source: trunk/src/Scantable.cpp@ 2953

Last change on this file since 2953 was 2950, checked in by Takeshi Nakazato, 10 years ago

New Development: No

JIRA Issue: Yes CAS-6582

Ready for Test: Yes

Interface Changes: Yes/No

What Interface Changed: Please list interface changes

Test Programs: List test programs

Put in Release Notes: Yes/No

Module(s): Module Names change impacts.

Description: Describe your changes here...


Smoothing functions are updated so that flagged rows are not processed.
Flag value for regridding function is changed from 1 to 128.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 159.9 KB
RevLine 
[805]1//
2// C++ Implementation: Scantable
3//
4// Description:
5//
6//
[2791]7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2005-2013
[805]8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
[206]12#include <map>
[2591]13#include <sys/time.h>
[206]14
[2186]15#include <atnf/PKSIO/SrcType.h>
16
[125]17#include <casa/aips.h>
[2186]18#include <casa/iomanip.h>
[80]19#include <casa/iostream.h>
[2186]20#include <casa/OS/File.h>
[805]21#include <casa/OS/Path.h>
[2658]22#include <casa/Logging/LogIO.h>
[80]23#include <casa/Arrays/Array.h>
[2186]24#include <casa/Arrays/ArrayAccessor.h>
25#include <casa/Arrays/ArrayLogical.h>
[80]26#include <casa/Arrays/ArrayMath.h>
27#include <casa/Arrays/MaskArrMath.h>
[2186]28#include <casa/Arrays/Slice.h>
[1325]29#include <casa/Arrays/Vector.h>
[455]30#include <casa/Arrays/VectorSTLIterator.h>
[418]31#include <casa/BasicMath/Math.h>
[504]32#include <casa/BasicSL/Constants.h>
[2186]33#include <casa/Containers/RecordField.h>
34#include <casa/Logging/LogIO.h>
[286]35#include <casa/Quanta/MVAngle.h>
[2186]36#include <casa/Quanta/MVTime.h>
[902]37#include <casa/Utilities/GenSort.h>
[2]38
[2186]39#include <coordinates/Coordinates/CoordinateUtil.h>
[2]40
[1325]41// needed to avoid error in .tcc
42#include <measures/Measures/MCDirection.h>
43//
44#include <measures/Measures/MDirection.h>
[2186]45#include <measures/Measures/MEpoch.h>
[80]46#include <measures/Measures/MFrequency.h>
[2186]47#include <measures/Measures/MeasRef.h>
48#include <measures/Measures/MeasTable.h>
49#include <measures/TableMeasures/ScalarMeasColumn.h>
50#include <measures/TableMeasures/TableMeasDesc.h>
[805]51#include <measures/TableMeasures/TableMeasRefDesc.h>
52#include <measures/TableMeasures/TableMeasValueDesc.h>
[2]53
[2186]54#include <tables/Tables/ArrColDesc.h>
55#include <tables/Tables/ExprNode.h>
56#include <tables/Tables/ScaColDesc.h>
57#include <tables/Tables/SetupNewTab.h>
58#include <tables/Tables/TableCopy.h>
59#include <tables/Tables/TableDesc.h>
60#include <tables/Tables/TableIter.h>
61#include <tables/Tables/TableParse.h>
62#include <tables/Tables/TableRecord.h>
63#include <tables/Tables/TableRow.h>
64#include <tables/Tables/TableVector.h>
65
66#include "MathUtils.h"
67#include "STAttr.h"
[2737]68#include "STBaselineTable.h"
[2186]69#include "STLineFinder.h"
70#include "STPolCircular.h"
[896]71#include "STPolLinear.h"
[913]72#include "STPolStokes.h"
[2321]73#include "STUpgrade.h"
[2666]74#include "STFitter.h"
[2186]75#include "Scantable.h"
[2]76
[2462]77#define debug 1
78
[125]79using namespace casa;
[2]80
[805]81namespace asap {
82
[896]83std::map<std::string, STPol::STPolFactory *> Scantable::factories_;
84
85void Scantable::initFactories() {
86 if ( factories_.empty() ) {
87 Scantable::factories_["linear"] = &STPolLinear::myFactory;
[1323]88 Scantable::factories_["circular"] = &STPolCircular::myFactory;
[913]89 Scantable::factories_["stokes"] = &STPolStokes::myFactory;
[896]90 }
91}
92
[805]93Scantable::Scantable(Table::TableType ttype) :
[852]94 type_(ttype)
[206]95{
[896]96 initFactories();
[805]97 setupMainTable();
[2346]98 freqTable_ = STFrequencies(*this);
99 table_.rwKeywordSet().defineTable("FREQUENCIES", freqTable_.table());
[852]100 weatherTable_ = STWeather(*this);
[805]101 table_.rwKeywordSet().defineTable("WEATHER", weatherTable_.table());
[852]102 focusTable_ = STFocus(*this);
[805]103 table_.rwKeywordSet().defineTable("FOCUS", focusTable_.table());
[852]104 tcalTable_ = STTcal(*this);
[805]105 table_.rwKeywordSet().defineTable("TCAL", tcalTable_.table());
[852]106 moleculeTable_ = STMolecules(*this);
[805]107 table_.rwKeywordSet().defineTable("MOLECULES", moleculeTable_.table());
[860]108 historyTable_ = STHistory(*this);
109 table_.rwKeywordSet().defineTable("HISTORY", historyTable_.table());
[959]110 fitTable_ = STFit(*this);
111 table_.rwKeywordSet().defineTable("FIT", fitTable_.table());
[1881]112 table_.tableInfo().setType( "Scantable" ) ;
[805]113 originalTable_ = table_;
[322]114 attach();
[18]115}
[206]116
[805]117Scantable::Scantable(const std::string& name, Table::TableType ttype) :
[852]118 type_(ttype)
[206]119{
[896]120 initFactories();
[1819]121
[865]122 Table tab(name, Table::Update);
[1009]123 uInt version = tab.keywordSet().asuInt("VERSION");
[483]124 if (version != version_) {
[2321]125 STUpgrade upgrader(version_);
[2162]126 LogIO os( LogOrigin( "Scantable" ) ) ;
127 os << LogIO::WARN
[2321]128 << name << " data format version " << version
129 << " is deprecated" << endl
130 << "Running upgrade."<< endl
[2162]131 << LogIO::POST ;
[2321]132 std::string outname = upgrader.upgrade(name);
[2332]133 if ( outname != name ) {
134 os << LogIO::WARN
135 << "Data will be loaded from " << outname << " instead of "
136 << name << LogIO::POST ;
137 tab = Table(outname, Table::Update ) ;
138 }
[483]139 }
[1009]140 if ( type_ == Table::Memory ) {
[852]141 table_ = tab.copyToMemoryTable(generateName());
[1009]142 } else {
[805]143 table_ = tab;
[1009]144 }
[1881]145 table_.tableInfo().setType( "Scantable" ) ;
[1009]146
[859]147 attachSubtables();
[805]148 originalTable_ = table_;
[329]149 attach();
[2]150}
[1819]151/*
152Scantable::Scantable(const std::string& name, Table::TableType ttype) :
153 type_(ttype)
154{
155 initFactories();
156 Table tab(name, Table::Update);
157 uInt version = tab.keywordSet().asuInt("VERSION");
158 if (version != version_) {
159 throw(AipsError("Unsupported version of ASAP file."));
160 }
161 if ( type_ == Table::Memory ) {
162 table_ = tab.copyToMemoryTable(generateName());
163 } else {
164 table_ = tab;
165 }
[2]166
[1819]167 attachSubtables();
168 originalTable_ = table_;
169 attach();
170}
171*/
172
[2658]173Scantable::Scantable( const Scantable& other, bool clear )
[206]174{
[805]175 // with or without data
[859]176 String newname = String(generateName());
[865]177 type_ = other.table_.tableType();
[859]178 if ( other.table_.tableType() == Table::Memory ) {
179 if ( clear ) {
180 table_ = TableCopy::makeEmptyMemoryTable(newname,
181 other.table_, True);
[2818]182 } else {
[859]183 table_ = other.table_.copyToMemoryTable(newname);
[2818]184 }
[16]185 } else {
[915]186 other.table_.deepCopy(newname, Table::New, False,
187 other.table_.endianFormat(),
[865]188 Bool(clear));
189 table_ = Table(newname, Table::Update);
190 table_.markForDelete();
191 }
[1881]192 table_.tableInfo().setType( "Scantable" ) ;
[1111]193 /// @todo reindex SCANNO, recompute nbeam, nif, npol
[2846]194 if ( clear ) copySubtables(other);
[859]195 attachSubtables();
[805]196 originalTable_ = table_;
[322]197 attach();
[2]198}
199
[865]200void Scantable::copySubtables(const Scantable& other) {
201 Table t = table_.rwKeywordSet().asTable("FREQUENCIES");
[2346]202 TableCopy::copyRows(t, other.freqTable_.table());
[865]203 t = table_.rwKeywordSet().asTable("FOCUS");
204 TableCopy::copyRows(t, other.focusTable_.table());
205 t = table_.rwKeywordSet().asTable("WEATHER");
206 TableCopy::copyRows(t, other.weatherTable_.table());
207 t = table_.rwKeywordSet().asTable("TCAL");
208 TableCopy::copyRows(t, other.tcalTable_.table());
209 t = table_.rwKeywordSet().asTable("MOLECULES");
210 TableCopy::copyRows(t, other.moleculeTable_.table());
211 t = table_.rwKeywordSet().asTable("HISTORY");
212 TableCopy::copyRows(t, other.historyTable_.table());
[972]213 t = table_.rwKeywordSet().asTable("FIT");
214 TableCopy::copyRows(t, other.fitTable_.table());
[865]215}
216
[859]217void Scantable::attachSubtables()
218{
[2346]219 freqTable_ = STFrequencies(table_);
[859]220 focusTable_ = STFocus(table_);
221 weatherTable_ = STWeather(table_);
222 tcalTable_ = STTcal(table_);
223 moleculeTable_ = STMolecules(table_);
[860]224 historyTable_ = STHistory(table_);
[972]225 fitTable_ = STFit(table_);
[859]226}
227
[805]228Scantable::~Scantable()
[206]229{
[2]230}
231
[805]232void Scantable::setupMainTable()
[206]233{
[805]234 TableDesc td("", "1", TableDesc::Scratch);
235 td.comment() = "An ASAP Scantable";
[1009]236 td.rwKeywordSet().define("VERSION", uInt(version_));
[2]237
[805]238 // n Cycles
239 td.addColumn(ScalarColumnDesc<uInt>("SCANNO"));
240 // new index every nBeam x nIF x nPol
241 td.addColumn(ScalarColumnDesc<uInt>("CYCLENO"));
[2]242
[805]243 td.addColumn(ScalarColumnDesc<uInt>("BEAMNO"));
244 td.addColumn(ScalarColumnDesc<uInt>("IFNO"));
[972]245 // linear, circular, stokes
[805]246 td.rwKeywordSet().define("POLTYPE", String("linear"));
247 td.addColumn(ScalarColumnDesc<uInt>("POLNO"));
[138]248
[805]249 td.addColumn(ScalarColumnDesc<uInt>("FREQ_ID"));
250 td.addColumn(ScalarColumnDesc<uInt>("MOLECULE_ID"));
[80]251
[1819]252 ScalarColumnDesc<Int> refbeamnoColumn("REFBEAMNO");
253 refbeamnoColumn.setDefault(Int(-1));
254 td.addColumn(refbeamnoColumn);
255
256 ScalarColumnDesc<uInt> flagrowColumn("FLAGROW");
257 flagrowColumn.setDefault(uInt(0));
258 td.addColumn(flagrowColumn);
259
[805]260 td.addColumn(ScalarColumnDesc<Double>("TIME"));
261 TableMeasRefDesc measRef(MEpoch::UTC); // UTC as default
262 TableMeasValueDesc measVal(td, "TIME");
263 TableMeasDesc<MEpoch> mepochCol(measVal, measRef);
264 mepochCol.write(td);
[483]265
[805]266 td.addColumn(ScalarColumnDesc<Double>("INTERVAL"));
267
[2]268 td.addColumn(ScalarColumnDesc<String>("SRCNAME"));
[805]269 // Type of source (on=0, off=1, other=-1)
[1503]270 ScalarColumnDesc<Int> stypeColumn("SRCTYPE");
271 stypeColumn.setDefault(Int(-1));
272 td.addColumn(stypeColumn);
[805]273 td.addColumn(ScalarColumnDesc<String>("FIELDNAME"));
274
275 //The actual Data Vectors
[2]276 td.addColumn(ArrayColumnDesc<Float>("SPECTRA"));
277 td.addColumn(ArrayColumnDesc<uChar>("FLAGTRA"));
[89]278 td.addColumn(ArrayColumnDesc<Float>("TSYS"));
[805]279
280 td.addColumn(ArrayColumnDesc<Double>("DIRECTION",
281 IPosition(1,2),
282 ColumnDesc::Direct));
283 TableMeasRefDesc mdirRef(MDirection::J2000); // default
284 TableMeasValueDesc tmvdMDir(td, "DIRECTION");
285 // the TableMeasDesc gives the column a type
286 TableMeasDesc<MDirection> mdirCol(tmvdMDir, mdirRef);
[987]287 // a uder set table type e.g. GALCTIC, B1950 ...
288 td.rwKeywordSet().define("DIRECTIONREF", String("J2000"));
[805]289 // writing create the measure column
290 mdirCol.write(td);
[923]291 td.addColumn(ScalarColumnDesc<Float>("AZIMUTH"));
292 td.addColumn(ScalarColumnDesc<Float>("ELEVATION"));
[1047]293 td.addColumn(ScalarColumnDesc<Float>("OPACITY"));
[105]294
[805]295 td.addColumn(ScalarColumnDesc<uInt>("TCAL_ID"));
[972]296 ScalarColumnDesc<Int> fitColumn("FIT_ID");
[973]297 fitColumn.setDefault(Int(-1));
[972]298 td.addColumn(fitColumn);
[805]299
300 td.addColumn(ScalarColumnDesc<uInt>("FOCUS_ID"));
301 td.addColumn(ScalarColumnDesc<uInt>("WEATHER_ID"));
302
[999]303 // columns which just get dragged along, as they aren't used in asap
304 td.addColumn(ScalarColumnDesc<Double>("SRCVELOCITY"));
305 td.addColumn(ArrayColumnDesc<Double>("SRCPROPERMOTION"));
306 td.addColumn(ArrayColumnDesc<Double>("SRCDIRECTION"));
307 td.addColumn(ArrayColumnDesc<Double>("SCANRATE"));
308
[805]309 td.rwKeywordSet().define("OBSMODE", String(""));
310
[418]311 // Now create Table SetUp from the description.
[859]312 SetupNewTable aNewTab(generateName(), td, Table::Scratch);
[852]313 table_ = Table(aNewTab, type_, 0);
[805]314 originalTable_ = table_;
315}
[418]316
[805]317void Scantable::attach()
[455]318{
[805]319 timeCol_.attach(table_, "TIME");
320 srcnCol_.attach(table_, "SRCNAME");
[1068]321 srctCol_.attach(table_, "SRCTYPE");
[805]322 specCol_.attach(table_, "SPECTRA");
323 flagsCol_.attach(table_, "FLAGTRA");
[865]324 tsysCol_.attach(table_, "TSYS");
[805]325 cycleCol_.attach(table_,"CYCLENO");
326 scanCol_.attach(table_, "SCANNO");
327 beamCol_.attach(table_, "BEAMNO");
[847]328 ifCol_.attach(table_, "IFNO");
329 polCol_.attach(table_, "POLNO");
[805]330 integrCol_.attach(table_, "INTERVAL");
331 azCol_.attach(table_, "AZIMUTH");
332 elCol_.attach(table_, "ELEVATION");
333 dirCol_.attach(table_, "DIRECTION");
334 fldnCol_.attach(table_, "FIELDNAME");
335 rbeamCol_.attach(table_, "REFBEAMNO");
[455]336
[1730]337 mweatheridCol_.attach(table_,"WEATHER_ID");
[805]338 mfitidCol_.attach(table_,"FIT_ID");
339 mfreqidCol_.attach(table_, "FREQ_ID");
340 mtcalidCol_.attach(table_, "TCAL_ID");
341 mfocusidCol_.attach(table_, "FOCUS_ID");
342 mmolidCol_.attach(table_, "MOLECULE_ID");
[1819]343
344 //Add auxiliary column for row-based flagging (CAS-1433 Wataru Kawasaki)
345 attachAuxColumnDef(flagrowCol_, "FLAGROW", 0);
346
[455]347}
348
[1819]349template<class T, class T2>
350void Scantable::attachAuxColumnDef(ScalarColumn<T>& col,
351 const String& colName,
352 const T2& defValue)
353{
354 try {
355 col.attach(table_, colName);
356 } catch (TableError& err) {
357 String errMesg = err.getMesg();
358 if (errMesg == "Table column " + colName + " is unknown") {
359 table_.addColumn(ScalarColumnDesc<T>(colName));
360 col.attach(table_, colName);
361 col.fillColumn(static_cast<T>(defValue));
362 } else {
363 throw;
364 }
365 } catch (...) {
366 throw;
367 }
368}
369
370template<class T, class T2>
371void Scantable::attachAuxColumnDef(ArrayColumn<T>& col,
372 const String& colName,
373 const Array<T2>& defValue)
374{
375 try {
376 col.attach(table_, colName);
377 } catch (TableError& err) {
378 String errMesg = err.getMesg();
379 if (errMesg == "Table column " + colName + " is unknown") {
380 table_.addColumn(ArrayColumnDesc<T>(colName));
381 col.attach(table_, colName);
382
383 int size = 0;
384 ArrayIterator<T2>& it = defValue.begin();
385 while (it != defValue.end()) {
386 ++size;
387 ++it;
388 }
389 IPosition ip(1, size);
390 Array<T>& arr(ip);
391 for (int i = 0; i < size; ++i)
392 arr[i] = static_cast<T>(defValue[i]);
393
394 col.fillColumn(arr);
395 } else {
396 throw;
397 }
398 } catch (...) {
399 throw;
400 }
401}
402
[901]403void Scantable::setHeader(const STHeader& sdh)
[206]404{
[18]405 table_.rwKeywordSet().define("nIF", sdh.nif);
406 table_.rwKeywordSet().define("nBeam", sdh.nbeam);
407 table_.rwKeywordSet().define("nPol", sdh.npol);
408 table_.rwKeywordSet().define("nChan", sdh.nchan);
409 table_.rwKeywordSet().define("Observer", sdh.observer);
410 table_.rwKeywordSet().define("Project", sdh.project);
411 table_.rwKeywordSet().define("Obstype", sdh.obstype);
412 table_.rwKeywordSet().define("AntennaName", sdh.antennaname);
413 table_.rwKeywordSet().define("AntennaPosition", sdh.antennaposition);
414 table_.rwKeywordSet().define("Equinox", sdh.equinox);
415 table_.rwKeywordSet().define("FreqRefFrame", sdh.freqref);
416 table_.rwKeywordSet().define("FreqRefVal", sdh.reffreq);
417 table_.rwKeywordSet().define("Bandwidth", sdh.bandwidth);
418 table_.rwKeywordSet().define("UTC", sdh.utc);
[206]419 table_.rwKeywordSet().define("FluxUnit", sdh.fluxunit);
420 table_.rwKeywordSet().define("Epoch", sdh.epoch);
[905]421 table_.rwKeywordSet().define("POLTYPE", sdh.poltype);
[50]422}
[21]423
[901]424STHeader Scantable::getHeader() const
[206]425{
[901]426 STHeader sdh;
[21]427 table_.keywordSet().get("nBeam",sdh.nbeam);
428 table_.keywordSet().get("nIF",sdh.nif);
429 table_.keywordSet().get("nPol",sdh.npol);
430 table_.keywordSet().get("nChan",sdh.nchan);
431 table_.keywordSet().get("Observer", sdh.observer);
432 table_.keywordSet().get("Project", sdh.project);
433 table_.keywordSet().get("Obstype", sdh.obstype);
434 table_.keywordSet().get("AntennaName", sdh.antennaname);
435 table_.keywordSet().get("AntennaPosition", sdh.antennaposition);
436 table_.keywordSet().get("Equinox", sdh.equinox);
437 table_.keywordSet().get("FreqRefFrame", sdh.freqref);
438 table_.keywordSet().get("FreqRefVal", sdh.reffreq);
439 table_.keywordSet().get("Bandwidth", sdh.bandwidth);
440 table_.keywordSet().get("UTC", sdh.utc);
[206]441 table_.keywordSet().get("FluxUnit", sdh.fluxunit);
442 table_.keywordSet().get("Epoch", sdh.epoch);
[905]443 table_.keywordSet().get("POLTYPE", sdh.poltype);
[21]444 return sdh;
[18]445}
[805]446
[1360]447void Scantable::setSourceType( int stype )
[1068]448{
449 if ( stype < 0 || stype > 1 )
450 throw(AipsError("Illegal sourcetype."));
451 TableVector<Int> tabvec(table_, "SRCTYPE");
452 tabvec = Int(stype);
453}
454
[2818]455void Scantable::setSourceName( const std::string& name )
456{
457 TableVector<String> tabvec(table_, "SRCNAME");
458 tabvec = name;
459}
460
[845]461bool Scantable::conformant( const Scantable& other )
462{
463 return this->getHeader().conformant(other.getHeader());
464}
465
466
[50]467
[805]468std::string Scantable::formatSec(Double x) const
[206]469{
[105]470 Double xcop = x;
471 MVTime mvt(xcop/24./3600.); // make days
[365]472
[105]473 if (x < 59.95)
[281]474 return String(" ") + mvt.string(MVTime::TIME_CLEAN_NO_HM, 7)+"s";
[745]475 else if (x < 3599.95)
[281]476 return String(" ") + mvt.string(MVTime::TIME_CLEAN_NO_H,7)+" ";
477 else {
478 ostringstream oss;
479 oss << setw(2) << std::right << setprecision(1) << mvt.hour();
480 oss << ":" << mvt.string(MVTime::TIME_CLEAN_NO_H,7) << " ";
481 return String(oss);
[745]482 }
[105]483};
484
[805]485std::string Scantable::formatDirection(const MDirection& md) const
[281]486{
487 Vector<Double> t = md.getAngle(Unit(String("rad"))).getValue();
488 Int prec = 7;
489
[2575]490 String ref = md.getRefString();
[281]491 MVAngle mvLon(t[0]);
492 String sLon = mvLon.string(MVAngle::TIME,prec);
[987]493 uInt tp = md.getRef().getType();
494 if (tp == MDirection::GALACTIC ||
495 tp == MDirection::SUPERGAL ) {
496 sLon = mvLon(0.0).string(MVAngle::ANGLE_CLEAN,prec);
497 }
[281]498 MVAngle mvLat(t[1]);
499 String sLat = mvLat.string(MVAngle::ANGLE+MVAngle::DIG2,prec);
[2575]500 return ref + String(" ") + sLon + String(" ") + sLat;
[281]501}
502
503
[805]504std::string Scantable::getFluxUnit() const
[206]505{
[847]506 return table_.keywordSet().asString("FluxUnit");
[206]507}
508
[805]509void Scantable::setFluxUnit(const std::string& unit)
[218]510{
511 String tmp(unit);
512 Unit tU(tmp);
513 if (tU==Unit("K") || tU==Unit("Jy")) {
514 table_.rwKeywordSet().define(String("FluxUnit"), tmp);
515 } else {
516 throw AipsError("Illegal unit - must be compatible with Jy or K");
517 }
518}
519
[805]520void Scantable::setInstrument(const std::string& name)
[236]521{
[805]522 bool throwIt = true;
[996]523 // create an Instrument to see if this is valid
524 STAttr::convertInstrument(name, throwIt);
[236]525 String nameU(name);
526 nameU.upcase();
527 table_.rwKeywordSet().define(String("AntennaName"), nameU);
528}
529
[1189]530void Scantable::setFeedType(const std::string& feedtype)
531{
532 if ( Scantable::factories_.find(feedtype) == Scantable::factories_.end() ) {
533 std::string msg = "Illegal feed type "+ feedtype;
534 throw(casa::AipsError(msg));
535 }
536 table_.rwKeywordSet().define(String("POLTYPE"), feedtype);
537}
538
[1743]539MPosition Scantable::getAntennaPosition() const
[805]540{
541 Vector<Double> antpos;
542 table_.keywordSet().get("AntennaPosition", antpos);
543 MVPosition mvpos(antpos(0),antpos(1),antpos(2));
544 return MPosition(mvpos);
545}
[281]546
[805]547void Scantable::makePersistent(const std::string& filename)
548{
549 String inname(filename);
550 Path path(inname);
[1111]551 /// @todo reindex SCANNO, recompute nbeam, nif, npol
[805]552 inname = path.expandedName();
[2030]553 // 2011/03/04 TN
554 // We can comment out this workaround since the essential bug is
555 // fixed in casacore (r20889 in google code).
