source: trunk/src/Scantable.cpp @ 2946

Last change on this file since 2946 was 2946, checked in by WataruKawasaki, 10 years ago

New Development: No

JIRA Issue: No

Ready for Test: Yes

Interface Changes: No

What Interface Changed:

Test Programs:

Put in Release Notes: No

Module(s): sd

Description: flagtra was not used in subBaseline() with uself=false mode. fixed so that flagtra is properly used in both cases uself=T/F.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 159.5 KB
Line 
1//
2// C++ Implementation: Scantable
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2005-2013
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12#include <map>
13#include <sys/time.h>
14
15#include <atnf/PKSIO/SrcType.h>
16
17#include <casa/aips.h>
18#include <casa/iomanip.h>
19#include <casa/iostream.h>
20#include <casa/OS/File.h>
21#include <casa/OS/Path.h>
22#include <casa/Logging/LogIO.h>
23#include <casa/Arrays/Array.h>
24#include <casa/Arrays/ArrayAccessor.h>
25#include <casa/Arrays/ArrayLogical.h>
26#include <casa/Arrays/ArrayMath.h>
27#include <casa/Arrays/MaskArrMath.h>
28#include <casa/Arrays/Slice.h>
29#include <casa/Arrays/Vector.h>
30#include <casa/Arrays/VectorSTLIterator.h>
31#include <casa/BasicMath/Math.h>
32#include <casa/BasicSL/Constants.h>
33#include <casa/Containers/RecordField.h>
34#include <casa/Logging/LogIO.h>
35#include <casa/Quanta/MVAngle.h>
36#include <casa/Quanta/MVTime.h>
37#include <casa/Utilities/GenSort.h>
38
39#include <coordinates/Coordinates/CoordinateUtil.h>
40
41// needed to avoid error in .tcc
42#include <measures/Measures/MCDirection.h>
43//
44#include <measures/Measures/MDirection.h>
45#include <measures/Measures/MEpoch.h>
46#include <measures/Measures/MFrequency.h>
47#include <measures/Measures/MeasRef.h>
48#include <measures/Measures/MeasTable.h>
49#include <measures/TableMeasures/ScalarMeasColumn.h>
50#include <measures/TableMeasures/TableMeasDesc.h>
51#include <measures/TableMeasures/TableMeasRefDesc.h>
52#include <measures/TableMeasures/TableMeasValueDesc.h>
53
54#include <tables/Tables/ArrColDesc.h>
55#include <tables/Tables/ExprNode.h>
56#include <tables/Tables/ScaColDesc.h>
57#include <tables/Tables/SetupNewTab.h>
58#include <tables/Tables/TableCopy.h>
59#include <tables/Tables/TableDesc.h>
60#include <tables/Tables/TableIter.h>
61#include <tables/Tables/TableParse.h>
62#include <tables/Tables/TableRecord.h>
63#include <tables/Tables/TableRow.h>
64#include <tables/Tables/TableVector.h>
65
66#include "MathUtils.h"
67#include "STAttr.h"
68#include "STBaselineTable.h"
69#include "STLineFinder.h"
70#include "STPolCircular.h"
71#include "STPolLinear.h"
72#include "STPolStokes.h"
73#include "STUpgrade.h"
74#include "STFitter.h"
75#include "Scantable.h"
76
77#define debug 1
78
79using namespace casa;
80
81namespace asap {
82
83std::map<std::string, STPol::STPolFactory *> Scantable::factories_;
84
85void Scantable::initFactories() {
86  if ( factories_.empty() ) {
87    Scantable::factories_["linear"] = &STPolLinear::myFactory;
88    Scantable::factories_["circular"] = &STPolCircular::myFactory;
89    Scantable::factories_["stokes"] = &STPolStokes::myFactory;
90  }
91}
92
93Scantable::Scantable(Table::TableType ttype) :
94  type_(ttype)
95{
96  initFactories();
97  setupMainTable();
98  freqTable_ = STFrequencies(*this);
99  table_.rwKeywordSet().defineTable("FREQUENCIES", freqTable_.table());
100  weatherTable_ = STWeather(*this);
101  table_.rwKeywordSet().defineTable("WEATHER", weatherTable_.table());
102  focusTable_ = STFocus(*this);
103  table_.rwKeywordSet().defineTable("FOCUS", focusTable_.table());
104  tcalTable_ = STTcal(*this);
105  table_.rwKeywordSet().defineTable("TCAL", tcalTable_.table());
106  moleculeTable_ = STMolecules(*this);
107  table_.rwKeywordSet().defineTable("MOLECULES", moleculeTable_.table());
108  historyTable_ = STHistory(*this);
109  table_.rwKeywordSet().defineTable("HISTORY", historyTable_.table());
110  fitTable_ = STFit(*this);
111  table_.rwKeywordSet().defineTable("FIT", fitTable_.table());
112  table_.tableInfo().setType( "Scantable" ) ;
113  originalTable_ = table_;
114  attach();
115}
116
117Scantable::Scantable(const std::string& name, Table::TableType ttype) :
118  type_(ttype)
119{
120  initFactories();
121
122  Table tab(name, Table::Update);
123  uInt version = tab.keywordSet().asuInt("VERSION");
124  if (version != version_) {
125      STUpgrade upgrader(version_);
126      LogIO os( LogOrigin( "Scantable" ) ) ;
127      os << LogIO::WARN
128         << name << " data format version " << version
129         << " is deprecated" << endl
130         << "Running upgrade."<< endl 
131         << LogIO::POST ; 
132      std::string outname = upgrader.upgrade(name);
133      if ( outname != name ) {
134        os << LogIO::WARN
135           << "Data will be loaded from " << outname << " instead of "
136           << name << LogIO::POST ;
137        tab = Table(outname, Table::Update ) ;
138      }
139  }
140  if ( type_ == Table::Memory ) {
141    table_ = tab.copyToMemoryTable(generateName());
142  } else {
143    table_ = tab;
144  }
145  table_.tableInfo().setType( "Scantable" ) ;
146
147  attachSubtables();
148  originalTable_ = table_;
149  attach();
150}
151/*
152Scantable::Scantable(const std::string& name, Table::TableType ttype) :
153  type_(ttype)
154{
155  initFactories();
156  Table tab(name, Table::Update);
157  uInt version = tab.keywordSet().asuInt("VERSION");
158  if (version != version_) {
159    throw(AipsError("Unsupported version of ASAP file."));
160  }
161  if ( type_ == Table::Memory ) {
162    table_ = tab.copyToMemoryTable(generateName());
163  } else {
164    table_ = tab;
165  }
166
167  attachSubtables();
168  originalTable_ = table_;
169  attach();
170}
171*/
172
173Scantable::Scantable( const Scantable& other, bool clear )
174{
175  // with or without data
176  String newname = String(generateName());
177  type_ = other.table_.tableType();
178  if ( other.table_.tableType() == Table::Memory ) {
179      if ( clear ) {
180        table_ = TableCopy::makeEmptyMemoryTable(newname,
181                                                 other.table_, True);
182      } else {
183        table_ = other.table_.copyToMemoryTable(newname);
184      }
185  } else {
186      other.table_.deepCopy(newname, Table::New, False,
187                            other.table_.endianFormat(),
188                            Bool(clear));
189      table_ = Table(newname, Table::Update);
190      table_.markForDelete();
191  }
192  table_.tableInfo().setType( "Scantable" ) ;
193  /// @todo reindex SCANNO, recompute nbeam, nif, npol
194  if ( clear ) copySubtables(other);
195  attachSubtables();
196  originalTable_ = table_;
197  attach();
198}
199
200void Scantable::copySubtables(const Scantable& other) {
201  Table t = table_.rwKeywordSet().asTable("FREQUENCIES");
202  TableCopy::copyRows(t, other.freqTable_.table());
203  t = table_.rwKeywordSet().asTable("FOCUS");
204  TableCopy::copyRows(t, other.focusTable_.table());
205  t = table_.rwKeywordSet().asTable("WEATHER");
206  TableCopy::copyRows(t, other.weatherTable_.table());
207  t = table_.rwKeywordSet().asTable("TCAL");
208  TableCopy::copyRows(t, other.tcalTable_.table());
209  t = table_.rwKeywordSet().asTable("MOLECULES");
210  TableCopy::copyRows(t, other.moleculeTable_.table());
211  t = table_.rwKeywordSet().asTable("HISTORY");
212  TableCopy::copyRows(t, other.historyTable_.table());
213  t = table_.rwKeywordSet().asTable("FIT");
214  TableCopy::copyRows(t, other.fitTable_.table());
215}
216
217void Scantable::attachSubtables()
218{
219  freqTable_ = STFrequencies(table_);
220  focusTable_ = STFocus(table_);
221  weatherTable_ = STWeather(table_);
222  tcalTable_ = STTcal(table_);
223  moleculeTable_ = STMolecules(table_);
224  historyTable_ = STHistory(table_);
225  fitTable_ = STFit(table_);
226}
227
228Scantable::~Scantable()
229{
230}
231
232void Scantable::setupMainTable()
233{
234  TableDesc td("", "1", TableDesc::Scratch);
235  td.comment() = "An ASAP Scantable";
236  td.rwKeywordSet().define("VERSION", uInt(version_));
237
238  // n Cycles
239  td.addColumn(ScalarColumnDesc<uInt>("SCANNO"));
240  // new index every nBeam x nIF x nPol
241  td.addColumn(ScalarColumnDesc<uInt>("CYCLENO"));
242
243  td.addColumn(ScalarColumnDesc<uInt>("BEAMNO"));
244  td.addColumn(ScalarColumnDesc<uInt>("IFNO"));
245  // linear, circular, stokes
246  td.rwKeywordSet().define("POLTYPE", String("linear"));
247  td.addColumn(ScalarColumnDesc<uInt>("POLNO"));
248
249  td.addColumn(ScalarColumnDesc<uInt>("FREQ_ID"));
250  td.addColumn(ScalarColumnDesc<uInt>("MOLECULE_ID"));
251
252  ScalarColumnDesc<Int> refbeamnoColumn("REFBEAMNO");
253  refbeamnoColumn.setDefault(Int(-1));
254  td.addColumn(refbeamnoColumn);
255
256  ScalarColumnDesc<uInt> flagrowColumn("FLAGROW");
257  flagrowColumn.setDefault(uInt(0));
258  td.addColumn(flagrowColumn);
259
260  td.addColumn(ScalarColumnDesc<Double>("TIME"));
261  TableMeasRefDesc measRef(MEpoch::UTC); // UTC as default
262  TableMeasValueDesc measVal(td, "TIME");
263  TableMeasDesc<MEpoch> mepochCol(measVal, measRef);
264  mepochCol.write(td);
265
266  td.addColumn(ScalarColumnDesc<Double>("INTERVAL"));
267
268  td.addColumn(ScalarColumnDesc<String>("SRCNAME"));
269  // Type of source (on=0, off=1, other=-1)
270  ScalarColumnDesc<Int> stypeColumn("SRCTYPE");
271  stypeColumn.setDefault(Int(-1));
272  td.addColumn(stypeColumn);
273  td.addColumn(ScalarColumnDesc<String>("FIELDNAME"));
274
275  //The actual Data Vectors
276  td.addColumn(ArrayColumnDesc<Float>("SPECTRA"));
277  td.addColumn(ArrayColumnDesc<uChar>("FLAGTRA"));
278  td.addColumn(ArrayColumnDesc<Float>("TSYS"));
279
280  td.addColumn(ArrayColumnDesc<Double>("DIRECTION",
281                                       IPosition(1,2),
282                                       ColumnDesc::Direct));
283  TableMeasRefDesc mdirRef(MDirection::J2000); // default
284  TableMeasValueDesc tmvdMDir(td, "DIRECTION");
285  // the TableMeasDesc gives the column a type
286  TableMeasDesc<MDirection> mdirCol(tmvdMDir, mdirRef);
287  // a uder set table type e.g. GALCTIC, B1950 ...
288  td.rwKeywordSet().define("DIRECTIONREF", String("J2000"));
289  // writing create the measure column
290  mdirCol.write(td);
291  td.addColumn(ScalarColumnDesc<Float>("AZIMUTH"));
292  td.addColumn(ScalarColumnDesc<Float>("ELEVATION"));
293  td.addColumn(ScalarColumnDesc<Float>("OPACITY"));
294
295  td.addColumn(ScalarColumnDesc<uInt>("TCAL_ID"));
296  ScalarColumnDesc<Int> fitColumn("FIT_ID");
297  fitColumn.setDefault(Int(-1));
298  td.addColumn(fitColumn);
299
300  td.addColumn(ScalarColumnDesc<uInt>("FOCUS_ID"));
301  td.addColumn(ScalarColumnDesc<uInt>("WEATHER_ID"));
302
303  // columns which just get dragged along, as they aren't used in asap
304  td.addColumn(ScalarColumnDesc<Double>("SRCVELOCITY"));
305  td.addColumn(ArrayColumnDesc<Double>("SRCPROPERMOTION"));
306  td.addColumn(ArrayColumnDesc<Double>("SRCDIRECTION"));
307  td.addColumn(ArrayColumnDesc<Double>("SCANRATE"));
308
309  td.rwKeywordSet().define("OBSMODE", String(""));
310
311  // Now create Table SetUp from the description.
312  SetupNewTable aNewTab(generateName(), td, Table::Scratch);
313  table_ = Table(aNewTab, type_, 0);
314  originalTable_ = table_;
315}
316
317void Scantable::attach()
318{
319  timeCol_.attach(table_, "TIME");
320  srcnCol_.attach(table_, "SRCNAME");
321  srctCol_.attach(table_, "SRCTYPE");
322  specCol_.attach(table_, "SPECTRA");
323  flagsCol_.attach(table_, "FLAGTRA");
324  tsysCol_.attach(table_, "TSYS");
325  cycleCol_.attach(table_,"CYCLENO");
326  scanCol_.attach(table_, "SCANNO");
327  beamCol_.attach(table_, "BEAMNO");
328  ifCol_.attach(table_, "IFNO");
329  polCol_.attach(table_, "POLNO");
330  integrCol_.attach(table_, "INTERVAL");
331  azCol_.attach(table_, "AZIMUTH");
332  elCol_.attach(table_, "ELEVATION");
333  dirCol_.attach(table_, "DIRECTION");
334  fldnCol_.attach(table_, "FIELDNAME");
335  rbeamCol_.attach(table_, "REFBEAMNO");
336
337  mweatheridCol_.attach(table_,"WEATHER_ID");
338  mfitidCol_.attach(table_,"FIT_ID");
339  mfreqidCol_.attach(table_, "FREQ_ID");
340  mtcalidCol_.attach(table_, "TCAL_ID");
341  mfocusidCol_.attach(table_, "FOCUS_ID");
342  mmolidCol_.attach(table_, "MOLECULE_ID");
343
344  //Add auxiliary column for row-based flagging (CAS-1433 Wataru Kawasaki)
345  attachAuxColumnDef(flagrowCol_, "FLAGROW", 0);
346
347}
348
349template<class T, class T2>
350void Scantable::attachAuxColumnDef(ScalarColumn<T>& col,
351                                   const String& colName,
352                                   const T2& defValue)
353{
354  try {
355    col.attach(table_, colName);
356  } catch (TableError& err) {
357    String errMesg = err.getMesg();
358    if (errMesg == "Table column " + colName + " is unknown") {
359      table_.addColumn(ScalarColumnDesc<T>(colName));
360      col.attach(table_, colName);
361      col.fillColumn(static_cast<T>(defValue));
362    } else {
363      throw;
364    }
365  } catch (...) {
366    throw;
367  }
368}
369
370template<class T, class T2>
371void Scantable::attachAuxColumnDef(ArrayColumn<T>& col,
372                                   const String& colName,
373                                   const Array<T2>& defValue)
374{
375  try {
376    col.attach(table_, colName);
377  } catch (TableError& err) {
378    String errMesg = err.getMesg();
379    if (errMesg == "Table column " + colName + " is unknown") {
380      table_.addColumn(ArrayColumnDesc<T>(colName));
381      col.attach(table_, colName);
382
383      int size = 0;
384      ArrayIterator<T2>& it = defValue.begin();
385      while (it != defValue.end()) {
386        ++size;
387        ++it;
388      }
389      IPosition ip(1, size);
390      Array<T>& arr(ip);
391      for (int i = 0; i < size; ++i)
392        arr[i] = static_cast<T>(defValue[i]);
393
394      col.fillColumn(arr);
395    } else {
396      throw;
397    }
398  } catch (...) {
399    throw;
400  }
401}
402
403void Scantable::setHeader(const STHeader& sdh)
404{
405  table_.rwKeywordSet().define("nIF", sdh.nif);
406  table_.rwKeywordSet().define("nBeam", sdh.nbeam);
407  table_.rwKeywordSet().define("nPol", sdh.npol);
408  table_.rwKeywordSet().define("nChan", sdh.nchan);
409  table_.rwKeywordSet().define("Observer", sdh.observer);
410  table_.rwKeywordSet().define("Project", sdh.project);
411  table_.rwKeywordSet().define("Obstype", sdh.obstype);
412  table_.rwKeywordSet().define("AntennaName", sdh.antennaname);
413  table_.rwKeywordSet().define("AntennaPosition", sdh.antennaposition);
414  table_.rwKeywordSet().define("Equinox", sdh.equinox);
415  table_.rwKeywordSet().define("FreqRefFrame", sdh.freqref);
416  table_.rwKeywordSet().define("FreqRefVal", sdh.reffreq);
417  table_.rwKeywordSet().define("Bandwidth", sdh.bandwidth);
418  table_.rwKeywordSet().define("UTC", sdh.utc);
419  table_.rwKeywordSet().define("FluxUnit", sdh.fluxunit);
420  table_.rwKeywordSet().define("Epoch", sdh.epoch);
421  table_.rwKeywordSet().define("POLTYPE", sdh.poltype);
422}
423
424STHeader Scantable::getHeader() const
425{
426  STHeader sdh;
427  table_.keywordSet().get("nBeam",sdh.nbeam);
428  table_.keywordSet().get("nIF",sdh.nif);
429  table_.keywordSet().get("nPol",sdh.npol);
430  table_.keywordSet().get("nChan",sdh.nchan);
431  table_.keywordSet().get("Observer", sdh.observer);
432  table_.keywordSet().get("Project", sdh.project);
433  table_.keywordSet().get("Obstype", sdh.obstype);
434  table_.keywordSet().get("AntennaName", sdh.antennaname);
435  table_.keywordSet().get("AntennaPosition", sdh.antennaposition);
436  table_.keywordSet().get("Equinox", sdh.equinox);
437  table_.keywordSet().get("FreqRefFrame", sdh.freqref);
438  table_.keywordSet().get("FreqRefVal", sdh.reffreq);
439  table_.keywordSet().get("Bandwidth", sdh.bandwidth);
440  table_.keywordSet().get("UTC", sdh.utc);
441  table_.keywordSet().get("FluxUnit", sdh.fluxunit);
442  table_.keywordSet().get("Epoch", sdh.epoch);
443  table_.keywordSet().get("POLTYPE", sdh.poltype);
444  return sdh;
445}
446
447void Scantable::setSourceType( int stype )
448{
449  if ( stype < 0 || stype > 1 )
450    throw(AipsError("Illegal sourcetype."));
451  TableVector<Int> tabvec(table_, "SRCTYPE");
452  tabvec = Int(stype);
453}
454
455void Scantable::setSourceName( const std::string& name )
456{
457  TableVector<String> tabvec(table_, "SRCNAME");
458  tabvec = name;
459}
460
461bool Scantable::conformant( const Scantable& other )
462{
463  return this->getHeader().conformant(other.getHeader());
464}
465
466
467
468std::string Scantable::formatSec(Double x) const
469{
470  Double xcop = x;
471  MVTime mvt(xcop/24./3600.);  // make days
472
473  if (x < 59.95)
474    return  String("      ") + mvt.string(MVTime::TIME_CLEAN_NO_HM, 7)+"s";
475  else if (x < 3599.95)
476    return String("   ") + mvt.string(MVTime::TIME_CLEAN_NO_H,7)+" ";
477  else {
478    ostringstream oss;
479    oss << setw(2) << std::right << setprecision(1) << mvt.hour();
480    oss << ":" << mvt.string(MVTime::TIME_CLEAN_NO_H,7) << " ";
481    return String(oss);
482  }
483};
484
485std::string Scantable::formatDirection(const MDirection& md) const
486{
487  Vector<Double> t = md.getAngle(Unit(String("rad"))).getValue();
488  Int prec = 7;
489
490  String ref = md.getRefString();
491  MVAngle mvLon(t[0]);
492  String sLon = mvLon.string(MVAngle::TIME,prec);
493  uInt tp = md.getRef().getType();
494  if (tp == MDirection::GALACTIC ||
495      tp == MDirection::SUPERGAL ) {
496    sLon = mvLon(0.0).string(MVAngle::ANGLE_CLEAN,prec);
497  }
498  MVAngle mvLat(t[1]);
499  String sLat = mvLat.string(MVAngle::ANGLE+MVAngle::DIG2,prec);
500  return  ref + String(" ") + sLon + String(" ") + sLat;
501}
502
503
504std::string Scantable::getFluxUnit() const
505{
506  return table_.keywordSet().asString("FluxUnit");
507}
508
509void Scantable::setFluxUnit(const std::string& unit)
510{
511  String tmp(unit);
512  Unit tU(tmp);
513  if (tU==Unit("K") || tU==Unit("Jy")) {
514     table_.rwKeywordSet().define(String("FluxUnit"), tmp);
515  } else {
516     throw AipsError("Illegal unit - must be compatible with Jy or K");
517  }
518}
519
520void Scantable::setInstrument(const std::string& name)
521{
522  bool throwIt = true;
523  // create an Instrument to see if this is valid
524  STAttr::convertInstrument(name, throwIt);
525  String nameU(name);
526  nameU.upcase();
527  table_.rwKeywordSet().define(String("AntennaName"), nameU);
528}
529
530void Scantable::setFeedType(const std::string& feedtype)
531{
532  if ( Scantable::factories_.find(feedtype) ==  Scantable::factories_.end() ) {
533    std::string msg = "Illegal feed type "+ feedtype;
534    throw(casa::AipsError(msg));
535  }
536  table_.rwKeywordSet().define(String("POLTYPE"), feedtype);
537}
538
539MPosition Scantable::getAntennaPosition() const
540{
541  Vector<Double> antpos;
542  table_.keywordSet().get("AntennaPosition", antpos);
543  MVPosition mvpos(antpos(0),antpos(1),antpos(2));
544  return MPosition(mvpos);
545}
546
547void Scantable::makePersistent(const std::string& filename)
548{
549  String inname(filename);
550  Path path(inname);
551  /// @todo reindex SCANNO, recompute nbeam, nif, npol
552  inname = path.expandedName();
553  // 2011/03/04 TN
554  // We can comment out this workaround since the essential bug is
555  // fixed in casacore (r20889 in google code).
