source: trunk/src/Scantable.cpp @ 2773

Last change on this file since 2773 was 2773, checked in by WataruKawasaki, 11 years ago

New Development: No

JIRA Issue: No

Ready for Test: Yes

Interface Changes: No

What Interface Changed:

Test Programs:

Put in Release Notes: Yes

Module(s): sd

Description: optimisation/refactoring the baselining functions for scantable.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 156.9 KB
Line 
1//
2// C++ Implementation: Scantable
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2005
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12#include <map>
13#include <sys/time.h>
14
15#include <atnf/PKSIO/SrcType.h>
16
17#include <casa/aips.h>
18#include <casa/iomanip.h>
19#include <casa/iostream.h>
20#include <casa/OS/File.h>
21#include <casa/OS/Path.h>
22#include <casa/Logging/LogIO.h>
23#include <casa/Arrays/Array.h>
24#include <casa/Arrays/ArrayAccessor.h>
25#include <casa/Arrays/ArrayLogical.h>
26#include <casa/Arrays/ArrayMath.h>
27#include <casa/Arrays/MaskArrMath.h>
28#include <casa/Arrays/Slice.h>
29#include <casa/Arrays/Vector.h>
30#include <casa/Arrays/VectorSTLIterator.h>
31#include <casa/BasicMath/Math.h>
32#include <casa/BasicSL/Constants.h>
33#include <casa/Containers/RecordField.h>
34#include <casa/Logging/LogIO.h>
35#include <casa/Quanta/MVAngle.h>
36#include <casa/Quanta/MVTime.h>
37#include <casa/Utilities/GenSort.h>
38
39#include <coordinates/Coordinates/CoordinateUtil.h>
40
41// needed to avoid error in .tcc
42#include <measures/Measures/MCDirection.h>
43//
44#include <measures/Measures/MDirection.h>
45#include <measures/Measures/MEpoch.h>
46#include <measures/Measures/MFrequency.h>
47#include <measures/Measures/MeasRef.h>
48#include <measures/Measures/MeasTable.h>
49#include <measures/TableMeasures/ScalarMeasColumn.h>
50#include <measures/TableMeasures/TableMeasDesc.h>
51#include <measures/TableMeasures/TableMeasRefDesc.h>
52#include <measures/TableMeasures/TableMeasValueDesc.h>
53
54#include <tables/Tables/ArrColDesc.h>
55#include <tables/Tables/ExprNode.h>
56#include <tables/Tables/ScaColDesc.h>
57#include <tables/Tables/SetupNewTab.h>
58#include <tables/Tables/TableCopy.h>
59#include <tables/Tables/TableDesc.h>
60#include <tables/Tables/TableIter.h>
61#include <tables/Tables/TableParse.h>
62#include <tables/Tables/TableRecord.h>
63#include <tables/Tables/TableRow.h>
64#include <tables/Tables/TableVector.h>
65
66#include "MathUtils.h"
67#include "STAttr.h"
68#include "STBaselineTable.h"
69#include "STLineFinder.h"
70#include "STPolCircular.h"
71#include "STPolLinear.h"
72#include "STPolStokes.h"
73#include "STUpgrade.h"
74#include "STFitter.h"
75#include "Scantable.h"
76
77#define debug 1
78
79using namespace casa;
80
81namespace asap {
82
83std::map<std::string, STPol::STPolFactory *> Scantable::factories_;
84
85void Scantable::initFactories() {
86  if ( factories_.empty() ) {
87    Scantable::factories_["linear"] = &STPolLinear::myFactory;
88    Scantable::factories_["circular"] = &STPolCircular::myFactory;
89    Scantable::factories_["stokes"] = &STPolStokes::myFactory;
90  }
91}
92
93Scantable::Scantable(Table::TableType ttype) :
94  type_(ttype)
95{
96  initFactories();
97  setupMainTable();
98  freqTable_ = STFrequencies(*this);
99  table_.rwKeywordSet().defineTable("FREQUENCIES", freqTable_.table());
100  weatherTable_ = STWeather(*this);
101  table_.rwKeywordSet().defineTable("WEATHER", weatherTable_.table());
102  focusTable_ = STFocus(*this);
103  table_.rwKeywordSet().defineTable("FOCUS", focusTable_.table());
104  tcalTable_ = STTcal(*this);
105  table_.rwKeywordSet().defineTable("TCAL", tcalTable_.table());
106  moleculeTable_ = STMolecules(*this);
107  table_.rwKeywordSet().defineTable("MOLECULES", moleculeTable_.table());
108  historyTable_ = STHistory(*this);
109  table_.rwKeywordSet().defineTable("HISTORY", historyTable_.table());
110  fitTable_ = STFit(*this);
111  table_.rwKeywordSet().defineTable("FIT", fitTable_.table());
112  table_.tableInfo().setType( "Scantable" ) ;
113  originalTable_ = table_;
114  attach();
115}
116
117Scantable::Scantable(const std::string& name, Table::TableType ttype) :
118  type_(ttype)
119{
120  initFactories();
121
122  Table tab(name, Table::Update);
123  uInt version = tab.keywordSet().asuInt("VERSION");
124  if (version != version_) {
125      STUpgrade upgrader(version_);
126      LogIO os( LogOrigin( "Scantable" ) ) ;
127      os << LogIO::WARN
128         << name << " data format version " << version
129         << " is deprecated" << endl
130         << "Running upgrade."<< endl 
131         << LogIO::POST ; 
132      std::string outname = upgrader.upgrade(name);
133      if ( outname != name ) {
134        os << LogIO::WARN
135           << "Data will be loaded from " << outname << " instead of "
136           << name << LogIO::POST ;
137        tab = Table(outname, Table::Update ) ;
138      }
139  }
140  if ( type_ == Table::Memory ) {
141    table_ = tab.copyToMemoryTable(generateName());
142  } else {
143    table_ = tab;
144  }
145  table_.tableInfo().setType( "Scantable" ) ;
146
147  attachSubtables();
148  originalTable_ = table_;
149  attach();
150}
151/*
152Scantable::Scantable(const std::string& name, Table::TableType ttype) :
153  type_(ttype)
154{
155  initFactories();
156  Table tab(name, Table::Update);
157  uInt version = tab.keywordSet().asuInt("VERSION");
158  if (version != version_) {
159    throw(AipsError("Unsupported version of ASAP file."));
160  }
161  if ( type_ == Table::Memory ) {
162    table_ = tab.copyToMemoryTable(generateName());
163  } else {
164    table_ = tab;
165  }
166
167  attachSubtables();
168  originalTable_ = table_;
169  attach();
170}
171*/
172
173Scantable::Scantable( const Scantable& other, bool clear )
174{
175  // with or without data
176  String newname = String(generateName());
177  type_ = other.table_.tableType();
178  if ( other.table_.tableType() == Table::Memory ) {
179      if ( clear ) {
180        table_ = TableCopy::makeEmptyMemoryTable(newname,
181                                                 other.table_, True);
182      } else
183        table_ = other.table_.copyToMemoryTable(newname);
184  } else {
185      other.table_.deepCopy(newname, Table::New, False,
186                            other.table_.endianFormat(),
187                            Bool(clear));
188      table_ = Table(newname, Table::Update);
189      table_.markForDelete();
190  }
191  table_.tableInfo().setType( "Scantable" ) ;
192  /// @todo reindex SCANNO, recompute nbeam, nif, npol
193  if ( clear ) copySubtables(other);
194  attachSubtables();
195  originalTable_ = table_;
196  attach();
197}
198
199void Scantable::copySubtables(const Scantable& other) {
200  Table t = table_.rwKeywordSet().asTable("FREQUENCIES");
201  TableCopy::copyRows(t, other.freqTable_.table());
202  t = table_.rwKeywordSet().asTable("FOCUS");
203  TableCopy::copyRows(t, other.focusTable_.table());
204  t = table_.rwKeywordSet().asTable("WEATHER");
205  TableCopy::copyRows(t, other.weatherTable_.table());
206  t = table_.rwKeywordSet().asTable("TCAL");
207  TableCopy::copyRows(t, other.tcalTable_.table());
208  t = table_.rwKeywordSet().asTable("MOLECULES");
209  TableCopy::copyRows(t, other.moleculeTable_.table());
210  t = table_.rwKeywordSet().asTable("HISTORY");
211  TableCopy::copyRows(t, other.historyTable_.table());
212  t = table_.rwKeywordSet().asTable("FIT");
213  TableCopy::copyRows(t, other.fitTable_.table());
214}
215
216void Scantable::attachSubtables()
217{
218  freqTable_ = STFrequencies(table_);
219  focusTable_ = STFocus(table_);
220  weatherTable_ = STWeather(table_);
221  tcalTable_ = STTcal(table_);
222  moleculeTable_ = STMolecules(table_);
223  historyTable_ = STHistory(table_);
224  fitTable_ = STFit(table_);
225}
226
227Scantable::~Scantable()
228{
229}
230
231void Scantable::setupMainTable()
232{
233  TableDesc td("", "1", TableDesc::Scratch);
234  td.comment() = "An ASAP Scantable";
235  td.rwKeywordSet().define("VERSION", uInt(version_));
236
237  // n Cycles
238  td.addColumn(ScalarColumnDesc<uInt>("SCANNO"));
239  // new index every nBeam x nIF x nPol
240  td.addColumn(ScalarColumnDesc<uInt>("CYCLENO"));
241
242  td.addColumn(ScalarColumnDesc<uInt>("BEAMNO"));
243  td.addColumn(ScalarColumnDesc<uInt>("IFNO"));
244  // linear, circular, stokes
245  td.rwKeywordSet().define("POLTYPE", String("linear"));
246  td.addColumn(ScalarColumnDesc<uInt>("POLNO"));
247
248  td.addColumn(ScalarColumnDesc<uInt>("FREQ_ID"));
249  td.addColumn(ScalarColumnDesc<uInt>("MOLECULE_ID"));
250
251  ScalarColumnDesc<Int> refbeamnoColumn("REFBEAMNO");
252  refbeamnoColumn.setDefault(Int(-1));
253  td.addColumn(refbeamnoColumn);
254
255  ScalarColumnDesc<uInt> flagrowColumn("FLAGROW");
256  flagrowColumn.setDefault(uInt(0));
257  td.addColumn(flagrowColumn);
258
259  td.addColumn(ScalarColumnDesc<Double>("TIME"));
260  TableMeasRefDesc measRef(MEpoch::UTC); // UTC as default
261  TableMeasValueDesc measVal(td, "TIME");
262  TableMeasDesc<MEpoch> mepochCol(measVal, measRef);
263  mepochCol.write(td);
264
265  td.addColumn(ScalarColumnDesc<Double>("INTERVAL"));
266
267  td.addColumn(ScalarColumnDesc<String>("SRCNAME"));
268  // Type of source (on=0, off=1, other=-1)
269  ScalarColumnDesc<Int> stypeColumn("SRCTYPE");
270  stypeColumn.setDefault(Int(-1));
271  td.addColumn(stypeColumn);
272  td.addColumn(ScalarColumnDesc<String>("FIELDNAME"));
273
274  //The actual Data Vectors
275  td.addColumn(ArrayColumnDesc<Float>("SPECTRA"));
276  td.addColumn(ArrayColumnDesc<uChar>("FLAGTRA"));
277  td.addColumn(ArrayColumnDesc<Float>("TSYS"));
278
279  td.addColumn(ArrayColumnDesc<Double>("DIRECTION",
280                                       IPosition(1,2),
281                                       ColumnDesc::Direct));
282  TableMeasRefDesc mdirRef(MDirection::J2000); // default
283  TableMeasValueDesc tmvdMDir(td, "DIRECTION");
284  // the TableMeasDesc gives the column a type
285  TableMeasDesc<MDirection> mdirCol(tmvdMDir, mdirRef);
286  // a uder set table type e.g. GALCTIC, B1950 ...
287  td.rwKeywordSet().define("DIRECTIONREF", String("J2000"));
288  // writing create the measure column
289  mdirCol.write(td);
290  td.addColumn(ScalarColumnDesc<Float>("AZIMUTH"));
291  td.addColumn(ScalarColumnDesc<Float>("ELEVATION"));
292  td.addColumn(ScalarColumnDesc<Float>("OPACITY"));
293
294  td.addColumn(ScalarColumnDesc<uInt>("TCAL_ID"));
295  ScalarColumnDesc<Int> fitColumn("FIT_ID");
296  fitColumn.setDefault(Int(-1));
297  td.addColumn(fitColumn);
298
299  td.addColumn(ScalarColumnDesc<uInt>("FOCUS_ID"));
300  td.addColumn(ScalarColumnDesc<uInt>("WEATHER_ID"));
301
302  // columns which just get dragged along, as they aren't used in asap
303  td.addColumn(ScalarColumnDesc<Double>("SRCVELOCITY"));
304  td.addColumn(ArrayColumnDesc<Double>("SRCPROPERMOTION"));
305  td.addColumn(ArrayColumnDesc<Double>("SRCDIRECTION"));
306  td.addColumn(ArrayColumnDesc<Double>("SCANRATE"));
307
308  td.rwKeywordSet().define("OBSMODE", String(""));
309
310  // Now create Table SetUp from the description.
311  SetupNewTable aNewTab(generateName(), td, Table::Scratch);
312  table_ = Table(aNewTab, type_, 0);
313  originalTable_ = table_;
314}
315
316void Scantable::attach()
317{
318  timeCol_.attach(table_, "TIME");
319  srcnCol_.attach(table_, "SRCNAME");
320  srctCol_.attach(table_, "SRCTYPE");
321  specCol_.attach(table_, "SPECTRA");
322  flagsCol_.attach(table_, "FLAGTRA");
323  tsysCol_.attach(table_, "TSYS");
324  cycleCol_.attach(table_,"CYCLENO");
325  scanCol_.attach(table_, "SCANNO");
326  beamCol_.attach(table_, "BEAMNO");
327  ifCol_.attach(table_, "IFNO");
328  polCol_.attach(table_, "POLNO");
329  integrCol_.attach(table_, "INTERVAL");
330  azCol_.attach(table_, "AZIMUTH");
331  elCol_.attach(table_, "ELEVATION");
332  dirCol_.attach(table_, "DIRECTION");
333  fldnCol_.attach(table_, "FIELDNAME");
334  rbeamCol_.attach(table_, "REFBEAMNO");
335
336  mweatheridCol_.attach(table_,"WEATHER_ID");
337  mfitidCol_.attach(table_,"FIT_ID");
338  mfreqidCol_.attach(table_, "FREQ_ID");
339  mtcalidCol_.attach(table_, "TCAL_ID");
340  mfocusidCol_.attach(table_, "FOCUS_ID");
341  mmolidCol_.attach(table_, "MOLECULE_ID");
342
343  //Add auxiliary column for row-based flagging (CAS-1433 Wataru Kawasaki)
344  attachAuxColumnDef(flagrowCol_, "FLAGROW", 0);
345
346}
347
348template<class T, class T2>
349void Scantable::attachAuxColumnDef(ScalarColumn<T>& col,
350                                   const String& colName,
351                                   const T2& defValue)
352{
353  try {
354    col.attach(table_, colName);
355  } catch (TableError& err) {
356    String errMesg = err.getMesg();
357    if (errMesg == "Table column " + colName + " is unknown") {
358      table_.addColumn(ScalarColumnDesc<T>(colName));
359      col.attach(table_, colName);
360      col.fillColumn(static_cast<T>(defValue));
361    } else {
362      throw;
363    }
364  } catch (...) {
365    throw;
366  }
367}
368
369template<class T, class T2>
370void Scantable::attachAuxColumnDef(ArrayColumn<T>& col,
371                                   const String& colName,
372                                   const Array<T2>& defValue)
373{
374  try {
375    col.attach(table_, colName);
376  } catch (TableError& err) {
377    String errMesg = err.getMesg();
378    if (errMesg == "Table column " + colName + " is unknown") {
379      table_.addColumn(ArrayColumnDesc<T>(colName));
380      col.attach(table_, colName);
381
382      int size = 0;
383      ArrayIterator<T2>& it = defValue.begin();
384      while (it != defValue.end()) {
385        ++size;
386        ++it;
387      }
388      IPosition ip(1, size);
389      Array<T>& arr(ip);
390      for (int i = 0; i < size; ++i)
391        arr[i] = static_cast<T>(defValue[i]);
392
393      col.fillColumn(arr);
394    } else {
395      throw;
396    }
397  } catch (...) {
398    throw;
399  }
400}
401
402void Scantable::setHeader(const STHeader& sdh)
403{
404  table_.rwKeywordSet().define("nIF", sdh.nif);
405  table_.rwKeywordSet().define("nBeam", sdh.nbeam);
406  table_.rwKeywordSet().define("nPol", sdh.npol);
407  table_.rwKeywordSet().define("nChan", sdh.nchan);
408  table_.rwKeywordSet().define("Observer", sdh.observer);
409  table_.rwKeywordSet().define("Project", sdh.project);
410  table_.rwKeywordSet().define("Obstype", sdh.obstype);
411  table_.rwKeywordSet().define("AntennaName", sdh.antennaname);
412  table_.rwKeywordSet().define("AntennaPosition", sdh.antennaposition);
413  table_.rwKeywordSet().define("Equinox", sdh.equinox);
414  table_.rwKeywordSet().define("FreqRefFrame", sdh.freqref);
415  table_.rwKeywordSet().define("FreqRefVal", sdh.reffreq);
416  table_.rwKeywordSet().define("Bandwidth", sdh.bandwidth);
417  table_.rwKeywordSet().define("UTC", sdh.utc);
418  table_.rwKeywordSet().define("FluxUnit", sdh.fluxunit);
419  table_.rwKeywordSet().define("Epoch", sdh.epoch);
420  table_.rwKeywordSet().define("POLTYPE", sdh.poltype);
421}
422
423STHeader Scantable::getHeader() const
424{
425  STHeader sdh;
426  table_.keywordSet().get("nBeam",sdh.nbeam);
427  table_.keywordSet().get("nIF",sdh.nif);
428  table_.keywordSet().get("nPol",sdh.npol);
429  table_.keywordSet().get("nChan",sdh.nchan);
430  table_.keywordSet().get("Observer", sdh.observer);
431  table_.keywordSet().get("Project", sdh.project);
432  table_.keywordSet().get("Obstype", sdh.obstype);
433  table_.keywordSet().get("AntennaName", sdh.antennaname);
434  table_.keywordSet().get("AntennaPosition", sdh.antennaposition);
435  table_.keywordSet().get("Equinox", sdh.equinox);
436  table_.keywordSet().get("FreqRefFrame", sdh.freqref);
437  table_.keywordSet().get("FreqRefVal", sdh.reffreq);
438  table_.keywordSet().get("Bandwidth", sdh.bandwidth);
439  table_.keywordSet().get("UTC", sdh.utc);
440  table_.keywordSet().get("FluxUnit", sdh.fluxunit);
441  table_.keywordSet().get("Epoch", sdh.epoch);
442  table_.keywordSet().get("POLTYPE", sdh.poltype);
443  return sdh;
444}
445
446void Scantable::setSourceType( int stype )
447{
448  if ( stype < 0 || stype > 1 )
449    throw(AipsError("Illegal sourcetype."));
450  TableVector<Int> tabvec(table_, "SRCTYPE");
451  tabvec = Int(stype);
452}
453
454bool Scantable::conformant( const Scantable& other )
455{
456  return this->getHeader().conformant(other.getHeader());
457}
458
459
460
461std::string Scantable::formatSec(Double x) const
462{
463  Double xcop = x;
464  MVTime mvt(xcop/24./3600.);  // make days
465
466  if (x < 59.95)
467    return  String("      ") + mvt.string(MVTime::TIME_CLEAN_NO_HM, 7)+"s";
468  else if (x < 3599.95)
469    return String("   ") + mvt.string(MVTime::TIME_CLEAN_NO_H,7)+" ";
470  else {
471    ostringstream oss;
472    oss << setw(2) << std::right << setprecision(1) << mvt.hour();
473    oss << ":" << mvt.string(MVTime::TIME_CLEAN_NO_H,7) << " ";
474    return String(oss);
475  }
476};
477
478std::string Scantable::formatDirection(const MDirection& md) const
479{
480  Vector<Double> t = md.getAngle(Unit(String("rad"))).getValue();
481  Int prec = 7;
482
483  String ref = md.getRefString();
484  MVAngle mvLon(t[0]);
485  String sLon = mvLon.string(MVAngle::TIME,prec);
486  uInt tp = md.getRef().getType();
487  if (tp == MDirection::GALACTIC ||
488      tp == MDirection::SUPERGAL ) {
489    sLon = mvLon(0.0).string(MVAngle::ANGLE_CLEAN,prec);
490  }
491  MVAngle mvLat(t[1]);
492  String sLat = mvLat.string(MVAngle::ANGLE+MVAngle::DIG2,prec);
493  return  ref + String(" ") + sLon + String(" ") + sLat;
494}
495
496
497std::string Scantable::getFluxUnit() const
498{
499  return table_.keywordSet().asString("FluxUnit");
500}
501
502void Scantable::setFluxUnit(const std::string& unit)
503{
504  String tmp(unit);
505  Unit tU(tmp);
506  if (tU==Unit("K") || tU==Unit("Jy")) {
507     table_.rwKeywordSet().define(String("FluxUnit"), tmp);
508  } else {
509     throw AipsError("Illegal unit - must be compatible with Jy or K");
510  }
511}
512
513void Scantable::setInstrument(const std::string& name)
514{
515  bool throwIt = true;
516  // create an Instrument to see if this is valid
517  STAttr::convertInstrument(name, throwIt);
518  String nameU(name);
519  nameU.upcase();
520  table_.rwKeywordSet().define(String("AntennaName"), nameU);
521}
522
523void Scantable::setFeedType(const std::string& feedtype)
524{
525  if ( Scantable::factories_.find(feedtype) ==  Scantable::factories_.end() ) {
526    std::string msg = "Illegal feed type "+ feedtype;
527    throw(casa::AipsError(msg));
528  }
529  table_.rwKeywordSet().define(String("POLTYPE"), feedtype);
530}
531
532MPosition Scantable::getAntennaPosition() const
533{
534  Vector<Double> antpos;
535  table_.keywordSet().get("AntennaPosition", antpos);
536  MVPosition mvpos(antpos(0),antpos(1),antpos(2));
537  return MPosition(mvpos);
538}
539
540void Scantable::makePersistent(const std::string& filename)
541{
542  String inname(filename);
543  Path path(inname);
544  /// @todo reindex SCANNO, recompute nbeam, nif, npol
545  inname = path.expandedName();
546  // 2011/03/04 TN
547  // We can comment out this workaround since the essential bug is
548  // fixed in casacore (r20889 in google code).