556 table_.deepCopy(inname, Table::New);
557// // WORKAROUND !!! for Table bug
558// // Remove when fixed in casacore
559// if ( table_.tableType() == Table::Memory && !selector_.empty() ) {
560// Table tab = table_.copyToMemoryTable(generateName());
561// tab.deepCopy(inname, Table::New);
562// tab.markForDelete();
563//
564// } else {
565// table_.deepCopy(inname, Table::New);
566// }
[805]567}
568
[837]569int Scantable::nbeam( int scanno ) const
[805]570{
571 if ( scanno < 0 ) {
572 Int n;
573 table_.keywordSet().get("nBeam",n);
574 return int(n);
[105]575 } else {
[805]576 // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
[888]577 Table t = table_(table_.col("SCANNO") == scanno);
578 ROTableRow row(t);
579 const TableRecord& rec = row.get(0);
580 Table subt = t( t.col("IFNO") == Int(rec.asuInt("IFNO"))
581 && t.col("POLNO") == Int(rec.asuInt("POLNO"))
582 && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
583 ROTableVector<uInt> v(subt, "BEAMNO");
[805]584 return int(v.nelements());
[105]585 }
[805]586 return 0;
587}
[455]588
[837]589int Scantable::nif( int scanno ) const
[805]590{
591 if ( scanno < 0 ) {
592 Int n;
593 table_.keywordSet().get("nIF",n);
594 return int(n);
595 } else {
596 // take the first POLNO,BEAMNO,CYCLENO as nbeam shouldn't vary with these
[888]597 Table t = table_(table_.col("SCANNO") == scanno);
598 ROTableRow row(t);
599 const TableRecord& rec = row.get(0);
600 Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
601 && t.col("POLNO") == Int(rec.asuInt("POLNO"))
602 && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
603 if ( subt.nrow() == 0 ) return 0;
604 ROTableVector<uInt> v(subt, "IFNO");
[805]605 return int(v.nelements());
[2]606 }
[805]607 return 0;
608}
[321]609
[837]610int Scantable::npol( int scanno ) const
[805]611{
612 if ( scanno < 0 ) {
613 Int n;
614 table_.keywordSet().get("nPol",n);
615 return n;
616 } else {
617 // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
[888]618 Table t = table_(table_.col("SCANNO") == scanno);
619 ROTableRow row(t);
620 const TableRecord& rec = row.get(0);
621 Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
622 && t.col("IFNO") == Int(rec.asuInt("IFNO"))
623 && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
624 if ( subt.nrow() == 0 ) return 0;
625 ROTableVector<uInt> v(subt, "POLNO");
[805]626 return int(v.nelements());
[321]627 }
[805]628 return 0;
[2]629}
[805]630
[845]631int Scantable::ncycle( int scanno ) const
[206]632{
[805]633 if ( scanno < 0 ) {
[837]634 Block<String> cols(2);
635 cols[0] = "SCANNO";
636 cols[1] = "CYCLENO";
637 TableIterator it(table_, cols);
638 int n = 0;
639 while ( !it.pastEnd() ) {
640 ++n;
[902]641 ++it;
[837]642 }
643 return n;
[805]644 } else {
[888]645 Table t = table_(table_.col("SCANNO") == scanno);
646 ROTableRow row(t);
647 const TableRecord& rec = row.get(0);
648 Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
649 && t.col("POLNO") == Int(rec.asuInt("POLNO"))
650 && t.col("IFNO") == Int(rec.asuInt("IFNO")) );
651 if ( subt.nrow() == 0 ) return 0;
652 return int(subt.nrow());
[805]653 }
654 return 0;
[18]655}
[455]656
657
[845]658int Scantable::nrow( int scanno ) const
[805]659{
[845]660 return int(table_.nrow());
661}
662
663int Scantable::nchan( int ifno ) const
664{
665 if ( ifno < 0 ) {
[805]666 Int n;
667 table_.keywordSet().get("nChan",n);
668 return int(n);
669 } else {
[1360]670 // take the first SCANNO,POLNO,BEAMNO,CYCLENO as nbeam shouldn't
671 // vary with these
[2244]672 Table t = table_(table_.col("IFNO") == ifno, 1);
[888]673 if ( t.nrow() == 0 ) return 0;
674 ROArrayColumn<Float> v(t, "SPECTRA");
[923]675 return v.shape(0)(0);
[805]676 }
677 return 0;
[18]678}
[455]679
[1111]680int Scantable::nscan() const {
681 Vector<uInt> scannos(scanCol_.getColumn());
[1148]682 uInt nout = genSort( scannos, Sort::Ascending,
[1111]683 Sort::QuickSort|Sort::NoDuplicates );
684 return int(nout);
685}
686
[923]687int Scantable::getChannels(int whichrow) const
688{
689 return specCol_.shape(whichrow)(0);
690}
[847]691
692int Scantable::getBeam(int whichrow) const
693{
694 return beamCol_(whichrow);
695}
696
[1694]697std::vector<uint> Scantable::getNumbers(const ScalarColumn<uInt>& col) const
[1111]698{
699 Vector<uInt> nos(col.getColumn());
[1148]700 uInt n = genSort( nos, Sort::Ascending, Sort::QuickSort|Sort::NoDuplicates );
701 nos.resize(n, True);
[1111]702 std::vector<uint> stlout;
703 nos.tovector(stlout);
704 return stlout;
705}
706
[847]707int Scantable::getIF(int whichrow) const
708{
709 return ifCol_(whichrow);
710}
711
712int Scantable::getPol(int whichrow) const
713{
714 return polCol_(whichrow);
715}
716
[805]717std::string Scantable::formatTime(const MEpoch& me, bool showdate) const
718{
[1947]719 return formatTime(me, showdate, 0);
720}
721
722std::string Scantable::formatTime(const MEpoch& me, bool showdate, uInt prec) const
723{
[805]724 MVTime mvt(me.getValue());
725 if (showdate)
[1947]726 //mvt.setFormat(MVTime::YMD);
727 mvt.setFormat(MVTime::YMD, prec);
[805]728 else
[1947]729 //mvt.setFormat(MVTime::TIME);
730 mvt.setFormat(MVTime::TIME, prec);
[805]731 ostringstream oss;
732 oss << mvt;
733 return String(oss);
734}
[488]735
[805]736void Scantable::calculateAZEL()
[2658]737{
738 LogIO os( LogOrigin( "Scantable", "calculateAZEL()", WHERE ) ) ;
[805]739 MPosition mp = getAntennaPosition();
740 MEpoch::ROScalarColumn timeCol(table_, "TIME");
741 ostringstream oss;
[2658]742 oss << mp;
743 os << "Computed azimuth/elevation using " << endl
744 << String(oss) << endl;
[996]745 for (Int i=0; i<nrow(); ++i) {
[805]746 MEpoch me = timeCol(i);
[987]747 MDirection md = getDirection(i);
[2658]748 os << " Time: " << formatTime(me,False)
749 << " Direction: " << formatDirection(md)
[805]750 << endl << " => ";
751 MeasFrame frame(mp, me);
752 Vector<Double> azel =
753 MDirection::Convert(md, MDirection::Ref(MDirection::AZEL,
754 frame)
755 )().getAngle("rad").getValue();
[923]756 azCol_.put(i,Float(azel[0]));
757 elCol_.put(i,Float(azel[1]));
[2658]758 os << "azel: " << azel[0]/C::pi*180.0 << " "
759 << azel[1]/C::pi*180.0 << " (deg)" << LogIO::POST;
[16]760 }
[805]761}
[89]762
[1819]763void Scantable::clip(const Float uthres, const Float dthres, bool clipoutside, bool unflag)
764{
[2947]765 Vector<uInt> flagrow = flagrowCol_.getColumn();
[1819]766 for (uInt i=0; i<table_.nrow(); ++i) {
[2947]767 // apply flag only when specified row is vaild
768 if (flagrow[i] == 0) {
769 Vector<uChar> flgs = flagsCol_(i);
770 srchChannelsToClip(i, uthres, dthres, clipoutside, unflag, flgs);
771 flagsCol_.put(i, flgs);
772 }
[1819]773 }
774}
775
776std::vector<bool> Scantable::getClipMask(int whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag)
777{
778 Vector<uChar> flags;
779 flagsCol_.get(uInt(whichrow), flags);
780 srchChannelsToClip(uInt(whichrow), uthres, dthres, clipoutside, unflag, flags);
781 Vector<Bool> bflag(flags.shape());
782 convertArray(bflag, flags);
783 //bflag = !bflag;
784
785 std::vector<bool> mask;
786 bflag.tovector(mask);
787 return mask;
788}
789
790void Scantable::srchChannelsToClip(uInt whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag,
791 Vector<uChar> flgs)
792{
793 Vector<Float> spcs = specCol_(whichrow);
[2348]794 uInt nchannel = spcs.nelements();
[1819]795 if (spcs.nelements() != nchannel) {
796 throw(AipsError("Data has incorrect number of channels"));
797 }
798 uChar userflag = 1 << 7;
799 if (unflag) {
800 userflag = 0 << 7;
801 }
802 if (clipoutside) {
803 for (uInt j = 0; j < nchannel; ++j) {
804 Float spc = spcs(j);
805 if ((spc >= uthres) || (spc <= dthres)) {
806 flgs(j) = userflag;
807 }
808 }
809 } else {
810 for (uInt j = 0; j < nchannel; ++j) {
811 Float spc = spcs(j);
812 if ((spc < uthres) && (spc > dthres)) {
813 flgs(j) = userflag;
814 }
815 }
816 }
817}
818
[1994]819
820void Scantable::flag( int whichrow, const std::vector<bool>& msk, bool unflag ) {
[1333]821 std::vector<bool>::const_iterator it;
822 uInt ntrue = 0;
[1994]823 if (whichrow >= int(table_.nrow()) ) {
824 throw(AipsError("Invalid row number"));
825 }
[1333]826 for (it = msk.begin(); it != msk.end(); ++it) {
827 if ( *it ) {
828 ntrue++;
829 }
830 }
[1994]831 //if ( selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
832 if ( whichrow == -1 && !unflag && selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
[1000]833 throw(AipsError("Trying to flag whole scantable."));
[1994]834 uChar userflag = 1 << 7;
835 if ( unflag ) {
836 userflag = 0 << 7;
837 }
838 if (whichrow > -1 ) {
[2947]839 // apply flag only when specified row is vaild
840 if (flagrowCol_(whichrow) == 0) {
841 applyChanFlag(uInt(whichrow), msk, userflag);
842 }
[1994]843 } else {
[2948]844 Vector<uInt> flagrow = flagrowCol_.getColumn();
[1000]845 for ( uInt i=0; i<table_.nrow(); ++i) {
[2947]846 // apply flag only when specified row is vaild
[2948]847 if (flagrow[i] == 0) {
[2947]848 applyChanFlag(i, msk, userflag);
849 }
[1000]850 }
[1994]851 }
852}
853
854void Scantable::applyChanFlag( uInt whichrow, const std::vector<bool>& msk, uChar flagval )
855{
856 if (whichrow >= table_.nrow() ) {
857 throw( casa::indexError<int>( whichrow, "asap::Scantable::applyChanFlag: Invalid row number" ) );
858 }
859 Vector<uChar> flgs = flagsCol_(whichrow);
860 if ( msk.size() == 0 ) {
861 flgs = flagval;
862 flagsCol_.put(whichrow, flgs);
[1000]863 return;
864 }
[2348]865 if ( int(msk.size()) != nchan( getIF(whichrow) ) ) {
[1000]866 throw(AipsError("Mask has incorrect number of channels."));
867 }
[1994]868 if ( flgs.nelements() != msk.size() ) {
869 throw(AipsError("Mask has incorrect number of channels."
870 " Probably varying with IF. Please flag per IF"));
871 }
872 std::vector<bool>::const_iterator it;
873 uInt j = 0;
874 for (it = msk.begin(); it != msk.end(); ++it) {
875 if ( *it ) {
876 flgs(j) = flagval;
[1000]877 }
[1994]878 ++j;
[1000]879 }
[1994]880 flagsCol_.put(whichrow, flgs);
[865]881}
882
[1819]883void Scantable::flagRow(const std::vector<uInt>& rows, bool unflag)
884{
[2683]885 if (selector_.empty() && (rows.size() == table_.nrow()) && !unflag)
[1819]886 throw(AipsError("Trying to flag whole scantable."));
887
888 uInt rowflag = (unflag ? 0 : 1);
889 std::vector<uInt>::const_iterator it;
890 for (it = rows.begin(); it != rows.end(); ++it)
891 flagrowCol_.put(*it, rowflag);
892}
893
[805]894std::vector<bool> Scantable::getMask(int whichrow) const
895{
896 Vector<uChar> flags;
897 flagsCol_.get(uInt(whichrow), flags);
898 Vector<Bool> bflag(flags.shape());
899 convertArray(bflag, flags);
900 bflag = !bflag;
901 std::vector<bool> mask;
902 bflag.tovector(mask);
903 return mask;
904}
[89]905
[896]906std::vector<float> Scantable::getSpectrum( int whichrow,
[902]907 const std::string& poltype ) const
[805]908{
[2658]909 LogIO os( LogOrigin( "Scantable", "getSpectrum()", WHERE ) ) ;
910
[905]911 String ptype = poltype;
912 if (poltype == "" ) ptype = getPolType();
[902]913 if ( whichrow < 0 || whichrow >= nrow() )
914 throw(AipsError("Illegal row number."));
[896]915 std::vector<float> out;
[805]916 Vector<Float> arr;
[896]917 uInt requestedpol = polCol_(whichrow);
918 String basetype = getPolType();
[905]919 if ( ptype == basetype ) {
[896]920 specCol_.get(whichrow, arr);
921 } else {
[1598]922 CountedPtr<STPol> stpol(STPol::getPolClass(Scantable::factories_,
[1586]923 basetype));
[1334]924 uInt row = uInt(whichrow);
925 stpol->setSpectra(getPolMatrix(row));
[2047]926 Float fang,fhand;
[1586]927 fang = focusTable_.getTotalAngle(mfocusidCol_(row));
[1334]928 fhand = focusTable_.getFeedHand(mfocusidCol_(row));
[1586]929 stpol->setPhaseCorrections(fang, fhand);
[1334]930 arr = stpol->getSpectrum(requestedpol, ptype);
[896]931 }
[902]932 if ( arr.nelements() == 0 )
[2658]933
934 os << "Not enough polarisations present to do the conversion."
935 << LogIO::POST;
[805]936 arr.tovector(out);
937 return out;
[89]938}
[212]939
[1360]940void Scantable::setSpectrum( const std::vector<float>& spec,
[884]941 int whichrow )
942{
943 Vector<Float> spectrum(spec);
944 Vector<Float> arr;
945 specCol_.get(whichrow, arr);
946 if ( spectrum.nelements() != arr.nelements() )
[896]947 throw AipsError("The spectrum has incorrect number of channels.");
[884]948 specCol_.put(whichrow, spectrum);
949}
950
951
[805]952String Scantable::generateName()
[745]953{
[805]954 return (File::newUniqueName("./","temp")).baseName();
[212]955}
956
[805]957const casa::Table& Scantable::table( ) const
[212]958{
[805]959 return table_;
[212]960}
961
[805]962casa::Table& Scantable::table( )
[386]963{
[805]964 return table_;
[386]965}
966
[896]967std::string Scantable::getPolType() const
968{
969 return table_.keywordSet().asString("POLTYPE");
970}
971
[805]972void Scantable::unsetSelection()
[380]973{
[805]974 table_ = originalTable_;
[847]975 attach();
[805]976 selector_.reset();
[380]977}
[386]978
[805]979void Scantable::setSelection( const STSelector& selection )
[430]980{
[805]981 Table tab = const_cast<STSelector&>(selection).apply(originalTable_);
982 if ( tab.nrow() == 0 ) {
983 throw(AipsError("Selection contains no data. Not applying it."));
984 }
985 table_ = tab;
[847]986 attach();
[2084]987// tab.rwKeywordSet().define("nBeam",(Int)(getBeamNos().size())) ;
988// vector<uint> selectedIFs = getIFNos() ;
989// Int newnIF = selectedIFs.size() ;
990// tab.rwKeywordSet().define("nIF",newnIF) ;
991// if ( newnIF != 0 ) {
992// Int newnChan = 0 ;
993// for ( Int i = 0 ; i < newnIF ; i++ ) {
994// Int nChan = nchan( selectedIFs[i] ) ;
995// if ( newnChan > nChan )
996// newnChan = nChan ;
997// }
998// tab.rwKeywordSet().define("nChan",newnChan) ;
999// }
1000// tab.rwKeywordSet().define("nPol",(Int)(getPolNos().size())) ;
[805]1001 selector_ = selection;
[430]1002}
1003
[2111]1004
[2163]1005std::string Scantable::headerSummary()
[447]1006{
[805]1007 // Format header info
[2111]1008// STHeader sdh;
1009// sdh = getHeader();
1010// sdh.print();
[805]1011 ostringstream oss;
1012 oss.flags(std::ios_base::left);
[2290]1013 String tmp;
1014 // Project
1015 table_.keywordSet().get("Project", tmp);
1016 oss << setw(15) << "Project:" << tmp << endl;
1017 // Observation date
1018 oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1019 // Observer
1020 oss << setw(15) << "Observer:"
1021 << table_.keywordSet().asString("Observer") << endl;
1022 // Antenna Name
1023 table_.keywordSet().get("AntennaName", tmp);
1024 oss << setw(15) << "Antenna Name:" << tmp << endl;
1025 // Obs type
1026 table_.keywordSet().get("Obstype", tmp);
1027 // Records (nrow)
1028 oss << setw(15) << "Data Records:" << table_.nrow() << " rows" << endl;
1029 oss << setw(15) << "Obs. Type:" << tmp << endl;
1030 // Beams, IFs, Polarizations, and Channels
[805]1031 oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1032 << setw(15) << "IFs:" << setw(4) << nif() << endl
[896]1033 << setw(15) << "Polarisations:" << setw(4) << npol()
1034 << "(" << getPolType() << ")" << endl
[1694]1035 << setw(15) << "Channels:" << nchan() << endl;
[2290]1036 // Flux unit
1037 table_.keywordSet().get("FluxUnit", tmp);
1038 oss << setw(15) << "Flux Unit:" << tmp << endl;
1039 // Abscissa Unit
1040 oss << setw(15) << "Abscissa:" << getAbcissaLabel(0) << endl;
1041 // Selection
1042 oss << selector_.print() << endl;
1043
1044 return String(oss);
1045}
1046
1047void Scantable::summary( const std::string& filename )
1048{
1049 ostringstream oss;
1050 ofstream ofs;
1051 LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1052
1053 if (filename != "")
1054 ofs.open( filename.c_str(), ios::out );
1055
1056 oss << endl;
1057 oss << asap::SEPERATOR << endl;
1058 oss << " Scan Table Summary" << endl;
1059 oss << asap::SEPERATOR << endl;
1060
1061 // Format header info
1062 oss << headerSummary();
1063 oss << endl;
1064
1065 if (table_.nrow() <= 0){
1066 oss << asap::SEPERATOR << endl;
1067 oss << "The MAIN table is empty: there are no data!!!" << endl;
1068 oss << asap::SEPERATOR << endl;
1069
1070 ols << String(oss) << LogIO::POST;
1071 if (ofs) {
1072 ofs << String(oss) << flush;
1073 ofs.close();
1074 }
1075 return;
1076 }
1077
1078
1079
1080 // main table
1081 String dirtype = "Position ("
1082 + getDirectionRefString()
1083 + ")";
1084 oss.flags(std::ios_base::left);
1085 oss << setw(5) << "Scan"
1086 << setw(15) << "Source"
1087 << setw(35) << "Time range"
1088 << setw(2) << "" << setw(7) << "Int[s]"
1089 << setw(7) << "Record"
1090 << setw(8) << "SrcType"
1091 << setw(8) << "FreqIDs"
1092 << setw(7) << "MolIDs" << endl;
1093 oss << setw(7)<< "" << setw(6) << "Beam"
1094 << setw(23) << dirtype << endl;
1095
1096 oss << asap::SEPERATOR << endl;
1097
1098 // Flush summary and clear up the string
1099 ols << String(oss) << LogIO::POST;
1100 if (ofs) ofs << String(oss) << flush;
1101 oss.str("");
1102 oss.clear();
1103
1104
1105 // Get Freq_ID map
1106 ROScalarColumn<uInt> ftabIds(frequencies().table(), "ID");
1107 Int nfid = ftabIds.nrow();
1108 if (nfid <= 0){
1109 oss << "FREQUENCIES subtable is empty: there are no data!!!" << endl;
1110 oss << asap::SEPERATOR << endl;
1111
1112 ols << String(oss) << LogIO::POST;
1113 if (ofs) {
1114 ofs << String(oss) << flush;
1115 ofs.close();
1116 }
1117 return;
1118 }
1119 // Storages of overall IFNO, POLNO, and nchan per FREQ_ID
1120 // the orders are identical to ID in FREQ subtable
1121 Block< Vector<uInt> > ifNos(nfid), polNos(nfid);
1122 Vector<Int> fIdchans(nfid,-1);
[2938]1123 Vector<Double> fIdfreq0(nfid,-1);
1124 Vector<Double> fIdfcent(nfid,-1);
[2290]1125 map<uInt, Int> fidMap; // (FREQ_ID, row # in FREQ subtable) pair
1126 for (Int i=0; i < nfid; i++){
1127 // fidMap[freqId] returns row number in FREQ subtable
1128 fidMap.insert(pair<uInt, Int>(ftabIds(i),i));
1129 ifNos[i] = Vector<uInt>();
1130 polNos[i] = Vector<uInt>();
1131 }
1132
1133 TableIterator iter(table_, "SCANNO");
1134
1135 // Vars for keeping track of time, freqids, molIds in a SCANNO
[2813]1136 //Vector<uInt> freqids;
1137 //Vector<uInt> molids;
[2290]1138 Vector<uInt> beamids(1,0);
1139 Vector<MDirection> beamDirs;
1140 Vector<Int> stypeids(1,0);
1141 Vector<String> stypestrs;
1142 Int nfreq(1);
1143 Int nmol(1);
1144 uInt nbeam(1);
1145 uInt nstype(1);
1146
1147 Double btime(0.0), etime(0.0);
1148 Double meanIntTim(0.0);
1149
1150 uInt currFreqId(0), ftabRow(0);
1151 Int iflen(0), pollen(0);
1152
1153 while (!iter.pastEnd()) {
1154 Table subt = iter.table();
1155 uInt snrow = subt.nrow();
1156 ROTableRow row(subt);
1157 const TableRecord& rec = row.get(0);
1158
1159 // relevant columns
1160 ROScalarColumn<Double> mjdCol(subt,"TIME");
1161 ROScalarColumn<Double> intervalCol(subt,"INTERVAL");
1162 MDirection::ROScalarColumn dirCol(subt,"DIRECTION");
1163
1164 ScalarColumn<uInt> freqIdCol(subt,"FREQ_ID");
1165 ScalarColumn<uInt> molIdCol(subt,"MOLECULE_ID");
1166 ROScalarColumn<uInt> beamCol(subt,"BEAMNO");
1167 ROScalarColumn<Int> stypeCol(subt,"SRCTYPE");
1168
1169 ROScalarColumn<uInt> ifNoCol(subt,"IFNO");
1170 ROScalarColumn<uInt> polNoCol(subt,"POLNO");
1171
1172
1173 // Times
1174 meanIntTim = sum(intervalCol.getColumn()) / (double) snrow;
1175 minMax(btime, etime, mjdCol.getColumn());
1176 etime += meanIntTim/C::day;
1177
1178 // MOLECULE_ID and FREQ_ID
[2813]1179 Vector<uInt> molids(getNumbers(molIdCol));
[2290]1180 molids.shape(nmol);
1181
[2813]1182 Vector<uInt> freqids(getNumbers(freqIdCol));
[2290]1183 freqids.shape(nfreq);
1184
1185 // Add first beamid, and srcNames
1186 beamids.resize(1,False);
1187 beamDirs.resize(1,False);
1188 beamids(0)=beamCol(0);
1189 beamDirs(0)=dirCol(0);
1190 nbeam = 1;
1191
1192 stypeids.resize(1,False);
1193 stypeids(0)=stypeCol(0);
1194 nstype = 1;
1195
1196 // Global listings of nchan/IFNO/POLNO per FREQ_ID
1197 currFreqId=freqIdCol(0);
1198 ftabRow = fidMap[currFreqId];
1199 // Assumes an identical number of channels per FREQ_ID
1200 if (fIdchans(ftabRow) < 0 ) {
1201 RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1202 fIdchans(ftabRow)=(*spec).shape()(0);
1203 }
[2938]1204 if (fIdfreq0(ftabRow) < 0 ) {
1205 SpectralCoordinate spc = frequencies().getSpectralCoordinate(ftabRow);
1206 Double fs, fe;
1207 spc.toWorld(fs, 0);
1208 spc.toWorld(fe, fIdchans(ftabRow)-1);
1209 fIdfreq0(ftabRow) = fs;
1210 fIdfcent(ftabRow) = 0.5 * ( fs + fe );
1211 }
[2290]1212 // Should keep ifNos and polNos form the previous SCANNO
1213 if ( !anyEQ(ifNos[ftabRow],ifNoCol(0)) ) {
1214 ifNos[ftabRow].shape(iflen);
1215 iflen++;
1216 ifNos[ftabRow].resize(iflen,True);
1217 ifNos[ftabRow](iflen-1) = ifNoCol(0);
1218 }
1219 if ( !anyEQ(polNos[ftabRow],polNoCol(0)) ) {
1220 polNos[ftabRow].shape(pollen);
1221 pollen++;
1222 polNos[ftabRow].resize(pollen,True);
1223 polNos[ftabRow](pollen-1) = polNoCol(0);
1224 }
1225
1226 for (uInt i=1; i < snrow; i++){
1227 // Need to list BEAMNO and DIRECTION in the same order
1228 if ( !anyEQ(beamids,beamCol(i)) ) {
1229 nbeam++;
1230 beamids.resize(nbeam,True);
1231 beamids(nbeam-1)=beamCol(i);
1232 beamDirs.resize(nbeam,True);
1233 beamDirs(nbeam-1)=dirCol(i);
1234 }
1235
1236 // SRCTYPE is Int (getNumber takes only uInt)
1237 if ( !anyEQ(stypeids,stypeCol(i)) ) {
1238 nstype++;
1239 stypeids.resize(nstype,True);
1240 stypeids(nstype-1)=stypeCol(i);
1241 }
1242
1243 // Global listings of nchan/IFNO/POLNO per FREQ_ID
1244 currFreqId=freqIdCol(i);
1245 ftabRow = fidMap[currFreqId];
1246 if (fIdchans(ftabRow) < 0 ) {
1247 const TableRecord& rec = row.get(i);
1248 RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1249 fIdchans(ftabRow) = (*spec).shape()(0);
1250 }
[2938]1251 if (fIdfreq0(ftabRow) < 0 ) {
1252 SpectralCoordinate spc = frequencies().getSpectralCoordinate(ftabRow);
1253 Double fs, fe;
1254 spc.toWorld(fs, 0);
1255 spc.toWorld(fe, fIdchans(ftabRow)-1);
1256 fIdfreq0(ftabRow) = fs;
1257 fIdfcent(ftabRow) = 5.e-1 * ( fs + fe );
1258 }
[2290]1259 if ( !anyEQ(ifNos[ftabRow],ifNoCol(i)) ) {
1260 ifNos[ftabRow].shape(iflen);
1261 iflen++;
1262 ifNos[ftabRow].resize(iflen,True);
1263 ifNos[ftabRow](iflen-1) = ifNoCol(i);
1264 }
1265 if ( !anyEQ(polNos[ftabRow],polNoCol(i)) ) {
1266 polNos[ftabRow].shape(pollen);
1267 pollen++;
1268 polNos[ftabRow].resize(pollen,True);
1269 polNos[ftabRow](pollen-1) = polNoCol(i);
1270 }
1271 } // end of row iteration
1272
1273 stypestrs.resize(nstype,False);
1274 for (uInt j=0; j < nstype; j++)
1275 stypestrs(j) = SrcType::getName(stypeids(j));
1276
1277 // Format Scan summary
1278 oss << setw(4) << std::right << rec.asuInt("SCANNO")
1279 << std::left << setw(1) << ""
1280 << setw(15) << rec.asString("SRCNAME")
1281 << setw(21) << MVTime(btime).string(MVTime::YMD,7)
1282 << setw(3) << " - " << MVTime(etime).string(MVTime::TIME,7)
1283 << setw(3) << "" << setw(6) << meanIntTim << setw(1) << ""
1284 << std::right << setw(5) << snrow << setw(2) << ""
1285 << std::left << stypestrs << setw(1) << ""
1286 << freqids << setw(1) << ""
1287 << molids << endl;
1288 // Format Beam summary
1289 for (uInt j=0; j < nbeam; j++) {
1290 oss << setw(7) << "" << setw(6) << beamids(j) << setw(1) << ""
1291 << formatDirection(beamDirs(j)) << endl;
1292 }
1293 // Flush summary every scan and clear up the string
1294 ols << String(oss) << LogIO::POST;
1295 if (ofs) ofs << String(oss) << flush;
1296 oss.str("");
1297 oss.clear();
1298
1299 ++iter;
1300 } // end of scan iteration
1301 oss << asap::SEPERATOR << endl;
1302
1303 // List FRECUENCIES Table (using STFrequencies.print may be slow)
1304 oss << "FREQUENCIES: " << nfreq << endl;
[2938]1305// oss << std::right << setw(5) << "ID" << setw(2) << ""
1306// << std::left << setw(5) << "IFNO" << setw(2) << ""
1307// << setw(8) << "Frame"
1308// << setw(16) << "RefVal"
1309// << setw(7) << "RefPix"
1310// << setw(15) << "Increment"
1311// << setw(9) << "Channels"
1312// << setw(6) << "POLNOs" << endl;
1313// Int tmplen;
1314// for (Int i=0; i < nfid; i++){
1315// // List row=i of FREQUENCIES subtable
1316// ifNos[i].shape(tmplen);
1317// if (tmplen >= 1) {
1318// oss << std::right << setw(5) << ftabIds(i) << setw(2) << ""
1319// << setw(3) << ifNos[i](0) << setw(1) << ""
1320// << std::left << setw(46) << frequencies().print(ftabIds(i))
1321// << setw(2) << ""
1322// << std::right << setw(8) << fIdchans[i] << setw(2) << ""
1323// << std::left << polNos[i];
1324// if (tmplen > 1) {
1325// oss << " (" << tmplen << " chains)";
1326// }
1327// oss << endl;
1328// }
1329 oss << std::right << setw(4) << "ID" << setw(2) << ""
1330 << std::left << setw(9) << "IFNO(SPW)" << setw(2) << ""
1331 << setw(8) << "#Chans"
[2290]1332 << setw(8) << "Frame"
[2938]1333 << setw(12) << "Ch0[MHz]"
1334 << setw(14) << "ChanWid[kHz]"
1335 << setw(14) << "Center[MHz]"
[2290]1336 << setw(6) << "POLNOs" << endl;
1337 Int tmplen;
1338 for (Int i=0; i < nfid; i++){
1339 // List row=i of FREQUENCIES subtable
1340 ifNos[i].shape(tmplen);
[2938]1341 Double refpix, refval, increment ;
[2531]1342 if (tmplen >= 1) {
[2938]1343 freqTable_.getEntry( refpix, refval, increment, ftabIds(i) ) ;
1344 oss << std::right << setw(4) << ftabIds(i) << setw(2) << ""
1345 << std::left << setw(9) << ifNos[i](0) << setw(2) << ""