556  table_.deepCopy(inname, Table::New);
557//   // WORKAROUND !!! for Table bug
558//   // Remove when fixed in casacore
559//   if ( table_.tableType() == Table::Memory  && !selector_.empty() ) {
560//     Table tab = table_.copyToMemoryTable(generateName());
561//     tab.deepCopy(inname, Table::New);
562//     tab.markForDelete();
563//
564//   } else {
565//     table_.deepCopy(inname, Table::New);
566//   }
567}
568
569int Scantable::nbeam( int scanno ) const
570{
571  if ( scanno < 0 ) {
572    Int n;
573    table_.keywordSet().get("nBeam",n);
574    return int(n);
575  } else {
576    // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
577    Table t = table_(table_.col("SCANNO") == scanno);
578    ROTableRow row(t);
579    const TableRecord& rec = row.get(0);
580    Table subt = t( t.col("IFNO") == Int(rec.asuInt("IFNO"))
581                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
582                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
583    ROTableVector<uInt> v(subt, "BEAMNO");
584    return int(v.nelements());
585  }
586  return 0;
587}
588
589int Scantable::nif( int scanno ) const
590{
591  if ( scanno < 0 ) {
592    Int n;
593    table_.keywordSet().get("nIF",n);
594    return int(n);
595  } else {
596    // take the first POLNO,BEAMNO,CYCLENO as nbeam shouldn't vary with these
597    Table t = table_(table_.col("SCANNO") == scanno);
598    ROTableRow row(t);
599    const TableRecord& rec = row.get(0);
600    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
601                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
602                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
603    if ( subt.nrow() == 0 ) return 0;
604    ROTableVector<uInt> v(subt, "IFNO");
605    return int(v.nelements());
606  }
607  return 0;
608}
609
610int Scantable::npol( int scanno ) const
611{
612  if ( scanno < 0 ) {
613    Int n;
614    table_.keywordSet().get("nPol",n);
615    return n;
616  } else {
617    // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
618    Table t = table_(table_.col("SCANNO") == scanno);
619    ROTableRow row(t);
620    const TableRecord& rec = row.get(0);
621    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
622                    && t.col("IFNO") == Int(rec.asuInt("IFNO"))
623                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
624    if ( subt.nrow() == 0 ) return 0;
625    ROTableVector<uInt> v(subt, "POLNO");
626    return int(v.nelements());
627  }
628  return 0;
629}
630
631int Scantable::ncycle( int scanno ) const
632{
633  if ( scanno < 0 ) {
634    Block<String> cols(2);
635    cols[0] = "SCANNO";
636    cols[1] = "CYCLENO";
637    TableIterator it(table_, cols);
638    int n = 0;
639    while ( !it.pastEnd() ) {
640      ++n;
641      ++it;
642    }
643    return n;
644  } else {
645    Table t = table_(table_.col("SCANNO") == scanno);
646    ROTableRow row(t);
647    const TableRecord& rec = row.get(0);
648    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
649                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
650                    && t.col("IFNO") == Int(rec.asuInt("IFNO")) );
651    if ( subt.nrow() == 0 ) return 0;
652    return int(subt.nrow());
653  }
654  return 0;
655}
656
657
658int Scantable::nrow( int scanno ) const
659{
660  return int(table_.nrow());
661}
662
663int Scantable::nchan( int ifno ) const
664{
665  if ( ifno < 0 ) {
666    Int n;
667    table_.keywordSet().get("nChan",n);
668    return int(n);
669  } else {
670    // take the first SCANNO,POLNO,BEAMNO,CYCLENO as nbeam shouldn't
671    // vary with these
672    Table t = table_(table_.col("IFNO") == ifno, 1);
673    if ( t.nrow() == 0 ) return 0;
674    ROArrayColumn<Float> v(t, "SPECTRA");
675    return v.shape(0)(0);
676  }
677  return 0;
678}
679
680int Scantable::nscan() const {
681  Vector<uInt> scannos(scanCol_.getColumn());
682  uInt nout = genSort( scannos, Sort::Ascending,
683                       Sort::QuickSort|Sort::NoDuplicates );
684  return int(nout);
685}
686
687int Scantable::getChannels(int whichrow) const
688{
689  return specCol_.shape(whichrow)(0);
690}
691
692int Scantable::getBeam(int whichrow) const
693{
694  return beamCol_(whichrow);
695}
696
697std::vector<uint> Scantable::getNumbers(const ScalarColumn<uInt>& col) const
698{
699  Vector<uInt> nos(col.getColumn());
700  uInt n = genSort( nos, Sort::Ascending, Sort::QuickSort|Sort::NoDuplicates );
701  nos.resize(n, True);
702  std::vector<uint> stlout;
703  nos.tovector(stlout);
704  return stlout;
705}
706
707int Scantable::getIF(int whichrow) const
708{
709  return ifCol_(whichrow);
710}
711
712int Scantable::getPol(int whichrow) const
713{
714  return polCol_(whichrow);
715}
716
717std::string Scantable::formatTime(const MEpoch& me, bool showdate) const
718{
719  return formatTime(me, showdate, 0);
720}
721
722std::string Scantable::formatTime(const MEpoch& me, bool showdate, uInt prec) const
723{
724  MVTime mvt(me.getValue());
725  if (showdate)
726    //mvt.setFormat(MVTime::YMD);
727    mvt.setFormat(MVTime::YMD, prec);
728  else
729    //mvt.setFormat(MVTime::TIME);
730    mvt.setFormat(MVTime::TIME, prec);
731  ostringstream oss;
732  oss << mvt;
733  return String(oss);
734}
735
736void Scantable::calculateAZEL()
737
738  LogIO os( LogOrigin( "Scantable", "calculateAZEL()", WHERE ) ) ;
739  MPosition mp = getAntennaPosition();
740  MEpoch::ROScalarColumn timeCol(table_, "TIME");
741  ostringstream oss;
742  oss << mp;
743  os << "Computed azimuth/elevation using " << endl
744     << String(oss) << endl;
745  for (Int i=0; i<nrow(); ++i) {
746    MEpoch me = timeCol(i);
747    MDirection md = getDirection(i);
748    os  << " Time: " << formatTime(me,False)
749        << " Direction: " << formatDirection(md)
750         << endl << "     => ";
751    MeasFrame frame(mp, me);
752    Vector<Double> azel =
753        MDirection::Convert(md, MDirection::Ref(MDirection::AZEL,
754                                                frame)
755                            )().getAngle("rad").getValue();
756    azCol_.put(i,Float(azel[0]));
757    elCol_.put(i,Float(azel[1]));
758    os << "azel: " << azel[0]/C::pi*180.0 << " "
759       << azel[1]/C::pi*180.0 << " (deg)" << LogIO::POST;
760  }
761}
762
763void Scantable::clip(const Float uthres, const Float dthres, bool clipoutside, bool unflag)
764{
765  for (uInt i=0; i<table_.nrow(); ++i) {
766    Vector<uChar> flgs = flagsCol_(i);
767    srchChannelsToClip(i, uthres, dthres, clipoutside, unflag, flgs);
768    flagsCol_.put(i, flgs);
769  }
770}
771
772std::vector<bool> Scantable::getClipMask(int whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag)
773{
774  Vector<uChar> flags;
775  flagsCol_.get(uInt(whichrow), flags);
776  srchChannelsToClip(uInt(whichrow), uthres, dthres, clipoutside, unflag, flags);
777  Vector<Bool> bflag(flags.shape());
778  convertArray(bflag, flags);
779  //bflag = !bflag;
780
781  std::vector<bool> mask;
782  bflag.tovector(mask);
783  return mask;
784}
785
786void Scantable::srchChannelsToClip(uInt whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag,
787                                   Vector<uChar> flgs)
788{
789    Vector<Float> spcs = specCol_(whichrow);
790    uInt nchannel = spcs.nelements();
791    if (spcs.nelements() != nchannel) {
792      throw(AipsError("Data has incorrect number of channels"));
793    }
794    uChar userflag = 1 << 7;
795    if (unflag) {
796      userflag = 0 << 7;
797    }
798    if (clipoutside) {
799      for (uInt j = 0; j < nchannel; ++j) {
800        Float spc = spcs(j);
801        if ((spc >= uthres) || (spc <= dthres)) {
802          flgs(j) = userflag;
803        }
804      }
805    } else {
806      for (uInt j = 0; j < nchannel; ++j) {
807        Float spc = spcs(j);
808        if ((spc < uthres) && (spc > dthres)) {
809          flgs(j) = userflag;
810        }
811      }
812    }
813}
814
815
816void Scantable::flag( int whichrow, const std::vector<bool>& msk, bool unflag ) {
817  std::vector<bool>::const_iterator it;
818  uInt ntrue = 0;
819  if (whichrow >= int(table_.nrow()) ) {
820    throw(AipsError("Invalid row number"));
821  }
822  for (it = msk.begin(); it != msk.end(); ++it) {
823    if ( *it ) {
824      ntrue++;
825    }
826  }
827  //if ( selector_.empty()  && (msk.size() == 0 || msk.size() == ntrue) )
828  if ( whichrow == -1 && !unflag && selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
829    throw(AipsError("Trying to flag whole scantable."));
830  uChar userflag = 1 << 7;
831  if ( unflag ) {
832    userflag = 0 << 7;
833  }
834  if (whichrow > -1 ) {
835    applyChanFlag(uInt(whichrow), msk, userflag);
836  } else {
837    for ( uInt i=0; i<table_.nrow(); ++i) {
838      applyChanFlag(i, msk, userflag);
839    }
840  }
841}
842
843void Scantable::applyChanFlag( uInt whichrow, const std::vector<bool>& msk, uChar flagval )
844{
845  if (whichrow >= table_.nrow() ) {
846    throw( casa::indexError<int>( whichrow, "asap::Scantable::applyChanFlag: Invalid row number" ) );
847  }
848  Vector<uChar> flgs = flagsCol_(whichrow);
849  if ( msk.size() == 0 ) {
850    flgs = flagval;
851    flagsCol_.put(whichrow, flgs);
852    return;
853  }
854  if ( int(msk.size()) != nchan( getIF(whichrow) ) ) {
855    throw(AipsError("Mask has incorrect number of channels."));
856  }
857  if ( flgs.nelements() != msk.size() ) {
858    throw(AipsError("Mask has incorrect number of channels."
859                    " Probably varying with IF. Please flag per IF"));
860  }
861  std::vector<bool>::const_iterator it;
862  uInt j = 0;
863  for (it = msk.begin(); it != msk.end(); ++it) {
864    if ( *it ) {
865      flgs(j) = flagval;
866    }
867    ++j;
868  }
869  flagsCol_.put(whichrow, flgs);
870}
871
872void Scantable::flagRow(const std::vector<uInt>& rows, bool unflag)
873{
874  if (selector_.empty() && (rows.size() == table_.nrow()) && !unflag)
875    throw(AipsError("Trying to flag whole scantable."));
876
877  uInt rowflag = (unflag ? 0 : 1);
878  std::vector<uInt>::const_iterator it;
879  for (it = rows.begin(); it != rows.end(); ++it)
880    flagrowCol_.put(*it, rowflag);
881}
882
883std::vector<bool> Scantable::getMask(int whichrow) const
884{
885  Vector<uChar> flags;
886  flagsCol_.get(uInt(whichrow), flags);
887  Vector<Bool> bflag(flags.shape());
888  convertArray(bflag, flags);
889  bflag = !bflag;
890  std::vector<bool> mask;
891  bflag.tovector(mask);
892  return mask;
893}
894
895std::vector<float> Scantable::getSpectrum( int whichrow,
896                                           const std::string& poltype ) const
897{
898  LogIO os( LogOrigin( "Scantable", "getSpectrum()", WHERE ) ) ;
899
900  String ptype = poltype;
901  if (poltype == "" ) ptype = getPolType();
902  if ( whichrow  < 0 || whichrow >= nrow() )
903    throw(AipsError("Illegal row number."));
904  std::vector<float> out;
905  Vector<Float> arr;
906  uInt requestedpol = polCol_(whichrow);
907  String basetype = getPolType();
908  if ( ptype == basetype ) {
909    specCol_.get(whichrow, arr);
910  } else {
911    CountedPtr<STPol> stpol(STPol::getPolClass(Scantable::factories_,
912                                               basetype));
913    uInt row = uInt(whichrow);
914    stpol->setSpectra(getPolMatrix(row));
915    Float fang,fhand;
916    fang = focusTable_.getTotalAngle(mfocusidCol_(row));
917    fhand = focusTable_.getFeedHand(mfocusidCol_(row));
918    stpol->setPhaseCorrections(fang, fhand);
919    arr = stpol->getSpectrum(requestedpol, ptype);
920  }
921  if ( arr.nelements() == 0 )
922   
923    os << "Not enough polarisations present to do the conversion."
924       << LogIO::POST;
925  arr.tovector(out);
926  return out;
927}
928
929void Scantable::setSpectrum( const std::vector<float>& spec,
930                                   int whichrow )
931{
932  Vector<Float> spectrum(spec);
933  Vector<Float> arr;
934  specCol_.get(whichrow, arr);
935  if ( spectrum.nelements() != arr.nelements() )
936    throw AipsError("The spectrum has incorrect number of channels.");
937  specCol_.put(whichrow, spectrum);
938}
939
940
941String Scantable::generateName()
942{
943  return (File::newUniqueName("./","temp")).baseName();
944}
945
946const casa::Table& Scantable::table( ) const
947{
948  return table_;
949}
950
951casa::Table& Scantable::table( )
952{
953  return table_;
954}
955
956std::string Scantable::getPolType() const
957{
958  return table_.keywordSet().asString("POLTYPE");
959}
960
961void Scantable::unsetSelection()
962{
963  table_ = originalTable_;
964  attach();
965  selector_.reset();
966}
967
968void Scantable::setSelection( const STSelector& selection )
969{
970  Table tab = const_cast<STSelector&>(selection).apply(originalTable_);
971  if ( tab.nrow() == 0 ) {
972    throw(AipsError("Selection contains no data. Not applying it."));
973  }
974  table_ = tab;
975  attach();
976//   tab.rwKeywordSet().define("nBeam",(Int)(getBeamNos().size())) ;
977//   vector<uint> selectedIFs = getIFNos() ;
978//   Int newnIF = selectedIFs.size() ;
979//   tab.rwKeywordSet().define("nIF",newnIF) ;
980//   if ( newnIF != 0 ) {
981//     Int newnChan = 0 ;
982//     for ( Int i = 0 ; i < newnIF ; i++ ) {
983//       Int nChan = nchan( selectedIFs[i] ) ;
984//       if ( newnChan > nChan )
985//         newnChan = nChan ;
986//     }
987//     tab.rwKeywordSet().define("nChan",newnChan) ;
988//   }
989//   tab.rwKeywordSet().define("nPol",(Int)(getPolNos().size())) ;
990  selector_ = selection;
991}
992
993
994std::string Scantable::headerSummary()
995{
996  // Format header info
997//   STHeader sdh;
998//   sdh = getHeader();
999//   sdh.print();
1000  ostringstream oss;
1001  oss.flags(std::ios_base::left);
1002  String tmp;
1003  // Project
1004  table_.keywordSet().get("Project", tmp);
1005  oss << setw(15) << "Project:" << tmp << endl;
1006  // Observation date
1007  oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1008  // Observer
1009  oss << setw(15) << "Observer:"
1010      << table_.keywordSet().asString("Observer") << endl;
1011  // Antenna Name
1012  table_.keywordSet().get("AntennaName", tmp);
1013  oss << setw(15) << "Antenna Name:" << tmp << endl;
1014  // Obs type
1015  table_.keywordSet().get("Obstype", tmp);
1016  // Records (nrow)
1017  oss << setw(15) << "Data Records:" << table_.nrow() << " rows" << endl;
1018  oss << setw(15) << "Obs. Type:" << tmp << endl;
1019  // Beams, IFs, Polarizations, and Channels
1020  oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1021      << setw(15) << "IFs:" << setw(4) << nif() << endl
1022      << setw(15) << "Polarisations:" << setw(4) << npol()
1023      << "(" << getPolType() << ")" << endl
1024      << setw(15) << "Channels:" << nchan() << endl;
1025  // Flux unit
1026  table_.keywordSet().get("FluxUnit", tmp);
1027  oss << setw(15) << "Flux Unit:" << tmp << endl;
1028  // Abscissa Unit
1029  oss << setw(15) << "Abscissa:" << getAbcissaLabel(0) << endl;
1030  // Selection
1031  oss << selector_.print() << endl;
1032
1033  return String(oss);
1034}
1035
1036void Scantable::summary( const std::string& filename )
1037{
1038  ostringstream oss;
1039  ofstream ofs;
1040  LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1041
1042  if (filename != "")
1043    ofs.open( filename.c_str(),  ios::out );
1044
1045  oss << endl;
1046  oss << asap::SEPERATOR << endl;
1047  oss << " Scan Table Summary" << endl;
1048  oss << asap::SEPERATOR << endl;
1049
1050  // Format header info
1051  oss << headerSummary();
1052  oss << endl;
1053
1054  if (table_.nrow() <= 0){
1055    oss << asap::SEPERATOR << endl;
1056    oss << "The MAIN table is empty: there are no data!!!" << endl;
1057    oss << asap::SEPERATOR << endl;
1058
1059    ols << String(oss) << LogIO::POST;
1060    if (ofs) {
1061      ofs << String(oss) << flush;
1062      ofs.close();
1063    }
1064    return;
1065  }
1066
1067
1068
1069  // main table
1070  String dirtype = "Position ("
1071                  + getDirectionRefString()
1072                  + ")";
1073  oss.flags(std::ios_base::left);
1074  oss << setw(5) << "Scan"
1075      << setw(15) << "Source"
1076      << setw(35) << "Time range"
1077      << setw(2) << "" << setw(7) << "Int[s]"
1078      << setw(7) << "Record"
1079      << setw(8) << "SrcType"
1080      << setw(8) << "FreqIDs"
1081      << setw(7) << "MolIDs" << endl;
1082  oss << setw(7)<< "" << setw(6) << "Beam"
1083      << setw(23) << dirtype << endl;
1084
1085  oss << asap::SEPERATOR << endl;
1086
1087  // Flush summary and clear up the string
1088  ols << String(oss) << LogIO::POST;
1089  if (ofs) ofs << String(oss) << flush;
1090  oss.str("");
1091  oss.clear();
1092
1093
1094  // Get Freq_ID map
1095  ROScalarColumn<uInt> ftabIds(frequencies().table(), "ID");
1096  Int nfid = ftabIds.nrow();
1097  if (nfid <= 0){
1098    oss << "FREQUENCIES subtable is empty: there are no data!!!" << endl;
1099    oss << asap::SEPERATOR << endl;
1100
1101    ols << String(oss) << LogIO::POST;
1102    if (ofs) {
1103      ofs << String(oss) << flush;
1104      ofs.close();
1105    }
1106    return;
1107  }
1108  // Storages of overall IFNO, POLNO, and nchan per FREQ_ID
1109  // the orders are identical to ID in FREQ subtable
1110  Block< Vector<uInt> > ifNos(nfid), polNos(nfid);
1111  Vector<Int> fIdchans(nfid,-1);
1112  Vector<Double> fIdfreq0(nfid,-1);
1113  Vector<Double> fIdfcent(nfid,-1);
1114  map<uInt, Int> fidMap;  // (FREQ_ID, row # in FREQ subtable) pair
1115  for (Int i=0; i < nfid; i++){
1116   // fidMap[freqId] returns row number in FREQ subtable
1117   fidMap.insert(pair<uInt, Int>(ftabIds(i),i));
1118   ifNos[i] = Vector<uInt>();
1119   polNos[i] = Vector<uInt>();
1120  }
1121
1122  TableIterator iter(table_, "SCANNO");
1123
1124  // Vars for keeping track of time, freqids, molIds in a SCANNO
1125  //Vector<uInt> freqids;
1126  //Vector<uInt> molids;
1127  Vector<uInt> beamids(1,0);
1128  Vector<MDirection> beamDirs;
1129  Vector<Int> stypeids(1,0);
1130  Vector<String> stypestrs;
1131  Int nfreq(1);
1132  Int nmol(1);
1133  uInt nbeam(1);
1134  uInt nstype(1);
1135
1136  Double btime(0.0), etime(0.0);
1137  Double meanIntTim(0.0);
1138
1139  uInt currFreqId(0), ftabRow(0);
1140  Int iflen(0), pollen(0);
1141
1142  while (!iter.pastEnd()) {
1143    Table subt = iter.table();
1144    uInt snrow = subt.nrow();
1145    ROTableRow row(subt);
1146    const TableRecord& rec = row.get(0);
1147
1148    // relevant columns
1149    ROScalarColumn<Double> mjdCol(subt,"TIME");
1150    ROScalarColumn<Double> intervalCol(subt,"INTERVAL");
1151    MDirection::ROScalarColumn dirCol(subt,"DIRECTION");
1152
1153    ScalarColumn<uInt> freqIdCol(subt,"FREQ_ID");
1154    ScalarColumn<uInt> molIdCol(subt,"MOLECULE_ID");
1155    ROScalarColumn<uInt> beamCol(subt,"BEAMNO");
1156    ROScalarColumn<Int> stypeCol(subt,"SRCTYPE");
1157
1158    ROScalarColumn<uInt> ifNoCol(subt,"IFNO");
1159    ROScalarColumn<uInt> polNoCol(subt,"POLNO");
1160
1161
1162    // Times
1163    meanIntTim = sum(intervalCol.getColumn()) / (double) snrow;
1164    minMax(btime, etime, mjdCol.getColumn());
1165    etime += meanIntTim/C::day;
1166
1167    // MOLECULE_ID and FREQ_ID
1168    Vector<uInt> molids(getNumbers(molIdCol));
1169    molids.shape(nmol);
1170
1171    Vector<uInt> freqids(getNumbers(freqIdCol));
1172    freqids.shape(nfreq);
1173
1174    // Add first beamid, and srcNames
1175    beamids.resize(1,False);
1176    beamDirs.resize(1,False);
1177    beamids(0)=beamCol(0);
1178    beamDirs(0)=dirCol(0);
1179    nbeam = 1;
1180
1181    stypeids.resize(1,False);
1182    stypeids(0)=stypeCol(0);
1183    nstype = 1;
1184
1185    // Global listings of nchan/IFNO/POLNO per FREQ_ID
1186    currFreqId=freqIdCol(0);
1187    ftabRow = fidMap[currFreqId];
1188    // Assumes an identical number of channels per FREQ_ID
1189    if (fIdchans(ftabRow) < 0 ) {
1190      RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1191      fIdchans(ftabRow)=(*spec).shape()(0);
1192    }
1193    if (fIdfreq0(ftabRow) < 0 ) {
1194      SpectralCoordinate spc = frequencies().getSpectralCoordinate(ftabRow);
1195      Double fs, fe;
1196      spc.toWorld(fs, 0);
1197      spc.toWorld(fe, fIdchans(ftabRow)-1);
1198      fIdfreq0(ftabRow) = fs;
1199      fIdfcent(ftabRow) = 0.5 * ( fs + fe );
1200    }
1201    // Should keep ifNos and polNos form the previous SCANNO
1202    if ( !anyEQ(ifNos[ftabRow],ifNoCol(0)) ) {
1203      ifNos[ftabRow].shape(iflen);
1204      iflen++;
1205      ifNos[ftabRow].resize(iflen,True);
1206      ifNos[ftabRow](iflen-1) = ifNoCol(0);
1207    }
1208    if ( !anyEQ(polNos[ftabRow],polNoCol(0)) ) {
1209      polNos[ftabRow].shape(pollen);
1210      pollen++;
1211      polNos[ftabRow].resize(pollen,True);
1212      polNos[ftabRow](pollen-1) = polNoCol(0);
1213    }
1214
1215    for (uInt i=1; i < snrow; i++){
1216      // Need to list BEAMNO and DIRECTION in the same order
1217      if ( !anyEQ(beamids,beamCol(i)) ) {
1218        nbeam++;
1219        beamids.resize(nbeam,True);
1220        beamids(nbeam-1)=beamCol(i);
1221        beamDirs.resize(nbeam,True);
1222        beamDirs(nbeam-1)=dirCol(i);
1223      }
1224
1225      // SRCTYPE is Int (getNumber takes only uInt)
1226      if ( !anyEQ(stypeids,stypeCol(i)) ) {
1227        nstype++;
1228        stypeids.resize(nstype,True);
1229        stypeids(nstype-1)=stypeCol(i);
1230      }
1231
1232      // Global listings of nchan/IFNO/POLNO per FREQ_ID
1233      currFreqId=freqIdCol(i);
1234      ftabRow = fidMap[currFreqId];
1235      if (fIdchans(ftabRow) < 0 ) {
1236        const TableRecord& rec = row.get(i);
1237        RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1238        fIdchans(ftabRow) = (*spec).shape()(0);
1239      }
1240      if (fIdfreq0(ftabRow) < 0 ) {
1241        SpectralCoordinate spc = frequencies().getSpectralCoordinate(ftabRow);
1242        Double fs, fe;
1243        spc.toWorld(fs, 0);
1244        spc.toWorld(fe, fIdchans(ftabRow)-1);
1245        fIdfreq0(ftabRow) = fs;
1246        fIdfcent(ftabRow) = 5.e-1 * ( fs + fe );
1247      }
1248      if ( !anyEQ(ifNos[ftabRow],ifNoCol(i)) ) {
1249        ifNos[ftabRow].shape(iflen);
1250        iflen++;
1251        ifNos[ftabRow].resize(iflen,True);
1252        ifNos[ftabRow](iflen-1) = ifNoCol(i);
1253      }
1254      if ( !anyEQ(polNos[ftabRow],polNoCol(i)) ) {
1255        polNos[ftabRow].shape(pollen);
1256        pollen++;
1257        polNos[ftabRow].resize(pollen,True);
1258        polNos[ftabRow](pollen-1) = polNoCol(i);
1259      }
1260    } // end of row iteration
1261
1262    stypestrs.resize(nstype,False);
1263    for (uInt j=0; j < nstype; j++)
1264      stypestrs(j) = SrcType::getName(stypeids(j));
1265
1266    // Format Scan summary
1267    oss << setw(4) << std::right << rec.asuInt("SCANNO")
1268        << std::left << setw(1) << ""
1269        << setw(15) << rec.asString("SRCNAME")
1270        << setw(21) << MVTime(btime).string(MVTime::YMD,7)
1271        << setw(3) << " - " << MVTime(etime).string(MVTime::TIME,7)
1272        << setw(3) << "" << setw(6) << meanIntTim << setw(1) << ""
1273        << std::right << setw(5) << snrow << setw(2) << ""
1274        << std::left << stypestrs << setw(1) << ""
1275        << freqids << setw(1) << ""
1276        << molids  << endl;
1277    // Format Beam summary
1278    for (uInt j=0; j < nbeam; j++) {
1279      oss << setw(7) << "" << setw(6) << beamids(j) << setw(1) << ""
1280          << formatDirection(beamDirs(j)) << endl;
1281    }
1282    // Flush summary every scan and clear up the string
1283    ols << String(oss) << LogIO::POST;
1284    if (ofs) ofs << String(oss) << flush;
1285    oss.str("");
1286    oss.clear();
1287
1288    ++iter;
1289  } // end of scan iteration
1290  oss << asap::SEPERATOR << endl;
1291 
1292  // List FRECUENCIES Table (using STFrequencies.print may be slow)
1293  oss << "FREQUENCIES: " << nfreq << endl;
1294//   oss << std::right << setw(5) << "ID" << setw(2) << ""
1295//       << std::left  << setw(5) << "IFNO" << setw(2) << ""
1296//       << setw(8) << "Frame"
1297//       << setw(16) << "RefVal"
1298//       << setw(7) << "RefPix"
1299//       << setw(15) << "Increment"
1300//       << setw(9) << "Channels"
1301//       << setw(6) << "POLNOs" << endl;
1302//   Int tmplen;
1303//   for (Int i=0; i < nfid; i++){
1304//     // List row=i of FREQUENCIES subtable
1305//     ifNos[i].shape(tmplen);
1306//     if (tmplen >= 1) {
1307//       oss << std::right << setw(5) << ftabIds(i) << setw(2) << ""
1308//        << setw(3) << ifNos[i](0) << setw(1) << ""
1309//        << std::left << setw(46) << frequencies().print(ftabIds(i))
1310//        << setw(2) << ""
1311//        << std::right << setw(8) << fIdchans[i] << setw(2) << ""
1312//        << std::left << polNos[i];
1313//       if (tmplen > 1) {
1314//      oss  << " (" << tmplen << " chains)";
1315//       }
1316//       oss << endl;
1317//     }
1318  oss << std::right << setw(4) << "ID" << setw(2) << ""
1319      << std::left  << setw(9) << "IFNO(SPW)" << setw(2) << ""
1320      << setw(8) << "#Chans"
1321      << setw(8) << "Frame"
1322      << setw(12) << "Ch0[MHz]"
1323      << setw(14) << "ChanWid[kHz]"
1324      << setw(14) << "Center[MHz]"
1325      << setw(6) << "POLNOs" << endl;
1326  Int tmplen;
1327  for (Int i=0; i < nfid; i++){
1328    // List row=i of FREQUENCIES subtable
1329    ifNos[i].shape(tmplen);
1330    Double refpix, refval, increment ;
1331    if (tmplen >= 1) {
1332      freqTable_.getEntry( refpix, refval, increment, ftabIds(i) ) ;
1333      oss << std::right << setw(4) << ftabIds(i) << setw(2) << ""
1334          << std::left << setw(9) << ifNos[i](0) << setw(2) << ""
1335          << std::right << setw(6) << fIdchans[i] << setw(2) << ""
1336          << setw(6) << frequencies().getFrameString(true)
1337          << setw(2) << ""
