Scantable::getTime(int whichrow, bool showdate) const
1543// {
1544//   MEpoch::ROScalarColumn timeCol(table_, "TIME");
1545//   MEpoch me;
1546//   if (whichrow > -1) {
1547//     me = timeCol(uInt(whichrow));
1548//   } else {
1549//     Double tm;
1550//     table_.keywordSet().get("UTC",tm);
1551//     me = MEpoch(MVEpoch(tm));
1552//   }
1553//   return formatTime(me, showdate);
1554// }
1555
1556std::string Scantable::getTime(int whichrow, bool showdate, uInt prec) const
1557{
1558  MEpoch me;
1559  me = getEpoch(whichrow);
1560  return formatTime(me, showdate, prec);
1561}
1562
1563MEpoch Scantable::getEpoch(int whichrow) const
1564{
1565  if (whichrow > -1) {
1566    return timeCol_(uInt(whichrow));
1567  } else {
1568    Double tm;
1569    table_.keywordSet().get("UTC",tm);
1570    return MEpoch(MVEpoch(tm));
1571  }
1572}
1573
1574std::string Scantable::getDirectionString(int whichrow) const
1575{
1576  return formatDirection(getDirection(uInt(whichrow)));
1577}
1578
1579
1580SpectralCoordinate Scantable::getSpectralCoordinate(int whichrow) const {
1581  const MPosition& mp = getAntennaPosition();
1582  const MDirection& md = getDirection(whichrow);
1583  const MEpoch& me = timeCol_(whichrow);
1584  //Double rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1585  Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1586  return freqTable_.getSpectralCoordinate(md, mp, me, rf,
1587                                          mfreqidCol_(whichrow));
1588}
1589
1590std::vector< double > Scantable::getAbcissa( int whichrow ) const
1591{
1592  if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal row number"));
1593  std::vector<double> stlout;
1594  int nchan = specCol_(whichrow).nelements();
1595  String us = freqTable_.getUnitString();
1596  if ( us == "" || us == "pixel" || us == "channel" ) {
1597    for (int i=0; i<nchan; ++i) {
1598      stlout.push_back(double(i));
1599    }
1600    return stlout;
1601  }
1602  SpectralCoordinate spc = getSpectralCoordinate(whichrow);
1603  Vector<Double> pixel(nchan);
1604  Vector<Double> world;
1605  indgen(pixel);
1606  if ( Unit(us) == Unit("Hz") ) {
1607    for ( int i=0; i < nchan; ++i) {
1608      Double world;
1609      spc.toWorld(world, pixel[i]);
1610      stlout.push_back(double(world));
1611    }
1612  } else if ( Unit(us) == Unit("km/s") ) {
1613    Vector<Double> world;
1614    spc.pixelToVelocity(world, pixel);
1615    world.tovector(stlout);
1616  }
1617  return stlout;
1618}
1619void Scantable::setDirectionRefString( const std::string & refstr )
1620{
1621  MDirection::Types mdt;
1622  if (refstr != "" && !MDirection::getType(mdt, refstr)) {
1623    throw(AipsError("Illegal Direction frame."));
1624  }
1625  if ( refstr == "" ) {
1626    String defaultstr = MDirection::showType(dirCol_.getMeasRef().getType());
1627    table_.rwKeywordSet().define("DIRECTIONREF", defaultstr);
1628  } else {
1629    table_.rwKeywordSet().define("DIRECTIONREF", String(refstr));
1630  }
1631}
1632
1633std::string Scantable::getDirectionRefString( ) const
1634{
1635  return table_.keywordSet().asString("DIRECTIONREF");
1636}
1637
1638MDirection Scantable::getDirection(int whichrow ) const
1639{
1640  String usertype = table_.keywordSet().asString("DIRECTIONREF");
1641  String type = MDirection::showType(dirCol_.getMeasRef().getType());
1642  if ( usertype != type ) {
1643    MDirection::Types mdt;
1644    if (!MDirection::getType(mdt, usertype)) {
1645      throw(AipsError("Illegal Direction frame."));
1646    }
1647    return dirCol_.convert(uInt(whichrow), mdt);
1648  } else {
1649    return dirCol_(uInt(whichrow));
1650  }
1651}
1652
1653std::string Scantable::getAbcissaLabel( int whichrow ) const
1654{
1655  if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal ro number"));
1656  const MPosition& mp = getAntennaPosition();
1657  const MDirection& md = getDirection(whichrow);
1658  const MEpoch& me = timeCol_(whichrow);
1659  //const Double& rf = mmolidCol_(whichrow);
1660  const Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1661  SpectralCoordinate spc =
1662    freqTable_.getSpectralCoordinate(md, mp, me, rf, mfreqidCol_(whichrow));
1663
1664  String s = "Channel";
1665  Unit u = Unit(freqTable_.getUnitString());
1666  if (u == Unit("km/s")) {
1667    s = CoordinateUtil::axisLabel(spc, 0, True,True,  True);
1668  } else if (u == Unit("Hz")) {
1669    Vector<String> wau(1);wau = u.getName();
1670    spc.setWorldAxisUnits(wau);
1671    s = CoordinateUtil::axisLabel(spc, 0, True, True, False);
1672  }
1673  return s;
1674
1675}
1676
1677/**
1678void asap::Scantable::setRestFrequencies( double rf, const std::string& name,
1679                                          const std::string& unit )
1680**/
1681void Scantable::setRestFrequencies( vector<double> rf, const vector<std::string>& name,
1682                                          const std::string& unit )
1683
1684{
1685  ///@todo lookup in line table to fill in name and formattedname
1686  Unit u(unit);
1687  //Quantum<Double> urf(rf, u);
1688  Quantum<Vector<Double> >urf(rf, u);
1689  Vector<String> formattedname(0);
1690  //cerr<<"Scantable::setRestFrequnecies="<<urf<<endl;
1691
1692  //uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), name, "");
1693  uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), mathutil::toVectorString(name), formattedname);
1694  TableVector<uInt> tabvec(table_, "MOLECULE_ID");
1695  tabvec = id;
1696}
1697
1698/**
1699void asap::Scantable::setRestFrequencies( const std::string& name )
1700{
1701  throw(AipsError("setRestFrequencies( const std::string& name ) NYI"));
1702  ///@todo implement
1703}
1704**/
1705
1706void Scantable::setRestFrequencies( const vector<std::string>& name )
1707{
1708  (void) name; // suppress unused warning
1709  throw(AipsError("setRestFrequencies( const vector<std::string>& name ) NYI"));
1710  ///@todo implement
1711}
1712
1713std::vector< unsigned int > Scantable::rownumbers( ) const
1714{
1715  std::vector<unsigned int> stlout;
1716  Vector<uInt> vec = table_.rowNumbers();
1717  vec.tovector(stlout);
1718  return stlout;
1719}
1720
1721
1722Matrix<Float> Scantable::getPolMatrix( uInt whichrow ) const
1723{
1724  ROTableRow row(table_);
1725  const TableRecord& rec = row.get(whichrow);
1726  Table t =
1727    originalTable_( originalTable_.col("SCANNO") == Int(rec.asuInt("SCANNO"))
1728                    && originalTable_.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1729                    && originalTable_.col("IFNO") == Int(rec.asuInt("IFNO"))
1730                    && originalTable_.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
1731  ROArrayColumn<Float> speccol(t, "SPECTRA");
1732  return speccol.getColumn();
1733}
1734
1735std::vector< std::string > Scantable::columnNames( ) const
1736{
1737  Vector<String> vec = table_.tableDesc().columnNames();
1738  return mathutil::tovectorstring(vec);
1739}
1740
1741MEpoch::Types Scantable::getTimeReference( ) const
1742{
1743  return MEpoch::castType(timeCol_.getMeasRef().getType());
1744}
1745
1746void Scantable::addFit( const STFitEntry& fit, int row )
1747{
1748  //cout << mfitidCol_(uInt(row)) << endl;
1749  LogIO os( LogOrigin( "Scantable", "addFit()", WHERE ) ) ;
1750  os << mfitidCol_(uInt(row)) << LogIO::POST ;
1751  uInt id = fitTable_.addEntry(fit, mfitidCol_(uInt(row)));
1752  mfitidCol_.put(uInt(row), id);
1753}
1754
1755void Scantable::shift(int npix)
1756{
1757  Vector<uInt> fids(mfreqidCol_.getColumn());
1758  genSort( fids, Sort::Ascending,
1759           Sort::QuickSort|Sort::NoDuplicates );
1760  for (uInt i=0; i<fids.nelements(); ++i) {
1761    frequencies().shiftRefPix(npix, fids[i]);
1762  }
1763}
1764
1765String Scantable::getAntennaName() const
1766{
1767  String out;
1768  table_.keywordSet().get("AntennaName", out);
1769  String::size_type pos1 = out.find("@") ;
1770  String::size_type pos2 = out.find("//") ;
1771  if ( pos2 != String::npos )
1772    out = out.substr(pos2+2,pos1-pos2-2) ;
1773  else if ( pos1 != String::npos )
1774    out = out.substr(0,pos1) ;
1775  return out;
1776}
1777
1778int Scantable::checkScanInfo(const std::vector<int>& scanlist) const
1779{
1780  String tbpath;
1781  int ret = 0;
1782  if ( table_.keywordSet().isDefined("GBT_GO") ) {
1783    table_.keywordSet().get("GBT_GO", tbpath);
1784    Table t(tbpath,Table::Old);
1785    // check each scan if other scan of the pair exist
1786    int nscan = scanlist.size();
1787    for (int i = 0; i < nscan; i++) {
1788      Table subt = t( t.col("SCAN") == scanlist[i] );
1789      if (subt.nrow()==0) {
1790        //cerr <<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<endl;
1791        LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1792        os <<LogIO::WARN<<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<LogIO::POST;
1793        ret = 1;
1794        break;
1795      }
1796      ROTableRow row(subt);
1797      const TableRecord& rec = row.get(0);
1798      int scan1seqn = rec.asuInt("PROCSEQN");
1799      int laston1 = rec.asuInt("LASTON");
1800      if ( rec.asuInt("PROCSIZE")==2 ) {
1801        if ( i < nscan-1 ) {
1802          Table subt2 = t( t.col("SCAN") == scanlist[i+1] );
1803          if ( subt2.nrow() == 0) {
1804            LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1805
1806            //cerr<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<endl;
1807            os<<LogIO::WARN<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<LogIO::POST;
1808            ret = 1;
1809            break;
1810          }
1811          ROTableRow row2(subt2);
1812          const TableRecord& rec2 = row2.get(0);
1813          int scan2seqn = rec2.asuInt("PROCSEQN");
1814          int laston2 = rec2.asuInt("LASTON");
1815          if (scan1seqn == 1 && scan2seqn == 2) {
1816            if (laston1 == laston2) {
1817              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1818              //cerr<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1819              os<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1820              i +=1;
1821            }
1822            else {
1823              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1824              //cerr<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1825              os<<LogIO::WARN<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1826            }
1827          }
1828          else if (scan1seqn==2 && scan2seqn == 1) {
1829            if (laston1 == laston2) {
1830              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1831              //cerr<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<endl;
1832              os<<LogIO::WARN<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<LogIO::POST;
1833              ret = 1;
1834              break;
1835            }
1836          }
1837          else {
1838            LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1839            //cerr<<"The other scan for  "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<endl;
1840            os<<LogIO::WARN<<"The other scan for  "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<LogIO::POST;
1841            ret = 1;
1842            break;
1843          }
1844        }
1845      }
1846      else {
1847        LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1848        //cerr<<"The scan does not appear to be standard obsevation."<<endl;
1849        os<<LogIO::WARN<<"The scan does not appear to be standard obsevation."<<LogIO::POST;
1850      }
1851    //if ( i >= nscan ) break;
1852    }
1853  }
1854  else {
1855    LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1856    //cerr<<"No reference to GBT_GO table."<<endl;
1857    os<<LogIO::WARN<<"No reference to GBT_GO table."<<LogIO::POST;
1858    ret = 1;
1859  }
1860  return ret;
1861}
1862
1863std::vector<double> Scantable::getDirectionVector(int whichrow) const
1864{
1865  Vector<Double> Dir = dirCol_(whichrow).getAngle("rad").getValue();
1866  std::vector<double> dir;
1867  Dir.tovector(dir);
1868  return dir;
1869}
1870
1871void asap::Scantable::reshapeSpectrum( int nmin, int nmax )
1872  throw( casa::AipsError )
1873{
1874  // assumed that all rows have same nChan
1875  Vector<Float> arr = specCol_( 0 ) ;
1876  int nChan = arr.nelements() ;
1877
1878  // if nmin < 0 or nmax < 0, nothing to do
1879  if (  nmin < 0 ) {
1880    throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1881    }
1882  if (  nmax < 0  ) {
1883    throw( casa::indexError<int>( nmax, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1884  }
1885
1886  // if nmin > nmax, exchange values
1887  if ( nmin > nmax ) {
1888    int tmp = nmax ;
1889    nmax = nmin ;
1890    nmin = tmp ;
1891    LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1892    os << "Swap values. Applied range is ["
1893       << nmin << ", " << nmax << "]" << LogIO::POST ;
1894  }
1895
1896  // if nmin exceeds nChan, nothing to do
1897  if ( nmin >= nChan ) {
1898    throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Specified minimum exceeds nChan." ) ) ;
1899  }
1900
1901  // if nmax exceeds nChan, reset nmax to nChan
1902  if ( nmax >= nChan-1 ) {
1903    if ( nmin == 0 ) {
1904      // nothing to do
1905      LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1906      os << "Whole range is selected. Nothing to do." << LogIO::POST ;
1907      return ;
1908    }
1909    else {
1910      LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1911      os << "Specified maximum exceeds nChan. Applied range is ["
1912         << nmin << ", " << nChan-1 << "]." << LogIO::POST ;
1913      nmax = nChan - 1 ;
1914    }
1915  }
1916
1917  // reshape specCol_ and flagCol_
1918  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1919    reshapeSpectrum( nmin, nmax, irow ) ;
1920  }
1921
1922  // update FREQUENCIES subtable
1923  Vector<uInt> freqIdArray = mfreqidCol_.getColumn();
1924  uInt numFreqId = GenSort<uInt>::sort(freqIdArray, Sort::Ascending,
1925                                       Sort::HeapSort | Sort::NoDuplicates);
1926  Double refpix ;
1927  Double refval ;
1928  Double increment ;
1929  for (uInt irow  = 0; irow < numFreqId; irow++) {
1930    freqTable_.getEntry( refpix, refval, increment, freqIdArray[irow] ) ;
1931    /***
1932     * need to shift refpix to nmin
1933     * note that channel nmin in old index will be channel 0 in new one
1934     ***/
1935    refval = refval - ( refpix - nmin ) * increment ;
1936    refpix = 0 ;
1937    freqTable_.setEntry( refpix, refval, increment, freqIdArray[irow] ) ;
1938  }
1939
1940  // update nchan
1941  int newsize = nmax - nmin + 1 ;
1942  table_.rwKeywordSet().define( "nChan", newsize ) ;
1943
1944  // update bandwidth
1945  // assumed all spectra in the scantable have same bandwidth
1946  table_.rwKeywordSet().define( "Bandwidth", increment * newsize ) ;
1947
1948  return ;
1949}
1950
1951void asap::Scantable::reshapeSpectrum( int nmin, int nmax, int irow )
1952{
1953  // reshape specCol_ and flagCol_
1954  Vector<Float> oldspec = specCol_( irow ) ;
1955  Vector<uChar> oldflag = flagsCol_( irow ) ;
1956  Vector<Float> oldtsys = tsysCol_( irow ) ;
1957  uInt newsize = nmax - nmin + 1 ;
1958  Slice slice( nmin, newsize, 1 ) ;
1959  specCol_.put( irow, oldspec( slice ) ) ;
1960  flagsCol_.put( irow, oldflag( slice ) ) ;
1961  if ( oldspec.size() == oldtsys.size() )
1962    tsysCol_.put( irow, oldtsys( slice ) ) ;
1963
1964  return ;
1965}
1966
1967void asap::Scantable::regridSpecChannel( double dnu, int nChan )
1968{
1969  LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1970  os << "Regrid abcissa with spectral resoultion " << dnu << " " << freqTable_.getUnitString() << " with channel number " << ((nChan>0)? String(nChan) : "covering band width")<< LogIO::POST ;
1971  int freqnrow = freqTable_.table().nrow() ;
1972  Vector<bool> firstTime( freqnrow, true ) ;
1973  double oldincr, factor;
1974  uInt currId;
1975  Double refpix ;
1976  Double refval ;
1977  Double increment ;
1978  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1979    currId = mfreqidCol_(irow);
1980    vector<double> abcissa = getAbcissa( irow ) ;
1981    if (nChan < 0) {
1982      int oldsize = abcissa.size() ;
1983      double bw = (abcissa[oldsize-1]-abcissa[0]) +                     \
1984        0.5 * (abcissa[1]-abcissa[0] + abcissa[oldsize-1]-abcissa[oldsize-2]) ;
1985      nChan = int( ceil( abs(bw/dnu) ) ) ;
1986    }
1987    // actual regridding
1988    regridChannel( nChan, dnu, irow ) ;
1989
1990    // update FREQUENCIES subtable
1991    if (firstTime[currId]) {
1992      oldincr = abcissa[1]-abcissa[0] ;
1993      factor = dnu/oldincr ;
1994      firstTime[currId] = false ;
1995      freqTable_.getEntry( refpix, refval, increment, currId ) ;
1996
1997      //refval = refval - ( refpix + 0.5 * (1 - factor) ) * increment ;
1998      if (factor > 0 ) {
1999        refpix = (refpix + 0.5)/factor - 0.5;
2000      } else {
2001        refpix = (abcissa.size() - 0.5 - refpix)/abs(factor) - 0.5;
2002      }
2003      freqTable_.setEntry( refpix, refval, increment*factor, currId ) ;
2004      //os << "ID" << currId << ": channel width (Orig) = " << oldincr << " [" << freqTable_.getUnitString() << "], scale factor = " << factor << LogIO::POST ;
2005      //os << "     frequency increment (Orig) = " << increment << "-> (New) " << increment*factor << LogIO::POST ;
2006    }
2007  }
2008}
2009
2010void asap::Scantable::regridChannel( int nChan, double dnu )
2011{
2012  LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
2013  os << "Regrid abcissa with channel number " << nChan << " and spectral resoultion " << dnu << "Hz." << LogIO::POST ;
2014  // assumed that all rows have same nChan
2015  Vector<Float> arr = specCol_( 0 ) ;
2016  int oldsize = arr.nelements() ;
2017
2018  // if oldsize == nChan, nothing to do
2019  if ( oldsize == nChan ) {
2020    os << "Specified channel number is same as current one. Nothing to do." << LogIO::POST ;
2021    return ;
2022  }
2023
2024  // if oldChan < nChan, unphysical operation
2025  if ( oldsize < nChan ) {
2026    os << "Unphysical operation. Nothing to do." << LogIO::POST ;
2027    return ;
2028  }
2029
2030  // change channel number for specCol_, flagCol_, and tsysCol_ (if necessary)
2031  vector<string> coordinfo = getCoordInfo() ;
2032  string oldinfo = coordinfo[0] ;
2033  coordinfo[0] = "Hz" ;
2034  setCoordInfo( coordinfo ) ;
2035  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
2036    regridChannel( nChan, dnu, irow ) ;
2037  }
2038  coordinfo[0] = oldinfo ;
2039  setCoordInfo( coordinfo ) ;
2040
2041
2042  // NOTE: this method does not update metadata such as
2043  //       FREQUENCIES subtable, nChan, Bandwidth, etc.