1346 << std::right << setw(6) << fIdchans[i] << setw(2) << ""
1347 << setw(6) << frequencies().getFrameString(true)
1348 << setw(2) << ""
1349 << setw(10) << std::setprecision(9) << (fIdfreq0[i]*1.e-6) << setw(2) << ""
1350 << setw(12) << (increment*1.e-3) << setw(2) << ""
1351 << setw(12) << (fIdfcent[i]*1.e-6) << setw(2) << ""
[2531]1352 << std::left << polNos[i];
1353 if (tmplen > 1) {
1354 oss << " (" << tmplen << " chains)";
1355 }
1356 oss << endl;
[2290]1357 }
[2531]1358
[2290]1359 }
1360 oss << asap::SEPERATOR << endl;
1361
1362 // List MOLECULES Table (currently lists all rows)
1363 oss << "MOLECULES: " << endl;
1364 if (molecules().nrow() <= 0) {
1365 oss << " MOLECULES subtable is empty: there are no data" << endl;
1366 } else {
1367 ROTableRow row(molecules().table());
1368 oss << std::right << setw(5) << "ID"
1369 << std::left << setw(3) << ""
1370 << setw(18) << "RestFreq"
1371 << setw(15) << "Name" << endl;
1372 for (Int i=0; i < molecules().nrow(); i++){
1373 const TableRecord& rec=row.get(i);
1374 oss << std::right << setw(5) << rec.asuInt("ID")
1375 << std::left << setw(3) << ""
1376 << rec.asArrayDouble("RESTFREQUENCY") << setw(1) << ""
1377 << rec.asArrayString("NAME") << endl;
1378 }
1379 }
1380 oss << asap::SEPERATOR << endl;
1381 ols << String(oss) << LogIO::POST;
1382 if (ofs) {
1383 ofs << String(oss) << flush;
1384 ofs.close();
1385 }
1386 // return String(oss);
1387}
1388
1389
1390std::string Scantable::oldheaderSummary()
1391{
1392 // Format header info
1393// STHeader sdh;
1394// sdh = getHeader();
1395// sdh.print();
1396 ostringstream oss;
1397 oss.flags(std::ios_base::left);
1398 oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1399 << setw(15) << "IFs:" << setw(4) << nif() << endl
1400 << setw(15) << "Polarisations:" << setw(4) << npol()
1401 << "(" << getPolType() << ")" << endl
1402 << setw(15) << "Channels:" << nchan() << endl;
[805]1403 String tmp;
[860]1404 oss << setw(15) << "Observer:"
1405 << table_.keywordSet().asString("Observer") << endl;
[805]1406 oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1407 table_.keywordSet().get("Project", tmp);
1408 oss << setw(15) << "Project:" << tmp << endl;
1409 table_.keywordSet().get("Obstype", tmp);
1410 oss << setw(15) << "Obs. Type:" << tmp << endl;
1411 table_.keywordSet().get("AntennaName", tmp);
1412 oss << setw(15) << "Antenna Name:" << tmp << endl;
1413 table_.keywordSet().get("FluxUnit", tmp);
1414 oss << setw(15) << "Flux Unit:" << tmp << endl;
[1819]1415 int nid = moleculeTable_.nrow();
1416 Bool firstline = True;
[805]1417 oss << setw(15) << "Rest Freqs:";
[1819]1418 for (int i=0; i<nid; i++) {
[2244]1419 Table t = table_(table_.col("MOLECULE_ID") == i, 1);
[1819]1420 if (t.nrow() > 0) {
1421 Vector<Double> vec(moleculeTable_.getRestFrequency(i));
1422 if (vec.nelements() > 0) {
1423 if (firstline) {
1424 oss << setprecision(10) << vec << " [Hz]" << endl;
1425 firstline=False;
1426 }
1427 else{
1428 oss << setw(15)<<" " << setprecision(10) << vec << " [Hz]" << endl;
1429 }
1430 } else {
1431 oss << "none" << endl;
1432 }
1433 }
[805]1434 }
[941]1435
1436 oss << setw(15) << "Abcissa:" << getAbcissaLabel(0) << endl;
[805]1437 oss << selector_.print() << endl;
[2111]1438 return String(oss);
1439}
1440
[2286]1441 //std::string Scantable::summary( const std::string& filename )
[2290]1442void Scantable::oldsummary( const std::string& filename )
[2111]1443{
1444 ostringstream oss;
[2286]1445 ofstream ofs;
1446 LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1447
1448 if (filename != "")
1449 ofs.open( filename.c_str(), ios::out );
1450
[805]1451 oss << endl;
[2111]1452 oss << asap::SEPERATOR << endl;
1453 oss << " Scan Table Summary" << endl;
1454 oss << asap::SEPERATOR << endl;
1455
1456 // Format header info
[2290]1457 oss << oldheaderSummary();
[2111]1458 oss << endl;
1459
[805]1460 // main table
1461 String dirtype = "Position ("
[987]1462 + getDirectionRefString()
[805]1463 + ")";
[2111]1464 oss.flags(std::ios_base::left);
[941]1465 oss << setw(5) << "Scan" << setw(15) << "Source"
[2005]1466 << setw(10) << "Time" << setw(18) << "Integration"
1467 << setw(15) << "Source Type" << endl;
[941]1468 oss << setw(5) << "" << setw(5) << "Beam" << setw(3) << "" << dirtype << endl;
[1694]1469 oss << setw(10) << "" << setw(3) << "IF" << setw(3) << ""
[805]1470 << setw(8) << "Frame" << setw(16)
[1694]1471 << "RefVal" << setw(10) << "RefPix" << setw(12) << "Increment"
1472 << setw(7) << "Channels"
1473 << endl;
[805]1474 oss << asap::SEPERATOR << endl;
[2286]1475
1476 // Flush summary and clear up the string
1477 ols << String(oss) << LogIO::POST;
1478 if (ofs) ofs << String(oss) << flush;
1479 oss.str("");
1480 oss.clear();
1481
[805]1482 TableIterator iter(table_, "SCANNO");
1483 while (!iter.pastEnd()) {
1484 Table subt = iter.table();
1485 ROTableRow row(subt);
1486 MEpoch::ROScalarColumn timeCol(subt,"TIME");
1487 const TableRecord& rec = row.get(0);
1488 oss << setw(4) << std::right << rec.asuInt("SCANNO")
1489 << std::left << setw(1) << ""
1490 << setw(15) << rec.asString("SRCNAME")
1491 << setw(10) << formatTime(timeCol(0), false);
1492 // count the cycles in the scan
1493 TableIterator cyciter(subt, "CYCLENO");
1494 int nint = 0;
1495 while (!cyciter.pastEnd()) {
1496 ++nint;
1497 ++cyciter;
1498 }
1499 oss << setw(3) << std::right << nint << setw(3) << " x " << std::left
[2005]1500 << setw(11) << formatSec(rec.asFloat("INTERVAL")) << setw(1) << ""
1501 << setw(15) << SrcType::getName(rec.asInt("SRCTYPE")) << endl;
[447]1502
[805]1503 TableIterator biter(subt, "BEAMNO");
1504 while (!biter.pastEnd()) {
1505 Table bsubt = biter.table();
1506 ROTableRow brow(bsubt);
1507 const TableRecord& brec = brow.get(0);
[1000]1508 uInt row0 = bsubt.rowNumbers(table_)[0];
[941]1509 oss << setw(5) << "" << setw(4) << std::right << brec.asuInt("BEAMNO")<< std::left;
[987]1510 oss << setw(4) << "" << formatDirection(getDirection(row0)) << endl;
[805]1511 TableIterator iiter(bsubt, "IFNO");
1512 while (!iiter.pastEnd()) {
1513 Table isubt = iiter.table();
1514 ROTableRow irow(isubt);
1515 const TableRecord& irec = irow.get(0);
[1694]1516 oss << setw(9) << "";
[941]1517 oss << setw(3) << std::right << irec.asuInt("IFNO") << std::left
[1694]1518 << setw(1) << "" << frequencies().print(irec.asuInt("FREQ_ID"))
1519 << setw(3) << "" << nchan(irec.asuInt("IFNO"))
[1375]1520 << endl;
[447]1521
[805]1522 ++iiter;
1523 }
1524 ++biter;
1525 }
[2286]1526 // Flush summary every scan and clear up the string
1527 ols << String(oss) << LogIO::POST;
1528 if (ofs) ofs << String(oss) << flush;
1529 oss.str("");
1530 oss.clear();
1531
[805]1532 ++iter;
[447]1533 }
[2286]1534 oss << asap::SEPERATOR << endl;
1535 ols << String(oss) << LogIO::POST;
1536 if (ofs) {
[2290]1537 ofs << String(oss) << flush;
[2286]1538 ofs.close();
1539 }
1540 // return String(oss);
[447]1541}
1542
[1947]1543// std::string Scantable::getTime(int whichrow, bool showdate) const
1544// {
1545// MEpoch::ROScalarColumn timeCol(table_, "TIME");
1546// MEpoch me;
1547// if (whichrow > -1) {
1548// me = timeCol(uInt(whichrow));
1549// } else {
1550// Double tm;
1551// table_.keywordSet().get("UTC",tm);
1552// me = MEpoch(MVEpoch(tm));
1553// }
1554// return formatTime(me, showdate);
1555// }
1556
1557std::string Scantable::getTime(int whichrow, bool showdate, uInt prec) const
[777]1558{
[805]1559 MEpoch me;
[1947]1560 me = getEpoch(whichrow);
1561 return formatTime(me, showdate, prec);
[777]1562}
[805]1563
[1411]1564MEpoch Scantable::getEpoch(int whichrow) const
1565{
1566 if (whichrow > -1) {
1567 return timeCol_(uInt(whichrow));
1568 } else {
1569 Double tm;
1570 table_.keywordSet().get("UTC",tm);
[1598]1571 return MEpoch(MVEpoch(tm));
[1411]1572 }
1573}
1574
[1068]1575std::string Scantable::getDirectionString(int whichrow) const
1576{
1577 return formatDirection(getDirection(uInt(whichrow)));
1578}
1579
[1598]1580
1581SpectralCoordinate Scantable::getSpectralCoordinate(int whichrow) const {
1582 const MPosition& mp = getAntennaPosition();
1583 const MDirection& md = getDirection(whichrow);
1584 const MEpoch& me = timeCol_(whichrow);
[1819]1585 //Double rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1586 Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
[2346]1587 return freqTable_.getSpectralCoordinate(md, mp, me, rf,
[1598]1588 mfreqidCol_(whichrow));
1589}
1590
[1360]1591std::vector< double > Scantable::getAbcissa( int whichrow ) const
[865]1592{
[1507]1593 if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal row number"));
[865]1594 std::vector<double> stlout;
1595 int nchan = specCol_(whichrow).nelements();
[2346]1596 String us = freqTable_.getUnitString();
[865]1597 if ( us == "" || us == "pixel" || us == "channel" ) {
1598 for (int i=0; i<nchan; ++i) {
1599 stlout.push_back(double(i));
1600 }
1601 return stlout;
1602 }
[1598]1603 SpectralCoordinate spc = getSpectralCoordinate(whichrow);
[865]1604 Vector<Double> pixel(nchan);
1605 Vector<Double> world;
1606 indgen(pixel);
1607 if ( Unit(us) == Unit("Hz") ) {
1608 for ( int i=0; i < nchan; ++i) {
1609 Double world;
1610 spc.toWorld(world, pixel[i]);
1611 stlout.push_back(double(world));
1612 }
1613 } else if ( Unit(us) == Unit("km/s") ) {
1614 Vector<Double> world;
1615 spc.pixelToVelocity(world, pixel);
1616 world.tovector(stlout);
1617 }
1618 return stlout;
1619}
[1360]1620void Scantable::setDirectionRefString( const std::string & refstr )
[987]1621{
1622 MDirection::Types mdt;
1623 if (refstr != "" && !MDirection::getType(mdt, refstr)) {
1624 throw(AipsError("Illegal Direction frame."));
1625 }
1626 if ( refstr == "" ) {
1627 String defaultstr = MDirection::showType(dirCol_.getMeasRef().getType());
1628 table_.rwKeywordSet().define("DIRECTIONREF", defaultstr);
1629 } else {
1630 table_.rwKeywordSet().define("DIRECTIONREF", String(refstr));
1631 }
1632}
[865]1633
[1360]1634std::string Scantable::getDirectionRefString( ) const
[987]1635{
1636 return table_.keywordSet().asString("DIRECTIONREF");
1637}
1638
1639MDirection Scantable::getDirection(int whichrow ) const
1640{
1641 String usertype = table_.keywordSet().asString("DIRECTIONREF");
1642 String type = MDirection::showType(dirCol_.getMeasRef().getType());
1643 if ( usertype != type ) {
1644 MDirection::Types mdt;
1645 if (!MDirection::getType(mdt, usertype)) {
1646 throw(AipsError("Illegal Direction frame."));
1647 }
1648 return dirCol_.convert(uInt(whichrow), mdt);
1649 } else {
1650 return dirCol_(uInt(whichrow));
1651 }
1652}
1653
[847]1654std::string Scantable::getAbcissaLabel( int whichrow ) const
1655{
[996]1656 if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal ro number"));
[847]1657 const MPosition& mp = getAntennaPosition();
[987]1658 const MDirection& md = getDirection(whichrow);
[847]1659 const MEpoch& me = timeCol_(whichrow);
[1819]1660 //const Double& rf = mmolidCol_(whichrow);
1661 const Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
[847]1662 SpectralCoordinate spc =
[2346]1663 freqTable_.getSpectralCoordinate(md, mp, me, rf, mfreqidCol_(whichrow));
[847]1664
1665 String s = "Channel";
[2346]1666 Unit u = Unit(freqTable_.getUnitString());
[847]1667 if (u == Unit("km/s")) {
[1170]1668 s = CoordinateUtil::axisLabel(spc, 0, True,True, True);
[847]1669 } else if (u == Unit("Hz")) {
1670 Vector<String> wau(1);wau = u.getName();
1671 spc.setWorldAxisUnits(wau);
[1170]1672 s = CoordinateUtil::axisLabel(spc, 0, True, True, False);
[847]1673 }
1674 return s;
1675
1676}
1677
[1819]1678/**
1679void asap::Scantable::setRestFrequencies( double rf, const std::string& name,
[1170]1680 const std::string& unit )
[1819]1681**/
1682void Scantable::setRestFrequencies( vector<double> rf, const vector<std::string>& name,
1683 const std::string& unit )
1684
[847]1685{
[923]1686 ///@todo lookup in line table to fill in name and formattedname
[847]1687 Unit u(unit);
[1819]1688 //Quantum<Double> urf(rf, u);
1689 Quantum<Vector<Double> >urf(rf, u);
1690 Vector<String> formattedname(0);
1691 //cerr<<"Scantable::setRestFrequnecies="<<urf<<endl;
1692
1693 //uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), name, "");
1694 uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), mathutil::toVectorString(name), formattedname);
[847]1695 TableVector<uInt> tabvec(table_, "MOLECULE_ID");
1696 tabvec = id;
1697}
1698
[1819]1699/**
1700void asap::Scantable::setRestFrequencies( const std::string& name )
[847]1701{
1702 throw(AipsError("setRestFrequencies( const std::string& name ) NYI"));
1703 ///@todo implement
1704}
[1819]1705**/
[2012]1706
[1819]1707void Scantable::setRestFrequencies( const vector<std::string>& name )
1708{
[2163]1709 (void) name; // suppress unused warning
[1819]1710 throw(AipsError("setRestFrequencies( const vector<std::string>& name ) NYI"));
1711 ///@todo implement
1712}
[847]1713
[1360]1714std::vector< unsigned int > Scantable::rownumbers( ) const
[852]1715{
1716 std::vector<unsigned int> stlout;
1717 Vector<uInt> vec = table_.rowNumbers();
1718 vec.tovector(stlout);
1719 return stlout;
1720}
1721
[865]1722
[1360]1723Matrix<Float> Scantable::getPolMatrix( uInt whichrow ) const
[896]1724{
1725 ROTableRow row(table_);
1726 const TableRecord& rec = row.get(whichrow);
1727 Table t =
1728 originalTable_( originalTable_.col("SCANNO") == Int(rec.asuInt("SCANNO"))
1729 && originalTable_.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1730 && originalTable_.col("IFNO") == Int(rec.asuInt("IFNO"))
1731 && originalTable_.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
1732 ROArrayColumn<Float> speccol(t, "SPECTRA");
1733 return speccol.getColumn();
1734}
[865]1735
[1360]1736std::vector< std::string > Scantable::columnNames( ) const
[902]1737{
1738 Vector<String> vec = table_.tableDesc().columnNames();
1739 return mathutil::tovectorstring(vec);
1740}
[896]1741
[1360]1742MEpoch::Types Scantable::getTimeReference( ) const
[915]1743{
1744 return MEpoch::castType(timeCol_.getMeasRef().getType());
[972]1745}
[915]1746
[1360]1747void Scantable::addFit( const STFitEntry& fit, int row )
[972]1748{
[1819]1749 //cout << mfitidCol_(uInt(row)) << endl;
1750 LogIO os( LogOrigin( "Scantable", "addFit()", WHERE ) ) ;
1751 os << mfitidCol_(uInt(row)) << LogIO::POST ;
[972]1752 uInt id = fitTable_.addEntry(fit, mfitidCol_(uInt(row)));
1753 mfitidCol_.put(uInt(row), id);
1754}
[915]1755
[1360]1756void Scantable::shift(int npix)
1757{
1758 Vector<uInt> fids(mfreqidCol_.getColumn());
1759 genSort( fids, Sort::Ascending,
1760 Sort::QuickSort|Sort::NoDuplicates );
1761 for (uInt i=0; i<fids.nelements(); ++i) {
[1567]1762 frequencies().shiftRefPix(npix, fids[i]);
[1360]1763 }
1764}
[987]1765
[1819]1766String Scantable::getAntennaName() const
[1391]1767{
1768 String out;
1769 table_.keywordSet().get("AntennaName", out);
[1987]1770 String::size_type pos1 = out.find("@") ;
1771 String::size_type pos2 = out.find("//") ;
1772 if ( pos2 != String::npos )
[2036]1773 out = out.substr(pos2+2,pos1-pos2-2) ;
[1987]1774 else if ( pos1 != String::npos )
1775 out = out.substr(0,pos1) ;
[1391]1776 return out;
[987]1777}
[1391]1778
[1730]1779int Scantable::checkScanInfo(const std::vector<int>& scanlist) const
[1391]1780{
1781 String tbpath;
1782 int ret = 0;
1783 if ( table_.keywordSet().isDefined("GBT_GO") ) {
1784 table_.keywordSet().get("GBT_GO", tbpath);
1785 Table t(tbpath,Table::Old);
1786 // check each scan if other scan of the pair exist
1787 int nscan = scanlist.size();
1788 for (int i = 0; i < nscan; i++) {
[2869]1789 Table subt = t( t.col("SCAN") == scanlist[i] );
[1391]1790 if (subt.nrow()==0) {
[1819]1791 //cerr <<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<endl;
1792 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1793 os <<LogIO::WARN<<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<LogIO::POST;
[1391]1794 ret = 1;
1795 break;
1796 }
1797 ROTableRow row(subt);
1798 const TableRecord& rec = row.get(0);
1799 int scan1seqn = rec.asuInt("PROCSEQN");
1800 int laston1 = rec.asuInt("LASTON");
1801 if ( rec.asuInt("PROCSIZE")==2 ) {
1802 if ( i < nscan-1 ) {
[2869]1803 Table subt2 = t( t.col("SCAN") == scanlist[i+1] );
[1391]1804 if ( subt2.nrow() == 0) {
[1819]1805 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1806
1807 //cerr<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<endl;
1808 os<<LogIO::WARN<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<LogIO::POST;
[1391]1809 ret = 1;
1810 break;
1811 }
1812 ROTableRow row2(subt2);
1813 const TableRecord& rec2 = row2.get(0);
1814 int scan2seqn = rec2.asuInt("PROCSEQN");
1815 int laston2 = rec2.asuInt("LASTON");
1816 if (scan1seqn == 1 && scan2seqn == 2) {
1817 if (laston1 == laston2) {
[1819]1818 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1819 //cerr<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1820 os<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
[1391]1821 i +=1;
1822 }
1823 else {
[1819]1824 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1825 //cerr<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1826 os<<LogIO::WARN<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
[1391]1827 }
1828 }
1829 else if (scan1seqn==2 && scan2seqn == 1) {
1830 if (laston1 == laston2) {
[1819]1831 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1832 //cerr<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<endl;
1833 os<<LogIO::WARN<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<LogIO::POST;
[1391]1834 ret = 1;
1835 break;
1836 }
1837 }
1838 else {
[1819]1839 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1840 //cerr<<"The other scan for "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<endl;
1841 os<<LogIO::WARN<<"The other scan for "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<LogIO::POST;
[1391]1842 ret = 1;
1843 break;
1844 }
1845 }
1846 }
1847 else {
[1819]1848 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1849 //cerr<<"The scan does not appear to be standard obsevation."<<endl;
1850 os<<LogIO::WARN<<"The scan does not appear to be standard obsevation."<<LogIO::POST;
[1391]1851 }
1852 //if ( i >= nscan ) break;
1853 }
1854 }
1855 else {
[1819]1856 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1857 //cerr<<"No reference to GBT_GO table."<<endl;
1858 os<<LogIO::WARN<<"No reference to GBT_GO table."<<LogIO::POST;
[1391]1859 ret = 1;
1860 }
1861 return ret;
1862}
1863
[1730]1864std::vector<double> Scantable::getDirectionVector(int whichrow) const
[1391]1865{
1866 Vector<Double> Dir = dirCol_(whichrow).getAngle("rad").getValue();
1867 std::vector<double> dir;
1868 Dir.tovector(dir);
1869 return dir;
1870}
1871
[1819]1872void asap::Scantable::reshapeSpectrum( int nmin, int nmax )
1873 throw( casa::AipsError )
1874{
1875 // assumed that all rows have same nChan
1876 Vector<Float> arr = specCol_( 0 ) ;
1877 int nChan = arr.nelements() ;
1878
1879 // if nmin < 0 or nmax < 0, nothing to do
1880 if ( nmin < 0 ) {
1881 throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1882 }
1883 if ( nmax < 0 ) {
1884 throw( casa::indexError<int>( nmax, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1885 }
1886
1887 // if nmin > nmax, exchange values
1888 if ( nmin > nmax ) {
1889 int tmp = nmax ;
1890 nmax = nmin ;
1891 nmin = tmp ;
1892 LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1893 os << "Swap values. Applied range is ["
1894 << nmin << ", " << nmax << "]" << LogIO::POST ;
1895 }
1896
1897 // if nmin exceeds nChan, nothing to do
1898 if ( nmin >= nChan ) {
1899 throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Specified minimum exceeds nChan." ) ) ;
1900 }
1901
1902 // if nmax exceeds nChan, reset nmax to nChan
[2672]1903 if ( nmax >= nChan-1 ) {
[1819]1904 if ( nmin == 0 ) {
1905 // nothing to do
1906 LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1907 os << "Whole range is selected. Nothing to do." << LogIO::POST ;
1908 return ;
1909 }
1910 else {
1911 LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1912 os << "Specified maximum exceeds nChan. Applied range is ["
1913 << nmin << ", " << nChan-1 << "]." << LogIO::POST ;
1914 nmax = nChan - 1 ;
1915 }
1916 }
1917
1918 // reshape specCol_ and flagCol_
1919 for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1920 reshapeSpectrum( nmin, nmax, irow ) ;
1921 }
1922
1923 // update FREQUENCIES subtable
[2908]1924 Vector<uInt> freqIdArray = mfreqidCol_.getColumn();
1925 uInt numFreqId = GenSort<uInt>::sort(freqIdArray, Sort::Ascending,
1926 Sort::HeapSort | Sort::NoDuplicates);
[1819]1927 Double refpix ;
1928 Double refval ;
1929 Double increment ;
[2908]1930 for (uInt irow = 0; irow < numFreqId; irow++) {
1931 freqTable_.getEntry( refpix, refval, increment, freqIdArray[irow] ) ;
[1819]1932 /***
1933 * need to shift refpix to nmin
1934 * note that channel nmin in old index will be channel 0 in new one
1935 ***/
1936 refval = refval - ( refpix - nmin ) * increment ;
1937 refpix = 0 ;
[2908]1938 freqTable_.setEntry( refpix, refval, increment, freqIdArray[irow] ) ;
[1819]1939 }
1940
1941 // update nchan
1942 int newsize = nmax - nmin + 1 ;
1943 table_.rwKeywordSet().define( "nChan", newsize ) ;
1944
1945 // update bandwidth
1946 // assumed all spectra in the scantable have same bandwidth
1947 table_.rwKeywordSet().define( "Bandwidth", increment * newsize ) ;
1948
1949 return ;
1950}
1951
1952void asap::Scantable::reshapeSpectrum( int nmin, int nmax, int irow )
1953{
1954 // reshape specCol_ and flagCol_
1955 Vector<Float> oldspec = specCol_( irow ) ;
1956 Vector<uChar> oldflag = flagsCol_( irow ) ;
[2475]1957 Vector<Float> oldtsys = tsysCol_( irow ) ;
[1819]1958 uInt newsize = nmax - nmin + 1 ;
[2475]1959 Slice slice( nmin, newsize, 1 ) ;
1960 specCol_.put( irow, oldspec( slice ) ) ;
1961 flagsCol_.put( irow, oldflag( slice ) ) ;
1962 if ( oldspec.size() == oldtsys.size() )
1963 tsysCol_.put( irow, oldtsys( slice ) ) ;
[1819]1964
1965 return ;
1966}
1967
[2435]1968void asap::Scantable::regridSpecChannel( double dnu, int nChan )
1969{
1970 LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1971 os << "Regrid abcissa with spectral resoultion " << dnu << " " << freqTable_.getUnitString() << " with channel number " << ((nChan>0)? String(nChan) : "covering band width")<< LogIO::POST ;
1972 int freqnrow = freqTable_.table().nrow() ;
1973 Vector<bool> firstTime( freqnrow, true ) ;
1974 double oldincr, factor;
1975 uInt currId;
1976 Double refpix ;
1977 Double refval ;
1978 Double increment ;
1979 for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1980 currId = mfreqidCol_(irow);
1981 vector<double> abcissa = getAbcissa( irow ) ;
1982 if (nChan < 0) {
1983 int oldsize = abcissa.size() ;
1984 double bw = (abcissa[oldsize-1]-abcissa[0]) + \
1985 0.5 * (abcissa[1]-abcissa[0] + abcissa[oldsize-1]-abcissa[oldsize-2]) ;
1986 nChan = int( ceil( abs(bw/dnu) ) ) ;
1987 }
1988 // actual regridding
1989 regridChannel( nChan, dnu, irow ) ;
[2433]1990
[2435]1991 // update FREQUENCIES subtable
1992 if (firstTime[currId]) {
1993 oldincr = abcissa[1]-abcissa[0] ;
1994 factor = dnu/oldincr ;
1995 firstTime[currId] = false ;
1996 freqTable_.getEntry( refpix, refval, increment, currId ) ;
[2463]1997
[2437]1998 //refval = refval - ( refpix + 0.5 * (1 - factor) ) * increment ;
[2463]1999 if (factor > 0 ) {
[2462]2000 refpix = (refpix + 0.5)/factor - 0.5;
2001 } else {
[2463]2002 refpix = (abcissa.size() - 0.5 - refpix)/abs(factor) - 0.5;
[2462]2003 }
[2435]2004 freqTable_.setEntry( refpix, refval, increment*factor, currId ) ;
[2463]2005 //os << "ID" << currId << ": channel width (Orig) = " << oldincr << " [" << freqTable_.getUnitString() << "], scale factor = " << factor << LogIO::POST ;
2006 //os << " frequency increment (Orig) = " << increment << "-> (New) " << increment*factor << LogIO::POST ;
[2435]2007 }
2008 }
2009}
2010
[1819]2011void asap::Scantable::regridChannel( int nChan, double dnu )
2012{
2013 LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
2014 os << "Regrid abcissa with channel number " << nChan << " and spectral resoultion " << dnu << "Hz." << LogIO::POST ;
2015 // assumed that all rows have same nChan
2016 Vector<Float> arr = specCol_( 0 ) ;
2017 int oldsize = arr.nelements() ;
2018
2019 // if oldsize == nChan, nothing to do
2020 if ( oldsize == nChan ) {
2021 os << "Specified channel number is same as current one. Nothing to do." << LogIO::POST ;
2022 return ;
2023 }
2024
2025 // if oldChan < nChan, unphysical operation
2026 if ( oldsize < nChan ) {
2027 os << "Unphysical operation. Nothing to do." << LogIO::POST ;
2028 return ;
2029 }
2030
[2433]2031 // change channel number for specCol_, flagCol_, and tsysCol_ (if necessary)
[1819]2032 vector<string> coordinfo = getCoordInfo() ;
2033 string oldinfo = coordinfo[0] ;
2034 coordinfo[0] = "Hz" ;
2035 setCoordInfo( coordinfo ) ;
2036 for ( int irow = 0 ; irow < nrow() ; irow++ ) {
2037 regridChannel( nChan, dnu, irow ) ;
2038 }
2039 coordinfo[0] = oldinfo ;
2040 setCoordInfo( coordinfo ) ;
2041
2042
2043 // NOTE: this method does not update metadata such as
2044 // FREQUENCIES subtable, nChan, Bandwidth, etc.
