source: trunk/src/Scantable.cpp@ 2189

Last change on this file since 2189 was 2189, checked in by WataruKawasaki, 13 years ago

New Development: No

JIRA Issue: Yes CAS-3149

Ready for Test: Yes

Interface Changes: Yes

What Interface Changed: scantable.*_baseline() parameter

Test Programs:

Put in Release Notes: No

Module(s):

Description: Added two parameters 'showprogress' and 'minnrow' to scantable.*_baseline() to enable to show progress status during time-consuming processes.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 97.1 KB
Line 
1//
2// C++ Implementation: Scantable
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2005
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12#include <map>
13
14#include <atnf/PKSIO/SrcType.h>
15
16#include <casa/aips.h>
17#include <casa/iomanip.h>
18#include <casa/iostream.h>
19#include <casa/OS/File.h>
20#include <casa/OS/Path.h>
21#include <casa/Arrays/Array.h>
22#include <casa/Arrays/ArrayAccessor.h>
23#include <casa/Arrays/ArrayLogical.h>
24#include <casa/Arrays/ArrayMath.h>
25#include <casa/Arrays/MaskArrMath.h>
26#include <casa/Arrays/Slice.h>
27#include <casa/Arrays/Vector.h>
28#include <casa/Arrays/VectorSTLIterator.h>
29#include <casa/BasicMath/Math.h>
30#include <casa/BasicSL/Constants.h>
31#include <casa/Containers/RecordField.h>
32#include <casa/Logging/LogIO.h>
33#include <casa/Quanta/MVAngle.h>
34#include <casa/Quanta/MVTime.h>
35#include <casa/Utilities/GenSort.h>
36
37#include <coordinates/Coordinates/CoordinateUtil.h>
38
39// needed to avoid error in .tcc
40#include <measures/Measures/MCDirection.h>
41//
42#include <measures/Measures/MDirection.h>
43#include <measures/Measures/MEpoch.h>
44#include <measures/Measures/MFrequency.h>
45#include <measures/Measures/MeasRef.h>
46#include <measures/Measures/MeasTable.h>
47#include <measures/TableMeasures/ScalarMeasColumn.h>
48#include <measures/TableMeasures/TableMeasDesc.h>
49#include <measures/TableMeasures/TableMeasRefDesc.h>
50#include <measures/TableMeasures/TableMeasValueDesc.h>
51
52#include <tables/Tables/ArrColDesc.h>
53#include <tables/Tables/ExprNode.h>
54#include <tables/Tables/ScaColDesc.h>
55#include <tables/Tables/SetupNewTab.h>
56#include <tables/Tables/TableCopy.h>
57#include <tables/Tables/TableDesc.h>
58#include <tables/Tables/TableIter.h>
59#include <tables/Tables/TableParse.h>
60#include <tables/Tables/TableRecord.h>
61#include <tables/Tables/TableRow.h>
62#include <tables/Tables/TableVector.h>
63
64#include "MathUtils.h"
65#include "STAttr.h"
66#include "STLineFinder.h"
67#include "STPolCircular.h"
68#include "STPolLinear.h"
69#include "STPolStokes.h"
70#include "Scantable.h"
71
72using namespace casa;
73
74namespace asap {
75
76std::map<std::string, STPol::STPolFactory *> Scantable::factories_;
77
78void Scantable::initFactories() {
79 if ( factories_.empty() ) {
80 Scantable::factories_["linear"] = &STPolLinear::myFactory;
81 Scantable::factories_["circular"] = &STPolCircular::myFactory;
82 Scantable::factories_["stokes"] = &STPolStokes::myFactory;
83 }
84}
85
86Scantable::Scantable(Table::TableType ttype) :
87 type_(ttype)
88{
89 initFactories();
90 setupMainTable();
91 freqTable_ = STFrequencies(*this);
92 table_.rwKeywordSet().defineTable("FREQUENCIES", freqTable_.table());
93 weatherTable_ = STWeather(*this);
94 table_.rwKeywordSet().defineTable("WEATHER", weatherTable_.table());
95 focusTable_ = STFocus(*this);
96 table_.rwKeywordSet().defineTable("FOCUS", focusTable_.table());
97 tcalTable_ = STTcal(*this);
98 table_.rwKeywordSet().defineTable("TCAL", tcalTable_.table());
99 moleculeTable_ = STMolecules(*this);
100 table_.rwKeywordSet().defineTable("MOLECULES", moleculeTable_.table());
101 historyTable_ = STHistory(*this);
102 table_.rwKeywordSet().defineTable("HISTORY", historyTable_.table());
103 fitTable_ = STFit(*this);
104 table_.rwKeywordSet().defineTable("FIT", fitTable_.table());
105 table_.tableInfo().setType( "Scantable" ) ;
106 originalTable_ = table_;
107 attach();
108}
109
110Scantable::Scantable(const std::string& name, Table::TableType ttype) :
111 type_(ttype)
112{
113 initFactories();
114
115 Table tab(name, Table::Update);
116 uInt version = tab.keywordSet().asuInt("VERSION");
117 if (version != version_) {
118 if ( version == 2 && version_ == 3 ) {
119 // run asap2to3 command
120 LogIO os( LogOrigin( "Scantable" ) ) ;
121 string command="asap2to3" ;
122 string exec=command+" in="+name ;
123 string outname=name ;
124 if ( name.at(name.length()-1) == '/' )
125 outname = outname.substr( 0, name.length()-1 ) ;
126 outname += ".asap3" ;
127 os << LogIO::WARN
128 << name << " is incompatible data format (Scantable v2)." << endl
129 << "Running " << command << " to create " << outname << ", " << endl
130 << "which is identical to " << name << " but compatible " << endl
131 << "data format with current software version (Scantable v3)."
132 << LogIO::POST ;
133 int ret = system( string("which "+command+" > /dev/null 2>&1").c_str() ) ;
134 if ( ret != 0 )
135 throw(AipsError(command+" is not installed")) ;
136 os << LogIO::WARN
137 << "Data will be loaded from " << outname << " instead of "
138 << name << LogIO::POST ;
139 int tmp = system( exec.c_str() ) ;
140 (void) tmp;
141 tab = Table(outname, Table::Update ) ;
142 //os << "tab.tableName()=" << tab.tableName() << LogIO::POST ;
143 }
144 else {
145 throw(AipsError("Unsupported version of ASAP file."));
146 }
147 }
148 if ( type_ == Table::Memory ) {
149 table_ = tab.copyToMemoryTable(generateName());
150 } else {
151 table_ = tab;
152 }
153 table_.tableInfo().setType( "Scantable" ) ;
154
155 attachSubtables();
156 originalTable_ = table_;
157 attach();
158}
159/*
160Scantable::Scantable(const std::string& name, Table::TableType ttype) :
161 type_(ttype)
162{
163 initFactories();
164 Table tab(name, Table::Update);
165 uInt version = tab.keywordSet().asuInt("VERSION");
166 if (version != version_) {
167 throw(AipsError("Unsupported version of ASAP file."));
168 }
169 if ( type_ == Table::Memory ) {
170 table_ = tab.copyToMemoryTable(generateName());
171 } else {
172 table_ = tab;
173 }
174
175 attachSubtables();
176 originalTable_ = table_;
177 attach();
178}
179*/
180
181Scantable::Scantable( const Scantable& other, bool clear ):
182 Logger()
183{
184 // with or without data
185 String newname = String(generateName());
186 type_ = other.table_.tableType();
187 if ( other.table_.tableType() == Table::Memory ) {
188 if ( clear ) {
189 table_ = TableCopy::makeEmptyMemoryTable(newname,
190 other.table_, True);
191 } else
192 table_ = other.table_.copyToMemoryTable(newname);
193 } else {
194 other.table_.deepCopy(newname, Table::New, False,
195 other.table_.endianFormat(),
196 Bool(clear));
197 table_ = Table(newname, Table::Update);
198 table_.markForDelete();
199 }
200 table_.tableInfo().setType( "Scantable" ) ;
201 /// @todo reindex SCANNO, recompute nbeam, nif, npol
202 if ( clear ) copySubtables(other);
203 attachSubtables();
204 originalTable_ = table_;
205 attach();
206}
207
208void Scantable::copySubtables(const Scantable& other) {
209 Table t = table_.rwKeywordSet().asTable("FREQUENCIES");
210 TableCopy::copyRows(t, other.freqTable_.table());
211 t = table_.rwKeywordSet().asTable("FOCUS");
212 TableCopy::copyRows(t, other.focusTable_.table());
213 t = table_.rwKeywordSet().asTable("WEATHER");
214 TableCopy::copyRows(t, other.weatherTable_.table());
215 t = table_.rwKeywordSet().asTable("TCAL");
216 TableCopy::copyRows(t, other.tcalTable_.table());
217 t = table_.rwKeywordSet().asTable("MOLECULES");
218 TableCopy::copyRows(t, other.moleculeTable_.table());
219 t = table_.rwKeywordSet().asTable("HISTORY");
220 TableCopy::copyRows(t, other.historyTable_.table());
221 t = table_.rwKeywordSet().asTable("FIT");
222 TableCopy::copyRows(t, other.fitTable_.table());
223}
224
225void Scantable::attachSubtables()
226{
227 freqTable_ = STFrequencies(table_);
228 focusTable_ = STFocus(table_);
229 weatherTable_ = STWeather(table_);
230 tcalTable_ = STTcal(table_);
231 moleculeTable_ = STMolecules(table_);
232 historyTable_ = STHistory(table_);
233 fitTable_ = STFit(table_);
234}
235
236Scantable::~Scantable()
237{
238 //cout << "~Scantable() " << this << endl;
239}
240
241void Scantable::setupMainTable()
242{
243 TableDesc td("", "1", TableDesc::Scratch);
244 td.comment() = "An ASAP Scantable";
245 td.rwKeywordSet().define("VERSION", uInt(version_));
246
247 // n Cycles
248 td.addColumn(ScalarColumnDesc<uInt>("SCANNO"));
249 // new index every nBeam x nIF x nPol
250 td.addColumn(ScalarColumnDesc<uInt>("CYCLENO"));
251
252 td.addColumn(ScalarColumnDesc<uInt>("BEAMNO"));
253 td.addColumn(ScalarColumnDesc<uInt>("IFNO"));
254 // linear, circular, stokes
255 td.rwKeywordSet().define("POLTYPE", String("linear"));
256 td.addColumn(ScalarColumnDesc<uInt>("POLNO"));
257
258 td.addColumn(ScalarColumnDesc<uInt>("FREQ_ID"));
259 td.addColumn(ScalarColumnDesc<uInt>("MOLECULE_ID"));
260
261 ScalarColumnDesc<Int> refbeamnoColumn("REFBEAMNO");
262 refbeamnoColumn.setDefault(Int(-1));
263 td.addColumn(refbeamnoColumn);
264
265 ScalarColumnDesc<uInt> flagrowColumn("FLAGROW");
266 flagrowColumn.setDefault(uInt(0));
267 td.addColumn(flagrowColumn);
268
269 td.addColumn(ScalarColumnDesc<Double>("TIME"));
270 TableMeasRefDesc measRef(MEpoch::UTC); // UTC as default
271 TableMeasValueDesc measVal(td, "TIME");
272 TableMeasDesc<MEpoch> mepochCol(measVal, measRef);
273 mepochCol.write(td);
274
275 td.addColumn(ScalarColumnDesc<Double>("INTERVAL"));
276
277 td.addColumn(ScalarColumnDesc<String>("SRCNAME"));
278 // Type of source (on=0, off=1, other=-1)
279 ScalarColumnDesc<Int> stypeColumn("SRCTYPE");
280 stypeColumn.setDefault(Int(-1));
281 td.addColumn(stypeColumn);
282 td.addColumn(ScalarColumnDesc<String>("FIELDNAME"));
283
284 //The actual Data Vectors
285 td.addColumn(ArrayColumnDesc<Float>("SPECTRA"));
286 td.addColumn(ArrayColumnDesc<uChar>("FLAGTRA"));
287 td.addColumn(ArrayColumnDesc<Float>("TSYS"));
288
289 td.addColumn(ArrayColumnDesc<Double>("DIRECTION",
290 IPosition(1,2),
291 ColumnDesc::Direct));
292 TableMeasRefDesc mdirRef(MDirection::J2000); // default
293 TableMeasValueDesc tmvdMDir(td, "DIRECTION");
294 // the TableMeasDesc gives the column a type
295 TableMeasDesc<MDirection> mdirCol(tmvdMDir, mdirRef);
296 // a uder set table type e.g. GALCTIC, B1950 ...
297 td.rwKeywordSet().define("DIRECTIONREF", String("J2000"));
298 // writing create the measure column
299 mdirCol.write(td);
300 td.addColumn(ScalarColumnDesc<Float>("AZIMUTH"));
301 td.addColumn(ScalarColumnDesc<Float>("ELEVATION"));
302 td.addColumn(ScalarColumnDesc<Float>("OPACITY"));
303
304 td.addColumn(ScalarColumnDesc<uInt>("TCAL_ID"));
305 ScalarColumnDesc<Int> fitColumn("FIT_ID");
306 fitColumn.setDefault(Int(-1));
307 td.addColumn(fitColumn);
308
309 td.addColumn(ScalarColumnDesc<uInt>("FOCUS_ID"));
310 td.addColumn(ScalarColumnDesc<uInt>("WEATHER_ID"));
311
312 // columns which just get dragged along, as they aren't used in asap
313 td.addColumn(ScalarColumnDesc<Double>("SRCVELOCITY"));
314 td.addColumn(ArrayColumnDesc<Double>("SRCPROPERMOTION"));
315 td.addColumn(ArrayColumnDesc<Double>("SRCDIRECTION"));
316 td.addColumn(ArrayColumnDesc<Double>("SCANRATE"));
317
318 td.rwKeywordSet().define("OBSMODE", String(""));
319
320 // Now create Table SetUp from the description.