1338          << setw(10) << std::setprecision(9) << (fIdfreq0[i]*1.e-6) << setw(2) << ""
1339          << setw(12) << (increment*1.e-3) << setw(2) << ""
1340          << setw(12) << (fIdfcent[i]*1.e-6) << setw(2) << ""
1341          << std::left << polNos[i];
1342      if (tmplen > 1) {
1343        oss  << " (" << tmplen << " chains)";
1344      }
1345      oss << endl;
1346    }
1347   
1348  }
1349  oss << asap::SEPERATOR << endl;
1350
1351  // List MOLECULES Table (currently lists all rows)
1352  oss << "MOLECULES: " << endl;
1353  if (molecules().nrow() <= 0) {
1354    oss << "   MOLECULES subtable is empty: there are no data" << endl;
1355  } else {
1356    ROTableRow row(molecules().table());
1357    oss << std::right << setw(5) << "ID"
1358        << std::left << setw(3) << ""
1359        << setw(18) << "RestFreq"
1360        << setw(15) << "Name" << endl;
1361    for (Int i=0; i < molecules().nrow(); i++){
1362      const TableRecord& rec=row.get(i);
1363      oss << std::right << setw(5) << rec.asuInt("ID")
1364          << std::left << setw(3) << ""
1365          << rec.asArrayDouble("RESTFREQUENCY") << setw(1) << ""
1366          << rec.asArrayString("NAME") << endl;
1367    }
1368  }
1369  oss << asap::SEPERATOR << endl;
1370  ols << String(oss) << LogIO::POST;
1371  if (ofs) {
1372    ofs << String(oss) << flush;
1373    ofs.close();
1374  }
1375  //  return String(oss);
1376}
1377
1378
1379std::string Scantable::oldheaderSummary()
1380{
1381  // Format header info
1382//   STHeader sdh;
1383//   sdh = getHeader();
1384//   sdh.print();
1385  ostringstream oss;
1386  oss.flags(std::ios_base::left);
1387  oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1388      << setw(15) << "IFs:" << setw(4) << nif() << endl
1389      << setw(15) << "Polarisations:" << setw(4) << npol()
1390      << "(" << getPolType() << ")" << endl
1391      << setw(15) << "Channels:" << nchan() << endl;
1392  String tmp;
1393  oss << setw(15) << "Observer:"
1394      << table_.keywordSet().asString("Observer") << endl;
1395  oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1396  table_.keywordSet().get("Project", tmp);
1397  oss << setw(15) << "Project:" << tmp << endl;
1398  table_.keywordSet().get("Obstype", tmp);
1399  oss << setw(15) << "Obs. Type:" << tmp << endl;
1400  table_.keywordSet().get("AntennaName", tmp);
1401  oss << setw(15) << "Antenna Name:" << tmp << endl;
1402  table_.keywordSet().get("FluxUnit", tmp);
1403  oss << setw(15) << "Flux Unit:" << tmp << endl;
1404  int nid = moleculeTable_.nrow();
1405  Bool firstline = True;
1406  oss << setw(15) << "Rest Freqs:";
1407  for (int i=0; i<nid; i++) {
1408    Table t = table_(table_.col("MOLECULE_ID") == i, 1);
1409      if (t.nrow() >  0) {
1410          Vector<Double> vec(moleculeTable_.getRestFrequency(i));
1411          if (vec.nelements() > 0) {
1412               if (firstline) {
1413                   oss << setprecision(10) << vec << " [Hz]" << endl;
1414                   firstline=False;
1415               }
1416               else{
1417                   oss << setw(15)<<" " << setprecision(10) << vec << " [Hz]" << endl;
1418               }
1419          } else {
1420              oss << "none" << endl;
1421          }
1422      }
1423  }
1424
1425  oss << setw(15) << "Abcissa:" << getAbcissaLabel(0) << endl;
1426  oss << selector_.print() << endl;
1427  return String(oss);
1428}
1429
1430  //std::string Scantable::summary( const std::string& filename )
1431void Scantable::oldsummary( const std::string& filename )
1432{
1433  ostringstream oss;
1434  ofstream ofs;
1435  LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1436
1437  if (filename != "")
1438    ofs.open( filename.c_str(),  ios::out );
1439
1440  oss << endl;
1441  oss << asap::SEPERATOR << endl;
1442  oss << " Scan Table Summary" << endl;
1443  oss << asap::SEPERATOR << endl;
1444
1445  // Format header info
1446  oss << oldheaderSummary();
1447  oss << endl;
1448
1449  // main table
1450  String dirtype = "Position ("
1451                  + getDirectionRefString()
1452                  + ")";
1453  oss.flags(std::ios_base::left);
1454  oss << setw(5) << "Scan" << setw(15) << "Source"
1455      << setw(10) << "Time" << setw(18) << "Integration"
1456      << setw(15) << "Source Type" << endl;
1457  oss << setw(5) << "" << setw(5) << "Beam" << setw(3) << "" << dirtype << endl;
1458  oss << setw(10) << "" << setw(3) << "IF" << setw(3) << ""
1459      << setw(8) << "Frame" << setw(16)
1460      << "RefVal" << setw(10) << "RefPix" << setw(12) << "Increment"
1461      << setw(7) << "Channels"
1462      << endl;
1463  oss << asap::SEPERATOR << endl;
1464
1465  // Flush summary and clear up the string
1466  ols << String(oss) << LogIO::POST;
1467  if (ofs) ofs << String(oss) << flush;
1468  oss.str("");
1469  oss.clear();
1470
1471  TableIterator iter(table_, "SCANNO");
1472  while (!iter.pastEnd()) {
1473    Table subt = iter.table();
1474    ROTableRow row(subt);
1475    MEpoch::ROScalarColumn timeCol(subt,"TIME");
1476    const TableRecord& rec = row.get(0);
1477    oss << setw(4) << std::right << rec.asuInt("SCANNO")
1478        << std::left << setw(1) << ""
1479        << setw(15) << rec.asString("SRCNAME")
1480        << setw(10) << formatTime(timeCol(0), false);
1481    // count the cycles in the scan
1482    TableIterator cyciter(subt, "CYCLENO");
1483    int nint = 0;
1484    while (!cyciter.pastEnd()) {
1485      ++nint;
1486      ++cyciter;
1487    }
1488    oss << setw(3) << std::right << nint  << setw(3) << " x " << std::left
1489        << setw(11) <<  formatSec(rec.asFloat("INTERVAL")) << setw(1) << ""
1490        << setw(15) << SrcType::getName(rec.asInt("SRCTYPE")) << endl;
1491
1492    TableIterator biter(subt, "BEAMNO");
1493    while (!biter.pastEnd()) {
1494      Table bsubt = biter.table();
1495      ROTableRow brow(bsubt);
1496      const TableRecord& brec = brow.get(0);
1497      uInt row0 = bsubt.rowNumbers(table_)[0];
1498      oss << setw(5) << "" <<  setw(4) << std::right << brec.asuInt("BEAMNO")<< std::left;
1499      oss  << setw(4) << ""  << formatDirection(getDirection(row0)) << endl;
1500      TableIterator iiter(bsubt, "IFNO");
1501      while (!iiter.pastEnd()) {
1502        Table isubt = iiter.table();
1503        ROTableRow irow(isubt);
1504        const TableRecord& irec = irow.get(0);
1505        oss << setw(9) << "";
1506        oss << setw(3) << std::right << irec.asuInt("IFNO") << std::left
1507            << setw(1) << "" << frequencies().print(irec.asuInt("FREQ_ID"))
1508            << setw(3) << "" << nchan(irec.asuInt("IFNO"))
1509            << endl;
1510
1511        ++iiter;
1512      }
1513      ++biter;
1514    }
1515    // Flush summary every scan and clear up the string
1516    ols << String(oss) << LogIO::POST;
1517    if (ofs) ofs << String(oss) << flush;
1518    oss.str("");
1519    oss.clear();
1520
1521    ++iter;
1522  }
1523  oss << asap::SEPERATOR << endl;
1524  ols << String(oss) << LogIO::POST;
1525  if (ofs) {
1526    ofs << String(oss) << flush;
1527    ofs.close();
1528  }
1529  //  return String(oss);
1530}
1531
1532// std::string Scantable::getTime(int whichrow, bool showdate) const
1533// {
1534//   MEpoch::ROScalarColumn timeCol(table_, "TIME");
1535//   MEpoch me;
1536//   if (whichrow > -1) {
1537//     me = timeCol(uInt(whichrow));
1538//   } else {
1539//     Double tm;
1540//     table_.keywordSet().get("UTC",tm);
1541//     me = MEpoch(MVEpoch(tm));
1542//   }
1543//   return formatTime(me, showdate);
1544// }
1545
1546std::string Scantable::getTime(int whichrow, bool showdate, uInt prec) const
1547{
1548  MEpoch me;
1549  me = getEpoch(whichrow);
1550  return formatTime(me, showdate, prec);
1551}
1552
1553MEpoch Scantable::getEpoch(int whichrow) const
1554{
1555  if (whichrow > -1) {
1556    return timeCol_(uInt(whichrow));
1557  } else {
1558    Double tm;
1559    table_.keywordSet().get("UTC",tm);
1560    return MEpoch(MVEpoch(tm));
1561  }
1562}
1563
1564std::string Scantable::getDirectionString(int whichrow) const
1565{
1566  return formatDirection(getDirection(uInt(whichrow)));
1567}
1568
1569
1570SpectralCoordinate Scantable::getSpectralCoordinate(int whichrow) const {
1571  const MPosition& mp = getAntennaPosition();
1572  const MDirection& md = getDirection(whichrow);
1573  const MEpoch& me = timeCol_(whichrow);
1574  //Double rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1575  Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1576  return freqTable_.getSpectralCoordinate(md, mp, me, rf,
1577                                          mfreqidCol_(whichrow));
1578}
1579
1580std::vector< double > Scantable::getAbcissa( int whichrow ) const
1581{
1582  if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal row number"));
1583  std::vector<double> stlout;
1584  int nchan = specCol_(whichrow).nelements();
1585  String us = freqTable_.getUnitString();
1586  if ( us == "" || us == "pixel" || us == "channel" ) {
1587    for (int i=0; i<nchan; ++i) {
1588      stlout.push_back(double(i));
1589    }
1590    return stlout;
1591  }
1592  SpectralCoordinate spc = getSpectralCoordinate(whichrow);
1593  Vector<Double> pixel(nchan);
1594  Vector<Double> world;
1595  indgen(pixel);
1596  if ( Unit(us) == Unit("Hz") ) {
1597    for ( int i=0; i < nchan; ++i) {
1598      Double world;
1599      spc.toWorld(world, pixel[i]);
1600      stlout.push_back(double(world));
1601    }
1602  } else if ( Unit(us) == Unit("km/s") ) {
1603    Vector<Double> world;
1604    spc.pixelToVelocity(world, pixel);
1605    world.tovector(stlout);
1606  }
1607  return stlout;
1608}
1609void Scantable::setDirectionRefString( const std::string & refstr )
1610{
1611  MDirection::Types mdt;
1612  if (refstr != "" && !MDirection::getType(mdt, refstr)) {
1613    throw(AipsError("Illegal Direction frame."));
1614  }
1615  if ( refstr == "" ) {
1616    String defaultstr = MDirection::showType(dirCol_.getMeasRef().getType());
1617    table_.rwKeywordSet().define("DIRECTIONREF", defaultstr);
1618  } else {
1619    table_.rwKeywordSet().define("DIRECTIONREF", String(refstr));
1620  }
1621}
1622
1623std::string Scantable::getDirectionRefString( ) const
1624{
1625  return table_.keywordSet().asString("DIRECTIONREF");
1626}
1627
1628MDirection Scantable::getDirection(int whichrow ) const
1629{
1630  String usertype = table_.keywordSet().asString("DIRECTIONREF");
1631  String type = MDirection::showType(dirCol_.getMeasRef().getType());
1632  if ( usertype != type ) {
1633    MDirection::Types mdt;
1634    if (!MDirection::getType(mdt, usertype)) {
1635      throw(AipsError("Illegal Direction frame."));
1636    }
1637    return dirCol_.convert(uInt(whichrow), mdt);
1638  } else {
1639    return dirCol_(uInt(whichrow));
1640  }
1641}
1642
1643std::string Scantable::getAbcissaLabel( int whichrow ) const
1644{
1645  if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal ro number"));
1646  const MPosition& mp = getAntennaPosition();
1647  const MDirection& md = getDirection(whichrow);
1648  const MEpoch& me = timeCol_(whichrow);
1649  //const Double& rf = mmolidCol_(whichrow);
1650  const Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1651  SpectralCoordinate spc =
1652    freqTable_.getSpectralCoordinate(md, mp, me, rf, mfreqidCol_(whichrow));
1653
1654  String s = "Channel";
1655  Unit u = Unit(freqTable_.getUnitString());
1656  if (u == Unit("km/s")) {
1657    s = CoordinateUtil::axisLabel(spc, 0, True,True,  True);
1658  } else if (u == Unit("Hz")) {
1659    Vector<String> wau(1);wau = u.getName();
1660    spc.setWorldAxisUnits(wau);
1661    s = CoordinateUtil::axisLabel(spc, 0, True, True, False);
1662  }
1663  return s;
1664
1665}
1666
1667/**
1668void asap::Scantable::setRestFrequencies( double rf, const std::string& name,
1669                                          const std::string& unit )
1670**/
1671void Scantable::setRestFrequencies( vector<double> rf, const vector<std::string>& name,
1672                                          const std::string& unit )
1673
1674{
1675  ///@todo lookup in line table to fill in name and formattedname
1676  Unit u(unit);
1677  //Quantum<Double> urf(rf, u);
1678  Quantum<Vector<Double> >urf(rf, u);
1679  Vector<String> formattedname(0);
1680  //cerr<<"Scantable::setRestFrequnecies="<<urf<<endl;
1681
1682  //uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), name, "");
1683  uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), mathutil::toVectorString(name), formattedname);
1684  TableVector<uInt> tabvec(table_, "MOLECULE_ID");
1685  tabvec = id;
1686}
1687
1688/**
1689void asap::Scantable::setRestFrequencies( const std::string& name )
1690{
1691  throw(AipsError("setRestFrequencies( const std::string& name ) NYI"));
1692  ///@todo implement
1693}
1694**/
1695
1696void Scantable::setRestFrequencies( const vector<std::string>& name )
1697{
1698  (void) name; // suppress unused warning
1699  throw(AipsError("setRestFrequencies( const vector<std::string>& name ) NYI"));
1700  ///@todo implement
1701}
1702
1703std::vector< unsigned int > Scantable::rownumbers( ) const
1704{
1705  std::vector<unsigned int> stlout;
1706  Vector<uInt> vec = table_.rowNumbers();
1707  vec.tovector(stlout);
1708  return stlout;
1709}
1710
1711
1712Matrix<Float> Scantable::getPolMatrix( uInt whichrow ) const
1713{
1714  ROTableRow row(table_);
1715  const TableRecord& rec = row.get(whichrow);
1716  Table t =
1717    originalTable_( originalTable_.col("SCANNO") == Int(rec.asuInt("SCANNO"))
1718                    && originalTable_.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1719                    && originalTable_.col("IFNO") == Int(rec.asuInt("IFNO"))
1720                    && originalTable_.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
1721  ROArrayColumn<Float> speccol(t, "SPECTRA");
1722  return speccol.getColumn();
1723}
1724
1725std::vector< std::string > Scantable::columnNames( ) const
1726{
1727  Vector<String> vec = table_.tableDesc().columnNames();
1728  return mathutil::tovectorstring(vec);
1729}
1730
1731MEpoch::Types Scantable::getTimeReference( ) const
1732{
1733  return MEpoch::castType(timeCol_.getMeasRef().getType());
1734}
1735
1736void Scantable::addFit( const STFitEntry& fit, int row )
1737{
1738  //cout << mfitidCol_(uInt(row)) << endl;
1739  LogIO os( LogOrigin( "Scantable", "addFit()", WHERE ) ) ;
1740  os << mfitidCol_(uInt(row)) << LogIO::POST ;
1741  uInt id = fitTable_.addEntry(fit, mfitidCol_(uInt(row)));
1742  mfitidCol_.put(uInt(row), id);
1743}
1744
1745void Scantable::shift(int npix)
1746{
1747  Vector<uInt> fids(mfreqidCol_.getColumn());
1748  genSort( fids, Sort::Ascending,
1749           Sort::QuickSort|Sort::NoDuplicates );
1750  for (uInt i=0; i<fids.nelements(); ++i) {
1751    frequencies().shiftRefPix(npix, fids[i]);
1752  }
1753}
1754
1755String Scantable::getAntennaName() const
1756{
1757  String out;
1758  table_.keywordSet().get("AntennaName", out);
1759  String::size_type pos1 = out.find("@") ;
1760  String::size_type pos2 = out.find("//") ;
1761  if ( pos2 != String::npos )
1762    out = out.substr(pos2+2,pos1-pos2-2) ;
1763  else if ( pos1 != String::npos )
1764    out = out.substr(0,pos1) ;
1765  return out;
1766}
1767
1768int Scantable::checkScanInfo(const std::vector<int>& scanlist) const
1769{
1770  String tbpath;
1771  int ret = 0;
1772  if ( table_.keywordSet().isDefined("GBT_GO") ) {
1773    table_.keywordSet().get("GBT_GO", tbpath);
1774    Table t(tbpath,Table::Old);
1775    // check each scan if other scan of the pair exist
1776    int nscan = scanlist.size();
1777    for (int i = 0; i < nscan; i++) {
1778      Table subt = t( t.col("SCAN") == scanlist[i] );
1779      if (subt.nrow()==0) {
1780        //cerr <<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<endl;
1781        LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1782        os <<LogIO::WARN<<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<LogIO::POST;
1783        ret = 1;
1784        break;
1785      }
1786      ROTableRow row(subt);
1787      const TableRecord& rec = row.get(0);
1788      int scan1seqn = rec.asuInt("PROCSEQN");
1789      int laston1 = rec.asuInt("LASTON");
1790      if ( rec.asuInt("PROCSIZE")==2 ) {
1791        if ( i < nscan-1 ) {
1792          Table subt2 = t( t.col("SCAN") == scanlist[i+1] );
1793          if ( subt2.nrow() == 0) {
1794            LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1795
1796            //cerr<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<endl;
1797            os<<LogIO::WARN<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<LogIO::POST;
1798            ret = 1;
1799            break;
1800          }
1801          ROTableRow row2(subt2);
1802          const TableRecord& rec2 = row2.get(0);
1803          int scan2seqn = rec2.asuInt("PROCSEQN");
1804          int laston2 = rec2.asuInt("LASTON");
1805          if (scan1seqn == 1 && scan2seqn == 2) {
1806            if (laston1 == laston2) {
1807              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1808              //cerr<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1809              os<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1810              i +=1;
1811            }
1812            else {
1813              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1814              //cerr<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1815              os<<LogIO::WARN<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1816            }
1817          }
1818          else if (scan1seqn==2 && scan2seqn == 1) {
1819            if (laston1 == laston2) {
1820              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1821              //cerr<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<endl;
1822              os<<LogIO::WARN<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<LogIO::POST;
1823              ret = 1;
1824              break;
1825            }
1826          }
1827          else {
1828            LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1829            //cerr<<"The other scan for  "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<endl;
1830            os<<LogIO::WARN<<"The other scan for  "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<LogIO::POST;
1831            ret = 1;
1832            break;
1833          }
1834        }
1835      }
1836      else {
1837        LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1838        //cerr<<"The scan does not appear to be standard obsevation."<<endl;
1839        os<<LogIO::WARN<<"The scan does not appear to be standard obsevation."<<LogIO::POST;
1840      }
1841    //if ( i >= nscan ) break;
1842    }
1843  }
1844  else {
1845    LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1846    //cerr<<"No reference to GBT_GO table."<<endl;
1847    os<<LogIO::WARN<<"No reference to GBT_GO table."<<LogIO::POST;
1848    ret = 1;
1849  }
1850  return ret;
1851}
1852
1853std::vector<double> Scantable::getDirectionVector(int whichrow) const
1854{
1855  Vector<Double> Dir = dirCol_(whichrow).getAngle("rad").getValue();
1856  std::vector<double> dir;
1857  Dir.tovector(dir);
1858  return dir;
1859}
1860
1861void asap::Scantable::reshapeSpectrum( int nmin, int nmax )
1862  throw( casa::AipsError )
1863{
1864  // assumed that all rows have same nChan
1865  Vector<Float> arr = specCol_( 0 ) ;
1866  int nChan = arr.nelements() ;
1867
1868  // if nmin < 0 or nmax < 0, nothing to do
1869  if (  nmin < 0 ) {
1870    throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1871    }
1872  if (  nmax < 0  ) {
1873    throw( casa::indexError<int>( nmax, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1874  }
1875
1876  // if nmin > nmax, exchange values
1877  if ( nmin > nmax ) {
1878    int tmp = nmax ;
1879    nmax = nmin ;
1880    nmin = tmp ;
1881    LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1882    os << "Swap values. Applied range is ["
1883       << nmin << ", " << nmax << "]" << LogIO::POST ;
1884  }
1885
1886  // if nmin exceeds nChan, nothing to do
1887  if ( nmin >= nChan ) {
1888    throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Specified minimum exceeds nChan." ) ) ;
1889  }
1890
1891  // if nmax exceeds nChan, reset nmax to nChan
1892  if ( nmax >= nChan-1 ) {
1893    if ( nmin == 0 ) {
1894      // nothing to do
1895      LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1896      os << "Whole range is selected. Nothing to do." << LogIO::POST ;
1897      return ;
1898    }
1899    else {
1900      LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1901      os << "Specified maximum exceeds nChan. Applied range is ["
1902         << nmin << ", " << nChan-1 << "]." << LogIO::POST ;
1903      nmax = nChan - 1 ;
1904    }
1905  }
1906
1907  // reshape specCol_ and flagCol_
1908  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1909    reshapeSpectrum( nmin, nmax, irow ) ;
1910  }
1911
1912  // update FREQUENCIES subtable
1913  Vector<uInt> freqIdArray = mfreqidCol_.getColumn();
1914  uInt numFreqId = GenSort<uInt>::sort(freqIdArray, Sort::Ascending,
1915                                       Sort::HeapSort | Sort::NoDuplicates);
1916  Double refpix ;
1917  Double refval ;
1918  Double increment ;
1919  for (uInt irow  = 0; irow < numFreqId; irow++) {
1920    freqTable_.getEntry( refpix, refval, increment, freqIdArray[irow] ) ;
1921    /***
1922     * need to shift refpix to nmin
1923     * note that channel nmin in old index will be channel 0 in new one
1924     ***/
1925    refval = refval - ( refpix - nmin ) * increment ;
1926    refpix = 0 ;
1927    freqTable_.setEntry( refpix, refval, increment, freqIdArray[irow] ) ;
1928  }
1929
1930  // update nchan
1931  int newsize = nmax - nmin + 1 ;
1932  table_.rwKeywordSet().define( "nChan", newsize ) ;
1933
1934  // update bandwidth
1935  // assumed all spectra in the scantable have same bandwidth
1936  table_.rwKeywordSet().define( "Bandwidth", increment * newsize ) ;
1937
1938  return ;
1939}
1940
1941void asap::Scantable::reshapeSpectrum( int nmin, int nmax, int irow )
1942{
1943  // reshape specCol_ and flagCol_
1944  Vector<Float> oldspec = specCol_( irow ) ;
1945  Vector<uChar> oldflag = flagsCol_( irow ) ;
1946  Vector<Float> oldtsys = tsysCol_( irow ) ;
1947  uInt newsize = nmax - nmin + 1 ;
1948  Slice slice( nmin, newsize, 1 ) ;
1949  specCol_.put( irow, oldspec( slice ) ) ;
1950  flagsCol_.put( irow, oldflag( slice ) ) ;
1951  if ( oldspec.size() == oldtsys.size() )
1952    tsysCol_.put( irow, oldtsys( slice ) ) ;
1953
1954  return ;
1955}
1956
1957void asap::Scantable::regridSpecChannel( double dnu, int nChan )
1958{
1959  LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1960  os << "Regrid abcissa with spectral resoultion " << dnu << " " << freqTable_.getUnitString() << " with channel number " << ((nChan>0)? String(nChan) : "covering band width")<< LogIO::POST ;
1961  int freqnrow = freqTable_.table().nrow() ;
1962  Vector<bool> firstTime( freqnrow, true ) ;
1963  double oldincr, factor;
1964  uInt currId;
1965  Double refpix ;
1966  Double refval ;
1967  Double increment ;
1968  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1969    currId = mfreqidCol_(irow);
1970    vector<double> abcissa = getAbcissa( irow ) ;
1971    if (nChan < 0) {
1972      int oldsize = abcissa.size() ;
1973      double bw = (abcissa[oldsize-1]-abcissa[0]) +                     \
1974        0.5 * (abcissa[1]-abcissa[0] + abcissa[oldsize-1]-abcissa[oldsize-2]) ;
1975      nChan = int( ceil( abs(bw/dnu) ) ) ;
1976    }
1977    // actual regridding
1978    regridChannel( nChan, dnu, irow ) ;
1979
1980    // update FREQUENCIES subtable
1981    if (firstTime[currId]) {
1982      oldincr = abcissa[1]-abcissa[0] ;
1983      factor = dnu/oldincr ;
1984      firstTime[currId] = false ;
1985      freqTable_.getEntry( refpix, refval, increment, currId ) ;
1986
1987      //refval = refval - ( refpix + 0.5 * (1 - factor) ) * increment ;
1988      if (factor > 0 ) {
1989        refpix = (refpix + 0.5)/factor - 0.5;
1990      } else {
1991        refpix = (abcissa.size() - 0.5 - refpix)/abs(factor) - 0.5;
1992      }
1993      freqTable_.setEntry( refpix, refval, increment*factor, currId ) ;
1994      //os << "ID" << currId << ": channel width (Orig) = " << oldincr << " [" << freqTable_.getUnitString() << "], scale factor = " << factor << LogIO::POST ;
1995      //os << "     frequency increment (Orig) = " << increment << "-> (New) " << increment*factor << LogIO::POST ;
1996    }
1997  }
1998}
1999
2000void asap::Scantable::regridChannel( int nChan, double dnu )
2001{
2002  LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
2003  os << "Regrid abcissa with channel number " << nChan << " and spectral resoultion " << dnu << "Hz." << LogIO::POST ;
2004  // assumed that all rows have same nChan
2005  Vector<Float> arr = specCol_( 0 ) ;
2006  int oldsize = arr.nelements() ;
2007
2008  // if oldsize == nChan, nothing to do
2009  if ( oldsize == nChan ) {
2010    os << "Specified channel number is same as current one. Nothing to do." << LogIO::POST ;
2011    return ;
2012  }
2013
2014  // if oldChan < nChan, unphysical operation
2015  if ( oldsize < nChan ) {
2016    os << "Unphysical operation. Nothing to do." << LogIO::POST ;
2017    return ;
2018  }
2019
2020  // change channel number for specCol_, flagCol_, and tsysCol_ (if necessary)
2021  vector<string> coordinfo = getCoordInfo() ;
2022  string oldinfo = coordinfo[0] ;
2023  coordinfo[0] = "Hz" ;
2024  setCoordInfo( coordinfo ) ;
2025  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
2026    regridChannel( nChan, dnu, irow ) ;
2027  }
2028  coordinfo[0] = oldinfo ;
2029  setCoordInfo( coordinfo ) ;
2030
2031
2032  // NOTE: this method does not update metadata such as
2033  //       FREQUENCIES subtable, nChan, Bandwidth, etc.