2045
2046 return ;
2047}
2048
2049void asap::Scantable::regridChannel( int nChan, double dnu, int irow )
2050{
2051 // logging
2052 //ofstream ofs( "average.log", std::ios::out | std::ios::app ) ;
2053 //ofs << "IFNO = " << getIF( irow ) << " irow = " << irow << endl ;
2054
2055 Vector<Float> oldspec = specCol_( irow ) ;
2056 Vector<uChar> oldflag = flagsCol_( irow ) ;
[2431]2057 Vector<Float> oldtsys = tsysCol_( irow ) ;
[1819]2058 Vector<Float> newspec( nChan, 0 ) ;
[2431]2059 Vector<uChar> newflag( nChan, true ) ;
2060 Vector<Float> newtsys ;
2061 bool regridTsys = false ;
2062 if (oldtsys.size() == oldspec.size()) {
2063 regridTsys = true ;
2064 newtsys.resize(nChan,false) ;
2065 newtsys = 0 ;
2066 }
[1819]2067
2068 // regrid
2069 vector<double> abcissa = getAbcissa( irow ) ;
2070 int oldsize = abcissa.size() ;
2071 double olddnu = abcissa[1] - abcissa[0] ;
[2462]2072 //int ichan = 0 ;
[1819]2073 double wsum = 0.0 ;
[2433]2074 Vector<double> zi( nChan+1 ) ;
2075 Vector<double> yi( oldsize + 1 ) ;
[1819]2076 yi[0] = abcissa[0] - 0.5 * olddnu ;
[2431]2077 for ( int ii = 1 ; ii < oldsize ; ii++ )
[2433]2078 yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2079 yi[oldsize] = abcissa[oldsize-1] \
2080 + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
[2462]2081 //zi[0] = abcissa[0] - 0.5 * olddnu ;
2082 zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2083 for ( int ii = 1 ; ii < nChan ; ii++ )
2084 zi[ii] = zi[0] + dnu * ii ;
2085 zi[nChan] = zi[nChan-1] + dnu ;
2086 // Access zi and yi in ascending order
2087 int izs = ((dnu > 0) ? 0 : nChan ) ;
2088 int ize = ((dnu > 0) ? nChan : 0 ) ;
2089 int izincr = ((dnu > 0) ? 1 : -1 ) ;
2090 int ichan = ((olddnu > 0) ? 0 : oldsize ) ;
2091 int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2092 int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2093 //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2094 int ii = izs ;
2095 while (ii != ize) {
2096 // always zl < zr
2097 double zl = zi[ii] ;
2098 double zr = zi[ii+izincr] ;
2099 // Need to access smaller index for the new spec, flag, and tsys.
2100 // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2101 int i = min(ii, ii+izincr) ;
2102 //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2103 int jj = ichan ;
2104 while (jj != iye) {
2105 // always yl < yr
2106 double yl = yi[jj] ;
2107 double yr = yi[jj+iyincr] ;
2108 // Need to access smaller index for the original spec, flag, and tsys.
2109 // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2110 int j = min(jj, jj+iyincr) ;
2111 if ( yr <= zl ) {
2112 jj += iyincr ;
2113 continue ;
[1819]2114 }
[2462]2115 else if ( yl <= zl ) {
2116 if ( yr < zr ) {
2117 if (!oldflag[j]) {
2118 newspec[i] += oldspec[j] * ( yr - zl ) ;
2119 if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2120 wsum += ( yr - zl ) ;
2121 }
[2950]2122 newflag[i] = (newflag[i] && oldflag[j]) ? 1 << 7 : 0 ;
[2462]2123 }
2124 else {
2125 if (!oldflag[j]) {
2126 newspec[i] += oldspec[j] * abs(dnu) ;
2127 if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2128 wsum += abs(dnu) ;
2129 }
[2950]2130 newflag[i] = (newflag[i] && oldflag[j]) ? 1 << 7 : 0 ;
[2462]2131 ichan = jj ;
2132 break ;
2133 }
[2431]2134 }
[2462]2135 else if ( yl < zr ) {
2136 if ( yr <= zr ) {
2137 if (!oldflag[j]) {
2138 newspec[i] += oldspec[j] * ( yr - yl ) ;
2139 if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2140 wsum += ( yr - yl ) ;
2141 }
[2950]2142 newflag[i] = (newflag[i] && oldflag[j]) ? 1 << 7 : 0 ;
[2462]2143 }
2144 else {
2145 if (!oldflag[j]) {
2146 newspec[i] += oldspec[j] * ( zr - yl ) ;
2147 if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2148 wsum += ( zr - yl ) ;
2149 }
[2950]2150 newflag[i] = (newflag[i] && oldflag[j]) ? 1 << 7 : 0 ;
[2462]2151 ichan = jj ;
2152 break ;
2153 }
[1819]2154 }
[2462]2155 else {
2156 ichan = jj - iyincr ;
2157 break ;
[2431]2158 }
[2462]2159 jj += iyincr ;
[1819]2160 }
[2462]2161 if ( wsum != 0.0 ) {
2162 newspec[i] /= wsum ;
2163 if (regridTsys) newtsys[i] /= wsum ;
2164 }
2165 wsum = 0.0 ;
2166 ii += izincr ;
[1819]2167 }
[2462]2168// if ( dnu > 0.0 ) {
2169// for ( int ii = 0 ; ii < nChan ; ii++ ) {
2170// double zl = zi[ii] ;
2171// double zr = zi[ii+1] ;
2172// for ( int j = ichan ; j < oldsize ; j++ ) {
2173// double yl = yi[j] ;
2174// double yr = yi[j+1] ;
2175// if ( yl <= zl ) {
2176// if ( yr <= zl ) {
2177// continue ;
2178// }
2179// else if ( yr <= zr ) {
2180// if (!oldflag[j]) {
2181// newspec[ii] += oldspec[j] * ( yr - zl ) ;
2182// if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - zl ) ;
2183// wsum += ( yr - zl ) ;
2184// }
2185// newflag[ii] = newflag[ii] && oldflag[j] ;
2186// }
2187// else {
2188// if (!oldflag[j]) {
2189// newspec[ii] += oldspec[j] * dnu ;
2190// if (regridTsys) newtsys[ii] += oldtsys[j] * dnu ;
2191// wsum += dnu ;
2192// }
2193// newflag[ii] = newflag[ii] && oldflag[j] ;
2194// ichan = j ;
2195// break ;
2196// }
2197// }
2198// else if ( yl < zr ) {
2199// if ( yr <= zr ) {
2200// if (!oldflag[j]) {
2201// newspec[ii] += oldspec[j] * ( yr - yl ) ;
2202// if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - yl ) ;
2203// wsum += ( yr - yl ) ;
2204// }
2205// newflag[ii] = newflag[ii] && oldflag[j] ;
2206// }
2207// else {
2208// if (!oldflag[j]) {
2209// newspec[ii] += oldspec[j] * ( zr - yl ) ;
2210// if (regridTsys) newtsys[ii] += oldtsys[j] * ( zr - yl ) ;
2211// wsum += ( zr - yl ) ;
2212// }
2213// newflag[ii] = newflag[ii] && oldflag[j] ;
2214// ichan = j ;
2215// break ;
2216// }
2217// }
2218// else {
2219// ichan = j - 1 ;
2220// break ;
2221// }
2222// }
2223// if ( wsum != 0.0 ) {
2224// newspec[ii] /= wsum ;
2225// if (regridTsys) newtsys[ii] /= wsum ;
2226// }
2227// wsum = 0.0 ;
2228// }
[1819]2229// }
[2462]2230// else if ( dnu < 0.0 ) {
2231// for ( int ii = 0 ; ii < nChan ; ii++ ) {
2232// double zl = zi[ii] ;
2233// double zr = zi[ii+1] ;
2234// for ( int j = ichan ; j < oldsize ; j++ ) {
2235// double yl = yi[j] ;
2236// double yr = yi[j+1] ;
2237// if ( yl >= zl ) {
2238// if ( yr >= zl ) {
2239// continue ;
2240// }
2241// else if ( yr >= zr ) {
2242// if (!oldflag[j]) {
2243// newspec[ii] += oldspec[j] * abs( yr - zl ) ;
2244// if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - zl ) ;
2245// wsum += abs( yr - zl ) ;
2246// }
2247// newflag[ii] = newflag[ii] && oldflag[j] ;
2248// }
2249// else {
2250// if (!oldflag[j]) {
2251// newspec[ii] += oldspec[j] * abs( dnu ) ;
2252// if (regridTsys) newtsys[ii] += oldtsys[j] * abs( dnu ) ;
2253// wsum += abs( dnu ) ;
2254// }
2255// newflag[ii] = newflag[ii] && oldflag[j] ;
2256// ichan = j ;
2257// break ;
2258// }
2259// }
2260// else if ( yl > zr ) {
2261// if ( yr >= zr ) {
2262// if (!oldflag[j]) {
2263// newspec[ii] += oldspec[j] * abs( yr - yl ) ;
2264// if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - yl ) ;
2265// wsum += abs( yr - yl ) ;
2266// }
2267// newflag[ii] = newflag[ii] && oldflag[j] ;
2268// }
2269// else {
2270// if (!oldflag[j]) {
2271// newspec[ii] += oldspec[j] * abs( zr - yl ) ;
2272// if (regridTsys) newtsys[ii] += oldtsys[j] * abs( zr - yl ) ;
2273// wsum += abs( zr - yl ) ;
2274// }
2275// newflag[ii] = newflag[ii] && oldflag[j] ;
2276// ichan = j ;
2277// break ;
2278// }
2279// }
2280// else {
2281// ichan = j - 1 ;
2282// break ;
2283// }
2284// }
2285// if ( wsum != 0.0 ) {
2286// newspec[ii] /= wsum ;
2287// if (regridTsys) newtsys[ii] /= wsum ;
2288// }
2289// wsum = 0.0 ;
[1819]2290// }
2291// }
[2462]2292// // //ofs << "olddnu = " << olddnu << ", dnu = " << dnu << endl ;
2293// // pile += dnu ;
2294// // wedge = olddnu * ( refChan + 1 ) ;
2295// // while ( wedge < pile ) {
2296// // newspec[0] += olddnu * oldspec[refChan] ;
2297// // newflag[0] = newflag[0] || oldflag[refChan] ;
2298// // //ofs << "channel " << refChan << " is included in new channel 0" << endl ;
2299// // refChan++ ;
2300// // wedge += olddnu ;
2301// // wsum += olddnu ;
2302// // //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2303// // }
2304// // frac = ( wedge - pile ) / olddnu ;
2305// // wsum += ( 1.0 - frac ) * olddnu ;
2306// // newspec[0] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2307// // newflag[0] = newflag[0] || oldflag[refChan] ;
2308// // //ofs << "channel " << refChan << " is partly included in new channel 0" << " with fraction of " << ( 1.0 - frac ) << endl ;
2309// // //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2310// // newspec[0] /= wsum ;
2311// // //ofs << "newspec[0] = " << newspec[0] << endl ;
2312// // //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
[1819]2313
[2462]2314// // /***
2315// // * ichan = 1 - nChan-2
2316// // ***/
2317// // for ( int ichan = 1 ; ichan < nChan - 1 ; ichan++ ) {
2318// // pile += dnu ;
2319// // newspec[ichan] += frac * olddnu * oldspec[refChan] ;
2320// // newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2321// // //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << frac << endl ;
2322// // refChan++ ;
2323// // wedge += olddnu ;
2324// // wsum = frac * olddnu ;
2325// // //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2326// // while ( wedge < pile ) {
2327// // newspec[ichan] += olddnu * oldspec[refChan] ;
2328// // newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2329// // //ofs << "channel " << refChan << " is included in new channel " << ichan << endl ;
2330// // refChan++ ;
2331// // wedge += olddnu ;
2332// // wsum += olddnu ;
2333// // //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2334// // }
2335// // frac = ( wedge - pile ) / olddnu ;
2336// // wsum += ( 1.0 - frac ) * olddnu ;
2337// // newspec[ichan] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2338// // newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2339// // //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << ( 1.0 - frac ) << endl ;
2340// // //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2341// // //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2342// // newspec[ichan] /= wsum ;
2343// // //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << endl ;
2344// // }
[1819]2345
[2462]2346// // /***
2347// // * ichan = nChan-1
2348// // ***/
2349// // // NOTE: Assumed that all spectra have the same bandwidth
2350// // pile += dnu ;
2351// // newspec[nChan-1] += frac * olddnu * oldspec[refChan] ;
2352// // newflag[nChan-1] = newflag[nChan-1] || oldflag[refChan] ;
2353// // //ofs << "channel " << refChan << " is partly included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2354// // refChan++ ;
2355// // wedge += olddnu ;
2356// // wsum = frac * olddnu ;
2357// // //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2358// // for ( int jchan = refChan ; jchan < oldsize ; jchan++ ) {
2359// // newspec[nChan-1] += olddnu * oldspec[jchan] ;
2360// // newflag[nChan-1] = newflag[nChan-1] || oldflag[jchan] ;
2361// // wsum += olddnu ;
2362// // //ofs << "channel " << jchan << " is included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2363// // //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2364// // }
2365// // //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2366// // //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2367// // newspec[nChan-1] /= wsum ;
2368// // //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << endl ;
[1819]2369
[2462]2370// // // ofs.close() ;
2371
[2032]2372 specCol_.put( irow, newspec ) ;
2373 flagsCol_.put( irow, newflag ) ;
[2431]2374 if (regridTsys) tsysCol_.put( irow, newtsys );
[1819]2375
2376 return ;
2377}
2378
[2595]2379void Scantable::regridChannel( int nChan, double dnu, double fmin, int irow )
2380{
2381 Vector<Float> oldspec = specCol_( irow ) ;
2382 Vector<uChar> oldflag = flagsCol_( irow ) ;
2383 Vector<Float> oldtsys = tsysCol_( irow ) ;
2384 Vector<Float> newspec( nChan, 0 ) ;
2385 Vector<uChar> newflag( nChan, true ) ;
2386 Vector<Float> newtsys ;
2387 bool regridTsys = false ;
2388 if (oldtsys.size() == oldspec.size()) {
2389 regridTsys = true ;
2390 newtsys.resize(nChan,false) ;
2391 newtsys = 0 ;
2392 }
2393
2394 // regrid
2395 vector<double> abcissa = getAbcissa( irow ) ;
2396 int oldsize = abcissa.size() ;
2397 double olddnu = abcissa[1] - abcissa[0] ;
2398 //int ichan = 0 ;
2399 double wsum = 0.0 ;
2400 Vector<double> zi( nChan+1 ) ;
2401 Vector<double> yi( oldsize + 1 ) ;
2402 Block<uInt> count( nChan, 0 ) ;
2403 yi[0] = abcissa[0] - 0.5 * olddnu ;
2404 for ( int ii = 1 ; ii < oldsize ; ii++ )
2405 yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2406 yi[oldsize] = abcissa[oldsize-1] \
2407 + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
2408// cout << "olddnu=" << olddnu << ", dnu=" << dnu << " (diff=" << olddnu-dnu << ")" << endl ;
2409// cout << "yi[0]=" << yi[0] << ", fmin=" << fmin << " (diff=" << yi[0]-fmin << ")" << endl ;
2410// cout << "oldsize=" << oldsize << ", nChan=" << nChan << endl ;
2411
2412 // do not regrid if input parameters are almost same as current
2413 // spectral setup
2414 double dnuDiff = abs( ( dnu - olddnu ) / olddnu ) ;
2415 double oldfmin = min( yi[0], yi[oldsize] ) ;
2416 double fminDiff = abs( ( fmin - oldfmin ) / oldfmin ) ;
2417 double nChanDiff = nChan - oldsize ;
2418 double eps = 1.0e-8 ;
2419 if ( nChanDiff == 0 && dnuDiff < eps && fminDiff < eps )
2420 return ;
2421
2422 //zi[0] = abcissa[0] - 0.5 * olddnu ;
2423 //zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2424 if ( dnu > 0 )
2425 zi[0] = fmin - 0.5 * dnu ;
2426 else
2427 zi[0] = fmin + nChan * abs(dnu) ;
2428 for ( int ii = 1 ; ii < nChan ; ii++ )
2429 zi[ii] = zi[0] + dnu * ii ;
2430 zi[nChan] = zi[nChan-1] + dnu ;
2431 // Access zi and yi in ascending order
2432 int izs = ((dnu > 0) ? 0 : nChan ) ;
2433 int ize = ((dnu > 0) ? nChan : 0 ) ;
2434 int izincr = ((dnu > 0) ? 1 : -1 ) ;
2435 int ichan = ((olddnu > 0) ? 0 : oldsize ) ;
2436 int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2437 int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2438 //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2439 int ii = izs ;
2440 while (ii != ize) {
2441 // always zl < zr
2442 double zl = zi[ii] ;
2443 double zr = zi[ii+izincr] ;
2444 // Need to access smaller index for the new spec, flag, and tsys.
2445 // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2446 int i = min(ii, ii+izincr) ;
2447 //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2448 int jj = ichan ;
2449 while (jj != iye) {
2450 // always yl < yr
2451 double yl = yi[jj] ;
2452 double yr = yi[jj+iyincr] ;
2453 // Need to access smaller index for the original spec, flag, and tsys.
2454 // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2455 int j = min(jj, jj+iyincr) ;
2456 if ( yr <= zl ) {
2457 jj += iyincr ;
2458 continue ;
2459 }
2460 else if ( yl <= zl ) {
2461 if ( yr < zr ) {
2462 if (!oldflag[j]) {
2463 newspec[i] += oldspec[j] * ( yr - zl ) ;
2464 if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2465 wsum += ( yr - zl ) ;
2466 count[i]++ ;
2467 }
2468 newflag[i] = newflag[i] && oldflag[j] ;
2469 }
2470 else {
2471 if (!oldflag[j]) {
2472 newspec[i] += oldspec[j] * abs(dnu) ;
2473 if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2474 wsum += abs(dnu) ;
2475 count[i]++ ;
2476 }
2477 newflag[i] = newflag[i] && oldflag[j] ;
2478 ichan = jj ;
2479 break ;
2480 }
2481 }
2482 else if ( yl < zr ) {
2483 if ( yr <= zr ) {
2484 if (!oldflag[j]) {
2485 newspec[i] += oldspec[j] * ( yr - yl ) ;
2486 if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2487 wsum += ( yr - yl ) ;
2488 count[i]++ ;
2489 }
2490 newflag[i] = newflag[i] && oldflag[j] ;
2491 }
2492 else {
2493 if (!oldflag[j]) {
2494 newspec[i] += oldspec[j] * ( zr - yl ) ;
2495 if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2496 wsum += ( zr - yl ) ;
2497 count[i]++ ;
2498 }
2499 newflag[i] = newflag[i] && oldflag[j] ;
2500 ichan = jj ;
2501 break ;
2502 }
2503 }
2504 else {
2505 //ichan = jj - iyincr ;
2506 break ;
2507 }
2508 jj += iyincr ;
2509 }
2510 if ( wsum != 0.0 ) {
2511 newspec[i] /= wsum ;
2512 if (regridTsys) newtsys[i] /= wsum ;
2513 }
2514 wsum = 0.0 ;
2515 ii += izincr ;
2516 }
2517
2518 // flag out channels without data
2519 // this is tentative since there is no specific definition
2520 // on bit flag...