321 SetupNewTable aNewTab(generateName(), td, Table::Scratch);
322 table_ = Table(aNewTab, type_, 0);
323 originalTable_ = table_;
324}
325
326void Scantable::attach()
327{
328 timeCol_.attach(table_, "TIME");
329 srcnCol_.attach(table_, "SRCNAME");
330 srctCol_.attach(table_, "SRCTYPE");
331 specCol_.attach(table_, "SPECTRA");
332 flagsCol_.attach(table_, "FLAGTRA");
333 tsysCol_.attach(table_, "TSYS");
334 cycleCol_.attach(table_,"CYCLENO");
335 scanCol_.attach(table_, "SCANNO");
336 beamCol_.attach(table_, "BEAMNO");
337 ifCol_.attach(table_, "IFNO");
338 polCol_.attach(table_, "POLNO");
339 integrCol_.attach(table_, "INTERVAL");
340 azCol_.attach(table_, "AZIMUTH");
341 elCol_.attach(table_, "ELEVATION");
342 dirCol_.attach(table_, "DIRECTION");
343 fldnCol_.attach(table_, "FIELDNAME");
344 rbeamCol_.attach(table_, "REFBEAMNO");
345
346 mweatheridCol_.attach(table_,"WEATHER_ID");
347 mfitidCol_.attach(table_,"FIT_ID");
348 mfreqidCol_.attach(table_, "FREQ_ID");
349 mtcalidCol_.attach(table_, "TCAL_ID");
350 mfocusidCol_.attach(table_, "FOCUS_ID");
351 mmolidCol_.attach(table_, "MOLECULE_ID");
352
353 //Add auxiliary column for row-based flagging (CAS-1433 Wataru Kawasaki)
354 attachAuxColumnDef(flagrowCol_, "FLAGROW", 0);
355
356}
357
358template<class T, class T2>
359void Scantable::attachAuxColumnDef(ScalarColumn<T>& col,
360 const String& colName,
361 const T2& defValue)
362{
363 try {
364 col.attach(table_, colName);
365 } catch (TableError& err) {
366 String errMesg = err.getMesg();
367 if (errMesg == "Table column " + colName + " is unknown") {
368 table_.addColumn(ScalarColumnDesc<T>(colName));
369 col.attach(table_, colName);
370 col.fillColumn(static_cast<T>(defValue));
371 } else {
372 throw;
373 }
374 } catch (...) {
375 throw;
376 }
377}
378
379template<class T, class T2>
380void Scantable::attachAuxColumnDef(ArrayColumn<T>& col,
381 const String& colName,
382 const Array<T2>& defValue)
383{
384 try {
385 col.attach(table_, colName);
386 } catch (TableError& err) {
387 String errMesg = err.getMesg();
388 if (errMesg == "Table column " + colName + " is unknown") {
389 table_.addColumn(ArrayColumnDesc<T>(colName));
390 col.attach(table_, colName);
391
392 int size = 0;
393 ArrayIterator<T2>& it = defValue.begin();
394 while (it != defValue.end()) {
395 ++size;
396 ++it;
397 }
398 IPosition ip(1, size);
399 Array<T>& arr(ip);
400 for (int i = 0; i < size; ++i)
401 arr[i] = static_cast<T>(defValue[i]);
402
403 col.fillColumn(arr);
404 } else {
405 throw;
406 }
407 } catch (...) {
408 throw;
409 }
410}
411
412void Scantable::setHeader(const STHeader& sdh)
413{
414 table_.rwKeywordSet().define("nIF", sdh.nif);
415 table_.rwKeywordSet().define("nBeam", sdh.nbeam);
416 table_.rwKeywordSet().define("nPol", sdh.npol);
417 table_.rwKeywordSet().define("nChan", sdh.nchan);
418 table_.rwKeywordSet().define("Observer", sdh.observer);
419 table_.rwKeywordSet().define("Project", sdh.project);
420 table_.rwKeywordSet().define("Obstype", sdh.obstype);
421 table_.rwKeywordSet().define("AntennaName", sdh.antennaname);
422 table_.rwKeywordSet().define("AntennaPosition", sdh.antennaposition);
423 table_.rwKeywordSet().define("Equinox", sdh.equinox);
424 table_.rwKeywordSet().define("FreqRefFrame", sdh.freqref);
425 table_.rwKeywordSet().define("FreqRefVal", sdh.reffreq);
426 table_.rwKeywordSet().define("Bandwidth", sdh.bandwidth);
427 table_.rwKeywordSet().define("UTC", sdh.utc);
428 table_.rwKeywordSet().define("FluxUnit", sdh.fluxunit);
429 table_.rwKeywordSet().define("Epoch", sdh.epoch);
430 table_.rwKeywordSet().define("POLTYPE", sdh.poltype);
431}
432
433STHeader Scantable::getHeader() const
434{
435 STHeader sdh;
436 table_.keywordSet().get("nBeam",sdh.nbeam);
437 table_.keywordSet().get("nIF",sdh.nif);
438 table_.keywordSet().get("nPol",sdh.npol);
439 table_.keywordSet().get("nChan",sdh.nchan);
440 table_.keywordSet().get("Observer", sdh.observer);
441 table_.keywordSet().get("Project", sdh.project);
442 table_.keywordSet().get("Obstype", sdh.obstype);
443 table_.keywordSet().get("AntennaName", sdh.antennaname);
444 table_.keywordSet().get("AntennaPosition", sdh.antennaposition);
445 table_.keywordSet().get("Equinox", sdh.equinox);
446 table_.keywordSet().get("FreqRefFrame", sdh.freqref);
447 table_.keywordSet().get("FreqRefVal", sdh.reffreq);
448 table_.keywordSet().get("Bandwidth", sdh.bandwidth);
449 table_.keywordSet().get("UTC", sdh.utc);
450 table_.keywordSet().get("FluxUnit", sdh.fluxunit);
451 table_.keywordSet().get("Epoch", sdh.epoch);
452 table_.keywordSet().get("POLTYPE", sdh.poltype);
453 return sdh;
454}
455
456void Scantable::setSourceType( int stype )
457{
458 if ( stype < 0 || stype > 1 )
459 throw(AipsError("Illegal sourcetype."));
460 TableVector<Int> tabvec(table_, "SRCTYPE");
461 tabvec = Int(stype);
462}
463
464bool Scantable::conformant( const Scantable& other )
465{
466 return this->getHeader().conformant(other.getHeader());
467}
468
469
470
471std::string Scantable::formatSec(Double x) const
472{
473 Double xcop = x;
474 MVTime mvt(xcop/24./3600.); // make days
475
476 if (x < 59.95)
477 return String(" ") + mvt.string(MVTime::TIME_CLEAN_NO_HM, 7)+"s";
478 else if (x < 3599.95)
479 return String(" ") + mvt.string(MVTime::TIME_CLEAN_NO_H,7)+" ";
480 else {
481 ostringstream oss;
482 oss << setw(2) << std::right << setprecision(1) << mvt.hour();
483 oss << ":" << mvt.string(MVTime::TIME_CLEAN_NO_H,7) << " ";
484 return String(oss);
485 }
486};
487
488std::string Scantable::formatDirection(const MDirection& md) const
489{
490 Vector<Double> t = md.getAngle(Unit(String("rad"))).getValue();
491 Int prec = 7;
492
493 MVAngle mvLon(t[0]);
494 String sLon = mvLon.string(MVAngle::TIME,prec);
495 uInt tp = md.getRef().getType();
496 if (tp == MDirection::GALACTIC ||
497 tp == MDirection::SUPERGAL ) {
498 sLon = mvLon(0.0).string(MVAngle::ANGLE_CLEAN,prec);
499 }
500 MVAngle mvLat(t[1]);
501 String sLat = mvLat.string(MVAngle::ANGLE+MVAngle::DIG2,prec);
502 return sLon + String(" ") + sLat;
503}
504
505
506std::string Scantable::getFluxUnit() const
507{
508 return table_.keywordSet().asString("FluxUnit");
509}
510
511void Scantable::setFluxUnit(const std::string& unit)
512{
513 String tmp(unit);
514 Unit tU(tmp);
515 if (tU==Unit("K") || tU==Unit("Jy")) {
516 table_.rwKeywordSet().define(String("FluxUnit"), tmp);
517 } else {
518 throw AipsError("Illegal unit - must be compatible with Jy or K");
519 }
520}
521
522void Scantable::setInstrument(const std::string& name)
523{
524 bool throwIt = true;
525 // create an Instrument to see if this is valid
526 STAttr::convertInstrument(name, throwIt);
527 String nameU(name);
528 nameU.upcase();
529 table_.rwKeywordSet().define(String("AntennaName"), nameU);
530}
531
532void Scantable::setFeedType(const std::string& feedtype)
533{
534 if ( Scantable::factories_.find(feedtype) == Scantable::factories_.end() ) {
535 std::string msg = "Illegal feed type "+ feedtype;
536 throw(casa::AipsError(msg));
537 }
538 table_.rwKeywordSet().define(String("POLTYPE"), feedtype);
539}
540
541MPosition Scantable::getAntennaPosition() const
542{
543 Vector<Double> antpos;
544 table_.keywordSet().get("AntennaPosition", antpos);
545 MVPosition mvpos(antpos(0),antpos(1),antpos(2));
546 return MPosition(mvpos);
547}
548
549void Scantable::makePersistent(const std::string& filename)
550{
551 String inname(filename);
552 Path path(inname);
553 /// @todo reindex SCANNO, recompute nbeam, nif, npol
554 inname = path.expandedName();
555 // 2011/03/04 TN
556 // We can comment out this workaround since the essential bug is
557 // fixed in casacore (r20889 in google code).
558 table_.deepCopy(inname, Table::New);
559// // WORKAROUND !!! for Table bug
560// // Remove when fixed in casacore
561// if ( table_.tableType() == Table::Memory && !selector_.empty() ) {
562// Table tab = table_.copyToMemoryTable(generateName());
563// tab.deepCopy(inname, Table::New);
564// tab.markForDelete();
565//
566// } else {
567// table_.deepCopy(inname, Table::New);
568// }
569}
570
571int Scantable::nbeam( int scanno ) const
572{
573 if ( scanno < 0 ) {
574 Int n;
575 table_.keywordSet().get("nBeam",n);
576 return int(n);
577 } else {
578 // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
579 Table t = table_(table_.col("SCANNO") == scanno);
580 ROTableRow row(t);
581 const TableRecord& rec = row.get(0);
582 Table subt = t( t.col("IFNO") == Int(rec.asuInt("IFNO"))
583 && t.col("POLNO") == Int(rec.asuInt("POLNO"))
584 && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
585 ROTableVector<uInt> v(subt, "BEAMNO");
586 return int(v.nelements());
587 }
588 return 0;
589}
590
591int Scantable::nif( int scanno ) const
592{
593 if ( scanno < 0 ) {
594 Int n;
595 table_.keywordSet().get("nIF",n);
596 return int(n);
597 } else {
598 // take the first POLNO,BEAMNO,CYCLENO as nbeam shouldn't vary with these
599 Table t = table_(table_.col("SCANNO") == scanno);
600 ROTableRow row(t);
601 const TableRecord& rec = row.get(0);
602 Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
603 && t.col("POLNO") == Int(rec.asuInt("POLNO"))
604 && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
605 if ( subt.nrow() == 0 ) return 0;
606 ROTableVector<uInt> v(subt, "IFNO");
607 return int(v.nelements());
608 }
609 return 0;
610}
611
612int Scantable::npol( int scanno ) const
613{
614 if ( scanno < 0 ) {
615 Int n;
616 table_.keywordSet().get("nPol",n);
617 return n;
618 } else {
619 // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
620 Table t = table_(table_.col("SCANNO") == scanno);
621 ROTableRow row(t);
622 const TableRecord& rec = row.get(0);
623 Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
624 && t.col("IFNO") == Int(rec.asuInt("IFNO"))
625 && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
626 if ( subt.nrow() == 0 ) return 0;
627 ROTableVector<uInt> v(subt, "POLNO");
628 return int(v.nelements());
629 }
630 return 0;
631}
632
633int Scantable::ncycle( int scanno ) const
634{
635 if ( scanno < 0 ) {
636 Block<String> cols(2);
637 cols[0] = "SCANNO";
638 cols[1] = "CYCLENO";
639 TableIterator it(table_, cols);
640 int n = 0;
641 while ( !it.pastEnd() ) {
642 ++n;
643 ++it;
644 }
645 return n;
646 } else {
647 Table t = table_(table_.col("SCANNO") == scanno);
648 ROTableRow row(t);
649 const TableRecord& rec = row.get(0);
650 Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
651 && t.col("POLNO") == Int(rec.asuInt("POLNO"))
652 && t.col("IFNO") == Int(rec.asuInt("IFNO")) );
653 if ( subt.nrow() == 0 ) return 0;
654 return int(subt.nrow());
655 }
656 return 0;
657}
658
659
660int Scantable::nrow( int scanno ) const
661{
662 return int(table_.nrow());
663}
664
665int Scantable::nchan( int ifno ) const
666{
667 if ( ifno < 0 ) {
668 Int n;
669 table_.keywordSet().get("nChan",n);
670 return int(n);
671 } else {
672 // take the first SCANNO,POLNO,BEAMNO,CYCLENO as nbeam shouldn't
673 // vary with these
674 Table t = table_(table_.col("IFNO") == ifno);
675 if ( t.nrow() == 0 ) return 0;
676 ROArrayColumn<Float> v(t, "SPECTRA");
677 return v.shape(0)(0);
678 }
679 return 0;
680}
681
682int Scantable::nscan() const {
683 Vector<uInt> scannos(scanCol_.getColumn());
684 uInt nout = genSort( scannos, Sort::Ascending,
685 Sort::QuickSort|Sort::NoDuplicates );
686 return int(nout);
687}
688
689int Scantable::getChannels(int whichrow) const
690{
691 return specCol_.shape(whichrow)(0);
692}
693
694int Scantable::getBeam(int whichrow) const
695{
696 return beamCol_(whichrow);
697}
698
699std::vector<uint> Scantable::getNumbers(const ScalarColumn<uInt>& col) const
700{
701 Vector<uInt> nos(col.getColumn());
702 uInt n = genSort( nos, Sort::Ascending, Sort::QuickSort|Sort::NoDuplicates );
703 nos.resize(n, True);
704 std::vector<uint> stlout;
705 nos.tovector(stlout);
706 return stlout;
707}
708
709int Scantable::getIF(int whichrow) const
710{
711 return ifCol_(whichrow);
712}
713
714int Scantable::getPol(int whichrow) const
715{
716 return polCol_(whichrow);
717}
718
719std::string Scantable::formatTime(const MEpoch& me, bool showdate) const
720{
721 return formatTime(me, showdate, 0);
722}
723
724std::string Scantable::formatTime(const MEpoch& me, bool showdate, uInt prec) const
725{
726 MVTime mvt(me.getValue());
727 if (showdate)
728 //mvt.setFormat(MVTime::YMD);
729 mvt.setFormat(MVTime::YMD, prec);
730 else
731 //mvt.setFormat(MVTime::TIME);
732 mvt.setFormat(MVTime::TIME, prec);
733 ostringstream oss;
734 oss << mvt;
735 return String(oss);
736}
737
738void Scantable::calculateAZEL()
739{
740 MPosition mp = getAntennaPosition();
741 MEpoch::ROScalarColumn timeCol(table_, "TIME");
742 ostringstream oss;
743 oss << "Computed azimuth/elevation using " << endl
744 << mp << endl;
745 for (Int i=0; i<nrow(); ++i) {
746 MEpoch me = timeCol(i);
747 MDirection md = getDirection(i);
748 oss << " Time: " << formatTime(me,False) << " Direction: " << formatDirection(md)
749 << endl << " => ";
750 MeasFrame frame(mp, me);
751 Vector<Double> azel =
752 MDirection::Convert(md, MDirection::Ref(MDirection::AZEL,
753 frame)
754 )().getAngle("rad").getValue();
755 azCol_.put(i,Float(azel[0]));
756 elCol_.put(i,Float(azel[1]));
757 oss << "azel: " << azel[0]/C::pi*180.0 << " "
758 << azel[1]/C::pi*180.0 << " (deg)" << endl;
759 }
760 pushLog(String(oss));
761}
762
763void Scantable::clip(const Float uthres, const Float dthres, bool clipoutside, bool unflag)
764{
765 for (uInt i=0; i<table_.nrow(); ++i) {
766 Vector<uChar> flgs = flagsCol_(i);
767 srchChannelsToClip(i, uthres, dthres, clipoutside, unflag, flgs);
768 flagsCol_.put(i, flgs);
769 }
770}
771
772std::vector<bool> Scantable::getClipMask(int whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag)
773{
774 Vector<uChar> flags;
775 flagsCol_.get(uInt(whichrow), flags);
776 srchChannelsToClip(uInt(whichrow), uthres, dthres, clipoutside, unflag, flags);
777 Vector<Bool> bflag(flags.shape());
778 convertArray(bflag, flags);
779 //bflag = !bflag;
780
781 std::vector<bool> mask;
782 bflag.tovector(mask);
783 return mask;
784}
785
786void Scantable::srchChannelsToClip(uInt whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag,
787 Vector<uChar> flgs)
788{
789 Vector<Float> spcs = specCol_(whichrow);
790 uInt nchannel = nchan();
791 if (spcs.nelements() != nchannel) {
792 throw(AipsError("Data has incorrect number of channels"));
793 }
794 uChar userflag = 1 << 7;
795 if (unflag) {
796 userflag = 0 << 7;
797 }
798 if (clipoutside) {
799 for (uInt j = 0; j < nchannel; ++j) {
800 Float spc = spcs(j);
801 if ((spc >= uthres) || (spc <= dthres)) {
802 flgs(j) = userflag;
803 }
804 }
805 } else {
806 for (uInt j = 0; j < nchannel; ++j) {
807 Float spc = spcs(j);
808 if ((spc < uthres) && (spc > dthres)) {
809 flgs(j) = userflag;
810 }
811 }
812 }
813}
814
815
816void Scantable::flag( int whichrow, const std::vector<bool>& msk, bool unflag ) {
817 std::vector<bool>::const_iterator it;
818 uInt ntrue = 0;
819 if (whichrow >= int(table_.nrow()) ) {
820 throw(AipsError("Invalid row number"));
821 }
822 for (it = msk.begin(); it != msk.end(); ++it) {
823 if ( *it ) {
824 ntrue++;
825 }
826 }
827 //if ( selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
828 if ( whichrow == -1 && !unflag && selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
829 throw(AipsError("Trying to flag whole scantable."));
830 uChar userflag = 1 << 7;
831 if ( unflag ) {
832 userflag = 0 << 7;
833 }
834 if (whichrow > -1 ) {
835 applyChanFlag(uInt(whichrow), msk, userflag);
836 } else {
837 for ( uInt i=0; i<table_.nrow(); ++i) {
838 applyChanFlag(i, msk, userflag);
839 }
840 }
841}
842
843void Scantable::applyChanFlag( uInt whichrow, const std::vector<bool>& msk, uChar flagval )
844{
845 if (whichrow >= table_.nrow() ) {
846 throw( casa::indexError<int>( whichrow, "asap::Scantable::applyChanFlag: Invalid row number" ) );
847 }
848 Vector<uChar> flgs = flagsCol_(whichrow);
849 if ( msk.size() == 0 ) {
850 flgs = flagval;
851 flagsCol_.put(whichrow, flgs);
852 return;
853 }
854 if ( int(msk.size()) != nchan() ) {
855 throw(AipsError("Mask has incorrect number of channels."));
856 }
857 if ( flgs.nelements() != msk.size() ) {
858 throw(AipsError("Mask has incorrect number of channels."