2034
2035  return ;
2036}
2037
2038void asap::Scantable::regridChannel( int nChan, double dnu, int irow )
2039{
2040  // logging
2041  //ofstream ofs( "average.log", std::ios::out | std::ios::app ) ;
2042  //ofs << "IFNO = " << getIF( irow ) << " irow = " << irow << endl ;
2043
2044  Vector<Float> oldspec = specCol_( irow ) ;
2045  Vector<uChar> oldflag = flagsCol_( irow ) ;
2046  Vector<Float> oldtsys = tsysCol_( irow ) ;
2047  Vector<Float> newspec( nChan, 0 ) ;
2048  Vector<uChar> newflag( nChan, true ) ;
2049  Vector<Float> newtsys ;
2050  bool regridTsys = false ;
2051  if (oldtsys.size() == oldspec.size()) {
2052    regridTsys = true ;
2053    newtsys.resize(nChan,false) ;
2054    newtsys = 0 ;
2055  }
2056
2057  // regrid
2058  vector<double> abcissa = getAbcissa( irow ) ;
2059  int oldsize = abcissa.size() ;
2060  double olddnu = abcissa[1] - abcissa[0] ;
2061  //int ichan = 0 ;
2062  double wsum = 0.0 ;
2063  Vector<double> zi( nChan+1 ) ;
2064  Vector<double> yi( oldsize + 1 ) ;
2065  yi[0] = abcissa[0] - 0.5 * olddnu ;
2066  for ( int ii = 1 ; ii < oldsize ; ii++ )
2067    yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2068  yi[oldsize] = abcissa[oldsize-1] \
2069    + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
2070  //zi[0] = abcissa[0] - 0.5 * olddnu ;
2071  zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2072  for ( int ii = 1 ; ii < nChan ; ii++ )
2073    zi[ii] = zi[0] + dnu * ii ;
2074  zi[nChan] = zi[nChan-1] + dnu ;
2075  // Access zi and yi in ascending order
2076  int izs = ((dnu > 0) ? 0 : nChan ) ;
2077  int ize = ((dnu > 0) ? nChan : 0 ) ;
2078  int izincr = ((dnu > 0) ? 1 : -1 ) ;
2079  int ichan =  ((olddnu > 0) ? 0 : oldsize ) ;
2080  int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2081  int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2082  //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2083  int ii = izs ;
2084  while (ii != ize) {
2085    // always zl < zr
2086    double zl = zi[ii] ;
2087    double zr = zi[ii+izincr] ;
2088    // Need to access smaller index for the new spec, flag, and tsys.
2089    // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2090    int i = min(ii, ii+izincr) ;
2091    //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2092    int jj = ichan ;
2093    while (jj != iye) {
2094      // always yl < yr
2095      double yl = yi[jj] ;
2096      double yr = yi[jj+iyincr] ;
2097      // Need to access smaller index for the original spec, flag, and tsys.
2098      // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2099      int j = min(jj, jj+iyincr) ;
2100      if ( yr <= zl ) {
2101        jj += iyincr ;
2102        continue ;
2103      }
2104      else if ( yl <= zl ) {
2105        if ( yr < zr ) {
2106          if (!oldflag[j]) {
2107            newspec[i] += oldspec[j] * ( yr - zl ) ;
2108            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2109            wsum += ( yr - zl ) ;
2110          }
2111          newflag[i] = newflag[i] && oldflag[j] ;
2112        }
2113        else {
2114          if (!oldflag[j]) {
2115            newspec[i] += oldspec[j] * abs(dnu) ;
2116            if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2117            wsum += abs(dnu) ;
2118          }
2119          newflag[i] = newflag[i] && oldflag[j] ;
2120          ichan = jj ;
2121          break ;
2122        }
2123      }
2124      else if ( yl < zr ) {
2125        if ( yr <= zr ) {
2126          if (!oldflag[j]) {
2127            newspec[i] += oldspec[j] * ( yr - yl ) ;
2128            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2129            wsum += ( yr - yl ) ;
2130          }
2131          newflag[i] = newflag[i] && oldflag[j] ;
2132        }
2133        else {
2134          if (!oldflag[j]) {
2135            newspec[i] += oldspec[j] * ( zr - yl ) ;
2136            if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2137            wsum += ( zr - yl ) ;
2138          }
2139          newflag[i] = newflag[i] && oldflag[j] ;
2140          ichan = jj ;
2141          break ;
2142        }
2143      }
2144      else {
2145        ichan = jj - iyincr ;
2146        break ;
2147      }
2148      jj += iyincr ;
2149    }
2150    if ( wsum != 0.0 ) {
2151      newspec[i] /= wsum ;
2152      if (regridTsys) newtsys[i] /= wsum ;
2153    }
2154    wsum = 0.0 ;
2155    ii += izincr ;
2156  }
2157//   if ( dnu > 0.0 ) {
2158//     for ( int ii = 0 ; ii < nChan ; ii++ ) {
2159//       double zl = zi[ii] ;
2160//       double zr = zi[ii+1] ;
2161//       for ( int j = ichan ; j < oldsize ; j++ ) {
2162//         double yl = yi[j] ;
2163//         double yr = yi[j+1] ;
2164//         if ( yl <= zl ) {
2165//           if ( yr <= zl ) {
2166//             continue ;
2167//           }
2168//           else if ( yr <= zr ) {
2169//          if (!oldflag[j]) {
2170//            newspec[ii] += oldspec[j] * ( yr - zl ) ;
2171//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - zl ) ;
2172//            wsum += ( yr - zl ) ;
2173//          }
2174//          newflag[ii] = newflag[ii] && oldflag[j] ;
2175//           }
2176//           else {
2177//          if (!oldflag[j]) {
2178//            newspec[ii] += oldspec[j] * dnu ;
2179//            if (regridTsys) newtsys[ii] += oldtsys[j] * dnu ;
2180//            wsum += dnu ;
2181//          }
2182//          newflag[ii] = newflag[ii] && oldflag[j] ;
2183//             ichan = j ;
2184//             break ;
2185//           }
2186//         }
2187//         else if ( yl < zr ) {
2188//           if ( yr <= zr ) {
2189//          if (!oldflag[j]) {
2190//            newspec[ii] += oldspec[j] * ( yr - yl ) ;
2191//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - yl ) ;
2192//               wsum += ( yr - yl ) ;
2193//          }
2194//          newflag[ii] = newflag[ii] && oldflag[j] ;
2195//           }
2196//           else {
2197//          if (!oldflag[j]) {
2198//            newspec[ii] += oldspec[j] * ( zr - yl ) ;
2199//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( zr - yl ) ;
2200//            wsum += ( zr - yl ) ;
2201//          }
2202//          newflag[ii] = newflag[ii] && oldflag[j] ;
2203//             ichan = j ;
2204//             break ;
2205//           }
2206//         }
2207//         else {
2208//           ichan = j - 1 ;
2209//           break ;
2210//         }
2211//       }
2212//       if ( wsum != 0.0 ) {
2213//         newspec[ii] /= wsum ;
2214//      if (regridTsys) newtsys[ii] /= wsum ;
2215//       }
2216//       wsum = 0.0 ;
2217//     }
2218//   }
2219//   else if ( dnu < 0.0 ) {
2220//     for ( int ii = 0 ; ii < nChan ; ii++ ) {
2221//       double zl = zi[ii] ;
2222//       double zr = zi[ii+1] ;
2223//       for ( int j = ichan ; j < oldsize ; j++ ) {
2224//         double yl = yi[j] ;
2225//         double yr = yi[j+1] ;
2226//         if ( yl >= zl ) {
2227//           if ( yr >= zl ) {
2228//             continue ;
2229//           }
2230//           else if ( yr >= zr ) {
2231//          if (!oldflag[j]) {
2232//            newspec[ii] += oldspec[j] * abs( yr - zl ) ;
2233//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - zl ) ;
2234//            wsum += abs( yr - zl ) ;
2235//          }
2236//          newflag[ii] = newflag[ii] && oldflag[j] ;
2237//           }
2238//           else {
2239//          if (!oldflag[j]) {
2240//            newspec[ii] += oldspec[j] * abs( dnu ) ;
2241//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( dnu ) ;
2242//            wsum += abs( dnu ) ;
2243//          }
2244//          newflag[ii] = newflag[ii] && oldflag[j] ;
2245//             ichan = j ;
2246//             break ;
2247//           }
2248//         }
2249//         else if ( yl > zr ) {
2250//           if ( yr >= zr ) {
2251//          if (!oldflag[j]) {
2252//            newspec[ii] += oldspec[j] * abs( yr - yl ) ;
2253//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - yl ) ;
2254//            wsum += abs( yr - yl ) ;
2255//          }
2256//          newflag[ii] = newflag[ii] && oldflag[j] ;
2257//           }
2258//           else {
2259//          if (!oldflag[j]) {
2260//            newspec[ii] += oldspec[j] * abs( zr - yl ) ;
2261//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( zr - yl ) ;
2262//            wsum += abs( zr - yl ) ;
2263//          }
2264//          newflag[ii] = newflag[ii] && oldflag[j] ;
2265//             ichan = j ;
2266//             break ;
2267//           }
2268//         }
2269//         else {
2270//           ichan = j - 1 ;
2271//           break ;
2272//         }
2273//       }
2274//       if ( wsum != 0.0 ) {
2275//         newspec[ii] /= wsum ;
2276//      if (regridTsys) newtsys[ii] /= wsum ;
2277//       }
2278//       wsum = 0.0 ;
2279//     }
2280//   }
2281// //   //ofs << "olddnu = " << olddnu << ", dnu = " << dnu << endl ;
2282// //   pile += dnu ;
2283// //   wedge = olddnu * ( refChan + 1 ) ;
2284// //   while ( wedge < pile ) {
2285// //     newspec[0] += olddnu * oldspec[refChan] ;
2286// //     newflag[0] = newflag[0] || oldflag[refChan] ;
2287// //     //ofs << "channel " << refChan << " is included in new channel 0" << endl ;
2288// //     refChan++ ;
2289// //     wedge += olddnu ;
2290// //     wsum += olddnu ;
2291// //     //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2292// //   }
2293// //   frac = ( wedge - pile ) / olddnu ;
2294// //   wsum += ( 1.0 - frac ) * olddnu ;
2295// //   newspec[0] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2296// //   newflag[0] = newflag[0] || oldflag[refChan] ;
2297// //   //ofs << "channel " << refChan << " is partly included in new channel 0" << " with fraction of " << ( 1.0 - frac ) << endl ;
2298// //   //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2299// //   newspec[0] /= wsum ;
2300// //   //ofs << "newspec[0] = " << newspec[0] << endl ;
2301// //   //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2302
2303// //   /***
2304// //    * ichan = 1 - nChan-2
2305// //    ***/
2306// //   for ( int ichan = 1 ; ichan < nChan - 1 ; ichan++ ) {
2307// //     pile += dnu ;
2308// //     newspec[ichan] += frac * olddnu * oldspec[refChan] ;
2309// //     newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2310// //     //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << frac << endl ;
2311// //     refChan++ ;
2312// //     wedge += olddnu ;
2313// //     wsum = frac * olddnu ;
2314// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2315// //     while ( wedge < pile ) {
2316// //       newspec[ichan] += olddnu * oldspec[refChan] ;
2317// //       newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2318// //       //ofs << "channel " << refChan << " is included in new channel " << ichan << endl ;
2319// //       refChan++ ;
2320// //       wedge += olddnu ;
2321// //       wsum += olddnu ;
2322// //       //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2323// //     }
2324// //     frac = ( wedge - pile ) / olddnu ;
2325// //     wsum += ( 1.0 - frac ) * olddnu ;
2326// //     newspec[ichan] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2327// //     newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2328// //     //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << ( 1.0 - frac ) << endl ;
2329// //     //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2330// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2331// //     newspec[ichan] /= wsum ;
2332// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << endl ;
2333// //   }
2334
2335// //   /***
2336// //    * ichan = nChan-1
2337// //    ***/
2338// //   // NOTE: Assumed that all spectra have the same bandwidth
2339// //   pile += dnu ;
2340// //   newspec[nChan-1] += frac * olddnu * oldspec[refChan] ;
2341// //   newflag[nChan-1] = newflag[nChan-1] || oldflag[refChan] ;
2342// //   //ofs << "channel " << refChan << " is partly included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2343// //   refChan++ ;
2344// //   wedge += olddnu ;
2345// //   wsum = frac * olddnu ;
2346// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2347// //   for ( int jchan = refChan ; jchan < oldsize ; jchan++ ) {
2348// //     newspec[nChan-1] += olddnu * oldspec[jchan] ;
2349// //     newflag[nChan-1] = newflag[nChan-1] || oldflag[jchan] ;
2350// //     wsum += olddnu ;
2351// //     //ofs << "channel " << jchan << " is included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2352// //     //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2353// //   }
2354// //   //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2355// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2356// //   newspec[nChan-1] /= wsum ;
2357// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << endl ;
2358
2359// //   // ofs.close() ;
2360
2361  specCol_.put( irow, newspec ) ;
2362  flagsCol_.put( irow, newflag ) ;
2363  if (regridTsys) tsysCol_.put( irow, newtsys );
2364
2365  return ;
2366}
2367
2368void Scantable::regridChannel( int nChan, double dnu, double fmin, int irow )
2369{
2370  Vector<Float> oldspec = specCol_( irow ) ;
2371  Vector<uChar> oldflag = flagsCol_( irow ) ;
2372  Vector<Float> oldtsys = tsysCol_( irow ) ;
2373  Vector<Float> newspec( nChan, 0 ) ;
2374  Vector<uChar> newflag( nChan, true ) ;
2375  Vector<Float> newtsys ;
2376  bool regridTsys = false ;
2377  if (oldtsys.size() == oldspec.size()) {
2378    regridTsys = true ;
2379    newtsys.resize(nChan,false) ;
2380    newtsys = 0 ;
2381  }
2382 
2383  // regrid
2384  vector<double> abcissa = getAbcissa( irow ) ;
2385  int oldsize = abcissa.size() ;
2386  double olddnu = abcissa[1] - abcissa[0] ;
2387  //int ichan = 0 ;
2388  double wsum = 0.0 ;
2389  Vector<double> zi( nChan+1 ) ;
2390  Vector<double> yi( oldsize + 1 ) ;
2391  Block<uInt> count( nChan, 0 ) ;
2392  yi[0] = abcissa[0] - 0.5 * olddnu ;
2393  for ( int ii = 1 ; ii < oldsize ; ii++ )
2394    yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2395  yi[oldsize] = abcissa[oldsize-1] \
2396    + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
2397//   cout << "olddnu=" << olddnu << ", dnu=" << dnu << " (diff=" << olddnu-dnu << ")" << endl ;
2398//   cout << "yi[0]=" << yi[0] << ", fmin=" << fmin << " (diff=" << yi[0]-fmin << ")" << endl ;
2399//   cout << "oldsize=" << oldsize << ", nChan=" << nChan << endl ;
2400
2401  // do not regrid if input parameters are almost same as current
2402  // spectral setup
2403  double dnuDiff = abs( ( dnu - olddnu ) / olddnu ) ;
2404  double oldfmin = min( yi[0], yi[oldsize] ) ;
2405  double fminDiff = abs( ( fmin - oldfmin ) / oldfmin ) ;
2406  double nChanDiff = nChan - oldsize ;
2407  double eps = 1.0e-8 ;
2408  if ( nChanDiff == 0 && dnuDiff < eps && fminDiff < eps )
2409    return ;
2410
2411  //zi[0] = abcissa[0] - 0.5 * olddnu ;
2412  //zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2413  if ( dnu > 0 )
2414    zi[0] = fmin - 0.5 * dnu ;
2415  else
2416    zi[0] = fmin + nChan * abs(dnu) ;
2417  for ( int ii = 1 ; ii < nChan ; ii++ )
2418    zi[ii] = zi[0] + dnu * ii ;
2419  zi[nChan] = zi[nChan-1] + dnu ;
2420  // Access zi and yi in ascending order
2421  int izs = ((dnu > 0) ? 0 : nChan ) ;
2422  int ize = ((dnu > 0) ? nChan : 0 ) ;
2423  int izincr = ((dnu > 0) ? 1 : -1 ) ;
2424  int ichan =  ((olddnu > 0) ? 0 : oldsize ) ;
2425  int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2426  int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2427  //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2428  int ii = izs ;
2429  while (ii != ize) {
2430    // always zl < zr
2431    double zl = zi[ii] ;
2432    double zr = zi[ii+izincr] ;
2433    // Need to access smaller index for the new spec, flag, and tsys.
2434    // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2435    int i = min(ii, ii+izincr) ;
2436    //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2437    int jj = ichan ;
2438    while (jj != iye) {
2439      // always yl < yr
2440      double yl = yi[jj] ;
2441      double yr = yi[jj+iyincr] ;
2442      // Need to access smaller index for the original spec, flag, and tsys.
2443      // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2444      int j = min(jj, jj+iyincr) ;
2445      if ( yr <= zl ) {
2446        jj += iyincr ;
2447        continue ;
2448      }
2449      else if ( yl <= zl ) {
2450        if ( yr < zr ) {
2451          if (!oldflag[j]) {
2452            newspec[i] += oldspec[j] * ( yr - zl ) ;
2453            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2454            wsum += ( yr - zl ) ;
2455            count[i]++ ;
2456          }
2457          newflag[i] = newflag[i] && oldflag[j] ;
2458        }
2459        else {
2460          if (!oldflag[j]) {
2461            newspec[i] += oldspec[j] * abs(dnu) ;
2462            if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2463            wsum += abs(dnu) ;
2464            count[i]++ ;
2465          }
2466          newflag[i] = newflag[i] && oldflag[j] ;
2467          ichan = jj ;
2468          break ;
2469        }
2470      }
2471      else if ( yl < zr ) {
2472        if ( yr <= zr ) {
2473          if (!oldflag[j]) {
2474            newspec[i] += oldspec[j] * ( yr - yl ) ;
2475            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2476            wsum += ( yr - yl ) ;
2477            count[i]++ ;
2478          }
2479          newflag[i] = newflag[i] && oldflag[j] ;
2480        }
2481        else {
2482          if (!oldflag[j]) {
2483            newspec[i] += oldspec[j] * ( zr - yl ) ;
2484            if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2485            wsum += ( zr - yl ) ;
2486            count[i]++ ;
2487          }
2488          newflag[i] = newflag[i] && oldflag[j] ;
2489          ichan = jj ;
2490          break ;
2491        }
2492      }
2493      else {
2494        //ichan = jj - iyincr ;
2495        break ;
2496      }
2497      jj += iyincr ;
2498    }
2499    if ( wsum != 0.0 ) {
2500      newspec[i] /= wsum ;
2501      if (regridTsys) newtsys[i] /= wsum ;
2502    }
2503    wsum = 0.0 ;
2504    ii += izincr ;
2505  }
2506
2507  // flag out channels without data
2508  // this is tentative since there is no specific definition
2509  // on bit flag...
