source: trunk/src/Scantable.cpp@ 2465

Last change on this file since 2465 was 2463, checked in by Kana Sugimoto, 13 years ago

New Development: No (a bug fix)

JIRA Issue: No

Ready for Test: Yes

Interface Changes: No

What Interface Changed:

Test Programs:

Put in Release Notes: No

Module(s): scantable._regrid_specchan

Description: a bug fix in Scantable::regridSpecChannel.

Fixed the calculation of regridded reference channel.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 116.1 KB
RevLine 
[805]1//
2// C++ Implementation: Scantable
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2005
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
[206]12#include <map>
13
[2186]14#include <atnf/PKSIO/SrcType.h>
15
[125]16#include <casa/aips.h>
[2186]17#include <casa/iomanip.h>
[80]18#include <casa/iostream.h>
[2186]19#include <casa/OS/File.h>
[805]20#include <casa/OS/Path.h>
[80]21#include <casa/Arrays/Array.h>
[2186]22#include <casa/Arrays/ArrayAccessor.h>
23#include <casa/Arrays/ArrayLogical.h>
[80]24#include <casa/Arrays/ArrayMath.h>
25#include <casa/Arrays/MaskArrMath.h>
[2186]26#include <casa/Arrays/Slice.h>
[1325]27#include <casa/Arrays/Vector.h>
[455]28#include <casa/Arrays/VectorSTLIterator.h>
[418]29#include <casa/BasicMath/Math.h>
[504]30#include <casa/BasicSL/Constants.h>
[2186]31#include <casa/Containers/RecordField.h>
32#include <casa/Logging/LogIO.h>
[286]33#include <casa/Quanta/MVAngle.h>
[2186]34#include <casa/Quanta/MVTime.h>
[902]35#include <casa/Utilities/GenSort.h>
[2]36
[2186]37#include <coordinates/Coordinates/CoordinateUtil.h>
[2]38
[1325]39// needed to avoid error in .tcc
40#include <measures/Measures/MCDirection.h>
41//
42#include <measures/Measures/MDirection.h>
[2186]43#include <measures/Measures/MEpoch.h>
[80]44#include <measures/Measures/MFrequency.h>
[2186]45#include <measures/Measures/MeasRef.h>
46#include <measures/Measures/MeasTable.h>
47#include <measures/TableMeasures/ScalarMeasColumn.h>
48#include <measures/TableMeasures/TableMeasDesc.h>
[805]49#include <measures/TableMeasures/TableMeasRefDesc.h>
50#include <measures/TableMeasures/TableMeasValueDesc.h>
[2]51
[2186]52#include <tables/Tables/ArrColDesc.h>
53#include <tables/Tables/ExprNode.h>
54#include <tables/Tables/ScaColDesc.h>
55#include <tables/Tables/SetupNewTab.h>
56#include <tables/Tables/TableCopy.h>
57#include <tables/Tables/TableDesc.h>
58#include <tables/Tables/TableIter.h>
59#include <tables/Tables/TableParse.h>
60#include <tables/Tables/TableRecord.h>
61#include <tables/Tables/TableRow.h>
62#include <tables/Tables/TableVector.h>
63
64#include "MathUtils.h"
65#include "STAttr.h"
66#include "STLineFinder.h"
67#include "STPolCircular.h"
[896]68#include "STPolLinear.h"
[913]69#include "STPolStokes.h"
[2321]70#include "STUpgrade.h"
[2186]71#include "Scantable.h"
[2]72
[2462]73#define debug 1
74
[125]75using namespace casa;
[2]76
[805]77namespace asap {
78
[896]79std::map<std::string, STPol::STPolFactory *> Scantable::factories_;
80
81void Scantable::initFactories() {
82 if ( factories_.empty() ) {
83 Scantable::factories_["linear"] = &STPolLinear::myFactory;
[1323]84 Scantable::factories_["circular"] = &STPolCircular::myFactory;
[913]85 Scantable::factories_["stokes"] = &STPolStokes::myFactory;
[896]86 }
87}
88
[805]89Scantable::Scantable(Table::TableType ttype) :
[852]90 type_(ttype)
[206]91{
[896]92 initFactories();
[805]93 setupMainTable();
[2346]94 freqTable_ = STFrequencies(*this);