859 " Probably varying with IF. Please flag per IF"));
860 }
861 std::vector<bool>::const_iterator it;
862 uInt j = 0;
863 for (it = msk.begin(); it != msk.end(); ++it) {
864 if ( *it ) {
865 flgs(j) = flagval;
866 }
867 ++j;
868 }
869 flagsCol_.put(whichrow, flgs);
870}
871
872void Scantable::flagRow(const std::vector<uInt>& rows, bool unflag)
873{
874 if ( selector_.empty() && (rows.size() == table_.nrow()) )
875 throw(AipsError("Trying to flag whole scantable."));
876
877 uInt rowflag = (unflag ? 0 : 1);
878 std::vector<uInt>::const_iterator it;
879 for (it = rows.begin(); it != rows.end(); ++it)
880 flagrowCol_.put(*it, rowflag);
881}
882
883std::vector<bool> Scantable::getMask(int whichrow) const
884{
885 Vector<uChar> flags;
886 flagsCol_.get(uInt(whichrow), flags);
887 Vector<Bool> bflag(flags.shape());
888 convertArray(bflag, flags);
889 bflag = !bflag;
890 std::vector<bool> mask;
891 bflag.tovector(mask);
892 return mask;
893}
894
895std::vector<float> Scantable::getSpectrum( int whichrow,
896 const std::string& poltype ) const
897{
898 String ptype = poltype;
899 if (poltype == "" ) ptype = getPolType();
900 if ( whichrow < 0 || whichrow >= nrow() )
901 throw(AipsError("Illegal row number."));
902 std::vector<float> out;
903 Vector<Float> arr;
904 uInt requestedpol = polCol_(whichrow);
905 String basetype = getPolType();
906 if ( ptype == basetype ) {
907 specCol_.get(whichrow, arr);
908 } else {
909 CountedPtr<STPol> stpol(STPol::getPolClass(Scantable::factories_,
910 basetype));
911 uInt row = uInt(whichrow);
912 stpol->setSpectra(getPolMatrix(row));
913 Float fang,fhand;
914 fang = focusTable_.getTotalAngle(mfocusidCol_(row));
915 fhand = focusTable_.getFeedHand(mfocusidCol_(row));
916 stpol->setPhaseCorrections(fang, fhand);
917 arr = stpol->getSpectrum(requestedpol, ptype);
918 }
919 if ( arr.nelements() == 0 )
920 pushLog("Not enough polarisations present to do the conversion.");
921 arr.tovector(out);
922 return out;
923}
924
925void Scantable::setSpectrum( const std::vector<float>& spec,
926 int whichrow )
927{
928 Vector<Float> spectrum(spec);
929 Vector<Float> arr;
930 specCol_.get(whichrow, arr);
931 if ( spectrum.nelements() != arr.nelements() )
932 throw AipsError("The spectrum has incorrect number of channels.");
933 specCol_.put(whichrow, spectrum);
934}
935
936
937String Scantable::generateName()
938{
939 return (File::newUniqueName("./","temp")).baseName();
940}
941
942const casa::Table& Scantable::table( ) const
943{
944 return table_;
945}
946
947casa::Table& Scantable::table( )
948{
949 return table_;
950}
951
952std::string Scantable::getPolType() const
953{
954 return table_.keywordSet().asString("POLTYPE");
955}
956
957void Scantable::unsetSelection()
958{
959 table_ = originalTable_;
960 attach();
961 selector_.reset();
962}
963
964void Scantable::setSelection( const STSelector& selection )
965{
966 Table tab = const_cast<STSelector&>(selection).apply(originalTable_);
967 if ( tab.nrow() == 0 ) {
968 throw(AipsError("Selection contains no data. Not applying it."));
969 }
970 table_ = tab;
971 attach();
972// tab.rwKeywordSet().define("nBeam",(Int)(getBeamNos().size())) ;
973// vector<uint> selectedIFs = getIFNos() ;
974// Int newnIF = selectedIFs.size() ;
975// tab.rwKeywordSet().define("nIF",newnIF) ;
976// if ( newnIF != 0 ) {
977// Int newnChan = 0 ;
978// for ( Int i = 0 ; i < newnIF ; i++ ) {
979// Int nChan = nchan( selectedIFs[i] ) ;
980// if ( newnChan > nChan )
981// newnChan = nChan ;
982// }
983// tab.rwKeywordSet().define("nChan",newnChan) ;
984// }
985// tab.rwKeywordSet().define("nPol",(Int)(getPolNos().size())) ;
986 selector_ = selection;
987}
988
989
990std::string Scantable::headerSummary()
991{
992 // Format header info
993// STHeader sdh;
994// sdh = getHeader();
995// sdh.print();
996 ostringstream oss;
997 oss.flags(std::ios_base::left);
998 oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
999 << setw(15) << "IFs:" << setw(4) << nif() << endl
1000 << setw(15) << "Polarisations:" << setw(4) << npol()
1001 << "(" << getPolType() << ")" << endl
1002 << setw(15) << "Channels:" << nchan() << endl;
1003 String tmp;
1004 oss << setw(15) << "Observer:"
1005 << table_.keywordSet().asString("Observer") << endl;
1006 oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1007 table_.keywordSet().get("Project", tmp);
1008 oss << setw(15) << "Project:" << tmp << endl;
1009 table_.keywordSet().get("Obstype", tmp);
1010 oss << setw(15) << "Obs. Type:" << tmp << endl;
1011 table_.keywordSet().get("AntennaName", tmp);
1012 oss << setw(15) << "Antenna Name:" << tmp << endl;
1013 table_.keywordSet().get("FluxUnit", tmp);
1014 oss << setw(15) << "Flux Unit:" << tmp << endl;
1015 //Vector<Double> vec(moleculeTable_.getRestFrequencies());
1016 int nid = moleculeTable_.nrow();
1017 Bool firstline = True;
1018 oss << setw(15) << "Rest Freqs:";
1019 for (int i=0; i<nid; i++) {
1020 Table t = table_(table_.col("MOLECULE_ID") == i);
1021 if (t.nrow() > 0) {
1022 Vector<Double> vec(moleculeTable_.getRestFrequency(i));
1023 if (vec.nelements() > 0) {
1024 if (firstline) {
1025 oss << setprecision(10) << vec << " [Hz]" << endl;
1026 firstline=False;
1027 }
1028 else{
1029 oss << setw(15)<<" " << setprecision(10) << vec << " [Hz]" << endl;
1030 }
1031 } else {
1032 oss << "none" << endl;
1033 }
1034 }
1035 }
1036
1037 oss << setw(15) << "Abcissa:" << getAbcissaLabel(0) << endl;
1038 oss << selector_.print() << endl;
1039 return String(oss);
1040}
1041
1042std::string Scantable::summary()
1043{
1044 ostringstream oss;
1045 oss << endl;
1046 oss << asap::SEPERATOR << endl;
1047 oss << " Scan Table Summary" << endl;
1048 oss << asap::SEPERATOR << endl;
1049
1050 // Format header info
1051 oss << headerSummary();
1052 oss << endl;
1053
1054 // main table
1055 String dirtype = "Position ("
1056 + getDirectionRefString()
1057 + ")";
1058 oss.flags(std::ios_base::left);
1059 oss << setw(5) << "Scan" << setw(15) << "Source"
1060 << setw(10) << "Time" << setw(18) << "Integration"
1061 << setw(15) << "Source Type" << endl;
1062 oss << setw(5) << "" << setw(5) << "Beam" << setw(3) << "" << dirtype << endl;
1063 oss << setw(10) << "" << setw(3) << "IF" << setw(3) << ""
1064 << setw(8) << "Frame" << setw(16)
1065 << "RefVal" << setw(10) << "RefPix" << setw(12) << "Increment"
1066 << setw(7) << "Channels"
1067 << endl;
1068 oss << asap::SEPERATOR << endl;
1069 TableIterator iter(table_, "SCANNO");
1070 while (!iter.pastEnd()) {
1071 Table subt = iter.table();
1072 ROTableRow row(subt);
1073 MEpoch::ROScalarColumn timeCol(subt,"TIME");
1074 const TableRecord& rec = row.get(0);
1075 oss << setw(4) << std::right << rec.asuInt("SCANNO")
1076 << std::left << setw(1) << ""
1077 << setw(15) << rec.asString("SRCNAME")
1078 << setw(10) << formatTime(timeCol(0), false);
1079 // count the cycles in the scan
1080 TableIterator cyciter(subt, "CYCLENO");
1081 int nint = 0;
1082 while (!cyciter.pastEnd()) {
1083 ++nint;
1084 ++cyciter;
1085 }
1086 oss << setw(3) << std::right << nint << setw(3) << " x " << std::left
1087 << setw(11) << formatSec(rec.asFloat("INTERVAL")) << setw(1) << ""
1088 << setw(15) << SrcType::getName(rec.asInt("SRCTYPE")) << endl;
1089
1090 TableIterator biter(subt, "BEAMNO");
1091 while (!biter.pastEnd()) {
1092 Table bsubt = biter.table();
1093 ROTableRow brow(bsubt);
1094 const TableRecord& brec = brow.get(0);
1095 uInt row0 = bsubt.rowNumbers(table_)[0];
1096 oss << setw(5) << "" << setw(4) << std::right << brec.asuInt("BEAMNO")<< std::left;
1097 oss << setw(4) << "" << formatDirection(getDirection(row0)) << endl;
1098 TableIterator iiter(bsubt, "IFNO");
1099 while (!iiter.pastEnd()) {
1100 Table isubt = iiter.table();
1101 ROTableRow irow(isubt);
1102 const TableRecord& irec = irow.get(0);
1103 oss << setw(9) << "";
1104 oss << setw(3) << std::right << irec.asuInt("IFNO") << std::left
1105 << setw(1) << "" << frequencies().print(irec.asuInt("FREQ_ID"))
1106 << setw(3) << "" << nchan(irec.asuInt("IFNO"))
1107 << endl;
1108
1109 ++iiter;
1110 }
1111 ++biter;
1112 }
1113 ++iter;
1114 }
1115 return String(oss);
1116}
1117
1118// std::string Scantable::getTime(int whichrow, bool showdate) const
1119// {
1120// MEpoch::ROScalarColumn timeCol(table_, "TIME");
1121// MEpoch me;
1122// if (whichrow > -1) {
1123// me = timeCol(uInt(whichrow));
1124// } else {
1125// Double tm;
1126// table_.keywordSet().get("UTC",tm);
1127// me = MEpoch(MVEpoch(tm));
1128// }
1129// return formatTime(me, showdate);
1130// }
1131
1132std::string Scantable::getTime(int whichrow, bool showdate, uInt prec) const
1133{
1134 MEpoch me;
1135 me = getEpoch(whichrow);
1136 return formatTime(me, showdate, prec);
1137}
1138
1139MEpoch Scantable::getEpoch(int whichrow) const
1140{
1141 if (whichrow > -1) {
1142 return timeCol_(uInt(whichrow));
1143 } else {
1144 Double tm;
1145 table_.keywordSet().get("UTC",tm);
1146 return MEpoch(MVEpoch(tm));
1147 }
1148}
1149
1150std::string Scantable::getDirectionString(int whichrow) const
1151{
1152 return formatDirection(getDirection(uInt(whichrow)));
1153}
1154
1155
1156SpectralCoordinate Scantable::getSpectralCoordinate(int whichrow) const {
1157 const MPosition& mp = getAntennaPosition();
1158 const MDirection& md = getDirection(whichrow);
1159 const MEpoch& me = timeCol_(whichrow);
1160 //Double rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1161 Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1162 return freqTable_.getSpectralCoordinate(md, mp, me, rf,
1163 mfreqidCol_(whichrow));
1164}
1165
1166std::vector< double > Scantable::getAbcissa( int whichrow ) const
1167{
1168 if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal row number"));
1169 std::vector<double> stlout;
1170 int nchan = specCol_(whichrow).nelements();
1171 String us = freqTable_.getUnitString();
1172 if ( us == "" || us == "pixel" || us == "channel" ) {
1173 for (int i=0; i<nchan; ++i) {
1174 stlout.push_back(double(i));
1175 }
1176 return stlout;
1177 }
1178 SpectralCoordinate spc = getSpectralCoordinate(whichrow);
1179 Vector<Double> pixel(nchan);
1180 Vector<Double> world;
1181 indgen(pixel);
1182 if ( Unit(us) == Unit("Hz") ) {
1183 for ( int i=0; i < nchan; ++i) {
1184 Double world;
1185 spc.toWorld(world, pixel[i]);
1186 stlout.push_back(double(world));
1187 }
1188 } else if ( Unit(us) == Unit("km/s") ) {
1189 Vector<Double> world;
1190 spc.pixelToVelocity(world, pixel);
1191 world.tovector(stlout);
1192 }
1193 return stlout;
1194}
1195void Scantable::setDirectionRefString( const std::string & refstr )
1196{
1197 MDirection::Types mdt;
1198 if (refstr != "" && !MDirection::getType(mdt, refstr)) {
1199 throw(AipsError("Illegal Direction frame."));
1200 }
1201 if ( refstr == "" ) {
1202 String defaultstr = MDirection::showType(dirCol_.getMeasRef().getType());
1203 table_.rwKeywordSet().define("DIRECTIONREF", defaultstr);
1204 } else {
1205 table_.rwKeywordSet().define("DIRECTIONREF", String(refstr));
1206 }
1207}
1208
1209std::string Scantable::getDirectionRefString( ) const
1210{
1211 return table_.keywordSet().asString("DIRECTIONREF");
1212}
1213
1214MDirection Scantable::getDirection(int whichrow ) const
1215{
1216 String usertype = table_.keywordSet().asString("DIRECTIONREF");
1217 String type = MDirection::showType(dirCol_.getMeasRef().getType());
1218 if ( usertype != type ) {
1219 MDirection::Types mdt;
1220 if (!MDirection::getType(mdt, usertype)) {
1221 throw(AipsError("Illegal Direction frame."));
1222 }
1223 return dirCol_.convert(uInt(whichrow), mdt);
1224 } else {
1225 return dirCol_(uInt(whichrow));
1226 }
1227}
1228
1229std::string Scantable::getAbcissaLabel( int whichrow ) const
1230{
1231 if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal ro number"));