549  table_.deepCopy(inname, Table::New);
550//   // WORKAROUND !!! for Table bug
551//   // Remove when fixed in casacore
552//   if ( table_.tableType() == Table::Memory  && !selector_.empty() ) {
553//     Table tab = table_.copyToMemoryTable(generateName());
554//     tab.deepCopy(inname, Table::New);
555//     tab.markForDelete();
556//
557//   } else {
558//     table_.deepCopy(inname, Table::New);
559//   }
560}
561
562int Scantable::nbeam( int scanno ) const
563{
564  if ( scanno < 0 ) {
565    Int n;
566    table_.keywordSet().get("nBeam",n);
567    return int(n);
568  } else {
569    // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
570    Table t = table_(table_.col("SCANNO") == scanno);
571    ROTableRow row(t);
572    const TableRecord& rec = row.get(0);
573    Table subt = t( t.col("IFNO") == Int(rec.asuInt("IFNO"))
574                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
575                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
576    ROTableVector<uInt> v(subt, "BEAMNO");
577    return int(v.nelements());
578  }
579  return 0;
580}
581
582int Scantable::nif( int scanno ) const
583{
584  if ( scanno < 0 ) {
585    Int n;
586    table_.keywordSet().get("nIF",n);
587    return int(n);
588  } else {
589    // take the first POLNO,BEAMNO,CYCLENO as nbeam shouldn't vary with these
590    Table t = table_(table_.col("SCANNO") == scanno);
591    ROTableRow row(t);
592    const TableRecord& rec = row.get(0);
593    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
594                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
595                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
596    if ( subt.nrow() == 0 ) return 0;
597    ROTableVector<uInt> v(subt, "IFNO");
598    return int(v.nelements());
599  }
600  return 0;
601}
602
603int Scantable::npol( int scanno ) const
604{
605  if ( scanno < 0 ) {
606    Int n;
607    table_.keywordSet().get("nPol",n);
608    return n;
609  } else {
610    // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
611    Table t = table_(table_.col("SCANNO") == scanno);
612    ROTableRow row(t);
613    const TableRecord& rec = row.get(0);
614    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
615                    && t.col("IFNO") == Int(rec.asuInt("IFNO"))
616                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
617    if ( subt.nrow() == 0 ) return 0;
618    ROTableVector<uInt> v(subt, "POLNO");
619    return int(v.nelements());
620  }
621  return 0;
622}
623
624int Scantable::ncycle( int scanno ) const
625{
626  if ( scanno < 0 ) {
627    Block<String> cols(2);
628    cols[0] = "SCANNO";
629    cols[1] = "CYCLENO";
630    TableIterator it(table_, cols);
631    int n = 0;
632    while ( !it.pastEnd() ) {
633      ++n;
634      ++it;
635    }
636    return n;
637  } else {
638    Table t = table_(table_.col("SCANNO") == scanno);
639    ROTableRow row(t);
640    const TableRecord& rec = row.get(0);
641    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
642                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
643                    && t.col("IFNO") == Int(rec.asuInt("IFNO")) );
644    if ( subt.nrow() == 0 ) return 0;
645    return int(subt.nrow());
646  }
647  return 0;
648}
649
650
651int Scantable::nrow( int scanno ) const
652{
653  return int(table_.nrow());
654}
655
656int Scantable::nchan( int ifno ) const
657{
658  if ( ifno < 0 ) {
659    Int n;
660    table_.keywordSet().get("nChan",n);
661    return int(n);
662  } else {
663    // take the first SCANNO,POLNO,BEAMNO,CYCLENO as nbeam shouldn't
664    // vary with these
665    Table t = table_(table_.col("IFNO") == ifno, 1);
666    if ( t.nrow() == 0 ) return 0;
667    ROArrayColumn<Float> v(t, "SPECTRA");
668    return v.shape(0)(0);
669  }
670  return 0;
671}
672
673int Scantable::nscan() const {
674  Vector<uInt> scannos(scanCol_.getColumn());
675  uInt nout = genSort( scannos, Sort::Ascending,
676                       Sort::QuickSort|Sort::NoDuplicates );
677  return int(nout);
678}
679
680int Scantable::getChannels(int whichrow) const
681{
682  return specCol_.shape(whichrow)(0);
683}
684
685int Scantable::getBeam(int whichrow) const
686{
687  return beamCol_(whichrow);
688}
689
690std::vector<uint> Scantable::getNumbers(const ScalarColumn<uInt>& col) const
691{
692  Vector<uInt> nos(col.getColumn());
693  uInt n = genSort( nos, Sort::Ascending, Sort::QuickSort|Sort::NoDuplicates );
694  nos.resize(n, True);
695  std::vector<uint> stlout;
696  nos.tovector(stlout);
697  return stlout;
698}
699
700int Scantable::getIF(int whichrow) const
701{
702  return ifCol_(whichrow);
703}
704
705int Scantable::getPol(int whichrow) const
706{
707  return polCol_(whichrow);
708}
709
710std::string Scantable::formatTime(const MEpoch& me, bool showdate) const
711{
712  return formatTime(me, showdate, 0);
713}
714
715std::string Scantable::formatTime(const MEpoch& me, bool showdate, uInt prec) const
716{
717  MVTime mvt(me.getValue());
718  if (showdate)
719    //mvt.setFormat(MVTime::YMD);
720    mvt.setFormat(MVTime::YMD, prec);
721  else
722    //mvt.setFormat(MVTime::TIME);
723    mvt.setFormat(MVTime::TIME, prec);
724  ostringstream oss;
725  oss << mvt;
726  return String(oss);
727}
728
729void Scantable::calculateAZEL()
730
731  LogIO os( LogOrigin( "Scantable", "calculateAZEL()", WHERE ) ) ;
732  MPosition mp = getAntennaPosition();
733  MEpoch::ROScalarColumn timeCol(table_, "TIME");
734  ostringstream oss;
735  oss << mp;
736  os << "Computed azimuth/elevation using " << endl
737     << String(oss) << endl;
738  for (Int i=0; i<nrow(); ++i) {
739    MEpoch me = timeCol(i);
740    MDirection md = getDirection(i);
741    os  << " Time: " << formatTime(me,False)
742        << " Direction: " << formatDirection(md)
743         << endl << "     => ";
744    MeasFrame frame(mp, me);
745    Vector<Double> azel =
746        MDirection::Convert(md, MDirection::Ref(MDirection::AZEL,
747                                                frame)
748                            )().getAngle("rad").getValue();
749    azCol_.put(i,Float(azel[0]));
750    elCol_.put(i,Float(azel[1]));
751    os << "azel: " << azel[0]/C::pi*180.0 << " "
752       << azel[1]/C::pi*180.0 << " (deg)" << LogIO::POST;
753  }
754}
755
756void Scantable::clip(const Float uthres, const Float dthres, bool clipoutside, bool unflag)
757{
758  for (uInt i=0; i<table_.nrow(); ++i) {
759    Vector<uChar> flgs = flagsCol_(i);
760    srchChannelsToClip(i, uthres, dthres, clipoutside, unflag, flgs);
761    flagsCol_.put(i, flgs);
762  }
763}
764
765std::vector<bool> Scantable::getClipMask(int whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag)
766{
767  Vector<uChar> flags;
768  flagsCol_.get(uInt(whichrow), flags);
769  srchChannelsToClip(uInt(whichrow), uthres, dthres, clipoutside, unflag, flags);
770  Vector<Bool> bflag(flags.shape());
771  convertArray(bflag, flags);
772  //bflag = !bflag;
773
774  std::vector<bool> mask;
775  bflag.tovector(mask);
776  return mask;
777}
778
779void Scantable::srchChannelsToClip(uInt whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag,
780                                   Vector<uChar> flgs)
781{
782    Vector<Float> spcs = specCol_(whichrow);
783    uInt nchannel = spcs.nelements();
784    if (spcs.nelements() != nchannel) {
785      throw(AipsError("Data has incorrect number of channels"));
786    }
787    uChar userflag = 1 << 7;
788    if (unflag) {
789      userflag = 0 << 7;
790    }
791    if (clipoutside) {
792      for (uInt j = 0; j < nchannel; ++j) {
793        Float spc = spcs(j);
794        if ((spc >= uthres) || (spc <= dthres)) {
795          flgs(j) = userflag;
796        }
797      }
798    } else {
799      for (uInt j = 0; j < nchannel; ++j) {
800        Float spc = spcs(j);
801        if ((spc < uthres) && (spc > dthres)) {
802          flgs(j) = userflag;
803        }
804      }
805    }
806}
807
808
809void Scantable::flag( int whichrow, const std::vector<bool>& msk, bool unflag ) {
810  std::vector<bool>::const_iterator it;
811  uInt ntrue = 0;
812  if (whichrow >= int(table_.nrow()) ) {
813    throw(AipsError("Invalid row number"));
814  }
815  for (it = msk.begin(); it != msk.end(); ++it) {
816    if ( *it ) {
817      ntrue++;
818    }
819  }
820  //if ( selector_.empty()  && (msk.size() == 0 || msk.size() == ntrue) )
821  if ( whichrow == -1 && !unflag && selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
822    throw(AipsError("Trying to flag whole scantable."));
823  uChar userflag = 1 << 7;
824  if ( unflag ) {
825    userflag = 0 << 7;
826  }
827  if (whichrow > -1 ) {
828    applyChanFlag(uInt(whichrow), msk, userflag);
829  } else {
830    for ( uInt i=0; i<table_.nrow(); ++i) {
831      applyChanFlag(i, msk, userflag);
832    }
833  }
834}
835
836void Scantable::applyChanFlag( uInt whichrow, const std::vector<bool>& msk, uChar flagval )
837{
838  if (whichrow >= table_.nrow() ) {
839    throw( casa::indexError<int>( whichrow, "asap::Scantable::applyChanFlag: Invalid row number" ) );
840  }
841  Vector<uChar> flgs = flagsCol_(whichrow);
842  if ( msk.size() == 0 ) {
843    flgs = flagval;
844    flagsCol_.put(whichrow, flgs);
845    return;
846  }
847  if ( int(msk.size()) != nchan( getIF(whichrow) ) ) {
848    throw(AipsError("Mask has incorrect number of channels."));
849  }
850  if ( flgs.nelements() != msk.size() ) {
851    throw(AipsError("Mask has incorrect number of channels."
852                    " Probably varying with IF. Please flag per IF"));
853  }
854  std::vector<bool>::const_iterator it;
855  uInt j = 0;
856  for (it = msk.begin(); it != msk.end(); ++it) {
857    if ( *it ) {
858      flgs(j) = flagval;
859    }
860    ++j;
861  }
862  flagsCol_.put(whichrow, flgs);
863}
864
865void Scantable::flagRow(const std::vector<uInt>& rows, bool unflag)
866{
867  if (selector_.empty() && (rows.size() == table_.nrow()) && !unflag)
868    throw(AipsError("Trying to flag whole scantable."));
869
870  uInt rowflag = (unflag ? 0 : 1);
871  std::vector<uInt>::const_iterator it;
872  for (it = rows.begin(); it != rows.end(); ++it)
873    flagrowCol_.put(*it, rowflag);
874}
875
876std::vector<bool> Scantable::getMask(int whichrow) const
877{
878  Vector<uChar> flags;
879  flagsCol_.get(uInt(whichrow), flags);
880  Vector<Bool> bflag(flags.shape());
881  convertArray(bflag, flags);
882  bflag = !bflag;
883  std::vector<bool> mask;
884  bflag.tovector(mask);
885  return mask;
886}
887
888std::vector<float> Scantable::getSpectrum( int whichrow,
889                                           const std::string& poltype ) const
890{
891  LogIO os( LogOrigin( "Scantable", "getSpectrum()", WHERE ) ) ;
892
893  String ptype = poltype;
894  if (poltype == "" ) ptype = getPolType();
895  if ( whichrow  < 0 || whichrow >= nrow() )
896    throw(AipsError("Illegal row number."));
897  std::vector<float> out;
898  Vector<Float> arr;
899  uInt requestedpol = polCol_(whichrow);
900  String basetype = getPolType();
901  if ( ptype == basetype ) {
902    specCol_.get(whichrow, arr);
903  } else {
904    CountedPtr<STPol> stpol(STPol::getPolClass(Scantable::factories_,
905                                               basetype));
906    uInt row = uInt(whichrow);
907    stpol->setSpectra(getPolMatrix(row));
908    Float fang,fhand;
909    fang = focusTable_.getTotalAngle(mfocusidCol_(row));
910    fhand = focusTable_.getFeedHand(mfocusidCol_(row));
911    stpol->setPhaseCorrections(fang, fhand);
912    arr = stpol->getSpectrum(requestedpol, ptype);
913  }
914  if ( arr.nelements() == 0 )
915   
916    os << "Not enough polarisations present to do the conversion."
917       << LogIO::POST;
918  arr.tovector(out);
919  return out;
920}
921
922void Scantable::setSpectrum( const std::vector<float>& spec,
923                                   int whichrow )
924{
925  Vector<Float> spectrum(spec);
926  Vector<Float> arr;
927  specCol_.get(whichrow, arr);
928  if ( spectrum.nelements() != arr.nelements() )
929    throw AipsError("The spectrum has incorrect number of channels.");
930  specCol_.put(whichrow, spectrum);
931}
932
933
934String Scantable::generateName()
935{
936  return (File::newUniqueName("./","temp")).baseName();
937}
938
939const casa::Table& Scantable::table( ) const
940{
941  return table_;
942}
943
944casa::Table& Scantable::table( )
945{
946  return table_;
947}
948
949std::string Scantable::getPolType() const
950{
951  return table_.keywordSet().asString("POLTYPE");
952}
953
954void Scantable::unsetSelection()
955{
956  table_ = originalTable_;
957  attach();
958  selector_.reset();
959}
960
961void Scantable::setSelection( const STSelector& selection )
962{
963  Table tab = const_cast<STSelector&>(selection).apply(originalTable_);
964  if ( tab.nrow() == 0 ) {
965    throw(AipsError("Selection contains no data. Not applying it."));
966  }
967  table_ = tab;
968  attach();
969//   tab.rwKeywordSet().define("nBeam",(Int)(getBeamNos().size())) ;
970//   vector<uint> selectedIFs = getIFNos() ;
971//   Int newnIF = selectedIFs.size() ;
972//   tab.rwKeywordSet().define("nIF",newnIF) ;
973//   if ( newnIF != 0 ) {
974//     Int newnChan = 0 ;
975//     for ( Int i = 0 ; i < newnIF ; i++ ) {
976//       Int nChan = nchan( selectedIFs[i] ) ;
977//       if ( newnChan > nChan )
978//         newnChan = nChan ;
979//     }
980//     tab.rwKeywordSet().define("nChan",newnChan) ;
981//   }
982//   tab.rwKeywordSet().define("nPol",(Int)(getPolNos().size())) ;
983  selector_ = selection;
984}
985
986
987std::string Scantable::headerSummary()
988{
989  // Format header info
990//   STHeader sdh;
991//   sdh = getHeader();
992//   sdh.print();
993  ostringstream oss;
994  oss.flags(std::ios_base::left);
995  String tmp;
996  // Project
997  table_.keywordSet().get("Project", tmp);
998  oss << setw(15) << "Project:" << tmp << endl;
999  // Observation date
1000  oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1001  // Observer
1002  oss << setw(15) << "Observer:"
1003      << table_.keywordSet().asString("Observer") << endl;
1004  // Antenna Name
1005  table_.keywordSet().get("AntennaName", tmp);
1006  oss << setw(15) << "Antenna Name:" << tmp << endl;
1007  // Obs type
1008  table_.keywordSet().get("Obstype", tmp);
1009  // Records (nrow)
1010  oss << setw(15) << "Data Records:" << table_.nrow() << " rows" << endl;
1011  oss << setw(15) << "Obs. Type:" << tmp << endl;
1012  // Beams, IFs, Polarizations, and Channels
1013  oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1014      << setw(15) << "IFs:" << setw(4) << nif() << endl
1015      << setw(15) << "Polarisations:" << setw(4) << npol()
1016      << "(" << getPolType() << ")" << endl
1017      << setw(15) << "Channels:" << nchan() << endl;
1018  // Flux unit
1019  table_.keywordSet().get("FluxUnit", tmp);
1020  oss << setw(15) << "Flux Unit:" << tmp << endl;
1021  // Abscissa Unit
1022  oss << setw(15) << "Abscissa:" << getAbcissaLabel(0) << endl;
1023  // Selection
1024  oss << selector_.print() << endl;
1025
1026  return String(oss);
1027}
1028
1029void Scantable::summary( const std::string& filename )
1030{
1031  ostringstream oss;
1032  ofstream ofs;
1033  LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1034
1035  if (filename != "")
1036    ofs.open( filename.c_str(),  ios::out );
1037
1038  oss << endl;
1039  oss << asap::SEPERATOR << endl;
1040  oss << " Scan Table Summary" << endl;
1041  oss << asap::SEPERATOR << endl;
1042
1043  // Format header info
1044  oss << headerSummary();
1045  oss << endl;
1046
1047  if (table_.nrow() <= 0){
1048    oss << asap::SEPERATOR << endl;
1049    oss << "The MAIN table is empty: there are no data!!!" << endl;
1050    oss << asap::SEPERATOR << endl;
1051
1052    ols << String(oss) << LogIO::POST;
1053    if (ofs) {
1054      ofs << String(oss) << flush;
1055      ofs.close();
1056    }
1057    return;
1058  }
1059
1060
1061
1062  // main table
1063  String dirtype = "Position ("
1064                  + getDirectionRefString()
1065                  + ")";
1066  oss.flags(std::ios_base::left);
1067  oss << setw(5) << "Scan"
1068      << setw(15) << "Source"
1069      << setw(35) << "Time range"
1070      << setw(2) << "" << setw(7) << "Int[s]"
1071      << setw(7) << "Record"
1072      << setw(8) << "SrcType"
1073      << setw(8) << "FreqIDs"
1074      << setw(7) << "MolIDs" << endl;
1075  oss << setw(7)<< "" << setw(6) << "Beam"
1076      << setw(23) << dirtype << endl;
1077
1078  oss << asap::SEPERATOR << endl;
1079
1080  // Flush summary and clear up the string
1081  ols << String(oss) << LogIO::POST;
1082  if (ofs) ofs << String(oss) << flush;
1083  oss.str("");
1084  oss.clear();
1085
1086
1087  // Get Freq_ID map
1088  ROScalarColumn<uInt> ftabIds(frequencies().table(), "ID");
1089  Int nfid = ftabIds.nrow();
1090  if (nfid <= 0){
1091    oss << "FREQUENCIES subtable is empty: there are no data!!!" << endl;
1092    oss << asap::SEPERATOR << endl;
1093
1094    ols << String(oss) << LogIO::POST;
1095    if (ofs) {
1096      ofs << String(oss) << flush;
1097      ofs.close();
1098    }
1099    return;
1100  }
1101  // Storages of overall IFNO, POLNO, and nchan per FREQ_ID
1102  // the orders are identical to ID in FREQ subtable
1103  Block< Vector<uInt> > ifNos(nfid), polNos(nfid);
1104  Vector<Int> fIdchans(nfid,-1);
1105  map<uInt, Int> fidMap;  // (FREQ_ID, row # in FREQ subtable) pair
1106  for (Int i=0; i < nfid; i++){
1107   // fidMap[freqId] returns row number in FREQ subtable
1108   fidMap.insert(pair<uInt, Int>(ftabIds(i),i));
1109   ifNos[i] = Vector<uInt>();
1110   polNos[i] = Vector<uInt>();
1111  }
1112
1113  TableIterator iter(table_, "SCANNO");
1114
1115  // Vars for keeping track of time, freqids, molIds in a SCANNO
1116  Vector<uInt> freqids;
1117  Vector<uInt> molids;
1118  Vector<uInt> beamids(1,0);
1119  Vector<MDirection> beamDirs;
1120  Vector<Int> stypeids(1,0);
1121  Vector<String> stypestrs;
1122  Int nfreq(1);
1123  Int nmol(1);
1124  uInt nbeam(1);
1125  uInt nstype(1);
1126
1127  Double btime(0.0), etime(0.0);
1128  Double meanIntTim(0.0);
1129
1130  uInt currFreqId(0), ftabRow(0);
1131  Int iflen(0), pollen(0);
1132
1133  while (!iter.pastEnd()) {
1134    Table subt = iter.table();
1135    uInt snrow = subt.nrow();
1136    ROTableRow row(subt);
1137    const TableRecord& rec = row.get(0);
1138
1139    // relevant columns
1140    ROScalarColumn<Double> mjdCol(subt,"TIME");
1141    ROScalarColumn<Double> intervalCol(subt,"INTERVAL");
1142    MDirection::ROScalarColumn dirCol(subt,"DIRECTION");
1143
1144    ScalarColumn<uInt> freqIdCol(subt,"FREQ_ID");
1145    ScalarColumn<uInt> molIdCol(subt,"MOLECULE_ID");
1146    ROScalarColumn<uInt> beamCol(subt,"BEAMNO");
1147    ROScalarColumn<Int> stypeCol(subt,"SRCTYPE");
1148
1149    ROScalarColumn<uInt> ifNoCol(subt,"IFNO");
1150    ROScalarColumn<uInt> polNoCol(subt,"POLNO");
1151
1152
1153    // Times
1154    meanIntTim = sum(intervalCol.getColumn()) / (double) snrow;
1155    minMax(btime, etime, mjdCol.getColumn());
1156    etime += meanIntTim/C::day;
1157
1158    // MOLECULE_ID and FREQ_ID
1159    molids = getNumbers(molIdCol);
1160    molids.shape(nmol);
1161
1162    freqids = getNumbers(freqIdCol);
1163    freqids.shape(nfreq);
1164
1165    // Add first beamid, and srcNames
1166    beamids.resize(1,False);
1167    beamDirs.resize(1,False);
1168    beamids(0)=beamCol(0);
1169    beamDirs(0)=dirCol(0);
1170    nbeam = 1;
1171
1172    stypeids.resize(1,False);
1173    stypeids(0)=stypeCol(0);
1174    nstype = 1;
1175
1176    // Global listings of nchan/IFNO/POLNO per FREQ_ID
1177    currFreqId=freqIdCol(0);
1178    ftabRow = fidMap[currFreqId];
1179    // Assumes an identical number of channels per FREQ_ID
1180    if (fIdchans(ftabRow) < 0 ) {
1181      RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1182      fIdchans(ftabRow)=(*spec).shape()(0);
1183    }
1184    // Should keep ifNos and polNos form the previous SCANNO
1185    if ( !anyEQ(ifNos[ftabRow],ifNoCol(0)) ) {
1186      ifNos[ftabRow].shape(iflen);
1187      iflen++;
1188      ifNos[ftabRow].resize(iflen,True);
1189      ifNos[ftabRow](iflen-1) = ifNoCol(0);
1190    }
1191    if ( !anyEQ(polNos[ftabRow],polNoCol(0)) ) {
1192      polNos[ftabRow].shape(pollen);
1193      pollen++;
1194      polNos[ftabRow].resize(pollen,True);
1195      polNos[ftabRow](pollen-1) = polNoCol(0);
1196    }
1197
1198    for (uInt i=1; i < snrow; i++){
1199      // Need to list BEAMNO and DIRECTION in the same order
1200      if ( !anyEQ(beamids,beamCol(i)) ) {
1201        nbeam++;
1202        beamids.resize(nbeam,True);
1203        beamids(nbeam-1)=beamCol(i);
1204        beamDirs.resize(nbeam,True);
1205        beamDirs(nbeam-1)=dirCol(i);
1206      }
1207
1208      // SRCTYPE is Int (getNumber takes only uInt)
1209      if ( !anyEQ(stypeids,stypeCol(i)) ) {
1210        nstype++;
1211        stypeids.resize(nstype,True);
1212        stypeids(nstype-1)=stypeCol(i);
1213      }
1214
1215      // Global listings of nchan/IFNO/POLNO per FREQ_ID
1216      currFreqId=freqIdCol(i);
1217      ftabRow = fidMap[currFreqId];
1218      if (fIdchans(ftabRow) < 0 ) {
1219        const TableRecord& rec = row.get(i);
1220        RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1221        fIdchans(ftabRow) = (*spec).shape()(0);
1222      }
1223      if ( !anyEQ(ifNos[ftabRow],ifNoCol(i)) ) {
1224        ifNos[ftabRow].shape(iflen);
1225        iflen++;
1226        ifNos[ftabRow].resize(iflen,True);
1227        ifNos[ftabRow](iflen-1) = ifNoCol(i);
1228      }
1229      if ( !anyEQ(polNos[ftabRow],polNoCol(i)) ) {
1230        polNos[ftabRow].shape(pollen);
1231        pollen++;
1232        polNos[ftabRow].resize(pollen,True);
1233        polNos[ftabRow](pollen-1) = polNoCol(i);
1234      }
1235    } // end of row iteration
1236
1237    stypestrs.resize(nstype,False);
1238    for (uInt j=0; j < nstype; j++)
1239      stypestrs(j) = SrcType::getName(stypeids(j));
1240
1241    // Format Scan summary
1242    oss << setw(4) << std::right << rec.asuInt("SCANNO")
1243        << std::left << setw(1) << ""
1244        << setw(15) << rec.asString("SRCNAME")
1245        << setw(21) << MVTime(btime).string(MVTime::YMD,7)
1246        << setw(3) << " - " << MVTime(etime).string(MVTime::TIME,7)
1247        << setw(3) << "" << setw(6) << meanIntTim << setw(1) << ""
1248        << std::right << setw(5) << snrow << setw(2) << ""
1249        << std::left << stypestrs << setw(1) << ""
1250        << freqids << setw(1) << ""
1251        << molids  << endl;
1252    // Format Beam summary
1253    for (uInt j=0; j < nbeam; j++) {
1254      oss << setw(7) << "" << setw(6) << beamids(j) << setw(1) << ""
1255          << formatDirection(beamDirs(j)) << endl;
1256    }
1257    // Flush summary every scan and clear up the string
1258    ols << String(oss) << LogIO::POST;
1259    if (ofs) ofs << String(oss) << flush;
1260    oss.str("");
1261    oss.clear();
1262
1263    ++iter;
1264  } // end of scan iteration
1265  oss << asap::SEPERATOR << endl;
1266 
1267  // List FRECUENCIES Table (using STFrequencies.print may be slow)
1268  oss << "FREQUENCIES: " << nfreq << endl;
1269  oss << std::right << setw(5) << "ID" << setw(2) << ""
1270      << std::left  << setw(5) << "IFNO" << setw(2) << ""
1271      << setw(8) << "Frame"
1272      << setw(16) << "RefVal"
1273      << setw(7) << "RefPix"
1274      << setw(15) << "Increment"
1275      << setw(9) << "Channels"
1276      << setw(6) << "POLNOs" << endl;
1277  Int tmplen;
1278  for (Int i=0; i < nfid; i++){
1279    // List row=i of FREQUENCIES subtable
1280    ifNos[i].shape(tmplen);
1281    if (tmplen >= 1) {
1282      oss << std::right << setw(5) << ftabIds(i) << setw(2) << ""
1283          << setw(3) << ifNos[i](0) << setw(1) << ""
1284          << std::left << setw(46) << frequencies().print(ftabIds(i))
1285          << setw(2) << ""
1286          << std::right << setw(8) << fIdchans[i] << setw(2) << ""
1287          << std::left << polNos[i];
1288      if (tmplen > 1) {
1289        oss  << " (" << tmplen << " chains)";
1290      }
1291      oss << endl;
1292    }
1293   
1294  }
1295  oss << asap::SEPERATOR << endl;
1296
1297  // List MOLECULES Table (currently lists all rows)
1298  oss << "MOLECULES: " << endl;
1299  if (molecules().nrow() <= 0) {
1300    oss << "   MOLECULES subtable is empty: there are no data" << endl;
1301  } else {
1302    ROTableRow row(molecules().table());
1303    oss << std::right << setw(5) << "ID"
1304        << std::left << setw(3) << ""
1305        << setw(18) << "RestFreq"
1306        << setw(15) << "Name" << endl;
1307    for (Int i=0; i < molecules().nrow(); i++){
1308      const TableRecord& rec=row.get(i);
1309      oss << std::right << setw(5) << rec.asuInt("ID")