95 table_.rwKeywordSet().defineTable("FREQUENCIES", freqTable_.table());
[852]96 weatherTable_ = STWeather(*this);
[805]97 table_.rwKeywordSet().defineTable("WEATHER", weatherTable_.table());
[852]98 focusTable_ = STFocus(*this);
[805]99 table_.rwKeywordSet().defineTable("FOCUS", focusTable_.table());
[852]100 tcalTable_ = STTcal(*this);
[805]101 table_.rwKeywordSet().defineTable("TCAL", tcalTable_.table());
[852]102 moleculeTable_ = STMolecules(*this);
[805]103 table_.rwKeywordSet().defineTable("MOLECULES", moleculeTable_.table());
[860]104 historyTable_ = STHistory(*this);
105 table_.rwKeywordSet().defineTable("HISTORY", historyTable_.table());
[959]106 fitTable_ = STFit(*this);
107 table_.rwKeywordSet().defineTable("FIT", fitTable_.table());
[1881]108 table_.tableInfo().setType( "Scantable" ) ;
[805]109 originalTable_ = table_;
[322]110 attach();
[18]111}
[206]112
[805]113Scantable::Scantable(const std::string& name, Table::TableType ttype) :
[852]114 type_(ttype)
[206]115{
[896]116 initFactories();
[1819]117
[865]118 Table tab(name, Table::Update);
[1009]119 uInt version = tab.keywordSet().asuInt("VERSION");
[483]120 if (version != version_) {
[2321]121 STUpgrade upgrader(version_);
[2162]122 LogIO os( LogOrigin( "Scantable" ) ) ;
123 os << LogIO::WARN
[2321]124 << name << " data format version " << version
125 << " is deprecated" << endl
126 << "Running upgrade."<< endl
[2162]127 << LogIO::POST ;
[2321]128 std::string outname = upgrader.upgrade(name);
[2332]129 if ( outname != name ) {
130 os << LogIO::WARN
131 << "Data will be loaded from " << outname << " instead of "
132 << name << LogIO::POST ;
133 tab = Table(outname, Table::Update ) ;
134 }
[483]135 }
[1009]136 if ( type_ == Table::Memory ) {
[852]137 table_ = tab.copyToMemoryTable(generateName());
[1009]138 } else {
[805]139 table_ = tab;
[1009]140 }
[1881]141 table_.tableInfo().setType( "Scantable" ) ;
[1009]142
[859]143 attachSubtables();
[805]144 originalTable_ = table_;
[329]145 attach();
[2]146}
[1819]147/*
148Scantable::Scantable(const std::string& name, Table::TableType ttype) :
149 type_(ttype)
150{
151 initFactories();
152 Table tab(name, Table::Update);
153 uInt version = tab.keywordSet().asuInt("VERSION");
154 if (version != version_) {
155 throw(AipsError("Unsupported version of ASAP file."));
156 }
157 if ( type_ == Table::Memory ) {
158 table_ = tab.copyToMemoryTable(generateName());
159 } else {
160 table_ = tab;
161 }
[2]162
[1819]163 attachSubtables();
164 originalTable_ = table_;
165 attach();
166}
167*/
168
[2163]169Scantable::Scantable( const Scantable& other, bool clear ):
170 Logger()
[206]171{
[805]172 // with or without data
[859]173 String newname = String(generateName());
[865]174 type_ = other.table_.tableType();
[859]175 if ( other.table_.tableType() == Table::Memory ) {
176 if ( clear ) {
177 table_ = TableCopy::makeEmptyMemoryTable(newname,
178 other.table_, True);
179 } else
180 table_ = other.table_.copyToMemoryTable(newname);
[16]181 } else {
[915]182 other.table_.deepCopy(newname, Table::New, False,
183 other.table_.endianFormat(),
[865]184 Bool(clear));
185 table_ = Table(newname, Table::Update);
186 table_.markForDelete();
187 }
[1881]188 table_.tableInfo().setType( "Scantable" ) ;
[1111]189 /// @todo reindex SCANNO, recompute nbeam, nif, npol
[915]190 if ( clear ) copySubtables(other);
[859]191 attachSubtables();
[805]192 originalTable_ = table_;
[322]193 attach();
[2]194}
195