1232 const MPosition& mp = getAntennaPosition();
1233 const MDirection& md = getDirection(whichrow);
1234 const MEpoch& me = timeCol_(whichrow);
1235 //const Double& rf = mmolidCol_(whichrow);
1236 const Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1237 SpectralCoordinate spc =
1238 freqTable_.getSpectralCoordinate(md, mp, me, rf, mfreqidCol_(whichrow));
1239
1240 String s = "Channel";
1241 Unit u = Unit(freqTable_.getUnitString());
1242 if (u == Unit("km/s")) {
1243 s = CoordinateUtil::axisLabel(spc, 0, True,True, True);
1244 } else if (u == Unit("Hz")) {
1245 Vector<String> wau(1);wau = u.getName();
1246 spc.setWorldAxisUnits(wau);
1247 s = CoordinateUtil::axisLabel(spc, 0, True, True, False);
1248 }
1249 return s;
1250
1251}
1252
1253/**
1254void asap::Scantable::setRestFrequencies( double rf, const std::string& name,
1255 const std::string& unit )
1256**/
1257void Scantable::setRestFrequencies( vector<double> rf, const vector<std::string>& name,
1258 const std::string& unit )
1259
1260{
1261 ///@todo lookup in line table to fill in name and formattedname
1262 Unit u(unit);
1263 //Quantum<Double> urf(rf, u);
1264 Quantum<Vector<Double> >urf(rf, u);
1265 Vector<String> formattedname(0);
1266 //cerr<<"Scantable::setRestFrequnecies="<<urf<<endl;
1267
1268 //uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), name, "");
1269 uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), mathutil::toVectorString(name), formattedname);
1270 TableVector<uInt> tabvec(table_, "MOLECULE_ID");
1271 tabvec = id;
1272}
1273
1274/**
1275void asap::Scantable::setRestFrequencies( const std::string& name )
1276{
1277 throw(AipsError("setRestFrequencies( const std::string& name ) NYI"));
1278 ///@todo implement
1279}
1280**/
1281
1282void Scantable::setRestFrequencies( const vector<std::string>& name )
1283{
1284 (void) name; // suppress unused warning
1285 throw(AipsError("setRestFrequencies( const vector<std::string>& name ) NYI"));
1286 ///@todo implement
1287}
1288
1289std::vector< unsigned int > Scantable::rownumbers( ) const
1290{
1291 std::vector<unsigned int> stlout;
1292 Vector<uInt> vec = table_.rowNumbers();
1293 vec.tovector(stlout);
1294 return stlout;
1295}
1296
1297
1298Matrix<Float> Scantable::getPolMatrix( uInt whichrow ) const
1299{
1300 ROTableRow row(table_);
1301 const TableRecord& rec = row.get(whichrow);
1302 Table t =
1303 originalTable_( originalTable_.col("SCANNO") == Int(rec.asuInt("SCANNO"))
1304 && originalTable_.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1305 && originalTable_.col("IFNO") == Int(rec.asuInt("IFNO"))
1306 && originalTable_.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
1307 ROArrayColumn<Float> speccol(t, "SPECTRA");
1308 return speccol.getColumn();
1309}
1310
1311std::vector< std::string > Scantable::columnNames( ) const
1312{
1313 Vector<String> vec = table_.tableDesc().columnNames();
1314 return mathutil::tovectorstring(vec);
1315}
1316
1317MEpoch::Types Scantable::getTimeReference( ) const
1318{
1319 return MEpoch::castType(timeCol_.getMeasRef().getType());
1320}
1321
1322void Scantable::addFit( const STFitEntry& fit, int row )
1323{
1324 //cout << mfitidCol_(uInt(row)) << endl;
1325 LogIO os( LogOrigin( "Scantable", "addFit()", WHERE ) ) ;
1326 os << mfitidCol_(uInt(row)) << LogIO::POST ;
1327 uInt id = fitTable_.addEntry(fit, mfitidCol_(uInt(row)));
1328 mfitidCol_.put(uInt(row), id);
1329}
1330
1331void Scantable::shift(int npix)
1332{
1333 Vector<uInt> fids(mfreqidCol_.getColumn());
1334 genSort( fids, Sort::Ascending,
1335 Sort::QuickSort|Sort::NoDuplicates );
1336 for (uInt i=0; i<fids.nelements(); ++i) {
1337 frequencies().shiftRefPix(npix, fids[i]);
1338 }
1339}
1340
1341String Scantable::getAntennaName() const
1342{
1343 String out;
1344 table_.keywordSet().get("AntennaName", out);
1345 String::size_type pos1 = out.find("@") ;
1346 String::size_type pos2 = out.find("//") ;
1347 if ( pos2 != String::npos )
1348 out = out.substr(pos2+2,pos1-pos2-2) ;
1349 else if ( pos1 != String::npos )
1350 out = out.substr(0,pos1) ;
1351 return out;
1352}
1353
1354int Scantable::checkScanInfo(const std::vector<int>& scanlist) const
1355{
1356 String tbpath;
1357 int ret = 0;
1358 if ( table_.keywordSet().isDefined("GBT_GO") ) {
1359 table_.keywordSet().get("GBT_GO", tbpath);
1360 Table t(tbpath,Table::Old);
1361 // check each scan if other scan of the pair exist
1362 int nscan = scanlist.size();
1363 for (int i = 0; i < nscan; i++) {
1364 Table subt = t( t.col("SCAN") == scanlist[i]+1 );
1365 if (subt.nrow()==0) {
1366 //cerr <<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<endl;
1367 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1368 os <<LogIO::WARN<<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<LogIO::POST;
1369 ret = 1;
1370 break;
1371 }
1372 ROTableRow row(subt);
1373 const TableRecord& rec = row.get(0);
1374 int scan1seqn = rec.asuInt("PROCSEQN");
1375 int laston1 = rec.asuInt("LASTON");
1376 if ( rec.asuInt("PROCSIZE")==2 ) {
1377 if ( i < nscan-1 ) {
1378 Table subt2 = t( t.col("SCAN") == scanlist[i+1]+1 );
1379 if ( subt2.nrow() == 0) {
1380 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1381
1382 //cerr<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<endl;
1383 os<<LogIO::WARN<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<LogIO::POST;
1384 ret = 1;
1385 break;
1386 }
1387 ROTableRow row2(subt2);
1388 const TableRecord& rec2 = row2.get(0);
1389 int scan2seqn = rec2.asuInt("PROCSEQN");
1390 int laston2 = rec2.asuInt("LASTON");
1391 if (scan1seqn == 1 && scan2seqn == 2) {
1392 if (laston1 == laston2) {
1393 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1394 //cerr<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1395 os<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1396 i +=1;
1397 }
1398 else {
1399 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1400 //cerr<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1401 os<<LogIO::WARN<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1402 }
1403 }
1404 else if (scan1seqn==2 && scan2seqn == 1) {
1405 if (laston1 == laston2) {
1406 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1407 //cerr<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<endl;
1408 os<<LogIO::WARN<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<LogIO::POST;
1409 ret = 1;
1410 break;
1411 }
1412 }
1413 else {
1414 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1415 //cerr<<"The other scan for "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<endl;
1416 os<<LogIO::WARN<<"The other scan for "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<LogIO::POST;
1417 ret = 1;
1418 break;
1419 }
1420 }
1421 }
1422 else {
1423 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1424 //cerr<<"The scan does not appear to be standard obsevation."<<endl;
1425 os<<LogIO::WARN<<"The scan does not appear to be standard obsevation."<<LogIO::POST;
1426 }
1427 //if ( i >= nscan ) break;
1428 }
1429 }
1430 else {
1431 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1432 //cerr<<"No reference to GBT_GO table."<<endl;
1433 os<<LogIO::WARN<<"No reference to GBT_GO table."<<LogIO::POST;
1434 ret = 1;
1435 }
1436 return ret;
1437}
1438
1439std::vector<double> Scantable::getDirectionVector(int whichrow) const
1440{
1441 Vector<Double> Dir = dirCol_(whichrow).getAngle("rad").getValue();
1442 std::vector<double> dir;
1443 Dir.tovector(dir);
1444 return dir;
1445}
1446
1447void asap::Scantable::reshapeSpectrum( int nmin, int nmax )
1448 throw( casa::AipsError )
1449{
1450 // assumed that all rows have same nChan
1451 Vector<Float> arr = specCol_( 0 ) ;
1452 int nChan = arr.nelements() ;
1453
1454 // if nmin < 0 or nmax < 0, nothing to do
1455 if ( nmin < 0 ) {
1456 throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1457 }
1458 if ( nmax < 0 ) {
1459 throw( casa::indexError<int>( nmax, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1460 }
1461
1462 // if nmin > nmax, exchange values
1463 if ( nmin > nmax ) {
1464 int tmp = nmax ;
1465 nmax = nmin ;
1466 nmin = tmp ;
1467 LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1468 os << "Swap values. Applied range is ["
1469 << nmin << ", " << nmax << "]" << LogIO::POST ;
1470 }
1471
1472 // if nmin exceeds nChan, nothing to do
1473 if ( nmin >= nChan ) {
1474 throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Specified minimum exceeds nChan." ) ) ;
1475 }
1476
1477 // if nmax exceeds nChan, reset nmax to nChan
1478 if ( nmax >= nChan ) {
1479 if ( nmin == 0 ) {
1480 // nothing to do
1481 LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1482 os << "Whole range is selected. Nothing to do." << LogIO::POST ;
1483 return ;
1484 }
1485 else {
1486 LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1487 os << "Specified maximum exceeds nChan. Applied range is ["
1488 << nmin << ", " << nChan-1 << "]." << LogIO::POST ;
1489 nmax = nChan - 1 ;
1490 }
1491 }
1492
1493 // reshape specCol_ and flagCol_
1494 for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1495 reshapeSpectrum( nmin, nmax, irow ) ;
1496 }
1497
1498 // update FREQUENCIES subtable
1499 Double refpix ;
1500 Double refval ;
1501 Double increment ;
1502 int freqnrow = freqTable_.table().nrow() ;
1503 Vector<uInt> oldId( freqnrow ) ;
1504 Vector<uInt> newId( freqnrow ) ;
1505 for ( int irow = 0 ; irow < freqnrow ; irow++ ) {
1506 freqTable_.getEntry( refpix, refval, increment, irow ) ;
1507 /***
1508 * need to shift refpix to nmin
1509 * note that channel nmin in old index will be channel 0 in new one
1510 ***/
1511 refval = refval - ( refpix - nmin ) * increment ;
1512 refpix = 0 ;
1513 freqTable_.setEntry( refpix, refval, increment, irow ) ;
1514 }
1515
1516 // update nchan
1517 int newsize = nmax - nmin + 1 ;
1518 table_.rwKeywordSet().define( "nChan", newsize ) ;
1519
1520 // update bandwidth
1521 // assumed all spectra in the scantable have same bandwidth
1522 table_.rwKeywordSet().define( "Bandwidth", increment * newsize ) ;
1523
1524 return ;
1525}
1526
1527void asap::Scantable::reshapeSpectrum( int nmin, int nmax, int irow )
1528{
1529 // reshape specCol_ and flagCol_
1530 Vector<Float> oldspec = specCol_( irow ) ;
1531 Vector<uChar> oldflag = flagsCol_( irow ) ;
1532 uInt newsize = nmax - nmin + 1 ;
1533 specCol_.put( irow, oldspec( Slice( nmin, newsize, 1 ) ) ) ;
1534 flagsCol_.put( irow, oldflag( Slice( nmin, newsize, 1 ) ) ) ;
1535
1536 return ;
1537}
1538
1539void asap::Scantable::regridChannel( int nChan, double dnu )
1540{
1541 LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1542 os << "Regrid abcissa with channel number " << nChan << " and spectral resoultion " << dnu << "Hz." << LogIO::POST ;
1543 // assumed that all rows have same nChan
1544 Vector<Float> arr = specCol_( 0 ) ;
1545 int oldsize = arr.nelements() ;
1546
1547 // if oldsize == nChan, nothing to do
1548 if ( oldsize == nChan ) {
1549 os << "Specified channel number is same as current one. Nothing to do." << LogIO::POST ;
1550 return ;
1551 }
1552
1553 // if oldChan < nChan, unphysical operation
1554 if ( oldsize < nChan ) {
1555 os << "Unphysical operation. Nothing to do." << LogIO::POST ;
1556 return ;
1557 }
1558
1559 // change channel number for specCol_ and flagCol_
1560 Vector<Float> newspec( nChan, 0 ) ;
1561 Vector<uChar> newflag( nChan, false ) ;
1562 vector<string> coordinfo = getCoordInfo() ;
1563 string oldinfo = coordinfo[0] ;
1564 coordinfo[0] = "Hz" ;
1565 setCoordInfo( coordinfo ) ;
1566 for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1567 regridChannel( nChan, dnu, irow ) ;
1568 }
1569 coordinfo[0] = oldinfo ;
1570 setCoordInfo( coordinfo ) ;
1571
1572
1573 // NOTE: this method does not update metadata such as
1574 // FREQUENCIES subtable, nChan, Bandwidth, etc.