2044
2045  return ;
2046}
2047
2048void asap::Scantable::regridChannel( int nChan, double dnu, int irow )
2049{
2050  // logging
2051  //ofstream ofs( "average.log", std::ios::out | std::ios::app ) ;
2052  //ofs << "IFNO = " << getIF( irow ) << " irow = " << irow << endl ;
2053
2054  Vector<Float> oldspec = specCol_( irow ) ;
2055  Vector<uChar> oldflag = flagsCol_( irow ) ;
2056  Vector<Float> oldtsys = tsysCol_( irow ) ;
2057  Vector<Float> newspec( nChan, 0 ) ;
2058  Vector<uChar> newflag( nChan, true ) ;
2059  Vector<Float> newtsys ;
2060  bool regridTsys = false ;
2061  if (oldtsys.size() == oldspec.size()) {
2062    regridTsys = true ;
2063    newtsys.resize(nChan,false) ;
2064    newtsys = 0 ;
2065  }
2066
2067  // regrid
2068  vector<double> abcissa = getAbcissa( irow ) ;
2069  int oldsize = abcissa.size() ;
2070  double olddnu = abcissa[1] - abcissa[0] ;
2071  //int ichan = 0 ;
2072  double wsum = 0.0 ;
2073  Vector<double> zi( nChan+1 ) ;
2074  Vector<double> yi( oldsize + 1 ) ;
2075  yi[0] = abcissa[0] - 0.5 * olddnu ;
2076  for ( int ii = 1 ; ii < oldsize ; ii++ )
2077    yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2078  yi[oldsize] = abcissa[oldsize-1] \
2079    + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
2080  //zi[0] = abcissa[0] - 0.5 * olddnu ;
2081  zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2082  for ( int ii = 1 ; ii < nChan ; ii++ )
2083    zi[ii] = zi[0] + dnu * ii ;
2084  zi[nChan] = zi[nChan-1] + dnu ;
2085  // Access zi and yi in ascending order
2086  int izs = ((dnu > 0) ? 0 : nChan ) ;
2087  int ize = ((dnu > 0) ? nChan : 0 ) ;
2088  int izincr = ((dnu > 0) ? 1 : -1 ) ;
2089  int ichan =  ((olddnu > 0) ? 0 : oldsize ) ;
2090  int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2091  int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2092  //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2093  int ii = izs ;
2094  while (ii != ize) {
2095    // always zl < zr
2096    double zl = zi[ii] ;
2097    double zr = zi[ii+izincr] ;
2098    // Need to access smaller index for the new spec, flag, and tsys.
2099    // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2100    int i = min(ii, ii+izincr) ;
2101    //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2102    int jj = ichan ;
2103    while (jj != iye) {
2104      // always yl < yr
2105      double yl = yi[jj] ;
2106      double yr = yi[jj+iyincr] ;
2107      // Need to access smaller index for the original spec, flag, and tsys.
2108      // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2109      int j = min(jj, jj+iyincr) ;
2110      if ( yr <= zl ) {
2111        jj += iyincr ;
2112        continue ;
2113      }
2114      else if ( yl <= zl ) {
2115        if ( yr < zr ) {
2116          if (!oldflag[j]) {
2117            newspec[i] += oldspec[j] * ( yr - zl ) ;
2118            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2119            wsum += ( yr - zl ) ;
2120          }
2121          newflag[i] = newflag[i] && oldflag[j] ;
2122        }
2123        else {
2124          if (!oldflag[j]) {
2125            newspec[i] += oldspec[j] * abs(dnu) ;
2126            if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2127            wsum += abs(dnu) ;
2128          }
2129          newflag[i] = newflag[i] && oldflag[j] ;
2130          ichan = jj ;
2131          break ;
2132        }
2133      }
2134      else if ( yl < zr ) {
2135        if ( yr <= zr ) {
2136          if (!oldflag[j]) {
2137            newspec[i] += oldspec[j] * ( yr - yl ) ;
2138            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2139            wsum += ( yr - yl ) ;
2140          }
2141          newflag[i] = newflag[i] && oldflag[j] ;
2142        }
2143        else {
2144          if (!oldflag[j]) {
2145            newspec[i] += oldspec[j] * ( zr - yl ) ;
2146            if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2147            wsum += ( zr - yl ) ;
2148          }
2149          newflag[i] = newflag[i] && oldflag[j] ;
2150          ichan = jj ;
2151          break ;
2152        }
2153      }
2154      else {
2155        ichan = jj - iyincr ;
2156        break ;
2157      }
2158      jj += iyincr ;
2159    }
2160    if ( wsum != 0.0 ) {
2161      newspec[i] /= wsum ;
2162      if (regridTsys) newtsys[i] /= wsum ;
2163    }
2164    wsum = 0.0 ;
2165    ii += izincr ;
2166  }
2167//   if ( dnu > 0.0 ) {
2168//     for ( int ii = 0 ; ii < nChan ; ii++ ) {
2169//       double zl = zi[ii] ;
2170//       double zr = zi[ii+1] ;
2171//       for ( int j = ichan ; j < oldsize ; j++ ) {
2172//         double yl = yi[j] ;
2173//         double yr = yi[j+1] ;
2174//         if ( yl <= zl ) {
2175//           if ( yr <= zl ) {
2176//             continue ;
2177//           }
2178//           else if ( yr <= zr ) {
2179//          if (!oldflag[j]) {
2180//            newspec[ii] += oldspec[j] * ( yr - zl ) ;
2181//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - zl ) ;
2182//            wsum += ( yr - zl ) ;
2183//          }
2184//          newflag[ii] = newflag[ii] && oldflag[j] ;
2185//           }
2186//           else {
2187//          if (!oldflag[j]) {
2188//            newspec[ii] += oldspec[j] * dnu ;
2189//            if (regridTsys) newtsys[ii] += oldtsys[j] * dnu ;
2190//            wsum += dnu ;
2191//          }
2192//          newflag[ii] = newflag[ii] && oldflag[j] ;
2193//             ichan = j ;
2194//             break ;
2195//           }
2196//         }
2197//         else if ( yl < zr ) {
2198//           if ( yr <= zr ) {
2199//          if (!oldflag[j]) {
2200//            newspec[ii] += oldspec[j] * ( yr - yl ) ;
2201//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - yl ) ;
2202//               wsum += ( yr - yl ) ;
2203//          }
2204//          newflag[ii] = newflag[ii] && oldflag[j] ;
2205//           }
2206//           else {
2207//          if (!oldflag[j]) {
2208//            newspec[ii] += oldspec[j] * ( zr - yl ) ;
2209//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( zr - yl ) ;
2210//            wsum += ( zr - yl ) ;
2211//          }
2212//          newflag[ii] = newflag[ii] && oldflag[j] ;
2213//             ichan = j ;
2214//             break ;
2215//           }
2216//         }
2217//         else {
2218//           ichan = j - 1 ;
2219//           break ;
2220//         }
2221//       }
2222//       if ( wsum != 0.0 ) {
2223//         newspec[ii] /= wsum ;
2224//      if (regridTsys) newtsys[ii] /= wsum ;
2225//       }
2226//       wsum = 0.0 ;
2227//     }
2228//   }
2229//   else if ( dnu < 0.0 ) {
2230//     for ( int ii = 0 ; ii < nChan ; ii++ ) {
2231//       double zl = zi[ii] ;
2232//       double zr = zi[ii+1] ;
2233//       for ( int j = ichan ; j < oldsize ; j++ ) {
2234//         double yl = yi[j] ;
2235//         double yr = yi[j+1] ;
2236//         if ( yl >= zl ) {
2237//           if ( yr >= zl ) {
2238//             continue ;
2239//           }
2240//           else if ( yr >= zr ) {
2241//          if (!oldflag[j]) {
2242//            newspec[ii] += oldspec[j] * abs( yr - zl ) ;
2243//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - zl ) ;
2244//            wsum += abs( yr - zl ) ;
2245//          }
2246//          newflag[ii] = newflag[ii] && oldflag[j] ;
2247//           }
2248//           else {
2249//          if (!oldflag[j]) {
2250//            newspec[ii] += oldspec[j] * abs( dnu ) ;
2251//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( dnu ) ;
2252//            wsum += abs( dnu ) ;
2253//          }
2254//          newflag[ii] = newflag[ii] && oldflag[j] ;
2255//             ichan = j ;
2256//             break ;
2257//           }
2258//         }
2259//         else if ( yl > zr ) {
2260//           if ( yr >= zr ) {
2261//          if (!oldflag[j]) {
2262//            newspec[ii] += oldspec[j] * abs( yr - yl ) ;
2263//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - yl ) ;
2264//            wsum += abs( yr - yl ) ;
2265//          }
2266//          newflag[ii] = newflag[ii] && oldflag[j] ;
2267//           }
2268//           else {
2269//          if (!oldflag[j]) {
2270//            newspec[ii] += oldspec[j] * abs( zr - yl ) ;
2271//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( zr - yl ) ;
2272//            wsum += abs( zr - yl ) ;
2273//          }
2274//          newflag[ii] = newflag[ii] && oldflag[j] ;
2275//             ichan = j ;
2276//             break ;
2277//           }
2278//         }
2279//         else {
2280//           ichan = j - 1 ;
2281//           break ;
2282//         }
2283//       }
2284//       if ( wsum != 0.0 ) {
2285//         newspec[ii] /= wsum ;
2286//      if (regridTsys) newtsys[ii] /= wsum ;
2287//       }
2288//       wsum = 0.0 ;
2289//     }
2290//   }
2291// //   //ofs << "olddnu = " << olddnu << ", dnu = " << dnu << endl ;
2292// //   pile += dnu ;
2293// //   wedge = olddnu * ( refChan + 1 ) ;
2294// //   while ( wedge < pile ) {
2295// //     newspec[0] += olddnu * oldspec[refChan] ;
2296// //     newflag[0] = newflag[0] || oldflag[refChan] ;
2297// //     //ofs << "channel " << refChan << " is included in new channel 0" << endl ;
2298// //     refChan++ ;
2299// //     wedge += olddnu ;
2300// //     wsum += olddnu ;
2301// //     //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2302// //   }
2303// //   frac = ( wedge - pile ) / olddnu ;
2304// //   wsum += ( 1.0 - frac ) * olddnu ;
2305// //   newspec[0] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2306// //   newflag[0] = newflag[0] || oldflag[refChan] ;
2307// //   //ofs << "channel " << refChan << " is partly included in new channel 0" << " with fraction of " << ( 1.0 - frac ) << endl ;
2308// //   //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2309// //   newspec[0] /= wsum ;
2310// //   //ofs << "newspec[0] = " << newspec[0] << endl ;
2311// //   //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2312
2313// //   /***
2314// //    * ichan = 1 - nChan-2
2315// //    ***/
2316// //   for ( int ichan = 1 ; ichan < nChan - 1 ; ichan++ ) {
2317// //     pile += dnu ;
2318// //     newspec[ichan] += frac * olddnu * oldspec[refChan] ;
2319// //     newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2320// //     //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << frac << endl ;
2321// //     refChan++ ;
2322// //     wedge += olddnu ;
2323// //     wsum = frac * olddnu ;
2324// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2325// //     while ( wedge < pile ) {
2326// //       newspec[ichan] += olddnu * oldspec[refChan] ;
2327// //       newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2328// //       //ofs << "channel " << refChan << " is included in new channel " << ichan << endl ;
2329// //       refChan++ ;
2330// //       wedge += olddnu ;
2331// //       wsum += olddnu ;
2332// //       //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2333// //     }
2334// //     frac = ( wedge - pile ) / olddnu ;
2335// //     wsum += ( 1.0 - frac ) * olddnu ;
2336// //     newspec[ichan] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2337// //     newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2338// //     //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << ( 1.0 - frac ) << endl ;
2339// //     //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2340// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2341// //     newspec[ichan] /= wsum ;
2342// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << endl ;
2343// //   }
2344
2345// //   /***
2346// //    * ichan = nChan-1
2347// //    ***/
2348// //   // NOTE: Assumed that all spectra have the same bandwidth
2349// //   pile += dnu ;
2350// //   newspec[nChan-1] += frac * olddnu * oldspec[refChan] ;
2351// //   newflag[nChan-1] = newflag[nChan-1] || oldflag[refChan] ;
2352// //   //ofs << "channel " << refChan << " is partly included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2353// //   refChan++ ;
2354// //   wedge += olddnu ;
2355// //   wsum = frac * olddnu ;
2356// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2357// //   for ( int jchan = refChan ; jchan < oldsize ; jchan++ ) {
2358// //     newspec[nChan-1] += olddnu * oldspec[jchan] ;
2359// //     newflag[nChan-1] = newflag[nChan-1] || oldflag[jchan] ;
2360// //     wsum += olddnu ;
2361// //     //ofs << "channel " << jchan << " is included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2362// //     //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2363// //   }
2364// //   //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2365// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2366// //   newspec[nChan-1] /= wsum ;
2367// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << endl ;
2368
2369// //   // ofs.close() ;
2370
2371  specCol_.put( irow, newspec ) ;
2372  flagsCol_.put( irow, newflag ) ;
2373  if (regridTsys) tsysCol_.put( irow, newtsys );
2374
2375  return ;
2376}
2377
2378void Scantable::regridChannel( int nChan, double dnu, double fmin, int irow )
2379{
2380  Vector<Float> oldspec = specCol_( irow ) ;
2381  Vector<uChar> oldflag = flagsCol_( irow ) ;
2382  Vector<Float> oldtsys = tsysCol_( irow ) ;
2383  Vector<Float> newspec( nChan, 0 ) ;
2384  Vector<uChar> newflag( nChan, true ) ;
2385  Vector<Float> newtsys ;
2386  bool regridTsys = false ;
2387  if (oldtsys.size() == oldspec.size()) {
2388    regridTsys = true ;
2389    newtsys.resize(nChan,false) ;
2390    newtsys = 0 ;
2391  }
2392 
2393  // regrid
2394  vector<double> abcissa = getAbcissa( irow ) ;
2395  int oldsize = abcissa.size() ;
2396  double olddnu = abcissa[1] - abcissa[0] ;
2397  //int ichan = 0 ;
2398  double wsum = 0.0 ;
2399  Vector<double> zi( nChan+1 ) ;
2400  Vector<double> yi( oldsize + 1 ) ;
2401  Block<uInt> count( nChan, 0 ) ;
2402  yi[0] = abcissa[0] - 0.5 * olddnu ;
2403  for ( int ii = 1 ; ii < oldsize ; ii++ )
2404    yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2405  yi[oldsize] = abcissa[oldsize-1] \
2406    + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
2407//   cout << "olddnu=" << olddnu << ", dnu=" << dnu << " (diff=" << olddnu-dnu << ")" << endl ;
2408//   cout << "yi[0]=" << yi[0] << ", fmin=" << fmin << " (diff=" << yi[0]-fmin << ")" << endl ;
2409//   cout << "oldsize=" << oldsize << ", nChan=" << nChan << endl ;
2410
2411  // do not regrid if input parameters are almost same as current
2412  // spectral setup
2413  double dnuDiff = abs( ( dnu - olddnu ) / olddnu ) ;
2414  double oldfmin = min( yi[0], yi[oldsize] ) ;
2415  double fminDiff = abs( ( fmin - oldfmin ) / oldfmin ) ;
2416  double nChanDiff = nChan - oldsize ;
2417  double eps = 1.0e-8 ;
2418  if ( nChanDiff == 0 && dnuDiff < eps && fminDiff < eps )
2419    return ;
2420
2421  //zi[0] = abcissa[0] - 0.5 * olddnu ;
2422  //zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2423  if ( dnu > 0 )
2424    zi[0] = fmin - 0.5 * dnu ;
2425  else
2426    zi[0] = fmin + nChan * abs(dnu) ;
2427  for ( int ii = 1 ; ii < nChan ; ii++ )
2428    zi[ii] = zi[0] + dnu * ii ;
2429  zi[nChan] = zi[nChan-1] + dnu ;
2430  // Access zi and yi in ascending order
2431  int izs = ((dnu > 0) ? 0 : nChan ) ;
2432  int ize = ((dnu > 0) ? nChan : 0 ) ;
2433  int izincr = ((dnu > 0) ? 1 : -1 ) ;
2434  int ichan =  ((olddnu > 0) ? 0 : oldsize ) ;
2435  int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2436  int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2437  //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2438  int ii = izs ;
2439  while (ii != ize) {
2440    // always zl < zr
2441    double zl = zi[ii] ;
2442    double zr = zi[ii+izincr] ;
2443    // Need to access smaller index for the new spec, flag, and tsys.