[865]196void Scantable::copySubtables(const Scantable& other) {
197 Table t = table_.rwKeywordSet().asTable("FREQUENCIES");
[2346]198 TableCopy::copyRows(t, other.freqTable_.table());
[865]199 t = table_.rwKeywordSet().asTable("FOCUS");
200 TableCopy::copyRows(t, other.focusTable_.table());
201 t = table_.rwKeywordSet().asTable("WEATHER");
202 TableCopy::copyRows(t, other.weatherTable_.table());
203 t = table_.rwKeywordSet().asTable("TCAL");
204 TableCopy::copyRows(t, other.tcalTable_.table());
205 t = table_.rwKeywordSet().asTable("MOLECULES");
206 TableCopy::copyRows(t, other.moleculeTable_.table());
207 t = table_.rwKeywordSet().asTable("HISTORY");
208 TableCopy::copyRows(t, other.historyTable_.table());
[972]209 t = table_.rwKeywordSet().asTable("FIT");
210 TableCopy::copyRows(t, other.fitTable_.table());
[865]211}
212
[859]213void Scantable::attachSubtables()
214{
[2346]215 freqTable_ = STFrequencies(table_);
[859]216 focusTable_ = STFocus(table_);
217 weatherTable_ = STWeather(table_);
218 tcalTable_ = STTcal(table_);
219 moleculeTable_ = STMolecules(table_);
[860]220 historyTable_ = STHistory(table_);
[972]221 fitTable_ = STFit(table_);
[859]222}
223
[805]224Scantable::~Scantable()
[206]225{
[2]226}
227
[805]228void Scantable::setupMainTable()
[206]229{
[805]230 TableDesc td("", "1", TableDesc::Scratch);
231 td.comment() = "An ASAP Scantable";
[1009]232 td.rwKeywordSet().define("VERSION", uInt(version_));
[2]233
[805]234 // n Cycles
235 td.addColumn(ScalarColumnDesc<uInt>("SCANNO"));
236 // new index every nBeam x nIF x nPol
237 td.addColumn(ScalarColumnDesc<uInt>("CYCLENO"));
[2]238
[805]239 td.addColumn(ScalarColumnDesc<uInt>("BEAMNO"));
240 td.addColumn(ScalarColumnDesc<uInt>("IFNO"));
[972]241 // linear, circular, stokes
[805]242 td.rwKeywordSet().define("POLTYPE", String("linear"));
243 td.addColumn(ScalarColumnDesc<uInt>("POLNO"));
[138]244
[805]245 td.addColumn(ScalarColumnDesc<uInt>("FREQ_ID"));
246 td.addColumn(ScalarColumnDesc<uInt>("MOLECULE_ID"));
[80]247
[1819]248 ScalarColumnDesc<Int> refbeamnoColumn("REFBEAMNO");
249 refbeamnoColumn.setDefault(Int(-1));
250 td.addColumn(refbeamnoColumn);
251
252 ScalarColumnDesc<uInt> flagrowColumn("FLAGROW");
253 flagrowColumn.setDefault(uInt(0));
254 td.addColumn(flagrowColumn);
255
[805]256 td.addColumn(ScalarColumnDesc<Double>("TIME"));
257 TableMeasRefDesc measRef(MEpoch::UTC); // UTC as default
258 TableMeasValueDesc measVal(td, "TIME");
259 TableMeasDesc<MEpoch> mepochCol(measVal, measRef);
260 mepochCol.write(td);
[483]261
[805]262 td.addColumn(ScalarColumnDesc<Double>("INTERVAL"));
263
[2]264 td.addColumn(ScalarColumnDesc<String>("SRCNAME"));
[805]265 // Type of source (on=0, off=1, other=-1)
[1503]266 ScalarColumnDesc<Int> stypeColumn("SRCTYPE");
267 stypeColumn.setDefault(Int(-1));
268 td.addColumn(stypeColumn);
[805]269 td.addColumn(ScalarColumnDesc<String>("FIELDNAME"));
270
271 //The actual Data Vectors
[2]272 td.addColumn(ArrayColumnDesc<Float>("SPECTRA"));
273 td.addColumn(ArrayColumnDesc<uChar>("FLAGTRA"));
[89]274 td.addColumn(ArrayColumnDesc<Float>("TSYS"));
[805]275
276 td.addColumn(ArrayColumnDesc<Double>("DIRECTION",
277 IPosition(1,2),
278 ColumnDesc::Direct));
279 TableMeasRefDesc mdirRef(MDirection::J2000); // default
280 TableMeasValueDesc tmvdMDir(td, "DIRECTION");
281 // the TableMeasDesc gives the column a type
282 TableMeasDesc<MDirection> mdirCol(tmvdMDir, mdirRef);
[987]283 // a uder set table type e.g. GALCTIC, B1950 ...