1575
1576 return ;
1577}
1578
1579void asap::Scantable::regridChannel( int nChan, double dnu, int irow )
1580{
1581 // logging
1582 //ofstream ofs( "average.log", std::ios::out | std::ios::app ) ;
1583 //ofs << "IFNO = " << getIF( irow ) << " irow = " << irow << endl ;
1584
1585 Vector<Float> oldspec = specCol_( irow ) ;
1586 Vector<uChar> oldflag = flagsCol_( irow ) ;
1587 Vector<Float> newspec( nChan, 0 ) ;
1588 Vector<uChar> newflag( nChan, false ) ;
1589
1590 // regrid
1591 vector<double> abcissa = getAbcissa( irow ) ;
1592 int oldsize = abcissa.size() ;
1593 double olddnu = abcissa[1] - abcissa[0] ;
1594 //int refChan = 0 ;
1595 //double frac = 0.0 ;
1596 //double wedge = 0.0 ;
1597 //double pile = 0.0 ;
1598 int ichan = 0 ;
1599 double wsum = 0.0 ;
1600 Vector<Float> zi( nChan+1 ) ;
1601 Vector<Float> yi( oldsize + 1 ) ;
1602 zi[0] = abcissa[0] - 0.5 * olddnu ;
1603 zi[1] = zi[1] + dnu ;
1604 for ( int ii = 2 ; ii < nChan ; ii++ )
1605 zi[ii] = zi[0] + dnu * ii ;
1606 zi[nChan] = zi[nChan-1] + dnu ;
1607 yi[0] = abcissa[0] - 0.5 * olddnu ;
1608 yi[1] = abcissa[1] + 0.5 * olddnu ;
1609 for ( int ii = 2 ; ii < oldsize ; ii++ )
1610 yi[ii] = abcissa[ii-1] + olddnu ;
1611 yi[oldsize] = abcissa[oldsize-1] + 0.5 * olddnu ;
1612 if ( dnu > 0.0 ) {
1613 for ( int ii = 0 ; ii < nChan ; ii++ ) {
1614 double zl = zi[ii] ;
1615 double zr = zi[ii+1] ;
1616 for ( int j = ichan ; j < oldsize ; j++ ) {
1617 double yl = yi[j] ;
1618 double yr = yi[j+1] ;
1619 if ( yl <= zl ) {
1620 if ( yr <= zl ) {
1621 continue ;
1622 }
1623 else if ( yr <= zr ) {
1624 newspec[ii] += oldspec[j] * ( yr - zl ) ;
1625 newflag[ii] = newflag[ii] || oldflag[j] ;
1626 wsum += ( yr - zl ) ;
1627 }
1628 else {
1629 newspec[ii] += oldspec[j] * dnu ;
1630 newflag[ii] = newflag[ii] || oldflag[j] ;
1631 wsum += dnu ;
1632 ichan = j ;
1633 break ;
1634 }
1635 }
1636 else if ( yl < zr ) {
1637 if ( yr <= zr ) {
1638 newspec[ii] += oldspec[j] * ( yr - yl ) ;
1639 newflag[ii] = newflag[ii] || oldflag[j] ;
1640 wsum += ( yr - yl ) ;
1641 }
1642 else {
1643 newspec[ii] += oldspec[j] * ( zr - yl ) ;
1644 newflag[ii] = newflag[ii] || oldflag[j] ;
1645 wsum += ( zr - yl ) ;
1646 ichan = j ;
1647 break ;
1648 }
1649 }
1650 else {
1651 ichan = j - 1 ;
1652 break ;
1653 }
1654 }
1655 if ( wsum != 0.0 )
1656 newspec[ii] /= wsum ;
1657 wsum = 0.0 ;
1658 }
1659 }
1660 else if ( dnu < 0.0 ) {
1661 for ( int ii = 0 ; ii < nChan ; ii++ ) {
1662 double zl = zi[ii] ;
1663 double zr = zi[ii+1] ;
1664 for ( int j = ichan ; j < oldsize ; j++ ) {
1665 double yl = yi[j] ;
1666 double yr = yi[j+1] ;
1667 if ( yl >= zl ) {
1668 if ( yr >= zl ) {
1669 continue ;
1670 }
1671 else if ( yr >= zr ) {
1672 newspec[ii] += oldspec[j] * abs( yr - zl ) ;
1673 newflag[ii] = newflag[ii] || oldflag[j] ;
1674 wsum += abs( yr - zl ) ;
1675 }
1676 else {
1677 newspec[ii] += oldspec[j] * abs( dnu ) ;
1678 newflag[ii] = newflag[ii] || oldflag[j] ;
1679 wsum += abs( dnu ) ;
1680 ichan = j ;
1681 break ;
1682 }
1683 }
1684 else if ( yl > zr ) {
1685 if ( yr >= zr ) {
1686 newspec[ii] += oldspec[j] * abs( yr - yl ) ;
1687 newflag[ii] = newflag[ii] || oldflag[j] ;
1688 wsum += abs( yr - yl ) ;
1689 }
1690 else {
1691 newspec[ii] += oldspec[j] * abs( zr - yl ) ;
1692 newflag[ii] = newflag[ii] || oldflag[j] ;
1693 wsum += abs( zr - yl ) ;
1694 ichan = j ;
1695 break ;
1696 }
1697 }
1698 else {
1699 ichan = j - 1 ;
1700 break ;
1701 }
1702 }
1703 if ( wsum != 0.0 )
1704 newspec[ii] /= wsum ;
1705 wsum = 0.0 ;
1706 }
1707 }
1708// * ichan = 0
1709// ***/
1710// //ofs << "olddnu = " << olddnu << ", dnu = " << dnu << endl ;
1711// pile += dnu ;
1712// wedge = olddnu * ( refChan + 1 ) ;
1713// while ( wedge < pile ) {
1714// newspec[0] += olddnu * oldspec[refChan] ;
1715// newflag[0] = newflag[0] || oldflag[refChan] ;
1716// //ofs << "channel " << refChan << " is included in new channel 0" << endl ;
1717// refChan++ ;
1718// wedge += olddnu ;
1719// wsum += olddnu ;
1720// //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
1721// }
1722// frac = ( wedge - pile ) / olddnu ;
1723// wsum += ( 1.0 - frac ) * olddnu ;
1724// newspec[0] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
1725// newflag[0] = newflag[0] || oldflag[refChan] ;
1726// //ofs << "channel " << refChan << " is partly included in new channel 0" << " with fraction of " << ( 1.0 - frac ) << endl ;
1727// //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
1728// newspec[0] /= wsum ;
1729// //ofs << "newspec[0] = " << newspec[0] << endl ;
1730// //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
1731
1732// /***
1733// * ichan = 1 - nChan-2
1734// ***/
1735// for ( int ichan = 1 ; ichan < nChan - 1 ; ichan++ ) {
1736// pile += dnu ;
1737// newspec[ichan] += frac * olddnu * oldspec[refChan] ;
1738// newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
1739// //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << frac << endl ;
1740// refChan++ ;
1741// wedge += olddnu ;
1742// wsum = frac * olddnu ;
1743// //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
1744// while ( wedge < pile ) {
1745// newspec[ichan] += olddnu * oldspec[refChan] ;
1746// newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
1747// //ofs << "channel " << refChan << " is included in new channel " << ichan << endl ;
1748// refChan++ ;
1749// wedge += olddnu ;
1750// wsum += olddnu ;
1751// //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
1752// }
1753// frac = ( wedge - pile ) / olddnu ;
1754// wsum += ( 1.0 - frac ) * olddnu ;
1755// newspec[ichan] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
1756// newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
1757// //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << ( 1.0 - frac ) << endl ;
1758// //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
1759// //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
1760// newspec[ichan] /= wsum ;
1761// //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << endl ;
1762// }
1763
1764// /***
1765// * ichan = nChan-1
1766// ***/
1767// // NOTE: Assumed that all spectra have the same bandwidth
1768// pile += dnu ;
1769// newspec[nChan-1] += frac * olddnu * oldspec[refChan] ;
1770// newflag[nChan-1] = newflag[nChan-1] || oldflag[refChan] ;
1771// //ofs << "channel " << refChan << " is partly included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
1772// refChan++ ;
1773// wedge += olddnu ;
1774// wsum = frac * olddnu ;
1775// //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
1776// for ( int jchan = refChan ; jchan < oldsize ; jchan++ ) {
1777// newspec[nChan-1] += olddnu * oldspec[jchan] ;
1778// newflag[nChan-1] = newflag[nChan-1] || oldflag[jchan] ;
1779// wsum += olddnu ;
1780// //ofs << "channel " << jchan << " is included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
1781// //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
1782// }
1783// //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
1784// //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
1785// newspec[nChan-1] /= wsum ;
1786// //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << endl ;
1787
1788// // ofs.close() ;
1789
1790 specCol_.put( irow, newspec ) ;
1791 flagsCol_.put( irow, newflag ) ;
1792
1793 return ;
1794}
1795
1796std::vector<float> Scantable::getWeather(int whichrow) const
1797{
1798 std::vector<float> out(5);
1799 //Float temperature, pressure, humidity, windspeed, windaz;
1800 weatherTable_.getEntry(out[0], out[1], out[2], out[3], out[4],
1801 mweatheridCol_(uInt(whichrow)));
1802
1803
1804 return out;
1805}
1806
1807bool Scantable::getFlagtraFast(uInt whichrow)
1808{
1809 uChar flag;
1810 Vector<uChar> flags;
1811 flagsCol_.get(whichrow, flags);
1812 flag = flags[0];
1813 for (uInt i = 1; i < flags.size(); ++i) {
1814 flag &= flags[i];
1815 }
1816 return ((flag >> 7) == 1);
1817}
1818
1819void Scantable::polyBaseline(const std::vector<bool>& mask, int order, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
1820{
1821 ofstream ofs;
1822 String coordInfo = "";
1823 bool hasSameNchan = true;
1824 bool outTextFile = false;
1825
1826 if (blfile != "") {
1827 ofs.open(blfile.c_str(), ios::out | ios::app);
1828 if (ofs) outTextFile = true;
1829 }
1830
1831 if (outLogger || outTextFile) {
1832 coordInfo = getCoordInfo()[0];
1833 if (coordInfo == "") coordInfo = "channel";
1834 hasSameNchan = hasSameNchanOverIFs();
1835 }
1836
1837 Fitter fitter = Fitter();
1838 fitter.setExpression("poly", order);
1839 //fitter.setIterClipping(thresClip, nIterClip);
1840
1841 int nRow = nrow();
1842 std::vector<bool> chanMask;
1843 bool showProgress;
1844 int minNRow;
1845 parseProgressInfo(progressInfo, showProgress, minNRow);
1846
1847 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
1848 chanMask = getCompositeChanMask(whichrow, mask);
1849 fitBaseline(chanMask, whichrow, fitter);
1850 setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
1851 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "polyBaseline()", fitter);
1852 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
1853 }
1854
1855 if (outTextFile) ofs.close();
1856}
1857
1858void Scantable::autoPolyBaseline(const std::vector<bool>& mask, int order, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
1859{
1860 ofstream ofs;
1861 String coordInfo = "";
1862 bool hasSameNchan = true;
1863 bool outTextFile = false;
1864
1865 if (blfile != "") {
1866 ofs.open(blfile.c_str(), ios::out | ios::app);
1867 if (ofs) outTextFile = true;
1868 }
1869
1870 if (outLogger || outTextFile) {
1871 coordInfo = getCoordInfo()[0];
1872 if (coordInfo == "") coordInfo = "channel";
1873 hasSameNchan = hasSameNchanOverIFs();
1874 }
1875
1876 Fitter fitter = Fitter();
1877 fitter.setExpression("poly", order);
1878 //fitter.setIterClipping(thresClip, nIterClip);
1879
1880 int nRow = nrow();
1881 std::vector<bool> chanMask;
1882 int minEdgeSize = getIFNos().size()*2;
1883 STLineFinder lineFinder = STLineFinder();
1884 lineFinder.setOptions(threshold, 3, chanAvgLimit);
1885
1886 bool showProgress;
1887 int minNRow;
1888 parseProgressInfo(progressInfo, showProgress, minNRow);
1889
1890 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
1891
1892 //-------------------------------------------------------
1893 //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
1894 //-------------------------------------------------------
1895 int edgeSize = edge.size();
1896 std::vector<int> currentEdge;
1897 if (edgeSize >= 2) {
1898 int idx = 0;
1899 if (edgeSize > 2) {
1900 if (edgeSize < minEdgeSize) {
1901 throw(AipsError("Length of edge element info is less than that of IFs"));
1902 }
1903 idx = 2 * getIF(whichrow);
1904 }
1905 currentEdge.push_back(edge[idx]);
1906 currentEdge.push_back(edge[idx+1]);
1907 } else {
1908 throw(AipsError("Wrong length of edge element"));
1909 }
1910 lineFinder.setData(getSpectrum(whichrow));
1911 lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
1912 chanMask = lineFinder.getMask();
1913 //-------------------------------------------------------
1914
1915 fitBaseline(chanMask, whichrow, fitter);
1916 setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
1917
1918 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoPolyBaseline()", fitter);
1919 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
1920 }
1921
1922 if (outTextFile) ofs.close();
1923}
1924
1925void Scantable::cubicSplineBaseline(const std::vector<bool>& mask, int nPiece, float thresClip, int nIterClip, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
1926{
1927 ofstream ofs;
1928 String coordInfo = "";
1929 bool hasSameNchan = true;
1930 bool outTextFile = false;
1931
1932 if (blfile != "") {
1933 ofs.open(blfile.c_str(), ios::out | ios::app);
1934 if (ofs) outTextFile = true;
1935 }
1936
1937 if (outLogger || outTextFile) {
1938 coordInfo = getCoordInfo()[0];
1939 if (coordInfo == "") coordInfo = "channel";
1940 hasSameNchan = hasSameNchanOverIFs();
1941 }
1942
1943 //Fitter fitter = Fitter();
1944 //fitter.setExpression("cspline", nPiece);
1945 //fitter.setIterClipping(thresClip, nIterClip);
1946
1947 int nRow = nrow();
1948 std::vector<bool> chanMask;
1949 bool showProgress;
1950 int minNRow;
1951 parseProgressInfo(progressInfo, showProgress, minNRow);
1952
1953 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
1954 chanMask = getCompositeChanMask(whichrow, mask);
1955 //fitBaseline(chanMask, whichrow, fitter);
1956 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
1957 std::vector<int> pieceEdges;
1958 std::vector<float> params;
1959 std::vector<float> res = doCubicSplineFitting(getSpectrum(whichrow), chanMask, nPiece, pieceEdges, params, thresClip, nIterClip, getResidual);
1960 setSpectrum(res, whichrow);
1961 //
1962
1963 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "cubicSplineBaseline()", pieceEdges, params);
1964 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
1965 }
1966
1967 if (outTextFile) ofs.close();
1968}
1969
1970void Scantable::autoCubicSplineBaseline(const std::vector<bool>& mask, int nPiece, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
1971{
1972 ofstream ofs;
1973 String coordInfo = "";
1974 bool hasSameNchan = true;
1975 bool outTextFile = false;
1976
1977 if (blfile != "") {
1978 ofs.open(blfile.c_str(), ios::out | ios::app);
1979 if (ofs) outTextFile = true;
1980 }
1981
1982 if (outLogger || outTextFile) {
1983 coordInfo = getCoordInfo()[0];
1984 if (coordInfo == "") coordInfo = "channel";
1985 hasSameNchan = hasSameNchanOverIFs();
1986 }
1987
1988 //Fitter fitter = Fitter();
1989 //fitter.setExpression("cspline", nPiece);
1990 //fitter.setIterClipping(thresClip, nIterClip);
1991
1992 int nRow = nrow();
1993 std::vector<bool> chanMask;
1994 int minEdgeSize = getIFNos().size()*2;
1995 STLineFinder lineFinder = STLineFinder();
1996 lineFinder.setOptions(threshold, 3, chanAvgLimit);
1997
1998 bool showProgress;
1999 int minNRow;
2000 parseProgressInfo(progressInfo, showProgress, minNRow);
2001
2002 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2003
2004 //-------------------------------------------------------
2005 //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
2006 //-------------------------------------------------------
2007 int edgeSize = edge.size();
2008 std::vector<int> currentEdge;
2009 if (edgeSize >= 2) {
2010 int idx = 0;
2011 if (edgeSize > 2) {
2012 if (edgeSize < minEdgeSize) {
2013 throw(AipsError("Length of edge element info is less than that of IFs"));
2014 }
2015 idx = 2 * getIF(whichrow);
2016 }
2017 currentEdge.push_back(edge[idx]);
2018 currentEdge.push_back(edge[idx+1]);
2019 } else {
2020 throw(AipsError("Wrong length of edge element"));
2021 }
2022 lineFinder.setData(getSpectrum(whichrow));
2023 lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
2024 chanMask = lineFinder.getMask();
2025 //-------------------------------------------------------
2026
2027
2028 //fitBaseline(chanMask, whichrow, fitter);
2029 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
2030 std::vector<int> pieceEdges;
2031 std::vector<float> params;
2032 std::vector<float> res = doCubicSplineFitting(getSpectrum(whichrow), chanMask, nPiece, pieceEdges, params, thresClip, nIterClip, getResidual);
2033 setSpectrum(res, whichrow);
2034 //
2035
2036 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoCubicSplineBaseline()", pieceEdges, params);
2037 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
2038 }
2039
2040 if (outTextFile) ofs.close();
2041}
2042
2043std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data, const std::vector<bool>& mask, int nPiece, std::vector<int>& idxEdge, std::vector<float>& params, float thresClip, int nIterClip, bool getResidual)
2044{
2045 if (data.size() != mask.size()) {
2046 throw(AipsError("data and mask sizes are not identical"));
2047 }
2048 if (nPiece < 1) {
2049 throw(AipsError("number of the sections must be one or more"));
2050 }
2051
2052 int nChan = data.size();
2053 std::vector<int> maskArray;
2054 std::vector<int> x;
2055 for (int i = 0; i < nChan; ++i) {
2056 maskArray.push_back(mask[i] ? 1 : 0);
2057 if (mask[i]) {
2058 x.push_back(i);
2059 }
2060 }
2061
2062 int initNData = x.size();
2063
2064 int nElement = (int)(floor(floor((double)(initNData/nPiece))+0.5));
2065 std::vector<double> invEdge;
2066 idxEdge.clear();
2067 idxEdge.push_back(x[0]);
2068 for (int i = 1; i < nPiece; ++i) {
2069 int valX = x[nElement*i];
2070 idxEdge.push_back(valX);
2071 invEdge.push_back(1.0/(double)valX);
2072 }
2073 idxEdge.push_back(x[x.size()-1]+1);
2074
2075 int nData = initNData;
2076 int nDOF = nPiece + 3; //number of parameters to solve, namely, 4+(nPiece-1).