2521 uChar noData = 1 << 7 ;
2522 for ( Int i = 0 ; i < nChan ; i++ ) {
2523 if ( count[i] == 0 )
2524 newflag[i] = noData ;
2525 }
2526
2527 specCol_.put( irow, newspec ) ;
2528 flagsCol_.put( irow, newflag ) ;
2529 if (regridTsys) tsysCol_.put( irow, newtsys );
2530
2531 return ;
2532}
2533
[1730]2534std::vector<float> Scantable::getWeather(int whichrow) const
2535{
2536 std::vector<float> out(5);
2537 //Float temperature, pressure, humidity, windspeed, windaz;
2538 weatherTable_.getEntry(out[0], out[1], out[2], out[3], out[4],
2539 mweatheridCol_(uInt(whichrow)));
2540
2541
2542 return out;
[1391]2543}
[1730]2544
[2831]2545bool Scantable::isAllChannelsFlagged(uInt whichrow)
[1907]2546{
[2831]2547 uInt rflag;
2548 flagrowCol_.get(whichrow, rflag);
2549 if (rflag > 0)
2550 return true;
[1907]2551 uChar flag;
2552 Vector<uChar> flags;
[2047]2553 flagsCol_.get(whichrow, flags);
[2012]2554 flag = flags[0];
[2047]2555 for (uInt i = 1; i < flags.size(); ++i) {
[2012]2556 flag &= flags[i];
2557 }
[2837]2558 // return ((flag >> 7) == 1);
2559 return (flag > 0);
[2012]2560}
2561
[2811]2562std::vector<std::string> Scantable::applyBaselineTable(const std::string& bltable, const bool returnfitresult, const std::string& outbltable, const bool outbltableexists, const bool overwrite)
[2047]2563{
[2773]2564 STBaselineTable btin = STBaselineTable(bltable);
[2767]2565
[2773]2566 Vector<Bool> applyCol = btin.getApply();
[2767]2567 int nRowBl = applyCol.size();
2568 if (nRowBl != nrow()) {
2569 throw(AipsError("Scantable and bltable have different number of rows."));
2570 }
2571
2572 std::vector<std::string> res;
2573 res.clear();
2574
2575 bool outBaselineTable = ((outbltable != "") && (!outbltableexists || overwrite));
2576 bool bltableidentical = (bltable == outbltable);
[2773]2577 STBaselineTable btout = STBaselineTable(*this);
2578 ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2579 Vector<Double> timeSecCol = tcol.getColumn();
[2767]2580
2581 for (int whichrow = 0; whichrow < nRowBl; ++whichrow) {
2582 if (applyCol[whichrow]) {
2583 std::vector<float> spec = getSpectrum(whichrow);
2584
[2773]2585 std::vector<bool> mask = btin.getMask(whichrow); //use mask_bltable only
[2767]2586
[2773]2587 STBaselineFunc::FuncName ftype = btin.getFunctionName(whichrow);
2588 std::vector<int> fpar = btin.getFuncParam(whichrow);
[2767]2589 std::vector<float> params;
2590 float rms;
2591 std::vector<float> resfit = doApplyBaselineTable(spec, mask, ftype, fpar, params, rms);
2592 setSpectrum(resfit, whichrow);
2593
[2811]2594 if (returnfitresult) {
2595 res.push_back(packFittingResults(whichrow, params, rms));
2596 }
[2767]2597
2598 if (outBaselineTable) {
2599 if (outbltableexists) {
2600 if (overwrite) {
2601 if (bltableidentical) {
[2773]2602 btin.setresult(uInt(whichrow), Vector<Float>(params), Float(rms));
[2767]2603 } else {
[2773]2604 btout.setresult(uInt(whichrow), Vector<Float>(params), Float(rms));
[2767]2605 }
2606 }
2607 } else {
[2773]2608 btout.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
2609 getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
2610 true, ftype, fpar, std::vector<float>(),
2611 getMaskListFromMask(mask), params, rms, spec.size(),
2612 3.0, 0, 0.0, 0, std::vector<int>());
[2767]2613 }
2614 }
2615 }
2616 }
2617
2618 if (outBaselineTable) {
2619 if (bltableidentical) {
[2773]2620 btin.save(outbltable);
[2767]2621 } else {
[2773]2622 btout.save(outbltable);
[2767]2623 }
2624 }
2625
2626 return res;
2627}
2628
[2811]2629std::vector<std::string> Scantable::subBaseline(const std::vector<std::string>& blInfoList, const bool returnfitresult, const std::string& outbltable, const bool outbltableexists, const bool overwrite)
[2767]2630{
2631 int nRowBl = blInfoList.size();
2632 int nRowSt = nrow();
2633
2634 std::vector<std::string> res;
2635 res.clear();
2636
2637 bool outBaselineTable = ((outbltable != "") && (!outbltableexists || overwrite));
2638 if ((outbltable != "") && outbltableexists && !overwrite) {
2639 throw(AipsError("Cannot overwrite bltable. Set overwrite=True."));
2640 }
2641
[2883]2642 STBaselineTable* btp;
[2773]2643 ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2644 Vector<Double> timeSecCol = tcol.getColumn();
[2767]2645
[2883]2646 if (outBaselineTable) {
2647 if (outbltableexists) {
2648 btp = new STBaselineTable((String)outbltable);
2649 } else {
2650 btp = new STBaselineTable(*this);
2651 for (int i = 0; i < nRowSt; ++i) {
2652 btp->appendbasedata(getScan(i), getCycle(i), getBeam(i), getIF(i), getPol(i),
2653 0, timeSecCol[i]);
2654 btp->setApply(i, false);
2655 }
[2767]2656 }
2657 }
2658
2659 for (int i = 0; i < nRowBl; ++i) {
2660 int irow;
2661 STBaselineFunc::FuncName ftype;
2662 std::vector<bool> mask;
2663 std::vector<int> fpar;
2664 float clipth;
2665 int clipn;
2666 bool uself;
2667 float lfth;
2668 std::vector<int> lfedge;
2669 int lfavg;
2670 parseBlInfo(blInfoList[i], irow, ftype, fpar, mask, clipth, clipn, uself, lfth, lfedge, lfavg);
2671
2672 if (irow < nRowSt) {
2673 std::vector<float> spec = getSpectrum(irow);
2674 std::vector<float> params;
2675 float rms;
2676 std::vector<bool> finalmask;
2677
2678 std::vector<float> resfit = doSubtractBaseline(spec, mask, ftype, fpar, params, rms, finalmask, clipth, clipn, uself, irow, lfth, lfedge, lfavg);
2679 setSpectrum(resfit, irow);
2680
[2811]2681 if (returnfitresult) {
2682 res.push_back(packFittingResults(irow, params, rms));
2683 }
2684
[2767]2685 if (outBaselineTable) {
2686 Vector<Int> fparam(fpar.size());
2687 for (uInt j = 0; j < fparam.size(); ++j) {
2688 fparam[j] = (Int)fpar[j];
2689 }
2690
[2883]2691 btp->setdata(uInt(irow),
[2767]2692 uInt(getScan(irow)), uInt(getCycle(irow)),
2693 uInt(getBeam(irow)), uInt(getIF(irow)), uInt(getPol(irow)),
2694 uInt(0), timeSecCol[irow], Bool(true), ftype, fparam,
[2773]2695 Vector<Float>(), getMaskListFromMask(finalmask), Vector<Float>(params),
[2767]2696 Float(rms), uInt(spec.size()), Float(clipth), uInt(clipn),
2697 Float(0.0), uInt(0), Vector<uInt>());
2698 }
2699
2700 }
2701 }
2702
2703 if (outBaselineTable) {
[2883]2704 btp->save(outbltable);
[2767]2705 }
2706
[2883]2707 delete btp;
[2767]2708 return res;
2709}
2710
[2773]2711std::vector<float> Scantable::doApplyBaselineTable(std::vector<float>& spec,
2712 std::vector<bool>& mask,
2713 const STBaselineFunc::FuncName ftype,
2714 std::vector<int>& fpar,
2715 std::vector<float>& params,
2716 float&rms)
[2767]2717{
2718 std::vector<bool> finalmask;
2719 std::vector<int> lfedge;
2720 return doSubtractBaseline(spec, mask, ftype, fpar, params, rms, finalmask, 0.0, 0, false, 0, 0.0, lfedge, 0);
2721}
2722
[2774]2723std::vector<float> Scantable::doSubtractBaseline(std::vector<float>& spec,
2724 std::vector<bool>& mask,
2725 const STBaselineFunc::FuncName ftype,
2726 std::vector<int>& fpar,
2727 std::vector<float>& params,
2728 float&rms,
2729 std::vector<bool>& finalmask,
2730 float clipth,
2731 int clipn,
2732 bool uself,
2733 int irow,
2734 float lfth,
2735 std::vector<int>& lfedge,
2736 int lfavg)
[2767]2737{
2738 if (uself) {
2739 STLineFinder lineFinder = STLineFinder();
[2774]2740 initLineFinder(lfedge, lfth, lfavg, lineFinder);
[2767]2741 std::vector<int> currentEdge;
[2774]2742 mask = getCompositeChanMask(irow, mask, lfedge, currentEdge, lineFinder);
[2946]2743 } else {
2744 mask = getCompositeChanMask(irow, mask);
[2767]2745 }
2746
2747 std::vector<float> res;
2748 if (ftype == STBaselineFunc::Polynomial) {
2749 res = doPolynomialFitting(spec, mask, fpar[0], params, rms, finalmask, clipth, clipn);
2750 } else if (ftype == STBaselineFunc::Chebyshev) {
2751 res = doChebyshevFitting(spec, mask, fpar[0], params, rms, finalmask, clipth, clipn);
2752 } else if (ftype == STBaselineFunc::CSpline) {
2753 if (fpar.size() > 1) { // reading from baseline table in which pieceEdges are already calculated and stored.
2754 res = doCubicSplineFitting(spec, mask, fpar, params, rms, finalmask, clipth, clipn);
2755 } else { // usual cspline fitting by giving nPiece only. fpar will be replaced with pieceEdges.
2756 res = doCubicSplineFitting(spec, mask, fpar[0], fpar, params, rms, finalmask, clipth, clipn);
2757 }
2758 } else if (ftype == STBaselineFunc::Sinusoid) {
2759 res = doSinusoidFitting(spec, mask, fpar, params, rms, finalmask, clipth, clipn);
2760 }
2761
2762 return res;
2763}
2764
2765std::string Scantable::packFittingResults(const int irow, const std::vector<float>& params, const float rms)
2766{
2767 // returned value: "irow:params[0],params[1],..,params[n-1]:rms"
2768 ostringstream os;
2769 os << irow << ':';
2770 for (uInt i = 0; i < params.size(); ++i) {
2771 if (i > 0) {
2772 os << ',';
2773 }
2774 os << params[i];
2775 }
2776 os << ':' << rms;
2777
2778 return os.str();
2779}
2780
2781void Scantable::parseBlInfo(const std::string& blInfo, int& irow, STBaselineFunc::FuncName& ftype, std::vector<int>& fpar, std::vector<bool>& mask, float& thresClip, int& nIterClip, bool& useLineFinder, float& thresLF, std::vector<int>& edgeLF, int& avgLF)
2782{
2783 // The baseline info to be parsed must be column-delimited string like
2784 // "0:chebyshev:5:3,5,169,174,485,487" where the elements are
2785 // row number, funcType, funcOrder, maskList, clipThreshold, clipNIter,
2786 // useLineFinder, lfThreshold, lfEdge and lfChanAvgLimit.
2787
2788 std::vector<string> res = splitToStringList(blInfo, ':');
2789 if (res.size() < 4) {
2790 throw(AipsError("baseline info has bad format")) ;
2791 }
2792
2793 string ftype0, fpar0, masklist0, uself0, edge0;
2794 std::vector<int> masklist;
2795
2796 stringstream ss;
2797 ss << res[0];
2798 ss >> irow;
2799 ss.clear(); ss.str("");
2800
2801 ss << res[1];
2802 ss >> ftype0;
2803 if (ftype0 == "poly") {
2804 ftype = STBaselineFunc::Polynomial;
2805 } else if (ftype0 == "cspline") {
2806 ftype = STBaselineFunc::CSpline;
2807 } else if (ftype0 == "sinusoid") {
2808 ftype = STBaselineFunc::Sinusoid;
2809 } else if (ftype0 == "chebyshev") {
2810 ftype = STBaselineFunc::Chebyshev;
2811 } else {
2812 throw(AipsError("invalid function type."));
2813 }
2814 ss.clear(); ss.str("");
2815
2816 ss << res[2];
2817 ss >> fpar0;
2818 fpar = splitToIntList(fpar0, ',');
2819 ss.clear(); ss.str("");
2820
2821 ss << res[3];
2822 ss >> masklist0;
2823 mask = getMaskFromMaskList(nchan(getIF(irow)), splitToIntList(masklist0, ','));
[2883]2824 ss.clear(); ss.str("");
[2767]2825
2826 ss << res[4];
2827 ss >> thresClip;
2828 ss.clear(); ss.str("");
2829
2830 ss << res[5];
2831 ss >> nIterClip;
2832 ss.clear(); ss.str("");
2833
2834 ss << res[6];
2835 ss >> uself0;
2836 if (uself0 == "true") {
2837 useLineFinder = true;
2838 } else {
2839 useLineFinder = false;
2840 }
2841 ss.clear(); ss.str("");
2842
2843 if (useLineFinder) {
2844 ss << res[7];
2845 ss >> thresLF;
2846 ss.clear(); ss.str("");
2847
2848 ss << res[8];
2849 ss >> edge0;
2850 edgeLF = splitToIntList(edge0, ',');
2851 ss.clear(); ss.str("");
2852
2853 ss << res[9];
2854 ss >> avgLF;
2855 ss.clear(); ss.str("");
2856 }
2857
2858}
2859
2860std::vector<int> Scantable::splitToIntList(const std::string& s, const char delim)
2861{
2862 istringstream iss(s);
2863 string tmp;
2864 int tmpi;
2865 std::vector<int> res;
2866 stringstream ss;
2867 while (getline(iss, tmp, delim)) {
2868 ss << tmp;
2869 ss >> tmpi;
2870 res.push_back(tmpi);
2871 ss.clear(); ss.str("");
2872 }
2873
2874 return res;
2875}
2876
2877std::vector<string> Scantable::splitToStringList(const std::string& s, const char delim)
2878{
2879 istringstream iss(s);
2880 std::string tmp;
2881 std::vector<string> res;
2882 while (getline(iss, tmp, delim)) {
2883 res.push_back(tmp);
2884 }
2885
2886 return res;
2887}
2888
2889std::vector<bool> Scantable::getMaskFromMaskList(const int nchan, const std::vector<int>& masklist)
2890{
2891 if (masklist.size() % 2 != 0) {
2892 throw(AipsError("masklist must have even number of elements."));
2893 }
2894
2895 std::vector<bool> res(nchan);
2896
2897 for (int i = 0; i < nchan; ++i) {
2898 res[i] = false;
2899 }
2900 for (uInt j = 0; j < masklist.size(); j += 2) {
2901 for (int i = masklist[j]; i <= masklist[j+1]; ++i) {
2902 res[i] = true;
2903 }
2904 }
2905
2906 return res;
2907}
2908
[2773]2909Vector<uInt> Scantable::getMaskListFromMask(const std::vector<bool>& mask)
[2767]2910{
[2773]2911 std::vector<int> masklist;
2912 masklist.clear();
2913
2914 for (uInt i = 0; i < mask.size(); ++i) {
2915 if (mask[i]) {
2916 if ((i == 0)||(i == mask.size()-1)) {
2917 masklist.push_back(i);
2918 } else {
2919 if ((mask[i])&&(!mask[i-1])) {
2920 masklist.push_back(i);
2921 }
2922 if ((mask[i])&&(!mask[i+1])) {
2923 masklist.push_back(i);
2924 }
2925 }
2926 }
2927 }
2928
2929 Vector<uInt> res(masklist.size());
2930 for (uInt i = 0; i < masklist.size(); ++i) {
2931 res[i] = (uInt)masklist[i];
2932 }
2933
2934 return res;
2935}
2936
2937void Scantable::initialiseBaselining(const std::string& blfile,
2938 ofstream& ofs,
2939 const bool outLogger,
2940 bool& outTextFile,
2941 bool& csvFormat,
2942 String& coordInfo,
2943 bool& hasSameNchan,
2944 const std::string& progressInfo,
2945 bool& showProgress,
2946 int& minNRow,
2947 Vector<Double>& timeSecCol)
2948{
2949 csvFormat = false;
2950 outTextFile = false;
2951
2952 if (blfile != "") {
2953 csvFormat = (blfile.substr(0, 1) == "T");
2954 ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
2955 if (ofs) outTextFile = true;
2956 }
2957
2958 coordInfo = "";
2959 hasSameNchan = true;
2960
2961 if (outLogger || outTextFile) {
2962 coordInfo = getCoordInfo()[0];
2963 if (coordInfo == "") coordInfo = "channel";
2964 hasSameNchan = hasSameNchanOverIFs();
2965 }
2966
2967 parseProgressInfo(progressInfo, showProgress, minNRow);
2968
2969 ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2970 timeSecCol = tcol.getColumn();
2971}
2972
2973void Scantable::finaliseBaselining(const bool outBaselineTable,
2974 STBaselineTable* pbt,
2975 const string& bltable,
2976 const bool outTextFile,
2977 ofstream& ofs)
2978{
2979 if (outBaselineTable) {
2980 pbt->save(bltable);
2981 }
2982
2983 if (outTextFile) ofs.close();
2984}
2985
2986void Scantable::initLineFinder(const std::vector<int>& edge,
2987 const float threshold,
2988 const int chanAvgLimit,
2989 STLineFinder& lineFinder)
2990{
[2774]2991 if ((edge.size() > 2) && (edge.size() < getIFNos().size()*2)) {
[2773]2992 throw(AipsError("Length of edge element info is less than that of IFs"));
2993 }
2994
2995 lineFinder.setOptions(threshold, 3, chanAvgLimit);
2996}
2997
2998void Scantable::polyBaseline(const std::vector<bool>& mask, int order,
2999 float thresClip, int nIterClip,
3000 bool getResidual,
3001 const std::string& progressInfo,
3002 const bool outLogger, const std::string& blfile,
3003 const std::string& bltable)
3004{
[2774]3005 /****
[2767]3006 double TimeStart = mathutil::gettimeofday_sec();
[2774]3007 ****/
[2767]3008
[2193]3009 try {
3010 ofstream ofs;
[2773]3011 String coordInfo;
3012 bool hasSameNchan, outTextFile, csvFormat, showProgress;
[2193]3013 int minNRow;
[2767]3014 int nRow = nrow();
[2773]3015 std::vector<bool> chanMask, finalChanMask;
[2767]3016 float rms;
[2773]3017 bool outBaselineTable = (bltable != "");
3018 STBaselineTable bt = STBaselineTable(*this);
3019 Vector<Double> timeSecCol;
[2767]3020
[2773]3021 initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3022 coordInfo, hasSameNchan,
3023 progressInfo, showProgress, minNRow,
3024 timeSecCol);
[2767]3025
[2773]3026 std::vector<int> nChanNos;
3027 std::vector<std::vector<std::vector<double> > > modelReservoir;
3028 modelReservoir = getPolynomialModelReservoir(order,
3029 &Scantable::getNormalPolynomial,
3030 nChanNos);
3031
[2193]3032 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
[2767]3033 std::vector<float> sp = getSpectrum(whichrow);
[2193]3034 chanMask = getCompositeChanMask(whichrow, mask);
[2773]3035
3036 std::vector<float> params;
[2767]3037 int nClipped = 0;
[2773]3038 std::vector<float> res = doLeastSquareFitting(sp, chanMask,
3039 modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3040 params, rms, finalChanMask,
3041 nClipped, thresClip, nIterClip, getResidual);
[2767]3042
[2773]3043 if (outBaselineTable) {
3044 bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3045 getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3046 true, STBaselineFunc::Polynomial, order, std::vector<float>(),
3047 getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3048 thresClip, nIterClip, 0.0, 0, std::vector<int>());
[2767]3049 } else {
3050 setSpectrum(res, whichrow);
3051 }
3052
[2773]3053 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3054 coordInfo, hasSameNchan, ofs, "polyBaseline()",
3055 params, nClipped);
[2193]3056 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3057 }
3058
[2773]3059 finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
[2193]3060
3061 } catch (...) {
3062 throw;
[2047]3063 }
[2767]3064
[2774]3065 /****
[2767]3066 double TimeEnd = mathutil::gettimeofday_sec();
3067 double elapse1 = TimeEnd - TimeStart;
3068 std::cout << "poly-new : " << elapse1 << " (sec.)" << endl;
[2774]3069 ****/
[2047]3070}
3071
[2773]3072void Scantable::autoPolyBaseline(const std::vector<bool>& mask, int order,
3073 float thresClip, int nIterClip,
3074 const std::vector<int>& edge,
3075 float threshold, int chanAvgLimit,
3076 bool getResidual,
3077 const std::string& progressInfo,
3078 const bool outLogger, const std::string& blfile,
3079 const std::string& bltable)
[2047]3080{
[2193]3081 try {
3082 ofstream ofs;
[2773]3083 String coordInfo;
3084 bool hasSameNchan, outTextFile, csvFormat, showProgress;
[2767]3085 int minNRow;
3086 int nRow = nrow();
[2773]3087 std::vector<bool> chanMask, finalChanMask;
[2767]3088 float rms;
[2773]3089 bool outBaselineTable = (bltable != "");
3090 STBaselineTable bt = STBaselineTable(*this);
3091 Vector<Double> timeSecCol;
3092 STLineFinder lineFinder = STLineFinder();
[2189]3093
[2773]3094 initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3095 coordInfo, hasSameNchan,
3096 progressInfo, showProgress, minNRow,
3097 timeSecCol);
[2767]3098
[2773]3099 initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3100
3101 std::vector<int> nChanNos;
3102 std::vector<std::vector<std::vector<double> > > modelReservoir;
3103 modelReservoir = getPolynomialModelReservoir(order,
3104 &Scantable::getNormalPolynomial,
3105 nChanNos);
3106
[2193]3107 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
[2767]3108 std::vector<float> sp = getSpectrum(whichrow);
[2193]3109 std::vector<int> currentEdge;
[2773]3110 chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
[2193]3111
[2773]3112 std::vector<float> params;
[2767]3113 int nClipped = 0;
[2773]3114 std::vector<float> res = doLeastSquareFitting(sp, chanMask,
3115 modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3116 params, rms, finalChanMask,
3117 nClipped, thresClip, nIterClip, getResidual);
[2193]3118
[2773]3119 if (outBaselineTable) {
3120 bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3121 getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3122 true, STBaselineFunc::Polynomial, order, std::vector<float>(),
3123 getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3124 thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
[2767]3125 } else {
3126 setSpectrum(res, whichrow);
3127 }
3128
[2773]3129 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3130 coordInfo, hasSameNchan, ofs, "autoPolyBaseline()",
3131 params, nClipped);
[2193]3132 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
[2047]3133 }
3134
[2773]3135 finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
[2767]3136
[2193]3137 } catch (...) {
3138 throw;
[2047]3139 }
3140}
3141
[2773]3142void Scantable::chebyshevBaseline(const std::vector<bool>& mask, int order,
3143 float thresClip, int nIterClip,
3144 bool getResidual,
3145 const std::string& progressInfo,
3146 const bool outLogger, const std::string& blfile,
3147 const std::string& bltable)
[2645]3148{
[2774]3149 /*
[2767]3150 double TimeStart = mathutil::gettimeofday_sec();
[2774]3151 */
[2767]3152
[2645]3153 try {
3154 ofstream ofs;
[2773]3155 String coordInfo;
3156 bool hasSameNchan, outTextFile, csvFormat, showProgress;
[2645]3157 int minNRow;
3158 int nRow = nrow();
[2773]3159 std::vector<bool> chanMask, finalChanMask;
[2737]3160 float rms;
[2773]3161 bool outBaselineTable = (bltable != "");
3162 STBaselineTable bt = STBaselineTable(*this);
3163 Vector<Double> timeSecCol;
[2737]3164
[2773]3165 initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3166 coordInfo, hasSameNchan,
3167 progressInfo, showProgress, minNRow,
3168 timeSecCol);
[2737]3169
[2773]3170 std::vector<int> nChanNos;
3171 std::vector<std::vector<std::vector<double> > > modelReservoir;
3172 modelReservoir = getPolynomialModelReservoir(order,
3173 &Scantable::getChebyshevPolynomial,
3174 nChanNos);
3175
[2645]3176 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3177 std::vector<float> sp = getSpectrum(whichrow);
3178 chanMask = getCompositeChanMask(whichrow, mask);
[2773]3179
3180 std::vector<float> params;
[2645]3181 int nClipped = 0;
[2773]3182 std::vector<float> res = doLeastSquareFitting(sp, chanMask,
3183 modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3184 params, rms, finalChanMask,
3185 nClipped, thresClip, nIterClip, getResidual);
[2645]3186
[2773]3187 if (outBaselineTable) {
3188 bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3189 getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3190 true, STBaselineFunc::Chebyshev, order, std::vector<float>(),
3191 getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3192 thresClip, nIterClip, 0.0, 0, std::vector<int>());
[2737]3193 } else {
3194 setSpectrum(res, whichrow);
3195 }
3196
[2773]3197 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3198 coordInfo, hasSameNchan, ofs, "chebyshevBaseline()",
3199 params, nClipped);
[2645]3200 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3201 }
3202
[2773]3203 finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
[2737]3204
[2645]3205 } catch (...) {
3206 throw;
3207 }
[2767]3208
[2774]3209 /*
[2767]3210 double TimeEnd = mathutil::gettimeofday_sec();
3211 double elapse1 = TimeEnd - TimeStart;
3212 std::cout << "cheby : " << elapse1 << " (sec.)" << endl;
[2774]3213 */
[2645]3214}
3215
[2773]3216void Scantable::autoChebyshevBaseline(const std::vector<bool>& mask, int order,
3217 float thresClip, int nIterClip,
3218 const std::vector<int>& edge,
3219 float threshold, int chanAvgLimit,
3220 bool getResidual,
3221 const std::string& progressInfo,
3222 const bool outLogger, const std::string& blfile,
3223 const std::string& bltable)
[2767]3224{
3225 try {
3226 ofstream ofs;
[2773]3227 String coordInfo;
3228 bool hasSameNchan, outTextFile, csvFormat, showProgress;
[2767]3229 int minNRow;
3230 int nRow = nrow();
[2773]3231 std::vector<bool> chanMask, finalChanMask;
[2767]3232 float rms;
[2773]3233 bool outBaselineTable = (bltable != "");
3234 STBaselineTable bt = STBaselineTable(*this);
3235 Vector<Double> timeSecCol;
3236 STLineFinder lineFinder = STLineFinder();
[2767]3237
[2773]3238 initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3239 coordInfo, hasSameNchan,
3240 progressInfo, showProgress, minNRow,
3241 timeSecCol);
[2767]3242
[2773]3243 initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3244
3245 std::vector<int> nChanNos;
3246 std::vector<std::vector<std::vector<double> > > modelReservoir;
3247 modelReservoir = getPolynomialModelReservoir(order,
3248 &Scantable::getChebyshevPolynomial,
3249 nChanNos);
3250
[2767]3251 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3252 std::vector<float> sp = getSpectrum(whichrow);
3253 std::vector<int> currentEdge;