284 td.rwKeywordSet().define("DIRECTIONREF", String("J2000"));
[805]285 // writing create the measure column
286 mdirCol.write(td);
[923]287 td.addColumn(ScalarColumnDesc<Float>("AZIMUTH"));
288 td.addColumn(ScalarColumnDesc<Float>("ELEVATION"));
[1047]289 td.addColumn(ScalarColumnDesc<Float>("OPACITY"));
[105]290
[805]291 td.addColumn(ScalarColumnDesc<uInt>("TCAL_ID"));
[972]292 ScalarColumnDesc<Int> fitColumn("FIT_ID");
[973]293 fitColumn.setDefault(Int(-1));
[972]294 td.addColumn(fitColumn);
[805]295
296 td.addColumn(ScalarColumnDesc<uInt>("FOCUS_ID"));
297 td.addColumn(ScalarColumnDesc<uInt>("WEATHER_ID"));
298
[999]299 // columns which just get dragged along, as they aren't used in asap
300 td.addColumn(ScalarColumnDesc<Double>("SRCVELOCITY"));
301 td.addColumn(ArrayColumnDesc<Double>("SRCPROPERMOTION"));
302 td.addColumn(ArrayColumnDesc<Double>("SRCDIRECTION"));
303 td.addColumn(ArrayColumnDesc<Double>("SCANRATE"));
304
[805]305 td.rwKeywordSet().define("OBSMODE", String(""));
306
[418]307 // Now create Table SetUp from the description.
[859]308 SetupNewTable aNewTab(generateName(), td, Table::Scratch);
[852]309 table_ = Table(aNewTab, type_, 0);
[805]310 originalTable_ = table_;
311}
[418]312
[805]313void Scantable::attach()
[455]314{
[805]315 timeCol_.attach(table_, "TIME");
316 srcnCol_.attach(table_, "SRCNAME");
[1068]317 srctCol_.attach(table_, "SRCTYPE");
[805]318 specCol_.attach(table_, "SPECTRA");
319 flagsCol_.attach(table_, "FLAGTRA");
[865]320 tsysCol_.attach(table_, "TSYS");
[805]321 cycleCol_.attach(table_,"CYCLENO");
322 scanCol_.attach(table_, "SCANNO");
323 beamCol_.attach(table_, "BEAMNO");
[847]324 ifCol_.attach(table_, "IFNO");
325 polCol_.attach(table_, "POLNO");
[805]326 integrCol_.attach(table_, "INTERVAL");
327 azCol_.attach(table_, "AZIMUTH");
328 elCol_.attach(table_, "ELEVATION");
329 dirCol_.attach(table_, "DIRECTION");
330 fldnCol_.attach(table_, "FIELDNAME");
331 rbeamCol_.attach(table_, "REFBEAMNO");
[455]332
[1730]333 mweatheridCol_.attach(table_,"WEATHER_ID");
[805]334 mfitidCol_.attach(table_,"FIT_ID");
335 mfreqidCol_.attach(table_, "FREQ_ID");
336 mtcalidCol_.attach(table_, "TCAL_ID");
337 mfocusidCol_.attach(table_, "FOCUS_ID");
338 mmolidCol_.attach(table_, "MOLECULE_ID");
[1819]339
340 //Add auxiliary column for row-based flagging (CAS-1433 Wataru Kawasaki)
341 attachAuxColumnDef(flagrowCol_, "FLAGROW", 0);
342
[455]343}
344
[1819]345template<class T, class T2>
346void Scantable::attachAuxColumnDef(ScalarColumn<T>& col,
347 const String& colName,
348 const T2& defValue)
349{
350 try {
351 col.attach(table_, colName);
352 } catch (TableError& err) {
353 String errMesg = err.getMesg();
354 if (errMesg == "Table column " + colName + " is unknown") {
355 table_.addColumn(ScalarColumnDesc<T>(colName));
356 col.attach(table_, colName);
357 col.fillColumn(static_cast<T>(defValue));
358 } else {
359 throw;
360 }
361 } catch (...) {
362 throw;
363 }
364}
365
366template<class T, class T2>
367void Scantable::attachAuxColumnDef(ArrayColumn<T>& col,