2510  uChar noData = 1 << 7 ;
2511  for ( Int i = 0 ; i < nChan ; i++ ) {
2512    if ( count[i] == 0 )
2513      newflag[i] = noData ;
2514  }
2515
2516  specCol_.put( irow, newspec ) ;
2517  flagsCol_.put( irow, newflag ) ;
2518  if (regridTsys) tsysCol_.put( irow, newtsys );
2519
2520  return ;
2521}
2522
2523std::vector<float> Scantable::getWeather(int whichrow) const
2524{
2525  std::vector<float> out(5);
2526  //Float temperature, pressure, humidity, windspeed, windaz;
2527  weatherTable_.getEntry(out[0], out[1], out[2], out[3], out[4],
2528                         mweatheridCol_(uInt(whichrow)));
2529
2530
2531  return out;
2532}
2533
2534bool Scantable::isAllChannelsFlagged(uInt whichrow)
2535{
2536  uInt rflag;
2537  flagrowCol_.get(whichrow, rflag);
2538  if (rflag > 0)
2539    return true;
2540  uChar flag;
2541  Vector<uChar> flags;
2542  flagsCol_.get(whichrow, flags);
2543  flag = flags[0];
2544  for (uInt i = 1; i < flags.size(); ++i) {
2545    flag &= flags[i];
2546  }
2547  //  return ((flag >> 7) == 1);
2548  return (flag > 0);
2549}
2550
2551std::vector<std::string> Scantable::applyBaselineTable(const std::string& bltable, const bool returnfitresult, const std::string& outbltable, const bool outbltableexists, const bool overwrite)
2552{
2553  STBaselineTable btin = STBaselineTable(bltable);
2554
2555  Vector<Bool> applyCol = btin.getApply();
2556  int nRowBl = applyCol.size();
2557  if (nRowBl != nrow()) {
2558    throw(AipsError("Scantable and bltable have different number of rows."));
2559  }
2560
2561  std::vector<std::string> res;
2562  res.clear();
2563
2564  bool outBaselineTable = ((outbltable != "") && (!outbltableexists || overwrite));
2565  bool bltableidentical = (bltable == outbltable);
2566  STBaselineTable btout = STBaselineTable(*this);
2567  ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2568  Vector<Double> timeSecCol = tcol.getColumn();
2569
2570  for (int whichrow = 0; whichrow < nRowBl; ++whichrow) {
2571    if (applyCol[whichrow]) {
2572      std::vector<float> spec = getSpectrum(whichrow);
2573
2574      std::vector<bool> mask = btin.getMask(whichrow);  //use mask_bltable only
2575
2576      STBaselineFunc::FuncName ftype = btin.getFunctionName(whichrow);
2577      std::vector<int> fpar = btin.getFuncParam(whichrow);
2578      std::vector<float> params;
2579      float rms;
2580      std::vector<float> resfit = doApplyBaselineTable(spec, mask, ftype, fpar, params, rms);
2581      setSpectrum(resfit, whichrow);
2582
2583      if (returnfitresult) {
2584        res.push_back(packFittingResults(whichrow, params, rms));
2585      }
2586
2587      if (outBaselineTable) {
2588        if (outbltableexists) {
2589          if (overwrite) {
2590            if (bltableidentical) {
2591              btin.setresult(uInt(whichrow), Vector<Float>(params), Float(rms));
2592            } else {
2593              btout.setresult(uInt(whichrow), Vector<Float>(params), Float(rms));
2594            }
2595          }
2596        } else {
2597          btout.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
2598                           getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
2599                           true, ftype, fpar, std::vector<float>(),
2600                           getMaskListFromMask(mask), params, rms, spec.size(),
2601                           3.0, 0, 0.0, 0, std::vector<int>());
2602        }
2603      }
2604    }
2605  }
2606
2607  if (outBaselineTable) {
2608    if (bltableidentical) {
2609      btin.save(outbltable);
2610    } else {
2611      btout.save(outbltable);
2612    }
2613  }
2614
2615  return res;
2616}
2617
2618std::vector<std::string> Scantable::subBaseline(const std::vector<std::string>& blInfoList, const bool returnfitresult, const std::string& outbltable, const bool outbltableexists, const bool overwrite)
2619{
2620  int nRowBl = blInfoList.size();
2621  int nRowSt = nrow();
2622
2623  std::vector<std::string> res;
2624  res.clear();
2625
2626  bool outBaselineTable = ((outbltable != "") && (!outbltableexists || overwrite));
2627  if ((outbltable != "") && outbltableexists && !overwrite) {
2628    throw(AipsError("Cannot overwrite bltable. Set overwrite=True."));
2629  }
2630
2631  STBaselineTable* btp;
2632  ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2633  Vector<Double> timeSecCol = tcol.getColumn();
2634
2635  if (outBaselineTable) {
2636    if (outbltableexists) {
2637      btp = new STBaselineTable((String)outbltable);
2638    } else {
2639      btp = new STBaselineTable(*this);
2640      for (int i = 0; i < nRowSt; ++i) {
2641        btp->appendbasedata(getScan(i), getCycle(i), getBeam(i), getIF(i), getPol(i),
2642                           0, timeSecCol[i]);
2643        btp->setApply(i, false);
2644      }
2645    }
2646  }
2647
2648  for (int i = 0; i < nRowBl; ++i) {
2649    int irow;
2650    STBaselineFunc::FuncName ftype;
2651    std::vector<bool> mask;
2652    std::vector<int> fpar;
2653    float clipth;
2654    int clipn;
2655    bool uself;
2656    float lfth;
2657    std::vector<int> lfedge;
2658    int lfavg;
2659    parseBlInfo(blInfoList[i], irow, ftype, fpar, mask, clipth, clipn, uself, lfth, lfedge, lfavg);
2660
2661    if (irow < nRowSt) {
2662      std::vector<float> spec = getSpectrum(irow);
2663      std::vector<float> params;
2664      float rms;
2665      std::vector<bool> finalmask;
2666
2667      std::vector<float> resfit = doSubtractBaseline(spec, mask, ftype, fpar, params, rms, finalmask, clipth, clipn, uself, irow, lfth, lfedge, lfavg);
2668      setSpectrum(resfit, irow);
2669
2670      if (returnfitresult) {
2671        res.push_back(packFittingResults(irow, params, rms));
2672      }
2673
2674      if (outBaselineTable) {
2675        Vector<Int> fparam(fpar.size());
2676        for (uInt j = 0; j < fparam.size(); ++j) {
2677          fparam[j] = (Int)fpar[j];
2678        }
2679
2680        btp->setdata(uInt(irow),
2681                    uInt(getScan(irow)), uInt(getCycle(irow)),
2682                    uInt(getBeam(irow)), uInt(getIF(irow)), uInt(getPol(irow)),
2683                    uInt(0), timeSecCol[irow], Bool(true), ftype, fparam,
2684                    Vector<Float>(), getMaskListFromMask(finalmask), Vector<Float>(params),
2685                    Float(rms), uInt(spec.size()), Float(clipth), uInt(clipn),
2686                    Float(0.0), uInt(0), Vector<uInt>());
2687      }
2688
2689    }
2690  }
2691
2692  if (outBaselineTable) {
2693    btp->save(outbltable);
2694  }
2695
2696  delete btp;
2697  return res;
2698}
2699
2700std::vector<float> Scantable::doApplyBaselineTable(std::vector<float>& spec,
2701                                                   std::vector<bool>& mask,
2702                                                   const STBaselineFunc::FuncName ftype,
2703                                                   std::vector<int>& fpar,
2704                                                   std::vector<float>& params,
2705                                                   float&rms)
2706{
2707  std::vector<bool> finalmask;
2708  std::vector<int> lfedge;
2709  return doSubtractBaseline(spec, mask, ftype, fpar, params, rms, finalmask, 0.0, 0, false, 0, 0.0, lfedge, 0);
2710}
2711
2712std::vector<float> Scantable::doSubtractBaseline(std::vector<float>& spec,
2713                                                 std::vector<bool>& mask,
2714                                                 const STBaselineFunc::FuncName ftype,
2715                                                 std::vector<int>& fpar,
2716                                                 std::vector<float>& params,
2717                                                 float&rms,
2718                                                 std::vector<bool>& finalmask,
2719                                                 float clipth,
2720                                                 int clipn,
2721                                                 bool uself,
2722                                                 int irow,
2723                                                 float lfth,
2724                                                 std::vector<int>& lfedge,
2725                                                 int lfavg)
2726{
2727  if (uself) {
2728    STLineFinder lineFinder = STLineFinder();
2729    initLineFinder(lfedge, lfth, lfavg, lineFinder);
2730    std::vector<int> currentEdge;
2731    mask = getCompositeChanMask(irow, mask, lfedge, currentEdge, lineFinder);
2732  } else {
2733    mask = getCompositeChanMask(irow, mask);
2734  }
2735
2736  std::vector<float> res;
2737  if (ftype == STBaselineFunc::Polynomial) {
2738    res = doPolynomialFitting(spec, mask, fpar[0], params, rms, finalmask, clipth, clipn);
2739  } else if (ftype == STBaselineFunc::Chebyshev) {
2740    res = doChebyshevFitting(spec, mask, fpar[0], params, rms, finalmask, clipth, clipn);
2741  } else if (ftype == STBaselineFunc::CSpline) {
2742    if (fpar.size() > 1) { // reading from baseline table in which pieceEdges are already calculated and stored.
2743      res = doCubicSplineFitting(spec, mask, fpar, params, rms, finalmask, clipth, clipn);
2744    } else {               // usual cspline fitting by giving nPiece only. fpar will be replaced with pieceEdges.
2745      res = doCubicSplineFitting(spec, mask, fpar[0], fpar, params, rms, finalmask, clipth, clipn);
2746    }
2747  } else if (ftype == STBaselineFunc::Sinusoid) {
2748    res = doSinusoidFitting(spec, mask, fpar, params, rms, finalmask, clipth, clipn);
2749  }
2750
2751  return res;
2752}
2753
2754std::string Scantable::packFittingResults(const int irow, const std::vector<float>& params, const float rms)
2755{
2756  // returned value: "irow:params[0],params[1],..,params[n-1]:rms"
2757  ostringstream os;
2758  os << irow << ':';
2759  for (uInt i = 0; i < params.size(); ++i) {
2760    if (i > 0) {
2761      os << ',';
2762    }
2763    os << params[i];
2764  }
2765  os << ':' << rms;
2766
2767  return os.str();
2768}
2769
2770void Scantable::parseBlInfo(const std::string& blInfo, int& irow, STBaselineFunc::FuncName& ftype, std::vector<int>& fpar, std::vector<bool>& mask, float& thresClip, int& nIterClip, bool& useLineFinder, float& thresLF, std::vector<int>& edgeLF, int& avgLF)
2771{
2772  // The baseline info to be parsed must be column-delimited string like
2773  // "0:chebyshev:5:3,5,169,174,485,487" where the elements are
2774  // row number, funcType, funcOrder, maskList, clipThreshold, clipNIter,
2775  // useLineFinder, lfThreshold, lfEdge and lfChanAvgLimit.
2776
2777  std::vector<string> res = splitToStringList(blInfo, ':');
2778  if (res.size() < 4) {
2779    throw(AipsError("baseline info has bad format")) ;
2780  }
2781
2782  string ftype0, fpar0, masklist0, uself0, edge0;
2783  std::vector<int> masklist;
2784
2785  stringstream ss;
2786  ss << res[0];
2787  ss >> irow;
2788  ss.clear(); ss.str("");
2789
2790  ss << res[1];
2791  ss >> ftype0;
2792  if (ftype0 == "poly") {
2793    ftype = STBaselineFunc::Polynomial;
2794  } else if (ftype0 == "cspline") {
2795    ftype = STBaselineFunc::CSpline;
2796  } else if (ftype0 == "sinusoid") {
2797    ftype = STBaselineFunc::Sinusoid;
2798  } else if (ftype0 == "chebyshev") {
2799    ftype = STBaselineFunc::Chebyshev;
2800  } else {
2801    throw(AipsError("invalid function type."));
2802  }
2803  ss.clear(); ss.str("");
2804
2805  ss << res[2];
2806  ss >> fpar0;
2807  fpar = splitToIntList(fpar0, ',');
2808  ss.clear(); ss.str("");
2809
2810  ss << res[3];
2811  ss >> masklist0;
2812  mask = getMaskFromMaskList(nchan(getIF(irow)), splitToIntList(masklist0, ','));
2813  ss.clear(); ss.str("");
2814
2815  ss << res[4];
2816  ss >> thresClip;
2817  ss.clear(); ss.str("");
2818
2819  ss << res[5];
2820  ss >> nIterClip;
2821  ss.clear(); ss.str("");
2822
2823  ss << res[6];
2824  ss >> uself0;
2825  if (uself0 == "true") {
2826    useLineFinder = true;
2827  } else {
2828    useLineFinder = false;
2829  }
2830  ss.clear(); ss.str("");
2831
2832  if (useLineFinder) {
2833    ss << res[7];
2834    ss >> thresLF;
2835    ss.clear(); ss.str("");
2836
2837    ss << res[8];
2838    ss >> edge0;
2839    edgeLF = splitToIntList(edge0, ',');
2840    ss.clear(); ss.str("");
2841
2842    ss << res[9];
2843    ss >> avgLF;
2844    ss.clear(); ss.str("");
2845  }
2846
2847}
2848
2849std::vector<int> Scantable::splitToIntList(const std::string& s, const char delim)
2850{
2851  istringstream iss(s);
2852  string tmp;
2853  int tmpi;
2854  std::vector<int> res;
2855  stringstream ss;
2856  while (getline(iss, tmp, delim)) {
2857    ss << tmp;
2858    ss >> tmpi;
2859    res.push_back(tmpi);
2860    ss.clear(); ss.str("");
2861  }
2862
2863  return res;
2864}
2865
2866std::vector<string> Scantable::splitToStringList(const std::string& s, const char delim)
2867{
2868  istringstream iss(s);
2869  std::string tmp;
2870  std::vector<string> res;
2871  while (getline(iss, tmp, delim)) {
2872    res.push_back(tmp);
2873  }
2874
2875  return res;
2876}
2877
2878std::vector<bool> Scantable::getMaskFromMaskList(const int nchan, const std::vector<int>& masklist)
2879{
2880  if (masklist.size() % 2 != 0) {
2881    throw(AipsError("masklist must have even number of elements."));
2882  }
2883
2884  std::vector<bool> res(nchan);
2885
2886  for (int i = 0; i < nchan; ++i) {
2887    res[i] = false;
2888  }
2889  for (uInt j = 0; j < masklist.size(); j += 2) {
2890    for (int i = masklist[j]; i <= masklist[j+1]; ++i) {
2891      res[i] = true;
2892    }
2893  }
2894
2895  return res;
2896}
2897
2898Vector<uInt> Scantable::getMaskListFromMask(const std::vector<bool>& mask)
2899{
2900  std::vector<int> masklist;
2901  masklist.clear();
2902
2903  for (uInt i = 0; i < mask.size(); ++i) {
2904    if (mask[i]) {
2905      if ((i == 0)||(i == mask.size()-1)) {
2906        masklist.push_back(i);
2907      } else {
2908        if ((mask[i])&&(!mask[i-1])) {
2909          masklist.push_back(i);
2910        }
2911        if ((mask[i])&&(!mask[i+1])) {
2912          masklist.push_back(i);
2913        }
2914      }
2915    }
2916  }
2917
2918  Vector<uInt> res(masklist.size());
2919  for (uInt i = 0; i < masklist.size(); ++i) {
2920    res[i] = (uInt)masklist[i];
2921  }
2922
2923  return res;
2924}
2925
2926void Scantable::initialiseBaselining(const std::string& blfile,
2927                                     ofstream& ofs,
2928                                     const bool outLogger,
2929                                     bool& outTextFile,
2930                                     bool& csvFormat,
2931                                     String& coordInfo,
2932                                     bool& hasSameNchan,
2933                                     const std::string& progressInfo,
2934                                     bool& showProgress,
2935                                     int& minNRow,
2936                                     Vector<Double>& timeSecCol)
2937{
2938  csvFormat = false;
2939  outTextFile = false;
2940
2941  if (blfile != "") {
2942    csvFormat = (blfile.substr(0, 1) == "T");
2943    ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
2944    if (ofs) outTextFile = true;
2945  }
2946
2947  coordInfo = "";
2948  hasSameNchan = true;
2949
2950  if (outLogger || outTextFile) {
2951    coordInfo = getCoordInfo()[0];
2952    if (coordInfo == "") coordInfo = "channel";
2953    hasSameNchan = hasSameNchanOverIFs();
2954  }
2955
2956  parseProgressInfo(progressInfo, showProgress, minNRow);
2957
2958  ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2959  timeSecCol = tcol.getColumn();
2960}
2961
2962void Scantable::finaliseBaselining(const bool outBaselineTable,
2963                                   STBaselineTable* pbt,
2964                                   const string& bltable,
2965                                   const bool outTextFile,
2966                                   ofstream& ofs)
2967{
2968  if (outBaselineTable) {
2969    pbt->save(bltable);
2970  }
2971
2972  if (outTextFile) ofs.close();
2973}
2974
2975void Scantable::initLineFinder(const std::vector<int>& edge,
2976                               const float threshold,
2977                               const int chanAvgLimit,
2978                               STLineFinder& lineFinder)
2979{
2980  if ((edge.size() > 2) && (edge.size() < getIFNos().size()*2)) {
2981    throw(AipsError("Length of edge element info is less than that of IFs"));
2982  }
2983
2984  lineFinder.setOptions(threshold, 3, chanAvgLimit);
2985}
2986
2987void Scantable::polyBaseline(const std::vector<bool>& mask, int order,
2988                             float thresClip, int nIterClip,
2989                             bool getResidual,
2990                             const std::string& progressInfo,
2991                             const bool outLogger, const std::string& blfile,
2992                             const std::string& bltable)
2993{
2994  /****
2995  double TimeStart = mathutil::gettimeofday_sec();
2996  ****/
2997
2998  try {
2999    ofstream ofs;
3000    String coordInfo;
3001    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3002    int minNRow;
3003    int nRow = nrow();
3004    std::vector<bool> chanMask, finalChanMask;
3005    float rms;
3006    bool outBaselineTable = (bltable != "");
3007    STBaselineTable bt = STBaselineTable(*this);
3008    Vector<Double> timeSecCol;
3009
3010    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3011                         coordInfo, hasSameNchan,
3012                         progressInfo, showProgress, minNRow,
3013                         timeSecCol);
3014
3015    std::vector<int> nChanNos;
3016    std::vector<std::vector<std::vector<double> > > modelReservoir;
3017    modelReservoir = getPolynomialModelReservoir(order,
3018                                                 &Scantable::getNormalPolynomial,
3019                                                 nChanNos);
3020
3021    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3022      std::vector<float> sp = getSpectrum(whichrow);
3023      chanMask = getCompositeChanMask(whichrow, mask);
3024
3025      std::vector<float> params;
3026      int nClipped = 0;
3027      std::vector<float> res = doLeastSquareFitting(sp, chanMask,
3028                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3029                                   params, rms, finalChanMask,
3030                                   nClipped, thresClip, nIterClip, getResidual);
3031
3032      if (outBaselineTable) {
3033        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3034                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3035                      true, STBaselineFunc::Polynomial, order, std::vector<float>(),
3036                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3037                      thresClip, nIterClip, 0.0, 0, std::vector<int>());
3038      } else {
3039        setSpectrum(res, whichrow);
3040      }
3041
3042      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3043                          coordInfo, hasSameNchan, ofs, "polyBaseline()",
3044                          params, nClipped);
3045      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3046    }
3047
3048    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3049
3050  } catch (...) {
3051    throw;
3052  }
3053
3054  /****
3055  double TimeEnd = mathutil::gettimeofday_sec();
3056  double elapse1 = TimeEnd - TimeStart;
3057  std::cout << "poly-new   : " << elapse1 << " (sec.)" << endl;
3058  ****/
3059}
3060
3061void Scantable::autoPolyBaseline(const std::vector<bool>& mask, int order,
3062                                 float thresClip, int nIterClip,
3063                                 const std::vector<int>& edge,
3064                                 float threshold, int chanAvgLimit,
3065                                 bool getResidual,
3066                                 const std::string& progressInfo,
3067                                 const bool outLogger, const std::string& blfile,
3068                                 const std::string& bltable)
3069{
3070  try {
3071    ofstream ofs;
3072    String coordInfo;
3073    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3074    int minNRow;
3075    int nRow = nrow();
3076    std::vector<bool> chanMask, finalChanMask;
3077    float rms;
3078    bool outBaselineTable = (bltable != "");
3079    STBaselineTable bt = STBaselineTable(*this);
3080    Vector<Double> timeSecCol;
3081    STLineFinder lineFinder = STLineFinder();
3082
3083    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3084                         coordInfo, hasSameNchan,
3085                         progressInfo, showProgress, minNRow,
3086                         timeSecCol);
3087
3088    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3089
3090    std::vector<int> nChanNos;
3091    std::vector<std::vector<std::vector<double> > > modelReservoir;
3092    modelReservoir = getPolynomialModelReservoir(order,
3093                                                 &Scantable::getNormalPolynomial,
3094                                                 nChanNos);
3095
3096    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3097      std::vector<float> sp = getSpectrum(whichrow);
3098      std::vector<int> currentEdge;
3099      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
3100
3101      std::vector<float> params;
3102      int nClipped = 0;
3103      std::vector<float> res = doLeastSquareFitting(sp, chanMask,
3104                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3105                                   params, rms, finalChanMask,
3106                                   nClipped, thresClip, nIterClip, getResidual);
3107
3108      if (outBaselineTable) {
3109        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3110                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3111                      true, STBaselineFunc::Polynomial, order, std::vector<float>(),
3112                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3113                      thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
3114      } else {
3115        setSpectrum(res, whichrow);
3116      }
3117
3118      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3119                          coordInfo, hasSameNchan, ofs, "autoPolyBaseline()",
3120                          params, nClipped);
3121      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3122    }
3123
3124    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3125
3126  } catch (...) {
3127    throw;
3128  }
3129}
3130
3131void Scantable::chebyshevBaseline(const std::vector<bool>& mask, int order,
3132                                  float thresClip, int nIterClip,
3133                                  bool getResidual,
3134                                  const std::string& progressInfo,
3135                                  const bool outLogger, const std::string& blfile,
3136                                  const std::string& bltable)
3137{
3138  /*
3139  double TimeStart = mathutil::gettimeofday_sec();
3140  */
3141
3142  try {
3143    ofstream ofs;
3144    String coordInfo;
3145    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3146    int minNRow;
3147    int nRow = nrow();
3148    std::vector<bool> chanMask, finalChanMask;
3149    float rms;
3150    bool outBaselineTable = (bltable != "");
3151    STBaselineTable bt = STBaselineTable(*this);
3152    Vector<Double> timeSecCol;
3153
3154    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3155                         coordInfo, hasSameNchan,
3156                         progressInfo, showProgress, minNRow,
3157                         timeSecCol);
3158
3159    std::vector<int> nChanNos;
3160    std::vector<std::vector<std::vector<double> > > modelReservoir;
3161    modelReservoir = getPolynomialModelReservoir(order,
3162                                                 &Scantable::getChebyshevPolynomial,
3163                                                 nChanNos);
3164
3165    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3166      std::vector<float> sp = getSpectrum(whichrow);
3167      chanMask = getCompositeChanMask(whichrow, mask);
3168
3169      std::vector<float> params;
3170      int nClipped = 0;
3171      std::vector<float> res = doLeastSquareFitting(sp, chanMask,
3172                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3173                                   params, rms, finalChanMask,
3174                                   nClipped, thresClip, nIterClip, getResidual);
3175
3176      if (outBaselineTable) {
3177        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3178                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3179                      true, STBaselineFunc::Chebyshev, order, std::vector<float>(),
3180                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3181                      thresClip, nIterClip, 0.0, 0, std::vector<int>());
3182      } else {
3183        setSpectrum(res, whichrow);
3184      }
3185
3186      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3187                          coordInfo, hasSameNchan, ofs, "chebyshevBaseline()",
3188                          params, nClipped);
3189      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3190    }
3191   
3192    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3193
3194  } catch (...) {
3195    throw;
3196  }
3197
3198  /*
3199  double TimeEnd = mathutil::gettimeofday_sec();
3200  double elapse1 = TimeEnd - TimeStart;
3201  std::cout << "cheby   : " << elapse1 << " (sec.)" << endl;
3202  */
3203}
3204
3205void Scantable::autoChebyshevBaseline(const std::vector<bool>& mask, int order,
3206                                      float thresClip, int nIterClip,
3207                                      const std::vector<int>& edge,
3208                                      float threshold, int chanAvgLimit,
3209                                      bool getResidual,
3210                                      const std::string& progressInfo,
3211                                      const bool outLogger, const std::string& blfile,
3212                                      const std::string& bltable)
3213{
3214  try {
3215    ofstream ofs;
3216    String coordInfo;
3217    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3218    int minNRow;
3219    int nRow = nrow();
3220    std::vector<bool> chanMask, finalChanMask;
3221    float rms;
3222    bool outBaselineTable = (bltable != "");
3223    STBaselineTable bt = STBaselineTable(*this);
3224    Vector<Double> timeSecCol;
3225    STLineFinder lineFinder = STLineFinder();
3226
3227    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3228                         coordInfo, hasSameNchan,
3229                         progressInfo, showProgress, minNRow,
3230                         timeSecCol);
3231
3232    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3233
3234    std::vector<int> nChanNos;
3235    std::vector<std::vector<std::vector<double> > > modelReservoir;
3236    modelReservoir = getPolynomialModelReservoir(order,
3237                                                 &Scantable::getChebyshevPolynomial,
3238                                                 nChanNos);
3239
3240    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3241      std::vector<float> sp = getSpectrum(whichrow);
3242      std::vector<int> currentEdge;
3243      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
3244
3245      std::vector<float> params;
3246      int nClipped = 0;
3247      std::vector<float> res = doLeastSquareFitting(sp, chanMask,
3248                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3249                                   params, rms, finalChanMask,
3250                                   nClipped, thresClip, nIterClip, getResidual);
3251
3252      if (outBaselineTable) {
3253        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3254                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3255                      true, STBaselineFunc::Chebyshev, order, std::vector<float>(),
3256                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3257                      thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
3258      } else {
3259        setSpectrum(res, whichrow);
3260      }
3261
3262      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3263                          coordInfo, hasSameNchan, ofs, "autoChebyshevBaseline()",
3264                          params, nClipped);
3265      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3266    }
3267
3268    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3269
3270  } catch (...) {
3271    throw;
3272  }
3273}
3274
3275double Scantable::calculateModelSelectionCriteria(const std::string& valname,