2444    // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2445    int i = min(ii, ii+izincr) ;
2446    //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2447    int jj = ichan ;
2448    while (jj != iye) {
2449      // always yl < yr
2450      double yl = yi[jj] ;
2451      double yr = yi[jj+iyincr] ;
2452      // Need to access smaller index for the original spec, flag, and tsys.
2453      // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2454      int j = min(jj, jj+iyincr) ;
2455      if ( yr <= zl ) {
2456        jj += iyincr ;
2457        continue ;
2458      }
2459      else if ( yl <= zl ) {
2460        if ( yr < zr ) {
2461          if (!oldflag[j]) {
2462            newspec[i] += oldspec[j] * ( yr - zl ) ;
2463            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2464            wsum += ( yr - zl ) ;
2465            count[i]++ ;
2466          }
2467          newflag[i] = newflag[i] && oldflag[j] ;
2468        }
2469        else {
2470          if (!oldflag[j]) {
2471            newspec[i] += oldspec[j] * abs(dnu) ;
2472            if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2473            wsum += abs(dnu) ;
2474            count[i]++ ;
2475          }
2476          newflag[i] = newflag[i] && oldflag[j] ;
2477          ichan = jj ;
2478          break ;
2479        }
2480      }
2481      else if ( yl < zr ) {
2482        if ( yr <= zr ) {
2483          if (!oldflag[j]) {
2484            newspec[i] += oldspec[j] * ( yr - yl ) ;
2485            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2486            wsum += ( yr - yl ) ;
2487            count[i]++ ;
2488          }
2489          newflag[i] = newflag[i] && oldflag[j] ;
2490        }
2491        else {
2492          if (!oldflag[j]) {
2493            newspec[i] += oldspec[j] * ( zr - yl ) ;
2494            if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2495            wsum += ( zr - yl ) ;
2496            count[i]++ ;
2497          }
2498          newflag[i] = newflag[i] && oldflag[j] ;
2499          ichan = jj ;
2500          break ;
2501        }
2502      }
2503      else {
2504        //ichan = jj - iyincr ;
2505        break ;
2506      }
2507      jj += iyincr ;
2508    }
2509    if ( wsum != 0.0 ) {
2510      newspec[i] /= wsum ;
2511      if (regridTsys) newtsys[i] /= wsum ;
2512    }
2513    wsum = 0.0 ;
2514    ii += izincr ;
2515  }
2516
2517  // flag out channels without data
2518  // this is tentative since there is no specific definition
2519  // on bit flag...
2520  uChar noData = 1 << 7 ;
2521  for ( Int i = 0 ; i < nChan ; i++ ) {
2522    if ( count[i] == 0 )
2523      newflag[i] = noData ;
2524  }
2525
2526  specCol_.put( irow, newspec ) ;
2527  flagsCol_.put( irow, newflag ) ;
2528  if (regridTsys) tsysCol_.put( irow, newtsys );
2529
2530  return ;
2531}
2532
2533std::vector<float> Scantable::getWeather(int whichrow) const
2534{
2535  std::vector<float> out(5);
2536  //Float temperature, pressure, humidity, windspeed, windaz;
2537  weatherTable_.getEntry(out[0], out[1], out[2], out[3], out[4],
2538                         mweatheridCol_(uInt(whichrow)));
2539
2540
2541  return out;
2542}
2543
2544bool Scantable::isAllChannelsFlagged(uInt whichrow)
2545{
2546  uInt rflag;
2547  flagrowCol_.get(whichrow, rflag);
2548  if (rflag > 0)
2549    return true;
2550  uChar flag;
2551  Vector<uChar> flags;
2552  flagsCol_.get(whichrow, flags);
2553  flag = flags[0];
2554  for (uInt i = 1; i < flags.size(); ++i) {
2555    flag &= flags[i];
2556  }
2557  //  return ((flag >> 7) == 1);
2558  return (flag > 0);
2559}
2560
2561std::vector<std::string> Scantable::applyBaselineTable(const std::string& bltable, const bool returnfitresult, const std::string& outbltable, const bool outbltableexists, const bool overwrite)
2562{
2563  STBaselineTable btin = STBaselineTable(bltable);
2564
2565  Vector<Bool> applyCol = btin.getApply();
2566  int nRowBl = applyCol.size();
2567  if (nRowBl != nrow()) {
2568    throw(AipsError("Scantable and bltable have different number of rows."));
2569  }
2570
2571  std::vector<std::string> res;
2572  res.clear();
2573
2574  bool outBaselineTable = ((outbltable != "") && (!outbltableexists || overwrite));
2575  bool bltableidentical = (bltable == outbltable);
2576  STBaselineTable btout = STBaselineTable(*this);
2577  ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2578  Vector<Double> timeSecCol = tcol.getColumn();
2579
2580  for (int whichrow = 0; whichrow < nRowBl; ++whichrow) {
2581    if (applyCol[whichrow]) {
2582      std::vector<float> spec = getSpectrum(whichrow);
2583
2584      std::vector<bool> mask = btin.getMask(whichrow);  //use mask_bltable only
2585
2586      STBaselineFunc::FuncName ftype = btin.getFunctionName(whichrow);
2587      std::vector<int> fpar = btin.getFuncParam(whichrow);
2588      std::vector<float> params;
2589      float rms;
2590      std::vector<float> resfit = doApplyBaselineTable(spec, mask, ftype, fpar, params, rms);
2591      setSpectrum(resfit, whichrow);
2592
2593      if (returnfitresult) {
2594        res.push_back(packFittingResults(whichrow, params, rms));
2595      }
2596
2597      if (outBaselineTable) {
2598        if (outbltableexists) {
2599          if (overwrite) {
2600            if (bltableidentical) {
2601              btin.setresult(uInt(whichrow), Vector<Float>(params), Float(rms));
2602            } else {
2603              btout.setresult(uInt(whichrow), Vector<Float>(params), Float(rms));
2604            }
2605          }
2606        } else {
2607          btout.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
2608                           getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
2609                           true, ftype, fpar, std::vector<float>(),
2610                           getMaskListFromMask(mask), params, rms, spec.size(),
2611                           3.0, 0, 0.0, 0, std::vector<int>());
2612        }
2613      }
2614    }
2615  }
2616
2617  if (outBaselineTable) {
2618    if (bltableidentical) {
2619      btin.save(outbltable);
2620    } else {
2621      btout.save(outbltable);
2622    }
2623  }
2624
2625  return res;
2626}
2627
2628std::vector<std::string> Scantable::subBaseline(const std::vector<std::string>& blInfoList, const bool returnfitresult, const std::string& outbltable, const bool outbltableexists, const bool overwrite)
2629{
2630  int nRowBl = blInfoList.size();
2631  int nRowSt = nrow();
2632
2633  std::vector<std::string> res;
2634  res.clear();
2635
2636  bool outBaselineTable = ((outbltable != "") && (!outbltableexists || overwrite));
2637  if ((outbltable != "") && outbltableexists && !overwrite) {
2638    throw(AipsError("Cannot overwrite bltable. Set overwrite=True."));
2639  }
2640
2641  STBaselineTable* btp;
2642  ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2643  Vector<Double> timeSecCol = tcol.getColumn();
2644
2645  if (outBaselineTable) {
2646    if (outbltableexists) {
2647      btp = new STBaselineTable((String)outbltable);
2648    } else {
2649      btp = new STBaselineTable(*this);
2650      for (int i = 0; i < nRowSt; ++i) {
2651        btp->appendbasedata(getScan(i), getCycle(i), getBeam(i), getIF(i), getPol(i),
2652                           0, timeSecCol[i]);
2653        btp->setApply(i, false);
2654      }
2655    }
2656  }
2657
2658  for (int i = 0; i < nRowBl; ++i) {
2659    int irow;
2660    STBaselineFunc::FuncName ftype;
2661    std::vector<bool> mask;
2662    std::vector<int> fpar;
2663    float clipth;
2664    int clipn;
2665    bool uself;
2666    float lfth;
2667    std::vector<int> lfedge;
2668    int lfavg;
2669    parseBlInfo(blInfoList[i], irow, ftype, fpar, mask, clipth, clipn, uself, lfth, lfedge, lfavg);
2670
2671    if (irow < nRowSt) {
2672      std::vector<float> spec = getSpectrum(irow);
2673      std::vector<float> params;
2674      float rms;
2675      std::vector<bool> finalmask;
2676
2677      std::vector<float> resfit = doSubtractBaseline(spec, mask, ftype, fpar, params, rms, finalmask, clipth, clipn, uself, irow, lfth, lfedge, lfavg);
2678      setSpectrum(resfit, irow);
2679
2680      if (returnfitresult) {
2681        res.push_back(packFittingResults(irow, params, rms));
2682      }
2683
2684      if (outBaselineTable) {
2685        Vector<Int> fparam(fpar.size());
2686        for (uInt j = 0; j < fparam.size(); ++j) {
2687          fparam[j] = (Int)fpar[j];
2688        }
2689
2690        btp->setdata(uInt(irow),
2691                    uInt(getScan(irow)), uInt(getCycle(irow)),
2692                    uInt(getBeam(irow)), uInt(getIF(irow)), uInt(getPol(irow)),
2693                    uInt(0), timeSecCol[irow], Bool(true), ftype, fparam,
2694                    Vector<Float>(), getMaskListFromMask(finalmask), Vector<Float>(params),
2695                    Float(rms), uInt(spec.size()), Float(clipth), uInt(clipn),
2696                    Float(0.0), uInt(0), Vector<uInt>());
2697      }
2698
2699    }
2700  }
2701
2702  if (outBaselineTable) {
2703    btp->save(outbltable);
2704  }
2705
2706  delete btp;
2707  return res;
2708}
2709
2710std::vector<float> Scantable::doApplyBaselineTable(std::vector<float>& spec,
2711                                                   std::vector<bool>& mask,
2712                                                   const STBaselineFunc::FuncName ftype,
2713                                                   std::vector<int>& fpar,
2714                                                   std::vector<float>& params,
2715                                                   float&rms)
2716{
2717  std::vector<bool> finalmask;
2718  std::vector<int> lfedge;
2719  return doSubtractBaseline(spec, mask, ftype, fpar, params, rms, finalmask, 0.0, 0, false, 0, 0.0, lfedge, 0);
2720}
2721
2722std::vector<float> Scantable::doSubtractBaseline(std::vector<float>& spec,
2723                                                 std::vector<bool>& mask,
2724                                                 const STBaselineFunc::FuncName ftype,
2725                                                 std::vector<int>& fpar,
2726                                                 std::vector<float>& params,
2727                                                 float&rms,
2728                                                 std::vector<bool>& finalmask,
2729                                                 float clipth,
2730                                                 int clipn,
2731                                                 bool uself,
2732                                                 int irow,
2733                                                 float lfth,
2734                                                 std::vector<int>& lfedge,
2735                                                 int lfavg)
2736{
2737  if (uself) {
2738    STLineFinder lineFinder = STLineFinder();
2739    initLineFinder(lfedge, lfth, lfavg, lineFinder);
2740    std::vector<int> currentEdge;
2741    mask = getCompositeChanMask(irow, mask, lfedge, currentEdge, lineFinder);
2742  } else {
2743    mask = getCompositeChanMask(irow, mask);
2744  }
2745
2746  std::vector<float> res;
2747  if (ftype == STBaselineFunc::Polynomial) {
2748    res = doPolynomialFitting(spec, mask, fpar[0], params, rms, finalmask, clipth, clipn);
2749  } else if (ftype == STBaselineFunc::Chebyshev) {
2750    res = doChebyshevFitting(spec, mask, fpar[0], params, rms, finalmask, clipth, clipn);
2751  } else if (ftype == STBaselineFunc::CSpline) {
2752    if (fpar.size() > 1) { // reading from baseline table in which pieceEdges are already calculated and stored.
2753      res = doCubicSplineFitting(spec, mask, fpar, params, rms, finalmask, clipth, clipn);
2754    } else {               // usual cspline fitting by giving nPiece only. fpar will be replaced with pieceEdges.
2755      res = doCubicSplineFitting(spec, mask, fpar[0], fpar, params, rms, finalmask, clipth, clipn);
2756    }
2757  } else if (ftype == STBaselineFunc::Sinusoid) {
2758    res = doSinusoidFitting(spec, mask, fpar, params, rms, finalmask, clipth, clipn);
2759  }
2760
2761  return res;
2762}
2763
2764std::string Scantable::packFittingResults(const int irow, const std::vector<float>& params, const float rms)
2765{
2766  // returned value: "irow:params[0],params[1],..,params[n-1]:rms"
2767  ostringstream os;
2768  os << irow << ':';
2769  for (uInt i = 0; i < params.size(); ++i) {
2770    if (i > 0) {
2771      os << ',';
2772    }
2773    os << params[i];
2774  }
2775  os << ':' << rms;
2776
2777  return os.str();
2778}
2779
2780void Scantable::parseBlInfo(const std::string& blInfo, int& irow, STBaselineFunc::FuncName& ftype, std::vector<int>& fpar, std::vector<bool>& mask, float& thresClip, int& nIterClip, bool& useLineFinder, float& thresLF, std::vector<int>& edgeLF, int& avgLF)
2781{
2782  // The baseline info to be parsed must be column-delimited string like
2783  // "0:chebyshev:5:3,5,169,174,485,487" where the elements are
2784  // row number, funcType, funcOrder, maskList, clipThreshold, clipNIter,
2785  // useLineFinder, lfThreshold, lfEdge and lfChanAvgLimit.