2077
2078 std::vector<double> x1, x2, x3, z1, x1z1, x2z1, x3z1, r1, residual;
2079 for (int i = 0; i < nChan; ++i) {
2080 double di = (double)i;
2081 double dD = (double)data[i];
2082 x1.push_back(di);
2083 x2.push_back(di*di);
2084 x3.push_back(di*di*di);
2085 z1.push_back(dD);
2086 x1z1.push_back(dD*di);
2087 x2z1.push_back(dD*di*di);
2088 x3z1.push_back(dD*di*di*di);
2089 r1.push_back(0.0);
2090 residual.push_back(0.0);
2091 }
2092
2093 for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
2094 // xMatrix : horizontal concatenation of
2095 // the least-sq. matrix (left) and an
2096 // identity matrix (right).
2097 // the right part is used to calculate the inverse matrix of the left part.
2098 double xMatrix[nDOF][2*nDOF];
2099 double zMatrix[nDOF];
2100 for (int i = 0; i < nDOF; ++i) {
2101 for (int j = 0; j < 2*nDOF; ++j) {
2102 xMatrix[i][j] = 0.0;
2103 }
2104 xMatrix[i][nDOF+i] = 1.0;
2105 zMatrix[i] = 0.0;
2106 }
2107
2108 for (int n = 0; n < nPiece; ++n) {
2109 for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
2110
2111 if (maskArray[i] == 0) continue;
2112
2113 xMatrix[0][0] += 1.0;
2114 xMatrix[0][1] += x1[i];
2115 xMatrix[0][2] += x2[i];
2116 xMatrix[0][3] += x3[i];
2117 xMatrix[1][1] += x2[i];
2118 xMatrix[1][2] += x3[i];
2119 xMatrix[1][3] += x2[i]*x2[i];
2120 xMatrix[2][2] += x2[i]*x2[i];
2121 xMatrix[2][3] += x3[i]*x2[i];
2122 xMatrix[3][3] += x3[i]*x3[i];
2123 zMatrix[0] += z1[i];
2124 zMatrix[1] += x1z1[i];
2125 zMatrix[2] += x2z1[i];
2126 zMatrix[3] += x3z1[i];
2127
2128 for (int j = 0; j < n; ++j) {
2129 double q = 1.0 - x1[i]*invEdge[j];
2130 q = q*q*q;
2131 xMatrix[0][j+4] += q;
2132 xMatrix[1][j+4] += q*x1[i];
2133 xMatrix[2][j+4] += q*x2[i];
2134 xMatrix[3][j+4] += q*x3[i];
2135 for (int k = 0; k < j; ++k) {
2136 double r = 1.0 - x1[i]*invEdge[k];
2137 r = r*r*r;
2138 xMatrix[k+4][j+4] += r*q;
2139 }
2140 xMatrix[j+4][j+4] += q*q;
2141 zMatrix[j+4] += q*z1[i];
2142 }
2143
2144 }
2145 }
2146
2147 for (int i = 0; i < nDOF; ++i) {
2148 for (int j = 0; j < i; ++j) {
2149 xMatrix[i][j] = xMatrix[j][i];
2150 }
2151 }
2152
2153 std::vector<double> invDiag;
2154 for (int i = 0; i < nDOF; ++i) {
2155 invDiag.push_back(1.0/xMatrix[i][i]);
2156 for (int j = 0; j < nDOF; ++j) {
2157 xMatrix[i][j] *= invDiag[i];
2158 }
2159 }
2160
2161 for (int k = 0; k < nDOF; ++k) {
2162 for (int i = 0; i < nDOF; ++i) {
2163 if (i != k) {
2164 double factor1 = xMatrix[k][k];
2165 double factor2 = xMatrix[i][k];
2166 for (int j = k; j < 2*nDOF; ++j) {
2167 xMatrix[i][j] *= factor1;
2168 xMatrix[i][j] -= xMatrix[k][j]*factor2;
2169 xMatrix[i][j] /= factor1;
2170 }
2171 }
2172 }
2173 double xDiag = xMatrix[k][k];
2174 for (int j = k; j < 2*nDOF; ++j) {
2175 xMatrix[k][j] /= xDiag;
2176 }
2177 }
2178
2179 for (int i = 0; i < nDOF; ++i) {
2180 for (int j = 0; j < nDOF; ++j) {
2181 xMatrix[i][nDOF+j] *= invDiag[j];
2182 }
2183 }
2184 //compute a vector y which consists of the coefficients of the best-fit spline curves
2185 //(a0,a1,a2,a3(,b3,c3,...)), namely, the ones for the leftmost piece and the ones of
2186 //cubic terms for the other pieces (in case nPiece>1).
2187 std::vector<double> y;
2188 y.clear();
2189 for (int i = 0; i < nDOF; ++i) {
2190 y.push_back(0.0);
2191 for (int j = 0; j < nDOF; ++j) {
2192 y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
2193 }
2194 }
2195
2196 double a0 = y[0];
2197 double a1 = y[1];
2198 double a2 = y[2];
2199 double a3 = y[3];
2200 params.clear();
2201
2202 for (int n = 0; n < nPiece; ++n) {
2203 for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
2204 r1[i] = a0 + a1*x1[i] + a2*x2[i] + a3*x3[i];
2205 residual[i] = z1[i] - r1[i];
2206 }
2207 params.push_back(a0);
2208 params.push_back(a1);
2209 params.push_back(a2);
2210 params.push_back(a3);
2211
2212 if (n == nPiece-1) break;
2213
2214 double d = y[4+n];
2215 double iE = invEdge[n];
2216 a0 += d;
2217 a1 -= 3.0*d*iE;
2218 a2 += 3.0*d*iE*iE;
2219 a3 -= d*iE*iE*iE;
2220 }
2221
2222 if ((nClip == nIterClip) || (thresClip <= 0.0)) {
2223 break;
2224 } else {
2225 double stdDev = 0.0;
2226 for (int i = 0; i < nChan; ++i) {
2227 stdDev += residual[i]*residual[i]*(double)maskArray[i];
2228 }
2229 stdDev = sqrt(stdDev/(double)nData);
2230
2231 double thres = stdDev * thresClip;
2232 int newNData = 0;
2233 for (int i = 0; i < nChan; ++i) {
2234 if (abs(residual[i]) >= thres) {
2235 maskArray[i] = 0;
2236 }
2237 if (maskArray[i] > 0) {
2238 newNData++;
2239 }
2240 }
2241 if (newNData == nData) {
2242 break; //no more flag to add. iteration stops.
2243 } else {
2244 nData = newNData;
2245 }
2246 }
2247 }
2248
2249 std::vector<float> result;
2250 if (getResidual) {
2251 for (int i = 0; i < nChan; ++i) {
2252 result.push_back((float)residual[i]);
2253 }
2254 } else {
2255 for (int i = 0; i < nChan; ++i) {
2256 result.push_back((float)r1[i]);
2257 }
2258 }
2259
2260 return result;
2261}
2262
2263 void Scantable::selectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves)
2264{
2265 nWaves.clear();
2266
2267 if (applyFFT) {
2268 string fftThAttr;
2269 float fftThSigma;
2270 int fftThTop;
2271 parseThresholdExpression(fftThresh, fftThAttr, fftThSigma, fftThTop);
2272 doSelectWaveNumbers(whichrow, chanMask, fftMethod, fftThSigma, fftThTop, fftThAttr, nWaves);
2273 }
2274
2275 addAuxWaveNumbers(addNWaves, rejectNWaves, nWaves);
2276}
2277
2278void Scantable::parseThresholdExpression(const std::string& fftThresh, std::string& fftThAttr, float& fftThSigma, int& fftThTop)
2279{
2280 uInt idxSigma = fftThresh.find("sigma");
2281 uInt idxTop = fftThresh.find("top");
2282
2283 if (idxSigma == fftThresh.size() - 5) {
2284 std::istringstream is(fftThresh.substr(0, fftThresh.size() - 5));
2285 is >> fftThSigma;
2286 fftThAttr = "sigma";
2287 } else if (idxTop == 0) {
2288 std::istringstream is(fftThresh.substr(3));
2289 is >> fftThTop;
2290 fftThAttr = "top";
2291 } else {
2292 bool isNumber = true;
2293 for (uInt i = 0; i < fftThresh.size()-1; ++i) {
2294 char ch = (fftThresh.substr(i, 1).c_str())[0];
2295 if (!(isdigit(ch) || (fftThresh.substr(i, 1) == "."))) {
2296 isNumber = false;
2297 break;
2298 }
2299 }
2300 if (isNumber) {
2301 std::istringstream is(fftThresh);
2302 is >> fftThSigma;
2303 fftThAttr = "sigma";
2304 } else {
2305 throw(AipsError("fftthresh has a wrong value"));
2306 }
2307 }
2308}
2309
2310void Scantable::doSelectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const std::string& fftMethod, const float fftThSigma, const int fftThTop, const std::string& fftThAttr, std::vector<int>& nWaves)
2311{
2312 std::vector<float> fspec;
2313 if (fftMethod == "fft") {
2314 fspec = execFFT(whichrow, chanMask, false, true);
2315 //} else if (fftMethod == "lsp") {
2316 // fspec = lombScarglePeriodogram(whichrow);
2317 }
2318
2319 if (fftThAttr == "sigma") {
2320 float mean = 0.0;
2321 float mean2 = 0.0;
2322 for (uInt i = 0; i < fspec.size(); ++i) {
2323 mean += fspec[i];
2324 mean2 += fspec[i]*fspec[i];
2325 }
2326 mean /= float(fspec.size());
2327 mean2 /= float(fspec.size());
2328 float thres = mean + fftThSigma * float(sqrt(mean2 - mean*mean));
2329
2330 for (uInt i = 0; i < fspec.size(); ++i) {
2331 if (fspec[i] >= thres) {
2332 nWaves.push_back(i);
2333 }
2334 }
2335
2336 } else if (fftThAttr == "top") {
2337 for (int i = 0; i < fftThTop; ++i) {
2338 float max = 0.0;
2339 int maxIdx = 0;
2340 for (uInt j = 0; j < fspec.size(); ++j) {
2341 if (fspec[j] > max) {
2342 max = fspec[j];
2343 maxIdx = j;
2344 }
2345 }
2346 nWaves.push_back(maxIdx);
2347 fspec[maxIdx] = 0.0;
2348 }
2349
2350 }
2351
2352 if (nWaves.size() > 1) {
2353 sort(nWaves.begin(), nWaves.end());
2354 }
2355}
2356
2357void Scantable::addAuxWaveNumbers(const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves)
2358{
2359 for (uInt i = 0; i < addNWaves.size(); ++i) {
2360 bool found = false;
2361 for (uInt j = 0; j < nWaves.size(); ++j) {
2362 if (nWaves[j] == addNWaves[i]) {
2363 found = true;
2364 break;
2365 }
2366 }
2367 if (!found) nWaves.push_back(addNWaves[i]);
2368 }
2369
2370 for (uInt i = 0; i < rejectNWaves.size(); ++i) {
2371 for (std::vector<int>::iterator j = nWaves.begin(); j != nWaves.end(); ) {
2372 if (*j == rejectNWaves[i]) {
2373 j = nWaves.erase(j);
2374 } else {
2375 ++j;
2376 }
2377 }
2378 }
2379
2380 if (nWaves.size() > 1) {
2381 sort(nWaves.begin(), nWaves.end());
2382 unique(nWaves.begin(), nWaves.end());
2383 }
2384}
2385
2386void Scantable::sinusoidBaseline(const std::vector<bool>& mask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, float thresClip, int nIterClip, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
2387{
2388 ofstream ofs;
2389 String coordInfo = "";
2390 bool hasSameNchan = true;
2391 bool outTextFile = false;
2392
2393 if (blfile != "") {
2394 ofs.open(blfile.c_str(), ios::out | ios::app);
2395 if (ofs) outTextFile = true;
2396 }
2397
2398 if (outLogger || outTextFile) {
2399 coordInfo = getCoordInfo()[0];
2400 if (coordInfo == "") coordInfo = "channel";
2401 hasSameNchan = hasSameNchanOverIFs();
2402 }
2403
2404 //Fitter fitter = Fitter();
2405 //fitter.setExpression("sinusoid", nWaves);
2406 //fitter.setIterClipping(thresClip, nIterClip);
2407
2408 int nRow = nrow();
2409 std::vector<bool> chanMask;
2410 std::vector<int> nWaves;
2411
2412 bool showProgress;
2413 int minNRow;
2414 parseProgressInfo(progressInfo, showProgress, minNRow);
2415
2416 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2417 chanMask = getCompositeChanMask(whichrow, mask);
2418 selectWaveNumbers(whichrow, chanMask, applyFFT, fftMethod, fftThresh, addNWaves, rejectNWaves, nWaves);
2419
2420 //FOR DEBUGGING------------
2421 if (whichrow < 0) {// == nRow -1) {