3276                                                  const std::string& blfunc,
3277                                                  int order,
3278                                                  const std::vector<bool>& inMask,
3279                                                  int whichrow,
3280                                                  bool useLineFinder,
3281                                                  const std::vector<int>& edge,
3282                                                  float threshold,
3283                                                  int chanAvgLimit)
3284{
3285  std::vector<float> sp = getSpectrum(whichrow);
3286  std::vector<bool> chanMask;
3287  chanMask.clear();
3288
3289  if (useLineFinder) {
3290    STLineFinder lineFinder = STLineFinder();
3291    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3292    std::vector<int> currentEdge;
3293    chanMask = getCompositeChanMask(whichrow, inMask, edge, currentEdge, lineFinder);
3294  } else {
3295    chanMask = getCompositeChanMask(whichrow, inMask);
3296  }
3297
3298  return doCalculateModelSelectionCriteria(valname, sp, chanMask, blfunc, order);
3299}
3300
3301double Scantable::doCalculateModelSelectionCriteria(const std::string& valname, const std::vector<float>& spec, const std::vector<bool>& mask, const std::string& blfunc, int order)
3302{
3303  int nparam;
3304  std::vector<float> params;
3305  std::vector<bool> finalChanMask;
3306  float rms;
3307  int nClipped = 0;
3308  std::vector<float> res;
3309  if (blfunc == "poly") {
3310    nparam = order + 1;
3311    res = doPolynomialFitting(spec, mask, order, params, rms, finalChanMask, nClipped);
3312  } else if (blfunc == "chebyshev") {
3313    nparam = order + 1;
3314    res = doChebyshevFitting(spec, mask, order, params, rms, finalChanMask, nClipped);
3315  } else if (blfunc == "cspline") {
3316    std::vector<int> pieceEdges;//(order+1);  //order = npiece
3317    nparam = order + 3;
3318    res = doCubicSplineFitting(spec, mask, order, false, pieceEdges, params, rms, finalChanMask, nClipped);
3319  } else if (blfunc == "sinusoid") {
3320    std::vector<int> nWaves;
3321    nWaves.clear();
3322    for (int i = 0; i <= order; ++i) {
3323      nWaves.push_back(i);
3324    }
3325    nparam = 2*order + 1;  // order = nwave
3326    res = doSinusoidFitting(spec, mask, nWaves, params, rms, finalChanMask, nClipped);
3327  } else {
3328    throw(AipsError("blfunc must be poly, chebyshev, cspline or sinusoid."));
3329  }
3330
3331  double msq = 0.0;
3332  int nusedchan = 0;
3333  int nChan = res.size();
3334  for (int i = 0; i < nChan; ++i) {
3335    if (mask[i]) {
3336      msq += (double)res[i]*(double)res[i];
3337      nusedchan++;
3338    }
3339  }
3340  if (nusedchan == 0) {
3341    throw(AipsError("all channels masked."));
3342  }
3343  msq /= (double)nusedchan;
3344
3345  nparam++;  //add 1 for sigma of Gaussian distribution
3346  const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
3347
3348  if (valname.find("aic") == 0) {
3349    // Original Akaike Information Criterion (AIC)
3350    double aic = nusedchan * (log(2.0 * PI * msq) + 1.0) + 2.0 * nparam;
3351
3352    // Corrected AIC by Sugiura(1978) (AICc)
3353    if (valname == "aicc") {
3354      if (nusedchan - nparam - 1 <= 0) {
3355        throw(AipsError("channel size is too small to calculate AICc."));
3356      }
3357      aic += 2.0*nparam*(nparam + 1)/(double)(nusedchan - nparam - 1);
3358    }
3359
3360    return aic;
3361
3362  } else if (valname == "bic") {
3363    // Bayesian Information Criterion (BIC)
3364    double bic = nusedchan * log(msq) + nparam * log((double)nusedchan);
3365    return bic;
3366
3367  } else if (valname == "gcv") {
3368    // Generalised Cross Validation
3369    double x = 1.0 - (double)nparam / (double)nusedchan;
3370    double gcv = msq / (x * x);
3371    return gcv;
3372
3373  } else {
3374    throw(AipsError("valname must be aic, aicc, bic or gcv."));
3375  }
3376}
3377
3378double Scantable::getNormalPolynomial(int n, double x) {
3379  if (n == 0) {
3380    return 1.0;
3381  } else if (n > 0) {
3382    double res = 1.0;
3383    for (int i = 0; i < n; ++i) {
3384      res *= x;
3385    }
3386    return res;
3387  } else {
3388    if (x == 0.0) {
3389      throw(AipsError("infinity result: x=0 given for negative power."));
3390    } else {
3391      return pow(x, (double)n);
3392    }
3393  }
3394}
3395
3396double Scantable::getChebyshevPolynomial(int n, double x) {
3397  if ((x < -1.0)||(x > 1.0)) {
3398    throw(AipsError("out of definition range (-1 <= x <= 1)."));
3399  } else if (x == 1.0) {
3400    return 1.0;
3401  } else if (x == 0.0) {
3402    double res;
3403    if (n%2 == 0) {
3404      if (n%4 == 0) {
3405        res = 1.0;
3406      } else {
3407        res = -1.0;
3408      }
3409    } else {
3410      res = 0.0;
3411    }
3412    return res;
3413  } else if (x == -1.0) {
3414    double res = (n%2 == 0 ? 1.0 : -1.0);
3415    return res;
3416  } else if (n < 0) {
3417    throw(AipsError("the order must be zero or positive."));
3418  } else if (n == 0) {
3419    return 1.0;
3420  } else if (n == 1) {
3421    return x;
3422  } else {
3423    double res[n+1];
3424    for (int i = 0; i < n+1; ++i) {
3425      double res0 = 0.0;
3426      if (i == 0) {
3427        res0 = 1.0;
3428      } else if (i == 1) {
3429        res0 = x;
3430      } else {
3431        res0 = 2.0 * x * res[i-1] - res[i-2];
3432      }
3433      res[i] = res0;
3434    }
3435    return res[n];
3436  }
3437}
3438
3439std::vector<float> Scantable::doPolynomialFitting(const std::vector<float>& data,
3440                                                  const std::vector<bool>& mask,
3441                                                  int order,
3442                                                  std::vector<float>& params,
3443                                                  float& rms,
3444                                                  std::vector<bool>& finalmask,
3445                                                  float clipth,
3446                                                  int clipn)
3447{
3448  int nClipped = 0;
3449  return doPolynomialFitting(data, mask, order, params, rms, finalmask, nClipped, clipth, clipn);
3450}
3451
3452std::vector<float> Scantable::doPolynomialFitting(const std::vector<float>& data,
3453                                                  const std::vector<bool>& mask,
3454                                                  int order,
3455                                                  std::vector<float>& params,
3456                                                  float& rms,
3457                                                  std::vector<bool>& finalMask,
3458                                                  int& nClipped,
3459                                                  float thresClip,
3460                                                  int nIterClip,
3461                                                  bool getResidual)
3462{
3463  return doLeastSquareFitting(data, mask,
3464                              getPolynomialModel(order, data.size(), &Scantable::getNormalPolynomial),
3465                              params, rms, finalMask,
3466                              nClipped, thresClip, nIterClip,
3467                              getResidual);
3468}
3469
3470std::vector<float> Scantable::doChebyshevFitting(const std::vector<float>& data,
3471                                                 const std::vector<bool>& mask,
3472                                                 int order,
3473                                                 std::vector<float>& params,
3474                                                 float& rms,
3475                                                 std::vector<bool>& finalmask,
3476                                                 float clipth,
3477                                                 int clipn)
3478{
3479  int nClipped = 0;
3480  return doChebyshevFitting(data, mask, order, params, rms, finalmask, nClipped, clipth, clipn);
3481}
3482
3483std::vector<float> Scantable::doChebyshevFitting(const std::vector<float>& data,
3484                                                 const std::vector<bool>& mask,
3485                                                 int order,
3486                                                 std::vector<float>& params,
3487                                                 float& rms,
3488                                                 std::vector<bool>& finalMask,
3489                                                 int& nClipped,
3490                                                 float thresClip,
3491                                                 int nIterClip,
3492                                                 bool getResidual)
3493{
3494  return doLeastSquareFitting(data, mask,
3495                              getPolynomialModel(order, data.size(), &Scantable::getChebyshevPolynomial),
3496                              params, rms, finalMask,
3497                              nClipped, thresClip, nIterClip,
3498                              getResidual);
3499}
3500
3501std::vector<std::vector<double> > Scantable::getPolynomialModel(int order, int nchan, double (Scantable::*pfunc)(int, double))
3502{
3503  // model  : contains model values for computing the least-square matrix.
3504  //          model.size() is nmodel and model[*].size() is nchan.
3505  //          Each model element are as follows:
3506  //
3507  //          (for normal polynomials)
3508  //          model[0]   = {1.0,   1.0,   1.0,   ..., 1.0},
3509  //          model[1]   = {0.0,   1.0,   2.0,   ..., (nchan-1)}
3510  //          model[n-1] = ...,
3511  //          model[n]   = {0.0^n, 1.0^n, 2.0^n, ..., (nchan-1)^n}
3512  //          where (0 <= n <= order)
3513  //
3514  //          (for Chebyshev polynomials)
3515  //          model[0]   = {T0(-1), T0(2/(nchan-1)-1), T0(4/(nchan-1)-1), ..., T0(1)},
3516  //          model[n-1] = ...,
3517  //          model[n]   = {Tn(-1), Tn(2/(nchan-1)-1), Tn(4/(nchan-1)-1), ..., Tn(1)}
3518  //          where (0 <= n <= order),
3519
3520  int nmodel = order + 1;
3521  std::vector<std::vector<double> > model(nmodel, std::vector<double>(nchan));
3522
3523  double stretch, shift;
3524  if (pfunc == &Scantable::getChebyshevPolynomial) {
3525    stretch = 2.0/(double)(nchan - 1);
3526    shift   = -1.0;
3527  } else {
3528    stretch = 1.0;
3529    shift   = 0.0;
3530  }
3531
3532  for (int i = 0; i < nmodel; ++i) {
3533    for (int j = 0; j < nchan; ++j) {
3534      model[i][j] = (this->*pfunc)(i, stretch*(double)j + shift);
3535    }
3536  }
3537
3538  return model;
3539}
3540
3541std::vector<std::vector<std::vector<double> > > Scantable::getPolynomialModelReservoir(int order,
3542                                                                                       double (Scantable::*pfunc)(int, double),
3543                                                                                       std::vector<int>& nChanNos)
3544{
3545  std::vector<std::vector<std::vector<double> > > res;
3546  res.clear();
3547  nChanNos.clear();
3548
3549  std::vector<uint> ifNos = getIFNos();
3550  for (uint i = 0; i < ifNos.size(); ++i) {
3551    int currNchan = nchan(ifNos[i]);
3552    bool hasDifferentNchan = (i == 0);
3553    for (uint j = 0; j < i; ++j) {
3554      if (currNchan != nchan(ifNos[j])) {
3555        hasDifferentNchan = true;
3556        break;
3557      }
3558    }
3559    if (hasDifferentNchan) {
3560      res.push_back(getPolynomialModel(order, currNchan, pfunc));
3561      nChanNos.push_back(currNchan);
3562    }
3563  }
3564
3565  return res;
3566}
3567
3568std::vector<float> Scantable::doLeastSquareFitting(const std::vector<float>& data,
3569                                                   const std::vector<bool>& mask,
3570                                                   const std::vector<std::vector<double> >& model,
3571                                                   std::vector<float>& params,
3572                                                   float& rms,
3573                                                   std::vector<bool>& finalMask,
3574                                                   int& nClipped,
3575                                                   float thresClip,
3576                                                   int nIterClip,
3577                                                   bool getResidual)
3578{
3579  int nDOF = model.size();
3580  int nChan = data.size();
3581
3582  if (nDOF == 0) {
3583    throw(AipsError("no model data given"));
3584  }
3585  if (nChan < 2) {
3586    throw(AipsError("data size is too few"));
3587  }
3588  if (nChan != (int)mask.size()) {
3589    throw(AipsError("data and mask sizes are not identical"));
3590  }
3591  for (int i = 0; i < nDOF; ++i) {
3592    if (nChan != (int)model[i].size()) {
3593      throw(AipsError("data and model sizes are not identical"));
3594    }
3595  }
3596
3597  params.clear();
3598  params.resize(nDOF);
3599
3600  finalMask.clear();
3601  finalMask.resize(nChan);
3602
3603  std::vector<int> maskArray(nChan);
3604  int j = 0;
3605  for (int i = 0; i < nChan; ++i) {
3606    maskArray[i] = mask[i] ? 1 : 0;
3607    if (isnan(data[i])) maskArray[i] = 0;
3608    if (isinf(data[i])) maskArray[i] = 0;
3609
3610    finalMask[i] = (maskArray[i] == 1);
3611    if (finalMask[i]) {
3612      j++;
3613    }
3614
3615    /*
3616    maskArray[i] = mask[i] ? 1 : 0;
3617    if (mask[i]) {
3618      j++;
3619    }
3620    finalMask[i] = mask[i];
3621    */
3622  }
3623
3624  int initNData = j;
3625  int nData = initNData;
3626
3627  std::vector<double> z1(nChan), r1(nChan), residual(nChan);
3628  for (int i = 0; i < nChan; ++i) {
3629    z1[i] = (double)data[i];
3630    r1[i] = 0.0;
3631    residual[i] = 0.0;
3632  }
3633
3634  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
3635    // xMatrix : horizontal concatenation of
3636    //           the least-sq. matrix (left) and an
3637    //           identity matrix (right).
3638    // the right part is used to calculate the inverse matrix of the left part.
3639    double xMatrix[nDOF][2*nDOF];
3640    double zMatrix[nDOF];
3641    for (int i = 0; i < nDOF; ++i) {
3642      for (int j = 0; j < 2*nDOF; ++j) {
3643        xMatrix[i][j] = 0.0;
3644      }
3645      xMatrix[i][nDOF+i] = 1.0;
3646      zMatrix[i] = 0.0;
3647    }
3648
3649    int nUseData = 0;
3650    for (int k = 0; k < nChan; ++k) {
3651      if (maskArray[k] == 0) continue;
3652
3653      for (int i = 0; i < nDOF; ++i) {
3654        for (int j = i; j < nDOF; ++j) {
3655          xMatrix[i][j] += model[i][k] * model[j][k];
3656        }
3657        zMatrix[i] += z1[k] * model[i][k];
3658      }
3659
3660      nUseData++;
3661    }
3662
3663    if (nUseData < 1) {
3664        throw(AipsError("all channels clipped or masked. can't execute fitting anymore."));     
3665    }
3666
3667    for (int i = 0; i < nDOF; ++i) {
3668      for (int j = 0; j < i; ++j) {
3669        xMatrix[i][j] = xMatrix[j][i];
3670      }
3671    }
3672
3673    //compute inverse matrix of the left half of xMatrix
3674    std::vector<double> invDiag(nDOF);
3675    for (int i = 0; i < nDOF; ++i) {
3676      invDiag[i] = 1.0 / xMatrix[i][i];
3677      for (int j = 0; j < nDOF; ++j) {
3678        xMatrix[i][j] *= invDiag[i];
3679      }
3680    }
3681
3682    for (int k = 0; k < nDOF; ++k) {
3683      for (int i = 0; i < nDOF; ++i) {
3684        if (i != k) {
3685          double factor1 = xMatrix[k][k];
3686          double invfactor1 = 1.0 / factor1;
3687          double factor2 = xMatrix[i][k];
3688          for (int j = k; j < 2*nDOF; ++j) {
3689            xMatrix[i][j] *= factor1;
3690            xMatrix[i][j] -= xMatrix[k][j]*factor2;
3691            xMatrix[i][j] *= invfactor1;
3692          }
3693        }
3694      }
3695      double invXDiag = 1.0 / xMatrix[k][k];
3696      for (int j = k; j < 2*nDOF; ++j) {
3697        xMatrix[k][j] *= invXDiag;
3698      }
3699    }
3700   
3701    for (int i = 0; i < nDOF; ++i) {
3702      for (int j = 0; j < nDOF; ++j) {
3703        xMatrix[i][nDOF+j] *= invDiag[j];
3704      }
3705    }
3706    //compute a vector y in which coefficients of the best-fit
3707    //model functions are stored.
3708    //in case of polynomials, y consists of (a0,a1,a2,...)
3709    //where ai is the coefficient of the term x^i.
3710    //in case of sinusoids, y consists of (a0,s1,c1,s2,c2,...)
3711    //where a0 is constant term and s* and c* are of sine
3712    //and cosine functions, respectively.
3713    std::vector<double> y(nDOF);
3714    for (int i = 0; i < nDOF; ++i) {
3715      y[i] = 0.0;
3716      for (int j = 0; j < nDOF; ++j) {
3717        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
3718      }
3719      params[i] = (float)y[i];
3720    }
3721
3722    for (int i = 0; i < nChan; ++i) {
3723      r1[i] = y[0];
3724      for (int j = 1; j < nDOF; ++j) {
3725        r1[i] += y[j]*model[j][i];
3726      }
3727      residual[i] = z1[i] - r1[i];
3728    }
3729
3730    double stdDev = 0.0;
3731    for (int i = 0; i < nChan; ++i) {
3732      if (maskArray[i] == 0) continue;
3733      stdDev += residual[i]*residual[i];
3734    }
3735    stdDev = sqrt(stdDev/(double)nData);
3736    rms = (float)stdDev;
3737
3738    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
3739      break;
3740    } else {
3741
3742      double thres = stdDev * thresClip;
3743      int newNData = 0;
3744      for (int i = 0; i < nChan; ++i) {
3745        if (abs(residual[i]) >= thres) {
3746          maskArray[i] = 0;
3747          finalMask[i] = false;
3748        }
3749        if (maskArray[i] > 0) {
3750          newNData++;
3751        }
3752      }
3753      if (newNData == nData) {
3754        break; //no more flag to add. stop iteration.
3755      } else {
3756        nData = newNData;
3757      }
3758
3759    }
3760  }
3761
3762  nClipped = initNData - nData;
3763
3764  std::vector<float> result(nChan);
3765  if (getResidual) {
3766    for (int i = 0; i < nChan; ++i) {
3767      result[i] = (float)residual[i];
3768    }
3769  } else {
3770    for (int i = 0; i < nChan; ++i) {
3771      result[i] = (float)r1[i];
3772    }
3773  }
3774
3775  return result;
3776} //xMatrix
3777
3778void Scantable::cubicSplineBaseline(const std::vector<bool>& mask, int nPiece,
3779                                    float thresClip, int nIterClip,
3780                                    bool getResidual,
3781                                    const std::string& progressInfo,
3782                                    const bool outLogger, const std::string& blfile,
3783                                    const std::string& bltable)
3784{
3785  /****
3786  double TimeStart = mathutil::gettimeofday_sec();
3787  ****/
3788
3789  try {
3790    ofstream ofs;
3791    String coordInfo;
3792    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3793    int minNRow;
3794    int nRow = nrow();
3795    std::vector<bool> chanMask, finalChanMask;
3796    float rms;
3797    bool outBaselineTable = (bltable != "");
3798    STBaselineTable bt = STBaselineTable(*this);
3799    Vector<Double> timeSecCol;
3800
3801    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3802                         coordInfo, hasSameNchan,
3803                         progressInfo, showProgress, minNRow,
3804                         timeSecCol);
3805
3806    std::vector<int> nChanNos;
3807    std::vector<std::vector<std::vector<double> > > modelReservoir;
3808    modelReservoir = getPolynomialModelReservoir(3,
3809                                                 &Scantable::getNormalPolynomial,
3810                                                 nChanNos);
3811
3812    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3813      std::vector<float> sp = getSpectrum(whichrow);
3814      chanMask = getCompositeChanMask(whichrow, mask);
3815
3816      std::vector<int> pieceEdges;
3817      std::vector<float> params;
3818      int nClipped = 0;
3819      std::vector<float> res = doCubicSplineLeastSquareFitting(sp, chanMask,
3820                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3821                                   nPiece, false, pieceEdges, params, rms, finalChanMask,
3822                                   nClipped, thresClip, nIterClip, getResidual);
3823
3824      if (outBaselineTable) {
3825        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3826                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3827                      true, STBaselineFunc::CSpline, pieceEdges, std::vector<float>(),
3828                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3829                      thresClip, nIterClip, 0.0, 0, std::vector<int>());
3830      } else {
3831        setSpectrum(res, whichrow);
3832      }
3833
3834      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3835                          coordInfo, hasSameNchan, ofs, "cubicSplineBaseline()",
3836                          pieceEdges, params, nClipped);
3837      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3838    }
3839   
3840    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3841
3842  } catch (...) {
3843    throw;
3844  }
3845
3846  /****
3847  double TimeEnd = mathutil::gettimeofday_sec();
3848  double elapse1 = TimeEnd - TimeStart;
3849  std::cout << "cspline-new   : " << elapse1 << " (sec.)" << endl;
3850  ****/
3851}
3852
3853void Scantable::autoCubicSplineBaseline(const std::vector<bool>& mask, int nPiece,
3854                                        float thresClip, int nIterClip,
3855                                        const std::vector<int>& edge,
3856                                        float threshold, int chanAvgLimit,
3857                                        bool getResidual,
3858                                        const std::string& progressInfo,
3859                                        const bool outLogger, const std::string& blfile,
3860                                        const std::string& bltable)
3861{
3862  try {
3863    ofstream ofs;
3864    String coordInfo;
3865    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3866    int minNRow;
3867    int nRow = nrow();
3868    std::vector<bool> chanMask, finalChanMask;
3869    float rms;
3870    bool outBaselineTable = (bltable != "");
3871    STBaselineTable bt = STBaselineTable(*this);
3872    Vector<Double> timeSecCol;
3873    STLineFinder lineFinder = STLineFinder();
3874
3875    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3876                         coordInfo, hasSameNchan,
3877                         progressInfo, showProgress, minNRow,
3878                         timeSecCol);
3879
3880    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3881
3882    std::vector<int> nChanNos;
3883    std::vector<std::vector<std::vector<double> > > modelReservoir;
3884    modelReservoir = getPolynomialModelReservoir(3,
3885                                                 &Scantable::getNormalPolynomial,
3886                                                 nChanNos);
3887
3888    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3889      std::vector<float> sp = getSpectrum(whichrow);
3890      std::vector<int> currentEdge;
3891      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
3892
3893      std::vector<int> pieceEdges;
3894      std::vector<float> params;
3895      int nClipped = 0;
3896      std::vector<float> res = doCubicSplineLeastSquareFitting(sp, chanMask,
3897                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3898                                   nPiece, false, pieceEdges, params, rms, finalChanMask,
3899                                   nClipped, thresClip, nIterClip, getResidual);
3900
3901      if (outBaselineTable) {
3902        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3903                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3904                      true, STBaselineFunc::CSpline, pieceEdges, std::vector<float>(),
3905                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3906                      thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
3907      } else {
3908        setSpectrum(res, whichrow);
3909      }
3910
3911      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3912                          coordInfo, hasSameNchan, ofs, "autoCubicSplineBaseline()",
3913                          pieceEdges, params, nClipped);
3914      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3915    }
3916
3917    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3918
3919  } catch (...) {
3920    throw;
3921  }
3922}
3923
3924std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
3925                                                   const std::vector<bool>& mask,
3926                                                   std::vector<int>& idxEdge,
3927                                                   std::vector<float>& params,
3928                                                   float& rms,
3929                                                   std::vector<bool>& finalmask,
3930                                                   float clipth,
3931                                                   int clipn)
3932{
3933  int nClipped = 0;
3934  return doCubicSplineFitting(data, mask, idxEdge.size()-1, true, idxEdge, params, rms, finalmask, nClipped, clipth, clipn);
3935}
3936
3937std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
3938                                                   const std::vector<bool>& mask,
3939                                                   int nPiece,
3940                                                   std::vector<int>& idxEdge,
3941                                                   std::vector<float>& params,
3942                                                   float& rms,
3943                                                   std::vector<bool>& finalmask,
3944                                                   float clipth,
3945                                                   int clipn)
3946{
3947  int nClipped = 0;
3948  return doCubicSplineFitting(data, mask, nPiece, false, idxEdge, params, rms, finalmask, nClipped, clipth, clipn);
3949}
3950
3951std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
3952                                                   const std::vector<bool>& mask,
3953                                                   int nPiece,
3954                                                   bool useGivenPieceBoundary,
3955                                                   std::vector<int>& idxEdge,
3956                                                   std::vector<float>& params,
3957                                                   float& rms,
3958                                                   std::vector<bool>& finalMask,
3959                                                   int& nClipped,
3960                                                   float thresClip,
3961                                                   int nIterClip,
3962                                                   bool getResidual)
3963{
3964  return doCubicSplineLeastSquareFitting(data, mask,
3965                                         getPolynomialModel(3, data.size(), &Scantable::getNormalPolynomial),
3966                                         nPiece, useGivenPieceBoundary, idxEdge,
3967                                         params, rms, finalMask,
3968                                         nClipped, thresClip, nIterClip,
3969                                         getResidual);
3970}
3971
3972std::vector<float> Scantable::doCubicSplineLeastSquareFitting(const std::vector<float>& data,
3973                                                              const std::vector<bool>& mask,
3974                                                              const std::vector<std::vector<double> >& model,
3975                                                              int nPiece,
3976                                                              bool useGivenPieceBoundary,
3977                                                              std::vector<int>& idxEdge,
3978                                                              std::vector<float>& params,
3979                                                              float& rms,
3980                                                              std::vector<bool>& finalMask,
3981                                                              int& nClipped,
3982                                                              float thresClip,
3983                                                              int nIterClip,
3984                                                              bool getResidual)
3985{
3986  int nDOF = nPiece + 3;  //number of independent parameters to solve, namely, 4+(nPiece-1).