[2773]3254 chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
[2767]3255
[2773]3256 std::vector<float> params;
[2767]3257 int nClipped = 0;
[2773]3258 std::vector<float> res = doLeastSquareFitting(sp, chanMask,
3259 modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3260 params, rms, finalChanMask,
3261 nClipped, thresClip, nIterClip, getResidual);
[2767]3262
[2773]3263 if (outBaselineTable) {
3264 bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3265 getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3266 true, STBaselineFunc::Chebyshev, order, std::vector<float>(),
3267 getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3268 thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
[2767]3269 } else {
3270 setSpectrum(res, whichrow);
3271 }
3272
[2773]3273 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3274 coordInfo, hasSameNchan, ofs, "autoChebyshevBaseline()",
3275 params, nClipped);
[2767]3276 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3277 }
3278
[2773]3279 finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
[2767]3280
3281 } catch (...) {
3282 throw;
3283 }
3284}
3285
[2774]3286double Scantable::calculateModelSelectionCriteria(const std::string& valname,
3287 const std::string& blfunc,
3288 int order,
3289 const std::vector<bool>& inMask,
3290 int whichrow,
3291 bool useLineFinder,
3292 const std::vector<int>& edge,
3293 float threshold,
3294 int chanAvgLimit)
[2713]3295{
[2767]3296 std::vector<float> sp = getSpectrum(whichrow);
3297 std::vector<bool> chanMask;
3298 chanMask.clear();
3299
[2713]3300 if (useLineFinder) {
[2774]3301 STLineFinder lineFinder = STLineFinder();
3302 initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
[2713]3303 std::vector<int> currentEdge;
[2774]3304 chanMask = getCompositeChanMask(whichrow, inMask, edge, currentEdge, lineFinder);
[2713]3305 } else {
[2767]3306 chanMask = getCompositeChanMask(whichrow, inMask);
[2713]3307 }
3308
[2767]3309 return doCalculateModelSelectionCriteria(valname, sp, chanMask, blfunc, order);
[2713]3310}
3311
3312double Scantable::doCalculateModelSelectionCriteria(const std::string& valname, const std::vector<float>& spec, const std::vector<bool>& mask, const std::string& blfunc, int order)
3313{
3314 int nparam;
3315 std::vector<float> params;
[2737]3316 std::vector<bool> finalChanMask;
3317 float rms;
[2713]3318 int nClipped = 0;
3319 std::vector<float> res;
[2767]3320 if (blfunc == "poly") {
[2713]3321 nparam = order + 1;
[2767]3322 res = doPolynomialFitting(spec, mask, order, params, rms, finalChanMask, nClipped);
3323 } else if (blfunc == "chebyshev") {
3324 nparam = order + 1;
3325 res = doChebyshevFitting(spec, mask, order, params, rms, finalChanMask, nClipped);
3326 } else if (blfunc == "cspline") {
3327 std::vector<int> pieceEdges;//(order+1); //order = npiece
3328 nparam = order + 3;
3329 res = doCubicSplineFitting(spec, mask, order, false, pieceEdges, params, rms, finalChanMask, nClipped);
[2713]3330 } else if (blfunc == "sinusoid") {
3331 std::vector<int> nWaves;
3332 nWaves.clear();
3333 for (int i = 0; i <= order; ++i) {
3334 nWaves.push_back(i);
3335 }
3336 nparam = 2*order + 1; // order = nwave
[2767]3337 res = doSinusoidFitting(spec, mask, nWaves, params, rms, finalChanMask, nClipped);
[2713]3338 } else {
[2767]3339 throw(AipsError("blfunc must be poly, chebyshev, cspline or sinusoid."));
[2713]3340 }
3341
3342 double msq = 0.0;
3343 int nusedchan = 0;
3344 int nChan = res.size();
3345 for (int i = 0; i < nChan; ++i) {
3346 if (mask[i]) {
3347 msq += (double)res[i]*(double)res[i];
3348 nusedchan++;
3349 }
3350 }
3351 if (nusedchan == 0) {
3352 throw(AipsError("all channels masked."));
3353 }
3354 msq /= (double)nusedchan;
3355
3356 nparam++; //add 1 for sigma of Gaussian distribution
3357 const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
3358
3359 if (valname.find("aic") == 0) {
3360 // Original Akaike Information Criterion (AIC)
3361 double aic = nusedchan * (log(2.0 * PI * msq) + 1.0) + 2.0 * nparam;
3362
[2767]3363 // Corrected AIC by Sugiura(1978) (AICc)
[2713]3364 if (valname == "aicc") {
3365 if (nusedchan - nparam - 1 <= 0) {
3366 throw(AipsError("channel size is too small to calculate AICc."));
3367 }
3368 aic += 2.0*nparam*(nparam + 1)/(double)(nusedchan - nparam - 1);
3369 }
3370
3371 return aic;
3372
3373 } else if (valname == "bic") {
3374 // Bayesian Information Criterion (BIC)
3375 double bic = nusedchan * log(msq) + nparam * log((double)nusedchan);
3376 return bic;
3377
3378 } else if (valname == "gcv") {
3379 // Generalised Cross Validation
3380 double x = 1.0 - (double)nparam / (double)nusedchan;
3381 double gcv = msq / (x * x);
3382 return gcv;
3383
3384 } else {
3385 throw(AipsError("valname must be aic, aicc, bic or gcv."));
3386 }
3387}
3388
[2767]3389double Scantable::getNormalPolynomial(int n, double x) {
3390 if (n == 0) {
3391 return 1.0;
3392 } else if (n > 0) {
3393 double res = 1.0;
3394 for (int i = 0; i < n; ++i) {
3395 res *= x;
[2645]3396 }
[2767]3397 return res;
3398 } else {
3399 if (x == 0.0) {
3400 throw(AipsError("infinity result: x=0 given for negative power."));
3401 } else {
3402 return pow(x, (double)n);
[2645]3403 }
3404 }
3405}
3406
3407double Scantable::getChebyshevPolynomial(int n, double x) {
3408 if ((x < -1.0)||(x > 1.0)) {
3409 throw(AipsError("out of definition range (-1 <= x <= 1)."));
[2713]3410 } else if (x == 1.0) {
3411 return 1.0;
3412 } else if (x == 0.0) {
3413 double res;
3414 if (n%2 == 0) {
3415 if (n%4 == 0) {
3416 res = 1.0;
3417 } else {
3418 res = -1.0;
3419 }
3420 } else {
3421 res = 0.0;
3422 }
3423 return res;
3424 } else if (x == -1.0) {
3425 double res = (n%2 == 0 ? 1.0 : -1.0);
3426 return res;
[2645]3427 } else if (n < 0) {
3428 throw(AipsError("the order must be zero or positive."));
3429 } else if (n == 0) {
3430 return 1.0;
3431 } else if (n == 1) {
3432 return x;
3433 } else {
[2880]3434 double res[n+1];
3435 for (int i = 0; i < n+1; ++i) {
3436 double res0 = 0.0;
3437 if (i == 0) {
3438 res0 = 1.0;
3439 } else if (i == 1) {
3440 res0 = x;
3441 } else {
3442 res0 = 2.0 * x * res[i-1] - res[i-2];
[2645]3443 }
[2880]3444 res[i] = res0;
[2645]3445 }
[2880]3446 return res[n];
[2645]3447 }
3448}
3449
[2773]3450std::vector<float> Scantable::doPolynomialFitting(const std::vector<float>& data,
3451 const std::vector<bool>& mask,
3452 int order,
3453 std::vector<float>& params,
3454 float& rms,
3455 std::vector<bool>& finalmask,
3456 float clipth,
3457 int clipn)
[2645]3458{
[2767]3459 int nClipped = 0;
3460 return doPolynomialFitting(data, mask, order, params, rms, finalmask, nClipped, clipth, clipn);
3461}
3462
[2773]3463std::vector<float> Scantable::doPolynomialFitting(const std::vector<float>& data,
3464 const std::vector<bool>& mask,
3465 int order,
3466 std::vector<float>& params,
3467 float& rms,
3468 std::vector<bool>& finalMask,
3469 int& nClipped,
3470 float thresClip,
3471 int nIterClip,
3472 bool getResidual)
[2767]3473{
[2773]3474 return doLeastSquareFitting(data, mask,
3475 getPolynomialModel(order, data.size(), &Scantable::getNormalPolynomial),
3476 params, rms, finalMask,
3477 nClipped, thresClip, nIterClip,
3478 getResidual);
[2767]3479}
3480
[2773]3481std::vector<float> Scantable::doChebyshevFitting(const std::vector<float>& data,
3482 const std::vector<bool>& mask,
3483 int order,
3484 std::vector<float>& params,
3485 float& rms,
3486 std::vector<bool>& finalmask,
3487 float clipth,
3488 int clipn)
[2767]3489{
3490 int nClipped = 0;
3491 return doChebyshevFitting(data, mask, order, params, rms, finalmask, nClipped, clipth, clipn);
3492}
3493
[2773]3494std::vector<float> Scantable::doChebyshevFitting(const std::vector<float>& data,
3495 const std::vector<bool>& mask,
3496 int order,
3497 std::vector<float>& params,
3498 float& rms,
3499 std::vector<bool>& finalMask,
3500 int& nClipped,
3501 float thresClip,
3502 int nIterClip,
3503 bool getResidual)
[2767]3504{
[2773]3505 return doLeastSquareFitting(data, mask,
3506 getPolynomialModel(order, data.size(), &Scantable::getChebyshevPolynomial),
3507 params, rms, finalMask,
3508 nClipped, thresClip, nIterClip,
3509 getResidual);
[2767]3510}
3511
[2773]3512std::vector<std::vector<double> > Scantable::getPolynomialModel(int order, int nchan, double (Scantable::*pfunc)(int, double))
[2767]3513{
[2773]3514 // model : contains model values for computing the least-square matrix.
3515 // model.size() is nmodel and model[*].size() is nchan.
3516 // Each model element are as follows:
3517 //
3518 // (for normal polynomials)
3519 // model[0] = {1.0, 1.0, 1.0, ..., 1.0},
3520 // model[1] = {0.0, 1.0, 2.0, ..., (nchan-1)}
3521 // model[n-1] = ...,
3522 // model[n] = {0.0^n, 1.0^n, 2.0^n, ..., (nchan-1)^n}
3523 // where (0 <= n <= order)
3524 //
3525 // (for Chebyshev polynomials)
3526 // model[0] = {T0(-1), T0(2/(nchan-1)-1), T0(4/(nchan-1)-1), ..., T0(1)},
3527 // model[n-1] = ...,
3528 // model[n] = {Tn(-1), Tn(2/(nchan-1)-1), Tn(4/(nchan-1)-1), ..., Tn(1)}
3529 // where (0 <= n <= order),
3530
3531 int nmodel = order + 1;
3532 std::vector<std::vector<double> > model(nmodel, std::vector<double>(nchan));
3533
3534 double stretch, shift;
3535 if (pfunc == &Scantable::getChebyshevPolynomial) {
3536 stretch = 2.0/(double)(nchan - 1);
3537 shift = -1.0;
3538 } else {
3539 stretch = 1.0;
3540 shift = 0.0;
[2645]3541 }
[2773]3542
3543 for (int i = 0; i < nmodel; ++i) {
3544 for (int j = 0; j < nchan; ++j) {
3545 model[i][j] = (this->*pfunc)(i, stretch*(double)j + shift);
3546 }
[2645]3547 }
3548
[2773]3549 return model;
3550}
3551
3552std::vector<std::vector<std::vector<double> > > Scantable::getPolynomialModelReservoir(int order,
3553 double (Scantable::*pfunc)(int, double),
3554 std::vector<int>& nChanNos)
3555{
3556 std::vector<std::vector<std::vector<double> > > res;
3557 res.clear();
3558 nChanNos.clear();
3559
3560 std::vector<uint> ifNos = getIFNos();
3561 for (uint i = 0; i < ifNos.size(); ++i) {
3562 int currNchan = nchan(ifNos[i]);
3563 bool hasDifferentNchan = (i == 0);
3564 for (uint j = 0; j < i; ++j) {
3565 if (currNchan != nchan(ifNos[j])) {
3566 hasDifferentNchan = true;
3567 break;
3568 }
3569 }
3570 if (hasDifferentNchan) {
3571 res.push_back(getPolynomialModel(order, currNchan, pfunc));
3572 nChanNos.push_back(currNchan);
3573 }
3574 }
3575
3576 return res;
3577}
3578
3579std::vector<float> Scantable::doLeastSquareFitting(const std::vector<float>& data,
3580 const std::vector<bool>& mask,
3581 const std::vector<std::vector<double> >& model,
3582 std::vector<float>& params,
3583 float& rms,
3584 std::vector<bool>& finalMask,
3585 int& nClipped,
3586 float thresClip,
3587 int nIterClip,
3588 bool getResidual)
3589{
3590 int nDOF = model.size();
[2645]3591 int nChan = data.size();
[2737]3592
[2773]3593 if (nDOF == 0) {
3594 throw(AipsError("no model data given"));
3595 }
3596 if (nChan < 2) {
3597 throw(AipsError("data size is too few"));
3598 }
3599 if (nChan != (int)mask.size()) {
3600 throw(AipsError("data and mask sizes are not identical"));
3601 }
3602 for (int i = 0; i < nDOF; ++i) {
3603 if (nChan != (int)model[i].size()) {
3604 throw(AipsError("data and model sizes are not identical"));
3605 }
3606 }
3607
3608 params.clear();
3609 params.resize(nDOF);
3610
[2737]3611 finalMask.clear();
3612 finalMask.resize(nChan);
3613
[2773]3614 std::vector<int> maskArray(nChan);
3615 int j = 0;
[2645]3616 for (int i = 0; i < nChan; ++i) {
[2773]3617 maskArray[i] = mask[i] ? 1 : 0;
[2890]3618 if (isnan(data[i])) maskArray[i] = 0;
3619 if (isinf(data[i])) maskArray[i] = 0;
3620
3621 finalMask[i] = (maskArray[i] == 1);
3622 if (finalMask[i]) {
3623 j++;
3624 }
3625
3626 /*
3627 maskArray[i] = mask[i] ? 1 : 0;
[2645]3628 if (mask[i]) {
[2773]3629 j++;
[2645]3630 }
[2737]3631 finalMask[i] = mask[i];
[2890]3632 */
[2645]3633 }
3634
[2773]3635 int initNData = j;
[2645]3636 int nData = initNData;
3637
[2773]3638 std::vector<double> z1(nChan), r1(nChan), residual(nChan);
[2645]3639 for (int i = 0; i < nChan; ++i) {
[2773]3640 z1[i] = (double)data[i];
3641 r1[i] = 0.0;
3642 residual[i] = 0.0;
[2645]3643 }
3644
3645 for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
3646 // xMatrix : horizontal concatenation of
3647 // the least-sq. matrix (left) and an
3648 // identity matrix (right).
3649 // the right part is used to calculate the inverse matrix of the left part.
3650 double xMatrix[nDOF][2*nDOF];
3651 double zMatrix[nDOF];
3652 for (int i = 0; i < nDOF; ++i) {
3653 for (int j = 0; j < 2*nDOF; ++j) {
3654 xMatrix[i][j] = 0.0;
3655 }
3656 xMatrix[i][nDOF+i] = 1.0;
3657 zMatrix[i] = 0.0;
3658 }
3659
3660 int nUseData = 0;
3661 for (int k = 0; k < nChan; ++k) {
3662 if (maskArray[k] == 0) continue;
3663
3664 for (int i = 0; i < nDOF; ++i) {
3665 for (int j = i; j < nDOF; ++j) {
[2773]3666 xMatrix[i][j] += model[i][k] * model[j][k];
[2645]3667 }
[2773]3668 zMatrix[i] += z1[k] * model[i][k];
[2645]3669 }
3670
3671 nUseData++;
3672 }
3673
3674 if (nUseData < 1) {
3675 throw(AipsError("all channels clipped or masked. can't execute fitting anymore."));
3676 }
3677
3678 for (int i = 0; i < nDOF; ++i) {
3679 for (int j = 0; j < i; ++j) {
3680 xMatrix[i][j] = xMatrix[j][i];
3681 }
3682 }
3683
[2890]3684 //compute inverse matrix of the left half of xMatrix
[2773]3685 std::vector<double> invDiag(nDOF);
[2645]3686 for (int i = 0; i < nDOF; ++i) {
[2773]3687 invDiag[i] = 1.0 / xMatrix[i][i];
[2645]3688 for (int j = 0; j < nDOF; ++j) {
3689 xMatrix[i][j] *= invDiag[i];
3690 }
3691 }
3692
3693 for (int k = 0; k < nDOF; ++k) {
3694 for (int i = 0; i < nDOF; ++i) {
3695 if (i != k) {
3696 double factor1 = xMatrix[k][k];
[2773]3697 double invfactor1 = 1.0 / factor1;
[2645]3698 double factor2 = xMatrix[i][k];
3699 for (int j = k; j < 2*nDOF; ++j) {
3700 xMatrix[i][j] *= factor1;
3701 xMatrix[i][j] -= xMatrix[k][j]*factor2;
[2773]3702 xMatrix[i][j] *= invfactor1;
[2645]3703 }
3704 }
3705 }
[2773]3706 double invXDiag = 1.0 / xMatrix[k][k];
[2645]3707 for (int j = k; j < 2*nDOF; ++j) {
[2773]3708 xMatrix[k][j] *= invXDiag;
[2645]3709 }
3710 }
3711
3712 for (int i = 0; i < nDOF; ++i) {
3713 for (int j = 0; j < nDOF; ++j) {
3714 xMatrix[i][nDOF+j] *= invDiag[j];
3715 }
3716 }
[2773]3717 //compute a vector y in which coefficients of the best-fit
3718 //model functions are stored.
3719 //in case of polynomials, y consists of (a0,a1,a2,...)
3720 //where ai is the coefficient of the term x^i.
3721 //in case of sinusoids, y consists of (a0,s1,c1,s2,c2,...)
3722 //where a0 is constant term and s* and c* are of sine
3723 //and cosine functions, respectively.
3724 std::vector<double> y(nDOF);
[2645]3725 for (int i = 0; i < nDOF; ++i) {
[2773]3726 y[i] = 0.0;
[2645]3727 for (int j = 0; j < nDOF; ++j) {
3728 y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
3729 }
[2773]3730 params[i] = (float)y[i];
[2645]3731 }
3732
3733 for (int i = 0; i < nChan; ++i) {
3734 r1[i] = y[0];
3735 for (int j = 1; j < nDOF; ++j) {
[2773]3736 r1[i] += y[j]*model[j][i];
[2645]3737 }
3738 residual[i] = z1[i] - r1[i];
3739 }
3740
[2737]3741 double stdDev = 0.0;
3742 for (int i = 0; i < nChan; ++i) {
[2890]3743 if (maskArray[i] == 0) continue;
3744 stdDev += residual[i]*residual[i];
[2737]3745 }
3746 stdDev = sqrt(stdDev/(double)nData);
3747 rms = (float)stdDev;
3748
[2645]3749 if ((nClip == nIterClip) || (thresClip <= 0.0)) {
3750 break;
3751 } else {
[2737]3752
[2645]3753 double thres = stdDev * thresClip;
3754 int newNData = 0;
3755 for (int i = 0; i < nChan; ++i) {
3756 if (abs(residual[i]) >= thres) {
3757 maskArray[i] = 0;
[2737]3758 finalMask[i] = false;
[2645]3759 }
3760 if (maskArray[i] > 0) {
3761 newNData++;
3762 }
3763 }
3764 if (newNData == nData) {
[2890]3765 break; //no more flag to add. stop iteration.
[2645]3766 } else {
3767 nData = newNData;
3768 }
[2737]3769
[2645]3770 }
3771 }
3772
3773 nClipped = initNData - nData;
3774
[2773]3775 std::vector<float> result(nChan);
[2645]3776 if (getResidual) {
3777 for (int i = 0; i < nChan; ++i) {
[2773]3778 result[i] = (float)residual[i];
[2645]3779 }
3780 } else {
3781 for (int i = 0; i < nChan; ++i) {
[2773]3782 result[i] = (float)r1[i];
[2645]3783 }
3784 }
3785
3786 return result;
[2890]3787} //xMatrix
[2645]3788
[2773]3789void Scantable::cubicSplineBaseline(const std::vector<bool>& mask, int nPiece,
3790 float thresClip, int nIterClip,
3791 bool getResidual,
3792 const std::string& progressInfo,
3793 const bool outLogger, const std::string& blfile,
3794 const std::string& bltable)
[2081]3795{
[2774]3796 /****
[2773]3797 double TimeStart = mathutil::gettimeofday_sec();
[2774]3798 ****/
[2773]3799
[2193]3800 try {
3801 ofstream ofs;
[2773]3802 String coordInfo;
3803 bool hasSameNchan, outTextFile, csvFormat, showProgress;
[2193]3804 int minNRow;
[2344]3805 int nRow = nrow();
[2773]3806 std::vector<bool> chanMask, finalChanMask;
[2767]3807 float rms;
[2773]3808 bool outBaselineTable = (bltable != "");
3809 STBaselineTable bt = STBaselineTable(*this);
3810 Vector<Double> timeSecCol;
[2344]3811
[2773]3812 initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3813 coordInfo, hasSameNchan,
3814 progressInfo, showProgress, minNRow,
3815 timeSecCol);
[2767]3816
[2773]3817 std::vector<int> nChanNos;
3818 std::vector<std::vector<std::vector<double> > > modelReservoir;
3819 modelReservoir = getPolynomialModelReservoir(3,
3820 &Scantable::getNormalPolynomial,
3821 nChanNos);
[2767]3822
[2193]3823 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
[2591]3824 std::vector<float> sp = getSpectrum(whichrow);
[2193]3825 chanMask = getCompositeChanMask(whichrow, mask);
[2773]3826
3827 std::vector<int> pieceEdges;
3828 std::vector<float> params;
[2193]3829 int nClipped = 0;
[2773]3830 std::vector<float> res = doCubicSplineLeastSquareFitting(sp, chanMask,
3831 modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3832 nPiece, false, pieceEdges, params, rms, finalChanMask,
3833 nClipped, thresClip, nIterClip, getResidual);
[2591]3834
[2773]3835 if (outBaselineTable) {
3836 bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3837 getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3838 true, STBaselineFunc::CSpline, pieceEdges, std::vector<float>(),
3839 getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3840 thresClip, nIterClip, 0.0, 0, std::vector<int>());
[2767]3841 } else {
3842 setSpectrum(res, whichrow);
3843 }
[2591]3844
[2773]3845 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3846 coordInfo, hasSameNchan, ofs, "cubicSplineBaseline()",
3847 pieceEdges, params, nClipped);
[2193]3848 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3849 }
[2344]3850
[2773]3851 finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
[2767]3852
[2193]3853 } catch (...) {
3854 throw;
[2012]3855 }
[2773]3856
[2774]3857 /****
[2773]3858 double TimeEnd = mathutil::gettimeofday_sec();
3859 double elapse1 = TimeEnd - TimeStart;
3860 std::cout << "cspline-new : " << elapse1 << " (sec.)" << endl;
[2774]3861 ****/
[2012]3862}
3863
[2773]3864void Scantable::autoCubicSplineBaseline(const std::vector<bool>& mask, int nPiece,
3865 float thresClip, int nIterClip,
3866 const std::vector<int>& edge,
3867 float threshold, int chanAvgLimit,
3868 bool getResidual,
3869 const std::string& progressInfo,
3870 const bool outLogger, const std::string& blfile,
3871 const std::string& bltable)
[2012]3872{
[2193]3873 try {
3874 ofstream ofs;
[2773]3875 String coordInfo;
3876 bool hasSameNchan, outTextFile, csvFormat, showProgress;
[2767]3877 int minNRow;
3878 int nRow = nrow();
[2773]3879 std::vector<bool> chanMask, finalChanMask;
[2767]3880 float rms;
[2773]3881 bool outBaselineTable = (bltable != "");
3882 STBaselineTable bt = STBaselineTable(*this);
3883 Vector<Double> timeSecCol;
3884 STLineFinder lineFinder = STLineFinder();
[2189]3885
[2773]3886 initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3887 coordInfo, hasSameNchan,
3888 progressInfo, showProgress, minNRow,
3889 timeSecCol);
[2767]3890
[2773]3891 initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3892
3893 std::vector<int> nChanNos;
3894 std::vector<std::vector<std::vector<double> > > modelReservoir;
3895 modelReservoir = getPolynomialModelReservoir(3,
3896 &Scantable::getNormalPolynomial,
3897 nChanNos);
3898
[2193]3899 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
[2591]3900 std::vector<float> sp = getSpectrum(whichrow);
[2193]3901 std::vector<int> currentEdge;
[2773]3902 chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
[2193]3903
[2773]3904 std::vector<int> pieceEdges;
3905 std::vector<float> params;
[2193]3906 int nClipped = 0;
[2773]3907 std::vector<float> res = doCubicSplineLeastSquareFitting(sp, chanMask,
3908 modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3909 nPiece, false, pieceEdges, params, rms, finalChanMask,
3910 nClipped, thresClip, nIterClip, getResidual);
[2193]3911
[2773]3912 if (outBaselineTable) {
3913 bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3914 getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3915 true, STBaselineFunc::CSpline, pieceEdges, std::vector<float>(),
3916 getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3917 thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
[2767]3918 } else {
3919 setSpectrum(res, whichrow);
3920 }
3921
[2773]3922 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3923 coordInfo, hasSameNchan, ofs, "autoCubicSplineBaseline()",
3924 pieceEdges, params, nClipped);
[2193]3925 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
[1907]3926 }
[2012]3927
[2773]3928 finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
[2767]3929
[2193]3930 } catch (...) {
3931 throw;
[2012]3932 }
[1730]3933}
[1907]3934
[2773]3935std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
3936 const std::vector<bool>& mask,
3937 std::vector<int>& idxEdge,
3938 std::vector<float>& params,
3939 float& rms,
3940 std::vector<bool>& finalmask,
3941 float clipth,
3942 int clipn)
[2081]3943{
[2767]3944 int nClipped = 0;
3945 return doCubicSplineFitting(data, mask, idxEdge.size()-1, true, idxEdge, params, rms, finalmask, nClipped, clipth, clipn);
3946}
3947
[2773]3948std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
3949 const std::vector<bool>& mask,
3950 int nPiece,
3951 std::vector<int>& idxEdge,
3952 std::vector<float>& params,
3953 float& rms,
3954 std::vector<bool>& finalmask,
3955 float clipth,
3956 int clipn)
[2767]3957{
3958 int nClipped = 0;
3959 return doCubicSplineFitting(data, mask, nPiece, false, idxEdge, params, rms, finalmask, nClipped, clipth, clipn);
3960}
3961
[2773]3962std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
3963 const std::vector<bool>& mask,
3964 int nPiece,
3965 bool useGivenPieceBoundary,
3966 std::vector<int>& idxEdge,
3967 std::vector<float>& params,
3968 float& rms,
3969 std::vector<bool>& finalMask,
3970 int& nClipped,
3971 float thresClip,
3972 int nIterClip,
3973 bool getResidual)
[2767]3974{
[2773]3975 return doCubicSplineLeastSquareFitting(data, mask,
3976 getPolynomialModel(3, data.size(), &Scantable::getNormalPolynomial),
3977 nPiece, useGivenPieceBoundary, idxEdge,
3978 params, rms, finalMask,
3979 nClipped, thresClip, nIterClip,
3980 getResidual);
3981}
3982
3983std::vector<float> Scantable::doCubicSplineLeastSquareFitting(const std::vector<float>& data,
3984 const std::vector<bool>& mask,
3985 const std::vector<std::vector<double> >& model,
3986 int nPiece,
3987 bool useGivenPieceBoundary,
3988 std::vector<int>& idxEdge,
3989 std::vector<float>& params,
3990 float& rms,
3991 std::vector<bool>& finalMask,
3992 int& nClipped,
3993 float thresClip,
3994 int nIterClip,
3995 bool getResidual)
3996{
3997 int nDOF = nPiece + 3; //number of independent parameters to solve, namely, 4+(nPiece-1).