2422 cout << "+++ i=" << setw(3) << whichrow << ", IF=" << setw(2) << getIF(whichrow);
2423 if (applyFFT) {
2424 cout << "[ ";
2425 for (uInt j = 0; j < nWaves.size(); ++j) {
2426 cout << nWaves[j] << ", ";
2427 }
2428 cout << " ] " << endl;
2429 }
2430 cout << flush;
2431 }
2432 //-------------------------
2433
2434 //fitBaseline(chanMask, whichrow, fitter);
2435 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
2436 std::vector<float> params;
2437 std::vector<float> res = doSinusoidFitting(getSpectrum(whichrow), chanMask, nWaves, params, thresClip, nIterClip, getResidual);
2438 setSpectrum(res, whichrow);
2439 //
2440
2441 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "sinusoidBaseline()", params);
2442 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
2443 }
2444
2445 if (outTextFile) ofs.close();
2446}
2447
2448void Scantable::autoSinusoidBaseline(const std::vector<bool>& mask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
2449{
2450 ofstream ofs;
2451 String coordInfo = "";
2452 bool hasSameNchan = true;
2453 bool outTextFile = false;
2454
2455 if (blfile != "") {
2456 ofs.open(blfile.c_str(), ios::out | ios::app);
2457 if (ofs) outTextFile = true;
2458 }
2459
2460 if (outLogger || outTextFile) {
2461 coordInfo = getCoordInfo()[0];
2462 if (coordInfo == "") coordInfo = "channel";
2463 hasSameNchan = hasSameNchanOverIFs();
2464 }
2465
2466 //Fitter fitter = Fitter();
2467 //fitter.setExpression("sinusoid", nWaves);
2468 //fitter.setIterClipping(thresClip, nIterClip);
2469
2470 int nRow = nrow();
2471 std::vector<bool> chanMask;
2472 std::vector<int> nWaves;
2473
2474 int minEdgeSize = getIFNos().size()*2;
2475 STLineFinder lineFinder = STLineFinder();
2476 lineFinder.setOptions(threshold, 3, chanAvgLimit);
2477
2478 bool showProgress;
2479 int minNRow;
2480 parseProgressInfo(progressInfo, showProgress, minNRow);
2481
2482 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2483
2484 //-------------------------------------------------------
2485 //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
2486 //-------------------------------------------------------
2487 int edgeSize = edge.size();
2488 std::vector<int> currentEdge;
2489 if (edgeSize >= 2) {
2490 int idx = 0;
2491 if (edgeSize > 2) {
2492 if (edgeSize < minEdgeSize) {
2493 throw(AipsError("Length of edge element info is less than that of IFs"));
2494 }
2495 idx = 2 * getIF(whichrow);
2496 }
2497 currentEdge.push_back(edge[idx]);
2498 currentEdge.push_back(edge[idx+1]);
2499 } else {
2500 throw(AipsError("Wrong length of edge element"));
2501 }
2502 lineFinder.setData(getSpectrum(whichrow));
2503 lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
2504 chanMask = lineFinder.getMask();
2505 //-------------------------------------------------------
2506
2507 selectWaveNumbers(whichrow, chanMask, applyFFT, fftMethod, fftThresh, addNWaves, rejectNWaves, nWaves);
2508
2509 //fitBaseline(chanMask, whichrow, fitter);
2510 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
2511 std::vector<float> params;
2512 std::vector<float> res = doSinusoidFitting(getSpectrum(whichrow), chanMask, nWaves, params, thresClip, nIterClip, getResidual);
2513 setSpectrum(res, whichrow);
2514 //
2515
2516 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoSinusoidBaseline()", params);
2517 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
2518 }
2519
2520 if (outTextFile) ofs.close();
2521}
2522
2523std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data, const std::vector<bool>& mask, const std::vector<int>& waveNumbers, std::vector<float>& params, float thresClip, int nIterClip, bool getResidual)
2524{
2525 if (data.size() != mask.size()) {
2526 throw(AipsError("data and mask sizes are not identical"));
2527 }
2528 if (data.size() < 2) {
2529 throw(AipsError("data size is too short"));
2530 }
2531 if (waveNumbers.size() == 0) {
2532 throw(AipsError("no wave numbers given"));
2533 }
2534 std::vector<int> nWaves; // sorted and uniqued array of wave numbers
2535 nWaves.reserve(waveNumbers.size());
2536 copy(waveNumbers.begin(), waveNumbers.end(), back_inserter(nWaves));
2537 sort(nWaves.begin(), nWaves.end());
2538 std::vector<int>::iterator end_it = unique(nWaves.begin(), nWaves.end());
2539 nWaves.erase(end_it, nWaves.end());
2540
2541 int minNWaves = nWaves[0];
2542 if (minNWaves < 0) {
2543 throw(AipsError("wave number must be positive or zero (i.e. constant)"));
2544 }
2545 bool hasConstantTerm = (minNWaves == 0);
2546
2547 int nChan = data.size();
2548 std::vector<int> maskArray;
2549 std::vector<int> x;
2550 for (int i = 0; i < nChan; ++i) {
2551 maskArray.push_back(mask[i] ? 1 : 0);
2552 if (mask[i]) {
2553 x.push_back(i);
2554 }
2555 }
2556
2557 int initNData = x.size();
2558
2559 int nData = initNData;
2560 int nDOF = nWaves.size() * 2 - (hasConstantTerm ? 1 : 0); //number of parameters to solve.
2561
2562 const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
2563 double baseXFactor = 2.0*PI/(double)(nChan-1); //the denominator (nChan-1) should be changed to (xdata[nChan-1]-xdata[0]) for accepting x-values given in velocity or frequency when this function is moved to fitter. (2011/03/30 WK)
2564
2565 // xArray : contains elemental values for computing the least-square matrix.
2566 // xArray.size() is nDOF and xArray[*].size() is nChan.
2567 // Each xArray element are as follows:
2568 // xArray[0] = {1.0, 1.0, 1.0, ..., 1.0},
2569 // xArray[2n-1] = {sin(nPI/L*x[0]), sin(nPI/L*x[1]), ..., sin(nPI/L*x[nChan])},
2570 // xArray[2n] = {cos(nPI/L*x[0]), cos(nPI/L*x[1]), ..., cos(nPI/L*x[nChan])},
2571 // where (1 <= n <= nMaxWavesInSW),
2572 // or,
2573 // xArray[2n-1] = {sin(wn[n]PI/L*x[0]), sin(wn[n]PI/L*x[1]), ..., sin(wn[n]PI/L*x[nChan])},
2574 // xArray[2n] = {cos(wn[n]PI/L*x[0]), cos(wn[n]PI/L*x[1]), ..., cos(wn[n]PI/L*x[nChan])},
2575 // where wn[n] denotes waveNumbers[n] (1 <= n <= waveNumbers.size()).
2576 std::vector<std::vector<double> > xArray;
2577 if (hasConstantTerm) {
2578 std::vector<double> xu;
2579 for (int j = 0; j < nChan; ++j) {
2580 xu.push_back(1.0);
2581 }
2582 xArray.push_back(xu);
2583 }
2584 for (uInt i = (hasConstantTerm ? 1 : 0); i < nWaves.size(); ++i) {
2585 double xFactor = baseXFactor*(double)nWaves[i];
2586 std::vector<double> xs, xc;
2587 xs.clear();
2588 xc.clear();
2589 for (int j = 0; j < nChan; ++j) {
2590 xs.push_back(sin(xFactor*(double)j));
2591 xc.push_back(cos(xFactor*(double)j));
2592 }
2593 xArray.push_back(xs);
2594 xArray.push_back(xc);
2595 }
2596
2597 std::vector<double> z1, r1, residual;
2598 for (int i = 0; i < nChan; ++i) {
2599 z1.push_back((double)data[i]);
2600 r1.push_back(0.0);
2601 residual.push_back(0.0);
2602 }
2603
2604 for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
2605 // xMatrix : horizontal concatenation of
2606 // the least-sq. matrix (left) and an
2607 // identity matrix (right).
2608 // the right part is used to calculate the inverse matrix of the left part.
2609 double xMatrix[nDOF][2*nDOF];
2610 double zMatrix[nDOF];
2611 for (int i = 0; i < nDOF; ++i) {
2612 for (int j = 0; j < 2*nDOF; ++j) {
2613 xMatrix[i][j] = 0.0;
2614 }
2615 xMatrix[i][nDOF+i] = 1.0;
2616 zMatrix[i] = 0.0;
2617 }
2618
2619 for (int k = 0; k < nChan; ++k) {
2620 if (maskArray[k] == 0) continue;
2621
2622 for (int i = 0; i < nDOF; ++i) {
2623 for (int j = i; j < nDOF; ++j) {
2624 xMatrix[i][j] += xArray[i][k] * xArray[j][k];
2625 }
2626 zMatrix[i] += z1[k] * xArray[i][k];
2627 }
2628 }
2629
2630 for (int i = 0; i < nDOF; ++i) {
2631 for (int j = 0; j < i; ++j) {
2632 xMatrix[i][j] = xMatrix[j][i];
2633 }
2634 }
2635
2636 std::vector<double> invDiag;
2637 for (int i = 0; i < nDOF; ++i) {
2638 invDiag.push_back(1.0/xMatrix[i][i]);
2639 for (int j = 0; j < nDOF; ++j) {
2640 xMatrix[i][j] *= invDiag[i];
2641 }
2642 }
2643
2644 for (int k = 0; k < nDOF; ++k) {
2645 for (int i = 0; i < nDOF; ++i) {
2646 if (i != k) {
2647 double factor1 = xMatrix[k][k];
2648 double factor2 = xMatrix[i][k];
2649 for (int j = k; j < 2*nDOF; ++j) {
2650 xMatrix[i][j] *= factor1;
2651 xMatrix[i][j] -= xMatrix[k][j]*factor2;
2652 xMatrix[i][j] /= factor1;
2653 }
2654 }
2655 }
2656 double xDiag = xMatrix[k][k];
2657 for (int j = k; j < 2*nDOF; ++j) {
2658 xMatrix[k][j] /= xDiag;
2659 }
2660 }
2661
2662 for (int i = 0; i < nDOF; ++i) {
2663 for (int j = 0; j < nDOF; ++j) {
2664 xMatrix[i][nDOF+j] *= invDiag[j];
2665 }
2666 }
2667 //compute a vector y which consists of the coefficients of the sinusoids forming the
2668 //best-fit curves (a0,s1,c1,s2,c2,...), where a0 is constant and s* and c* are of sine
2669 //and cosine functions, respectively.
2670 std::vector<double> y;
2671 params.clear();
2672 for (int i = 0; i < nDOF; ++i) {
2673 y.push_back(0.0);
2674 for (int j = 0; j < nDOF; ++j) {
2675 y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
2676 }
2677 params.push_back(y[i]);
2678 }
2679
2680 for (int i = 0; i < nChan; ++i) {
2681 r1[i] = y[0];
2682 for (int j = 1; j < nDOF; ++j) {
2683 r1[i] += y[j]*xArray[j][i];
2684 }
2685 residual[i] = z1[i] - r1[i];
2686 }
2687
2688 if ((nClip == nIterClip) || (thresClip <= 0.0)) {
2689 break;
2690 } else {
2691 double stdDev = 0.0;
2692 for (int i = 0; i < nChan; ++i) {
2693 stdDev += residual[i]*residual[i]*(double)maskArray[i];
2694 }
2695 stdDev = sqrt(stdDev/(double)nData);
2696
2697 double thres = stdDev * thresClip;
2698 int newNData = 0;
2699 for (int i = 0; i < nChan; ++i) {
2700 if (abs(residual[i]) >= thres) {
2701 maskArray[i] = 0;
2702 }
2703 if (maskArray[i] > 0) {
2704 newNData++;
2705 }
2706 }
2707 if (newNData == nData) {
2708 break; //no more flag to add. iteration stops.