3987  int nModel = model.size();
3988  int nChan = data.size();
3989
3990  if (nModel != 4) {
3991    throw(AipsError("model size must be 4."));
3992  }
3993  if (nPiece < 1) {
3994    throw(AipsError("number of the sections must be one or more"));
3995  }
3996  if (nChan < 2*nPiece) {
3997    throw(AipsError("data size is too few"));
3998  }
3999  if (nChan != (int)mask.size()) {
4000    throw(AipsError("data and mask sizes are not identical"));
4001  }
4002  for (int i = 0; i < nModel; ++i) {
4003    if (nChan != (int)model[i].size()) {
4004      throw(AipsError("data and model sizes are not identical"));
4005    }
4006  }
4007
4008  params.clear();
4009  params.resize(nPiece*nModel);
4010
4011  finalMask.clear();
4012  finalMask.resize(nChan);
4013
4014  std::vector<int> maskArray(nChan);
4015  std::vector<int> x(nChan);
4016  int j = 0;
4017  for (int i = 0; i < nChan; ++i) {
4018    maskArray[i] = mask[i] ? 1 : 0;
4019    if (isnan(data[i])) maskArray[i] = 0;
4020    if (isinf(data[i])) maskArray[i] = 0;
4021
4022    finalMask[i] = (maskArray[i] == 1);
4023    if (finalMask[i]) {
4024      x[j] = i;
4025      j++;
4026    }
4027
4028    /*
4029    maskArray[i] = mask[i] ? 1 : 0;
4030    if (mask[i]) {
4031      x[j] = i;
4032      j++;
4033    }
4034    finalMask[i] = mask[i];
4035    */
4036  }
4037
4038  int initNData = j;
4039  int nData = initNData;
4040
4041  if (initNData < nPiece) {
4042    throw(AipsError("too few non-flagged channels"));
4043  }
4044
4045  int nElement = (int)(floor(floor((double)(initNData/nPiece))+0.5));
4046  std::vector<double> invEdge(nPiece-1);
4047
4048  if (useGivenPieceBoundary) {
4049    if ((int)idxEdge.size() != nPiece+1) {
4050      throw(AipsError("pieceEdge.size() must be equal to nPiece+1."));
4051    }
4052  } else {
4053    idxEdge.clear();
4054    idxEdge.resize(nPiece+1);
4055    idxEdge[0] = x[0];
4056  }
4057  for (int i = 1; i < nPiece; ++i) {
4058    int valX = x[nElement*i];
4059    if (!useGivenPieceBoundary) {
4060      idxEdge[i] = valX;
4061    }
4062    invEdge[i-1] = 1.0/(double)valX;
4063  }
4064  if (!useGivenPieceBoundary) {
4065    idxEdge[nPiece] = x[initNData-1]+1;
4066  }
4067
4068  std::vector<double> z1(nChan), r1(nChan), residual(nChan);
4069  for (int i = 0; i < nChan; ++i) {
4070    z1[i] = (double)data[i];
4071    r1[i] = 0.0;
4072    residual[i] = 0.0;
4073  }
4074
4075  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
4076    // xMatrix : horizontal concatenation of
4077    //           the least-sq. matrix (left) and an
4078    //           identity matrix (right).
4079    // the right part is used to calculate the inverse matrix of the left part.
4080
4081    double xMatrix[nDOF][2*nDOF];
4082    double zMatrix[nDOF];
4083    for (int i = 0; i < nDOF; ++i) {
4084      for (int j = 0; j < 2*nDOF; ++j) {
4085        xMatrix[i][j] = 0.0;
4086      }
4087      xMatrix[i][nDOF+i] = 1.0;
4088      zMatrix[i] = 0.0;
4089    }
4090
4091    for (int n = 0; n < nPiece; ++n) {
4092      int nUseDataInPiece = 0;
4093      for (int k = idxEdge[n]; k < idxEdge[n+1]; ++k) {
4094
4095        if (maskArray[k] == 0) continue;
4096
4097        for (int i = 0; i < nModel; ++i) {
4098          for (int j = i; j < nModel; ++j) {
4099            xMatrix[i][j] += model[i][k] * model[j][k];
4100          }
4101          zMatrix[i] += z1[k] * model[i][k];
4102        }
4103
4104        for (int i = 0; i < n; ++i) {
4105          double q = 1.0 - model[1][k]*invEdge[i];
4106          q = q*q*q;
4107          for (int j = 0; j < nModel; ++j) {
4108            xMatrix[j][i+nModel] += q * model[j][k];
4109          }
4110          for (int j = 0; j < i; ++j) {
4111            double r = 1.0 - model[1][k]*invEdge[j];
4112            r = r*r*r;
4113            xMatrix[j+nModel][i+nModel] += r*q;
4114          }
4115          xMatrix[i+nModel][i+nModel] += q*q;
4116          zMatrix[i+nModel] += q*z1[k];
4117        }
4118
4119        nUseDataInPiece++;
4120      }
4121
4122      if (nUseDataInPiece < 1) {
4123        std::vector<string> suffixOfPieceNumber(4);
4124        suffixOfPieceNumber[0] = "th";
4125        suffixOfPieceNumber[1] = "st";
4126        suffixOfPieceNumber[2] = "nd";
4127        suffixOfPieceNumber[3] = "rd";
4128        int idxNoDataPiece = (n % 10 <= 3) ? n : 0;
4129        ostringstream oss;
4130        oss << "all channels clipped or masked in " << n << suffixOfPieceNumber[idxNoDataPiece];
4131        oss << " piece of the spectrum. can't execute fitting anymore.";
4132        throw(AipsError(String(oss)));
4133      }
4134    }
4135
4136    for (int i = 0; i < nDOF; ++i) {
4137      for (int j = 0; j < i; ++j) {
4138        xMatrix[i][j] = xMatrix[j][i];
4139      }
4140    }
4141
4142    std::vector<double> invDiag(nDOF);
4143    for (int i = 0; i < nDOF; ++i) {
4144      invDiag[i] = 1.0 / xMatrix[i][i];
4145      for (int j = 0; j < nDOF; ++j) {
4146        xMatrix[i][j] *= invDiag[i];
4147      }
4148    }
4149
4150    for (int k = 0; k < nDOF; ++k) {
4151      for (int i = 0; i < nDOF; ++i) {
4152        if (i != k) {
4153          double factor1 = xMatrix[k][k];
4154          double invfactor1 = 1.0 / factor1;
4155          double factor2 = xMatrix[i][k];
4156          for (int j = k; j < 2*nDOF; ++j) {
4157            xMatrix[i][j] *= factor1;
4158            xMatrix[i][j] -= xMatrix[k][j]*factor2;
4159            xMatrix[i][j] *= invfactor1;
4160          }
4161        }
4162      }
4163      double invXDiag = 1.0 / xMatrix[k][k];
4164      for (int j = k; j < 2*nDOF; ++j) {
4165        xMatrix[k][j] *= invXDiag;
4166      }
4167    }
4168   
4169    for (int i = 0; i < nDOF; ++i) {
4170      for (int j = 0; j < nDOF; ++j) {
4171        xMatrix[i][nDOF+j] *= invDiag[j];
4172      }
4173    }
4174
4175    //compute a vector y which consists of the coefficients of the best-fit spline curves
4176    //(a0,a1,a2,a3(,b3,c3,...)), namely, the ones for the leftmost piece and the ones of
4177    //cubic terms for the other pieces (in case nPiece>1).
4178    std::vector<double> y(nDOF);
4179    for (int i = 0; i < nDOF; ++i) {
4180      y[i] = 0.0;
4181      for (int j = 0; j < nDOF; ++j) {
4182        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
4183      }
4184    }
4185
4186    std::vector<double> a(nModel);
4187    for (int i = 0; i < nModel; ++i) {
4188      a[i] = y[i];
4189    }
4190
4191    int j = 0;
4192    for (int n = 0; n < nPiece; ++n) {
4193      for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
4194        r1[i] = 0.0;
4195        for (int j = 0; j < nModel; ++j) {
4196          r1[i] += a[j] * model[j][i];
4197        }
4198      }
4199      for (int i = 0; i < nModel; ++i) {
4200        params[j+i] = a[i];
4201      }
4202      j += nModel;
4203
4204      if (n == nPiece-1) break;
4205
4206      double d = y[n+nModel];
4207      double iE = invEdge[n];
4208      a[0] +=       d;
4209      a[1] -= 3.0 * d * iE;
4210      a[2] += 3.0 * d * iE * iE;
4211      a[3] -=       d * iE * iE * iE;
4212    }
4213
4214    //subtract constant value for masked regions at the edge of spectrum
4215    if (idxEdge[0] > 0) {
4216      int n = idxEdge[0];
4217      for (int i = 0; i < idxEdge[0]; ++i) {
4218        //--cubic extrapolate--
4219        //r1[i] = params[0] + params[1]*x1[i] + params[2]*x2[i] + params[3]*x3[i];
4220        //--linear extrapolate--
4221        //r1[i] = (r1[n+1] - r1[n])/(x1[n+1] - x1[n])*(x1[i] - x1[n]) + r1[n];
4222        //--constant--
4223        r1[i] = r1[n];
4224      }
4225    }
4226
4227    if (idxEdge[nPiece] < nChan) {
4228      int n = idxEdge[nPiece]-1;
4229      for (int i = idxEdge[nPiece]; i < nChan; ++i) {
4230        //--cubic extrapolate--
4231        //int m = 4*(nPiece-1);
4232        //r1[i] = params[m] + params[m+1]*x1[i] + params[m+2]*x2[i] + params[m+3]*x3[i];
4233        //--linear extrapolate--
4234        //r1[i] = (r1[n-1] - r1[n])/(x1[n-1] - x1[n])*(x1[i] - x1[n]) + r1[n];
4235        //--constant--
4236        r1[i] = r1[n];
4237      }
4238    }
4239
4240    for (int i = 0; i < nChan; ++i) {
4241      residual[i] = z1[i] - r1[i];
4242    }
4243
4244    double stdDev = 0.0;
4245    for (int i = 0; i < nChan; ++i) {
4246      if (maskArray[i] == 0) continue;
4247      stdDev += residual[i]*residual[i];
4248    }
4249    stdDev = sqrt(stdDev/(double)nData);
4250    rms = (float)stdDev;
4251
4252    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
4253      break;
4254    } else {
4255     
4256      double thres = stdDev * thresClip;
4257      int newNData = 0;
4258      for (int i = 0; i < nChan; ++i) {
4259        if (abs(residual[i]) >= thres) {
4260          maskArray[i] = 0;
4261          finalMask[i] = false;
4262        }
4263        if (maskArray[i] > 0) {
4264          newNData++;
4265        }
4266      }
4267      if (newNData == nData) {
4268        break; //no more flag to add. iteration stops.
4269      } else {
4270        nData = newNData;
4271      }
4272
4273    }
4274  }
4275
4276  nClipped = initNData - nData;
4277
4278  std::vector<float> result(nChan);
4279  if (getResidual) {
4280    for (int i = 0; i < nChan; ++i) {
4281      result[i] = (float)residual[i];
4282    }
4283  } else {
4284    for (int i = 0; i < nChan; ++i) {
4285      result[i] = (float)r1[i];
4286    }
4287  }
4288
4289  return result;
4290}
4291
4292std::vector<int> Scantable::selectWaveNumbers(const std::vector<int>& addNWaves,
4293                                  const std::vector<int>& rejectNWaves)
4294{
4295  std::vector<bool> chanMask;
4296  std::string fftMethod;
4297  std::string fftThresh;
4298
4299  return selectWaveNumbers(0, chanMask, false, fftMethod, fftThresh, addNWaves, rejectNWaves);
4300}
4301
4302std::vector<int> Scantable::selectWaveNumbers(const int whichrow,
4303                                  const std::vector<bool>& chanMask,
4304                                  const bool applyFFT,
4305                                  const std::string& fftMethod,
4306                                  const std::string& fftThresh,
4307                                  const std::vector<int>& addNWaves,
4308                                  const std::vector<int>& rejectNWaves)
4309{
4310  std::vector<int> nWaves;
4311  nWaves.clear();
4312
4313  if (applyFFT) {
4314    string fftThAttr;
4315    float fftThSigma;
4316    int fftThTop;
4317    parseFFTThresholdInfo(fftThresh, fftThAttr, fftThSigma, fftThTop);
4318    doSelectWaveNumbers(whichrow, chanMask, fftMethod, fftThSigma, fftThTop, fftThAttr, nWaves);
4319  }
4320
4321  addAuxWaveNumbers(whichrow, addNWaves, rejectNWaves, nWaves);
4322
4323  return nWaves;
4324}
4325
4326int Scantable::getIdxOfNchan(const int nChan, const std::vector<int>& nChanNos)
4327{
4328  int idx = -1;
4329  for (uint i = 0; i < nChanNos.size(); ++i) {
4330    if (nChan == nChanNos[i]) {
4331      idx = i;
4332      break;
4333    }
4334  }
4335
4336  if (idx < 0) {
4337    throw(AipsError("nChan not found in nChhanNos."));
4338  }
4339
4340  return idx;
4341}
4342
4343void Scantable::parseFFTInfo(const std::string& fftInfo, bool& applyFFT, std::string& fftMethod, std::string& fftThresh)
4344{
4345  istringstream iss(fftInfo);
4346  std::string tmp;
4347  std::vector<string> res;
4348  while (getline(iss, tmp, ',')) {
4349    res.push_back(tmp);
4350  }
4351  if (res.size() < 3) {
4352    throw(AipsError("wrong value in 'fftinfo' parameter")) ;
4353  }
4354  applyFFT = (res[0] == "true");
4355  fftMethod = res[1];
4356  fftThresh = res[2];
4357}
4358
4359void Scantable::parseFFTThresholdInfo(const std::string& fftThresh, std::string& fftThAttr, float& fftThSigma, int& fftThTop)
4360{
4361  uInt idxSigma = fftThresh.find("sigma");
4362  uInt idxTop   = fftThresh.find("top");
4363
4364  if (idxSigma == fftThresh.size() - 5) {
4365    std::istringstream is(fftThresh.substr(0, fftThresh.size() - 5));
4366    is >> fftThSigma;
4367    fftThAttr = "sigma";
4368  } else if (idxTop == 0) {
4369    std::istringstream is(fftThresh.substr(3));
4370    is >> fftThTop;
4371    fftThAttr = "top";
4372  } else {
4373    bool isNumber = true;
4374    for (uInt i = 0; i < fftThresh.size()-1; ++i) {
4375      char ch = (fftThresh.substr(i, 1).c_str())[0];
4376      if (!(isdigit(ch) || (fftThresh.substr(i, 1) == "."))) {
4377        isNumber = false;
4378        break;
4379      }
4380    }
4381    if (isNumber) {
4382      std::istringstream is(fftThresh);
4383      is >> fftThSigma;
4384      fftThAttr = "sigma";
4385    } else {
4386      throw(AipsError("fftthresh has a wrong value"));
4387    }
4388  }
4389}
4390
4391void Scantable::doSelectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const std::string& fftMethod, const float fftThSigma, const int fftThTop, const std::string& fftThAttr, std::vector<int>& nWaves)
4392{
4393  std::vector<float> fspec;
4394  if (fftMethod == "fft") {
4395    fspec = execFFT(whichrow, chanMask, false, true);
4396  //} else if (fftMethod == "lsp") {
4397  //  fspec = lombScarglePeriodogram(whichrow);
4398  }
4399
4400  if (fftThAttr == "sigma") {
4401    float mean  = 0.0;
4402    float mean2 = 0.0;
4403    for (uInt i = 0; i < fspec.size(); ++i) {
4404      mean  += fspec[i];
4405      mean2 += fspec[i]*fspec[i];
4406    }
4407    mean  /= float(fspec.size());
4408    mean2 /= float(fspec.size());
4409    float thres = mean + fftThSigma * float(sqrt(mean2 - mean*mean));
4410
4411    for (uInt i = 0; i < fspec.size(); ++i) {
4412      if (fspec[i] >= thres) {
4413        nWaves.push_back(i);
4414      }
4415    }
4416
4417  } else if (fftThAttr == "top") {
4418    for (int i = 0; i < fftThTop; ++i) {
4419      float max = 0.0;
4420      int maxIdx = 0;
4421      for (uInt j = 0; j < fspec.size(); ++j) {
4422        if (fspec[j] > max) {
4423          max = fspec[j];
4424          maxIdx = j;
4425        }
4426      }
4427      nWaves.push_back(maxIdx);
4428      fspec[maxIdx] = 0.0;
4429    }
4430
4431  }
4432
4433  if (nWaves.size() > 1) {
4434    sort(nWaves.begin(), nWaves.end());
4435  }
4436}
4437
4438void Scantable::addAuxWaveNumbers(const int whichrow, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves)
4439{
4440  std::vector<int> tempAddNWaves, tempRejectNWaves;
4441  tempAddNWaves.clear();
4442  tempRejectNWaves.clear();
4443
4444  for (uInt i = 0; i < addNWaves.size(); ++i) {
4445    tempAddNWaves.push_back(addNWaves[i]);
4446  }
4447  if ((tempAddNWaves.size() == 2) && (tempAddNWaves[1] == -999)) {
4448    setWaveNumberListUptoNyquistFreq(whichrow, tempAddNWaves);
4449  }
4450
4451  for (uInt i = 0; i < rejectNWaves.size(); ++i) {
4452    tempRejectNWaves.push_back(rejectNWaves[i]);
4453  }
4454  if ((tempRejectNWaves.size() == 2) && (tempRejectNWaves[1] == -999)) {
4455    setWaveNumberListUptoNyquistFreq(whichrow, tempRejectNWaves);
4456  }
4457
4458  for (uInt i = 0; i < tempAddNWaves.size(); ++i) {
4459    bool found = false;
4460    for (uInt j = 0; j < nWaves.size(); ++j) {
4461      if (nWaves[j] == tempAddNWaves[i]) {
4462        found = true;
4463        break;
4464      }
4465    }
4466    if (!found) nWaves.push_back(tempAddNWaves[i]);
4467  }
4468
4469  for (uInt i = 0; i < tempRejectNWaves.size(); ++i) {
4470    for (std::vector<int>::iterator j = nWaves.begin(); j != nWaves.end(); ) {
4471      if (*j == tempRejectNWaves[i]) {
4472        j = nWaves.erase(j);
4473      } else {
4474        ++j;
4475      }
4476    }
4477  }
4478
4479  if (nWaves.size() > 1) {
4480    sort(nWaves.begin(), nWaves.end());
4481    unique(nWaves.begin(), nWaves.end());
4482  }
4483}
4484
4485void Scantable::setWaveNumberListUptoNyquistFreq(const int whichrow, std::vector<int>& nWaves)
4486{
4487  int val = nWaves[0];
4488  int nyquistFreq = nchan(getIF(whichrow))/2+1;
4489  nWaves.clear();
4490  if (val > nyquistFreq) {  // for safety, at least nWaves contains a constant; CAS-3759
4491    nWaves.push_back(0);
4492  }
4493  while (val <= nyquistFreq) {
4494    nWaves.push_back(val);
4495    val++;
4496  }
4497}
4498
4499void Scantable::sinusoidBaseline(const std::vector<bool>& mask, const std::string& fftInfo,
4500                                 const std::vector<int>& addNWaves,
4501                                 const std::vector<int>& rejectNWaves,
4502                                 float thresClip, int nIterClip,
4503                                 bool getResidual,
4504                                 const std::string& progressInfo,
4505                                 const bool outLogger, const std::string& blfile,
4506                                 const std::string& bltable)
4507{
4508  /****
4509  double TimeStart = mathutil::gettimeofday_sec();
4510  ****/
4511
4512  try {
4513    ofstream ofs;
4514    String coordInfo;
4515    bool hasSameNchan, outTextFile, csvFormat, showProgress;
4516    int minNRow;
4517    int nRow = nrow();
4518    std::vector<bool> chanMask, finalChanMask;
4519    float rms;
4520    bool outBaselineTable = (bltable != "");
4521    STBaselineTable bt = STBaselineTable(*this);
4522    Vector<Double> timeSecCol;
4523
4524    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
4525                         coordInfo, hasSameNchan,
4526                         progressInfo, showProgress, minNRow,
4527                         timeSecCol);
4528
4529    bool applyFFT;
4530    std::string fftMethod, fftThresh;
4531    parseFFTInfo(fftInfo, applyFFT, fftMethod, fftThresh);
4532
4533    std::vector<int> nWaves;
4534    std::vector<int> nChanNos;
4535    std::vector<std::vector<std::vector<double> > > modelReservoir;
4536    if (!applyFFT) {
4537      nWaves = selectWaveNumbers(addNWaves, rejectNWaves);
4538      modelReservoir = getSinusoidModelReservoir(nWaves, nChanNos);
4539    }
4540
4541    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
4542      std::vector<float> sp = getSpectrum(whichrow);
4543      chanMask = getCompositeChanMask(whichrow, mask);
4544      std::vector<std::vector<double> > model;
4545      if (applyFFT) {
4546        nWaves = selectWaveNumbers(whichrow, chanMask, true, fftMethod, fftThresh,
4547                                   addNWaves, rejectNWaves);
4548        model = getSinusoidModel(nWaves, sp.size());
4549      } else {
4550        model = modelReservoir[getIdxOfNchan(sp.size(), nChanNos)];
4551      }
4552
4553      std::vector<float> params;
4554      int nClipped = 0;
4555      std::vector<float> res = doLeastSquareFitting(sp, chanMask, model,
4556                                   params, rms, finalChanMask,
4557                                   nClipped, thresClip, nIterClip, getResidual);
4558
4559      if (outBaselineTable) {
4560        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4561                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4562                      true, STBaselineFunc::Sinusoid, nWaves, std::vector<float>(),
4563                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
4564                      thresClip, nIterClip, 0.0, 0, std::vector<int>());
4565      } else {
4566        setSpectrum(res, whichrow);
4567      }
4568
4569      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
4570                          coordInfo, hasSameNchan, ofs, "sinusoidBaseline()",
4571                          params, nClipped);
4572      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
4573    }
4574
4575    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
4576
4577  } catch (...) {
4578    throw;
4579  }
4580
4581  /****
4582  double TimeEnd = mathutil::gettimeofday_sec();
4583  double elapse1 = TimeEnd - TimeStart;
4584  std::cout << "sinusoid-old   : " << elapse1 << " (sec.)" << endl;
4585  ****/
4586}
4587
4588void Scantable::autoSinusoidBaseline(const std::vector<bool>& mask, const std::string& fftInfo,
4589                                     const std::vector<int>& addNWaves,
4590                                     const std::vector<int>& rejectNWaves,
4591                                     float thresClip, int nIterClip,
4592                                     const std::vector<int>& edge,
4593                                     float threshold, int chanAvgLimit,
4594                                     bool getResidual,
4595                                     const std::string& progressInfo,
4596                                     const bool outLogger, const std::string& blfile,
4597                                     const std::string& bltable)
4598{
4599  try {
4600    ofstream ofs;
4601    String coordInfo;
4602    bool hasSameNchan, outTextFile, csvFormat, showProgress;
4603    int minNRow;
4604    int nRow = nrow();
4605    std::vector<bool> chanMask, finalChanMask;
4606    float rms;
4607    bool outBaselineTable = (bltable != "");
4608    STBaselineTable bt = STBaselineTable(*this);
4609    Vector<Double> timeSecCol;
4610    STLineFinder lineFinder = STLineFinder();
4611
4612    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
4613                         coordInfo, hasSameNchan,
4614                         progressInfo, showProgress, minNRow,
4615                         timeSecCol);
4616
4617    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
4618
4619    bool applyFFT;
4620    string fftMethod, fftThresh;
4621    parseFFTInfo(fftInfo, applyFFT, fftMethod, fftThresh);
4622
4623    std::vector<int> nWaves;
4624    std::vector<int> nChanNos;
4625    std::vector<std::vector<std::vector<double> > > modelReservoir;
4626    if (!applyFFT) {
4627      nWaves = selectWaveNumbers(addNWaves, rejectNWaves);
4628      modelReservoir = getSinusoidModelReservoir(nWaves, nChanNos);
4629    }
4630
4631    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
4632      std::vector<float> sp = getSpectrum(whichrow);
4633      std::vector<int> currentEdge;
4634      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
4635      std::vector<std::vector<double> > model;
4636      if (applyFFT) {
4637        nWaves = selectWaveNumbers(whichrow, chanMask, true, fftMethod, fftThresh,
4638                                   addNWaves, rejectNWaves);
4639        model = getSinusoidModel(nWaves, sp.size());
4640      } else {
4641        model = modelReservoir[getIdxOfNchan(sp.size(), nChanNos)];
4642      }
4643
4644      std::vector<float> params;
4645      int nClipped = 0;
4646      std::vector<float> res = doLeastSquareFitting(sp, chanMask, model,
4647                                   params, rms, finalChanMask,
4648                                   nClipped, thresClip, nIterClip, getResidual);
4649
4650      if (outBaselineTable) {
4651        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4652                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4653                      true, STBaselineFunc::Sinusoid, nWaves, std::vector<float>(),
4654                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
4655                      thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
4656      } else {
4657        setSpectrum(res, whichrow);
4658      }
4659
4660      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
4661                          coordInfo, hasSameNchan, ofs, "autoSinusoidBaseline()",
4662                          params, nClipped);
4663      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
4664    }
4665
4666    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
4667
4668  } catch (...) {
4669    throw;
4670  }
4671}
4672
4673std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data,
4674                                                const std::vector<bool>& mask,
4675                                                const std::vector<int>& waveNumbers,
4676                                                std::vector<float>& params,
4677                                                float& rms,
4678                                                std::vector<bool>& finalmask,
4679                                                float clipth,
4680                                                int clipn)
4681{
4682  int nClipped = 0;
4683  return doSinusoidFitting(data, mask, waveNumbers, params, rms, finalmask, nClipped, clipth, clipn);
4684}
4685
4686std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data,
4687                                                const std::vector<bool>& mask,
4688                                                const std::vector<int>& waveNumbers,
4689                                                std::vector<float>& params,
4690                                                float& rms,
4691                                                std::vector<bool>& finalMask,
4692                                                int& nClipped,
4693                                                float thresClip,
4694                                                int nIterClip,
4695                                                bool getResidual)
4696{
4697  return doLeastSquareFitting(data, mask,
4698                              getSinusoidModel(waveNumbers, data.size()),
4699                              params, rms, finalMask,
4700                              nClipped, thresClip, nIterClip,
4701                              getResidual);
4702}
4703
4704std::vector<std::vector<std::vector<double> > > Scantable::getSinusoidModelReservoir(const std::vector<int>& waveNumbers,
4705                                                                                     std::vector<int>& nChanNos)
4706{
4707  std::vector<std::vector<std::vector<double> > > res;
4708  res.clear();
4709  nChanNos.clear();
4710
4711  std::vector<uint> ifNos = getIFNos();
4712  for (uint i = 0; i < ifNos.size(); ++i) {
4713    int currNchan = nchan(ifNos[i]);
4714    bool hasDifferentNchan = (i == 0);
4715    for (uint j = 0; j < i; ++j) {
4716      if (currNchan != nchan(ifNos[j])) {
4717        hasDifferentNchan = true;
4718        break;
4719      }
4720    }
4721    if (hasDifferentNchan) {
4722      res.push_back(getSinusoidModel(waveNumbers, currNchan));
4723      nChanNos.push_back(currNchan);
4724    }
4725  }
4726
4727  return res;
4728}
4729
4730std::vector<std::vector<double> > Scantable::getSinusoidModel(const std::vector<int>& waveNumbers, int nchan)
4731{
4732  // model  : contains elemental values for computing the least-square matrix.