3998 int nModel = model.size();
3999 int nChan = data.size();
4000
4001 if (nModel != 4) {
4002 throw(AipsError("model size must be 4."));
[2081]4003 }
[2012]4004 if (nPiece < 1) {
[2094]4005 throw(AipsError("number of the sections must be one or more"));
[2012]4006 }
[2773]4007 if (nChan < 2*nPiece) {
4008 throw(AipsError("data size is too few"));
4009 }
4010 if (nChan != (int)mask.size()) {
4011 throw(AipsError("data and mask sizes are not identical"));
4012 }
4013 for (int i = 0; i < nModel; ++i) {
4014 if (nChan != (int)model[i].size()) {
4015 throw(AipsError("data and model sizes are not identical"));
4016 }
4017 }
[2012]4018
[2773]4019 params.clear();
4020 params.resize(nPiece*nModel);
[2767]4021
4022 finalMask.clear();
4023 finalMask.resize(nChan);
4024
[2344]4025 std::vector<int> maskArray(nChan);
4026 std::vector<int> x(nChan);
4027 int j = 0;
[2012]4028 for (int i = 0; i < nChan; ++i) {
[2344]4029 maskArray[i] = mask[i] ? 1 : 0;
[2890]4030 if (isnan(data[i])) maskArray[i] = 0;
4031 if (isinf(data[i])) maskArray[i] = 0;
4032
4033 finalMask[i] = (maskArray[i] == 1);
4034 if (finalMask[i]) {
4035 x[j] = i;
4036 j++;
4037 }
4038
4039 /*
4040 maskArray[i] = mask[i] ? 1 : 0;
[2012]4041 if (mask[i]) {
[2344]4042 x[j] = i;
4043 j++;
[2012]4044 }
[2767]4045 finalMask[i] = mask[i];
[2890]4046 */
[2012]4047 }
[2773]4048
[2344]4049 int initNData = j;
[2773]4050 int nData = initNData;
[2012]4051
[2193]4052 if (initNData < nPiece) {
4053 throw(AipsError("too few non-flagged channels"));
4054 }
[2081]4055
4056 int nElement = (int)(floor(floor((double)(initNData/nPiece))+0.5));
[2344]4057 std::vector<double> invEdge(nPiece-1);
[2767]4058
4059 if (useGivenPieceBoundary) {
4060 if ((int)idxEdge.size() != nPiece+1) {
4061 throw(AipsError("pieceEdge.size() must be equal to nPiece+1."));
4062 }
4063 } else {
4064 idxEdge.clear();
4065 idxEdge.resize(nPiece+1);
4066 idxEdge[0] = x[0];
4067 }
[2012]4068 for (int i = 1; i < nPiece; ++i) {
[2047]4069 int valX = x[nElement*i];
[2767]4070 if (!useGivenPieceBoundary) {
4071 idxEdge[i] = valX;
4072 }
[2344]4073 invEdge[i-1] = 1.0/(double)valX;
[2012]4074 }
[2767]4075 if (!useGivenPieceBoundary) {
4076 idxEdge[nPiece] = x[initNData-1]+1;
4077 }
[2064]4078
[2773]4079 std::vector<double> z1(nChan), r1(nChan), residual(nChan);
[2012]4080 for (int i = 0; i < nChan; ++i) {
[2773]4081 z1[i] = (double)data[i];
4082 r1[i] = 0.0;
[2344]4083 residual[i] = 0.0;
[2012]4084 }
4085
4086 for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
[2064]4087 // xMatrix : horizontal concatenation of
4088 // the least-sq. matrix (left) and an
4089 // identity matrix (right).
4090 // the right part is used to calculate the inverse matrix of the left part.
[2767]4091
[2012]4092 double xMatrix[nDOF][2*nDOF];
4093 double zMatrix[nDOF];
4094 for (int i = 0; i < nDOF; ++i) {
4095 for (int j = 0; j < 2*nDOF; ++j) {
4096 xMatrix[i][j] = 0.0;
4097 }
4098 xMatrix[i][nDOF+i] = 1.0;
4099 zMatrix[i] = 0.0;
4100 }
4101
4102 for (int n = 0; n < nPiece; ++n) {
[2193]4103 int nUseDataInPiece = 0;
[2773]4104 for (int k = idxEdge[n]; k < idxEdge[n+1]; ++k) {
[2064]4105
[2773]4106 if (maskArray[k] == 0) continue;
[2064]4107
[2773]4108 for (int i = 0; i < nModel; ++i) {
4109 for (int j = i; j < nModel; ++j) {
4110 xMatrix[i][j] += model[i][k] * model[j][k];
4111 }
4112 zMatrix[i] += z1[k] * model[i][k];
4113 }
[2064]4114
[2773]4115 for (int i = 0; i < n; ++i) {
4116 double q = 1.0 - model[1][k]*invEdge[i];
[2012]4117 q = q*q*q;
[2773]4118 for (int j = 0; j < nModel; ++j) {
4119 xMatrix[j][i+nModel] += q * model[j][k];
4120 }
4121 for (int j = 0; j < i; ++j) {
4122 double r = 1.0 - model[1][k]*invEdge[j];
[2012]4123 r = r*r*r;
[2773]4124 xMatrix[j+nModel][i+nModel] += r*q;
[2012]4125 }
[2773]4126 xMatrix[i+nModel][i+nModel] += q*q;
4127 zMatrix[i+nModel] += q*z1[k];
[2012]4128 }
[2064]4129
[2193]4130 nUseDataInPiece++;
[2012]4131 }
[2193]4132
4133 if (nUseDataInPiece < 1) {
4134 std::vector<string> suffixOfPieceNumber(4);
4135 suffixOfPieceNumber[0] = "th";
4136 suffixOfPieceNumber[1] = "st";
4137 suffixOfPieceNumber[2] = "nd";
4138 suffixOfPieceNumber[3] = "rd";
4139 int idxNoDataPiece = (n % 10 <= 3) ? n : 0;
4140 ostringstream oss;
4141 oss << "all channels clipped or masked in " << n << suffixOfPieceNumber[idxNoDataPiece];
4142 oss << " piece of the spectrum. can't execute fitting anymore.";
4143 throw(AipsError(String(oss)));
4144 }
[2012]4145 }
4146
4147 for (int i = 0; i < nDOF; ++i) {
4148 for (int j = 0; j < i; ++j) {
4149 xMatrix[i][j] = xMatrix[j][i];
4150 }
4151 }
4152
[2344]4153 std::vector<double> invDiag(nDOF);
[2012]4154 for (int i = 0; i < nDOF; ++i) {
[2773]4155 invDiag[i] = 1.0 / xMatrix[i][i];
[2012]4156 for (int j = 0; j < nDOF; ++j) {
4157 xMatrix[i][j] *= invDiag[i];
4158 }
4159 }
4160
4161 for (int k = 0; k < nDOF; ++k) {
4162 for (int i = 0; i < nDOF; ++i) {
4163 if (i != k) {
4164 double factor1 = xMatrix[k][k];
[2773]4165 double invfactor1 = 1.0 / factor1;
[2012]4166 double factor2 = xMatrix[i][k];
4167 for (int j = k; j < 2*nDOF; ++j) {
4168 xMatrix[i][j] *= factor1;
4169 xMatrix[i][j] -= xMatrix[k][j]*factor2;
[2773]4170 xMatrix[i][j] *= invfactor1;
[2012]4171 }
4172 }
4173 }
[2773]4174 double invXDiag = 1.0 / xMatrix[k][k];
[2012]4175 for (int j = k; j < 2*nDOF; ++j) {
[2773]4176 xMatrix[k][j] *= invXDiag;
[2012]4177 }
4178 }
4179
4180 for (int i = 0; i < nDOF; ++i) {
4181 for (int j = 0; j < nDOF; ++j) {
4182 xMatrix[i][nDOF+j] *= invDiag[j];
4183 }
4184 }
[2767]4185
[2012]4186 //compute a vector y which consists of the coefficients of the best-fit spline curves
4187 //(a0,a1,a2,a3(,b3,c3,...)), namely, the ones for the leftmost piece and the ones of
4188 //cubic terms for the other pieces (in case nPiece>1).
[2344]4189 std::vector<double> y(nDOF);
[2012]4190 for (int i = 0; i < nDOF; ++i) {
[2344]4191 y[i] = 0.0;
[2012]4192 for (int j = 0; j < nDOF; ++j) {
4193 y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
4194 }
4195 }
4196
[2773]4197 std::vector<double> a(nModel);
4198 for (int i = 0; i < nModel; ++i) {
4199 a[i] = y[i];
4200 }
[2012]4201
[2344]4202 int j = 0;
[2012]4203 for (int n = 0; n < nPiece; ++n) {
[2064]4204 for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
[2773]4205 r1[i] = 0.0;
4206 for (int j = 0; j < nModel; ++j) {
4207 r1[i] += a[j] * model[j][i];
4208 }
[2012]4209 }
[2773]4210 for (int i = 0; i < nModel; ++i) {
4211 params[j+i] = a[i];
4212 }
4213 j += nModel;
[2012]4214
4215 if (n == nPiece-1) break;
4216
[2773]4217 double d = y[n+nModel];
[2064]4218 double iE = invEdge[n];
[2773]4219 a[0] += d;
4220 a[1] -= 3.0 * d * iE;
4221 a[2] += 3.0 * d * iE * iE;
4222 a[3] -= d * iE * iE * iE;
[2012]4223 }
4224
[2344]4225 //subtract constant value for masked regions at the edge of spectrum
4226 if (idxEdge[0] > 0) {
4227 int n = idxEdge[0];
4228 for (int i = 0; i < idxEdge[0]; ++i) {
4229 //--cubic extrapolate--
4230 //r1[i] = params[0] + params[1]*x1[i] + params[2]*x2[i] + params[3]*x3[i];
4231 //--linear extrapolate--
4232 //r1[i] = (r1[n+1] - r1[n])/(x1[n+1] - x1[n])*(x1[i] - x1[n]) + r1[n];
4233 //--constant--
4234 r1[i] = r1[n];
4235 }
4236 }
[2767]4237
[2344]4238 if (idxEdge[nPiece] < nChan) {
4239 int n = idxEdge[nPiece]-1;
4240 for (int i = idxEdge[nPiece]; i < nChan; ++i) {
4241 //--cubic extrapolate--
4242 //int m = 4*(nPiece-1);
4243 //r1[i] = params[m] + params[m+1]*x1[i] + params[m+2]*x2[i] + params[m+3]*x3[i];
4244 //--linear extrapolate--
4245 //r1[i] = (r1[n-1] - r1[n])/(x1[n-1] - x1[n])*(x1[i] - x1[n]) + r1[n];
4246 //--constant--
4247 r1[i] = r1[n];
4248 }
4249 }
4250
4251 for (int i = 0; i < nChan; ++i) {
4252 residual[i] = z1[i] - r1[i];
4253 }
4254
[2767]4255 double stdDev = 0.0;
4256 for (int i = 0; i < nChan; ++i) {
[2890]4257 if (maskArray[i] == 0) continue;
4258 stdDev += residual[i]*residual[i];
[2767]4259 }
4260 stdDev = sqrt(stdDev/(double)nData);
4261 rms = (float)stdDev;
4262
[2012]4263 if ((nClip == nIterClip) || (thresClip <= 0.0)) {
4264 break;
4265 } else {
4266
4267 double thres = stdDev * thresClip;
4268 int newNData = 0;
4269 for (int i = 0; i < nChan; ++i) {
[2081]4270 if (abs(residual[i]) >= thres) {
[2012]4271 maskArray[i] = 0;
[2767]4272 finalMask[i] = false;
[2012]4273 }
4274 if (maskArray[i] > 0) {
4275 newNData++;
4276 }
4277 }
[2081]4278 if (newNData == nData) {
[2064]4279 break; //no more flag to add. iteration stops.
[2012]4280 } else {
[2081]4281 nData = newNData;
[2012]4282 }
[2767]4283
[2012]4284 }
4285 }
4286
[2193]4287 nClipped = initNData - nData;
4288
[2344]4289 std::vector<float> result(nChan);
[2058]4290 if (getResidual) {
4291 for (int i = 0; i < nChan; ++i) {
[2344]4292 result[i] = (float)residual[i];
[2058]4293 }
4294 } else {
4295 for (int i = 0; i < nChan; ++i) {
[2344]4296 result[i] = (float)r1[i];
[2058]4297 }
[2012]4298 }
4299
[2058]4300 return result;
[2012]4301}
4302
[2773]4303std::vector<int> Scantable::selectWaveNumbers(const std::vector<int>& addNWaves,
4304 const std::vector<int>& rejectNWaves)
[2081]4305{
[2773]4306 std::vector<bool> chanMask;
[2767]4307 std::string fftMethod;
4308 std::string fftThresh;
4309
[2773]4310 return selectWaveNumbers(0, chanMask, false, fftMethod, fftThresh, addNWaves, rejectNWaves);
4311}
4312
4313std::vector<int> Scantable::selectWaveNumbers(const int whichrow,
4314 const std::vector<bool>& chanMask,
4315 const bool applyFFT,
4316 const std::string& fftMethod,
4317 const std::string& fftThresh,
4318 const std::vector<int>& addNWaves,
4319 const std::vector<int>& rejectNWaves)
4320{
4321 std::vector<int> nWaves;
[2186]4322 nWaves.clear();
4323
4324 if (applyFFT) {
4325 string fftThAttr;
4326 float fftThSigma;
4327 int fftThTop;
[2773]4328 parseFFTThresholdInfo(fftThresh, fftThAttr, fftThSigma, fftThTop);
[2186]4329 doSelectWaveNumbers(whichrow, chanMask, fftMethod, fftThSigma, fftThTop, fftThAttr, nWaves);
4330 }
4331
[2411]4332 addAuxWaveNumbers(whichrow, addNWaves, rejectNWaves, nWaves);
[2773]4333
4334 return nWaves;
[2186]4335}
4336
[2773]4337int Scantable::getIdxOfNchan(const int nChan, const std::vector<int>& nChanNos)
4338{
4339 int idx = -1;
4340 for (uint i = 0; i < nChanNos.size(); ++i) {
4341 if (nChan == nChanNos[i]) {
4342 idx = i;
4343 break;
4344 }
4345 }
4346
4347 if (idx < 0) {
4348 throw(AipsError("nChan not found in nChhanNos."));
4349 }
4350
4351 return idx;
4352}
4353
[2767]4354void Scantable::parseFFTInfo(const std::string& fftInfo, bool& applyFFT, std::string& fftMethod, std::string& fftThresh)
4355{
4356 istringstream iss(fftInfo);
4357 std::string tmp;
4358 std::vector<string> res;
4359 while (getline(iss, tmp, ',')) {
4360 res.push_back(tmp);
4361 }
4362 if (res.size() < 3) {
4363 throw(AipsError("wrong value in 'fftinfo' parameter")) ;
4364 }
4365 applyFFT = (res[0] == "true");
4366 fftMethod = res[1];
4367 fftThresh = res[2];
4368}
4369
[2773]4370void Scantable::parseFFTThresholdInfo(const std::string& fftThresh, std::string& fftThAttr, float& fftThSigma, int& fftThTop)
[2186]4371{
4372 uInt idxSigma = fftThresh.find("sigma");
4373 uInt idxTop = fftThresh.find("top");
4374
4375 if (idxSigma == fftThresh.size() - 5) {
4376 std::istringstream is(fftThresh.substr(0, fftThresh.size() - 5));
4377 is >> fftThSigma;
4378 fftThAttr = "sigma";
4379 } else if (idxTop == 0) {
4380 std::istringstream is(fftThresh.substr(3));
4381 is >> fftThTop;
4382 fftThAttr = "top";
4383 } else {
4384 bool isNumber = true;
4385 for (uInt i = 0; i < fftThresh.size()-1; ++i) {
4386 char ch = (fftThresh.substr(i, 1).c_str())[0];
4387 if (!(isdigit(ch) || (fftThresh.substr(i, 1) == "."))) {
4388 isNumber = false;
4389 break;
4390 }
4391 }
4392 if (isNumber) {
4393 std::istringstream is(fftThresh);
4394 is >> fftThSigma;
4395 fftThAttr = "sigma";
4396 } else {
4397 throw(AipsError("fftthresh has a wrong value"));
4398 }
4399 }
4400}
4401
4402void Scantable::doSelectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const std::string& fftMethod, const float fftThSigma, const int fftThTop, const std::string& fftThAttr, std::vector<int>& nWaves)
4403{
4404 std::vector<float> fspec;
4405 if (fftMethod == "fft") {
4406 fspec = execFFT(whichrow, chanMask, false, true);
4407 //} else if (fftMethod == "lsp") {
4408 // fspec = lombScarglePeriodogram(whichrow);
4409 }
4410
4411 if (fftThAttr == "sigma") {
4412 float mean = 0.0;
4413 float mean2 = 0.0;
4414 for (uInt i = 0; i < fspec.size(); ++i) {
4415 mean += fspec[i];
4416 mean2 += fspec[i]*fspec[i];
4417 }
4418 mean /= float(fspec.size());
4419 mean2 /= float(fspec.size());
4420 float thres = mean + fftThSigma * float(sqrt(mean2 - mean*mean));
4421
4422 for (uInt i = 0; i < fspec.size(); ++i) {
4423 if (fspec[i] >= thres) {
4424 nWaves.push_back(i);
4425 }
4426 }
4427
4428 } else if (fftThAttr == "top") {
4429 for (int i = 0; i < fftThTop; ++i) {
4430 float max = 0.0;
4431 int maxIdx = 0;
4432 for (uInt j = 0; j < fspec.size(); ++j) {
4433 if (fspec[j] > max) {
4434 max = fspec[j];
4435 maxIdx = j;
4436 }
4437 }
4438 nWaves.push_back(maxIdx);
4439 fspec[maxIdx] = 0.0;
4440 }
4441
4442 }
4443
4444 if (nWaves.size() > 1) {
4445 sort(nWaves.begin(), nWaves.end());
4446 }
4447}
4448
[2411]4449void Scantable::addAuxWaveNumbers(const int whichrow, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves)
[2186]4450{
[2411]4451 std::vector<int> tempAddNWaves, tempRejectNWaves;
[2767]4452 tempAddNWaves.clear();
4453 tempRejectNWaves.clear();
4454
[2186]4455 for (uInt i = 0; i < addNWaves.size(); ++i) {
[2411]4456 tempAddNWaves.push_back(addNWaves[i]);
4457 }
4458 if ((tempAddNWaves.size() == 2) && (tempAddNWaves[1] == -999)) {
4459 setWaveNumberListUptoNyquistFreq(whichrow, tempAddNWaves);
4460 }
4461
4462 for (uInt i = 0; i < rejectNWaves.size(); ++i) {
4463 tempRejectNWaves.push_back(rejectNWaves[i]);
4464 }
4465 if ((tempRejectNWaves.size() == 2) && (tempRejectNWaves[1] == -999)) {
4466 setWaveNumberListUptoNyquistFreq(whichrow, tempRejectNWaves);
4467 }
4468
4469 for (uInt i = 0; i < tempAddNWaves.size(); ++i) {
[2186]4470 bool found = false;
4471 for (uInt j = 0; j < nWaves.size(); ++j) {
[2411]4472 if (nWaves[j] == tempAddNWaves[i]) {
[2186]4473 found = true;
4474 break;
4475 }
4476 }
[2411]4477 if (!found) nWaves.push_back(tempAddNWaves[i]);
[2186]4478 }
4479
[2411]4480 for (uInt i = 0; i < tempRejectNWaves.size(); ++i) {
[2186]4481 for (std::vector<int>::iterator j = nWaves.begin(); j != nWaves.end(); ) {
[2411]4482 if (*j == tempRejectNWaves[i]) {
[2186]4483 j = nWaves.erase(j);
4484 } else {
4485 ++j;
4486 }
4487 }
4488 }
4489
4490 if (nWaves.size() > 1) {
4491 sort(nWaves.begin(), nWaves.end());
4492 unique(nWaves.begin(), nWaves.end());
4493 }
4494}
4495
[2411]4496void Scantable::setWaveNumberListUptoNyquistFreq(const int whichrow, std::vector<int>& nWaves)
4497{
[2767]4498 int val = nWaves[0];
4499 int nyquistFreq = nchan(getIF(whichrow))/2+1;
4500 nWaves.clear();
4501 if (val > nyquistFreq) { // for safety, at least nWaves contains a constant; CAS-3759
4502 nWaves.push_back(0);
[2411]4503 }
[2767]4504 while (val <= nyquistFreq) {
4505 nWaves.push_back(val);
4506 val++;
4507 }
[2411]4508}
4509
[2773]4510void Scantable::sinusoidBaseline(const std::vector<bool>& mask, const std::string& fftInfo,
4511 const std::vector<int>& addNWaves,
4512 const std::vector<int>& rejectNWaves,
4513 float thresClip, int nIterClip,
4514 bool getResidual,
4515 const std::string& progressInfo,
4516 const bool outLogger, const std::string& blfile,
4517 const std::string& bltable)
[2186]4518{
[2774]4519 /****
[2773]4520 double TimeStart = mathutil::gettimeofday_sec();
[2774]4521 ****/
[2773]4522
[2193]4523 try {
4524 ofstream ofs;
[2773]4525 String coordInfo;
4526 bool hasSameNchan, outTextFile, csvFormat, showProgress;
4527 int minNRow;
4528 int nRow = nrow();
4529 std::vector<bool> chanMask, finalChanMask;
4530 float rms;
4531 bool outBaselineTable = (bltable != "");
4532 STBaselineTable bt = STBaselineTable(*this);
4533 Vector<Double> timeSecCol;
[2012]4534
[2773]4535 initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
4536 coordInfo, hasSameNchan,
4537 progressInfo, showProgress, minNRow,
4538 timeSecCol);
[2012]4539
[2773]4540 bool applyFFT;
4541 std::string fftMethod, fftThresh;
4542 parseFFTInfo(fftInfo, applyFFT, fftMethod, fftThresh);
[2012]4543
[2193]4544 std::vector<int> nWaves;
[2773]4545 std::vector<int> nChanNos;
4546 std::vector<std::vector<std::vector<double> > > modelReservoir;
4547 if (!applyFFT) {
4548 nWaves = selectWaveNumbers(addNWaves, rejectNWaves);
4549 modelReservoir = getSinusoidModelReservoir(nWaves, nChanNos);
4550 }
[2012]4551
[2193]4552 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
[2767]4553 std::vector<float> sp = getSpectrum(whichrow);
[2193]4554 chanMask = getCompositeChanMask(whichrow, mask);
[2773]4555 std::vector<std::vector<double> > model;
4556 if (applyFFT) {
4557 nWaves = selectWaveNumbers(whichrow, chanMask, true, fftMethod, fftThresh,
4558 addNWaves, rejectNWaves);
4559 model = getSinusoidModel(nWaves, sp.size());
4560 } else {
4561 model = modelReservoir[getIdxOfNchan(sp.size(), nChanNos)];
4562 }
[2186]4563
[2767]4564 std::vector<float> params;
4565 int nClipped = 0;
[2773]4566 std::vector<float> res = doLeastSquareFitting(sp, chanMask, model,
4567 params, rms, finalChanMask,
4568 nClipped, thresClip, nIterClip, getResidual);
[2767]4569
[2773]4570 if (outBaselineTable) {
4571 bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4572 getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4573 true, STBaselineFunc::Sinusoid, nWaves, std::vector<float>(),
4574 getMaskListFromMask(finalChanMask), params, rms, sp.size(),
4575 thresClip, nIterClip, 0.0, 0, std::vector<int>());
[2767]4576 } else {
4577 setSpectrum(res, whichrow);
[2186]4578 }
[2193]4579
[2773]4580 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
4581 coordInfo, hasSameNchan, ofs, "sinusoidBaseline()",
4582 params, nClipped);
[2193]4583 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
[2186]4584 }
4585
[2773]4586 finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
[2767]4587
[2193]4588 } catch (...) {
4589 throw;
[1931]4590 }
[2773]4591
[2774]4592 /****
[2773]4593 double TimeEnd = mathutil::gettimeofday_sec();
4594 double elapse1 = TimeEnd - TimeStart;
4595 std::cout << "sinusoid-old : " << elapse1 << " (sec.)" << endl;
[2774]4596 ****/
[1907]4597}
4598
[2773]4599void Scantable::autoSinusoidBaseline(const std::vector<bool>& mask, const std::string& fftInfo,
4600 const std::vector<int>& addNWaves,
4601 const std::vector<int>& rejectNWaves,
4602 float thresClip, int nIterClip,
4603 const std::vector<int>& edge,
4604 float threshold, int chanAvgLimit,
4605 bool getResidual,
4606 const std::string& progressInfo,
4607 const bool outLogger, const std::string& blfile,
4608 const std::string& bltable)
[2012]4609{
[2193]4610 try {
4611 ofstream ofs;
[2773]4612 String coordInfo;
4613 bool hasSameNchan, outTextFile, csvFormat, showProgress;
4614 int minNRow;
4615 int nRow = nrow();
4616 std::vector<bool> chanMask, finalChanMask;
4617 float rms;
4618 bool outBaselineTable = (bltable != "");
4619 STBaselineTable bt = STBaselineTable(*this);
4620 Vector<Double> timeSecCol;
4621 STLineFinder lineFinder = STLineFinder();
[2012]4622
[2773]4623 initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
4624 coordInfo, hasSameNchan,
4625 progressInfo, showProgress, minNRow,
4626 timeSecCol);
[2012]4627
[2773]4628 initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
[2012]4629
[2773]4630 bool applyFFT;
4631 string fftMethod, fftThresh;
4632 parseFFTInfo(fftInfo, applyFFT, fftMethod, fftThresh);
[2012]4633
[2193]4634 std::vector<int> nWaves;
[2773]4635 std::vector<int> nChanNos;
4636 std::vector<std::vector<std::vector<double> > > modelReservoir;
4637 if (!applyFFT) {
4638 nWaves = selectWaveNumbers(addNWaves, rejectNWaves);
4639 modelReservoir = getSinusoidModelReservoir(nWaves, nChanNos);
4640 }
[2186]4641
[2193]4642 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
[2767]4643 std::vector<float> sp = getSpectrum(whichrow);
[2193]4644 std::vector<int> currentEdge;
[2773]4645 chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
4646 std::vector<std::vector<double> > model;
4647 if (applyFFT) {
4648 nWaves = selectWaveNumbers(whichrow, chanMask, true, fftMethod, fftThresh,
4649 addNWaves, rejectNWaves);
4650 model = getSinusoidModel(nWaves, sp.size());
[2193]4651 } else {
[2773]4652 model = modelReservoir[getIdxOfNchan(sp.size(), nChanNos)];
[2012]4653 }
[2193]4654
4655 std::vector<float> params;
4656 int nClipped = 0;
[2773]4657 std::vector<float> res = doLeastSquareFitting(sp, chanMask, model,
4658 params, rms, finalChanMask,
4659 nClipped, thresClip, nIterClip, getResidual);
[2193]4660
[2773]4661 if (outBaselineTable) {
4662 bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4663 getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4664 true, STBaselineFunc::Sinusoid, nWaves, std::vector<float>(),
4665 getMaskListFromMask(finalChanMask), params, rms, sp.size(),
4666 thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
[2767]4667 } else {
4668 setSpectrum(res, whichrow);
4669 }
4670
[2773]4671 outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
4672 coordInfo, hasSameNchan, ofs, "autoSinusoidBaseline()",
4673 params, nClipped);
[2193]4674 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
[2012]4675 }
4676
[2773]4677 finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
[2767]4678
[2193]4679 } catch (...) {
4680 throw;
[2047]4681 }
4682}
4683
[2773]4684std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data,
4685 const std::vector<bool>& mask,
4686 const std::vector<int>& waveNumbers,
4687 std::vector<float>& params,
4688 float& rms,
4689 std::vector<bool>& finalmask,
4690 float clipth,
4691 int clipn)
[2081]4692{
[2767]4693 int nClipped = 0;
4694 return doSinusoidFitting(data, mask, waveNumbers, params, rms, finalmask, nClipped, clipth, clipn);
4695}
4696
[2773]4697std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data,
4698 const std::vector<bool>& mask,
4699 const std::vector<int>& waveNumbers,
4700 std::vector<float>& params,
4701 float& rms,
4702 std::vector<bool>& finalMask,
4703 int& nClipped,
4704 float thresClip,
4705 int nIterClip,
4706 bool getResidual)
[2767]4707{
[2773]4708 return doLeastSquareFitting(data, mask,
4709 getSinusoidModel(waveNumbers, data.size()),
4710 params, rms, finalMask,
4711 nClipped, thresClip, nIterClip,
4712 getResidual);
4713}
4714
4715std::vector<std::vector<std::vector<double> > > Scantable::getSinusoidModelReservoir(const std::vector<int>& waveNumbers,
4716 std::vector<int>& nChanNos)
4717{
4718 std::vector<std::vector<std::vector<double> > > res;
4719 res.clear();
4720 nChanNos.clear();
4721
4722 std::vector<uint> ifNos = getIFNos();
4723 for (uint i = 0; i < ifNos.size(); ++i) {
4724 int currNchan = nchan(ifNos[i]);
4725 bool hasDifferentNchan = (i == 0);
4726 for (uint j = 0; j < i; ++j) {
4727 if (currNchan != nchan(ifNos[j])) {
4728 hasDifferentNchan = true;
4729 break;
4730 }
4731 }
4732 if (hasDifferentNchan) {
4733 res.push_back(getSinusoidModel(waveNumbers, currNchan));
4734 nChanNos.push_back(currNchan);
4735 }
[2047]4736 }
[2773]4737
4738 return res;
4739}
4740
4741std::vector<std::vector<double> > Scantable::getSinusoidModel(const std::vector<int>& waveNumbers, int nchan)
4742{
4743 // model : contains elemental values for computing the least-square matrix.