368 const String& colName,
369 const Array<T2>& defValue)
370{
371 try {
372 col.attach(table_, colName);
373 } catch (TableError& err) {
374 String errMesg = err.getMesg();
375 if (errMesg == "Table column " + colName + " is unknown") {
376 table_.addColumn(ArrayColumnDesc<T>(colName));
377 col.attach(table_, colName);
378
379 int size = 0;
380 ArrayIterator<T2>& it = defValue.begin();
381 while (it != defValue.end()) {
382 ++size;
383 ++it;
384 }
385 IPosition ip(1, size);
386 Array<T>& arr(ip);
387 for (int i = 0; i < size; ++i)
388 arr[i] = static_cast<T>(defValue[i]);
389
390 col.fillColumn(arr);
391 } else {
392 throw;
393 }
394 } catch (...) {
395 throw;
396 }
397}
398
[901]399void Scantable::setHeader(const STHeader& sdh)
[206]400{
[18]401 table_.rwKeywordSet().define("nIF", sdh.nif);
402 table_.rwKeywordSet().define("nBeam", sdh.nbeam);
403 table_.rwKeywordSet().define("nPol", sdh.npol);
404 table_.rwKeywordSet().define("nChan", sdh.nchan);
405 table_.rwKeywordSet().define("Observer", sdh.observer);
406 table_.rwKeywordSet().define("Project", sdh.project);
407 table_.rwKeywordSet().define("Obstype", sdh.obstype);
408 table_.rwKeywordSet().define("AntennaName", sdh.antennaname);
409 table_.rwKeywordSet().define("AntennaPosition", sdh.antennaposition);
410 table_.rwKeywordSet().define("Equinox", sdh.equinox);
411 table_.rwKeywordSet().define("FreqRefFrame", sdh.freqref);
412 table_.rwKeywordSet().define("FreqRefVal", sdh.reffreq);
413 table_.rwKeywordSet().define("Bandwidth", sdh.bandwidth);
414 table_.rwKeywordSet().define("UTC", sdh.utc);
[206]415 table_.rwKeywordSet().define("FluxUnit", sdh.fluxunit);
416 table_.rwKeywordSet().define("Epoch", sdh.epoch);
[905]417 table_.rwKeywordSet().define("POLTYPE", sdh.poltype);
[50]418}
[21]419
[901]420STHeader Scantable::getHeader() const
[206]421{
[901]422 STHeader sdh;
[21]423 table_.keywordSet().get("nBeam",sdh.nbeam);
424 table_.keywordSet().get("nIF",sdh.nif);
425 table_.keywordSet().get("nPol",sdh.npol);
426 table_.keywordSet().get("nChan",sdh.nchan);
427 table_.keywordSet().get("Observer", sdh.observer);
428 table_.keywordSet().get("Project", sdh.project);
429 table_.keywordSet().get("Obstype", sdh.obstype);
430 table_.keywordSet().get("AntennaName", sdh.antennaname);
431 table_.keywordSet().get("AntennaPosition", sdh.antennaposition);
432 table_.keywordSet().get("Equinox", sdh.equinox);
433 table_.keywordSet().get("FreqRefFrame", sdh.freqref);
434 table_.keywordSet().get("FreqRefVal", sdh.reffreq);
435 table_.keywordSet().get("Bandwidth", sdh.bandwidth);
436 table_.keywordSet().get("UTC", sdh.utc);
[206]437 table_.keywordSet().get("FluxUnit", sdh.fluxunit);
438 table_.keywordSet().get("Epoch", sdh.epoch);
[905]439 table_.keywordSet().get("POLTYPE", sdh.poltype);
[21]440 return sdh;
[18]441}
[805]442
[1360]443void Scantable::setSourceType( int stype )
[1068]444{
445 if ( stype < 0 || stype > 1 )
446 throw(AipsError("Illegal sourcetype."));
447 TableVector<Int> tabvec(table_, "SRCTYPE");
448 tabvec = Int(stype);