2709 } else {
2710 nData = newNData;
2711 }
2712 }
2713 }
2714
2715 std::vector<float> result;
2716 if (getResidual) {
2717 for (int i = 0; i < nChan; ++i) {
2718 result.push_back((float)residual[i]);
2719 }
2720 } else {
2721 for (int i = 0; i < nChan; ++i) {
2722 result.push_back((float)r1[i]);
2723 }
2724 }
2725
2726 return result;
2727}
2728
2729void Scantable::fitBaseline(const std::vector<bool>& mask, int whichrow, Fitter& fitter)
2730{
2731 std::vector<double> dAbcissa = getAbcissa(whichrow);
2732 std::vector<float> abcissa;
2733 for (uInt i = 0; i < dAbcissa.size(); ++i) {
2734 abcissa.push_back((float)dAbcissa[i]);
2735 }
2736 std::vector<float> spec = getSpectrum(whichrow);
2737
2738 fitter.setData(abcissa, spec, mask);
2739 fitter.lfit();
2740}
2741
2742std::vector<bool> Scantable::getCompositeChanMask(int whichrow, const std::vector<bool>& inMask)
2743{
2744 std::vector<bool> mask = getMask(whichrow);
2745 uInt maskSize = mask.size();
2746 if (maskSize != inMask.size()) {
2747 throw(AipsError("mask sizes are not the same."));
2748 }
2749 for (uInt i = 0; i < maskSize; ++i) {
2750 mask[i] = mask[i] && inMask[i];
2751 }
2752
2753 return mask;
2754}
2755
2756/*
2757std::vector<bool> Scantable::getCompositeChanMask(int whichrow, const std::vector<bool>& inMask, const std::vector<int>& edge, const int minEdgeSize, STLineFinder& lineFinder)
2758{
2759 int edgeSize = edge.size();
2760 std::vector<int> currentEdge;
2761 if (edgeSize >= 2) {
2762 int idx = 0;
2763 if (edgeSize > 2) {
2764 if (edgeSize < minEdgeSize) {
2765 throw(AipsError("Length of edge element info is less than that of IFs"));
2766 }
2767 idx = 2 * getIF(whichrow);
2768 }
2769 currentEdge.push_back(edge[idx]);
2770 currentEdge.push_back(edge[idx+1]);
2771 } else {
2772 throw(AipsError("Wrong length of edge element"));
2773 }
2774
2775 lineFinder.setData(getSpectrum(whichrow));
2776 lineFinder.findLines(getCompositeChanMask(whichrow, inMask), currentEdge, whichrow);
2777
2778 return lineFinder.getMask();
2779}
2780*/
2781
2782/* for poly. the variations of outputFittingResult() should be merged into one eventually (2011/3/10 WK) */
2783void Scantable::outputFittingResult(bool outLogger, bool outTextFile, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, Fitter& fitter)
2784{
2785 if (outLogger || outTextFile) {
2786 std::vector<float> params = fitter.getParameters();
2787 std::vector<bool> fixed = fitter.getFixedParameters();
2788 float rms = getRms(chanMask, whichrow);
2789 String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
2790
2791 if (outLogger) {
2792 LogIO ols(LogOrigin("Scantable", funcName, WHERE));
2793 ols << formatBaselineParams(params, fixed, rms, masklist, whichrow, false) << LogIO::POST ;
2794 }
2795 if (outTextFile) {
2796 ofs << formatBaselineParams(params, fixed, rms, masklist, whichrow, true) << flush;
2797 }
2798 }
2799}
2800
2801/* for cspline. will be merged once cspline is available in fitter (2011/3/10 WK) */
2802void Scantable::outputFittingResult(bool outLogger, bool outTextFile, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, const std::vector<int>& edge, const std::vector<float>& params)
2803{
2804 if (outLogger || outTextFile) {
2805 float rms = getRms(chanMask, whichrow);
2806 String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
2807 std::vector<bool> fixed;
2808 fixed.clear();
2809
2810 if (outLogger) {
2811 LogIO ols(LogOrigin("Scantable", funcName, WHERE));
2812 ols << formatPiecewiseBaselineParams(edge, params, fixed, rms, masklist, whichrow, false) << LogIO::POST ;
2813 }
2814 if (outTextFile) {
2815 ofs << formatPiecewiseBaselineParams(edge, params, fixed, rms, masklist, whichrow, true) << flush;
2816 }
2817 }
2818}
2819
2820/* for sinusoid. will be merged once sinusoid is available in fitter (2011/3/10 WK) */
2821void Scantable::outputFittingResult(bool outLogger, bool outTextFile, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, const std::vector<float>& params)
2822{
2823 if (outLogger || outTextFile) {
2824 float rms = getRms(chanMask, whichrow);
2825 String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
2826 std::vector<bool> fixed;
2827 fixed.clear();
2828
2829 if (outLogger) {
2830 LogIO ols(LogOrigin("Scantable", funcName, WHERE));
2831 ols << formatBaselineParams(params, fixed, rms, masklist, whichrow, false) << LogIO::POST ;
2832 }
2833 if (outTextFile) {
2834 ofs << formatBaselineParams(params, fixed, rms, masklist, whichrow, true) << flush;
2835 }
2836 }
2837}
2838
2839void Scantable::parseProgressInfo(const std::string& progressInfo, bool& showProgress, int& minNRow)
2840{
2841 int idxDelimiter = progressInfo.find(",");
2842 if (idxDelimiter < 0) {
2843 throw(AipsError("wrong value in 'showprogress' parameter")) ;
2844 }
2845 showProgress = (progressInfo.substr(0, idxDelimiter) == "true");
2846 std::istringstream is(progressInfo.substr(idxDelimiter+1));
2847 is >> minNRow;
2848}
2849
2850void Scantable::showProgressOnTerminal(const int nProcessed, const int nTotal, const bool showProgress, const int nTotalThreshold)
2851{
2852 if (showProgress && (nTotal >= nTotalThreshold)) {
2853 int nInterval = int(floor(double(nTotal)/100.0));
2854 if (nInterval == 0) nInterval++;
2855
2856 if (nProcessed == 0) {
2857 printf("\x1b[31m\x1b[1m"); //set red color, highlighted
2858 printf("[ 0%%]");
2859 printf("\x1b[39m\x1b[0m"); //set default attributes
2860 fflush(NULL);
2861 } else if (nProcessed % nInterval == 0) {
2862 printf("\r"); //go to the head of line
2863 printf("\x1b[31m\x1b[1m"); //set red color, highlighted
2864 printf("[%3d%%]", (int)(100.0*(double(nProcessed+1))/(double(nTotal))) );
2865 printf("\x1b[39m\x1b[0m"); //set default attributes
2866 fflush(NULL);
2867 }
2868 if (nProcessed == nTotal - 1) {
2869 printf("\r\x1b[K"); //clear
2870 fflush(NULL);
2871 }
2872 }
2873}
2874
2875std::vector<float> Scantable::execFFT(const int whichrow, const std::vector<bool>& inMask, bool getRealImag, bool getAmplitudeOnly)
2876{
2877 std::vector<bool> mask = getMask(whichrow);
2878
2879 if (inMask.size() > 0) {
2880 uInt maskSize = mask.size();
2881 if (maskSize != inMask.size()) {
2882 throw(AipsError("mask sizes are not the same."));
2883 }
2884 for (uInt i = 0; i < maskSize; ++i) {
2885 mask[i] = mask[i] && inMask[i];
2886 }
2887 }
2888
2889 Vector<Float> spec = getSpectrum(whichrow);
2890 mathutil::doZeroOrderInterpolation(spec, mask);
2891
2892 FFTServer<Float,Complex> ffts;
2893 Vector<Complex> fftres;
2894 ffts.fft0(fftres, spec);
2895
2896 std::vector<float> res;
2897 float norm = float(2.0/double(spec.size()));
2898
2899 if (getRealImag) {
2900 for (uInt i = 0; i < fftres.size(); ++i) {
2901 res.push_back(real(fftres[i])*norm);
2902 res.push_back(imag(fftres[i])*norm);
2903 }
2904 } else {
2905 for (uInt i = 0; i < fftres.size(); ++i) {
2906 res.push_back(abs(fftres[i])*norm);
2907 if (!getAmplitudeOnly) res.push_back(arg(fftres[i]));
2908 }
2909 }
2910
2911 return res;
2912}
2913
2914
2915float Scantable::getRms(const std::vector<bool>& mask, int whichrow)
2916{
2917 Vector<Float> spec;
2918 specCol_.get(whichrow, spec);
2919
2920 float mean = 0.0;
2921 float smean = 0.0;
2922 int n = 0;
2923 for (uInt i = 0; i < spec.nelements(); ++i) {
2924 if (mask[i]) {
2925 mean += spec[i];
2926 smean += spec[i]*spec[i];
2927 n++;
2928 }
2929 }
2930
2931 mean /= (float)n;
2932 smean /= (float)n;
2933
2934 return sqrt(smean - mean*mean);
2935}
2936
2937
2938std::string Scantable::formatBaselineParamsHeader(int whichrow, const std::string& masklist, bool verbose) const
2939{
2940 ostringstream oss;
2941
2942 if (verbose) {
2943 oss << " Scan[" << getScan(whichrow) << "]";
2944 oss << " Beam[" << getBeam(whichrow) << "]";
2945 oss << " IF[" << getIF(whichrow) << "]";
2946 oss << " Pol[" << getPol(whichrow) << "]";
2947 oss << " Cycle[" << getCycle(whichrow) << "]: " << endl;
2948 oss << "Fitter range = " << masklist << endl;
2949 oss << "Baseline parameters" << endl;
2950 oss << flush;
2951 }
2952
2953 return String(oss);
2954}
2955
2956std::string Scantable::formatBaselineParamsFooter(float rms, bool verbose) const
2957{
2958 ostringstream oss;
2959
2960 if (verbose) {
2961 oss << "Results of baseline fit" << endl;
2962 oss << " rms = " << setprecision(6) << rms << endl;
2963 for (int i = 0; i < 60; ++i) {
2964 oss << "-";
2965 }
2966 oss << endl;
2967 oss << flush;
2968 }
2969
2970 return String(oss);
2971}
2972
2973std::string Scantable::formatBaselineParams(const std::vector<float>& params,
2974 const std::vector<bool>& fixed,
2975 float rms,
2976 const std::string& masklist,
2977 int whichrow,
2978 bool verbose,
2979 int start, int count,
2980 bool resetparamid) const
2981{
2982 int nParam = (int)(params.size());
2983
2984 if (nParam < 1) {
2985 return(" Not fitted");
2986 } else {
2987
2988 ostringstream oss;
2989 oss << formatBaselineParamsHeader(whichrow, masklist, verbose);
2990
2991 if (start < 0) start = 0;
2992 if (count < 0) count = nParam;
2993 int end = start + count;
2994 if (end > nParam) end = nParam;
2995 int paramidoffset = (resetparamid) ? (-start) : 0;
2996
2997 for (int i = start; i < end; ++i) {
2998 if (i > start) {
2999 oss << ",";
3000 }
3001 std::string sFix = ((fixed.size() > 0) && (fixed[i]) && verbose) ? "(fixed)" : "";
3002 oss << " p" << (i+paramidoffset) << sFix << "= " << right << setw(13) << setprecision(6) << params[i];
3003 }
3004
3005 oss << endl;
3006 oss << formatBaselineParamsFooter(rms, verbose);
3007
3008 return String(oss);
3009 }
3010
3011}
3012
3013std::string Scantable::formatPiecewiseBaselineParams(const std::vector<int>& ranges, const std::vector<float>& params, const std::vector<bool>& fixed, float rms, const std::string& masklist, int whichrow, bool verbose) const
3014{
3015 int nOutParam = (int)(params.size());
3016 int nPiece = (int)(ranges.size()) - 1;
3017
3018 if (nOutParam < 1) {
3019 return(" Not fitted");
3020 } else if (nPiece < 0) {
3021 return formatBaselineParams(params, fixed, rms, masklist, whichrow, verbose);
3022 } else if (nPiece < 1) {
3023 return(" Bad count of the piece edge info");
3024 } else if (nOutParam % nPiece != 0) {
3025 return(" Bad count of the output baseline parameters");
3026 } else {
3027
3028 int nParam = nOutParam / nPiece;
3029
3030 ostringstream oss;
3031 oss << formatBaselineParamsHeader(whichrow, masklist, verbose);
3032
3033 stringstream ss;
3034 ss << ranges[nPiece] << flush;
3035 int wRange = ss.str().size() * 2 + 5;
3036
3037 for (int i = 0; i < nPiece; ++i) {
3038 ss.str("");
3039 ss << " [" << ranges[i] << "," << (ranges[i+1]-1) << "]";
3040 oss << left << setw(wRange) << ss.str();
3041 oss << formatBaselineParams(params, fixed, rms, masklist, whichrow, false, i*nParam, nParam, true);
3042 }
3043
3044 oss << formatBaselineParamsFooter(rms, verbose);
3045
3046 return String(oss);
3047 }
3048
3049}
3050
3051bool Scantable::hasSameNchanOverIFs()
3052{
3053 int nIF = nif(-1);
3054 int nCh;
3055 int totalPositiveNChan = 0;
3056 int nPositiveNChan = 0;
3057
3058 for (int i = 0; i < nIF; ++i) {
3059 nCh = nchan(i);
3060 if (nCh > 0) {
3061 totalPositiveNChan += nCh;
3062 nPositiveNChan++;
3063 }
3064 }
3065
3066 return (totalPositiveNChan == (nPositiveNChan * nchan(0)));
3067}
3068
3069std::string Scantable::getMaskRangeList(const std::vector<bool>& mask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, bool verbose)
3070{
3071 if (mask.size() < 2) {
3072 throw(AipsError("The mask elements should be > 1"));
3073 }
3074 int IF = getIF(whichrow);
3075 if (mask.size() != (uInt)nchan(IF)) {
3076 throw(AipsError("Number of channels in scantable != number of mask elements"));
3077 }
3078
3079 if (verbose) {
3080 LogIO logOs(LogOrigin("Scantable", "getMaskRangeList()", WHERE));
3081 logOs << LogIO::WARN << "The current mask window unit is " << coordInfo;
3082 if (!hasSameNchan) {
3083 logOs << endl << "This mask is only valid for IF=" << IF;
3084 }
3085 logOs << LogIO::POST;
3086 }
3087
3088 std::vector<double> abcissa = getAbcissa(whichrow);
3089 std::vector<int> edge = getMaskEdgeIndices(mask);
3090
3091 ostringstream oss;
3092 oss.setf(ios::fixed);
3093 oss << setprecision(1) << "[";
3094 for (uInt i = 0; i < edge.size(); i+=2) {
3095 if (i > 0) oss << ",";
3096 oss << "[" << (float)abcissa[edge[i]] << "," << (float)abcissa[edge[i+1]] << "]";
3097 }
3098 oss << "]" << flush;
3099
3100 return String(oss);
3101}
3102
3103std::vector<int> Scantable::getMaskEdgeIndices(const std::vector<bool>& mask)
3104{
3105 if (mask.size() < 2) {
3106 throw(AipsError("The mask elements should be > 1"));
3107 }
3108
3109 std::vector<int> out, startIndices, endIndices;
3110 int maskSize = mask.size();
3111
3112 startIndices.clear();
3113 endIndices.clear();
3114
3115 if (mask[0]) {
3116 startIndices.push_back(0);
3117 }
3118 for (int i = 1; i < maskSize; ++i) {
3119 if ((!mask[i-1]) && mask[i]) {
3120 startIndices.push_back(i);
3121 } else if (mask[i-1] && (!mask[i])) {
3122 endIndices.push_back(i-1);
3123 }
3124 }
3125 if (mask[maskSize-1]) {
3126 endIndices.push_back(maskSize-1);
3127 }
3128
3129 if (startIndices.size() != endIndices.size()) {
3130 throw(AipsError("Inconsistent Mask Size: bad data?"));
3131 }
3132 for (uInt i = 0; i < startIndices.size(); ++i) {
3133 if (startIndices[i] > endIndices[i]) {
3134 throw(AipsError("Mask start index > mask end index"));
3135 }
3136 }
3137
3138 out.clear();
3139 for (uInt i = 0; i < startIndices.size(); ++i) {
3140 out.push_back(startIndices[i]);
3141 out.push_back(endIndices[i]);
3142 }
3143
3144 return out;
3145}
3146
3147vector<float> Scantable::getTsysSpectrum( int whichrow ) const
3148{
3149 Vector<Float> tsys( tsysCol_(whichrow) ) ;
3150 vector<float> stlTsys ;
3151 tsys.tovector( stlTsys ) ;
3152 return stlTsys ;
3153}
3154
3155
3156}
3157//namespace asap
Note: See TracBrowser for help on using the repository browser.