4744 // model.size() is nmodel and model[*].size() is nchan.
4745 // Each model element are as follows:
4746 // model[0] = {1.0, 1.0, 1.0, ..., 1.0},
4747 // model[2n-1] = {sin(nPI/L*x[0]), sin(nPI/L*x[1]), ..., sin(nPI/L*x[nchan])},
4748 // model[2n] = {cos(nPI/L*x[0]), cos(nPI/L*x[1]), ..., cos(nPI/L*x[nchan])},
4749 // where (1 <= n <= nMaxWavesInSW),
4750 // or,
4751 // model[2n-1] = {sin(wn[n]PI/L*x[0]), sin(wn[n]PI/L*x[1]), ..., sin(wn[n]PI/L*x[nchan])},
4752 // model[2n] = {cos(wn[n]PI/L*x[0]), cos(wn[n]PI/L*x[1]), ..., cos(wn[n]PI/L*x[nchan])},
4753 // where wn[n] denotes waveNumbers[n] (1 <= n <= waveNumbers.size()).
4754
[2081]4755 std::vector<int> nWaves; // sorted and uniqued array of wave numbers
4756 nWaves.reserve(waveNumbers.size());
4757 copy(waveNumbers.begin(), waveNumbers.end(), back_inserter(nWaves));
4758 sort(nWaves.begin(), nWaves.end());
4759 std::vector<int>::iterator end_it = unique(nWaves.begin(), nWaves.end());
4760 nWaves.erase(end_it, nWaves.end());
4761
4762 int minNWaves = nWaves[0];
4763 if (minNWaves < 0) {
[2058]4764 throw(AipsError("wave number must be positive or zero (i.e. constant)"));
4765 }
[2081]4766 bool hasConstantTerm = (minNWaves == 0);
[2773]4767 int nmodel = nWaves.size() * 2 - (hasConstantTerm ? 1 : 0); //number of parameters to solve.
[2047]4768
[2773]4769 std::vector<std::vector<double> > model(nmodel, std::vector<double>(nchan));
[2767]4770
[2773]4771 if (hasConstantTerm) {
4772 for (int j = 0; j < nchan; ++j) {
4773 model[0][j] = 1.0;
[2047]4774 }
4775 }
4776
[2081]4777 const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
[2773]4778 double stretch0 = 2.0*PI/(double)(nchan-1);
[2081]4779
4780 for (uInt i = (hasConstantTerm ? 1 : 0); i < nWaves.size(); ++i) {
[2773]4781 int sidx = hasConstantTerm ? 2*i-1 : 2*i;
4782 int cidx = sidx + 1;
4783 double stretch = stretch0*(double)nWaves[i];
[2081]4784
[2773]4785 for (int j = 0; j < nchan; ++j) {
4786 model[sidx][j] = sin(stretch*(double)j);
4787 model[cidx][j] = cos(stretch*(double)j);
[2047]4788 }
[2012]4789 }
4790
[2773]4791 return model;
[2012]4792}
4793
[2773]4794std::vector<bool> Scantable::getCompositeChanMask(int whichrow,
4795 const std::vector<bool>& inMask)
[2047]4796{
[2186]4797 std::vector<bool> mask = getMask(whichrow);
4798 uInt maskSize = mask.size();
[2410]4799 if (inMask.size() != 0) {
4800 if (maskSize != inMask.size()) {
4801 throw(AipsError("mask sizes are not the same."));
4802 }
4803 for (uInt i = 0; i < maskSize; ++i) {
4804 mask[i] = mask[i] && inMask[i];
4805 }
[2047]4806 }
4807
[2186]4808 return mask;
[2047]4809}
4810
[2773]4811std::vector<bool> Scantable::getCompositeChanMask(int whichrow,
4812 const std::vector<bool>& inMask,
4813 const std::vector<int>& edge,
4814 std::vector<int>& currEdge,
4815 STLineFinder& lineFinder)
[2047]4816{
[2773]4817 std::vector<uint> ifNos = getIFNos();
[2774]4818 if ((edge.size() > 2) && (edge.size() < ifNos.size()*2)) {
[2773]4819 throw(AipsError("Length of edge element info is less than that of IFs"));
[2047]4820 }
4821
[2774]4822 uint idx = 0;
4823 if (edge.size() > 2) {
4824 int ifVal = getIF(whichrow);
4825 bool foundIF = false;
4826 for (uint i = 0; i < ifNos.size(); ++i) {
4827 if (ifVal == (int)ifNos[i]) {
4828 idx = 2*i;
4829 foundIF = true;
4830 break;
4831 }
[2773]4832 }
[2774]4833 if (!foundIF) {
4834 throw(AipsError("bad IF number"));
4835 }
[2773]4836 }
4837
4838 currEdge.clear();
4839 currEdge.resize(2);
4840 currEdge[0] = edge[idx];
4841 currEdge[1] = edge[idx+1];
4842
[2047]4843 lineFinder.setData(getSpectrum(whichrow));
[2773]4844 lineFinder.findLines(getCompositeChanMask(whichrow, inMask), currEdge, whichrow);
[2047]4845
4846 return lineFinder.getMask();
4847}
4848
4849/* for cspline. will be merged once cspline is available in fitter (2011/3/10 WK) */
[2773]4850void Scantable::outputFittingResult(bool outLogger,
4851 bool outTextFile,
4852 bool csvFormat,
4853 const std::vector<bool>& chanMask,
4854 int whichrow,
4855 const casa::String& coordInfo,
4856 bool hasSameNchan,
4857 ofstream& ofs,
4858 const casa::String& funcName,
4859 const std::vector<int>& edge,
4860 const std::vector<float>& params,
4861 const int nClipped)
[2186]4862{
[2047]4863 if (outLogger || outTextFile) {
4864 float rms = getRms(chanMask, whichrow);
4865 String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
[2081]4866 std::vector<bool> fixed;
4867 fixed.clear();
[2047]4868
4869 if (outLogger) {
4870 LogIO ols(LogOrigin("Scantable", funcName, WHERE));
[2773]4871 ols << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped,
4872 masklist, whichrow, false, csvFormat) << LogIO::POST ;
[2047]4873 }
4874 if (outTextFile) {
[2773]4875 ofs << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped,
4876 masklist, whichrow, true, csvFormat) << flush;
[2047]4877 }
4878 }
4879}
4880
[2773]4881/* for poly/chebyshev/sinusoid. */
4882void Scantable::outputFittingResult(bool outLogger,
4883 bool outTextFile,
4884 bool csvFormat,
4885 const std::vector<bool>& chanMask,
4886 int whichrow,
4887 const casa::String& coordInfo,
4888 bool hasSameNchan,
4889 ofstream& ofs,
4890 const casa::String& funcName,
4891 const std::vector<float>& params,
4892 const int nClipped)
[2186]4893{
[2047]4894 if (outLogger || outTextFile) {
4895 float rms = getRms(chanMask, whichrow);
4896 String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
[2081]4897 std::vector<bool> fixed;
4898 fixed.clear();
[2047]4899
4900 if (outLogger) {
4901 LogIO ols(LogOrigin("Scantable", funcName, WHERE));
[2773]4902 ols << formatBaselineParams(params, fixed, rms, nClipped,
4903 masklist, whichrow, false, csvFormat) << LogIO::POST ;
[2047]4904 }
4905 if (outTextFile) {
[2773]4906 ofs << formatBaselineParams(params, fixed, rms, nClipped,
4907 masklist, whichrow, true, csvFormat) << flush;
[2047]4908 }
4909 }
4910}
4911
[2189]4912void Scantable::parseProgressInfo(const std::string& progressInfo, bool& showProgress, int& minNRow)
[2186]4913{
[2189]4914 int idxDelimiter = progressInfo.find(",");
4915 if (idxDelimiter < 0) {
4916 throw(AipsError("wrong value in 'showprogress' parameter")) ;
4917 }
4918 showProgress = (progressInfo.substr(0, idxDelimiter) == "true");
4919 std::istringstream is(progressInfo.substr(idxDelimiter+1));
4920 is >> minNRow;
4921}
4922
4923void Scantable::showProgressOnTerminal(const int nProcessed, const int nTotal, const bool showProgress, const int nTotalThreshold)
4924{
4925 if (showProgress && (nTotal >= nTotalThreshold)) {
[2186]4926 int nInterval = int(floor(double(nTotal)/100.0));
4927 if (nInterval == 0) nInterval++;
4928
[2193]4929 if (nProcessed % nInterval == 0) {
[2189]4930 printf("\r"); //go to the head of line
[2186]4931 printf("\x1b[31m\x1b[1m"); //set red color, highlighted
[2189]4932 printf("[%3d%%]", (int)(100.0*(double(nProcessed+1))/(double(nTotal))) );
4933 printf("\x1b[39m\x1b[0m"); //set default attributes
[2186]4934 fflush(NULL);
4935 }
[2193]4936
[2186]4937 if (nProcessed == nTotal - 1) {
4938 printf("\r\x1b[K"); //clear
4939 fflush(NULL);
4940 }
[2193]4941
[2186]4942 }
4943}
4944
4945std::vector<float> Scantable::execFFT(const int whichrow, const std::vector<bool>& inMask, bool getRealImag, bool getAmplitudeOnly)
4946{
4947 std::vector<bool> mask = getMask(whichrow);
4948
4949 if (inMask.size() > 0) {
4950 uInt maskSize = mask.size();
4951 if (maskSize != inMask.size()) {
4952 throw(AipsError("mask sizes are not the same."));
4953 }
4954 for (uInt i = 0; i < maskSize; ++i) {
4955 mask[i] = mask[i] && inMask[i];
4956 }
4957 }
4958
4959 Vector<Float> spec = getSpectrum(whichrow);
4960 mathutil::doZeroOrderInterpolation(spec, mask);
4961
4962 FFTServer<Float,Complex> ffts;
4963 Vector<Complex> fftres;
4964 ffts.fft0(fftres, spec);
4965
4966 std::vector<float> res;
4967 float norm = float(2.0/double(spec.size()));
4968
4969 if (getRealImag) {
4970 for (uInt i = 0; i < fftres.size(); ++i) {
4971 res.push_back(real(fftres[i])*norm);
4972 res.push_back(imag(fftres[i])*norm);
4973 }
4974 } else {
4975 for (uInt i = 0; i < fftres.size(); ++i) {
4976 res.push_back(abs(fftres[i])*norm);
4977 if (!getAmplitudeOnly) res.push_back(arg(fftres[i]));
4978 }
4979 }
4980
4981 return res;
4982}
4983
4984
4985float Scantable::getRms(const std::vector<bool>& mask, int whichrow)
4986{
[2591]4987 /****
[2737]4988 double ms1TimeStart, ms1TimeEnd;
[2591]4989 double elapse1 = 0.0;
4990 ms1TimeStart = mathutil::gettimeofday_sec();
4991 ****/
4992
[2012]4993 Vector<Float> spec;
4994 specCol_.get(whichrow, spec);
4995
[2591]4996 /****
4997 ms1TimeEnd = mathutil::gettimeofday_sec();
4998 elapse1 = ms1TimeEnd - ms1TimeStart;
4999 std::cout << "rm1 : " << elapse1 << " (sec.)" << endl;
5000 ****/
5001
[2737]5002 return (float)doGetRms(mask, spec);
5003}
5004
5005double Scantable::doGetRms(const std::vector<bool>& mask, const Vector<Float>& spec)
5006{
5007 double mean = 0.0;
5008 double smean = 0.0;
[2012]5009 int n = 0;
[2047]5010 for (uInt i = 0; i < spec.nelements(); ++i) {
[2012]5011 if (mask[i]) {
[2737]5012 double val = (double)spec[i];
5013 mean += val;
5014 smean += val*val;
[2012]5015 n++;
5016 }
5017 }
5018
[2737]5019 mean /= (double)n;
5020 smean /= (double)n;
[2012]5021
5022 return sqrt(smean - mean*mean);
5023}
5024
[2641]5025std::string Scantable::formatBaselineParamsHeader(int whichrow, const std::string& masklist, bool verbose, bool csvformat) const
[2012]5026{
[2641]5027 if (verbose) {
5028 ostringstream oss;
[2012]5029
[2641]5030 if (csvformat) {
5031 oss << getScan(whichrow) << ",";
5032 oss << getBeam(whichrow) << ",";
5033 oss << getIF(whichrow) << ",";
5034 oss << getPol(whichrow) << ",";
5035 oss << getCycle(whichrow) << ",";
5036 String commaReplacedMasklist = masklist;
5037 string::size_type pos = 0;
5038 while (pos = commaReplacedMasklist.find(","), pos != string::npos) {
5039 commaReplacedMasklist.replace(pos, 1, ";");
5040 pos++;
5041 }
5042 oss << commaReplacedMasklist << ",";
5043 } else {
5044 oss << " Scan[" << getScan(whichrow) << "]";
5045 oss << " Beam[" << getBeam(whichrow) << "]";
5046 oss << " IF[" << getIF(whichrow) << "]";
5047 oss << " Pol[" << getPol(whichrow) << "]";
5048 oss << " Cycle[" << getCycle(whichrow) << "]: " << endl;
5049 oss << "Fitter range = " << masklist << endl;
5050 oss << "Baseline parameters" << endl;
5051 }
[2012]5052 oss << flush;
[2641]5053
5054 return String(oss);
[2012]5055 }
5056
[2641]5057 return "";
[2012]5058}
5059
[2641]5060std::string Scantable::formatBaselineParamsFooter(float rms, int nClipped, bool verbose, bool csvformat) const
[2012]5061{
[2641]5062 if (verbose) {
5063 ostringstream oss;
[2012]5064
[2641]5065 if (csvformat) {
5066 oss << rms << ",";
5067 if (nClipped >= 0) {
5068 oss << nClipped;
5069 }
5070 } else {
5071 oss << "Results of baseline fit" << endl;
5072 oss << " rms = " << setprecision(6) << rms << endl;
5073 if (nClipped >= 0) {
5074 oss << " Number of clipped channels = " << nClipped << endl;
5075 }
5076 for (int i = 0; i < 60; ++i) {
5077 oss << "-";
5078 }
[2193]5079 }
[2131]5080 oss << endl;
[2094]5081 oss << flush;
[2641]5082
5083 return String(oss);
[2012]5084 }
5085
[2641]5086 return "";
[2012]5087}
5088
[2186]5089std::string Scantable::formatBaselineParams(const std::vector<float>& params,
5090 const std::vector<bool>& fixed,
5091 float rms,
[2193]5092 int nClipped,
[2186]5093 const std::string& masklist,
5094 int whichrow,
5095 bool verbose,
[2641]5096 bool csvformat,
[2186]5097 int start, int count,
5098 bool resetparamid) const
[2047]5099{
[2064]5100 int nParam = (int)(params.size());
[2047]5101
[2064]5102 if (nParam < 1) {
5103 return(" Not fitted");
5104 } else {
5105
5106 ostringstream oss;
[2641]5107 oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat);
[2064]5108
5109 if (start < 0) start = 0;
5110 if (count < 0) count = nParam;
5111 int end = start + count;
5112 if (end > nParam) end = nParam;
5113 int paramidoffset = (resetparamid) ? (-start) : 0;
5114
5115 for (int i = start; i < end; ++i) {
5116 if (i > start) {
[2047]5117 oss << ",";
5118 }
[2064]5119 std::string sFix = ((fixed.size() > 0) && (fixed[i]) && verbose) ? "(fixed)" : "";
[2641]5120 if (csvformat) {
5121 oss << params[i] << sFix;
5122 } else {
5123 oss << " p" << (i+paramidoffset) << sFix << "= " << right << setw(13) << setprecision(6) << params[i];
5124 }
[2047]5125 }
[2064]5126
[2641]5127 if (csvformat) {
5128 oss << ",";
[2644]5129 } else {
5130 oss << endl;
[2641]5131 }
5132 oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat);
[2064]5133
5134 return String(oss);
[2047]5135 }
5136
5137}
5138
[2641]5139std::string Scantable::formatPiecewiseBaselineParams(const std::vector<int>& ranges, const std::vector<float>& params, const std::vector<bool>& fixed, float rms, int nClipped, const std::string& masklist, int whichrow, bool verbose, bool csvformat) const
[2012]5140{
[2064]5141 int nOutParam = (int)(params.size());
5142 int nPiece = (int)(ranges.size()) - 1;
[2012]5143
[2064]5144 if (nOutParam < 1) {
5145 return(" Not fitted");
5146 } else if (nPiece < 0) {
[2641]5147 return formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, verbose, csvformat);
[2064]5148 } else if (nPiece < 1) {
5149 return(" Bad count of the piece edge info");
5150 } else if (nOutParam % nPiece != 0) {
5151 return(" Bad count of the output baseline parameters");
5152 } else {
5153
5154 int nParam = nOutParam / nPiece;
5155
5156 ostringstream oss;
[2641]5157 oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat);
[2064]5158
[2641]5159 if (csvformat) {
5160 for (int i = 0; i < nPiece; ++i) {
5161 oss << ranges[i] << "," << (ranges[i+1]-1) << ",";
5162 oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true);
5163 }
5164 } else {
5165 stringstream ss;
5166 ss << ranges[nPiece] << flush;
5167 int wRange = ss.str().size() * 2 + 5;
[2064]5168
[2641]5169 for (int i = 0; i < nPiece; ++i) {
5170 ss.str("");
5171 ss << " [" << ranges[i] << "," << (ranges[i+1]-1) << "]";
5172 oss << left << setw(wRange) << ss.str();
5173 oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true);
[2644]5174 //oss << endl;
[2641]5175 }
[2012]5176 }
[2064]5177
[2641]5178 oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat);
[2064]5179
5180 return String(oss);
[2012]5181 }
5182
5183}
5184
[2047]5185bool Scantable::hasSameNchanOverIFs()
[2012]5186{
[2047]5187 int nIF = nif(-1);
5188 int nCh;
5189 int totalPositiveNChan = 0;
5190 int nPositiveNChan = 0;
[2012]5191
[2047]5192 for (int i = 0; i < nIF; ++i) {
5193 nCh = nchan(i);
5194 if (nCh > 0) {
5195 totalPositiveNChan += nCh;
5196 nPositiveNChan++;
[2012]5197 }
5198 }
5199
[2047]5200 return (totalPositiveNChan == (nPositiveNChan * nchan(0)));
[2012]5201}
5202
[2047]5203std::string Scantable::getMaskRangeList(const std::vector<bool>& mask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, bool verbose)
[2012]5204{
[2427]5205 if (mask.size() <= 0) {
5206 throw(AipsError("The mask elements should be > 0"));
[2012]5207 }
[2047]5208 int IF = getIF(whichrow);
5209 if (mask.size() != (uInt)nchan(IF)) {
[2012]5210 throw(AipsError("Number of channels in scantable != number of mask elements"));
5211 }
5212
[2047]5213 if (verbose) {
[2012]5214 LogIO logOs(LogOrigin("Scantable", "getMaskRangeList()", WHERE));
5215 logOs << LogIO::WARN << "The current mask window unit is " << coordInfo;
5216 if (!hasSameNchan) {
[2047]5217 logOs << endl << "This mask is only valid for IF=" << IF;
[2012]5218 }
5219 logOs << LogIO::POST;
5220 }
5221
5222 std::vector<double> abcissa = getAbcissa(whichrow);
[2047]5223 std::vector<int> edge = getMaskEdgeIndices(mask);
5224
[2012]5225 ostringstream oss;
5226 oss.setf(ios::fixed);
5227 oss << setprecision(1) << "[";
[2047]5228 for (uInt i = 0; i < edge.size(); i+=2) {
[2012]5229 if (i > 0) oss << ",";
[2047]5230 oss << "[" << (float)abcissa[edge[i]] << "," << (float)abcissa[edge[i+1]] << "]";
[2012]5231 }
5232 oss << "]" << flush;
5233
5234 return String(oss);
5235}
5236
[2047]5237std::vector<int> Scantable::getMaskEdgeIndices(const std::vector<bool>& mask)
[2012]5238{
[2427]5239 if (mask.size() <= 0) {
5240 throw(AipsError("The mask elements should be > 0"));
[2012]5241 }
5242
[2047]5243 std::vector<int> out, startIndices, endIndices;
5244 int maskSize = mask.size();
[2012]5245
[2047]5246 startIndices.clear();
5247 endIndices.clear();
5248
5249 if (mask[0]) {
5250 startIndices.push_back(0);
[2012]5251 }
[2047]5252 for (int i = 1; i < maskSize; ++i) {
5253 if ((!mask[i-1]) && mask[i]) {
5254 startIndices.push_back(i);
5255 } else if (mask[i-1] && (!mask[i])) {
5256 endIndices.push_back(i-1);
5257 }
[2012]5258 }
[2047]5259 if (mask[maskSize-1]) {
5260 endIndices.push_back(maskSize-1);
5261 }
[2012]5262
[2047]5263 if (startIndices.size() != endIndices.size()) {
5264 throw(AipsError("Inconsistent Mask Size: bad data?"));
5265 }
5266 for (uInt i = 0; i < startIndices.size(); ++i) {
5267 if (startIndices[i] > endIndices[i]) {
5268 throw(AipsError("Mask start index > mask end index"));
[2012]5269 }
5270 }
5271
[2047]5272 out.clear();
5273 for (uInt i = 0; i < startIndices.size(); ++i) {
5274 out.push_back(startIndices[i]);
5275 out.push_back(endIndices[i]);
5276 }
5277
[2012]5278 return out;
5279}
5280
[2791]5281void Scantable::setTsys(const std::vector<float>& newvals, int whichrow) {
5282 Vector<Float> tsys(newvals);
5283 if (whichrow > -1) {
5284 if (tsysCol_.shape(whichrow) != tsys.shape())
5285 throw(AipsError("Given Tsys values are not of the same shape"));
5286 tsysCol_.put(whichrow, tsys);
5287 } else {
5288 tsysCol_.fillColumn(tsys);
5289 }
5290}
5291
[2161]5292vector<float> Scantable::getTsysSpectrum( int whichrow ) const
5293{
5294 Vector<Float> tsys( tsysCol_(whichrow) ) ;
5295 vector<float> stlTsys ;
5296 tsys.tovector( stlTsys ) ;
5297 return stlTsys ;
5298}
[2012]5299
[2591]5300vector<uint> Scantable::getMoleculeIdColumnData() const
5301{
5302 Vector<uInt> molIds(mmolidCol_.getColumn());
5303 vector<uint> res;
5304 molIds.tovector(res);
5305 return res;
5306}
[2012]5307
[2591]5308void Scantable::setMoleculeIdColumnData(const std::vector<uint>& molids)
5309{
5310 Vector<uInt> molIds(molids);
5311 Vector<uInt> arr(mmolidCol_.getColumn());
5312 if ( molIds.nelements() != arr.nelements() )
5313 throw AipsError("The input data size must be the number of rows.");
5314 mmolidCol_.putColumn(molIds);
[1907]5315}
[2591]5316
5317
[2888]5318std::vector<uint> Scantable::getRootTableRowNumbers() const
5319{
5320 Vector<uInt> rowIds(table_.rowNumbers());
5321 vector<uint> res;
5322 rowIds.tovector(res);
5323 return res;
5324}
5325
5326
[2789]5327void Scantable::dropXPol()
5328{
5329 if (npol() <= 2) {
5330 return;
5331 }
5332 if (!selector_.empty()) {
5333 throw AipsError("Can only operate with empty selection");
5334 }
5335 std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
5336 Table tab = tableCommand(taql, table_);
5337 table_ = tab;
5338 table_.rwKeywordSet().define("nPol", Int(2));
5339 originalTable_ = table_;
5340 attach();
[2591]5341}
[2789]5342
5343}
[1819]5344//namespace asap
Note: See TracBrowser for help on using the repository browser.