1310          << std::left << setw(3) << ""
1311          << rec.asArrayDouble("RESTFREQUENCY") << setw(1) << ""
1312          << rec.asArrayString("NAME") << endl;
1313    }
1314  }
1315  oss << asap::SEPERATOR << endl;
1316  ols << String(oss) << LogIO::POST;
1317  if (ofs) {
1318    ofs << String(oss) << flush;
1319    ofs.close();
1320  }
1321  //  return String(oss);
1322}
1323
1324
1325std::string Scantable::oldheaderSummary()
1326{
1327  // Format header info
1328//   STHeader sdh;
1329//   sdh = getHeader();
1330//   sdh.print();
1331  ostringstream oss;
1332  oss.flags(std::ios_base::left);
1333  oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1334      << setw(15) << "IFs:" << setw(4) << nif() << endl
1335      << setw(15) << "Polarisations:" << setw(4) << npol()
1336      << "(" << getPolType() << ")" << endl
1337      << setw(15) << "Channels:" << nchan() << endl;
1338  String tmp;
1339  oss << setw(15) << "Observer:"
1340      << table_.keywordSet().asString("Observer") << endl;
1341  oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1342  table_.keywordSet().get("Project", tmp);
1343  oss << setw(15) << "Project:" << tmp << endl;
1344  table_.keywordSet().get("Obstype", tmp);
1345  oss << setw(15) << "Obs. Type:" << tmp << endl;
1346  table_.keywordSet().get("AntennaName", tmp);
1347  oss << setw(15) << "Antenna Name:" << tmp << endl;
1348  table_.keywordSet().get("FluxUnit", tmp);
1349  oss << setw(15) << "Flux Unit:" << tmp << endl;
1350  int nid = moleculeTable_.nrow();
1351  Bool firstline = True;
1352  oss << setw(15) << "Rest Freqs:";
1353  for (int i=0; i<nid; i++) {
1354    Table t = table_(table_.col("MOLECULE_ID") == i, 1);
1355      if (t.nrow() >  0) {
1356          Vector<Double> vec(moleculeTable_.getRestFrequency(i));
1357          if (vec.nelements() > 0) {
1358               if (firstline) {
1359                   oss << setprecision(10) << vec << " [Hz]" << endl;
1360                   firstline=False;
1361               }
1362               else{
1363                   oss << setw(15)<<" " << setprecision(10) << vec << " [Hz]" << endl;
1364               }
1365          } else {
1366              oss << "none" << endl;
1367          }
1368      }
1369  }
1370
1371  oss << setw(15) << "Abcissa:" << getAbcissaLabel(0) << endl;
1372  oss << selector_.print() << endl;
1373  return String(oss);
1374}
1375
1376  //std::string Scantable::summary( const std::string& filename )
1377void Scantable::oldsummary( const std::string& filename )
1378{
1379  ostringstream oss;
1380  ofstream ofs;
1381  LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1382
1383  if (filename != "")
1384    ofs.open( filename.c_str(),  ios::out );
1385
1386  oss << endl;
1387  oss << asap::SEPERATOR << endl;
1388  oss << " Scan Table Summary" << endl;
1389  oss << asap::SEPERATOR << endl;
1390
1391  // Format header info
1392  oss << oldheaderSummary();
1393  oss << endl;
1394
1395  // main table
1396  String dirtype = "Position ("
1397                  + getDirectionRefString()
1398                  + ")";
1399  oss.flags(std::ios_base::left);
1400  oss << setw(5) << "Scan" << setw(15) << "Source"
1401      << setw(10) << "Time" << setw(18) << "Integration"
1402      << setw(15) << "Source Type" << endl;
1403  oss << setw(5) << "" << setw(5) << "Beam" << setw(3) << "" << dirtype << endl;
1404  oss << setw(10) << "" << setw(3) << "IF" << setw(3) << ""
1405      << setw(8) << "Frame" << setw(16)
1406      << "RefVal" << setw(10) << "RefPix" << setw(12) << "Increment"
1407      << setw(7) << "Channels"
1408      << endl;
1409  oss << asap::SEPERATOR << endl;
1410
1411  // Flush summary and clear up the string
1412  ols << String(oss) << LogIO::POST;
1413  if (ofs) ofs << String(oss) << flush;
1414  oss.str("");
1415  oss.clear();
1416
1417  TableIterator iter(table_, "SCANNO");
1418  while (!iter.pastEnd()) {
1419    Table subt = iter.table();
1420    ROTableRow row(subt);
1421    MEpoch::ROScalarColumn timeCol(subt,"TIME");
1422    const TableRecord& rec = row.get(0);
1423    oss << setw(4) << std::right << rec.asuInt("SCANNO")
1424        << std::left << setw(1) << ""
1425        << setw(15) << rec.asString("SRCNAME")
1426        << setw(10) << formatTime(timeCol(0), false);
1427    // count the cycles in the scan
1428    TableIterator cyciter(subt, "CYCLENO");
1429    int nint = 0;
1430    while (!cyciter.pastEnd()) {
1431      ++nint;
1432      ++cyciter;
1433    }
1434    oss << setw(3) << std::right << nint  << setw(3) << " x " << std::left
1435        << setw(11) <<  formatSec(rec.asFloat("INTERVAL")) << setw(1) << ""
1436        << setw(15) << SrcType::getName(rec.asInt("SRCTYPE")) << endl;
1437
1438    TableIterator biter(subt, "BEAMNO");
1439    while (!biter.pastEnd()) {
1440      Table bsubt = biter.table();
1441      ROTableRow brow(bsubt);
1442      const TableRecord& brec = brow.get(0);
1443      uInt row0 = bsubt.rowNumbers(table_)[0];
1444      oss << setw(5) << "" <<  setw(4) << std::right << brec.asuInt("BEAMNO")<< std::left;
1445      oss  << setw(4) << ""  << formatDirection(getDirection(row0)) << endl;
1446      TableIterator iiter(bsubt, "IFNO");
1447      while (!iiter.pastEnd()) {
1448        Table isubt = iiter.table();
1449        ROTableRow irow(isubt);
1450        const TableRecord& irec = irow.get(0);
1451        oss << setw(9) << "";
1452        oss << setw(3) << std::right << irec.asuInt("IFNO") << std::left
1453            << setw(1) << "" << frequencies().print(irec.asuInt("FREQ_ID"))
1454            << setw(3) << "" << nchan(irec.asuInt("IFNO"))
1455            << endl;
1456
1457        ++iiter;
1458      }
1459      ++biter;
1460    }
1461    // Flush summary every scan and clear up the string
1462    ols << String(oss) << LogIO::POST;
1463    if (ofs) ofs << String(oss) << flush;
1464    oss.str("");
1465    oss.clear();
1466
1467    ++iter;
1468  }
1469  oss << asap::SEPERATOR << endl;
1470  ols << String(oss) << LogIO::POST;
1471  if (ofs) {
1472    ofs << String(oss) << flush;
1473    ofs.close();
1474  }
1475  //  return String(oss);
1476}
1477
1478// std::string Scantable::getTime(int whichrow, bool showdate) const
1479// {
1480//   MEpoch::ROScalarColumn timeCol(table_, "TIME");
1481//   MEpoch me;
1482//   if (whichrow > -1) {
1483//     me = timeCol(uInt(whichrow));
1484//   } else {
1485//     Double tm;
1486//     table_.keywordSet().get("UTC",tm);
1487//     me = MEpoch(MVEpoch(tm));
1488//   }
1489//   return formatTime(me, showdate);
1490// }
1491
1492std::string Scantable::getTime(int whichrow, bool showdate, uInt prec) const
1493{
1494  MEpoch me;
1495  me = getEpoch(whichrow);
1496  return formatTime(me, showdate, prec);
1497}
1498
1499MEpoch Scantable::getEpoch(int whichrow) const
1500{
1501  if (whichrow > -1) {
1502    return timeCol_(uInt(whichrow));
1503  } else {
1504    Double tm;
1505    table_.keywordSet().get("UTC",tm);
1506    return MEpoch(MVEpoch(tm));
1507  }
1508}
1509
1510std::string Scantable::getDirectionString(int whichrow) const
1511{
1512  return formatDirection(getDirection(uInt(whichrow)));
1513}
1514
1515
1516SpectralCoordinate Scantable::getSpectralCoordinate(int whichrow) const {
1517  const MPosition& mp = getAntennaPosition();
1518  const MDirection& md = getDirection(whichrow);
1519  const MEpoch& me = timeCol_(whichrow);
1520  //Double rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1521  Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1522  return freqTable_.getSpectralCoordinate(md, mp, me, rf,
1523                                          mfreqidCol_(whichrow));
1524}
1525
1526std::vector< double > Scantable::getAbcissa( int whichrow ) const
1527{
1528  if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal row number"));
1529  std::vector<double> stlout;
1530  int nchan = specCol_(whichrow).nelements();
1531  String us = freqTable_.getUnitString();
1532  if ( us == "" || us == "pixel" || us == "channel" ) {
1533    for (int i=0; i<nchan; ++i) {
1534      stlout.push_back(double(i));
1535    }
1536    return stlout;
1537  }
1538  SpectralCoordinate spc = getSpectralCoordinate(whichrow);
1539  Vector<Double> pixel(nchan);
1540  Vector<Double> world;
1541  indgen(pixel);
1542  if ( Unit(us) == Unit("Hz") ) {
1543    for ( int i=0; i < nchan; ++i) {
1544      Double world;
1545      spc.toWorld(world, pixel[i]);
1546      stlout.push_back(double(world));
1547    }
1548  } else if ( Unit(us) == Unit("km/s") ) {
1549    Vector<Double> world;
1550    spc.pixelToVelocity(world, pixel);
1551    world.tovector(stlout);
1552  }
1553  return stlout;
1554}
1555void Scantable::setDirectionRefString( const std::string & refstr )
1556{
1557  MDirection::Types mdt;
1558  if (refstr != "" && !MDirection::getType(mdt, refstr)) {
1559    throw(AipsError("Illegal Direction frame."));
1560  }
1561  if ( refstr == "" ) {
1562    String defaultstr = MDirection::showType(dirCol_.getMeasRef().getType());
1563    table_.rwKeywordSet().define("DIRECTIONREF", defaultstr);
1564  } else {
1565    table_.rwKeywordSet().define("DIRECTIONREF", String(refstr));
1566  }
1567}
1568
1569std::string Scantable::getDirectionRefString( ) const
1570{
1571  return table_.keywordSet().asString("DIRECTIONREF");
1572}
1573
1574MDirection Scantable::getDirection(int whichrow ) const
1575{
1576  String usertype = table_.keywordSet().asString("DIRECTIONREF");
1577  String type = MDirection::showType(dirCol_.getMeasRef().getType());
1578  if ( usertype != type ) {
1579    MDirection::Types mdt;
1580    if (!MDirection::getType(mdt, usertype)) {
1581      throw(AipsError("Illegal Direction frame."));
1582    }
1583    return dirCol_.convert(uInt(whichrow), mdt);
1584  } else {
1585    return dirCol_(uInt(whichrow));
1586  }
1587}
1588
1589std::string Scantable::getAbcissaLabel( int whichrow ) const
1590{
1591  if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal ro number"));
1592  const MPosition& mp = getAntennaPosition();
1593  const MDirection& md = getDirection(whichrow);
1594  const MEpoch& me = timeCol_(whichrow);
1595  //const Double& rf = mmolidCol_(whichrow);
1596  const Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1597  SpectralCoordinate spc =
1598    freqTable_.getSpectralCoordinate(md, mp, me, rf, mfreqidCol_(whichrow));
1599
1600  String s = "Channel";
1601  Unit u = Unit(freqTable_.getUnitString());
1602  if (u == Unit("km/s")) {
1603    s = CoordinateUtil::axisLabel(spc, 0, True,True,  True);
1604  } else if (u == Unit("Hz")) {
1605    Vector<String> wau(1);wau = u.getName();
1606    spc.setWorldAxisUnits(wau);
1607    s = CoordinateUtil::axisLabel(spc, 0, True, True, False);
1608  }
1609  return s;
1610
1611}
1612
1613/**
1614void asap::Scantable::setRestFrequencies( double rf, const std::string& name,
1615                                          const std::string& unit )
1616**/
1617void Scantable::setRestFrequencies( vector<double> rf, const vector<std::string>& name,
1618                                          const std::string& unit )
1619
1620{
1621  ///@todo lookup in line table to fill in name and formattedname
1622  Unit u(unit);
1623  //Quantum<Double> urf(rf, u);
1624  Quantum<Vector<Double> >urf(rf, u);
1625  Vector<String> formattedname(0);
1626  //cerr<<"Scantable::setRestFrequnecies="<<urf<<endl;
1627
1628  //uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), name, "");
1629  uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), mathutil::toVectorString(name), formattedname);
1630  TableVector<uInt> tabvec(table_, "MOLECULE_ID");
1631  tabvec = id;
1632}
1633
1634/**
1635void asap::Scantable::setRestFrequencies( const std::string& name )
1636{
1637  throw(AipsError("setRestFrequencies( const std::string& name ) NYI"));
1638  ///@todo implement
1639}
1640**/
1641
1642void Scantable::setRestFrequencies( const vector<std::string>& name )
1643{
1644  (void) name; // suppress unused warning
1645  throw(AipsError("setRestFrequencies( const vector<std::string>& name ) NYI"));
1646  ///@todo implement
1647}
1648
1649std::vector< unsigned int > Scantable::rownumbers( ) const
1650{
1651  std::vector<unsigned int> stlout;
1652  Vector<uInt> vec = table_.rowNumbers();
1653  vec.tovector(stlout);
1654  return stlout;
1655}
1656
1657
1658Matrix<Float> Scantable::getPolMatrix( uInt whichrow ) const
1659{
1660  ROTableRow row(table_);
1661  const TableRecord& rec = row.get(whichrow);
1662  Table t =
1663    originalTable_( originalTable_.col("SCANNO") == Int(rec.asuInt("SCANNO"))
1664                    && originalTable_.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1665                    && originalTable_.col("IFNO") == Int(rec.asuInt("IFNO"))
1666                    && originalTable_.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
1667  ROArrayColumn<Float> speccol(t, "SPECTRA");
1668  return speccol.getColumn();
1669}
1670
1671std::vector< std::string > Scantable::columnNames( ) const
1672{
1673  Vector<String> vec = table_.tableDesc().columnNames();
1674  return mathutil::tovectorstring(vec);
1675}
1676
1677MEpoch::Types Scantable::getTimeReference( ) const
1678{
1679  return MEpoch::castType(timeCol_.getMeasRef().getType());
1680}
1681
1682void Scantable::addFit( const STFitEntry& fit, int row )
1683{
1684  //cout << mfitidCol_(uInt(row)) << endl;
1685  LogIO os( LogOrigin( "Scantable", "addFit()", WHERE ) ) ;
1686  os << mfitidCol_(uInt(row)) << LogIO::POST ;
1687  uInt id = fitTable_.addEntry(fit, mfitidCol_(uInt(row)));
1688  mfitidCol_.put(uInt(row), id);
1689}
1690
1691void Scantable::shift(int npix)
1692{
1693  Vector<uInt> fids(mfreqidCol_.getColumn());
1694  genSort( fids, Sort::Ascending,
1695           Sort::QuickSort|Sort::NoDuplicates );
1696  for (uInt i=0; i<fids.nelements(); ++i) {
1697    frequencies().shiftRefPix(npix, fids[i]);
1698  }
1699}
1700
1701String Scantable::getAntennaName() const
1702{
1703  String out;
1704  table_.keywordSet().get("AntennaName", out);
1705  String::size_type pos1 = out.find("@") ;
1706  String::size_type pos2 = out.find("//") ;
1707  if ( pos2 != String::npos )
1708    out = out.substr(pos2+2,pos1-pos2-2) ;
1709  else if ( pos1 != String::npos )
1710    out = out.substr(0,pos1) ;
1711  return out;
1712}
1713
1714int Scantable::checkScanInfo(const std::vector<int>& scanlist) const
1715{
1716  String tbpath;
1717  int ret = 0;
1718  if ( table_.keywordSet().isDefined("GBT_GO") ) {
1719    table_.keywordSet().get("GBT_GO", tbpath);
1720    Table t(tbpath,Table::Old);
1721    // check each scan if other scan of the pair exist
1722    int nscan = scanlist.size();
1723    for (int i = 0; i < nscan; i++) {
1724      Table subt = t( t.col("SCAN") == scanlist[i]+1 );
1725      if (subt.nrow()==0) {
1726        //cerr <<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<endl;
1727        LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1728        os <<LogIO::WARN<<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<LogIO::POST;
1729        ret = 1;
1730        break;
1731      }
1732      ROTableRow row(subt);
1733      const TableRecord& rec = row.get(0);
1734      int scan1seqn = rec.asuInt("PROCSEQN");
1735      int laston1 = rec.asuInt("LASTON");
1736      if ( rec.asuInt("PROCSIZE")==2 ) {
1737        if ( i < nscan-1 ) {
1738          Table subt2 = t( t.col("SCAN") == scanlist[i+1]+1 );
1739          if ( subt2.nrow() == 0) {
1740            LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1741
1742            //cerr<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<endl;
1743            os<<LogIO::WARN<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<LogIO::POST;
1744            ret = 1;
1745            break;
1746          }
1747          ROTableRow row2(subt2);
1748          const TableRecord& rec2 = row2.get(0);
1749          int scan2seqn = rec2.asuInt("PROCSEQN");
1750          int laston2 = rec2.asuInt("LASTON");
1751          if (scan1seqn == 1 && scan2seqn == 2) {
1752            if (laston1 == laston2) {
1753              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1754              //cerr<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1755              os<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1756              i +=1;
1757            }
1758            else {
1759              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1760              //cerr<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1761              os<<LogIO::WARN<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1762            }
1763          }
1764          else if (scan1seqn==2 && scan2seqn == 1) {
1765            if (laston1 == laston2) {
1766              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1767              //cerr<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<endl;
1768              os<<LogIO::WARN<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<LogIO::POST;
1769              ret = 1;
1770              break;
1771            }
1772          }
1773          else {
1774            LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1775            //cerr<<"The other scan for  "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<endl;
1776            os<<LogIO::WARN<<"The other scan for  "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<LogIO::POST;
1777            ret = 1;
1778            break;
1779          }
1780        }
1781      }
1782      else {
1783        LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1784        //cerr<<"The scan does not appear to be standard obsevation."<<endl;
1785        os<<LogIO::WARN<<"The scan does not appear to be standard obsevation."<<LogIO::POST;
1786      }
1787    //if ( i >= nscan ) break;
1788    }
1789  }
1790  else {
1791    LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1792    //cerr<<"No reference to GBT_GO table."<<endl;
1793    os<<LogIO::WARN<<"No reference to GBT_GO table."<<LogIO::POST;
1794    ret = 1;
1795  }
1796  return ret;
1797}
1798
1799std::vector<double> Scantable::getDirectionVector(int whichrow) const
1800{
1801  Vector<Double> Dir = dirCol_(whichrow).getAngle("rad").getValue();
1802  std::vector<double> dir;
1803  Dir.tovector(dir);
1804  return dir;
1805}
1806
1807void asap::Scantable::reshapeSpectrum( int nmin, int nmax )
1808  throw( casa::AipsError )
1809{
1810  // assumed that all rows have same nChan
1811  Vector<Float> arr = specCol_( 0 ) ;
1812  int nChan = arr.nelements() ;
1813
1814  // if nmin < 0 or nmax < 0, nothing to do
1815  if (  nmin < 0 ) {
1816    throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1817    }
1818  if (  nmax < 0  ) {
1819    throw( casa::indexError<int>( nmax, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1820  }
1821
1822  // if nmin > nmax, exchange values
1823  if ( nmin > nmax ) {
1824    int tmp = nmax ;
1825    nmax = nmin ;
1826    nmin = tmp ;
1827    LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1828    os << "Swap values. Applied range is ["
1829       << nmin << ", " << nmax << "]" << LogIO::POST ;
1830  }
1831
1832  // if nmin exceeds nChan, nothing to do
1833  if ( nmin >= nChan ) {
1834    throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Specified minimum exceeds nChan." ) ) ;
1835  }
1836
1837  // if nmax exceeds nChan, reset nmax to nChan
1838  if ( nmax >= nChan-1 ) {
1839    if ( nmin == 0 ) {
1840      // nothing to do
1841      LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1842      os << "Whole range is selected. Nothing to do." << LogIO::POST ;
1843      return ;
1844    }
1845    else {
1846      LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1847      os << "Specified maximum exceeds nChan. Applied range is ["
1848         << nmin << ", " << nChan-1 << "]." << LogIO::POST ;
1849      nmax = nChan - 1 ;
1850    }
1851  }
1852
1853  // reshape specCol_ and flagCol_
1854  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1855    reshapeSpectrum( nmin, nmax, irow ) ;
1856  }
1857
1858  // update FREQUENCIES subtable
1859  Double refpix ;
1860  Double refval ;
1861  Double increment ;
1862  int freqnrow = freqTable_.table().nrow() ;
1863  Vector<uInt> oldId( freqnrow ) ;
1864  Vector<uInt> newId( freqnrow ) ;
1865  for ( int irow = 0 ; irow < freqnrow ; irow++ ) {
1866    freqTable_.getEntry( refpix, refval, increment, irow ) ;
1867    /***
1868     * need to shift refpix to nmin
1869     * note that channel nmin in old index will be channel 0 in new one
1870     ***/
1871    refval = refval - ( refpix - nmin ) * increment ;
1872    refpix = 0 ;
1873    freqTable_.setEntry( refpix, refval, increment, irow ) ;
1874  }
1875
1876  // update nchan
1877  int newsize = nmax - nmin + 1 ;
1878  table_.rwKeywordSet().define( "nChan", newsize ) ;
1879
1880  // update bandwidth
1881  // assumed all spectra in the scantable have same bandwidth
1882  table_.rwKeywordSet().define( "Bandwidth", increment * newsize ) ;
1883
1884  return ;
1885}
1886
1887void asap::Scantable::reshapeSpectrum( int nmin, int nmax, int irow )
1888{
1889  // reshape specCol_ and flagCol_
1890  Vector<Float> oldspec = specCol_( irow ) ;
1891  Vector<uChar> oldflag = flagsCol_( irow ) ;
1892  Vector<Float> oldtsys = tsysCol_( irow ) ;
1893  uInt newsize = nmax - nmin + 1 ;
1894  Slice slice( nmin, newsize, 1 ) ;
1895  specCol_.put( irow, oldspec( slice ) ) ;
1896  flagsCol_.put( irow, oldflag( slice ) ) ;
1897  if ( oldspec.size() == oldtsys.size() )
1898    tsysCol_.put( irow, oldtsys( slice ) ) ;
1899
1900  return ;
1901}
1902
1903void asap::Scantable::regridSpecChannel( double dnu, int nChan )
1904{
1905  LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1906  os << "Regrid abcissa with spectral resoultion " << dnu << " " << freqTable_.getUnitString() << " with channel number " << ((nChan>0)? String(nChan) : "covering band width")<< LogIO::POST ;
1907  int freqnrow = freqTable_.table().nrow() ;
1908  Vector<bool> firstTime( freqnrow, true ) ;
1909  double oldincr, factor;
1910  uInt currId;
1911  Double refpix ;
1912  Double refval ;
1913  Double increment ;
1914  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1915    currId = mfreqidCol_(irow);
1916    vector<double> abcissa = getAbcissa( irow ) ;
1917    if (nChan < 0) {
1918      int oldsize = abcissa.size() ;
1919      double bw = (abcissa[oldsize-1]-abcissa[0]) +                     \
1920        0.5 * (abcissa[1]-abcissa[0] + abcissa[oldsize-1]-abcissa[oldsize-2]) ;
1921      nChan = int( ceil( abs(bw/dnu) ) ) ;
1922    }
1923    // actual regridding
1924    regridChannel( nChan, dnu, irow ) ;
1925
1926    // update FREQUENCIES subtable
1927    if (firstTime[currId]) {
1928      oldincr = abcissa[1]-abcissa[0] ;
1929      factor = dnu/oldincr ;
1930      firstTime[currId] = false ;
1931      freqTable_.getEntry( refpix, refval, increment, currId ) ;
1932
1933      //refval = refval - ( refpix + 0.5 * (1 - factor) ) * increment ;
1934      if (factor > 0 ) {
1935        refpix = (refpix + 0.5)/factor - 0.5;
1936      } else {
1937        refpix = (abcissa.size() - 0.5 - refpix)/abs(factor) - 0.5;
1938      }
1939      freqTable_.setEntry( refpix, refval, increment*factor, currId ) ;
1940      //os << "ID" << currId << ": channel width (Orig) = " << oldincr << " [" << freqTable_.getUnitString() << "], scale factor = " << factor << LogIO::POST ;
1941      //os << "     frequency increment (Orig) = " << increment << "-> (New) " << increment*factor << LogIO::POST ;
1942    }
1943  }
1944}
1945
1946void asap::Scantable::regridChannel( int nChan, double dnu )
1947{
1948  LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1949  os << "Regrid abcissa with channel number " << nChan << " and spectral resoultion " << dnu << "Hz." << LogIO::POST ;
1950  // assumed that all rows have same nChan
1951  Vector<Float> arr = specCol_( 0 ) ;
1952  int oldsize = arr.nelements() ;
1953
1954  // if oldsize == nChan, nothing to do
1955  if ( oldsize == nChan ) {
1956    os << "Specified channel number is same as current one. Nothing to do." << LogIO::POST ;
1957    return ;
1958  }
1959
1960  // if oldChan < nChan, unphysical operation
1961  if ( oldsize < nChan ) {
1962    os << "Unphysical operation. Nothing to do." << LogIO::POST ;
1963    return ;
1964  }
1965
1966  // change channel number for specCol_, flagCol_, and tsysCol_ (if necessary)
1967  vector<string> coordinfo = getCoordInfo() ;
1968  string oldinfo = coordinfo[0] ;
1969  coordinfo[0] = "Hz" ;
1970  setCoordInfo( coordinfo ) ;
1971  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1972    regridChannel( nChan, dnu, irow ) ;
1973  }
1974  coordinfo[0] = oldinfo ;
1975  setCoordInfo( coordinfo ) ;
1976
1977
1978  // NOTE: this method does not update metadata such as
1979  //       FREQUENCIES subtable, nChan, Bandwidth, etc.