2786
2787  std::vector<string> res = splitToStringList(blInfo, ':');
2788  if (res.size() < 4) {
2789    throw(AipsError("baseline info has bad format")) ;
2790  }
2791
2792  string ftype0, fpar0, masklist0, uself0, edge0;
2793  std::vector<int> masklist;
2794
2795  stringstream ss;
2796  ss << res[0];
2797  ss >> irow;
2798  ss.clear(); ss.str("");
2799
2800  ss << res[1];
2801  ss >> ftype0;
2802  if (ftype0 == "poly") {
2803    ftype = STBaselineFunc::Polynomial;
2804  } else if (ftype0 == "cspline") {
2805    ftype = STBaselineFunc::CSpline;
2806  } else if (ftype0 == "sinusoid") {
2807    ftype = STBaselineFunc::Sinusoid;
2808  } else if (ftype0 == "chebyshev") {
2809    ftype = STBaselineFunc::Chebyshev;
2810  } else {
2811    throw(AipsError("invalid function type."));
2812  }
2813  ss.clear(); ss.str("");
2814
2815  ss << res[2];
2816  ss >> fpar0;
2817  fpar = splitToIntList(fpar0, ',');
2818  ss.clear(); ss.str("");
2819
2820  ss << res[3];
2821  ss >> masklist0;
2822  mask = getMaskFromMaskList(nchan(getIF(irow)), splitToIntList(masklist0, ','));
2823  ss.clear(); ss.str("");
2824
2825  ss << res[4];
2826  ss >> thresClip;
2827  ss.clear(); ss.str("");
2828
2829  ss << res[5];
2830  ss >> nIterClip;
2831  ss.clear(); ss.str("");
2832
2833  ss << res[6];
2834  ss >> uself0;
2835  if (uself0 == "true") {
2836    useLineFinder = true;
2837  } else {
2838    useLineFinder = false;
2839  }
2840  ss.clear(); ss.str("");
2841
2842  if (useLineFinder) {
2843    ss << res[7];
2844    ss >> thresLF;
2845    ss.clear(); ss.str("");
2846
2847    ss << res[8];
2848    ss >> edge0;
2849    edgeLF = splitToIntList(edge0, ',');
2850    ss.clear(); ss.str("");
2851
2852    ss << res[9];
2853    ss >> avgLF;
2854    ss.clear(); ss.str("");
2855  }
2856
2857}
2858
2859std::vector<int> Scantable::splitToIntList(const std::string& s, const char delim)
2860{
2861  istringstream iss(s);
2862  string tmp;
2863  int tmpi;
2864  std::vector<int> res;
2865  stringstream ss;
2866  while (getline(iss, tmp, delim)) {
2867    ss << tmp;
2868    ss >> tmpi;
2869    res.push_back(tmpi);
2870    ss.clear(); ss.str("");
2871  }
2872
2873  return res;
2874}
2875
2876std::vector<string> Scantable::splitToStringList(const std::string& s, const char delim)
2877{
2878  istringstream iss(s);
2879  std::string tmp;
2880  std::vector<string> res;
2881  while (getline(iss, tmp, delim)) {
2882    res.push_back(tmp);
2883  }
2884
2885  return res;
2886}
2887
2888std::vector<bool> Scantable::getMaskFromMaskList(const int nchan, const std::vector<int>& masklist)
2889{
2890  if (masklist.size() % 2 != 0) {
2891    throw(AipsError("masklist must have even number of elements."));
2892  }
2893
2894  std::vector<bool> res(nchan);
2895
2896  for (int i = 0; i < nchan; ++i) {
2897    res[i] = false;
2898  }
2899  for (uInt j = 0; j < masklist.size(); j += 2) {
2900    for (int i = masklist[j]; i <= masklist[j+1]; ++i) {
2901      res[i] = true;
2902    }
2903  }
2904
2905  return res;
2906}
2907
2908Vector<uInt> Scantable::getMaskListFromMask(const std::vector<bool>& mask)
2909{
2910  std::vector<int> masklist;
2911  masklist.clear();
2912
2913  for (uInt i = 0; i < mask.size(); ++i) {
2914    if (mask[i]) {
2915      if ((i == 0)||(i == mask.size()-1)) {
2916        masklist.push_back(i);
2917      } else {
2918        if ((mask[i])&&(!mask[i-1])) {
2919          masklist.push_back(i);
2920        }
2921        if ((mask[i])&&(!mask[i+1])) {
2922          masklist.push_back(i);
2923        }
2924      }
2925    }
2926  }
2927
2928  Vector<uInt> res(masklist.size());
2929  for (uInt i = 0; i < masklist.size(); ++i) {
2930    res[i] = (uInt)masklist[i];
2931  }
2932
2933  return res;
2934}
2935
2936void Scantable::initialiseBaselining(const std::string& blfile,
2937                                     ofstream& ofs,
2938                                     const bool outLogger,
2939                                     bool& outTextFile,
2940                                     bool& csvFormat,
2941                                     String& coordInfo,
2942                                     bool& hasSameNchan,
2943                                     const std::string& progressInfo,
2944                                     bool& showProgress,
2945                                     int& minNRow,
2946                                     Vector<Double>& timeSecCol)
2947{
2948  csvFormat = false;
2949  outTextFile = false;
2950
2951  if (blfile != "") {
2952    csvFormat = (blfile.substr(0, 1) == "T");
2953    ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
2954    if (ofs) outTextFile = true;
2955  }
2956
2957  coordInfo = "";
2958  hasSameNchan = true;
2959
2960  if (outLogger || outTextFile) {
2961    coordInfo = getCoordInfo()[0];
2962    if (coordInfo == "") coordInfo = "channel";
2963    hasSameNchan = hasSameNchanOverIFs();
2964  }
2965
2966  parseProgressInfo(progressInfo, showProgress, minNRow);
2967
2968  ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2969  timeSecCol = tcol.getColumn();
2970}
2971
2972void Scantable::finaliseBaselining(const bool outBaselineTable,
2973                                   STBaselineTable* pbt,
2974                                   const string& bltable,
2975                                   const bool outTextFile,
2976                                   ofstream& ofs)
2977{
2978  if (outBaselineTable) {
2979    pbt->save(bltable);
2980  }
2981
2982  if (outTextFile) ofs.close();
2983}
2984
2985void Scantable::initLineFinder(const std::vector<int>& edge,
2986                               const float threshold,
2987                               const int chanAvgLimit,
2988                               STLineFinder& lineFinder)
2989{
2990  if ((edge.size() > 2) && (edge.size() < getIFNos().size()*2)) {
2991    throw(AipsError("Length of edge element info is less than that of IFs"));
2992  }
2993
2994  lineFinder.setOptions(threshold, 3, chanAvgLimit);
2995}
2996
2997void Scantable::polyBaseline(const std::vector<bool>& mask, int order,
2998                             float thresClip, int nIterClip,
2999                             bool getResidual,
3000                             const std::string& progressInfo,
3001                             const bool outLogger, const std::string& blfile,
3002                             const std::string& bltable)
3003{
3004  /****
3005  double TimeStart = mathutil::gettimeofday_sec();
3006  ****/
3007
3008  try {
3009    ofstream ofs;
3010    String coordInfo;
3011    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3012    int minNRow;
3013    int nRow = nrow();
3014    std::vector<bool> chanMask, finalChanMask;
3015    float rms;
3016    bool outBaselineTable = (bltable != "");
3017    STBaselineTable bt = STBaselineTable(*this);
3018    Vector<Double> timeSecCol;
3019
3020    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3021                         coordInfo, hasSameNchan,
3022                         progressInfo, showProgress, minNRow,
3023                         timeSecCol);
3024
3025    std::vector<int> nChanNos;
3026    std::vector<std::vector<std::vector<double> > > modelReservoir;
3027    modelReservoir = getPolynomialModelReservoir(order,
3028                                                 &Scantable::getNormalPolynomial,
3029                                                 nChanNos);
3030
3031    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3032      std::vector<float> sp = getSpectrum(whichrow);
3033      chanMask = getCompositeChanMask(whichrow, mask);
3034
3035      std::vector<float> params;
3036      int nClipped = 0;
3037      std::vector<float> res = doLeastSquareFitting(sp, chanMask,
3038                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3039                                   params, rms, finalChanMask,
3040                                   nClipped, thresClip, nIterClip, getResidual);
3041
3042      if (outBaselineTable) {
3043        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3044                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3045                      true, STBaselineFunc::Polynomial, order, std::vector<float>(),
3046                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3047                      thresClip, nIterClip, 0.0, 0, std::vector<int>());
3048      } else {
3049        setSpectrum(res, whichrow);
3050      }
3051
3052      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3053                          coordInfo, hasSameNchan, ofs, "polyBaseline()",
3054                          params, nClipped);
3055      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3056    }
3057
3058    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3059
3060  } catch (...) {
3061    throw;
3062  }
3063
3064  /****
3065  double TimeEnd = mathutil::gettimeofday_sec();
3066  double elapse1 = TimeEnd - TimeStart;
3067  std::cout << "poly-new   : " << elapse1 << " (sec.)" << endl;
3068  ****/
3069}
3070
3071void Scantable::autoPolyBaseline(const std::vector<bool>& mask, int order,
3072                                 float thresClip, int nIterClip,
3073                                 const std::vector<int>& edge,
3074                                 float threshold, int chanAvgLimit,
3075                                 bool getResidual,
3076                                 const std::string& progressInfo,
3077                                 const bool outLogger, const std::string& blfile,
3078                                 const std::string& bltable)
3079{
3080  try {
3081    ofstream ofs;
3082    String coordInfo;
3083    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3084    int minNRow;
3085    int nRow = nrow();
3086    std::vector<bool> chanMask, finalChanMask;
3087    float rms;
3088    bool outBaselineTable = (bltable != "");
3089    STBaselineTable bt = STBaselineTable(*this);
3090    Vector<Double> timeSecCol;
3091    STLineFinder lineFinder = STLineFinder();
3092
3093    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3094                         coordInfo, hasSameNchan,
3095                         progressInfo, showProgress, minNRow,
3096                         timeSecCol);
3097
3098    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3099
3100    std::vector<int> nChanNos;
3101    std::vector<std::vector<std::vector<double> > > modelReservoir;
3102    modelReservoir = getPolynomialModelReservoir(order,
3103                                                 &Scantable::getNormalPolynomial,
3104                                                 nChanNos);
3105
3106    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3107      std::vector<float> sp = getSpectrum(whichrow);
3108      std::vector<int> currentEdge;
3109      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
3110
3111      std::vector<float> params;
3112      int nClipped = 0;
3113      std::vector<float> res = doLeastSquareFitting(sp, chanMask,
3114                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3115                                   params, rms, finalChanMask,
3116                                   nClipped, thresClip, nIterClip, getResidual);
3117
3118      if (outBaselineTable) {
3119        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3120                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3121                      true, STBaselineFunc::Polynomial, order, std::vector<float>(),
3122                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3123                      thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
3124      } else {
3125        setSpectrum(res, whichrow);
3126      }
3127
3128      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3129                          coordInfo, hasSameNchan, ofs, "autoPolyBaseline()",
3130                          params, nClipped);
3131      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3132    }
3133
3134    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3135
3136  } catch (...) {
3137    throw;
3138  }
3139}
3140
3141void Scantable::chebyshevBaseline(const std::vector<bool>& mask, int order,
3142                                  float thresClip, int nIterClip,
3143                                  bool getResidual,
3144                                  const std::string& progressInfo,
3145                                  const bool outLogger, const std::string& blfile,
3146                                  const std::string& bltable)
3147{
3148  /*
3149  double TimeStart = mathutil::gettimeofday_sec();
3150  */
3151
3152  try {
3153    ofstream ofs;
3154    String coordInfo;
3155    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3156    int minNRow;
3157    int nRow = nrow();
3158    std::vector<bool> chanMask, finalChanMask;
3159    float rms;
3160    bool outBaselineTable = (bltable != "");
3161    STBaselineTable bt = STBaselineTable(*this);
3162    Vector<Double> timeSecCol;
3163
3164    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3165                         coordInfo, hasSameNchan,
3166                         progressInfo, showProgress, minNRow,
3167                         timeSecCol);
3168
3169    std::vector<int> nChanNos;
3170    std::vector<std::vector<std::vector<double> > > modelReservoir;
3171    modelReservoir = getPolynomialModelReservoir(order,
3172                                                 &Scantable::getChebyshevPolynomial,
3173                                                 nChanNos);
3174
3175    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3176      std::vector<float> sp = getSpectrum(whichrow);
3177      chanMask = getCompositeChanMask(whichrow, mask);
3178
3179      std::vector<float> params;
3180      int nClipped = 0;
3181      std::vector<float> res = doLeastSquareFitting(sp, chanMask,
3182                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3183                                   params, rms, finalChanMask,
3184                                   nClipped, thresClip, nIterClip, getResidual);
3185
3186      if (outBaselineTable) {
3187        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3188                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3189                      true, STBaselineFunc::Chebyshev, order, std::vector<float>(),
3190                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3191                      thresClip, nIterClip, 0.0, 0, std::vector<int>());
3192      } else {
3193        setSpectrum(res, whichrow);
3194      }
3195
3196      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3197                          coordInfo, hasSameNchan, ofs, "chebyshevBaseline()",
3198                          params, nClipped);
3199      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3200    }
3201   
3202    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3203
3204  } catch (...) {
3205    throw;
3206  }
3207
3208  /*
3209  double TimeEnd = mathutil::gettimeofday_sec();
3210  double elapse1 = TimeEnd - TimeStart;
3211  std::cout << "cheby   : " << elapse1 << " (sec.)" << endl;
3212  */
3213}
3214
3215void Scantable::autoChebyshevBaseline(const std::vector<bool>& mask, int order,
3216                                      float thresClip, int nIterClip,
3217                                      const std::vector<int>& edge,
3218                                      float threshold, int chanAvgLimit,
3219                                      bool getResidual,
3220                                      const std::string& progressInfo,
3221                                      const bool outLogger, const std::string& blfile,
3222                                      const std::string& bltable)
3223{
3224  try {
3225    ofstream ofs;
3226    String coordInfo;
3227    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3228    int minNRow;
3229    int nRow = nrow();
3230    std::vector<bool> chanMask, finalChanMask;
3231    float rms;
3232    bool outBaselineTable = (bltable != "");
3233    STBaselineTable bt = STBaselineTable(*this);
3234    Vector<Double> timeSecCol;
3235    STLineFinder lineFinder = STLineFinder();
3236
3237    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3238                         coordInfo, hasSameNchan,
3239                         progressInfo, showProgress, minNRow,
3240                         timeSecCol);
3241
3242    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3243
3244    std::vector<int> nChanNos;
3245    std::vector<std::vector<std::vector<double> > > modelReservoir;
3246    modelReservoir = getPolynomialModelReservoir(order,
3247                                                 &Scantable::getChebyshevPolynomial,
3248                                                 nChanNos);
3249
3250    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3251      std::vector<float> sp = getSpectrum(whichrow);
3252      std::vector<int> currentEdge;
3253      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
3254
3255      std::vector<float> params;
3256      int nClipped = 0;
3257      std::vector<float> res = doLeastSquareFitting(sp, chanMask,
3258                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3259                                   params, rms, finalChanMask,
3260                                   nClipped, thresClip, nIterClip, getResidual);
3261
3262      if (outBaselineTable) {
3263        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3264                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3265                      true, STBaselineFunc::Chebyshev, order, std::vector<float>(),
3266                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3267                      thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
3268      } else {
3269        setSpectrum(res, whichrow);
3270      }
3271
3272      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3273                          coordInfo, hasSameNchan, ofs, "autoChebyshevBaseline()",
3274                          params, nClipped);
3275      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3276    }
3277
3278    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3279
3280  } catch (...) {
3281    throw;
3282  }
3283}
3284
3285double Scantable::calculateModelSelectionCriteria(const std::string& valname,
3286                                                  const std::string& blfunc,
3287                                                  int order,
3288                                                  const std::vector<bool>& inMask,
3289                                                  int whichrow,
3290                                                  bool useLineFinder,
3291                                                  const std::vector<int>& edge,
3292                                                  float threshold,
3293                                                  int chanAvgLimit)
3294{
3295  std::vector<float> sp = getSpectrum(whichrow);
3296  std::vector<bool> chanMask;
3297  chanMask.clear();
3298
3299  if (useLineFinder) {
3300    STLineFinder lineFinder = STLineFinder();
3301    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3302    std::vector<int> currentEdge;
3303    chanMask = getCompositeChanMask(whichrow, inMask, edge, currentEdge, lineFinder);
3304  } else {
3305    chanMask = getCompositeChanMask(whichrow, inMask);
3306  }
3307
3308  return doCalculateModelSelectionCriteria(valname, sp, chanMask, blfunc, order);
3309}
3310
3311double Scantable::doCalculateModelSelectionCriteria(const std::string& valname, const std::vector<float>& spec, const std::vector<bool>& mask, const std::string& blfunc, int order)
3312{
3313  int nparam;
3314  std::vector<float> params;
3315  std::vector<bool> finalChanMask;
3316  float rms;
3317  int nClipped = 0;
3318  std::vector<float> res;
3319  if (blfunc == "poly") {
3320    nparam = order + 1;
3321    res = doPolynomialFitting(spec, mask, order, params, rms, finalChanMask, nClipped);
3322  } else if (blfunc == "chebyshev") {
3323    nparam = order + 1;
3324    res = doChebyshevFitting(spec, mask, order, params, rms, finalChanMask, nClipped);
3325  } else if (blfunc == "cspline") {
3326    std::vector<int> pieceEdges;//(order+1);  //order = npiece
3327    nparam = order + 3;
3328    res = doCubicSplineFitting(spec, mask, order, false, pieceEdges, params, rms, finalChanMask, nClipped);
3329  } else if (blfunc == "sinusoid") {
3330    std::vector<int> nWaves;
3331    nWaves.clear();
3332    for (int i = 0; i <= order; ++i) {
3333      nWaves.push_back(i);
3334    }
3335    nparam = 2*order + 1;  // order = nwave
3336    res = doSinusoidFitting(spec, mask, nWaves, params, rms, finalChanMask, nClipped);
3337  } else {
3338    throw(AipsError("blfunc must be poly, chebyshev, cspline or sinusoid."));
3339  }
3340
3341  double msq = 0.0;
3342  int nusedchan = 0;
3343  int nChan = res.size();
3344  for (int i = 0; i < nChan; ++i) {
3345    if (mask[i]) {
3346      msq += (double)res[i]*(double)res[i];
3347      nusedchan++;
3348    }
3349  }
3350  if (nusedchan == 0) {
3351    throw(AipsError("all channels masked."));
3352  }
3353  msq /= (double)nusedchan;
3354
3355  nparam++;  //add 1 for sigma of Gaussian distribution
3356  const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
3357
3358  if (valname.find("aic") == 0) {
3359    // Original Akaike Information Criterion (AIC)
3360    double aic = nusedchan * (log(2.0 * PI * msq) + 1.0) + 2.0 * nparam;
3361
3362    // Corrected AIC by Sugiura(1978) (AICc)
3363    if (valname == "aicc") {
3364      if (nusedchan - nparam - 1 <= 0) {
3365        throw(AipsError("channel size is too small to calculate AICc."));
3366      }
3367      aic += 2.0*nparam*(nparam + 1)/(double)(nusedchan - nparam - 1);
3368    }
3369
3370    return aic;
3371
3372  } else if (valname == "bic") {
3373    // Bayesian Information Criterion (BIC)
3374    double bic = nusedchan * log(msq) + nparam * log((double)nusedchan);
3375    return bic;
3376
3377  } else if (valname == "gcv") {
3378    // Generalised Cross Validation
3379    double x = 1.0 - (double)nparam / (double)nusedchan;
3380    double gcv = msq / (x * x);
3381    return gcv;
3382
3383  } else {
3384    throw(AipsError("valname must be aic, aicc, bic or gcv."));
3385  }
3386}
3387
3388double Scantable::getNormalPolynomial(int n, double x) {
3389  if (n == 0) {
3390    return 1.0;
3391  } else if (n > 0) {
3392    double res = 1.0;
3393    for (int i = 0; i < n; ++i) {
3394      res *= x;
3395    }
3396    return res;
3397  } else {
3398    if (x == 0.0) {
3399      throw(AipsError("infinity result: x=0 given for negative power."));
3400    } else {
3401      return pow(x, (double)n);
3402    }
3403  }
3404}
3405
3406double Scantable::getChebyshevPolynomial(int n, double x) {
3407  if ((x < -1.0)||(x > 1.0)) {
3408    throw(AipsError("out of definition range (-1 <= x <= 1)."));
3409  } else if (x == 1.0) {
3410    return 1.0;
3411  } else if (x == 0.0) {
3412    double res;
3413    if (n%2 == 0) {
3414      if (n%4 == 0) {
3415        res = 1.0;
3416      } else {
3417        res = -1.0;
3418      }
3419    } else {
3420      res = 0.0;
3421    }
3422    return res;
3423  } else if (x == -1.0) {
3424    double res = (n%2 == 0 ? 1.0 : -1.0);
3425    return res;
3426  } else if (n < 0) {
3427    throw(AipsError("the order must be zero or positive."));
3428  } else if (n == 0) {
3429    return 1.0;
3430  } else if (n == 1) {
3431    return x;
3432  } else {
3433    double res[n+1];
3434    for (int i = 0; i < n+1; ++i) {
3435      double res0 = 0.0;
3436      if (i == 0) {
3437        res0 = 1.0;
3438      } else if (i == 1) {
3439        res0 = x;
3440      } else {
3441        res0 = 2.0 * x * res[i-1] - res[i-2];
3442      }
3443      res[i] = res0;
3444    }
3445    return res[n];
3446  }
3447}
3448
3449std::vector<float> Scantable::doPolynomialFitting(const std::vector<float>& data,
3450                                                  const std::vector<bool>& mask,
3451                                                  int order,
3452                                                  std::vector<float>& params,
3453                                                  float& rms,
3454                                                  std::vector<bool>& finalmask,
3455                                                  float clipth,
3456                                                  int clipn)
3457{
3458  int nClipped = 0;
3459  return doPolynomialFitting(data, mask, order, params, rms, finalmask, nClipped, clipth, clipn);
3460}
3461
3462std::vector<float> Scantable::doPolynomialFitting(const std::vector<float>& data,
3463                                                  const std::vector<bool>& mask,
3464                                                  int order,
3465                                                  std::vector<float>& params,
3466                                                  float& rms,
3467                                                  std::vector<bool>& finalMask,
3468                                                  int& nClipped,
3469                                                  float thresClip,
3470                                                  int nIterClip,
3471                                                  bool getResidual)
3472{
3473  return doLeastSquareFitting(data, mask,
3474                              getPolynomialModel(order, data.size(), &Scantable::getNormalPolynomial),
3475                              params, rms, finalMask,
3476                              nClipped, thresClip, nIterClip,
3477                              getResidual);
3478}
3479
3480std::vector<float> Scantable::doChebyshevFitting(const std::vector<float>& data,
3481                                                 const std::vector<bool>& mask,
3482                                                 int order,
3483                                                 std::vector<float>& params,
3484                                                 float& rms,
3485                                                 std::vector<bool>& finalmask,
3486                                                 float clipth,
3487                                                 int clipn)
3488{
3489  int nClipped = 0;
3490  return doChebyshevFitting(data, mask, order, params, rms, finalmask, nClipped, clipth, clipn);
3491}
3492
3493std::vector<float> Scantable::doChebyshevFitting(const std::vector<float>& data,
3494                                                 const std::vector<bool>& mask,
3495                                                 int order,
3496                                                 std::vector<float>& params,
3497                                                 float& rms,
3498                                                 std::vector<bool>& finalMask,
3499                                                 int& nClipped,
3500                                                 float thresClip,
3501                                                 int nIterClip,
3502                                                 bool getResidual)
3503{
3504  return doLeastSquareFitting(data, mask,
3505                              getPolynomialModel(order, data.size(), &Scantable::getChebyshevPolynomial),
3506                              params, rms, finalMask,
3507                              nClipped, thresClip, nIterClip,
3508                              getResidual);
3509}
3510
3511std::vector<std::vector<double> > Scantable::getPolynomialModel(int order, int nchan, double (Scantable::*pfunc)(int, double))
3512{
3513  // model  : contains model values for computing the least-square matrix.