449}
450
[845]451bool Scantable::conformant( const Scantable& other )
452{
453 return this->getHeader().conformant(other.getHeader());
454}
455
456
[50]457
[805]458std::string Scantable::formatSec(Double x) const
[206]459{
[105]460 Double xcop = x;
461 MVTime mvt(xcop/24./3600.); // make days
[365]462
[105]463 if (x < 59.95)
[281]464 return String(" ") + mvt.string(MVTime::TIME_CLEAN_NO_HM, 7)+"s";
[745]465 else if (x < 3599.95)
[281]466 return String(" ") + mvt.string(MVTime::TIME_CLEAN_NO_H,7)+" ";
467 else {
468 ostringstream oss;
469 oss << setw(2) << std::right << setprecision(1) << mvt.hour();
470 oss << ":" << mvt.string(MVTime::TIME_CLEAN_NO_H,7) << " ";
471 return String(oss);
[745]472 }
[105]473};
474
[805]475std::string Scantable::formatDirection(const MDirection& md) const
[281]476{
477 Vector<Double> t = md.getAngle(Unit(String("rad"))).getValue();
478 Int prec = 7;
479
480 MVAngle mvLon(t[0]);
481 String sLon = mvLon.string(MVAngle::TIME,prec);
[987]482 uInt tp = md.getRef().getType();
483 if (tp == MDirection::GALACTIC ||
484 tp == MDirection::SUPERGAL ) {
485 sLon = mvLon(0.0).string(MVAngle::ANGLE_CLEAN,prec);
486 }
[281]487 MVAngle mvLat(t[1]);
488 String sLat = mvLat.string(MVAngle::ANGLE+MVAngle::DIG2,prec);
[380]489 return sLon + String(" ") + sLat;
[281]490}
491
492
[805]493std::string Scantable::getFluxUnit() const
[206]494{
[847]495 return table_.keywordSet().asString("FluxUnit");
[206]496}
497
[805]498void Scantable::setFluxUnit(const std::string& unit)
[218]499{
500 String tmp(unit);
501 Unit tU(tmp);
502 if (tU==Unit("K") || tU==Unit("Jy")) {
503 table_.rwKeywordSet().define(String("FluxUnit"), tmp);
504 } else {
505 throw AipsError("Illegal unit - must be compatible with Jy or K");
506 }
507}
508
[805]509void Scantable::setInstrument(const std::string& name)
[236]510{
[805]511 bool throwIt = true;
[996]512 // create an Instrument to see if this is valid
513 STAttr::convertInstrument(name, throwIt);
[236]514 String nameU(name);
515 nameU.upcase();
516 table_.rwKeywordSet().define(String("AntennaName"), nameU);
517}
518
[1189]519void Scantable::setFeedType(const std::string& feedtype)
520{
521 if ( Scantable::factories_.find(feedtype) == Scantable::factories_.end() ) {
522 std::string msg = "Illegal feed type "+ feedtype;
523 throw(casa::AipsError(msg));
524 }
525 table_.rwKeywordSet().define(String("POLTYPE"), feedtype);
526}
527
[1743]528MPosition Scantable::getAntennaPosition() const
[805]529{
530 Vector<Double> antpos;
531 table_.keywordSet().get("AntennaPosition", antpos);
532 MVPosition mvpos(antpos(0),antpos(1),antpos(2));
533 return MPosition(mvpos);
534}
[281]535
[805]536void Scantable::makePersistent(const std::string& filename)
537{
538 String inname(filename);
539 Path path(inname);
[1111]540 /// @todo reindex SCANNO, recompute nbeam, nif, npol
[805]541 inname = path.expandedName();
[2030]542 // 2011/03/04 TN
543 // We can comment out this workaround since the essential bug is
544 // fixed in casacore (r20889 in google code).