1980
1981  return ;
1982}
1983
1984void asap::Scantable::regridChannel( int nChan, double dnu, int irow )
1985{
1986  // logging
1987  //ofstream ofs( "average.log", std::ios::out | std::ios::app ) ;
1988  //ofs << "IFNO = " << getIF( irow ) << " irow = " << irow << endl ;
1989
1990  Vector<Float> oldspec = specCol_( irow ) ;
1991  Vector<uChar> oldflag = flagsCol_( irow ) ;
1992  Vector<Float> oldtsys = tsysCol_( irow ) ;
1993  Vector<Float> newspec( nChan, 0 ) ;
1994  Vector<uChar> newflag( nChan, true ) ;
1995  Vector<Float> newtsys ;
1996  bool regridTsys = false ;
1997  if (oldtsys.size() == oldspec.size()) {
1998    regridTsys = true ;
1999    newtsys.resize(nChan,false) ;
2000    newtsys = 0 ;
2001  }
2002
2003  // regrid
2004  vector<double> abcissa = getAbcissa( irow ) ;
2005  int oldsize = abcissa.size() ;
2006  double olddnu = abcissa[1] - abcissa[0] ;
2007  //int ichan = 0 ;
2008  double wsum = 0.0 ;
2009  Vector<double> zi( nChan+1 ) ;
2010  Vector<double> yi( oldsize + 1 ) ;
2011  yi[0] = abcissa[0] - 0.5 * olddnu ;
2012  for ( int ii = 1 ; ii < oldsize ; ii++ )
2013    yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2014  yi[oldsize] = abcissa[oldsize-1] \
2015    + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
2016  //zi[0] = abcissa[0] - 0.5 * olddnu ;
2017  zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2018  for ( int ii = 1 ; ii < nChan ; ii++ )
2019    zi[ii] = zi[0] + dnu * ii ;
2020  zi[nChan] = zi[nChan-1] + dnu ;
2021  // Access zi and yi in ascending order
2022  int izs = ((dnu > 0) ? 0 : nChan ) ;
2023  int ize = ((dnu > 0) ? nChan : 0 ) ;
2024  int izincr = ((dnu > 0) ? 1 : -1 ) ;
2025  int ichan =  ((olddnu > 0) ? 0 : oldsize ) ;
2026  int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2027  int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2028  //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2029  int ii = izs ;
2030  while (ii != ize) {
2031    // always zl < zr
2032    double zl = zi[ii] ;
2033    double zr = zi[ii+izincr] ;
2034    // Need to access smaller index for the new spec, flag, and tsys.
2035    // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2036    int i = min(ii, ii+izincr) ;
2037    //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2038    int jj = ichan ;
2039    while (jj != iye) {
2040      // always yl < yr
2041      double yl = yi[jj] ;
2042      double yr = yi[jj+iyincr] ;
2043      // Need to access smaller index for the original spec, flag, and tsys.
2044      // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2045      int j = min(jj, jj+iyincr) ;
2046      if ( yr <= zl ) {
2047        jj += iyincr ;
2048        continue ;
2049      }
2050      else if ( yl <= zl ) {
2051        if ( yr < zr ) {
2052          if (!oldflag[j]) {
2053            newspec[i] += oldspec[j] * ( yr - zl ) ;
2054            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2055            wsum += ( yr - zl ) ;
2056          }
2057          newflag[i] = newflag[i] && oldflag[j] ;
2058        }
2059        else {
2060          if (!oldflag[j]) {
2061            newspec[i] += oldspec[j] * abs(dnu) ;
2062            if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2063            wsum += abs(dnu) ;
2064          }
2065          newflag[i] = newflag[i] && oldflag[j] ;
2066          ichan = jj ;
2067          break ;
2068        }
2069      }
2070      else if ( yl < zr ) {
2071        if ( yr <= zr ) {
2072          if (!oldflag[j]) {
2073            newspec[i] += oldspec[j] * ( yr - yl ) ;
2074            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2075            wsum += ( yr - yl ) ;
2076          }
2077          newflag[i] = newflag[i] && oldflag[j] ;
2078        }
2079        else {
2080          if (!oldflag[j]) {
2081            newspec[i] += oldspec[j] * ( zr - yl ) ;
2082            if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2083            wsum += ( zr - yl ) ;
2084          }
2085          newflag[i] = newflag[i] && oldflag[j] ;
2086          ichan = jj ;
2087          break ;
2088        }
2089      }
2090      else {
2091        ichan = jj - iyincr ;
2092        break ;
2093      }
2094      jj += iyincr ;
2095    }
2096    if ( wsum != 0.0 ) {
2097      newspec[i] /= wsum ;
2098      if (regridTsys) newtsys[i] /= wsum ;
2099    }
2100    wsum = 0.0 ;
2101    ii += izincr ;
2102  }
2103//   if ( dnu > 0.0 ) {
2104//     for ( int ii = 0 ; ii < nChan ; ii++ ) {
2105//       double zl = zi[ii] ;
2106//       double zr = zi[ii+1] ;
2107//       for ( int j = ichan ; j < oldsize ; j++ ) {
2108//         double yl = yi[j] ;
2109//         double yr = yi[j+1] ;
2110//         if ( yl <= zl ) {
2111//           if ( yr <= zl ) {
2112//             continue ;
2113//           }
2114//           else if ( yr <= zr ) {
2115//          if (!oldflag[j]) {
2116//            newspec[ii] += oldspec[j] * ( yr - zl ) ;
2117//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - zl ) ;
2118//            wsum += ( yr - zl ) ;
2119//          }
2120//          newflag[ii] = newflag[ii] && oldflag[j] ;
2121//           }
2122//           else {
2123//          if (!oldflag[j]) {
2124//            newspec[ii] += oldspec[j] * dnu ;
2125//            if (regridTsys) newtsys[ii] += oldtsys[j] * dnu ;
2126//            wsum += dnu ;
2127//          }
2128//          newflag[ii] = newflag[ii] && oldflag[j] ;
2129//             ichan = j ;
2130//             break ;
2131//           }
2132//         }
2133//         else if ( yl < zr ) {
2134//           if ( yr <= zr ) {
2135//          if (!oldflag[j]) {
2136//            newspec[ii] += oldspec[j] * ( yr - yl ) ;
2137//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - yl ) ;
2138//               wsum += ( yr - yl ) ;
2139//          }
2140//          newflag[ii] = newflag[ii] && oldflag[j] ;
2141//           }
2142//           else {
2143//          if (!oldflag[j]) {
2144//            newspec[ii] += oldspec[j] * ( zr - yl ) ;
2145//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( zr - yl ) ;
2146//            wsum += ( zr - yl ) ;
2147//          }
2148//          newflag[ii] = newflag[ii] && oldflag[j] ;
2149//             ichan = j ;
2150//             break ;
2151//           }
2152//         }
2153//         else {
2154//           ichan = j - 1 ;
2155//           break ;
2156//         }
2157//       }
2158//       if ( wsum != 0.0 ) {
2159//         newspec[ii] /= wsum ;
2160//      if (regridTsys) newtsys[ii] /= wsum ;
2161//       }
2162//       wsum = 0.0 ;
2163//     }
2164//   }
2165//   else if ( dnu < 0.0 ) {
2166//     for ( int ii = 0 ; ii < nChan ; ii++ ) {
2167//       double zl = zi[ii] ;
2168//       double zr = zi[ii+1] ;
2169//       for ( int j = ichan ; j < oldsize ; j++ ) {
2170//         double yl = yi[j] ;
2171//         double yr = yi[j+1] ;
2172//         if ( yl >= zl ) {
2173//           if ( yr >= zl ) {
2174//             continue ;
2175//           }
2176//           else if ( yr >= zr ) {
2177//          if (!oldflag[j]) {
2178//            newspec[ii] += oldspec[j] * abs( yr - zl ) ;
2179//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - zl ) ;
2180//            wsum += abs( yr - zl ) ;
2181//          }
2182//          newflag[ii] = newflag[ii] && oldflag[j] ;
2183//           }
2184//           else {
2185//          if (!oldflag[j]) {
2186//            newspec[ii] += oldspec[j] * abs( dnu ) ;
2187//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( dnu ) ;
2188//            wsum += abs( dnu ) ;
2189//          }
2190//          newflag[ii] = newflag[ii] && oldflag[j] ;
2191//             ichan = j ;
2192//             break ;
2193//           }
2194//         }
2195//         else if ( yl > zr ) {
2196//           if ( yr >= zr ) {
2197//          if (!oldflag[j]) {
2198//            newspec[ii] += oldspec[j] * abs( yr - yl ) ;
2199//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - yl ) ;
2200//            wsum += abs( yr - yl ) ;
2201//          }
2202//          newflag[ii] = newflag[ii] && oldflag[j] ;
2203//           }
2204//           else {
2205//          if (!oldflag[j]) {
2206//            newspec[ii] += oldspec[j] * abs( zr - yl ) ;
2207//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( zr - yl ) ;
2208//            wsum += abs( zr - yl ) ;
2209//          }
2210//          newflag[ii] = newflag[ii] && oldflag[j] ;
2211//             ichan = j ;
2212//             break ;
2213//           }
2214//         }
2215//         else {
2216//           ichan = j - 1 ;
2217//           break ;
2218//         }
2219//       }
2220//       if ( wsum != 0.0 ) {
2221//         newspec[ii] /= wsum ;
2222//      if (regridTsys) newtsys[ii] /= wsum ;
2223//       }
2224//       wsum = 0.0 ;
2225//     }
2226//   }
2227// //   //ofs << "olddnu = " << olddnu << ", dnu = " << dnu << endl ;
2228// //   pile += dnu ;
2229// //   wedge = olddnu * ( refChan + 1 ) ;
2230// //   while ( wedge < pile ) {
2231// //     newspec[0] += olddnu * oldspec[refChan] ;
2232// //     newflag[0] = newflag[0] || oldflag[refChan] ;
2233// //     //ofs << "channel " << refChan << " is included in new channel 0" << endl ;
2234// //     refChan++ ;
2235// //     wedge += olddnu ;
2236// //     wsum += olddnu ;
2237// //     //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2238// //   }
2239// //   frac = ( wedge - pile ) / olddnu ;
2240// //   wsum += ( 1.0 - frac ) * olddnu ;
2241// //   newspec[0] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2242// //   newflag[0] = newflag[0] || oldflag[refChan] ;
2243// //   //ofs << "channel " << refChan << " is partly included in new channel 0" << " with fraction of " << ( 1.0 - frac ) << endl ;
2244// //   //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2245// //   newspec[0] /= wsum ;
2246// //   //ofs << "newspec[0] = " << newspec[0] << endl ;
2247// //   //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2248
2249// //   /***
2250// //    * ichan = 1 - nChan-2
2251// //    ***/
2252// //   for ( int ichan = 1 ; ichan < nChan - 1 ; ichan++ ) {
2253// //     pile += dnu ;
2254// //     newspec[ichan] += frac * olddnu * oldspec[refChan] ;
2255// //     newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2256// //     //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << frac << endl ;
2257// //     refChan++ ;
2258// //     wedge += olddnu ;
2259// //     wsum = frac * olddnu ;
2260// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2261// //     while ( wedge < pile ) {
2262// //       newspec[ichan] += olddnu * oldspec[refChan] ;
2263// //       newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2264// //       //ofs << "channel " << refChan << " is included in new channel " << ichan << endl ;
2265// //       refChan++ ;
2266// //       wedge += olddnu ;
2267// //       wsum += olddnu ;
2268// //       //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2269// //     }
2270// //     frac = ( wedge - pile ) / olddnu ;
2271// //     wsum += ( 1.0 - frac ) * olddnu ;
2272// //     newspec[ichan] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2273// //     newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2274// //     //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << ( 1.0 - frac ) << endl ;
2275// //     //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2276// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2277// //     newspec[ichan] /= wsum ;
2278// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << endl ;
2279// //   }
2280
2281// //   /***
2282// //    * ichan = nChan-1
2283// //    ***/
2284// //   // NOTE: Assumed that all spectra have the same bandwidth
2285// //   pile += dnu ;
2286// //   newspec[nChan-1] += frac * olddnu * oldspec[refChan] ;
2287// //   newflag[nChan-1] = newflag[nChan-1] || oldflag[refChan] ;
2288// //   //ofs << "channel " << refChan << " is partly included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2289// //   refChan++ ;
2290// //   wedge += olddnu ;
2291// //   wsum = frac * olddnu ;
2292// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2293// //   for ( int jchan = refChan ; jchan < oldsize ; jchan++ ) {
2294// //     newspec[nChan-1] += olddnu * oldspec[jchan] ;
2295// //     newflag[nChan-1] = newflag[nChan-1] || oldflag[jchan] ;
2296// //     wsum += olddnu ;
2297// //     //ofs << "channel " << jchan << " is included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2298// //     //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2299// //   }
2300// //   //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2301// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2302// //   newspec[nChan-1] /= wsum ;
2303// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << endl ;
2304
2305// //   // ofs.close() ;
2306
2307  specCol_.put( irow, newspec ) ;
2308  flagsCol_.put( irow, newflag ) ;
2309  if (regridTsys) tsysCol_.put( irow, newtsys );
2310
2311  return ;
2312}
2313
2314void Scantable::regridChannel( int nChan, double dnu, double fmin, int irow )
2315{
2316  Vector<Float> oldspec = specCol_( irow ) ;
2317  Vector<uChar> oldflag = flagsCol_( irow ) ;
2318  Vector<Float> oldtsys = tsysCol_( irow ) ;
2319  Vector<Float> newspec( nChan, 0 ) ;
2320  Vector<uChar> newflag( nChan, true ) ;
2321  Vector<Float> newtsys ;
2322  bool regridTsys = false ;
2323  if (oldtsys.size() == oldspec.size()) {
2324    regridTsys = true ;
2325    newtsys.resize(nChan,false) ;
2326    newtsys = 0 ;
2327  }
2328 
2329  // regrid
2330  vector<double> abcissa = getAbcissa( irow ) ;
2331  int oldsize = abcissa.size() ;
2332  double olddnu = abcissa[1] - abcissa[0] ;
2333  //int ichan = 0 ;
2334  double wsum = 0.0 ;
2335  Vector<double> zi( nChan+1 ) ;
2336  Vector<double> yi( oldsize + 1 ) ;
2337  Block<uInt> count( nChan, 0 ) ;
2338  yi[0] = abcissa[0] - 0.5 * olddnu ;
2339  for ( int ii = 1 ; ii < oldsize ; ii++ )
2340    yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2341  yi[oldsize] = abcissa[oldsize-1] \
2342    + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
2343//   cout << "olddnu=" << olddnu << ", dnu=" << dnu << " (diff=" << olddnu-dnu << ")" << endl ;
2344//   cout << "yi[0]=" << yi[0] << ", fmin=" << fmin << " (diff=" << yi[0]-fmin << ")" << endl ;
2345//   cout << "oldsize=" << oldsize << ", nChan=" << nChan << endl ;
2346
2347  // do not regrid if input parameters are almost same as current
2348  // spectral setup
2349  double dnuDiff = abs( ( dnu - olddnu ) / olddnu ) ;
2350  double oldfmin = min( yi[0], yi[oldsize] ) ;
2351  double fminDiff = abs( ( fmin - oldfmin ) / oldfmin ) ;
2352  double nChanDiff = nChan - oldsize ;
2353  double eps = 1.0e-8 ;
2354  if ( nChanDiff == 0 && dnuDiff < eps && fminDiff < eps )
2355    return ;
2356
2357  //zi[0] = abcissa[0] - 0.5 * olddnu ;
2358  //zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2359  if ( dnu > 0 )
2360    zi[0] = fmin - 0.5 * dnu ;
2361  else
2362    zi[0] = fmin + nChan * abs(dnu) ;
2363  for ( int ii = 1 ; ii < nChan ; ii++ )
2364    zi[ii] = zi[0] + dnu * ii ;
2365  zi[nChan] = zi[nChan-1] + dnu ;
2366  // Access zi and yi in ascending order
2367  int izs = ((dnu > 0) ? 0 : nChan ) ;
2368  int ize = ((dnu > 0) ? nChan : 0 ) ;
2369  int izincr = ((dnu > 0) ? 1 : -1 ) ;
2370  int ichan =  ((olddnu > 0) ? 0 : oldsize ) ;
2371  int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2372  int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2373  //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2374  int ii = izs ;
2375  while (ii != ize) {
2376    // always zl < zr
2377    double zl = zi[ii] ;
2378    double zr = zi[ii+izincr] ;
2379    // Need to access smaller index for the new spec, flag, and tsys.
2380    // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2381    int i = min(ii, ii+izincr) ;
2382    //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2383    int jj = ichan ;
2384    while (jj != iye) {
2385      // always yl < yr
2386      double yl = yi[jj] ;
2387      double yr = yi[jj+iyincr] ;
2388      // Need to access smaller index for the original spec, flag, and tsys.
2389      // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2390      int j = min(jj, jj+iyincr) ;
2391      if ( yr <= zl ) {
2392        jj += iyincr ;
2393        continue ;
2394      }
2395      else if ( yl <= zl ) {
2396        if ( yr < zr ) {
2397          if (!oldflag[j]) {
2398            newspec[i] += oldspec[j] * ( yr - zl ) ;
2399            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2400            wsum += ( yr - zl ) ;
2401            count[i]++ ;
2402          }
2403          newflag[i] = newflag[i] && oldflag[j] ;
2404        }
2405        else {
2406          if (!oldflag[j]) {
2407            newspec[i] += oldspec[j] * abs(dnu) ;
2408            if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2409            wsum += abs(dnu) ;
2410            count[i]++ ;
2411          }
2412          newflag[i] = newflag[i] && oldflag[j] ;
2413          ichan = jj ;
2414          break ;
2415        }
2416      }
2417      else if ( yl < zr ) {
2418        if ( yr <= zr ) {
2419          if (!oldflag[j]) {
2420            newspec[i] += oldspec[j] * ( yr - yl ) ;
2421            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2422            wsum += ( yr - yl ) ;
2423            count[i]++ ;
2424          }
2425          newflag[i] = newflag[i] && oldflag[j] ;
2426        }
2427        else {
2428          if (!oldflag[j]) {
2429            newspec[i] += oldspec[j] * ( zr - yl ) ;
2430            if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2431            wsum += ( zr - yl ) ;
2432            count[i]++ ;
2433          }
2434          newflag[i] = newflag[i] && oldflag[j] ;
2435          ichan = jj ;
2436          break ;
2437        }
2438      }
2439      else {
2440        //ichan = jj - iyincr ;
2441        break ;
2442      }
2443      jj += iyincr ;
2444    }
2445    if ( wsum != 0.0 ) {
2446      newspec[i] /= wsum ;
2447      if (regridTsys) newtsys[i] /= wsum ;
2448    }
2449    wsum = 0.0 ;
2450    ii += izincr ;
2451  }
2452
2453  // flag out channels without data
2454  // this is tentative since there is no specific definition
2455  // on bit flag...