3514  //          model.size() is nmodel and model[*].size() is nchan.
3515  //          Each model element are as follows:
3516  //
3517  //          (for normal polynomials)
3518  //          model[0]   = {1.0,   1.0,   1.0,   ..., 1.0},
3519  //          model[1]   = {0.0,   1.0,   2.0,   ..., (nchan-1)}
3520  //          model[n-1] = ...,
3521  //          model[n]   = {0.0^n, 1.0^n, 2.0^n, ..., (nchan-1)^n}
3522  //          where (0 <= n <= order)
3523  //
3524  //          (for Chebyshev polynomials)
3525  //          model[0]   = {T0(-1), T0(2/(nchan-1)-1), T0(4/(nchan-1)-1), ..., T0(1)},
3526  //          model[n-1] = ...,
3527  //          model[n]   = {Tn(-1), Tn(2/(nchan-1)-1), Tn(4/(nchan-1)-1), ..., Tn(1)}
3528  //          where (0 <= n <= order),
3529
3530  int nmodel = order + 1;
3531  std::vector<std::vector<double> > model(nmodel, std::vector<double>(nchan));
3532
3533  double stretch, shift;
3534  if (pfunc == &Scantable::getChebyshevPolynomial) {
3535    stretch = 2.0/(double)(nchan - 1);
3536    shift   = -1.0;
3537  } else {
3538    stretch = 1.0;
3539    shift   = 0.0;
3540  }
3541
3542  for (int i = 0; i < nmodel; ++i) {
3543    for (int j = 0; j < nchan; ++j) {
3544      model[i][j] = (this->*pfunc)(i, stretch*(double)j + shift);
3545    }
3546  }
3547
3548  return model;
3549}
3550
3551std::vector<std::vector<std::vector<double> > > Scantable::getPolynomialModelReservoir(int order,
3552                                                                                       double (Scantable::*pfunc)(int, double),
3553                                                                                       std::vector<int>& nChanNos)
3554{
3555  std::vector<std::vector<std::vector<double> > > res;
3556  res.clear();
3557  nChanNos.clear();
3558
3559  std::vector<uint> ifNos = getIFNos();
3560  for (uint i = 0; i < ifNos.size(); ++i) {
3561    int currNchan = nchan(ifNos[i]);
3562    bool hasDifferentNchan = (i == 0);
3563    for (uint j = 0; j < i; ++j) {
3564      if (currNchan != nchan(ifNos[j])) {
3565        hasDifferentNchan = true;
3566        break;
3567      }
3568    }
3569    if (hasDifferentNchan) {
3570      res.push_back(getPolynomialModel(order, currNchan, pfunc));
3571      nChanNos.push_back(currNchan);
3572    }
3573  }
3574
3575  return res;
3576}
3577
3578std::vector<float> Scantable::doLeastSquareFitting(const std::vector<float>& data,
3579                                                   const std::vector<bool>& mask,
3580                                                   const std::vector<std::vector<double> >& model,
3581                                                   std::vector<float>& params,
3582                                                   float& rms,
3583                                                   std::vector<bool>& finalMask,
3584                                                   int& nClipped,
3585                                                   float thresClip,
3586                                                   int nIterClip,
3587                                                   bool getResidual)
3588{
3589  int nDOF = model.size();
3590  int nChan = data.size();
3591
3592  if (nDOF == 0) {
3593    throw(AipsError("no model data given"));
3594  }
3595  if (nChan < 2) {
3596    throw(AipsError("data size is too few"));
3597  }
3598  if (nChan != (int)mask.size()) {
3599    throw(AipsError("data and mask sizes are not identical"));
3600  }
3601  for (int i = 0; i < nDOF; ++i) {
3602    if (nChan != (int)model[i].size()) {
3603      throw(AipsError("data and model sizes are not identical"));
3604    }
3605  }
3606
3607  params.clear();
3608  params.resize(nDOF);
3609
3610  finalMask.clear();
3611  finalMask.resize(nChan);
3612
3613  std::vector<int> maskArray(nChan);
3614  int j = 0;
3615  for (int i = 0; i < nChan; ++i) {
3616    maskArray[i] = mask[i] ? 1 : 0;
3617    if (isnan(data[i])) maskArray[i] = 0;
3618    if (isinf(data[i])) maskArray[i] = 0;
3619
3620    finalMask[i] = (maskArray[i] == 1);
3621    if (finalMask[i]) {
3622      j++;
3623    }
3624
3625    /*
3626    maskArray[i] = mask[i] ? 1 : 0;
3627    if (mask[i]) {
3628      j++;
3629    }
3630    finalMask[i] = mask[i];
3631    */
3632  }
3633
3634  int initNData = j;
3635  int nData = initNData;
3636
3637  std::vector<double> z1(nChan), r1(nChan), residual(nChan);
3638  for (int i = 0; i < nChan; ++i) {
3639    z1[i] = (double)data[i];
3640    r1[i] = 0.0;
3641    residual[i] = 0.0;
3642  }
3643
3644  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
3645    // xMatrix : horizontal concatenation of
3646    //           the least-sq. matrix (left) and an
3647    //           identity matrix (right).
3648    // the right part is used to calculate the inverse matrix of the left part.
3649    double xMatrix[nDOF][2*nDOF];
3650    double zMatrix[nDOF];
3651    for (int i = 0; i < nDOF; ++i) {
3652      for (int j = 0; j < 2*nDOF; ++j) {
3653        xMatrix[i][j] = 0.0;
3654      }
3655      xMatrix[i][nDOF+i] = 1.0;
3656      zMatrix[i] = 0.0;
3657    }
3658
3659    int nUseData = 0;
3660    for (int k = 0; k < nChan; ++k) {
3661      if (maskArray[k] == 0) continue;
3662
3663      for (int i = 0; i < nDOF; ++i) {
3664        for (int j = i; j < nDOF; ++j) {
3665          xMatrix[i][j] += model[i][k] * model[j][k];
3666        }
3667        zMatrix[i] += z1[k] * model[i][k];
3668      }
3669
3670      nUseData++;
3671    }
3672
3673    if (nUseData < 1) {
3674        throw(AipsError("all channels clipped or masked. can't execute fitting anymore."));     
3675    }
3676
3677    for (int i = 0; i < nDOF; ++i) {
3678      for (int j = 0; j < i; ++j) {
3679        xMatrix[i][j] = xMatrix[j][i];
3680      }
3681    }
3682
3683    //compute inverse matrix of the left half of xMatrix
3684    std::vector<double> invDiag(nDOF);
3685    for (int i = 0; i < nDOF; ++i) {
3686      invDiag[i] = 1.0 / xMatrix[i][i];
3687      for (int j = 0; j < nDOF; ++j) {
3688        xMatrix[i][j] *= invDiag[i];
3689      }
3690    }
3691
3692    for (int k = 0; k < nDOF; ++k) {
3693      for (int i = 0; i < nDOF; ++i) {
3694        if (i != k) {
3695          double factor1 = xMatrix[k][k];
3696          double invfactor1 = 1.0 / factor1;
3697          double factor2 = xMatrix[i][k];
3698          for (int j = k; j < 2*nDOF; ++j) {
3699            xMatrix[i][j] *= factor1;
3700            xMatrix[i][j] -= xMatrix[k][j]*factor2;
3701            xMatrix[i][j] *= invfactor1;
3702          }
3703        }
3704      }
3705      double invXDiag = 1.0 / xMatrix[k][k];
3706      for (int j = k; j < 2*nDOF; ++j) {
3707        xMatrix[k][j] *= invXDiag;
3708      }
3709    }
3710   
3711    for (int i = 0; i < nDOF; ++i) {
3712      for (int j = 0; j < nDOF; ++j) {
3713        xMatrix[i][nDOF+j] *= invDiag[j];
3714      }
3715    }
3716    //compute a vector y in which coefficients of the best-fit
3717    //model functions are stored.
3718    //in case of polynomials, y consists of (a0,a1,a2,...)
3719    //where ai is the coefficient of the term x^i.
3720    //in case of sinusoids, y consists of (a0,s1,c1,s2,c2,...)
3721    //where a0 is constant term and s* and c* are of sine
3722    //and cosine functions, respectively.
3723    std::vector<double> y(nDOF);
3724    for (int i = 0; i < nDOF; ++i) {
3725      y[i] = 0.0;
3726      for (int j = 0; j < nDOF; ++j) {
3727        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
3728      }
3729      params[i] = (float)y[i];
3730    }
3731
3732    for (int i = 0; i < nChan; ++i) {
3733      r1[i] = y[0];
3734      for (int j = 1; j < nDOF; ++j) {
3735        r1[i] += y[j]*model[j][i];
3736      }
3737      residual[i] = z1[i] - r1[i];
3738    }
3739
3740    double stdDev = 0.0;
3741    for (int i = 0; i < nChan; ++i) {
3742      if (maskArray[i] == 0) continue;
3743      stdDev += residual[i]*residual[i];
3744    }
3745    stdDev = sqrt(stdDev/(double)nData);
3746    rms = (float)stdDev;
3747
3748    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
3749      break;
3750    } else {
3751
3752      double thres = stdDev * thresClip;
3753      int newNData = 0;
3754      for (int i = 0; i < nChan; ++i) {
3755        if (abs(residual[i]) >= thres) {
3756          maskArray[i] = 0;
3757          finalMask[i] = false;
3758        }
3759        if (maskArray[i] > 0) {
3760          newNData++;
3761        }
3762      }
3763      if (newNData == nData) {
3764        break; //no more flag to add. stop iteration.
3765      } else {
3766        nData = newNData;
3767      }
3768
3769    }
3770  }
3771
3772  nClipped = initNData - nData;
3773
3774  std::vector<float> result(nChan);
3775  if (getResidual) {
3776    for (int i = 0; i < nChan; ++i) {
3777      result[i] = (float)residual[i];
3778    }
3779  } else {
3780    for (int i = 0; i < nChan; ++i) {
3781      result[i] = (float)r1[i];
3782    }
3783  }
3784
3785  return result;
3786} //xMatrix
3787
3788void Scantable::cubicSplineBaseline(const std::vector<bool>& mask, int nPiece,
3789                                    float thresClip, int nIterClip,
3790                                    bool getResidual,
3791                                    const std::string& progressInfo,
3792                                    const bool outLogger, const std::string& blfile,
3793                                    const std::string& bltable)
3794{
3795  /****
3796  double TimeStart = mathutil::gettimeofday_sec();
3797  ****/
3798
3799  try {
3800    ofstream ofs;
3801    String coordInfo;
3802    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3803    int minNRow;
3804    int nRow = nrow();
3805    std::vector<bool> chanMask, finalChanMask;
3806    float rms;
3807    bool outBaselineTable = (bltable != "");
3808    STBaselineTable bt = STBaselineTable(*this);
3809    Vector<Double> timeSecCol;
3810
3811    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3812                         coordInfo, hasSameNchan,
3813                         progressInfo, showProgress, minNRow,
3814                         timeSecCol);
3815
3816    std::vector<int> nChanNos;
3817    std::vector<std::vector<std::vector<double> > > modelReservoir;
3818    modelReservoir = getPolynomialModelReservoir(3,
3819                                                 &Scantable::getNormalPolynomial,
3820                                                 nChanNos);
3821
3822    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3823      std::vector<float> sp = getSpectrum(whichrow);
3824      chanMask = getCompositeChanMask(whichrow, mask);
3825
3826      std::vector<int> pieceEdges;
3827      std::vector<float> params;
3828      int nClipped = 0;
3829      std::vector<float> res = doCubicSplineLeastSquareFitting(sp, chanMask,
3830                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3831                                   nPiece, false, pieceEdges, params, rms, finalChanMask,
3832                                   nClipped, thresClip, nIterClip, getResidual);
3833
3834      if (outBaselineTable) {
3835        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3836                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3837                      true, STBaselineFunc::CSpline, pieceEdges, std::vector<float>(),
3838                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3839                      thresClip, nIterClip, 0.0, 0, std::vector<int>());
3840      } else {
3841        setSpectrum(res, whichrow);
3842      }
3843
3844      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3845                          coordInfo, hasSameNchan, ofs, "cubicSplineBaseline()",
3846                          pieceEdges, params, nClipped);
3847      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3848    }
3849   
3850    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3851
3852  } catch (...) {
3853    throw;
3854  }
3855
3856  /****
3857  double TimeEnd = mathutil::gettimeofday_sec();
3858  double elapse1 = TimeEnd - TimeStart;
3859  std::cout << "cspline-new   : " << elapse1 << " (sec.)" << endl;
3860  ****/
3861}
3862
3863void Scantable::autoCubicSplineBaseline(const std::vector<bool>& mask, int nPiece,
3864                                        float thresClip, int nIterClip,
3865                                        const std::vector<int>& edge,
3866                                        float threshold, int chanAvgLimit,
3867                                        bool getResidual,
3868                                        const std::string& progressInfo,
3869                                        const bool outLogger, const std::string& blfile,
3870                                        const std::string& bltable)
3871{
3872  try {
3873    ofstream ofs;
3874    String coordInfo;
3875    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3876    int minNRow;
3877    int nRow = nrow();
3878    std::vector<bool> chanMask, finalChanMask;
3879    float rms;
3880    bool outBaselineTable = (bltable != "");
3881    STBaselineTable bt = STBaselineTable(*this);
3882    Vector<Double> timeSecCol;
3883    STLineFinder lineFinder = STLineFinder();
3884
3885    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3886                         coordInfo, hasSameNchan,
3887                         progressInfo, showProgress, minNRow,
3888                         timeSecCol);
3889
3890    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3891
3892    std::vector<int> nChanNos;
3893    std::vector<std::vector<std::vector<double> > > modelReservoir;
3894    modelReservoir = getPolynomialModelReservoir(3,
3895                                                 &Scantable::getNormalPolynomial,
3896                                                 nChanNos);
3897
3898    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3899      std::vector<float> sp = getSpectrum(whichrow);
3900      std::vector<int> currentEdge;
3901      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
3902
3903      std::vector<int> pieceEdges;
3904      std::vector<float> params;
3905      int nClipped = 0;
3906      std::vector<float> res = doCubicSplineLeastSquareFitting(sp, chanMask,
3907                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3908                                   nPiece, false, pieceEdges, params, rms, finalChanMask,
3909                                   nClipped, thresClip, nIterClip, getResidual);
3910
3911      if (outBaselineTable) {
3912        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3913                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3914                      true, STBaselineFunc::CSpline, pieceEdges, std::vector<float>(),
3915                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3916                      thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
3917      } else {
3918        setSpectrum(res, whichrow);
3919      }
3920
3921      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3922                          coordInfo, hasSameNchan, ofs, "autoCubicSplineBaseline()",
3923                          pieceEdges, params, nClipped);
3924      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3925    }
3926
3927    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3928
3929  } catch (...) {
3930    throw;
3931  }
3932}
3933
3934std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
3935                                                   const std::vector<bool>& mask,
3936                                                   std::vector<int>& idxEdge,
3937                                                   std::vector<float>& params,
3938                                                   float& rms,
3939                                                   std::vector<bool>& finalmask,
3940                                                   float clipth,
3941                                                   int clipn)
3942{
3943  int nClipped = 0;
3944  return doCubicSplineFitting(data, mask, idxEdge.size()-1, true, idxEdge, params, rms, finalmask, nClipped, clipth, clipn);
3945}
3946
3947std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
3948                                                   const std::vector<bool>& mask,
3949                                                   int nPiece,
3950                                                   std::vector<int>& idxEdge,
3951                                                   std::vector<float>& params,
3952                                                   float& rms,
3953                                                   std::vector<bool>& finalmask,
3954                                                   float clipth,
3955                                                   int clipn)
3956{
3957  int nClipped = 0;
3958  return doCubicSplineFitting(data, mask, nPiece, false, idxEdge, params, rms, finalmask, nClipped, clipth, clipn);
3959}
3960
3961std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
3962                                                   const std::vector<bool>& mask,
3963                                                   int nPiece,
3964                                                   bool useGivenPieceBoundary,
3965                                                   std::vector<int>& idxEdge,
3966                                                   std::vector<float>& params,
3967                                                   float& rms,
3968                                                   std::vector<bool>& finalMask,
3969                                                   int& nClipped,
3970                                                   float thresClip,
3971                                                   int nIterClip,
3972                                                   bool getResidual)
3973{
3974  return doCubicSplineLeastSquareFitting(data, mask,
3975                                         getPolynomialModel(3, data.size(), &Scantable::getNormalPolynomial),
3976                                         nPiece, useGivenPieceBoundary, idxEdge,
3977                                         params, rms, finalMask,
3978                                         nClipped, thresClip, nIterClip,
3979                                         getResidual);
3980}
3981
3982std::vector<float> Scantable::doCubicSplineLeastSquareFitting(const std::vector<float>& data,
3983                                                              const std::vector<bool>& mask,
3984                                                              const std::vector<std::vector<double> >& model,
3985                                                              int nPiece,
3986                                                              bool useGivenPieceBoundary,
3987                                                              std::vector<int>& idxEdge,
3988                                                              std::vector<float>& params,
3989                                                              float& rms,
3990                                                              std::vector<bool>& finalMask,
3991                                                              int& nClipped,
3992                                                              float thresClip,
3993                                                              int nIterClip,
3994                                                              bool getResidual)
3995{
3996  int nDOF = nPiece + 3;  //number of independent parameters to solve, namely, 4+(nPiece-1).