4733  //          model.size() is nmodel and model[*].size() is nchan.
4734  //          Each model element are as follows:
4735  //          model[0]    = {1.0, 1.0, 1.0, ..., 1.0},
4736  //          model[2n-1] = {sin(nPI/L*x[0]), sin(nPI/L*x[1]), ..., sin(nPI/L*x[nchan])},
4737  //          model[2n]   = {cos(nPI/L*x[0]), cos(nPI/L*x[1]), ..., cos(nPI/L*x[nchan])},
4738  //          where (1 <= n <= nMaxWavesInSW),
4739  //          or,
4740  //          model[2n-1] = {sin(wn[n]PI/L*x[0]), sin(wn[n]PI/L*x[1]), ..., sin(wn[n]PI/L*x[nchan])},
4741  //          model[2n]   = {cos(wn[n]PI/L*x[0]), cos(wn[n]PI/L*x[1]), ..., cos(wn[n]PI/L*x[nchan])},
4742  //          where wn[n] denotes waveNumbers[n] (1 <= n <= waveNumbers.size()).
4743
4744  std::vector<int> nWaves;  // sorted and uniqued array of wave numbers
4745  nWaves.reserve(waveNumbers.size());
4746  copy(waveNumbers.begin(), waveNumbers.end(), back_inserter(nWaves));
4747  sort(nWaves.begin(), nWaves.end());
4748  std::vector<int>::iterator end_it = unique(nWaves.begin(), nWaves.end());
4749  nWaves.erase(end_it, nWaves.end());
4750
4751  int minNWaves = nWaves[0];
4752  if (minNWaves < 0) {
4753    throw(AipsError("wave number must be positive or zero (i.e. constant)"));
4754  }
4755  bool hasConstantTerm = (minNWaves == 0);
4756  int nmodel = nWaves.size() * 2 - (hasConstantTerm ? 1 : 0);  //number of parameters to solve.
4757
4758  std::vector<std::vector<double> > model(nmodel, std::vector<double>(nchan));
4759
4760  if (hasConstantTerm) {
4761    for (int j = 0; j < nchan; ++j) {
4762      model[0][j] = 1.0;
4763    }
4764  }
4765
4766  const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
4767  double stretch0 = 2.0*PI/(double)(nchan-1);
4768
4769  for (uInt i = (hasConstantTerm ? 1 : 0); i < nWaves.size(); ++i) {
4770    int sidx = hasConstantTerm ? 2*i-1 : 2*i;
4771    int cidx = sidx + 1;
4772    double stretch = stretch0*(double)nWaves[i];
4773
4774    for (int j = 0; j < nchan; ++j) {
4775      model[sidx][j] = sin(stretch*(double)j);
4776      model[cidx][j] = cos(stretch*(double)j);
4777    }
4778  }
4779
4780  return model;
4781}
4782
4783std::vector<bool> Scantable::getCompositeChanMask(int whichrow,
4784                                                  const std::vector<bool>& inMask)
4785{
4786  std::vector<bool> mask = getMask(whichrow);
4787  uInt maskSize = mask.size();
4788  if (inMask.size() != 0) {
4789    if (maskSize != inMask.size()) {
4790      throw(AipsError("mask sizes are not the same."));
4791    }
4792    for (uInt i = 0; i < maskSize; ++i) {
4793      mask[i] = mask[i] && inMask[i];
4794    }
4795  }
4796
4797  return mask;
4798}
4799
4800std::vector<bool> Scantable::getCompositeChanMask(int whichrow,
4801                                                  const std::vector<bool>& inMask,
4802                                                  const std::vector<int>& edge,
4803                                                  std::vector<int>& currEdge,
4804                                                  STLineFinder& lineFinder)
4805{
4806  std::vector<uint> ifNos = getIFNos();
4807  if ((edge.size() > 2) && (edge.size() < ifNos.size()*2)) {
4808    throw(AipsError("Length of edge element info is less than that of IFs"));
4809  }
4810
4811  uint idx = 0;
4812  if (edge.size() > 2) {
4813    int ifVal = getIF(whichrow);
4814    bool foundIF = false;
4815    for (uint i = 0; i < ifNos.size(); ++i) {
4816      if (ifVal == (int)ifNos[i]) {
4817        idx = 2*i;
4818        foundIF = true;
4819        break;
4820      }
4821    }
4822    if (!foundIF) {
4823      throw(AipsError("bad IF number"));
4824    }
4825  }
4826
4827  currEdge.clear();
4828  currEdge.resize(2);
4829  currEdge[0] = edge[idx];
4830  currEdge[1] = edge[idx+1];
4831
4832  lineFinder.setData(getSpectrum(whichrow));
4833  lineFinder.findLines(getCompositeChanMask(whichrow, inMask), currEdge, whichrow);
4834
4835  return lineFinder.getMask();
4836}
4837
4838/* for cspline. will be merged once cspline is available in fitter (2011/3/10 WK) */
4839void Scantable::outputFittingResult(bool outLogger,
4840                                    bool outTextFile,
4841                                    bool csvFormat,
4842                                    const std::vector<bool>& chanMask,
4843                                    int whichrow,
4844                                    const casa::String& coordInfo,
4845                                    bool hasSameNchan,
4846                                    ofstream& ofs,
4847                                    const casa::String& funcName,
4848                                    const std::vector<int>& edge,
4849                                    const std::vector<float>& params,
4850                                    const int nClipped)
4851{
4852  if (outLogger || outTextFile) {
4853    float rms = getRms(chanMask, whichrow);
4854    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
4855    std::vector<bool> fixed;
4856    fixed.clear();
4857
4858    if (outLogger) {
4859      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
4860      ols << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped,
4861                                           masklist, whichrow, false, csvFormat) << LogIO::POST ;
4862    }
4863    if (outTextFile) {
4864      ofs << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped,
4865                                           masklist, whichrow, true, csvFormat) << flush;
4866    }
4867  }
4868}
4869
4870/* for poly/chebyshev/sinusoid. */
4871void Scantable::outputFittingResult(bool outLogger,
4872                                    bool outTextFile,
4873                                    bool csvFormat,
4874                                    const std::vector<bool>& chanMask,
4875                                    int whichrow,
4876                                    const casa::String& coordInfo,
4877                                    bool hasSameNchan,
4878                                    ofstream& ofs,
4879                                    const casa::String& funcName,
4880                                    const std::vector<float>& params,
4881                                    const int nClipped)
4882{
4883  if (outLogger || outTextFile) {
4884    float rms = getRms(chanMask, whichrow);
4885    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
4886    std::vector<bool> fixed;
4887    fixed.clear();
4888
4889    if (outLogger) {
4890      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
4891      ols << formatBaselineParams(params, fixed, rms, nClipped,
4892                                  masklist, whichrow, false, csvFormat) << LogIO::POST ;
4893    }
4894    if (outTextFile) {
4895      ofs << formatBaselineParams(params, fixed, rms, nClipped,
4896                                  masklist, whichrow, true, csvFormat) << flush;
4897    }
4898  }
4899}
4900
4901void Scantable::parseProgressInfo(const std::string& progressInfo, bool& showProgress, int& minNRow)
4902{
4903  int idxDelimiter = progressInfo.find(",");
4904  if (idxDelimiter < 0) {
4905    throw(AipsError("wrong value in 'showprogress' parameter")) ;
4906  }
4907  showProgress = (progressInfo.substr(0, idxDelimiter) == "true");
4908  std::istringstream is(progressInfo.substr(idxDelimiter+1));
4909  is >> minNRow;
4910}
4911
4912void Scantable::showProgressOnTerminal(const int nProcessed, const int nTotal, const bool showProgress, const int nTotalThreshold)
4913{
4914  if (showProgress && (nTotal >= nTotalThreshold)) {
4915    int nInterval = int(floor(double(nTotal)/100.0));
4916    if (nInterval == 0) nInterval++;
4917
4918    if (nProcessed % nInterval == 0) {
4919      printf("\r");                          //go to the head of line
4920      printf("\x1b[31m\x1b[1m");             //set red color, highlighted
4921      printf("[%3d%%]", (int)(100.0*(double(nProcessed+1))/(double(nTotal))) );
4922      printf("\x1b[39m\x1b[0m");             //set default attributes
4923      fflush(NULL);
4924    }
4925
4926    if (nProcessed == nTotal - 1) {
4927      printf("\r\x1b[K");                    //clear
4928      fflush(NULL);
4929    }
4930
4931  }
4932}
4933
4934std::vector<float> Scantable::execFFT(const int whichrow, const std::vector<bool>& inMask, bool getRealImag, bool getAmplitudeOnly)
4935{
4936  std::vector<bool>  mask = getMask(whichrow);
4937
4938  if (inMask.size() > 0) {
4939    uInt maskSize = mask.size();
4940    if (maskSize != inMask.size()) {
4941      throw(AipsError("mask sizes are not the same."));
4942    }
4943    for (uInt i = 0; i < maskSize; ++i) {
4944      mask[i] = mask[i] && inMask[i];
4945    }
4946  }
4947
4948  Vector<Float> spec = getSpectrum(whichrow);
4949  mathutil::doZeroOrderInterpolation(spec, mask);
4950
4951  FFTServer<Float,Complex> ffts;
4952  Vector<Complex> fftres;
4953  ffts.fft0(fftres, spec);
4954
4955  std::vector<float> res;
4956  float norm = float(2.0/double(spec.size()));
4957
4958  if (getRealImag) {
4959    for (uInt i = 0; i < fftres.size(); ++i) {
4960      res.push_back(real(fftres[i])*norm);
4961      res.push_back(imag(fftres[i])*norm);
4962    }
4963  } else {
4964    for (uInt i = 0; i < fftres.size(); ++i) {
4965      res.push_back(abs(fftres[i])*norm);
4966      if (!getAmplitudeOnly) res.push_back(arg(fftres[i]));
4967    }
4968  }
4969
4970  return res;
4971}
4972
4973
4974float Scantable::getRms(const std::vector<bool>& mask, int whichrow)
4975{
4976  /****
4977  double ms1TimeStart, ms1TimeEnd;
4978  double elapse1 = 0.0;
4979  ms1TimeStart = mathutil::gettimeofday_sec();
4980  ****/
4981
4982  Vector<Float> spec;
4983  specCol_.get(whichrow, spec);
4984
4985  /****
4986  ms1TimeEnd = mathutil::gettimeofday_sec();
4987  elapse1 = ms1TimeEnd - ms1TimeStart;
4988  std::cout << "rm1   : " << elapse1 << " (sec.)" << endl;
4989  ****/
4990
4991  return (float)doGetRms(mask, spec);
4992}
4993
4994double Scantable::doGetRms(const std::vector<bool>& mask, const Vector<Float>& spec)
4995{
4996  double mean = 0.0;
4997  double smean = 0.0;
4998  int n = 0;
4999  for (uInt i = 0; i < spec.nelements(); ++i) {
5000    if (mask[i]) {
5001      double val = (double)spec[i];
5002      mean += val;
5003      smean += val*val;
5004      n++;
5005    }
5006  }
5007
5008  mean /= (double)n;
5009  smean /= (double)n;
5010
5011  return sqrt(smean - mean*mean);
5012}
5013
5014std::string Scantable::formatBaselineParamsHeader(int whichrow, const std::string& masklist, bool verbose, bool csvformat) const
5015{
5016  if (verbose) {
5017    ostringstream oss;
5018
5019    if (csvformat) {
5020      oss << getScan(whichrow)  << ",";
5021      oss << getBeam(whichrow)  << ",";
5022      oss << getIF(whichrow)    << ",";
5023      oss << getPol(whichrow)   << ",";
5024      oss << getCycle(whichrow) << ",";
5025      String commaReplacedMasklist = masklist;
5026      string::size_type pos = 0;
5027      while (pos = commaReplacedMasklist.find(","), pos != string::npos) {
5028        commaReplacedMasklist.replace(pos, 1, ";");
5029        pos++;
5030      }
5031      oss << commaReplacedMasklist << ",";
5032    } else {
5033      oss <<  " Scan[" << getScan(whichrow)  << "]";
5034      oss <<  " Beam[" << getBeam(whichrow)  << "]";
5035      oss <<    " IF[" << getIF(whichrow)    << "]";
5036      oss <<   " Pol[" << getPol(whichrow)   << "]";
5037      oss << " Cycle[" << getCycle(whichrow) << "]: " << endl;
5038      oss << "Fitter range = " << masklist << endl;
5039      oss << "Baseline parameters" << endl;
5040    }
5041    oss << flush;
5042
5043    return String(oss);
5044  }
5045
5046  return "";
5047}
5048
5049std::string Scantable::formatBaselineParamsFooter(float rms, int nClipped, bool verbose, bool csvformat) const
5050{
5051  if (verbose) {
5052    ostringstream oss;
5053
5054    if (csvformat) {
5055      oss << rms << ",";
5056      if (nClipped >= 0) {
5057        oss << nClipped;
5058      }
5059    } else {
5060      oss << "Results of baseline fit" << endl;
5061      oss << "  rms = " << setprecision(6) << rms << endl;
5062      if (nClipped >= 0) {
5063        oss << "  Number of clipped channels = " << nClipped << endl;
5064      }
5065      for (int i = 0; i < 60; ++i) {
5066        oss << "-";
5067      }
5068    }
5069    oss << endl;
5070    oss << flush;
5071
5072    return String(oss);
5073  }
5074
5075  return "";
5076}
5077
5078std::string Scantable::formatBaselineParams(const std::vector<float>& params,
5079                                            const std::vector<bool>& fixed,
5080                                            float rms,
5081                                            int nClipped,
5082                                            const std::string& masklist,
5083                                            int whichrow,
5084                                            bool verbose,
5085                                            bool csvformat,
5086                                            int start, int count,
5087                                            bool resetparamid) const
5088{
5089  int nParam = (int)(params.size());
5090
5091  if (nParam < 1) {
5092    return("  Not fitted");
5093  } else {
5094
5095    ostringstream oss;
5096    oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat);
5097
5098    if (start < 0) start = 0;
5099    if (count < 0) count = nParam;
5100    int end = start + count;
5101    if (end > nParam) end = nParam;
5102    int paramidoffset = (resetparamid) ? (-start) : 0;
5103
5104    for (int i = start; i < end; ++i) {
5105      if (i > start) {
5106        oss << ",";
5107      }
5108      std::string sFix = ((fixed.size() > 0) && (fixed[i]) && verbose) ? "(fixed)" : "";
5109      if (csvformat) {
5110        oss << params[i] << sFix;
5111      } else {
5112        oss << "  p" << (i+paramidoffset) << sFix << "= " << right << setw(13) << setprecision(6) << params[i];
5113      }
5114    }
5115
5116    if (csvformat) {
5117      oss << ",";
5118    } else {
5119      oss << endl;
5120    }
5121    oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat);
5122
5123    return String(oss);
5124  }
5125
5126}
5127
5128std::string Scantable::formatPiecewiseBaselineParams(const std::vector<int>& ranges, const std::vector<float>& params, const std::vector<bool>& fixed, float rms, int nClipped, const std::string& masklist, int whichrow, bool verbose, bool csvformat) const
5129{
5130  int nOutParam = (int)(params.size());
5131  int nPiece = (int)(ranges.size()) - 1;
5132
5133  if (nOutParam < 1) {
5134    return("  Not fitted");
5135  } else if (nPiece < 0) {
5136    return formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, verbose, csvformat);
5137  } else if (nPiece < 1) {
5138    return("  Bad count of the piece edge info");
5139  } else if (nOutParam % nPiece != 0) {
5140    return("  Bad count of the output baseline parameters");
5141  } else {
5142
5143    int nParam = nOutParam / nPiece;
5144
5145    ostringstream oss;
5146    oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat);
5147
5148    if (csvformat) {
5149      for (int i = 0; i < nPiece; ++i) {
5150        oss << ranges[i] << "," << (ranges[i+1]-1) << ",";
5151        oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true);
5152      }
5153    } else {
5154      stringstream ss;
5155      ss << ranges[nPiece] << flush;
5156      int wRange = ss.str().size() * 2 + 5;
5157
5158      for (int i = 0; i < nPiece; ++i) {
5159        ss.str("");
5160        ss << "  [" << ranges[i] << "," << (ranges[i+1]-1) << "]";
5161        oss << left << setw(wRange) << ss.str();
5162        oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true);
5163        //oss << endl;
5164      }
5165    }
5166
5167    oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat);
5168
5169    return String(oss);
5170  }
5171
5172}
5173
5174bool Scantable::hasSameNchanOverIFs()
5175{
5176  int nIF = nif(-1);
5177  int nCh;
5178  int totalPositiveNChan = 0;
5179  int nPositiveNChan = 0;
5180
5181  for (int i = 0; i < nIF; ++i) {
5182    nCh = nchan(i);
5183    if (nCh > 0) {
5184      totalPositiveNChan += nCh;
5185      nPositiveNChan++;
5186    }
5187  }
5188
5189  return (totalPositiveNChan == (nPositiveNChan * nchan(0)));
5190}
5191
5192std::string Scantable::getMaskRangeList(const std::vector<bool>& mask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, bool verbose)
5193{
5194  if (mask.size() <= 0) {
5195    throw(AipsError("The mask elements should be > 0"));
5196  }
5197  int IF = getIF(whichrow);
5198  if (mask.size() != (uInt)nchan(IF)) {
5199    throw(AipsError("Number of channels in scantable != number of mask elements"));
5200  }
5201
5202  if (verbose) {
5203    LogIO logOs(LogOrigin("Scantable", "getMaskRangeList()", WHERE));
5204    logOs << LogIO::WARN << "The current mask window unit is " << coordInfo;
5205    if (!hasSameNchan) {
5206      logOs << endl << "This mask is only valid for IF=" << IF;
5207    }
5208    logOs << LogIO::POST;
5209  }
5210
5211  std::vector<double> abcissa = getAbcissa(whichrow);
5212  std::vector<int> edge = getMaskEdgeIndices(mask);
5213
5214  ostringstream oss;
5215  oss.setf(ios::fixed);
5216  oss << setprecision(1) << "[";
5217  for (uInt i = 0; i < edge.size(); i+=2) {
5218    if (i > 0) oss << ",";
5219    oss << "[" << (float)abcissa[edge[i]] << "," << (float)abcissa[edge[i+1]] << "]";
5220  }
5221  oss << "]" << flush;
5222
5223  return String(oss);
5224}
5225
5226std::vector<int> Scantable::getMaskEdgeIndices(const std::vector<bool>& mask)
5227{
5228  if (mask.size() <= 0) {
5229    throw(AipsError("The mask elements should be > 0"));
5230  }
5231
5232  std::vector<int> out, startIndices, endIndices;
5233  int maskSize = mask.size();
5234
5235  startIndices.clear();
5236  endIndices.clear();
5237
5238  if (mask[0]) {
5239    startIndices.push_back(0);
5240  }
5241  for (int i = 1; i < maskSize; ++i) {
5242    if ((!mask[i-1]) && mask[i]) {
5243      startIndices.push_back(i);
5244    } else if (mask[i-1] && (!mask[i])) {
5245      endIndices.push_back(i-1);
5246    }
5247  }
5248  if (mask[maskSize-1]) {
5249    endIndices.push_back(maskSize-1);
5250  }
5251
5252  if (startIndices.size() != endIndices.size()) {
5253    throw(AipsError("Inconsistent Mask Size: bad data?"));
5254  }
5255  for (uInt i = 0; i < startIndices.size(); ++i) {
5256    if (startIndices[i] > endIndices[i]) {
5257      throw(AipsError("Mask start index > mask end index"));
5258    }
5259  }
5260
5261  out.clear();
5262  for (uInt i = 0; i < startIndices.size(); ++i) {
5263    out.push_back(startIndices[i]);
5264    out.push_back(endIndices[i]);
5265  }
5266
5267  return out;
5268}
5269
5270void Scantable::setTsys(const std::vector<float>& newvals, int whichrow) {
5271  Vector<Float> tsys(newvals);
5272  if (whichrow > -1) {
5273    if (tsysCol_.shape(whichrow) != tsys.shape())
5274      throw(AipsError("Given Tsys values are not of the same shape"));
5275    tsysCol_.put(whichrow, tsys);
5276  } else {
5277    tsysCol_.fillColumn(tsys);
5278  }
5279}
5280
5281vector<float> Scantable::getTsysSpectrum( int whichrow ) const
5282{
5283  Vector<Float> tsys( tsysCol_(whichrow) ) ;
5284  vector<float> stlTsys ;
5285  tsys.tovector( stlTsys ) ;
5286  return stlTsys ;
5287}
5288
5289vector<uint> Scantable::getMoleculeIdColumnData() const
5290{
5291  Vector<uInt> molIds(mmolidCol_.getColumn());
5292  vector<uint> res;
5293  molIds.tovector(res);
5294  return res;
5295}
5296
5297void Scantable::setMoleculeIdColumnData(const std::vector<uint>& molids)
5298{
5299  Vector<uInt> molIds(molids);
5300  Vector<uInt> arr(mmolidCol_.getColumn());
5301  if ( molIds.nelements() != arr.nelements() )
5302    throw AipsError("The input data size must be the number of rows.");
5303  mmolidCol_.putColumn(molIds);
5304}
5305
5306
5307std::vector<uint> Scantable::getRootTableRowNumbers() const
5308{
5309  Vector<uInt> rowIds(table_.rowNumbers());
5310  vector<uint> res;
5311  rowIds.tovector(res);
5312  return res;
5313}
5314
5315
5316void Scantable::dropXPol()
5317{
5318  if (npol() <= 2) {
5319    return;
5320  }
5321  if (!selector_.empty()) {
5322    throw AipsError("Can only operate with empty selection");
5323  }
5324  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
5325  Table tab = tableCommand(taql, table_);
5326  table_ = tab;
5327  table_.rwKeywordSet().define("nPol", Int(2));
5328  originalTable_ = table_;
5329  attach();
5330}
5331
5332}
5333//namespace asap
Note: See TracBrowser for help on using the repository browser.