2456  uChar noData = 1 << 7 ;
2457  for ( Int i = 0 ; i < nChan ; i++ ) {
2458    if ( count[i] == 0 )
2459      newflag[i] = noData ;
2460  }
2461
2462  specCol_.put( irow, newspec ) ;
2463  flagsCol_.put( irow, newflag ) ;
2464  if (regridTsys) tsysCol_.put( irow, newtsys );
2465
2466  return ;
2467}
2468
2469std::vector<float> Scantable::getWeather(int whichrow) const
2470{
2471  std::vector<float> out(5);
2472  //Float temperature, pressure, humidity, windspeed, windaz;
2473  weatherTable_.getEntry(out[0], out[1], out[2], out[3], out[4],
2474                         mweatheridCol_(uInt(whichrow)));
2475
2476
2477  return out;
2478}
2479
2480bool Scantable::getFlagtraFast(uInt whichrow)
2481{
2482  uChar flag;
2483  Vector<uChar> flags;
2484  flagsCol_.get(whichrow, flags);
2485  flag = flags[0];
2486  for (uInt i = 1; i < flags.size(); ++i) {
2487    flag &= flags[i];
2488  }
2489  return ((flag >> 7) == 1);
2490}
2491
2492std::vector<std::string> Scantable::applyBaselineTable(const std::string& bltable, const std::string& outbltable, const bool outbltableexists, const bool overwrite)
2493{
2494  STBaselineTable btin = STBaselineTable(bltable);
2495
2496  Vector<Bool> applyCol = btin.getApply();
2497  int nRowBl = applyCol.size();
2498  if (nRowBl != nrow()) {
2499    throw(AipsError("Scantable and bltable have different number of rows."));
2500  }
2501
2502  std::vector<std::string> res;
2503  res.clear();
2504
2505  bool outBaselineTable = ((outbltable != "") && (!outbltableexists || overwrite));
2506  bool bltableidentical = (bltable == outbltable);
2507  STBaselineTable btout = STBaselineTable(*this);
2508  ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2509  Vector<Double> timeSecCol = tcol.getColumn();
2510
2511  for (int whichrow = 0; whichrow < nRowBl; ++whichrow) {
2512    if (applyCol[whichrow]) {
2513      std::vector<float> spec = getSpectrum(whichrow);
2514
2515      std::vector<bool> mask = btin.getMask(whichrow);  //use mask_bltable only
2516
2517      STBaselineFunc::FuncName ftype = btin.getFunctionName(whichrow);
2518      std::vector<int> fpar = btin.getFuncParam(whichrow);
2519      std::vector<float> params;
2520      float rms;
2521      std::vector<float> resfit = doApplyBaselineTable(spec, mask, ftype, fpar, params, rms);
2522
2523      setSpectrum(resfit, whichrow);
2524
2525      res.push_back(packFittingResults(whichrow, params, rms));
2526
2527      if (outBaselineTable) {
2528        if (outbltableexists) {
2529          if (overwrite) {
2530            if (bltableidentical) {
2531              btin.setresult(uInt(whichrow), Vector<Float>(params), Float(rms));
2532            } else {
2533              btout.setresult(uInt(whichrow), Vector<Float>(params), Float(rms));
2534            }
2535          }
2536        } else {
2537          btout.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
2538                           getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
2539                           true, ftype, fpar, std::vector<float>(),
2540                           getMaskListFromMask(mask), params, rms, spec.size(),
2541                           3.0, 0, 0.0, 0, std::vector<int>());
2542        }
2543      }
2544    }
2545  }
2546
2547  if (outBaselineTable) {
2548    if (bltableidentical) {
2549      btin.save(outbltable);
2550    } else {
2551      btout.save(outbltable);
2552    }
2553  }
2554
2555  return res;
2556}
2557
2558std::vector<std::string> Scantable::subBaseline(const std::vector<std::string>& blInfoList, const std::string& outbltable, const bool outbltableexists, const bool overwrite)
2559{
2560  int nRowBl = blInfoList.size();
2561  int nRowSt = nrow();
2562
2563  std::vector<std::string> res;
2564  res.clear();
2565
2566  bool outBaselineTable = ((outbltable != "") && (!outbltableexists || overwrite));
2567  if ((outbltable != "") && outbltableexists && !overwrite) {
2568    throw(AipsError("Cannot overwrite bltable. Set overwrite=True."));
2569  }
2570
2571  STBaselineTable bt = STBaselineTable(*this);
2572  ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2573  Vector<Double> timeSecCol = tcol.getColumn();
2574
2575  if (outBaselineTable && !outbltableexists) {
2576    for (int i = 0; i < nRowSt; ++i) {
2577      bt.appendbasedata(getScan(i), getCycle(i), getBeam(i), getIF(i), getPol(i),
2578                         0, timeSecCol[i]);
2579      bt.setApply(i, false);
2580    }
2581  }
2582
2583  for (int i = 0; i < nRowBl; ++i) {
2584    int irow;
2585    STBaselineFunc::FuncName ftype;
2586    std::vector<bool> mask;
2587    std::vector<int> fpar;
2588    float clipth;
2589    int clipn;
2590    bool uself;
2591    float lfth;
2592    std::vector<int> lfedge;
2593    int lfavg;
2594    parseBlInfo(blInfoList[i], irow, ftype, fpar, mask, clipth, clipn, uself, lfth, lfedge, lfavg);
2595
2596    if (irow < nRowSt) {
2597      std::vector<float> spec = getSpectrum(irow);
2598      std::vector<float> params;
2599      float rms;
2600      std::vector<bool> finalmask;
2601
2602      std::vector<float> resfit = doSubtractBaseline(spec, mask, ftype, fpar, params, rms, finalmask, clipth, clipn, uself, irow, lfth, lfedge, lfavg);
2603      setSpectrum(resfit, irow);
2604      res.push_back(packFittingResults(irow, params, rms));
2605
2606      if (outBaselineTable) {
2607        Vector<Int> fparam(fpar.size());
2608        for (uInt j = 0; j < fparam.size(); ++j) {
2609          fparam[j] = (Int)fpar[j];
2610        }
2611
2612        bt.setdata(uInt(irow),
2613                    uInt(getScan(irow)), uInt(getCycle(irow)),
2614                    uInt(getBeam(irow)), uInt(getIF(irow)), uInt(getPol(irow)),
2615                    uInt(0), timeSecCol[irow], Bool(true), ftype, fparam,
2616                    Vector<Float>(), getMaskListFromMask(finalmask), Vector<Float>(params),
2617                    Float(rms), uInt(spec.size()), Float(clipth), uInt(clipn),
2618                    Float(0.0), uInt(0), Vector<uInt>());
2619      }
2620
2621    }
2622  }
2623
2624  if (outBaselineTable) {
2625    bt.save(outbltable);
2626  }
2627
2628  return res;
2629}
2630
2631std::vector<float> Scantable::doApplyBaselineTable(std::vector<float>& spec,
2632                                                   std::vector<bool>& mask,
2633                                                   const STBaselineFunc::FuncName ftype,
2634                                                   std::vector<int>& fpar,
2635                                                   std::vector<float>& params,
2636                                                   float&rms)
2637{
2638  std::vector<bool> finalmask;
2639  std::vector<int> lfedge;
2640  return doSubtractBaseline(spec, mask, ftype, fpar, params, rms, finalmask, 0.0, 0, false, 0, 0.0, lfedge, 0);
2641}
2642
2643  std::vector<float> Scantable::doSubtractBaseline(std::vector<float>& spec,
2644                                                   std::vector<bool>& mask,
2645                                                   const STBaselineFunc::FuncName ftype,
2646                                                   std::vector<int>& fpar,
2647                                                   std::vector<float>& params,
2648                                                   float&rms,
2649                                                   std::vector<bool>& finalmask,
2650                                                   float clipth,
2651                                                   int clipn,
2652                                                   bool uself,
2653                                                   int irow,
2654                                                   float lfth,
2655                                                   std::vector<int>& lfedge,
2656                                                   int lfavg)
2657{
2658  //--- replacing mask with (mask AND mask_linefinder).
2659  if (uself) {
2660    STLineFinder lineFinder = STLineFinder();
2661    lineFinder.setOptions(lfth, 3, lfavg);
2662
2663    int minEdgeSize = getIFNos().size()*2;
2664    int edgeSize = lfedge.size();
2665    std::vector<int> currentEdge;
2666    currentEdge.clear();
2667    if (edgeSize >= 2) {
2668      int idx = 0;
2669      if (edgeSize > 2) {
2670        if (edgeSize < minEdgeSize) {
2671          throw(AipsError("Length of edge element info is less than that of IFs"));
2672        }
2673        idx = 2 * getIF(irow);
2674      }
2675      currentEdge.push_back(lfedge[idx]);
2676      currentEdge.push_back(lfedge[idx+1]);
2677    } else {
2678      throw(AipsError("Wrong length of edge element"));
2679    }
2680    lineFinder.setData(spec);
2681    lineFinder.findLines(getCompositeChanMask(irow, mask), currentEdge, irow);
2682
2683    std::vector<bool> lfcompmask = lineFinder.getMask();
2684    mask.clear();
2685    mask.resize(lfcompmask.size());
2686    for (uInt i = 0; i < mask.size(); ++i) {
2687      mask[i] = lfcompmask[i];
2688    }
2689  }
2690  //---
2691
2692  std::vector<float> res;
2693  if (ftype == STBaselineFunc::Polynomial) {
2694    res = doPolynomialFitting(spec, mask, fpar[0], params, rms, finalmask, clipth, clipn);
2695  } else if (ftype == STBaselineFunc::Chebyshev) {
2696    res = doChebyshevFitting(spec, mask, fpar[0], params, rms, finalmask, clipth, clipn);
2697  } else if (ftype == STBaselineFunc::CSpline) {
2698    if (fpar.size() > 1) { // reading from baseline table in which pieceEdges are already calculated and stored.
2699      res = doCubicSplineFitting(spec, mask, fpar, params, rms, finalmask, clipth, clipn);
2700    } else {               // usual cspline fitting by giving nPiece only. fpar will be replaced with pieceEdges.
2701      res = doCubicSplineFitting(spec, mask, fpar[0], fpar, params, rms, finalmask, clipth, clipn);
2702    }
2703  } else if (ftype == STBaselineFunc::Sinusoid) {
2704    res = doSinusoidFitting(spec, mask, fpar, params, rms, finalmask, clipth, clipn);
2705  }
2706
2707  return res;
2708}
2709
2710std::string Scantable::packFittingResults(const int irow, const std::vector<float>& params, const float rms)
2711{
2712  // returned value: "irow:params[0],params[1],..,params[n-1]:rms"
2713  ostringstream os;
2714  os << irow << ':';
2715  for (uInt i = 0; i < params.size(); ++i) {
2716    if (i > 0) {
2717      os << ',';
2718    }
2719    os << params[i];
2720  }
2721  os << ':' << rms;
2722
2723  return os.str();
2724}
2725
2726void Scantable::parseBlInfo(const std::string& blInfo, int& irow, STBaselineFunc::FuncName& ftype, std::vector<int>& fpar, std::vector<bool>& mask, float& thresClip, int& nIterClip, bool& useLineFinder, float& thresLF, std::vector<int>& edgeLF, int& avgLF)
2727{
2728  // The baseline info to be parsed must be column-delimited string like
2729  // "0:chebyshev:5:3,5,169,174,485,487" where the elements are
2730  // row number, funcType, funcOrder, maskList, clipThreshold, clipNIter,
2731  // useLineFinder, lfThreshold, lfEdge and lfChanAvgLimit.
2732
2733  std::vector<string> res = splitToStringList(blInfo, ':');
2734  if (res.size() < 4) {
2735    throw(AipsError("baseline info has bad format")) ;
2736  }
2737
2738  string ftype0, fpar0, masklist0, uself0, edge0;
2739  std::vector<int> masklist;
2740
2741  stringstream ss;
2742  ss << res[0];
2743  ss >> irow;
2744  ss.clear(); ss.str("");
2745
2746  ss << res[1];
2747  ss >> ftype0;
2748  if (ftype0 == "poly") {
2749    ftype = STBaselineFunc::Polynomial;
2750  } else if (ftype0 == "cspline") {
2751    ftype = STBaselineFunc::CSpline;
2752  } else if (ftype0 == "sinusoid") {
2753    ftype = STBaselineFunc::Sinusoid;
2754  } else if (ftype0 == "chebyshev") {
2755    ftype = STBaselineFunc::Chebyshev;
2756  } else {
2757    throw(AipsError("invalid function type."));
2758  }
2759  ss.clear(); ss.str("");
2760
2761  ss << res[2];
2762  ss >> fpar0;
2763  fpar = splitToIntList(fpar0, ',');
2764  ss.clear(); ss.str("");
2765
2766  ss << res[3];
2767  ss >> masklist0;
2768  mask = getMaskFromMaskList(nchan(getIF(irow)), splitToIntList(masklist0, ','));
2769
2770  ss << res[4];
2771  ss >> thresClip;
2772  ss.clear(); ss.str("");
2773
2774  ss << res[5];
2775  ss >> nIterClip;
2776  ss.clear(); ss.str("");
2777
2778  ss << res[6];
2779  ss >> uself0;
2780  if (uself0 == "true") {
2781    useLineFinder = true;
2782  } else {
2783    useLineFinder = false;
2784  }
2785  ss.clear(); ss.str("");
2786
2787  if (useLineFinder) {
2788    ss << res[7];
2789    ss >> thresLF;
2790    ss.clear(); ss.str("");
2791
2792    ss << res[8];
2793    ss >> edge0;
2794    edgeLF = splitToIntList(edge0, ',');
2795    ss.clear(); ss.str("");
2796
2797    ss << res[9];
2798    ss >> avgLF;
2799    ss.clear(); ss.str("");
2800  }
2801
2802}
2803
2804std::vector<int> Scantable::splitToIntList(const std::string& s, const char delim)
2805{
2806  istringstream iss(s);
2807  string tmp;
2808  int tmpi;
2809  std::vector<int> res;
2810  stringstream ss;
2811  while (getline(iss, tmp, delim)) {
2812    ss << tmp;
2813    ss >> tmpi;
2814    res.push_back(tmpi);
2815    ss.clear(); ss.str("");
2816  }
2817
2818  return res;
2819}
2820
2821std::vector<string> Scantable::splitToStringList(const std::string& s, const char delim)
2822{
2823  istringstream iss(s);
2824  std::string tmp;
2825  std::vector<string> res;
2826  while (getline(iss, tmp, delim)) {
2827    res.push_back(tmp);
2828  }
2829
2830  return res;
2831}
2832
2833std::vector<bool> Scantable::getMaskFromMaskList(const int nchan, const std::vector<int>& masklist)
2834{
2835  if (masklist.size() % 2 != 0) {
2836    throw(AipsError("masklist must have even number of elements."));
2837  }
2838
2839  std::vector<bool> res(nchan);
2840
2841  for (int i = 0; i < nchan; ++i) {
2842    res[i] = false;
2843  }
2844  for (uInt j = 0; j < masklist.size(); j += 2) {
2845    for (int i = masklist[j]; i <= masklist[j+1]; ++i) {
2846      res[i] = true;
2847    }
2848  }
2849
2850  return res;
2851}
2852
2853Vector<uInt> Scantable::getMaskListFromMask(const std::vector<bool>& mask)
2854{
2855  std::vector<int> masklist;
2856  masklist.clear();
2857
2858  for (uInt i = 0; i < mask.size(); ++i) {
2859    if (mask[i]) {
2860      if ((i == 0)||(i == mask.size()-1)) {
2861        masklist.push_back(i);
2862      } else {
2863        if ((mask[i])&&(!mask[i-1])) {
2864          masklist.push_back(i);
2865        }
2866        if ((mask[i])&&(!mask[i+1])) {
2867          masklist.push_back(i);
2868        }
2869      }
2870    }
2871  }
2872
2873  Vector<uInt> res(masklist.size());
2874  for (uInt i = 0; i < masklist.size(); ++i) {
2875    res[i] = (uInt)masklist[i];
2876  }
2877
2878  return res;
2879}
2880
2881void Scantable::initialiseBaselining(const std::string& blfile,
2882                                     ofstream& ofs,
2883                                     const bool outLogger,
2884                                     bool& outTextFile,
2885                                     bool& csvFormat,
2886                                     String& coordInfo,
2887                                     bool& hasSameNchan,
2888                                     const std::string& progressInfo,
2889                                     bool& showProgress,
2890                                     int& minNRow,
2891                                     Vector<Double>& timeSecCol)
2892{
2893  csvFormat = false;
2894  outTextFile = false;
2895
2896  if (blfile != "") {
2897    csvFormat = (blfile.substr(0, 1) == "T");
2898    ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
2899    if (ofs) outTextFile = true;
2900  }
2901
2902  coordInfo = "";
2903  hasSameNchan = true;
2904
2905  if (outLogger || outTextFile) {
2906    coordInfo = getCoordInfo()[0];
2907    if (coordInfo == "") coordInfo = "channel";
2908    hasSameNchan = hasSameNchanOverIFs();
2909  }
2910
2911  parseProgressInfo(progressInfo, showProgress, minNRow);
2912
2913  ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2914  timeSecCol = tcol.getColumn();
2915}
2916
2917void Scantable::finaliseBaselining(const bool outBaselineTable,
2918                                   STBaselineTable* pbt,
2919                                   const string& bltable,
2920                                   const bool outTextFile,
2921                                   ofstream& ofs)
2922{
2923  if (outBaselineTable) {
2924    pbt->save(bltable);
2925  }
2926
2927  if (outTextFile) ofs.close();
2928}
2929
2930void Scantable::initLineFinder(const std::vector<int>& edge,
2931                               const float threshold,
2932                               const int chanAvgLimit,
2933                               STLineFinder& lineFinder)
2934{
2935  if (edge.size() < getIFNos().size()*2) {
2936    throw(AipsError("Length of edge element info is less than that of IFs"));
2937  }
2938
2939  lineFinder.setOptions(threshold, 3, chanAvgLimit);
2940}
2941
2942void Scantable::polyBaseline(const std::vector<bool>& mask, int order,
2943                             float thresClip, int nIterClip,
2944                             bool getResidual,
2945                             const std::string& progressInfo,
2946                             const bool outLogger, const std::string& blfile,
2947                             const std::string& bltable)
2948{
2949  /****/
2950  double TimeStart = mathutil::gettimeofday_sec();
2951  /****/
2952
2953  try {
2954    ofstream ofs;
2955    String coordInfo;
2956    bool hasSameNchan, outTextFile, csvFormat, showProgress;
2957    int minNRow;
2958    int nRow = nrow();
2959    std::vector<bool> chanMask, finalChanMask;
2960    float rms;
2961    bool outBaselineTable = (bltable != "");
2962    STBaselineTable bt = STBaselineTable(*this);
2963    Vector<Double> timeSecCol;
2964
2965    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
2966                         coordInfo, hasSameNchan,
2967                         progressInfo, showProgress, minNRow,
2968                         timeSecCol);
2969
2970    std::vector<int> nChanNos;
2971    std::vector<std::vector<std::vector<double> > > modelReservoir;
2972    modelReservoir = getPolynomialModelReservoir(order,
2973                                                 &Scantable::getNormalPolynomial,
2974                                                 nChanNos);
2975
2976    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2977      std::vector<float> sp = getSpectrum(whichrow);
2978      chanMask = getCompositeChanMask(whichrow, mask);
2979
2980      std::vector<float> params;
2981      int nClipped = 0;
2982      std::vector<float> res = doLeastSquareFitting(sp, chanMask,
2983                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
2984                                   params, rms, finalChanMask,
2985                                   nClipped, thresClip, nIterClip, getResidual);
2986
2987      if (outBaselineTable) {
2988        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
2989                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
2990                      true, STBaselineFunc::Polynomial, order, std::vector<float>(),
2991                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
2992                      thresClip, nIterClip, 0.0, 0, std::vector<int>());
2993      } else {
2994        setSpectrum(res, whichrow);
2995      }
2996
2997      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
2998                          coordInfo, hasSameNchan, ofs, "polyBaseline()",
2999                          params, nClipped);
3000      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3001    }
3002
3003    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3004
3005  } catch (...) {
3006    throw;
3007  }
3008
3009  /****/
3010  double TimeEnd = mathutil::gettimeofday_sec();
3011  double elapse1 = TimeEnd - TimeStart;
3012  std::cout << "poly-new   : " << elapse1 << " (sec.)" << endl;
3013  /****/
3014}
3015
3016void Scantable::autoPolyBaseline(const std::vector<bool>& mask, int order,
3017                                 float thresClip, int nIterClip,
3018                                 const std::vector<int>& edge,
3019                                 float threshold, int chanAvgLimit,
3020                                 bool getResidual,
3021                                 const std::string& progressInfo,
3022                                 const bool outLogger, const std::string& blfile,
3023                                 const std::string& bltable)
3024{
3025  try {
3026    ofstream ofs;
3027    String coordInfo;
3028    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3029    int minNRow;
3030    int nRow = nrow();
3031    std::vector<bool> chanMask, finalChanMask;
3032    float rms;
3033    bool outBaselineTable = (bltable != "");
3034    STBaselineTable bt = STBaselineTable(*this);
3035    Vector<Double> timeSecCol;
3036    STLineFinder lineFinder = STLineFinder();
3037
3038    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3039                         coordInfo, hasSameNchan,
3040                         progressInfo, showProgress, minNRow,
3041                         timeSecCol);
3042
3043    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3044
3045    std::vector<int> nChanNos;
3046    std::vector<std::vector<std::vector<double> > > modelReservoir;
3047    modelReservoir = getPolynomialModelReservoir(order,
3048                                                 &Scantable::getNormalPolynomial,
3049                                                 nChanNos);
3050
3051    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3052      std::vector<float> sp = getSpectrum(whichrow);
3053      std::vector<int> currentEdge;
3054      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
3055
3056      std::vector<float> params;
3057      int nClipped = 0;
3058      std::vector<float> res = doLeastSquareFitting(sp, chanMask,
3059                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3060                                   params, rms, finalChanMask,
3061                                   nClipped, thresClip, nIterClip, getResidual);
3062
3063      if (outBaselineTable) {
3064        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3065                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3066                      true, STBaselineFunc::Polynomial, order, std::vector<float>(),
3067                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3068                      thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
3069      } else {
3070        setSpectrum(res, whichrow);
3071      }
3072
3073      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3074                          coordInfo, hasSameNchan, ofs, "autoPolyBaseline()",
3075                          params, nClipped);
3076      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3077    }
3078
3079    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3080
3081  } catch (...) {
3082    throw;
3083  }
3084}
3085
3086void Scantable::chebyshevBaseline(const std::vector<bool>& mask, int order,
3087                                  float thresClip, int nIterClip,
3088                                  bool getResidual,
3089                                  const std::string& progressInfo,
3090                                  const bool outLogger, const std::string& blfile,
3091                                  const std::string& bltable)
3092{
3093  //
3094  double TimeStart = mathutil::gettimeofday_sec();
3095  //
3096
3097  try {
3098    ofstream ofs;
3099    String coordInfo;
3100    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3101    int minNRow;
3102    int nRow = nrow();
3103    std::vector<bool> chanMask, finalChanMask;
3104    float rms;
3105    bool outBaselineTable = (bltable != "");
3106    STBaselineTable bt = STBaselineTable(*this);
3107    Vector<Double> timeSecCol;
3108
3109    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3110                         coordInfo, hasSameNchan,
3111                         progressInfo, showProgress, minNRow,
3112                         timeSecCol);
3113
3114    std::vector<int> nChanNos;
3115    std::vector<std::vector<std::vector<double> > > modelReservoir;
3116    modelReservoir = getPolynomialModelReservoir(order,
3117                                                 &Scantable::getChebyshevPolynomial,
3118                                                 nChanNos);
3119
3120    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3121      std::vector<float> sp = getSpectrum(whichrow);
3122      chanMask = getCompositeChanMask(whichrow, mask);
3123
3124      std::vector<float> params;
3125      int nClipped = 0;
3126      std::vector<float> res = doLeastSquareFitting(sp, chanMask,
3127                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3128                                   params, rms, finalChanMask,
3129                                   nClipped, thresClip, nIterClip, getResidual);
3130
3131      if (outBaselineTable) {
3132        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3133                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3134                      true, STBaselineFunc::Chebyshev, order, std::vector<float>(),
3135                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3136                      thresClip, nIterClip, 0.0, 0, std::vector<int>());
3137      } else {
3138        setSpectrum(res, whichrow);
3139      }
3140
3141      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3142                          coordInfo, hasSameNchan, ofs, "chebyshevBaseline()",
3143                          params, nClipped);
3144      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3145    }
3146   
3147    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3148
3149  } catch (...) {
3150    throw;
3151  }
3152
3153  double TimeEnd = mathutil::gettimeofday_sec();
3154  double elapse1 = TimeEnd - TimeStart;
3155  std::cout << "cheby   : " << elapse1 << " (sec.)" << endl;
3156}
3157
3158void Scantable::autoChebyshevBaseline(const std::vector<bool>& mask, int order,
3159                                      float thresClip, int nIterClip,
3160                                      const std::vector<int>& edge,
3161                                      float threshold, int chanAvgLimit,
3162                                      bool getResidual,
3163                                      const std::string& progressInfo,
3164                                      const bool outLogger, const std::string& blfile,
3165                                      const std::string& bltable)
3166{
3167  try {
3168    ofstream ofs;
3169    String coordInfo;
3170    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3171    int minNRow;
3172    int nRow = nrow();
3173    std::vector<bool> chanMask, finalChanMask;
3174    float rms;
3175    bool outBaselineTable = (bltable != "");
3176    STBaselineTable bt = STBaselineTable(*this);
3177    Vector<Double> timeSecCol;
3178    STLineFinder lineFinder = STLineFinder();
3179
3180    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3181                         coordInfo, hasSameNchan,
3182                         progressInfo, showProgress, minNRow,
3183                         timeSecCol);
3184
3185    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3186
3187    std::vector<int> nChanNos;
3188    std::vector<std::vector<std::vector<double> > > modelReservoir;
3189    modelReservoir = getPolynomialModelReservoir(order,
3190                                                 &Scantable::getChebyshevPolynomial,
3191                                                 nChanNos);
3192
3193    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3194      std::vector<float> sp = getSpectrum(whichrow);
3195      std::vector<int> currentEdge;
3196      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
3197
3198      std::vector<float> params;
3199      int nClipped = 0;
3200      std::vector<float> res = doLeastSquareFitting(sp, chanMask,
3201                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3202                                   params, rms, finalChanMask,
3203                                   nClipped, thresClip, nIterClip, getResidual);
3204
3205      if (outBaselineTable) {
3206        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3207                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3208                      true, STBaselineFunc::Chebyshev, order, std::vector<float>(),
3209                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3210                      thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
3211      } else {
3212        setSpectrum(res, whichrow);
3213      }
3214
3215      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3216                          coordInfo, hasSameNchan, ofs, "autoChebyshevBaseline()",
3217                          params, nClipped);
3218      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3219    }
3220