3997  int nModel = model.size();
3998  int nChan = data.size();
3999
4000  if (nModel != 4) {
4001    throw(AipsError("model size must be 4."));
4002  }
4003  if (nPiece < 1) {
4004    throw(AipsError("number of the sections must be one or more"));
4005  }
4006  if (nChan < 2*nPiece) {
4007    throw(AipsError("data size is too few"));
4008  }
4009  if (nChan != (int)mask.size()) {
4010    throw(AipsError("data and mask sizes are not identical"));
4011  }
4012  for (int i = 0; i < nModel; ++i) {
4013    if (nChan != (int)model[i].size()) {
4014      throw(AipsError("data and model sizes are not identical"));
4015    }
4016  }
4017
4018  params.clear();
4019  params.resize(nPiece*nModel);
4020
4021  finalMask.clear();
4022  finalMask.resize(nChan);
4023
4024  std::vector<int> maskArray(nChan);
4025  std::vector<int> x(nChan);
4026  int j = 0;
4027  for (int i = 0; i < nChan; ++i) {
4028    maskArray[i] = mask[i] ? 1 : 0;
4029    if (isnan(data[i])) maskArray[i] = 0;
4030    if (isinf(data[i])) maskArray[i] = 0;
4031
4032    finalMask[i] = (maskArray[i] == 1);
4033    if (finalMask[i]) {
4034      x[j] = i;
4035      j++;
4036    }
4037
4038    /*
4039    maskArray[i] = mask[i] ? 1 : 0;
4040    if (mask[i]) {
4041      x[j] = i;
4042      j++;
4043    }
4044    finalMask[i] = mask[i];
4045    */
4046  }
4047
4048  int initNData = j;
4049  int nData = initNData;
4050
4051  if (initNData < nPiece) {
4052    throw(AipsError("too few non-flagged channels"));
4053  }
4054
4055  int nElement = (int)(floor(floor((double)(initNData/nPiece))+0.5));
4056  std::vector<double> invEdge(nPiece-1);
4057
4058  if (useGivenPieceBoundary) {
4059    if ((int)idxEdge.size() != nPiece+1) {
4060      throw(AipsError("pieceEdge.size() must be equal to nPiece+1."));
4061    }
4062  } else {
4063    idxEdge.clear();
4064    idxEdge.resize(nPiece+1);
4065    idxEdge[0] = x[0];
4066  }
4067  for (int i = 1; i < nPiece; ++i) {
4068    int valX = x[nElement*i];
4069    if (!useGivenPieceBoundary) {
4070      idxEdge[i] = valX;
4071    }
4072    invEdge[i-1] = 1.0/(double)valX;
4073  }
4074  if (!useGivenPieceBoundary) {
4075    idxEdge[nPiece] = x[initNData-1]+1;
4076  }
4077
4078  std::vector<double> z1(nChan), r1(nChan), residual(nChan);
4079  for (int i = 0; i < nChan; ++i) {
4080    z1[i] = (double)data[i];
4081    r1[i] = 0.0;
4082    residual[i] = 0.0;
4083  }
4084
4085  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
4086    // xMatrix : horizontal concatenation of
4087    //           the least-sq. matrix (left) and an
4088    //           identity matrix (right).
4089    // the right part is used to calculate the inverse matrix of the left part.
4090
4091    double xMatrix[nDOF][2*nDOF];
4092    double zMatrix[nDOF];
4093    for (int i = 0; i < nDOF; ++i) {
4094      for (int j = 0; j < 2*nDOF; ++j) {
4095        xMatrix[i][j] = 0.0;
4096      }
4097      xMatrix[i][nDOF+i] = 1.0;
4098      zMatrix[i] = 0.0;
4099    }
4100
4101    for (int n = 0; n < nPiece; ++n) {
4102      int nUseDataInPiece = 0;
4103      for (int k = idxEdge[n]; k < idxEdge[n+1]; ++k) {
4104
4105        if (maskArray[k] == 0) continue;
4106
4107        for (int i = 0; i < nModel; ++i) {
4108          for (int j = i; j < nModel; ++j) {
4109            xMatrix[i][j] += model[i][k] * model[j][k];
4110          }
4111          zMatrix[i] += z1[k] * model[i][k];
4112        }
4113
4114        for (int i = 0; i < n; ++i) {
4115          double q = 1.0 - model[1][k]*invEdge[i];
4116          q = q*q*q;
4117          for (int j = 0; j < nModel; ++j) {
4118            xMatrix[j][i+nModel] += q * model[j][k];
4119          }
4120          for (int j = 0; j < i; ++j) {
4121            double r = 1.0 - model[1][k]*invEdge[j];
4122            r = r*r*r;
4123            xMatrix[j+nModel][i+nModel] += r*q;
4124          }
4125          xMatrix[i+nModel][i+nModel] += q*q;
4126          zMatrix[i+nModel] += q*z1[k];
4127        }
4128
4129        nUseDataInPiece++;
4130      }
4131
4132      if (nUseDataInPiece < 1) {
4133        std::vector<string> suffixOfPieceNumber(4);
4134        suffixOfPieceNumber[0] = "th";
4135        suffixOfPieceNumber[1] = "st";
4136        suffixOfPieceNumber[2] = "nd";
4137        suffixOfPieceNumber[3] = "rd";
4138        int idxNoDataPiece = (n % 10 <= 3) ? n : 0;
4139        ostringstream oss;
4140        oss << "all channels clipped or masked in " << n << suffixOfPieceNumber[idxNoDataPiece];
4141        oss << " piece of the spectrum. can't execute fitting anymore.";
4142        throw(AipsError(String(oss)));
4143      }
4144    }
4145
4146    for (int i = 0; i < nDOF; ++i) {
4147      for (int j = 0; j < i; ++j) {
4148        xMatrix[i][j] = xMatrix[j][i];
4149      }
4150    }
4151
4152    std::vector<double> invDiag(nDOF);
4153    for (int i = 0; i < nDOF; ++i) {
4154      invDiag[i] = 1.0 / xMatrix[i][i];
4155      for (int j = 0; j < nDOF; ++j) {
4156        xMatrix[i][j] *= invDiag[i];
4157      }
4158    }
4159
4160    for (int k = 0; k < nDOF; ++k) {
4161      for (int i = 0; i < nDOF; ++i) {
4162        if (i != k) {
4163          double factor1 = xMatrix[k][k];
4164          double invfactor1 = 1.0 / factor1;
4165          double factor2 = xMatrix[i][k];
4166          for (int j = k; j < 2*nDOF; ++j) {
4167            xMatrix[i][j] *= factor1;
4168            xMatrix[i][j] -= xMatrix[k][j]*factor2;
4169            xMatrix[i][j] *= invfactor1;
4170          }
4171        }
4172      }
4173      double invXDiag = 1.0 / xMatrix[k][k];
4174      for (int j = k; j < 2*nDOF; ++j) {
4175        xMatrix[k][j] *= invXDiag;
4176      }
4177    }
4178   
4179    for (int i = 0; i < nDOF; ++i) {
4180      for (int j = 0; j < nDOF; ++j) {
4181        xMatrix[i][nDOF+j] *= invDiag[j];
4182      }
4183    }
4184
4185    //compute a vector y which consists of the coefficients of the best-fit spline curves
4186    //(a0,a1,a2,a3(,b3,c3,...)), namely, the ones for the leftmost piece and the ones of
4187    //cubic terms for the other pieces (in case nPiece>1).
4188    std::vector<double> y(nDOF);
4189    for (int i = 0; i < nDOF; ++i) {
4190      y[i] = 0.0;
4191      for (int j = 0; j < nDOF; ++j) {
4192        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
4193      }
4194    }
4195
4196    std::vector<double> a(nModel);
4197    for (int i = 0; i < nModel; ++i) {
4198      a[i] = y[i];
4199    }
4200
4201    int j = 0;
4202    for (int n = 0; n < nPiece; ++n) {
4203      for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
4204        r1[i] = 0.0;
4205        for (int j = 0; j < nModel; ++j) {
4206          r1[i] += a[j] * model[j][i];
4207        }
4208      }
4209      for (int i = 0; i < nModel; ++i) {
4210        params[j+i] = a[i];
4211      }
4212      j += nModel;
4213
4214      if (n == nPiece-1) break;
4215
4216      double d = y[n+nModel];
4217      double iE = invEdge[n];
4218      a[0] +=       d;
4219      a[1] -= 3.0 * d * iE;
4220      a[2] += 3.0 * d * iE * iE;
4221      a[3] -=       d * iE * iE * iE;
4222    }
4223
4224    //subtract constant value for masked regions at the edge of spectrum
4225    if (idxEdge[0] > 0) {
4226      int n = idxEdge[0];
4227      for (int i = 0; i < idxEdge[0]; ++i) {
4228        //--cubic extrapolate--
4229        //r1[i] = params[0] + params[1]*x1[i] + params[2]*x2[i] + params[3]*x3[i];
4230        //--linear extrapolate--
4231        //r1[i] = (r1[n+1] - r1[n])/(x1[n+1] - x1[n])*(x1[i] - x1[n]) + r1[n];
4232        //--constant--
4233        r1[i] = r1[n];
4234      }
4235    }
4236
4237    if (idxEdge[nPiece] < nChan) {
4238      int n = idxEdge[nPiece]-1;
4239      for (int i = idxEdge[nPiece]; i < nChan; ++i) {
4240        //--cubic extrapolate--
4241        //int m = 4*(nPiece-1);
4242        //r1[i] = params[m] + params[m+1]*x1[i] + params[m+2]*x2[i] + params[m+3]*x3[i];
4243        //--linear extrapolate--
4244        //r1[i] = (r1[n-1] - r1[n])/(x1[n-1] - x1[n])*(x1[i] - x1[n]) + r1[n];
4245        //--constant--
4246        r1[i] = r1[n];
4247      }
4248    }
4249
4250    for (int i = 0; i < nChan; ++i) {
4251      residual[i] = z1[i] - r1[i];
4252    }
4253
4254    double stdDev = 0.0;
4255    for (int i = 0; i < nChan; ++i) {
4256      if (maskArray[i] == 0) continue;
4257      stdDev += residual[i]*residual[i];
4258    }
4259    stdDev = sqrt(stdDev/(double)nData);
4260    rms = (float)stdDev;
4261
4262    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
4263      break;
4264    } else {
4265     
4266      double thres = stdDev * thresClip;
4267      int newNData = 0;
4268      for (int i = 0; i < nChan; ++i) {
4269        if (abs(residual[i]) >= thres) {
4270          maskArray[i] = 0;
4271          finalMask[i] = false;
4272        }
4273        if (maskArray[i] > 0) {
4274          newNData++;
4275        }
4276      }
4277      if (newNData == nData) {
4278        break; //no more flag to add. iteration stops.