3221    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3222
3223  } catch (...) {
3224    throw;
3225  }
3226}
3227
3228double Scantable::calculateModelSelectionCriteria(const std::string& valname, const std::string& blfunc, int order, const std::vector<bool>& inMask, int whichrow, bool useLineFinder, const std::vector<int>& edge, float threshold, int chanAvgLimit)
3229{
3230  std::vector<float> sp = getSpectrum(whichrow);
3231  std::vector<bool> chanMask;
3232  chanMask.clear();
3233
3234  if (useLineFinder) {
3235    int minEdgeSize = getIFNos().size()*2;
3236
3237    int edgeSize = edge.size();
3238    std::vector<int> currentEdge;
3239    currentEdge.clear();
3240    if (edgeSize >= 2) {
3241      int idx = 0;
3242      if (edgeSize > 2) {
3243        if (edgeSize < minEdgeSize) {
3244          throw(AipsError("Length of edge element info is less than that of IFs"));
3245        }
3246        idx = 2 * getIF(whichrow);
3247      }
3248      currentEdge.push_back(edge[idx]);
3249      currentEdge.push_back(edge[idx+1]);
3250    } else {
3251      throw(AipsError("Wrong length of edge element"));
3252    }
3253
3254    STLineFinder lineFinder = STLineFinder();
3255    lineFinder.setData(sp);
3256    lineFinder.setOptions(threshold, 3, chanAvgLimit);
3257    lineFinder.findLines(getCompositeChanMask(whichrow, inMask), currentEdge, whichrow);
3258    chanMask = lineFinder.getMask();
3259
3260  } else {
3261
3262    chanMask = getCompositeChanMask(whichrow, inMask);
3263  }
3264
3265  return doCalculateModelSelectionCriteria(valname, sp, chanMask, blfunc, order);
3266}
3267
3268double Scantable::doCalculateModelSelectionCriteria(const std::string& valname, const std::vector<float>& spec, const std::vector<bool>& mask, const std::string& blfunc, int order)
3269{
3270  int nparam;
3271  std::vector<float> params;
3272  std::vector<bool> finalChanMask;
3273  float rms;
3274  int nClipped = 0;
3275  std::vector<float> res;
3276  if (blfunc == "poly") {
3277    nparam = order + 1;
3278    res = doPolynomialFitting(spec, mask, order, params, rms, finalChanMask, nClipped);
3279  } else if (blfunc == "chebyshev") {
3280    nparam = order + 1;
3281    res = doChebyshevFitting(spec, mask, order, params, rms, finalChanMask, nClipped);
3282  } else if (blfunc == "cspline") {
3283    std::vector<int> pieceEdges;//(order+1);  //order = npiece
3284    nparam = order + 3;
3285    res = doCubicSplineFitting(spec, mask, order, false, pieceEdges, params, rms, finalChanMask, nClipped);
3286  } else if (blfunc == "sinusoid") {
3287    std::vector<int> nWaves;
3288    nWaves.clear();
3289    for (int i = 0; i <= order; ++i) {
3290      nWaves.push_back(i);
3291    }
3292    nparam = 2*order + 1;  // order = nwave
3293    res = doSinusoidFitting(spec, mask, nWaves, params, rms, finalChanMask, nClipped);
3294  } else {
3295    throw(AipsError("blfunc must be poly, chebyshev, cspline or sinusoid."));
3296  }
3297
3298  double msq = 0.0;
3299  int nusedchan = 0;
3300  int nChan = res.size();
3301  for (int i = 0; i < nChan; ++i) {
3302    if (mask[i]) {
3303      msq += (double)res[i]*(double)res[i];
3304      nusedchan++;
3305    }
3306  }
3307  if (nusedchan == 0) {
3308    throw(AipsError("all channels masked."));
3309  }
3310  msq /= (double)nusedchan;
3311
3312  nparam++;  //add 1 for sigma of Gaussian distribution
3313  const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
3314
3315  if (valname.find("aic") == 0) {
3316    // Original Akaike Information Criterion (AIC)
3317    double aic = nusedchan * (log(2.0 * PI * msq) + 1.0) + 2.0 * nparam;
3318
3319    // Corrected AIC by Sugiura(1978) (AICc)
3320    if (valname == "aicc") {
3321      if (nusedchan - nparam - 1 <= 0) {
3322        throw(AipsError("channel size is too small to calculate AICc."));
3323      }
3324      aic += 2.0*nparam*(nparam + 1)/(double)(nusedchan - nparam - 1);
3325    }
3326
3327    return aic;
3328
3329  } else if (valname == "bic") {
3330    // Bayesian Information Criterion (BIC)
3331    double bic = nusedchan * log(msq) + nparam * log((double)nusedchan);
3332    return bic;
3333
3334  } else if (valname == "gcv") {
3335    // Generalised Cross Validation
3336    double x = 1.0 - (double)nparam / (double)nusedchan;
3337    double gcv = msq / (x * x);
3338    return gcv;
3339
3340  } else {
3341    throw(AipsError("valname must be aic, aicc, bic or gcv."));
3342  }
3343}
3344
3345double Scantable::getNormalPolynomial(int n, double x) {
3346  if (n == 0) {
3347    return 1.0;
3348  } else if (n > 0) {
3349    double res = 1.0;
3350    for (int i = 0; i < n; ++i) {
3351      res *= x;
3352    }
3353    return res;
3354  } else {
3355    if (x == 0.0) {
3356      throw(AipsError("infinity result: x=0 given for negative power."));
3357    } else {
3358      return pow(x, (double)n);
3359    }
3360  }
3361}
3362
3363double Scantable::getChebyshevPolynomial(int n, double x) {
3364  if ((x < -1.0)||(x > 1.0)) {
3365    throw(AipsError("out of definition range (-1 <= x <= 1)."));
3366  } else if (x == 1.0) {
3367    return 1.0;
3368  } else if (x == 0.0) {
3369    double res;
3370    if (n%2 == 0) {
3371      if (n%4 == 0) {
3372        res = 1.0;
3373      } else {
3374        res = -1.0;
3375      }
3376    } else {
3377      res = 0.0;
3378    }
3379    return res;
3380  } else if (x == -1.0) {
3381    double res = (n%2 == 0 ? 1.0 : -1.0);
3382    return res;
3383  } else if (n < 0) {
3384    throw(AipsError("the order must be zero or positive."));
3385  } else if (n == 0) {
3386    return 1.0;
3387  } else if (n == 1) {
3388    return x;
3389  } else {
3390    double res = 0.0;
3391    for (int m = 0; m <= n/2; ++m) {
3392      double c = 1.0;
3393      if (m > 0) {
3394        for (int i = 1; i <= m; ++i) {
3395          c *= (double)(n-2*m+i)/(double)i;
3396        }
3397      }
3398      res += (m%2 == 0 ? 1.0 : -1.0)*(double)n/(double)(n-m)*pow(2.0*x, (double)(n-2*m))/2.0*c;
3399    }
3400    return res;
3401  }
3402}
3403
3404std::vector<float> Scantable::doPolynomialFitting(const std::vector<float>& data,
3405                                                  const std::vector<bool>& mask,
3406                                                  int order,
3407                                                  std::vector<float>& params,
3408                                                  float& rms,
3409                                                  std::vector<bool>& finalmask,
3410                                                  float clipth,
3411                                                  int clipn)
3412{
3413  int nClipped = 0;
3414  return doPolynomialFitting(data, mask, order, params, rms, finalmask, nClipped, clipth, clipn);
3415}
3416
3417std::vector<float> Scantable::doPolynomialFitting(const std::vector<float>& data,
3418                                                  const std::vector<bool>& mask,
3419                                                  int order,
3420                                                  std::vector<float>& params,
3421                                                  float& rms,
3422                                                  std::vector<bool>& finalMask,
3423                                                  int& nClipped,
3424                                                  float thresClip,
3425                                                  int nIterClip,
3426                                                  bool getResidual)
3427{
3428  return doLeastSquareFitting(data, mask,
3429                              getPolynomialModel(order, data.size(), &Scantable::getNormalPolynomial),
3430                              params, rms, finalMask,
3431                              nClipped, thresClip, nIterClip,
3432                              getResidual);
3433}
3434
3435std::vector<float> Scantable::doChebyshevFitting(const std::vector<float>& data,
3436                                                 const std::vector<bool>& mask,
3437                                                 int order,
3438                                                 std::vector<float>& params,
3439                                                 float& rms,
3440                                                 std::vector<bool>& finalmask,
3441                                                 float clipth,
3442                                                 int clipn)
3443{
3444  int nClipped = 0;
3445  return doChebyshevFitting(data, mask, order, params, rms, finalmask, nClipped, clipth, clipn);
3446}
3447
3448std::vector<float> Scantable::doChebyshevFitting(const std::vector<float>& data,
3449                                                 const std::vector<bool>& mask,
3450                                                 int order,
3451                                                 std::vector<float>& params,
3452                                                 float& rms,
3453                                                 std::vector<bool>& finalMask,
3454                                                 int& nClipped,
3455                                                 float thresClip,
3456                                                 int nIterClip,
3457                                                 bool getResidual)
3458{
3459  return doLeastSquareFitting(data, mask,
3460                              getPolynomialModel(order, data.size(), &Scantable::getChebyshevPolynomial),
3461                              params, rms, finalMask,
3462                              nClipped, thresClip, nIterClip,
3463                              getResidual);
3464}
3465
3466std::vector<std::vector<double> > Scantable::getPolynomialModel(int order, int nchan, double (Scantable::*pfunc)(int, double))
3467{
3468  // model  : contains model values for computing the least-square matrix.
3469  //          model.size() is nmodel and model[*].size() is nchan.
3470  //          Each model element are as follows:
3471  //
3472  //          (for normal polynomials)
3473  //          model[0]   = {1.0,   1.0,   1.0,   ..., 1.0},
3474  //          model[1]   = {0.0,   1.0,   2.0,   ..., (nchan-1)}
3475  //          model[n-1] = ...,
3476  //          model[n]   = {0.0^n, 1.0^n, 2.0^n, ..., (nchan-1)^n}
3477  //          where (0 <= n <= order)
3478  //
3479  //          (for Chebyshev polynomials)
3480  //          model[0]   = {T0(-1), T0(2/(nchan-1)-1), T0(4/(nchan-1)-1), ..., T0(1)},
3481  //          model[n-1] = ...,
3482  //          model[n]   = {Tn(-1), Tn(2/(nchan-1)-1), Tn(4/(nchan-1)-1), ..., Tn(1)}
3483  //          where (0 <= n <= order),
3484
3485  int nmodel = order + 1;
3486  std::vector<std::vector<double> > model(nmodel, std::vector<double>(nchan));
3487
3488  double stretch, shift;
3489  if (pfunc == &Scantable::getChebyshevPolynomial) {
3490    stretch = 2.0/(double)(nchan - 1);
3491    shift   = -1.0;
3492  } else {
3493    stretch = 1.0;
3494    shift   = 0.0;
3495  }
3496
3497  for (int i = 0; i < nmodel; ++i) {
3498    for (int j = 0; j < nchan; ++j) {
3499      model[i][j] = (this->*pfunc)(i, stretch*(double)j + shift);
3500    }
3501  }
3502
3503  return model;
3504}
3505
3506std::vector<std::vector<std::vector<double> > > Scantable::getPolynomialModelReservoir(int order,
3507                                                                                       double (Scantable::*pfunc)(int, double),
3508                                                                                       std::vector<int>& nChanNos)
3509{
3510  std::vector<std::vector<std::vector<double> > > res;
3511  res.clear();
3512  nChanNos.clear();
3513
3514  std::vector<uint> ifNos = getIFNos();
3515  for (uint i = 0; i < ifNos.size(); ++i) {
3516    int currNchan = nchan(ifNos[i]);
3517    bool hasDifferentNchan = (i == 0);
3518    for (uint j = 0; j < i; ++j) {
3519      if (currNchan != nchan(ifNos[j])) {
3520        hasDifferentNchan = true;
3521        break;
3522      }
3523    }
3524    if (hasDifferentNchan) {
3525      res.push_back(getPolynomialModel(order, currNchan, pfunc));
3526      nChanNos.push_back(currNchan);
3527    }
3528  }
3529
3530  return res;
3531}
3532
3533std::vector<float> Scantable::doLeastSquareFitting(const std::vector<float>& data,
3534                                                   const std::vector<bool>& mask,
3535                                                   const std::vector<std::vector<double> >& model,
3536                                                   std::vector<float>& params,
3537                                                   float& rms,
3538                                                   std::vector<bool>& finalMask,
3539                                                   int& nClipped,
3540                                                   float thresClip,
3541                                                   int nIterClip,
3542                                                   bool getResidual)
3543{
3544  int nDOF = model.size();
3545  int nChan = data.size();
3546
3547  if (nDOF == 0) {
3548    throw(AipsError("no model data given"));
3549  }
3550  if (nChan < 2) {
3551    throw(AipsError("data size is too few"));
3552  }
3553  if (nChan != (int)mask.size()) {
3554    throw(AipsError("data and mask sizes are not identical"));
3555  }
3556  for (int i = 0; i < nDOF; ++i) {
3557    if (nChan != (int)model[i].size()) {
3558      throw(AipsError("data and model sizes are not identical"));
3559    }
3560  }
3561
3562  params.clear();
3563  params.resize(nDOF);
3564
3565  finalMask.clear();
3566  finalMask.resize(nChan);
3567
3568  std::vector<int> maskArray(nChan);
3569  int j = 0;
3570  for (int i = 0; i < nChan; ++i) {
3571    maskArray[i] = mask[i] ? 1 : 0;
3572    if (mask[i]) {
3573      j++;
3574    }
3575    finalMask[i] = mask[i];
3576  }
3577
3578  int initNData = j;
3579  int nData = initNData;
3580
3581  std::vector<double> z1(nChan), r1(nChan), residual(nChan);
3582  for (int i = 0; i < nChan; ++i) {
3583    z1[i] = (double)data[i];
3584    r1[i] = 0.0;
3585    residual[i] = 0.0;
3586  }
3587
3588  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
3589    // xMatrix : horizontal concatenation of
3590    //           the least-sq. matrix (left) and an
3591    //           identity matrix (right).
3592    // the right part is used to calculate the inverse matrix of the left part.
3593    double xMatrix[nDOF][2*nDOF];
3594    double zMatrix[nDOF];
3595    for (int i = 0; i < nDOF; ++i) {
3596      for (int j = 0; j < 2*nDOF; ++j) {
3597        xMatrix[i][j] = 0.0;
3598      }
3599      xMatrix[i][nDOF+i] = 1.0;
3600      zMatrix[i] = 0.0;
3601    }
3602
3603    int nUseData = 0;
3604    for (int k = 0; k < nChan; ++k) {
3605      if (maskArray[k] == 0) continue;
3606
3607      for (int i = 0; i < nDOF; ++i) {
3608        for (int j = i; j < nDOF; ++j) {
3609          xMatrix[i][j] += model[i][k] * model[j][k];
3610        }
3611        zMatrix[i] += z1[k] * model[i][k];
3612      }
3613
3614      nUseData++;
3615    }
3616
3617    if (nUseData < 1) {
3618        throw(AipsError("all channels clipped or masked. can't execute fitting anymore."));     
3619    }
3620
3621    for (int i = 0; i < nDOF; ++i) {
3622      for (int j = 0; j < i; ++j) {
3623        xMatrix[i][j] = xMatrix[j][i];
3624      }
3625    }
3626
3627    std::vector<double> invDiag(nDOF);
3628    for (int i = 0; i < nDOF; ++i) {
3629      invDiag[i] = 1.0 / xMatrix[i][i];
3630      for (int j = 0; j < nDOF; ++j) {
3631        xMatrix[i][j] *= invDiag[i];
3632      }
3633    }
3634
3635    for (int k = 0; k < nDOF; ++k) {
3636      for (int i = 0; i < nDOF; ++i) {
3637        if (i != k) {
3638          double factor1 = xMatrix[k][k];
3639          double invfactor1 = 1.0 / factor1;
3640          double factor2 = xMatrix[i][k];
3641          for (int j = k; j < 2*nDOF; ++j) {
3642            xMatrix[i][j] *= factor1;
3643            xMatrix[i][j] -= xMatrix[k][j]*factor2;
3644            xMatrix[i][j] *= invfactor1;
3645          }
3646        }
3647      }
3648      double invXDiag = 1.0 / xMatrix[k][k];
3649      for (int j = k; j < 2*nDOF; ++j) {
3650        xMatrix[k][j] *= invXDiag;
3651      }
3652    }
3653   
3654    for (int i = 0; i < nDOF; ++i) {
3655      for (int j = 0; j < nDOF; ++j) {
3656        xMatrix[i][nDOF+j] *= invDiag[j];
3657      }
3658    }
3659    //compute a vector y in which coefficients of the best-fit
3660    //model functions are stored.
3661    //in case of polynomials, y consists of (a0,a1,a2,...)
3662    //where ai is the coefficient of the term x^i.
3663    //in case of sinusoids, y consists of (a0,s1,c1,s2,c2,...)
3664    //where a0 is constant term and s* and c* are of sine
3665    //and cosine functions, respectively.
3666    std::vector<double> y(nDOF);
3667    for (int i = 0; i < nDOF; ++i) {
3668      y[i] = 0.0;
3669      for (int j = 0; j < nDOF; ++j) {
3670        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
3671      }
3672      params[i] = (float)y[i];
3673    }
3674
3675    for (int i = 0; i < nChan; ++i) {
3676      r1[i] = y[0];
3677      for (int j = 1; j < nDOF; ++j) {
3678        r1[i] += y[j]*model[j][i];
3679      }
3680      residual[i] = z1[i] - r1[i];
3681    }
3682
3683    double stdDev = 0.0;
3684    for (int i = 0; i < nChan; ++i) {
3685      stdDev += residual[i]*residual[i]*(double)maskArray[i];
3686    }
3687    stdDev = sqrt(stdDev/(double)nData);
3688    rms = (float)stdDev;
3689
3690    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
3691      break;
3692    } else {
3693
3694      double thres = stdDev * thresClip;
3695      int newNData = 0;
3696      for (int i = 0; i < nChan; ++i) {
3697        if (abs(residual[i]) >= thres) {
3698          maskArray[i] = 0;
3699          finalMask[i] = false;
3700        }
3701        if (maskArray[i] > 0) {
3702          newNData++;
3703        }
3704      }
3705      if (newNData == nData) {
3706        break; //no more flag to add. iteration stops.
3707      } else {
3708        nData = newNData;
3709      }
3710
3711    }
3712  }
3713
3714  nClipped = initNData - nData;
3715
3716  std::vector<float> result(nChan);
3717  if (getResidual) {
3718    for (int i = 0; i < nChan; ++i) {
3719      result[i] = (float)residual[i];
3720    }
3721  } else {
3722    for (int i = 0; i < nChan; ++i) {
3723      result[i] = (float)r1[i];
3724    }
3725  }
3726
3727  return result;
3728}
3729
3730void Scantable::cubicSplineBaseline(const std::vector<bool>& mask, int nPiece,
3731                                    float thresClip, int nIterClip,
3732                                    bool getResidual,
3733                                    const std::string& progressInfo,
3734                                    const bool outLogger, const std::string& blfile,
3735                                    const std::string& bltable)
3736{
3737  /****/
3738  double TimeStart = mathutil::gettimeofday_sec();
3739  /****/
3740
3741  try {
3742    ofstream ofs;
3743    String coordInfo;
3744    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3745    int minNRow;
3746    int nRow = nrow();
3747    std::vector<bool> chanMask, finalChanMask;
3748    float rms;
3749    bool outBaselineTable = (bltable != "");
3750    STBaselineTable bt = STBaselineTable(*this);
3751    Vector<Double> timeSecCol;
3752
3753    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3754                         coordInfo, hasSameNchan,
3755                         progressInfo, showProgress, minNRow,
3756                         timeSecCol);
3757
3758    std::vector<int> nChanNos;
3759    std::vector<std::vector<std::vector<double> > > modelReservoir;
3760    modelReservoir = getPolynomialModelReservoir(3,
3761                                                 &Scantable::getNormalPolynomial,
3762                                                 nChanNos);
3763
3764    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3765      std::vector<float> sp = getSpectrum(whichrow);
3766      chanMask = getCompositeChanMask(whichrow, mask);
3767
3768      std::vector<int> pieceEdges;
3769      std::vector<float> params;
3770      int nClipped = 0;
3771      std::vector<float> res = doCubicSplineLeastSquareFitting(sp, chanMask,
3772                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3773                                   nPiece, false, pieceEdges, params, rms, finalChanMask,
3774                                   nClipped, thresClip, nIterClip, getResidual);
3775
3776      if (outBaselineTable) {
3777        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3778                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3779                      true, STBaselineFunc::CSpline, pieceEdges, std::vector<float>(),
3780                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3781                      thresClip, nIterClip, 0.0, 0, std::vector<int>());
3782      } else {
3783        setSpectrum(res, whichrow);
3784      }
3785
3786      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3787                          coordInfo, hasSameNchan, ofs, "cubicSplineBaseline()",
3788                          pieceEdges, params, nClipped);
3789      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3790    }
3791   
3792    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3793
3794  } catch (...) {
3795    throw;
3796  }
3797
3798  /****/
3799  double TimeEnd = mathutil::gettimeofday_sec();
3800  double elapse1 = TimeEnd - TimeStart;
3801  std::cout << "cspline-new   : " << elapse1 << " (sec.)" << endl;
3802  /****/
3803}
3804
3805void Scantable::autoCubicSplineBaseline(const std::vector<bool>& mask, int nPiece,
3806                                        float thresClip, int nIterClip,
3807                                        const std::vector<int>& edge,
3808                                        float threshold, int chanAvgLimit,
3809                                        bool getResidual,
3810                                        const std::string& progressInfo,
3811                                        const bool outLogger, const std::string& blfile,
3812                                        const std::string& bltable)
3813{
3814  try {
3815    ofstream ofs;
3816    String coordInfo;
3817    bool hasSameNchan, outTextFile, csvFormat, showProgress;
3818    int minNRow;
3819    int nRow = nrow();
3820    std::vector<bool> chanMask, finalChanMask;
3821    float rms;
3822    bool outBaselineTable = (bltable != "");
3823    STBaselineTable bt = STBaselineTable(*this);
3824    Vector<Double> timeSecCol;
3825    STLineFinder lineFinder = STLineFinder();
3826
3827    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3828                         coordInfo, hasSameNchan,
3829                         progressInfo, showProgress, minNRow,
3830                         timeSecCol);
3831
3832    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3833
3834    std::vector<int> nChanNos;
3835    std::vector<std::vector<std::vector<double> > > modelReservoir;
3836    modelReservoir = getPolynomialModelReservoir(3,
3837                                                 &Scantable::getNormalPolynomial,
3838                                                 nChanNos);
3839
3840    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3841      std::vector<float> sp = getSpectrum(whichrow);
3842      std::vector<int> currentEdge;
3843      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
3844
3845      std::vector<int> pieceEdges;
3846      std::vector<float> params;
3847      int nClipped = 0;
3848      std::vector<float> res = doCubicSplineLeastSquareFitting(sp, chanMask,
3849                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3850                                   nPiece, false, pieceEdges, params, rms, finalChanMask,
3851                                   nClipped, thresClip, nIterClip, getResidual);
3852
3853      if (outBaselineTable) {
3854        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3855                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3856                      true, STBaselineFunc::CSpline, pieceEdges, std::vector<float>(),
3857                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3858                      thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
3859      } else {
3860        setSpectrum(res, whichrow);
3861      }
3862
3863      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3864                          coordInfo, hasSameNchan, ofs, "autoCubicSplineBaseline()",
3865                          pieceEdges, params, nClipped);
3866      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3867    }
3868
3869    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
3870
3871  } catch (...) {
3872    throw;
3873  }
3874}
3875
3876std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
3877                                                   const std::vector<bool>& mask,
3878                                                   std::vector<int>& idxEdge,
3879                                                   std::vector<float>& params,
3880                                                   float& rms,
3881                                                   std::vector<bool>& finalmask,
3882                                                   float clipth,
3883                                                   int clipn)
3884{
3885  int nClipped = 0;
3886  return doCubicSplineFitting(data, mask, idxEdge.size()-1, true, idxEdge, params, rms, finalmask, nClipped, clipth, clipn);
3887}
3888
3889std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
3890                                                   const std::vector<bool>& mask,
3891                                                   int nPiece,
3892                                                   std::vector<int>& idxEdge,
3893                                                   std::vector<float>& params,
3894                                                   float& rms,
3895                                                   std::vector<bool>& finalmask,
3896                                                   float clipth,
3897                                                   int clipn)
3898{
3899  int nClipped = 0;
3900  return doCubicSplineFitting(data, mask, nPiece, false, idxEdge, params, rms, finalmask, nClipped, clipth, clipn);
3901}
3902
3903std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
3904                                                   const std::vector<bool>& mask,
3905                                                   int nPiece,
3906                                                   bool useGivenPieceBoundary,
3907                                                   std::vector<int>& idxEdge,
3908                                                   std::vector<float>& params,
3909                                                   float& rms,
3910                                                   std::vector<bool>& finalMask,
3911                                                   int& nClipped,
3912                                                   float thresClip,
3913                                                   int nIterClip,
3914                                                   bool getResidual)
3915{
3916  return doCubicSplineLeastSquareFitting(data, mask,
3917                                         getPolynomialModel(3, data.size(), &Scantable::getNormalPolynomial),
3918                                         nPiece, useGivenPieceBoundary, idxEdge,
3919                                         params, rms, finalMask,
3920                                         nClipped, thresClip, nIterClip,
3921                                         getResidual);
3922}
3923
3924std::vector<float> Scantable::doCubicSplineLeastSquareFitting(const std::vector<float>& data,
3925                                                              const std::vector<bool>& mask,
3926                                                              const std::vector<std::vector<double> >& model,
3927                                                              int nPiece,
3928                                                              bool useGivenPieceBoundary,
3929                                                              std::vector<int>& idxEdge,
3930                                                              std::vector<float>& params,
3931                                                              float& rms,
3932                                                              std::vector<bool>& finalMask,
3933                                                              int& nClipped,
3934                                                              float thresClip,
3935                                                              int nIterClip,
3936                                                              bool getResidual)
3937{
3938  int nDOF = nPiece + 3;  //number of independent parameters to solve, namely, 4+(nPiece-1).
3939  int nModel = model.size();
3940  int nChan = data.size();
3941
3942  if (nModel != 4) {
3943    throw(AipsError("model size must be 4."));
3944  }
3945  if (nPiece < 1) {
3946    throw(AipsError("number of the sections must be one or more"));
3947  }
3948  if (nChan < 2*nPiece) {
3949    throw(AipsError("data size is too few"));
3950  }
3951  if (nChan != (int)mask.size()) {
3952    throw(AipsError("data and mask sizes are not identical"));
3953  }
3954  for (int i = 0; i < nModel; ++i) {
3955    if (nChan != (int)model[i].size()) {
3956      throw(AipsError("data and model sizes are not identical"));
3957    }
3958  }
3959
3960  params.clear();
3961  params.resize(nPiece*nModel);
3962
3963  finalMask.clear();
3964  finalMask.resize(nChan);
3965
3966  std::vector<int> maskArray(nChan);
3967  std::vector<int> x(nChan);
3968  int j = 0;
3969  for (int i = 0; i < nChan; ++i) {
3970    maskArray[i] = mask[i] ? 1 : 0;
3971    if (mask[i]) {
3972      x[j] = i;
3973      j++;
3974    }
3975    finalMask[i] = mask[i];
3976  }
3977
3978  int initNData = j;
3979  int nData = initNData;
3980
3981  if (initNData < nPiece) {
3982    throw(AipsError("too few non-flagged channels"));
3983  }
3984
3985  int nElement = (int)(floor(floor((double)(initNData/nPiece))+0.5));
3986  std::vector<double> invEdge(nPiece-1);
3987
3988  if (useGivenPieceBoundary) {
3989    if ((int)idxEdge.size() != nPiece+1) {
3990      throw(AipsError("pieceEdge.size() must be equal to nPiece+1."));
3991    }
3992  } else {
3993    idxEdge.clear();
3994    idxEdge.resize(nPiece+1);
3995    idxEdge[0] = x[0];
3996  }
3997  for (int i = 1; i < nPiece; ++i) {
3998    int valX = x[nElement*i];
3999    if (!useGivenPieceBoundary) {
4000      idxEdge[i] = valX;
4001    }
4002    invEdge[i-1] = 1.0/(double)valX;
4003  }
4004  if (!useGivenPieceBoundary) {
4005    idxEdge[nPiece] = x[initNData-1]+1;
4006  }
4007
4008  std::vector<double> z1(nChan), r1(nChan), residual(nChan);
4009  for (int i = 0; i < nChan; ++i) {
4010    z1[i] = (double)data[i];
4011    r1[i] = 0.0;
4012    residual[i] = 0.0;
4013  }
4014
4015  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
4016    // xMatrix : horizontal concatenation of
4017    //           the least-sq. matrix (left) and an
4018    //           identity matrix (right).
4019    // the right part is used to calculate the inverse matrix of the left part.
4020
4021    double xMatrix[nDOF][2*nDOF];
4022    double zMatrix[nDOF];
4023    for (int i = 0; i < nDOF; ++i) {
4024      for (int j = 0; j < 2*nDOF; ++j) {
4025        xMatrix[i][j] = 0.0;
4026      }
4027      xMatrix[i][nDOF+i] = 1.0;
4028      zMatrix[i] = 0.0;
4029    }
4030
4031    for (int n = 0; n < nPiece; ++n) {
4032      int nUseDataInPiece = 0;
4033      for (int k = idxEdge[n]; k < idxEdge[n+1]; ++k) {
4034
4035        if (maskArray[k] == 0) continue;
4036
4037        for (int i = 0; i < nModel; ++i) {
4038          for (int j = i; j < nModel; ++j) {
4039            xMatrix[i][j] += model[i][k] * model[j][k];
4040          }
4041          zMatrix[i] += z1[k] * model[i][k];
4042        }
4043
4044        for (int i = 0; i < n; ++i) {
4045          double q = 1.0 - model[1][k]*invEdge[i];
4046          q = q*q*q;
4047          for (int j = 0; j < nModel; ++j) {
4048            xMatrix[j][i+nModel] += q * model[j][k];
4049          }
4050          for (int j = 0; j < i; ++j) {
4051            double r = 1.0 - model[1][k]*invEdge[j];
4052            r = r*r*r;
4053            xMatrix[j+nModel][i+nModel] += r*q;
4054          }
4055          xMatrix[i+nModel][i+nModel] += q*q;
4056          zMatrix[i+nModel] += q*z1[k];
4057        }
4058
4059        nUseDataInPiece++;
4060      }
4061
4062      if (nUseDataInPiece < 1) {
4063        std::vector<string> suffixOfPieceNumber(4);
4064        suffixOfPieceNumber[0] = "th";
4065        suffixOfPieceNumber[1] = "st";
4066        suffixOfPieceNumber[2] = "nd";
4067        suffixOfPieceNumber[3] = "rd";
4068        int idxNoDataPiece = (n % 10 <= 3) ? n : 0;
4069        ostringstream oss;
4070        oss << "all channels clipped or masked in " << n << suffixOfPieceNumber[idxNoDataPiece];
4071        oss << " piece of the spectrum. can't execute fitting anymore.";
4072        throw(AipsError(String(oss)));
4073      }
4074    }
4075
4076    for (int i = 0; i < nDOF; ++i) {
4077      for (int j = 0; j < i; ++j) {
4078        xMatrix[i][j] = xMatrix[j][i];
4079      }
4080    }
4081
4082    std::vector<double> invDiag(nDOF);
4083    for (int i = 0; i < nDOF; ++i) {
4084      invDiag[i] = 1.0 / xMatrix[i][i];
4085      for (int j = 0; j < nDOF; ++j) {
4086        xMatrix[i][j] *= invDiag[i];
4087      }
4088    }
4089
4090    for (int k = 0; k < nDOF; ++k) {
4091      for (int i = 0; i < nDOF; ++i) {
4092        if (i != k) {
4093          double factor1 = xMatrix[k][k];
4094          double invfactor1 = 1.0 / factor1;
4095          double factor2 = xMatrix[i][k];
4096          for (int j = k; j < 2*nDOF; ++j) {
4097            xMatrix[i][j] *= factor1;
4098            xMatrix[i][j] -= xMatrix[k][j]*factor2;
4099            xMatrix[i][j] *= invfactor1;
4100          }
4101        }
4102      }
4103      double invXDiag = 1.0 / xMatrix[k][k];
4104      for (int j = k; j < 2*nDOF; ++j) {
4105        xMatrix[k][j] *= invXDiag;
4106      }
4107    }
4108   
4109    for (int i = 0; i < nDOF; ++i) {
4110      for (int j = 0; j < nDOF; ++j) {
4111        xMatrix[i][nDOF+j] *= invDiag[j];
4112      }
4113    }
4114
4115    //compute a vector y which consists of the coefficients of the best-fit spline curves
4116    //(a0,a1,a2,a3(,b3,c3,...)), namely, the ones for the leftmost piece and the ones of
4117    //cubic terms for the other pieces (in case nPiece>1).
4118    std::vector<double> y(nDOF);
4119    for (int i = 0; i < nDOF; ++i) {
4120      y[i] = 0.0;
4121      for (int j = 0; j < nDOF; ++j) {
4122        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
4123      }
4124    }
4125
4126    std::vector<double> a(nModel);
4127    for (int i = 0; i < nModel; ++i) {
4128      a[i] = y[i];
4129    }
4130
4131    int j = 0;
4132    for (int n = 0; n < nPiece; ++n) {
4133      for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
4134        r1[i] = 0.0;
4135        for (int j = 0; j < nModel; ++j) {
4136          r1[i] += a[j] * model[j][i];
4137        }
4138      }
4139      for (int i = 0; i < nModel; ++i) {
4140        params[j+i] = a[i];
4141      }
4142      j += nModel;
4143
4144      if (n == nPiece-1) break;
4145
4146      double d = y[n+nModel];
4147      double iE = invEdge[n];
4148      a[0] +=       d;
4149      a[1] -= 3.0 * d * iE;
4150      a[2] += 3.0 * d * iE * iE;
4151      a[3] -=       d * iE * iE * iE;
4152    }
4153
4154    //subtract constant value for masked regions at the edge of spectrum
4155    if (idxEdge[0] > 0) {
4156      int n = idxEdge[0];
4157      for (int i = 0; i < idxEdge[0]; ++i) {
4158        //--cubic extrapolate--
4159        //r1[i] = params[0] + params[1]*x1[i] + params[2]*x2[i] + params[3]*x3[i];
4160        //--linear extrapolate--
4161        //r1[i] = (r1[n+1] - r1[n])/(x1[n+1] - x1[n])*(x1[i] - x1[n]) + r1[n];
4162        //--constant--
4163        r1[i] = r1[n];
4164      }
4165    }
4166
4167    if (idxEdge[nPiece] < nChan) {
4168      int n = idxEdge[nPiece]-1;
4169      for (int i = idxEdge[nPiece]; i < nChan; ++i) {
4170        //--cubic extrapolate--
4171        //int m = 4*(nPiece-1);
4172        //r1[i] = params[m] + params[m+1]*x1[i] + params[m+2]*x2[i] + params[m+3]*x3[i];
4173        //--linear extrapolate--
4174        //r1[i] = (r1[n-1] - r1[n])/(x1[n-1] - x1[n])*(x1[i] - x1[n]) + r1[n];
4175        //--constant--
4176        r1[i] = r1[n];
4177      }
4178    }
4179
4180    for (int i = 0; i < nChan; ++i) {
4181      residual[i] = z1[i] - r1[i];
4182    }
4183
4184    double stdDev = 0.0;
4185    for (int i = 0; i < nChan; ++i) {
4186      stdDev += residual[i]*residual[i]*(double)maskArray[i];
4187    }
4188    stdDev = sqrt(stdDev/(double)nData);
4189    rms = (float)stdDev;
4190
4191    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
4192      break;
4193    } else {
4194     
4195      double thres = stdDev * thresClip;
4196      int newNData = 0;
4197      for (int i = 0; i < nChan; ++i) {
4198        if (abs(residual[i]) >= thres) {
4199          maskArray[i] = 0;
4200          finalMask[i] = false;
4201        }
4202        if (maskArray[i] > 0) {
4203          newNData++;
4204        }
4205      }
4206      if (newNData == nData) {
4207        break; //no more flag to add. iteration stops.
4208      } else {
4209        nData = newNData;
4210      }
4211
4212    }
4213  }
4214
4215  nClipped = initNData - nData;
4216
4217  std::vector<float> result(nChan);
4218  if (getResidual) {
4219    for (int i = 0; i < nChan; ++i) {
4220      result[i] = (float)residual[i];
4221    }
4222  } else {
4223    for (int i = 0; i < nChan; ++i) {
4224      result[i] = (float)r1[i];
4225    }
4226  }
4227
4228  return result;
4229}
4230
4231std::vector<int> Scantable::selectWaveNumbers(const std::vector<int>& addNWaves,
4232                                  const std::vector<int>& rejectNWaves)
4233{
4234  std::vector<bool> chanMask;
4235  std::string fftMethod;
4236  std::string fftThresh;
4237
4238  return selectWaveNumbers(0, chanMask, false, fftMethod, fftThresh, addNWaves, rejectNWaves);
4239}
4240
4241std::vector<int> Scantable::selectWaveNumbers(const int whichrow,
4242                                  const std::vector<bool>& chanMask,
4243                                  const bool applyFFT,
4244                                  const std::string& fftMethod,
4245                                  const std::string& fftThresh,
4246                                  const std::vector<int>& addNWaves,
4247                                  const std::vector<int>& rejectNWaves)
4248{
4249  std::vector<int> nWaves;
4250  nWaves.clear();
4251
4252  if (applyFFT) {
4253    string fftThAttr;
4254    float fftThSigma;
4255    int fftThTop;
4256    parseFFTThresholdInfo(fftThresh, fftThAttr, fftThSigma, fftThTop);
4257    doSelectWaveNumbers(whichrow, chanMask, fftMethod, fftThSigma, fftThTop, fftThAttr, nWaves);
4258  }
4259
4260  addAuxWaveNumbers(whichrow, addNWaves, rejectNWaves, nWaves);
4261
4262  return nWaves;
4263}
4264
4265int Scantable::getIdxOfNchan(const int nChan, const std::vector<int>& nChanNos)
4266{
4267  int idx = -1;
4268  for (uint i = 0; i < nChanNos.size(); ++i) {
4269    if (nChan == nChanNos[i]) {
4270      idx = i;
4271      break;
4272    }
4273  }
4274
4275  if (idx < 0) {
4276    throw(AipsError("nChan not found in nChhanNos."));
4277  }
4278
4279  return idx;
4280}
4281
4282void Scantable::parseFFTInfo(const std::string& fftInfo, bool& applyFFT, std::string& fftMethod, std::string& fftThresh)
4283{
4284  istringstream iss(fftInfo);
4285  std::string tmp;
4286  std::vector<string> res;
4287  while (getline(iss, tmp, ',')) {
4288    res.push_back(tmp);
4289  }
4290  if (res.size() < 3) {
4291    throw(AipsError("wrong value in 'fftinfo' parameter")) ;
4292  }
4293  applyFFT = (res[0] == "true");
4294  fftMethod = res[1];
4295  fftThresh = res[2];
4296}
4297
4298void Scantable::parseFFTThresholdInfo(const std::string& fftThresh, std::string& fftThAttr, float& fftThSigma, int& fftThTop)
4299{
4300  uInt idxSigma = fftThresh.find("sigma");
4301  uInt idxTop   = fftThresh.find("top");
4302
4303  if (idxSigma == fftThresh.size() - 5) {
4304    std::istringstream is(fftThresh.substr(0, fftThresh.size() - 5));
4305    is >> fftThSigma;
4306    fftThAttr = "sigma";
4307  } else if (idxTop == 0) {
4308    std::istringstream is(fftThresh.substr(3));
4309    is >> fftThTop;
4310    fftThAttr = "top";
4311  } else {
4312    bool isNumber = true;
4313    for (uInt i = 0; i < fftThresh.size()-1; ++i) {
4314      char ch = (fftThresh.substr(i, 1).c_str())[0];
4315      if (!(isdigit(ch) || (fftThresh.substr(i, 1) == "."))) {
4316        isNumber = false;
4317        break;
4318      }
4319    }
4320    if (isNumber) {
4321      std::istringstream is(fftThresh);
4322      is >> fftThSigma;
4323      fftThAttr = "sigma";
4324    } else {
4325      throw(AipsError("fftthresh has a wrong value"));
4326    }
4327  }
4328}
4329
4330void Scantable::doSelectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const std::string& fftMethod, const float fftThSigma, const int fftThTop, const std::string& fftThAttr, std::vector<int>& nWaves)
4331{
4332  std::vector<float> fspec;
4333  if (fftMethod == "fft") {
4334    fspec = execFFT(whichrow, chanMask, false, true);
4335  //} else if (fftMethod == "lsp") {
4336  //  fspec = lombScarglePeriodogram(whichrow);
4337  }
4338
4339  if (fftThAttr == "sigma") {
4340    float mean  = 0.0;
4341    float mean2 = 0.0;
4342    for (uInt i = 0; i < fspec.size(); ++i) {
4343      mean  += fspec[i];
4344      mean2 += fspec[i]*fspec[i];
4345    }
4346    mean  /= float(fspec.size());
4347    mean2 /= float(fspec.size());
4348    float thres = mean + fftThSigma * float(sqrt(mean2 - mean*mean));
4349
4350    for (uInt i = 0; i < fspec.size(); ++i) {
4351      if (fspec[i] >= thres) {
4352        nWaves.push_back(i);
4353      }
4354    }
4355
4356  } else if (fftThAttr == "top") {
4357    for (int i = 0; i < fftThTop; ++i) {
4358      float max = 0.0;
4359      int maxIdx = 0;
4360      for (uInt j = 0; j < fspec.size(); ++j) {
4361        if (fspec[j] > max) {
4362          max = fspec[j];
4363          maxIdx = j;
4364        }
4365      }
4366      nWaves.push_back(maxIdx);
4367      fspec[maxIdx] = 0.0;
4368    }
4369
4370  }
4371
4372  if (nWaves.size() > 1) {
4373    sort(nWaves.begin(), nWaves.end());
4374  }
4375}
4376
4377void Scantable::addAuxWaveNumbers(const int whichrow, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves)
4378{
4379  std::vector<int> tempAddNWaves, tempRejectNWaves;
4380  tempAddNWaves.clear();
4381  tempRejectNWaves.clear();
4382
4383  for (uInt i = 0; i < addNWaves.size(); ++i) {
4384    tempAddNWaves.push_back(addNWaves[i]);
4385  }
4386  if ((tempAddNWaves.size() == 2) && (tempAddNWaves[1] == -999)) {
4387    setWaveNumberListUptoNyquistFreq(whichrow, tempAddNWaves);
4388  }
4389
4390  for (uInt i = 0; i < rejectNWaves.size(); ++i) {
4391    tempRejectNWaves.push_back(rejectNWaves[i]);
4392  }
4393  if ((tempRejectNWaves.size() == 2) && (tempRejectNWaves[1] == -999)) {
4394    setWaveNumberListUptoNyquistFreq(whichrow, tempRejectNWaves);
4395  }
4396
4397  for (uInt i = 0; i < tempAddNWaves.size(); ++i) {
4398    bool found = false;
4399    for (uInt j = 0; j < nWaves.size(); ++j) {
4400      if (nWaves[j] == tempAddNWaves[i]) {
4401        found = true;
4402        break;
4403      }
4404    }
4405    if (!found) nWaves.push_back(tempAddNWaves[i]);
4406  }
4407
4408  for (uInt i = 0; i < tempRejectNWaves.size(); ++i) {
4409    for (std::vector<int>::iterator j = nWaves.begin(); j != nWaves.end(); ) {
4410      if (*j == tempRejectNWaves[i]) {
4411        j = nWaves.erase(j);
4412      } else {
4413        ++j;
4414      }
4415    }
4416  }
4417
4418  if (nWaves.size() > 1) {
4419    sort(nWaves.begin(), nWaves.end());
4420    unique(nWaves.begin(), nWaves.end());
4421  }
4422}
4423
4424void Scantable::setWaveNumberListUptoNyquistFreq(const int whichrow, std::vector<int>& nWaves)
4425{
4426  int val = nWaves[0];
4427  int nyquistFreq = nchan(getIF(whichrow))/2+1;
4428  nWaves.clear();
4429  if (val > nyquistFreq) {  // for safety, at least nWaves contains a constant; CAS-3759
4430    nWaves.push_back(0);
4431  }
4432  while (val <= nyquistFreq) {
4433    nWaves.push_back(val);
4434    val++;
4435  }
4436}
4437
4438void Scantable::sinusoidBaseline(const std::vector<bool>& mask, const std::string& fftInfo,
4439                                 const std::vector<int>& addNWaves,
4440                                 const std::vector<int>& rejectNWaves,
4441                                 float thresClip, int nIterClip,
4442                                 bool getResidual,
4443                                 const std::string& progressInfo,
4444                                 const bool outLogger, const std::string& blfile,
4445                                 const std::string& bltable)
4446{
4447  /****/
4448  double TimeStart = mathutil::gettimeofday_sec();
4449  /****/
4450
4451  try {
4452    ofstream ofs;
4453    String coordInfo;
4454    bool hasSameNchan, outTextFile, csvFormat, showProgress;
4455    int minNRow;
4456    int nRow = nrow();
4457    std::vector<bool> chanMask, finalChanMask;
4458    float rms;
4459    bool outBaselineTable = (bltable != "");
4460    STBaselineTable bt = STBaselineTable(*this);
4461    Vector<Double> timeSecCol;
4462
4463    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
4464                         coordInfo, hasSameNchan,
4465                         progressInfo, showProgress, minNRow,
4466                         timeSecCol);
4467
4468    bool applyFFT;
4469    std::string fftMethod, fftThresh;
4470    parseFFTInfo(fftInfo, applyFFT, fftMethod, fftThresh);
4471
4472    std::vector<int> nWaves;
4473    std::vector<int> nChanNos;
4474    std::vector<std::vector<std::vector<double> > > modelReservoir;
4475    if (!applyFFT) {
4476      nWaves = selectWaveNumbers(addNWaves, rejectNWaves);
4477      modelReservoir = getSinusoidModelReservoir(nWaves, nChanNos);
4478    }
4479
4480    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
4481      std::vector<float> sp = getSpectrum(whichrow);
4482      chanMask = getCompositeChanMask(whichrow, mask);
4483      std::vector<std::vector<double> > model;
4484      if (applyFFT) {
4485        nWaves = selectWaveNumbers(whichrow, chanMask, true, fftMethod, fftThresh,
4486                                   addNWaves, rejectNWaves);
4487        model = getSinusoidModel(nWaves, sp.size());
4488      } else {
4489        model = modelReservoir[getIdxOfNchan(sp.size(), nChanNos)];
4490      }
4491
4492      std::vector<float> params;
4493      int nClipped = 0;
4494      std::vector<float> res = doLeastSquareFitting(sp, chanMask, model,
4495                                   params, rms, finalChanMask,
4496                                   nClipped, thresClip, nIterClip, getResidual);
4497
4498      if (outBaselineTable) {
4499        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4500                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4501                      true, STBaselineFunc::Sinusoid, nWaves, std::vector<float>(),
4502                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
4503                      thresClip, nIterClip, 0.0, 0, std::vector<int>());
4504      } else {
4505        setSpectrum(res, whichrow);
4506      }
4507
4508      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
4509                          coordInfo, hasSameNchan, ofs, "sinusoidBaseline()",
4510                          params, nClipped);
4511      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
4512    }
4513
4514    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
4515
4516  } catch (...) {
4517    throw;
4518  }
4519
4520  /****/
4521  double TimeEnd = mathutil::gettimeofday_sec();
4522  double elapse1 = TimeEnd - TimeStart;
4523  std::cout << "sinusoid-old   : " << elapse1 << " (sec.)" << endl;
4524  /****/
4525}
4526
4527void Scantable::autoSinusoidBaseline(const std::vector<bool>& mask, const std::string& fftInfo,
4528                                     const std::vector<int>& addNWaves,
4529                                     const std::vector<int>& rejectNWaves,
4530                                     float thresClip, int nIterClip,
4531                                     const std::vector<int>& edge,
4532                                     float threshold, int chanAvgLimit,
4533                                     bool getResidual,
4534                                     const std::string& progressInfo,
4535                                     const bool outLogger, const std::string& blfile,
4536                                     const std::string& bltable)
4537{
4538  try {
4539    ofstream ofs;
4540    String coordInfo;
4541    bool hasSameNchan, outTextFile, csvFormat, showProgress;
4542    int minNRow;
4543    int nRow = nrow();
4544    std::vector<bool> chanMask, finalChanMask;
4545    float rms;
4546    bool outBaselineTable = (bltable != "");
4547    STBaselineTable bt = STBaselineTable(*this);
4548    Vector<Double> timeSecCol;
4549    STLineFinder lineFinder = STLineFinder();
4550
4551    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
4552                         coordInfo, hasSameNchan,
4553                         progressInfo, showProgress, minNRow,
4554                         timeSecCol);
4555
4556    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
4557
4558    bool applyFFT;
4559    string fftMethod, fftThresh;
4560    parseFFTInfo(fftInfo, applyFFT, fftMethod, fftThresh);
4561
4562    std::vector<int> nWaves;
4563    std::vector<int> nChanNos;
4564    std::vector<std::vector<std::vector<double> > > modelReservoir;
4565    if (!applyFFT) {
4566      nWaves = selectWaveNumbers(addNWaves, rejectNWaves);
4567      modelReservoir = getSinusoidModelReservoir(nWaves, nChanNos);
4568    }
4569
4570    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
4571      std::vector<float> sp = getSpectrum(whichrow);
4572      std::vector<int> currentEdge;
4573      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
4574      std::vector<std::vector<double> > model;
4575      if (applyFFT) {
4576        nWaves = selectWaveNumbers(whichrow, chanMask, true, fftMethod, fftThresh,
4577                                   addNWaves, rejectNWaves);
4578        model = getSinusoidModel(nWaves, sp.size());
4579      } else {
4580        model = modelReservoir[getIdxOfNchan(sp.size(), nChanNos)];
4581      }
4582
4583      std::vector<float> params;
4584      int nClipped = 0;
4585      std::vector<float> res = doLeastSquareFitting(sp, chanMask, model,
4586                                   params, rms, finalChanMask,
4587                                   nClipped, thresClip, nIterClip, getResidual);
4588
4589      if (outBaselineTable) {
4590        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4591                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4592                      true, STBaselineFunc::Sinusoid, nWaves, std::vector<float>(),
4593                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
4594                      thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
4595      } else {
4596        setSpectrum(res, whichrow);
4597      }
4598
4599      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
4600                          coordInfo, hasSameNchan, ofs, "autoSinusoidBaseline()",
4601                          params, nClipped);
4602      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
4603    }
4604
4605    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
4606
4607  } catch (...) {
4608    throw;
4609  }
4610}
4611
4612std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data,
4613                                                const std::vector<bool>& mask,
4614                                                const std::vector<int>& waveNumbers,
4615                                                std::vector<float>& params,
4616                                                float& rms,
4617                                                std::vector<bool>& finalmask,
4618                                                float clipth,
4619                                                int clipn)
4620{
4621  int nClipped = 0;
4622  return doSinusoidFitting(data, mask, waveNumbers, params, rms, finalmask, nClipped, clipth, clipn);
4623}
4624
4625std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data,
4626                                                const std::vector<bool>& mask,
4627                                                const std::vector<int>& waveNumbers,
4628                                                std::vector<float>& params,
4629                                                float& rms,
4630                                                std::vector<bool>& finalMask,
4631                                                int& nClipped,
4632                                                float thresClip,
4633                                                int nIterClip,
4634                                                bool getResidual)
4635{
4636  return doLeastSquareFitting(data, mask,
4637                              getSinusoidModel(waveNumbers, data.size()),
4638                              params, rms, finalMask,
4639                              nClipped, thresClip, nIterClip,
4640                              getResidual);
4641}
4642
4643std::vector<std::vector<std::vector<double> > > Scantable::getSinusoidModelReservoir(const std::vector<int>& waveNumbers,
4644                                                                                     std::vector<int>& nChanNos)
4645{
4646  std::vector<std::vector<std::vector<double> > > res;
4647  res.clear();
4648  nChanNos.clear();
4649
4650  std::vector<uint> ifNos = getIFNos();
4651  for (uint i = 0; i < ifNos.size(); ++i) {
4652    int currNchan = nchan(ifNos[i]);
4653    bool hasDifferentNchan = (i == 0);
4654    for (uint j = 0; j < i; ++j) {
4655      if (currNchan != nchan(ifNos[j])) {
4656        hasDifferentNchan = true;
4657        break;
4658      }
4659    }
4660    if (hasDifferentNchan) {
4661      res.push_back(getSinusoidModel(waveNumbers, currNchan));
4662      nChanNos.push_back(currNchan);
4663    }
4664  }
4665
4666  return res;
4667}
4668
4669std::vector<std::vector<double> > Scantable::getSinusoidModel(const std::vector<int>& waveNumbers, int nchan)
4670{
4671  // model  : contains elemental values for computing the least-square matrix.