4279      } else {
4280        nData = newNData;
4281      }
4282
4283    }
4284  }
4285
4286  nClipped = initNData - nData;
4287
4288  std::vector<float> result(nChan);
4289  if (getResidual) {
4290    for (int i = 0; i < nChan; ++i) {
4291      result[i] = (float)residual[i];
4292    }
4293  } else {
4294    for (int i = 0; i < nChan; ++i) {
4295      result[i] = (float)r1[i];
4296    }
4297  }
4298
4299  return result;
4300}
4301
4302std::vector<int> Scantable::selectWaveNumbers(const std::vector<int>& addNWaves,
4303                                  const std::vector<int>& rejectNWaves)
4304{
4305  std::vector<bool> chanMask;
4306  std::string fftMethod;
4307  std::string fftThresh;
4308
4309  return selectWaveNumbers(0, chanMask, false, fftMethod, fftThresh, addNWaves, rejectNWaves);
4310}
4311
4312std::vector<int> Scantable::selectWaveNumbers(const int whichrow,
4313                                  const std::vector<bool>& chanMask,
4314                                  const bool applyFFT,
4315                                  const std::string& fftMethod,
4316                                  const std::string& fftThresh,
4317                                  const std::vector<int>& addNWaves,
4318                                  const std::vector<int>& rejectNWaves)
4319{
4320  std::vector<int> nWaves;
4321  nWaves.clear();
4322
4323  if (applyFFT) {
4324    string fftThAttr;
4325    float fftThSigma;
4326    int fftThTop;
4327    parseFFTThresholdInfo(fftThresh, fftThAttr, fftThSigma, fftThTop);
4328    doSelectWaveNumbers(whichrow, chanMask, fftMethod, fftThSigma, fftThTop, fftThAttr, nWaves);
4329  }
4330
4331  addAuxWaveNumbers(whichrow, addNWaves, rejectNWaves, nWaves);
4332
4333  return nWaves;
4334}
4335
4336int Scantable::getIdxOfNchan(const int nChan, const std::vector<int>& nChanNos)
4337{
4338  int idx = -1;
4339  for (uint i = 0; i < nChanNos.size(); ++i) {
4340    if (nChan == nChanNos[i]) {
4341      idx = i;
4342      break;
4343    }
4344  }
4345
4346  if (idx < 0) {
4347    throw(AipsError("nChan not found in nChhanNos."));
4348  }
4349
4350  return idx;
4351}
4352
4353void Scantable::parseFFTInfo(const std::string& fftInfo, bool& applyFFT, std::string& fftMethod, std::string& fftThresh)
4354{
4355  istringstream iss(fftInfo);
4356  std::string tmp;
4357  std::vector<string> res;
4358  while (getline(iss, tmp, ',')) {
4359    res.push_back(tmp);
4360  }
4361  if (res.size() < 3) {
4362    throw(AipsError("wrong value in 'fftinfo' parameter")) ;
4363  }
4364  applyFFT = (res[0] == "true");
4365  fftMethod = res[1];
4366  fftThresh = res[2];
4367}
4368
4369void Scantable::parseFFTThresholdInfo(const std::string& fftThresh, std::string& fftThAttr, float& fftThSigma, int& fftThTop)
4370{
4371  uInt idxSigma = fftThresh.find("sigma");
4372  uInt idxTop   = fftThresh.find("top");
4373
4374  if (idxSigma == fftThresh.size() - 5) {
4375    std::istringstream is(fftThresh.substr(0, fftThresh.size() - 5));
4376    is >> fftThSigma;
4377    fftThAttr = "sigma";
4378  } else if (idxTop == 0) {
4379    std::istringstream is(fftThresh.substr(3));
4380    is >> fftThTop;
4381    fftThAttr = "top";
4382  } else {
4383    bool isNumber = true;
4384    for (uInt i = 0; i < fftThresh.size()-1; ++i) {
4385      char ch = (fftThresh.substr(i, 1).c_str())[0];
4386      if (!(isdigit(ch) || (fftThresh.substr(i, 1) == "."))) {
4387        isNumber = false;
4388        break;
4389      }
4390    }
4391    if (isNumber) {
4392      std::istringstream is(fftThresh);
4393      is >> fftThSigma;
4394      fftThAttr = "sigma";
4395    } else {
4396      throw(AipsError("fftthresh has a wrong value"));
4397    }
4398  }
4399}
4400
4401void Scantable::doSelectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const std::string& fftMethod, const float fftThSigma, const int fftThTop, const std::string& fftThAttr, std::vector<int>& nWaves)
4402{
4403  std::vector<float> fspec;
4404  if (fftMethod == "fft") {
4405    fspec = execFFT(whichrow, chanMask, false, true);
4406  //} else if (fftMethod == "lsp") {
4407  //  fspec = lombScarglePeriodogram(whichrow);
4408  }
4409
4410  if (fftThAttr == "sigma") {
4411    float mean  = 0.0;
4412    float mean2 = 0.0;
4413    for (uInt i = 0; i < fspec.size(); ++i) {
4414      mean  += fspec[i];
4415      mean2 += fspec[i]*fspec[i];
4416    }
4417    mean  /= float(fspec.size());
4418    mean2 /= float(fspec.size());
4419    float thres = mean + fftThSigma * float(sqrt(mean2 - mean*mean));
4420
4421    for (uInt i = 0; i < fspec.size(); ++i) {
4422      if (fspec[i] >= thres) {
4423        nWaves.push_back(i);
4424      }
4425    }
4426
4427  } else if (fftThAttr == "top") {
4428    for (int i = 0; i < fftThTop; ++i) {
4429      float max = 0.0;
4430      int maxIdx = 0;
4431      for (uInt j = 0; j < fspec.size(); ++j) {
4432        if (fspec[j] > max) {
4433          max = fspec[j];
4434          maxIdx = j;
4435        }
4436      }
4437      nWaves.push_back(maxIdx);
4438      fspec[maxIdx] = 0.0;
4439    }
4440
4441  }
4442
4443  if (nWaves.size() > 1) {
4444    sort(nWaves.begin(), nWaves.end());
4445  }
4446}
4447
4448void Scantable::addAuxWaveNumbers(const int whichrow, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves)
4449{
4450  std::vector<int> tempAddNWaves, tempRejectNWaves;
4451  tempAddNWaves.clear();
4452  tempRejectNWaves.clear();
4453
4454  for (uInt i = 0; i < addNWaves.size(); ++i) {
4455    tempAddNWaves.push_back(addNWaves[i]);
4456  }
4457  if ((tempAddNWaves.size() == 2) && (tempAddNWaves[1] == -999)) {
4458    setWaveNumberListUptoNyquistFreq(whichrow, tempAddNWaves);
4459  }
4460
4461  for (uInt i = 0; i < rejectNWaves.size(); ++i) {
4462    tempRejectNWaves.push_back(rejectNWaves[i]);
4463  }
4464  if ((tempRejectNWaves.size() == 2) && (tempRejectNWaves[1] == -999)) {
4465    setWaveNumberListUptoNyquistFreq(whichrow, tempRejectNWaves);
4466  }
4467
4468  for (uInt i = 0; i < tempAddNWaves.size(); ++i) {
4469    bool found = false;
4470    for (uInt j = 0; j < nWaves.size(); ++j) {
4471      if (nWaves[j] == tempAddNWaves[i]) {
4472        found = true;
4473        break;
4474      }
4475    }
4476    if (!found) nWaves.push_back(tempAddNWaves[i]);
4477  }
4478
4479  for (uInt i = 0; i < tempRejectNWaves.size(); ++i) {
4480    for (std::vector<int>::iterator j = nWaves.begin(); j != nWaves.end(); ) {
4481      if (*j == tempRejectNWaves[i]) {
4482        j = nWaves.erase(j);
4483      } else {
4484        ++j;
4485      }
4486    }
4487  }
4488
4489  if (nWaves.size() > 1) {
4490    sort(nWaves.begin(), nWaves.end());
4491    unique(nWaves.begin(), nWaves.end());
4492  }
4493}
4494
4495void Scantable::setWaveNumberListUptoNyquistFreq(const int whichrow, std::vector<int>& nWaves)
4496{
4497  int val = nWaves[0];
4498  int nyquistFreq = nchan(getIF(whichrow))/2+1;
4499  nWaves.clear();
4500  if (val > nyquistFreq) {  // for safety, at least nWaves contains a constant; CAS-3759
4501    nWaves.push_back(0);
4502  }
4503  while (val <= nyquistFreq) {
4504    nWaves.push_back(val);
4505    val++;
4506  }
4507}
4508
4509void Scantable::sinusoidBaseline(const std::vector<bool>& mask, const std::string& fftInfo,
4510                                 const std::vector<int>& addNWaves,
4511                                 const std::vector<int>& rejectNWaves,
4512                                 float thresClip, int nIterClip,
4513                                 bool getResidual,
4514                                 const std::string& progressInfo,
4515                                 const bool outLogger, const std::string& blfile,
4516                                 const std::string& bltable)
4517{
4518  /****
4519  double TimeStart = mathutil::gettimeofday_sec();
4520  ****/
4521
4522  try {
4523    ofstream ofs;
4524    String coordInfo;
4525    bool hasSameNchan, outTextFile, csvFormat, showProgress;
4526    int minNRow;
4527    int nRow = nrow();
4528    std::vector<bool> chanMask, finalChanMask;
4529    float rms;
4530    bool outBaselineTable = (bltable != "");
4531    STBaselineTable bt = STBaselineTable(*this);
4532    Vector<Double> timeSecCol;
4533
4534    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
4535                         coordInfo, hasSameNchan,
4536                         progressInfo, showProgress, minNRow,
4537                         timeSecCol);
4538
4539    bool applyFFT;
4540    std::string fftMethod, fftThresh;
4541    parseFFTInfo(fftInfo, applyFFT, fftMethod, fftThresh);
4542
4543    std::vector<int> nWaves;
4544    std::vector<int> nChanNos;
4545    std::vector<std::vector<std::vector<double> > > modelReservoir;
4546    if (!applyFFT) {
4547      nWaves = selectWaveNumbers(addNWaves, rejectNWaves);
4548      modelReservoir = getSinusoidModelReservoir(nWaves, nChanNos);
4549    }
4550
4551    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
4552      std::vector<float> sp = getSpectrum(whichrow);
4553      chanMask = getCompositeChanMask(whichrow, mask);
4554      std::vector<std::vector<double> > model;
4555      if (applyFFT) {
4556        nWaves = selectWaveNumbers(whichrow, chanMask, true, fftMethod, fftThresh,
4557                                   addNWaves, rejectNWaves);
4558        model = getSinusoidModel(nWaves, sp.size());
4559      } else {
4560        model = modelReservoir[getIdxOfNchan(sp.size(), nChanNos)];
4561      }
4562
4563      std::vector<float> params;
4564      int nClipped = 0;
4565      std::vector<float> res = doLeastSquareFitting(sp, chanMask, model,
4566                                   params, rms, finalChanMask,
4567                                   nClipped, thresClip, nIterClip, getResidual);
4568
4569      if (outBaselineTable) {
4570        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4571                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4572                      true, STBaselineFunc::Sinusoid, nWaves, std::vector<float>(),
4573                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
4574                      thresClip, nIterClip, 0.0, 0, std::vector<int>());
4575      } else {
4576        setSpectrum(res, whichrow);
4577      }
4578
4579      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
4580                          coordInfo, hasSameNchan, ofs, "sinusoidBaseline()",
4581                          params, nClipped);
4582      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
4583    }
4584
4585    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
4586
4587  } catch (...) {
4588    throw;
4589  }
4590
4591  /****
4592  double TimeEnd = mathutil::gettimeofday_sec();
4593  double elapse1 = TimeEnd - TimeStart;
4594  std::cout << "sinusoid-old   : " << elapse1 << " (sec.)" << endl;
4595  ****/
4596}
4597
4598void Scantable::autoSinusoidBaseline(const std::vector<bool>& mask, const std::string& fftInfo,
4599                                     const std::vector<int>& addNWaves,
4600                                     const std::vector<int>& rejectNWaves,
4601                                     float thresClip, int nIterClip,
4602                                     const std::vector<int>& edge,
4603                                     float threshold, int chanAvgLimit,
4604                                     bool getResidual,
4605                                     const std::string& progressInfo,
4606                                     const bool outLogger, const std::string& blfile,
4607                                     const std::string& bltable)
4608{
4609  try {
4610    ofstream ofs;
4611    String coordInfo;
4612    bool hasSameNchan, outTextFile, csvFormat, showProgress;
4613    int minNRow;
4614    int nRow = nrow();
4615    std::vector<bool> chanMask, finalChanMask;
4616    float rms;
4617    bool outBaselineTable = (bltable != "");
4618    STBaselineTable bt = STBaselineTable(*this);
4619    Vector<Double> timeSecCol;
4620    STLineFinder lineFinder = STLineFinder();
4621
4622    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
4623                         coordInfo, hasSameNchan,
4624                         progressInfo, showProgress, minNRow,
4625                         timeSecCol);
4626
4627    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
4628
4629    bool applyFFT;
4630    string fftMethod, fftThresh;
4631    parseFFTInfo(fftInfo, applyFFT, fftMethod, fftThresh);
4632
4633    std::vector<int> nWaves;
4634    std::vector<int> nChanNos;
4635    std::vector<std::vector<std::vector<double> > > modelReservoir;
4636    if (!applyFFT) {
4637      nWaves = selectWaveNumbers(addNWaves, rejectNWaves);
4638      modelReservoir = getSinusoidModelReservoir(nWaves, nChanNos);
4639    }
4640
4641    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
4642      std::vector<float> sp = getSpectrum(whichrow);
4643      std::vector<int> currentEdge;
4644      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
4645      std::vector<std::vector<double> > model;
4646      if (applyFFT) {
4647        nWaves = selectWaveNumbers(whichrow, chanMask, true, fftMethod, fftThresh,
4648                                   addNWaves, rejectNWaves);
4649        model = getSinusoidModel(nWaves, sp.size());
4650      } else {
4651        model = modelReservoir[getIdxOfNchan(sp.size(), nChanNos)];
4652      }
4653
4654      std::vector<float> params;
4655      int nClipped = 0;
4656      std::vector<float> res = doLeastSquareFitting(sp, chanMask, model,
4657                                   params, rms, finalChanMask,
4658                                   nClipped, thresClip, nIterClip, getResidual);
4659
4660      if (outBaselineTable) {
4661        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4662                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4663                      true, STBaselineFunc::Sinusoid, nWaves, std::vector<float>(),
4664                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
4665                      thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
4666      } else {
4667        setSpectrum(res, whichrow);
4668      }
4669
4670      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
4671                          coordInfo, hasSameNchan, ofs, "autoSinusoidBaseline()",
4672                          params, nClipped);
4673      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
4674    }
4675
4676    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
4677
4678  } catch (...) {
4679    throw;
4680  }
4681}
4682
4683std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data,
4684                                                const std::vector<bool>& mask,
4685                                                const std::vector<int>& waveNumbers,
4686                                                std::vector<float>& params,
4687                                                float& rms,
4688                                                std::vector<bool>& finalmask,
4689                                                float clipth,
4690                                                int clipn)
4691{
4692  int nClipped = 0;
4693  return doSinusoidFitting(data, mask, waveNumbers, params, rms, finalmask, nClipped, clipth, clipn);
4694}
4695
4696std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data,
4697                                                const std::vector<bool>& mask,
4698                                                const std::vector<int>& waveNumbers,
4699                                                std::vector<float>& params,
4700                                                float& rms,
4701                                                std::vector<bool>& finalMask,
4702                                                int& nClipped,
4703                                                float thresClip,
4704                                                int nIterClip,
4705                                                bool getResidual)
4706{
4707  return doLeastSquareFitting(data, mask,
4708                              getSinusoidModel(waveNumbers, data.size()),
4709                              params, rms, finalMask,
4710                              nClipped, thresClip, nIterClip,
4711                              getResidual);
4712}
4713
4714std::vector<std::vector<std::vector<double> > > Scantable::getSinusoidModelReservoir(const std::vector<int>& waveNumbers,
4715                                                                                     std::vector<int>& nChanNos)
4716{
4717  std::vector<std::vector<std::vector<double> > > res;
4718  res.clear();
4719  nChanNos.clear();
4720
4721  std::vector<uint> ifNos = getIFNos();
4722  for (uint i = 0; i < ifNos.size(); ++i) {
4723    int currNchan = nchan(ifNos[i]);
4724    bool hasDifferentNchan = (i == 0);
4725    for (uint j = 0; j < i; ++j) {
4726      if (currNchan != nchan(ifNos[j])) {
4727        hasDifferentNchan = true;
4728        break;
4729      }
4730    }
4731    if (hasDifferentNchan) {
4732      res.push_back(getSinusoidModel(waveNumbers, currNchan));
4733      nChanNos.push_back(currNchan);
4734    }
4735  }
4736
4737  return res;
4738}
4739
4740std::vector<std::vector<double> > Scantable::getSinusoidModel(const std::vector<int>& waveNumbers, int nchan)
4741{
4742  // model  : contains elemental values for computing the least-square matrix.
4743  //          model.size() is nmodel and model[*].size() is nchan.
4744  //          Each model element are as follows:
4745  //          model[0]    = {1.0, 1.0, 1.0, ..., 1.0},
4746  //          model[2n-1] = {sin(nPI/L*x[0]), sin(nPI/L*x[1]), ..., sin(nPI/L*x[nchan])},
4747  //          model[2n]   = {cos(nPI/L*x[0]), cos(nPI/L*x[1]), ..., cos(nPI/L*x[nchan])},
4748  //          where (1 <= n <= nMaxWavesInSW),
4749  //          or,
4750  //          model[2n-1] = {sin(wn[n]PI/L*x[0]), sin(wn[n]PI/L*x[1]), ..., sin(wn[n]PI/L*x[nchan])},
4751  //          model[2n]   = {cos(wn[n]PI/L*x[0]), cos(wn[n]PI/L*x[1]), ..., cos(wn[n]PI/L*x[nchan])},
4752  //          where wn[n] denotes waveNumbers[n] (1 <= n <= waveNumbers.size()).
4753
4754  std::vector<int> nWaves;  // sorted and uniqued array of wave numbers
4755  nWaves.reserve(waveNumbers.size());
4756  copy(waveNumbers.begin(), waveNumbers.end(), back_inserter(nWaves));
4757  sort(nWaves.begin(), nWaves.end());
4758  std::vector<int>::iterator end_it = unique(nWaves.begin(), nWaves.end());
4759  nWaves.erase(end_it, nWaves.end());
4760
4761  int minNWaves = nWaves[0];
4762  if (minNWaves < 0) {
4763    throw(AipsError("wave number must be positive or zero (i.e. constant)"));
4764  }
4765  bool hasConstantTerm = (minNWaves == 0);
4766  int nmodel = nWaves.size() * 2 - (hasConstantTerm ? 1 : 0);  //number of parameters to solve.