4672  //          model.size() is nmodel and model[*].size() is nchan.
4673  //          Each model element are as follows:
4674  //          model[0]    = {1.0, 1.0, 1.0, ..., 1.0},
4675  //          model[2n-1] = {sin(nPI/L*x[0]), sin(nPI/L*x[1]), ..., sin(nPI/L*x[nchan])},
4676  //          model[2n]   = {cos(nPI/L*x[0]), cos(nPI/L*x[1]), ..., cos(nPI/L*x[nchan])},
4677  //          where (1 <= n <= nMaxWavesInSW),
4678  //          or,
4679  //          model[2n-1] = {sin(wn[n]PI/L*x[0]), sin(wn[n]PI/L*x[1]), ..., sin(wn[n]PI/L*x[nchan])},
4680  //          model[2n]   = {cos(wn[n]PI/L*x[0]), cos(wn[n]PI/L*x[1]), ..., cos(wn[n]PI/L*x[nchan])},
4681  //          where wn[n] denotes waveNumbers[n] (1 <= n <= waveNumbers.size()).
4682
4683  std::vector<int> nWaves;  // sorted and uniqued array of wave numbers
4684  nWaves.reserve(waveNumbers.size());
4685  copy(waveNumbers.begin(), waveNumbers.end(), back_inserter(nWaves));
4686  sort(nWaves.begin(), nWaves.end());
4687  std::vector<int>::iterator end_it = unique(nWaves.begin(), nWaves.end());
4688  nWaves.erase(end_it, nWaves.end());
4689
4690  int minNWaves = nWaves[0];
4691  if (minNWaves < 0) {
4692    throw(AipsError("wave number must be positive or zero (i.e. constant)"));
4693  }
4694  bool hasConstantTerm = (minNWaves == 0);
4695  int nmodel = nWaves.size() * 2 - (hasConstantTerm ? 1 : 0);  //number of parameters to solve.
4696
4697  std::vector<std::vector<double> > model(nmodel, std::vector<double>(nchan));
4698
4699  if (hasConstantTerm) {
4700    for (int j = 0; j < nchan; ++j) {
4701      model[0][j] = 1.0;
4702    }
4703  }
4704
4705  const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
4706  double stretch0 = 2.0*PI/(double)(nchan-1);
4707
4708  for (uInt i = (hasConstantTerm ? 1 : 0); i < nWaves.size(); ++i) {
4709    int sidx = hasConstantTerm ? 2*i-1 : 2*i;
4710    int cidx = sidx + 1;
4711    double stretch = stretch0*(double)nWaves[i];
4712
4713    for (int j = 0; j < nchan; ++j) {
4714      model[sidx][j] = sin(stretch*(double)j);
4715      model[cidx][j] = cos(stretch*(double)j);
4716    }
4717  }
4718
4719  return model;
4720}
4721
4722std::vector<bool> Scantable::getCompositeChanMask(int whichrow,
4723                                                  const std::vector<bool>& inMask)
4724{
4725  std::vector<bool> mask = getMask(whichrow);
4726  uInt maskSize = mask.size();
4727  if (inMask.size() != 0) {
4728    if (maskSize != inMask.size()) {
4729      throw(AipsError("mask sizes are not the same."));
4730    }
4731    for (uInt i = 0; i < maskSize; ++i) {
4732      mask[i] = mask[i] && inMask[i];
4733    }
4734  }
4735
4736  return mask;
4737}
4738
4739std::vector<bool> Scantable::getCompositeChanMask(int whichrow,
4740                                                  const std::vector<bool>& inMask,
4741                                                  const std::vector<int>& edge,
4742                                                  std::vector<int>& currEdge,
4743                                                  STLineFinder& lineFinder)
4744{
4745  std::vector<uint> ifNos = getIFNos();
4746  if (edge.size() < ifNos.size()*2) {
4747    throw(AipsError("Length of edge element info is less than that of IFs"));
4748  }
4749
4750  int ifVal = getIF(whichrow);
4751  bool foundIF = false;
4752  uint idx;
4753  for (uint i = 0; i < ifNos.size(); ++i) {
4754    if (ifVal == (int)ifNos[i]) {
4755      idx = 2*i;
4756      foundIF = true;
4757      break;
4758    }
4759  }
4760  if (!foundIF) {
4761    throw(AipsError("bad IF number"));
4762  }
4763
4764  currEdge.clear();
4765  currEdge.resize(2);
4766  currEdge[0] = edge[idx];
4767  currEdge[1] = edge[idx+1];
4768
4769  lineFinder.setData(getSpectrum(whichrow));
4770  lineFinder.findLines(getCompositeChanMask(whichrow, inMask), currEdge, whichrow);
4771
4772  return lineFinder.getMask();
4773}
4774
4775/* for cspline. will be merged once cspline is available in fitter (2011/3/10 WK) */
4776void Scantable::outputFittingResult(bool outLogger,
4777                                    bool outTextFile,
4778                                    bool csvFormat,
4779                                    const std::vector<bool>& chanMask,
4780                                    int whichrow,
4781                                    const casa::String& coordInfo,
4782                                    bool hasSameNchan,
4783                                    ofstream& ofs,
4784                                    const casa::String& funcName,
4785                                    const std::vector<int>& edge,
4786                                    const std::vector<float>& params,
4787                                    const int nClipped)
4788{
4789  if (outLogger || outTextFile) {
4790    float rms = getRms(chanMask, whichrow);
4791    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
4792    std::vector<bool> fixed;
4793    fixed.clear();
4794
4795    if (outLogger) {
4796      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
4797      ols << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped,
4798                                           masklist, whichrow, false, csvFormat) << LogIO::POST ;
4799    }
4800    if (outTextFile) {
4801      ofs << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped,
4802                                           masklist, whichrow, true, csvFormat) << flush;
4803    }
4804  }
4805}
4806
4807/* for poly/chebyshev/sinusoid. */
4808void Scantable::outputFittingResult(bool outLogger,
4809                                    bool outTextFile,
4810                                    bool csvFormat,
4811                                    const std::vector<bool>& chanMask,
4812                                    int whichrow,
4813                                    const casa::String& coordInfo,
4814                                    bool hasSameNchan,
4815                                    ofstream& ofs,
4816                                    const casa::String& funcName,
4817                                    const std::vector<float>& params,
4818                                    const int nClipped)
4819{
4820  if (outLogger || outTextFile) {
4821    float rms = getRms(chanMask, whichrow);
4822    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
4823    std::vector<bool> fixed;
4824    fixed.clear();
4825
4826    if (outLogger) {
4827      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
4828      ols << formatBaselineParams(params, fixed, rms, nClipped,
4829                                  masklist, whichrow, false, csvFormat) << LogIO::POST ;
4830    }
4831    if (outTextFile) {
4832      ofs << formatBaselineParams(params, fixed, rms, nClipped,
4833                                  masklist, whichrow, true, csvFormat) << flush;
4834    }
4835  }
4836}
4837
4838void Scantable::parseProgressInfo(const std::string& progressInfo, bool& showProgress, int& minNRow)
4839{
4840  int idxDelimiter = progressInfo.find(",");
4841  if (idxDelimiter < 0) {
4842    throw(AipsError("wrong value in 'showprogress' parameter")) ;
4843  }
4844  showProgress = (progressInfo.substr(0, idxDelimiter) == "true");
4845  std::istringstream is(progressInfo.substr(idxDelimiter+1));
4846  is >> minNRow;
4847}
4848
4849void Scantable::showProgressOnTerminal(const int nProcessed, const int nTotal, const bool showProgress, const int nTotalThreshold)
4850{
4851  if (showProgress && (nTotal >= nTotalThreshold)) {
4852    int nInterval = int(floor(double(nTotal)/100.0));
4853    if (nInterval == 0) nInterval++;
4854
4855    if (nProcessed % nInterval == 0) {
4856      printf("\r");                          //go to the head of line
4857      printf("\x1b[31m\x1b[1m");             //set red color, highlighted
4858      printf("[%3d%%]", (int)(100.0*(double(nProcessed+1))/(double(nTotal))) );
4859      printf("\x1b[39m\x1b[0m");             //set default attributes
4860      fflush(NULL);
4861    }
4862
4863    if (nProcessed == nTotal - 1) {
4864      printf("\r\x1b[K");                    //clear
4865      fflush(NULL);
4866    }
4867
4868  }
4869}
4870
4871std::vector<float> Scantable::execFFT(const int whichrow, const std::vector<bool>& inMask, bool getRealImag, bool getAmplitudeOnly)
4872{
4873  std::vector<bool>  mask = getMask(whichrow);
4874
4875  if (inMask.size() > 0) {
4876    uInt maskSize = mask.size();
4877    if (maskSize != inMask.size()) {
4878      throw(AipsError("mask sizes are not the same."));
4879    }
4880    for (uInt i = 0; i < maskSize; ++i) {
4881      mask[i] = mask[i] && inMask[i];
4882    }
4883  }
4884
4885  Vector<Float> spec = getSpectrum(whichrow);
4886  mathutil::doZeroOrderInterpolation(spec, mask);
4887
4888  FFTServer<Float,Complex> ffts;
4889  Vector<Complex> fftres;
4890  ffts.fft0(fftres, spec);
4891
4892  std::vector<float> res;
4893  float norm = float(2.0/double(spec.size()));
4894
4895  if (getRealImag) {
4896    for (uInt i = 0; i < fftres.size(); ++i) {
4897      res.push_back(real(fftres[i])*norm);
4898      res.push_back(imag(fftres[i])*norm);
4899    }
4900  } else {
4901    for (uInt i = 0; i < fftres.size(); ++i) {
4902      res.push_back(abs(fftres[i])*norm);
4903      if (!getAmplitudeOnly) res.push_back(arg(fftres[i]));
4904    }
4905  }
4906
4907  return res;
4908}
4909
4910
4911float Scantable::getRms(const std::vector<bool>& mask, int whichrow)
4912{
4913  /****
4914  double ms1TimeStart, ms1TimeEnd;
4915  double elapse1 = 0.0;
4916  ms1TimeStart = mathutil::gettimeofday_sec();
4917  ****/
4918
4919  Vector<Float> spec;
4920  specCol_.get(whichrow, spec);
4921
4922  /****
4923  ms1TimeEnd = mathutil::gettimeofday_sec();
4924  elapse1 = ms1TimeEnd - ms1TimeStart;
4925  std::cout << "rm1   : " << elapse1 << " (sec.)" << endl;
4926  ****/
4927
4928  return (float)doGetRms(mask, spec);
4929}
4930
4931double Scantable::doGetRms(const std::vector<bool>& mask, const Vector<Float>& spec)
4932{
4933  double mean = 0.0;
4934  double smean = 0.0;
4935  int n = 0;
4936  for (uInt i = 0; i < spec.nelements(); ++i) {
4937    if (mask[i]) {
4938      double val = (double)spec[i];
4939      mean += val;
4940      smean += val*val;
4941      n++;
4942    }
4943  }
4944
4945  mean /= (double)n;
4946  smean /= (double)n;
4947
4948  return sqrt(smean - mean*mean);
4949}
4950
4951std::string Scantable::formatBaselineParamsHeader(int whichrow, const std::string& masklist, bool verbose, bool csvformat) const
4952{
4953  if (verbose) {
4954    ostringstream oss;
4955
4956    if (csvformat) {
4957      oss << getScan(whichrow)  << ",";
4958      oss << getBeam(whichrow)  << ",";
4959      oss << getIF(whichrow)    << ",";
4960      oss << getPol(whichrow)   << ",";
4961      oss << getCycle(whichrow) << ",";
4962      String commaReplacedMasklist = masklist;
4963      string::size_type pos = 0;
4964      while (pos = commaReplacedMasklist.find(","), pos != string::npos) {
4965        commaReplacedMasklist.replace(pos, 1, ";");
4966        pos++;
4967      }
4968      oss << commaReplacedMasklist << ",";
4969    } else {
4970      oss <<  " Scan[" << getScan(whichrow)  << "]";
4971      oss <<  " Beam[" << getBeam(whichrow)  << "]";
4972      oss <<    " IF[" << getIF(whichrow)    << "]";
4973      oss <<   " Pol[" << getPol(whichrow)   << "]";
4974      oss << " Cycle[" << getCycle(whichrow) << "]: " << endl;
4975      oss << "Fitter range = " << masklist << endl;
4976      oss << "Baseline parameters" << endl;
4977    }
4978    oss << flush;
4979
4980    return String(oss);
4981  }
4982
4983  return "";
4984}
4985
4986std::string Scantable::formatBaselineParamsFooter(float rms, int nClipped, bool verbose, bool csvformat) const
4987{
4988  if (verbose) {
4989    ostringstream oss;
4990
4991    if (csvformat) {
4992      oss << rms << ",";
4993      if (nClipped >= 0) {
4994        oss << nClipped;
4995      }
4996    } else {
4997      oss << "Results of baseline fit" << endl;
4998      oss << "  rms = " << setprecision(6) << rms << endl;
4999      if (nClipped >= 0) {
5000        oss << "  Number of clipped channels = " << nClipped << endl;
5001      }
5002      for (int i = 0; i < 60; ++i) {
5003        oss << "-";
5004      }
5005    }
5006    oss << endl;
5007    oss << flush;
5008
5009    return String(oss);
5010  }
5011
5012  return "";
5013}
5014
5015std::string Scantable::formatBaselineParams(const std::vector<float>& params,
5016                                            const std::vector<bool>& fixed,
5017                                            float rms,
5018                                            int nClipped,
5019                                            const std::string& masklist,
5020                                            int whichrow,
5021                                            bool verbose,
5022                                            bool csvformat,
5023                                            int start, int count,
5024                                            bool resetparamid) const
5025{
5026  int nParam = (int)(params.size());
5027
5028  if (nParam < 1) {
5029    return("  Not fitted");
5030  } else {
5031
5032    ostringstream oss;
5033    oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat);
5034
5035    if (start < 0) start = 0;
5036    if (count < 0) count = nParam;
5037    int end = start + count;
5038    if (end > nParam) end = nParam;
5039    int paramidoffset = (resetparamid) ? (-start) : 0;
5040
5041    for (int i = start; i < end; ++i) {
5042      if (i > start) {
5043        oss << ",";
5044      }
5045      std::string sFix = ((fixed.size() > 0) && (fixed[i]) && verbose) ? "(fixed)" : "";
5046      if (csvformat) {
5047        oss << params[i] << sFix;
5048      } else {
5049        oss << "  p" << (i+paramidoffset) << sFix << "= " << right << setw(13) << setprecision(6) << params[i];
5050      }
5051    }
5052
5053    if (csvformat) {
5054      oss << ",";
5055    } else {
5056      oss << endl;
5057    }
5058    oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat);
5059
5060    return String(oss);
5061  }
5062
5063}
5064
5065std::string Scantable::formatPiecewiseBaselineParams(const std::vector<int>& ranges, const std::vector<float>& params, const std::vector<bool>& fixed, float rms, int nClipped, const std::string& masklist, int whichrow, bool verbose, bool csvformat) const
5066{
5067  int nOutParam = (int)(params.size());
5068  int nPiece = (int)(ranges.size()) - 1;
5069
5070  if (nOutParam < 1) {
5071    return("  Not fitted");
5072  } else if (nPiece < 0) {
5073    return formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, verbose, csvformat);
5074  } else if (nPiece < 1) {
5075    return("  Bad count of the piece edge info");
5076  } else if (nOutParam % nPiece != 0) {
5077    return("  Bad count of the output baseline parameters");
5078  } else {
5079
5080    int nParam = nOutParam / nPiece;
5081
5082    ostringstream oss;
5083    oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat);
5084
5085    if (csvformat) {
5086      for (int i = 0; i < nPiece; ++i) {
5087        oss << ranges[i] << "," << (ranges[i+1]-1) << ",";
5088        oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true);
5089      }
5090    } else {
5091      stringstream ss;
5092      ss << ranges[nPiece] << flush;
5093      int wRange = ss.str().size() * 2 + 5;
5094
5095      for (int i = 0; i < nPiece; ++i) {
5096        ss.str("");
5097        ss << "  [" << ranges[i] << "," << (ranges[i+1]-1) << "]";
5098        oss << left << setw(wRange) << ss.str();
5099        oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true);
5100        //oss << endl;
5101      }
5102    }
5103
5104    oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat);
5105
5106    return String(oss);
5107  }
5108
5109}
5110
5111bool Scantable::hasSameNchanOverIFs()
5112{
5113  int nIF = nif(-1);
5114  int nCh;
5115  int totalPositiveNChan = 0;
5116  int nPositiveNChan = 0;
5117
5118  for (int i = 0; i < nIF; ++i) {
5119    nCh = nchan(i);
5120    if (nCh > 0) {
5121      totalPositiveNChan += nCh;
5122      nPositiveNChan++;
5123    }
5124  }
5125
5126  return (totalPositiveNChan == (nPositiveNChan * nchan(0)));
5127}
5128
5129std::string Scantable::getMaskRangeList(const std::vector<bool>& mask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, bool verbose)
5130{
5131  if (mask.size() <= 0) {
5132    throw(AipsError("The mask elements should be > 0"));
5133  }
5134  int IF = getIF(whichrow);
5135  if (mask.size() != (uInt)nchan(IF)) {
5136    throw(AipsError("Number of channels in scantable != number of mask elements"));
5137  }
5138
5139  if (verbose) {
5140    LogIO logOs(LogOrigin("Scantable", "getMaskRangeList()", WHERE));
5141    logOs << LogIO::WARN << "The current mask window unit is " << coordInfo;
5142    if (!hasSameNchan) {
5143      logOs << endl << "This mask is only valid for IF=" << IF;
5144    }
5145    logOs << LogIO::POST;
5146  }
5147
5148  std::vector<double> abcissa = getAbcissa(whichrow);
5149  std::vector<int> edge = getMaskEdgeIndices(mask);
5150
5151  ostringstream oss;
5152  oss.setf(ios::fixed);
5153  oss << setprecision(1) << "[";
5154  for (uInt i = 0; i < edge.size(); i+=2) {
5155    if (i > 0) oss << ",";
5156    oss << "[" << (float)abcissa[edge[i]] << "," << (float)abcissa[edge[i+1]] << "]";
5157  }
5158  oss << "]" << flush;
5159
5160  return String(oss);
5161}
5162
5163std::vector<int> Scantable::getMaskEdgeIndices(const std::vector<bool>& mask)
5164{
5165  if (mask.size() <= 0) {
5166    throw(AipsError("The mask elements should be > 0"));
5167  }
5168
5169  std::vector<int> out, startIndices, endIndices;
5170  int maskSize = mask.size();
5171
5172  startIndices.clear();
5173  endIndices.clear();
5174
5175  if (mask[0]) {
5176    startIndices.push_back(0);
5177  }
5178  for (int i = 1; i < maskSize; ++i) {
5179    if ((!mask[i-1]) && mask[i]) {
5180      startIndices.push_back(i);
5181    } else if (mask[i-1] && (!mask[i])) {
5182      endIndices.push_back(i-1);
5183    }
5184  }
5185  if (mask[maskSize-1]) {
5186    endIndices.push_back(maskSize-1);
5187  }
5188
5189  if (startIndices.size() != endIndices.size()) {
5190    throw(AipsError("Inconsistent Mask Size: bad data?"));
5191  }
5192  for (uInt i = 0; i < startIndices.size(); ++i) {
5193    if (startIndices[i] > endIndices[i]) {
5194      throw(AipsError("Mask start index > mask end index"));
5195    }
5196  }
5197
5198  out.clear();
5199  for (uInt i = 0; i < startIndices.size(); ++i) {
5200    out.push_back(startIndices[i]);
5201    out.push_back(endIndices[i]);
5202  }
5203
5204  return out;
5205}
5206
5207vector<float> Scantable::getTsysSpectrum( int whichrow ) const
5208{
5209  Vector<Float> tsys( tsysCol_(whichrow) ) ;
5210  vector<float> stlTsys ;
5211  tsys.tovector( stlTsys ) ;
5212  return stlTsys ;
5213}
5214
5215vector<uint> Scantable::getMoleculeIdColumnData() const
5216{
5217  Vector<uInt> molIds(mmolidCol_.getColumn());
5218  vector<uint> res;
5219  molIds.tovector(res);
5220  return res;
5221}
5222
5223void Scantable::setMoleculeIdColumnData(const std::vector<uint>& molids)
5224{
5225  Vector<uInt> molIds(molids);
5226  Vector<uInt> arr(mmolidCol_.getColumn());
5227  if ( molIds.nelements() != arr.nelements() )
5228    throw AipsError("The input data size must be the number of rows.");
5229  mmolidCol_.putColumn(molIds);
5230}
5231
5232
5233}
5234//namespace asap
Note: See TracBrowser for help on using the repository browser.