4767
4768  std::vector<std::vector<double> > model(nmodel, std::vector<double>(nchan));
4769
4770  if (hasConstantTerm) {
4771    for (int j = 0; j < nchan; ++j) {
4772      model[0][j] = 1.0;
4773    }
4774  }
4775
4776  const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
4777  double stretch0 = 2.0*PI/(double)(nchan-1);
4778
4779  for (uInt i = (hasConstantTerm ? 1 : 0); i < nWaves.size(); ++i) {
4780    int sidx = hasConstantTerm ? 2*i-1 : 2*i;
4781    int cidx = sidx + 1;
4782    double stretch = stretch0*(double)nWaves[i];
4783
4784    for (int j = 0; j < nchan; ++j) {
4785      model[sidx][j] = sin(stretch*(double)j);
4786      model[cidx][j] = cos(stretch*(double)j);
4787    }
4788  }
4789
4790  return model;
4791}
4792
4793std::vector<bool> Scantable::getCompositeChanMask(int whichrow,
4794                                                  const std::vector<bool>& inMask)
4795{
4796  std::vector<bool> mask = getMask(whichrow);
4797  uInt maskSize = mask.size();
4798  if (inMask.size() != 0) {
4799    if (maskSize != inMask.size()) {
4800      throw(AipsError("mask sizes are not the same."));
4801    }
4802    for (uInt i = 0; i < maskSize; ++i) {
4803      mask[i] = mask[i] && inMask[i];
4804    }
4805  }
4806
4807  return mask;
4808}
4809
4810std::vector<bool> Scantable::getCompositeChanMask(int whichrow,
4811                                                  const std::vector<bool>& inMask,
4812                                                  const std::vector<int>& edge,
4813                                                  std::vector<int>& currEdge,
4814                                                  STLineFinder& lineFinder)
4815{
4816  std::vector<uint> ifNos = getIFNos();
4817  if ((edge.size() > 2) && (edge.size() < ifNos.size()*2)) {
4818    throw(AipsError("Length of edge element info is less than that of IFs"));
4819  }
4820
4821  uint idx = 0;
4822  if (edge.size() > 2) {
4823    int ifVal = getIF(whichrow);
4824    bool foundIF = false;
4825    for (uint i = 0; i < ifNos.size(); ++i) {
4826      if (ifVal == (int)ifNos[i]) {
4827        idx = 2*i;
4828        foundIF = true;
4829        break;
4830      }
4831    }
4832    if (!foundIF) {
4833      throw(AipsError("bad IF number"));
4834    }
4835  }
4836
4837  currEdge.clear();
4838  currEdge.resize(2);
4839  currEdge[0] = edge[idx];
4840  currEdge[1] = edge[idx+1];
4841
4842  lineFinder.setData(getSpectrum(whichrow));
4843  lineFinder.findLines(getCompositeChanMask(whichrow, inMask), currEdge, whichrow);
4844
4845  return lineFinder.getMask();
4846}
4847
4848/* for cspline. will be merged once cspline is available in fitter (2011/3/10 WK) */
4849void Scantable::outputFittingResult(bool outLogger,
4850                                    bool outTextFile,
4851                                    bool csvFormat,
4852                                    const std::vector<bool>& chanMask,
4853                                    int whichrow,
4854                                    const casa::String& coordInfo,
4855                                    bool hasSameNchan,
4856                                    ofstream& ofs,
4857                                    const casa::String& funcName,
4858                                    const std::vector<int>& edge,
4859                                    const std::vector<float>& params,
4860                                    const int nClipped)
4861{
4862  if (outLogger || outTextFile) {
4863    float rms = getRms(chanMask, whichrow);
4864    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
4865    std::vector<bool> fixed;
4866    fixed.clear();
4867
4868    if (outLogger) {
4869      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
4870      ols << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped,
4871                                           masklist, whichrow, false, csvFormat) << LogIO::POST ;
4872    }
4873    if (outTextFile) {
4874      ofs << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped,
4875                                           masklist, whichrow, true, csvFormat) << flush;
4876    }
4877  }
4878}
4879
4880/* for poly/chebyshev/sinusoid. */
4881void Scantable::outputFittingResult(bool outLogger,
4882                                    bool outTextFile,
4883                                    bool csvFormat,
4884                                    const std::vector<bool>& chanMask,
4885                                    int whichrow,
4886                                    const casa::String& coordInfo,
4887                                    bool hasSameNchan,
4888                                    ofstream& ofs,
4889                                    const casa::String& funcName,
4890                                    const std::vector<float>& params,
4891                                    const int nClipped)
4892{
4893  if (outLogger || outTextFile) {
4894    float rms = getRms(chanMask, whichrow);
4895    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
4896    std::vector<bool> fixed;
4897    fixed.clear();
4898
4899    if (outLogger) {
4900      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
4901      ols << formatBaselineParams(params, fixed, rms, nClipped,
4902                                  masklist, whichrow, false, csvFormat) << LogIO::POST ;
4903    }
4904    if (outTextFile) {
4905      ofs << formatBaselineParams(params, fixed, rms, nClipped,
4906                                  masklist, whichrow, true, csvFormat) << flush;
4907    }
4908  }
4909}
4910
4911void Scantable::parseProgressInfo(const std::string& progressInfo, bool& showProgress, int& minNRow)
4912{
4913  int idxDelimiter = progressInfo.find(",");
4914  if (idxDelimiter < 0) {
4915    throw(AipsError("wrong value in 'showprogress' parameter")) ;
4916  }
4917  showProgress = (progressInfo.substr(0, idxDelimiter) == "true");
4918  std::istringstream is(progressInfo.substr(idxDelimiter+1));
4919  is >> minNRow;
4920}
4921
4922void Scantable::showProgressOnTerminal(const int nProcessed, const int nTotal, const bool showProgress, const int nTotalThreshold)
4923{
4924  if (showProgress && (nTotal >= nTotalThreshold)) {
4925    int nInterval = int(floor(double(nTotal)/100.0));
4926    if (nInterval == 0) nInterval++;
4927
4928    if (nProcessed % nInterval == 0) {
4929      printf("\r");                          //go to the head of line
4930      printf("\x1b[31m\x1b[1m");             //set red color, highlighted
4931      printf("[%3d%%]", (int)(100.0*(double(nProcessed+1))/(double(nTotal))) );
4932      printf("\x1b[39m\x1b[0m");             //set default attributes
4933      fflush(NULL);
4934    }
4935
4936    if (nProcessed == nTotal - 1) {
4937      printf("\r\x1b[K");                    //clear
4938      fflush(NULL);
4939    }
4940
4941  }
4942}
4943
4944std::vector<float> Scantable::execFFT(const int whichrow, const std::vector<bool>& inMask, bool getRealImag, bool getAmplitudeOnly)
4945{
4946  std::vector<bool>  mask = getMask(whichrow);
4947
4948  if (inMask.size() > 0) {
4949    uInt maskSize = mask.size();
4950    if (maskSize != inMask.size()) {
4951      throw(AipsError("mask sizes are not the same."));
4952    }
4953    for (uInt i = 0; i < maskSize; ++i) {
4954      mask[i] = mask[i] && inMask[i];
4955    }
4956  }
4957
4958  Vector<Float> spec = getSpectrum(whichrow);
4959  mathutil::doZeroOrderInterpolation(spec, mask);
4960
4961  FFTServer<Float,Complex> ffts;
4962  Vector<Complex> fftres;
4963  ffts.fft0(fftres, spec);
4964
4965  std::vector<float> res;
4966  float norm = float(2.0/double(spec.size()));
4967
4968  if (getRealImag) {
4969    for (uInt i = 0; i < fftres.size(); ++i) {
4970      res.push_back(real(fftres[i])*norm);
4971      res.push_back(imag(fftres[i])*norm);
4972    }
4973  } else {
4974    for (uInt i = 0; i < fftres.size(); ++i) {
4975      res.push_back(abs(fftres[i])*norm);
4976      if (!getAmplitudeOnly) res.push_back(arg(fftres[i]));
4977    }
4978  }
4979
4980  return res;
4981}
4982
4983
4984float Scantable::getRms(const std::vector<bool>& mask, int whichrow)
4985{
4986  /****
4987  double ms1TimeStart, ms1TimeEnd;
4988  double elapse1 = 0.0;
4989  ms1TimeStart = mathutil::gettimeofday_sec();
4990  ****/
4991
4992  Vector<Float> spec;
4993  specCol_.get(whichrow, spec);
4994
4995  /****
4996  ms1TimeEnd = mathutil::gettimeofday_sec();
4997  elapse1 = ms1TimeEnd - ms1TimeStart;
4998  std::cout << "rm1   : " << elapse1 << " (sec.)" << endl;
4999  ****/
5000
5001  return (float)doGetRms(mask, spec);
5002}
5003
5004double Scantable::doGetRms(const std::vector<bool>& mask, const Vector<Float>& spec)
5005{
5006  double mean = 0.0;
5007  double smean = 0.0;
5008  int n = 0;
5009  for (uInt i = 0; i < spec.nelements(); ++i) {
5010    if (mask[i]) {
5011      double val = (double)spec[i];
5012      mean += val;
5013      smean += val*val;
5014      n++;
5015    }
5016  }
5017
5018  mean /= (double)n;
5019  smean /= (double)n;
5020
5021  return sqrt(smean - mean*mean);
5022}
5023
5024std::string Scantable::formatBaselineParamsHeader(int whichrow, const std::string& masklist, bool verbose, bool csvformat) const
5025{
5026  if (verbose) {
5027    ostringstream oss;
5028
5029    if (csvformat) {
5030      oss << getScan(whichrow)  << ",";
5031      oss << getBeam(whichrow)  << ",";
5032      oss << getIF(whichrow)    << ",";
5033      oss << getPol(whichrow)   << ",";
5034      oss << getCycle(whichrow) << ",";
5035      String commaReplacedMasklist = masklist;
5036      string::size_type pos = 0;
5037      while (pos = commaReplacedMasklist.find(","), pos != string::npos) {
5038        commaReplacedMasklist.replace(pos, 1, ";");
5039        pos++;
5040      }
5041      oss << commaReplacedMasklist << ",";
5042    } else {
5043      oss <<  " Scan[" << getScan(whichrow)  << "]";
5044      oss <<  " Beam[" << getBeam(whichrow)  << "]";
5045      oss <<    " IF[" << getIF(whichrow)    << "]";
5046      oss <<   " Pol[" << getPol(whichrow)   << "]";
5047      oss << " Cycle[" << getCycle(whichrow) << "]: " << endl;
5048      oss << "Fitter range = " << masklist << endl;
5049      oss << "Baseline parameters" << endl;
5050    }
5051    oss << flush;
5052
5053    return String(oss);
5054  }
5055
5056  return "";
5057}
5058
5059std::string Scantable::formatBaselineParamsFooter(float rms, int nClipped, bool verbose, bool csvformat) const
5060{
5061  if (verbose) {
5062    ostringstream oss;
5063
5064    if (csvformat) {
5065      oss << rms << ",";
5066      if (nClipped >= 0) {
5067        oss << nClipped;
5068      }
5069    } else {
5070      oss << "Results of baseline fit" << endl;
5071      oss << "  rms = " << setprecision(6) << rms << endl;
5072      if (nClipped >= 0) {
5073        oss << "  Number of clipped channels = " << nClipped << endl;
5074      }
5075      for (int i = 0; i < 60; ++i) {
5076        oss << "-";
5077      }
5078    }
5079    oss << endl;
5080    oss << flush;
5081
5082    return String(oss);
5083  }
5084
5085  return "";
5086}
5087
5088std::string Scantable::formatBaselineParams(const std::vector<float>& params,
5089                                            const std::vector<bool>& fixed,
5090                                            float rms,
5091                                            int nClipped,
5092                                            const std::string& masklist,
5093                                            int whichrow,
5094                                            bool verbose,
5095                                            bool csvformat,
5096                                            int start, int count,
5097                                            bool resetparamid) const
5098{
5099  int nParam = (int)(params.size());
5100
5101  if (nParam < 1) {
5102    return("  Not fitted");
5103  } else {
5104
5105    ostringstream oss;
5106    oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat);
5107
5108    if (start < 0) start = 0;
5109    if (count < 0) count = nParam;
5110    int end = start + count;
5111    if (end > nParam) end = nParam;
5112    int paramidoffset = (resetparamid) ? (-start) : 0;
5113
5114    for (int i = start; i < end; ++i) {
5115      if (i > start) {
5116        oss << ",";
5117      }
5118      std::string sFix = ((fixed.size() > 0) && (fixed[i]) && verbose) ? "(fixed)" : "";
5119      if (csvformat) {
5120        oss << params[i] << sFix;
5121      } else {
5122        oss << "  p" << (i+paramidoffset) << sFix << "= " << right << setw(13) << setprecision(6) << params[i];
5123      }
5124    }
5125
5126    if (csvformat) {
5127      oss << ",";
5128    } else {
5129      oss << endl;
5130    }
5131    oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat);
5132
5133    return String(oss);
5134  }
5135
5136}
5137
5138std::string Scantable::formatPiecewiseBaselineParams(const std::vector<int>& ranges, const std::vector<float>& params, const std::vector<bool>& fixed, float rms, int nClipped, const std::string& masklist, int whichrow, bool verbose, bool csvformat) const
5139{
5140  int nOutParam = (int)(params.size());
5141  int nPiece = (int)(ranges.size()) - 1;
5142
5143  if (nOutParam < 1) {
5144    return("  Not fitted");
5145  } else if (nPiece < 0) {
5146    return formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, verbose, csvformat);
5147  } else if (nPiece < 1) {
5148    return("  Bad count of the piece edge info");
5149  } else if (nOutParam % nPiece != 0) {
5150    return("  Bad count of the output baseline parameters");
5151  } else {
5152
5153    int nParam = nOutParam / nPiece;
5154
5155    ostringstream oss;
5156    oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat);
5157
5158    if (csvformat) {
5159      for (int i = 0; i < nPiece; ++i) {
5160        oss << ranges[i] << "," << (ranges[i+1]-1) << ",";
5161        oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true);
5162      }
5163    } else {
5164      stringstream ss;
5165      ss << ranges[nPiece] << flush;
5166      int wRange = ss.str().size() * 2 + 5;
5167
5168      for (int i = 0; i < nPiece; ++i) {
5169        ss.str("");
5170        ss << "  [" << ranges[i] << "," << (ranges[i+1]-1) << "]";
5171        oss << left << setw(wRange) << ss.str();
5172        oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true);
5173        //oss << endl;
5174      }
5175    }
5176
5177    oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat);
5178
5179    return String(oss);
5180  }
5181
5182}
5183
5184bool Scantable::hasSameNchanOverIFs()
5185{
5186  int nIF = nif(-1);
5187  int nCh;
5188  int totalPositiveNChan = 0;
5189  int nPositiveNChan = 0;
5190
5191  for (int i = 0; i < nIF; ++i) {
5192    nCh = nchan(i);
5193    if (nCh > 0) {
5194      totalPositiveNChan += nCh;
5195      nPositiveNChan++;
5196    }
5197  }
5198
5199  return (totalPositiveNChan == (nPositiveNChan * nchan(0)));
5200}
5201
5202std::string Scantable::getMaskRangeList(const std::vector<bool>& mask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, bool verbose)
5203{
5204  if (mask.size() <= 0) {
5205    throw(AipsError("The mask elements should be > 0"));
5206  }
5207  int IF = getIF(whichrow);
5208  if (mask.size() != (uInt)nchan(IF)) {
5209    throw(AipsError("Number of channels in scantable != number of mask elements"));
5210  }
5211
5212  if (verbose) {
5213    LogIO logOs(LogOrigin("Scantable", "getMaskRangeList()", WHERE));
5214    logOs << LogIO::WARN << "The current mask window unit is " << coordInfo;
5215    if (!hasSameNchan) {
5216      logOs << endl << "This mask is only valid for IF=" << IF;
5217    }
5218    logOs << LogIO::POST;
5219  }
5220
5221  std::vector<double> abcissa = getAbcissa(whichrow);
5222  std::vector<int> edge = getMaskEdgeIndices(mask);
5223
5224  ostringstream oss;
5225  oss.setf(ios::fixed);
5226  oss << setprecision(1) << "[";
5227  for (uInt i = 0; i < edge.size(); i+=2) {
5228    if (i > 0) oss << ",";
5229    oss << "[" << (float)abcissa[edge[i]] << "," << (float)abcissa[edge[i+1]] << "]";
5230  }
5231  oss << "]" << flush;
5232
5233  return String(oss);
5234}
5235
5236std::vector<int> Scantable::getMaskEdgeIndices(const std::vector<bool>& mask)
5237{
5238  if (mask.size() <= 0) {
5239    throw(AipsError("The mask elements should be > 0"));
5240  }
5241
5242  std::vector<int> out, startIndices, endIndices;
5243  int maskSize = mask.size();
5244
5245  startIndices.clear();
5246  endIndices.clear();
5247
5248  if (mask[0]) {
5249    startIndices.push_back(0);
5250  }
5251  for (int i = 1; i < maskSize; ++i) {
5252    if ((!mask[i-1]) && mask[i]) {
5253      startIndices.push_back(i);
5254    } else if (mask[i-1] && (!mask[i])) {
5255      endIndices.push_back(i-1);
5256    }
5257  }
5258  if (mask[maskSize-1]) {
5259    endIndices.push_back(maskSize-1);
5260  }
5261
5262  if (startIndices.size() != endIndices.size()) {
5263    throw(AipsError("Inconsistent Mask Size: bad data?"));
5264  }
5265  for (uInt i = 0; i < startIndices.size(); ++i) {
5266    if (startIndices[i] > endIndices[i]) {
5267      throw(AipsError("Mask start index > mask end index"));
5268    }
5269  }
5270
5271  out.clear();
5272  for (uInt i = 0; i < startIndices.size(); ++i) {
5273    out.push_back(startIndices[i]);
5274    out.push_back(endIndices[i]);
5275  }
5276
5277  return out;
5278}
5279
5280void Scantable::setTsys(const std::vector<float>& newvals, int whichrow) {
5281  Vector<Float> tsys(newvals);
5282  if (whichrow > -1) {
5283    if (tsysCol_.shape(whichrow) != tsys.shape())
5284      throw(AipsError("Given Tsys values are not of the same shape"));
5285    tsysCol_.put(whichrow, tsys);
5286  } else {
5287    tsysCol_.fillColumn(tsys);
5288  }
5289}
5290
5291vector<float> Scantable::getTsysSpectrum( int whichrow ) const
5292{
5293  Vector<Float> tsys( tsysCol_(whichrow) ) ;
5294  vector<float> stlTsys ;
5295  tsys.tovector( stlTsys ) ;
5296  return stlTsys ;
5297}
5298
5299vector<uint> Scantable::getMoleculeIdColumnData() const
5300{
5301  Vector<uInt> molIds(mmolidCol_.getColumn());
5302  vector<uint> res;
5303  molIds.tovector(res);
5304  return res;
5305}
5306
5307void Scantable::setMoleculeIdColumnData(const std::vector<uint>& molids)
5308{
5309  Vector<uInt> molIds(molids);
5310  Vector<uInt> arr(mmolidCol_.getColumn());
5311  if ( molIds.nelements() != arr.nelements() )
5312    throw AipsError("The input data size must be the number of rows.");
5313  mmolidCol_.putColumn(molIds);
5314}
5315
5316
5317std::vector<uint> Scantable::getRootTableRowNumbers() const
5318{
5319  Vector<uInt> rowIds(table_.rowNumbers());
5320  vector<uint> res;
5321  rowIds.tovector(res);
5322  return res;
5323}
5324
5325
5326void Scantable::dropXPol()
5327{
5328  if (npol() <= 2) {
5329    return;
5330  }
5331  if (!selector_.empty()) {
5332    throw AipsError("Can only operate with empty selection");
5333  }
5334  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
5335  Table tab = tableCommand(taql, table_);
5336  table_ = tab;
5337  table_.rwKeywordSet().define("nPol", Int(2));
5338  originalTable_ = table_;
5339  attach();
5340}
5341
5342}
5343//namespace asap
Note: See TracBrowser for help on using the repository browser.