545 table_.deepCopy(inname, Table::New);
546// // WORKAROUND !!! for Table bug
547// // Remove when fixed in casacore
548// if ( table_.tableType() == Table::Memory && !selector_.empty() ) {
549// Table tab = table_.copyToMemoryTable(generateName());
550// tab.deepCopy(inname, Table::New);
551// tab.markForDelete();
552//
553// } else {
554// table_.deepCopy(inname, Table::New);
555// }
[805]556}
557
[837]558int Scantable::nbeam( int scanno ) const
[805]559{
560 if ( scanno < 0 ) {
561 Int n;
562 table_.keywordSet().get("nBeam",n);
563 return int(n);
[105]564 } else {
[805]565 // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
[888]566 Table t = table_(table_.col("SCANNO") == scanno);
567 ROTableRow row(t);
568 const TableRecord& rec = row.get(0);
569 Table subt = t( t.col("IFNO") == Int(rec.asuInt("IFNO"))
570 && t.col("POLNO") == Int(rec.asuInt("POLNO"))
571 && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
572 ROTableVector<uInt> v(subt, "BEAMNO");
[805]573 return int(v.nelements());
[105]574 }
[805]575 return 0;
576}
[455]577
[837]578int Scantable::nif( int scanno ) const
[805]579{
580 if ( scanno < 0 ) {
581 Int n;
582 table_.keywordSet().get("nIF",n);
583 return int(n);
584 } else {
585 // take the first POLNO,BEAMNO,CYCLENO as nbeam shouldn't vary with these
[888]586 Table t = table_(table_.col("SCANNO") == scanno);
587 ROTableRow row(t);
588 const TableRecord& rec = row.get(0);
589 Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
590 && t.col("POLNO") == Int(rec.asuInt("POLNO"))
591 && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
592 if ( subt.nrow() == 0 ) return 0;
593 ROTableVector<uInt> v(subt, "IFNO");
[805]594 return int(v.nelements());
[2]595 }
[805]596 return 0;
597}
[321]598
[837]599int Scantable::npol( int scanno ) const
[805]600{
601 if ( scanno < 0 ) {
602 Int n;
603 table_.keywordSet().get("nPol",n);
604 return n;
605 } else {
606 // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
[888]607 Table t = table_(table_.col("SCANNO") == scanno);
608 ROTableRow row(t);
609 const TableRecord& rec = row.get(0);
610 Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
611 && t.col("IFNO") == Int(rec.asuInt("IFNO"))
612 && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
613 if ( subt.nrow() == 0 ) return 0;
614 ROTableVector<uInt> v(subt, "POLNO");
[805]615 return int(v.nelements());
[321]616 }
[805]617 return 0;
[2]618}
[805]619
[845]620int Scantable::ncycle( int scanno ) const
[206]621{
[805]622 if ( scanno < 0 ) {
[837]623 Block<String> cols(2);
624 cols[0] = "SCANNO";
625 cols[1] = "CYCLENO";
626 TableIterator it(table_, cols);
627 int n = 0;
628 while ( !it.pastEnd() ) {
629 ++n;
[902]630 ++it;
[837]631 }
632 return n;
[805]633 } else {
[888]634 Table t = table_(table_.col("SCANNO") == scanno);
635 ROTableRow row(t);
636 const TableRecord& rec = row.get(0);
637 Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
638 && t.col("POLNO") == Int(rec.asuInt("POLNO"))
639 && t.col("IFNO") == Int(rec.asuInt("IFNO")) );
640 if ( subt.nrow() == 0 ) return 0;
641 return int(subt.nrow());
[805]642 }
643 return 0;
[18]644}
[455]645
646
[845]647int Scantable::nrow( int scanno ) const
[805]648{
[845]649 return int(table_.nrow());
650}
651
652int Scantable::nchan( int ifno ) const
653{
654 if ( ifno < 0 ) {
[805]655 Int n;
656 table_.keywordSet().get("nChan",n);
657 return int(n);
658 } else {
[1360]659 // take the first SCANNO,POLNO,BEAMNO,CYCLENO as nbeam shouldn't
660 // vary with these
[2244]661 Table t = table_(table_.col("IFNO") == ifno, 1);
[888]662 if ( t.nrow() == 0 ) return 0;
663 ROArrayColumn<Float> v(t, "SPECTRA");
[923]664 return v.shape(0)(0);
[805]665 }
666 return 0;
[18]667}
[455]668
[1111]669int Scantable::nscan() const {
670 Vector<uInt> scannos(scanCol_.getColumn());
[1148]671 uInt nout = genSort( scannos, Sort::Ascending,
[1111]672 Sort::QuickSort|Sort::NoDuplicates );
673 return int(nout);
674}
675
[923]676int Scantable::getChannels(int whichrow) const
677{
678 return specCol_.shape(whichrow)(0);
679}
[847]680
681int Scantable::getBeam(int whichrow) const
682{
683 return beamCol_(whichrow);
684}
685
[1694]686std::vector<uint> Scantable::getNumbers(const ScalarColumn<uInt>& col) const
[1111]687{
688 Vector<uInt> nos(col.getColumn());
[1148]689 uInt n = genSort( nos, Sort::Ascending, Sort::QuickSort|Sort::NoDuplicates );
690 nos.resize(n, True);
[1111]691 std::vector<uint> stlout;
692 nos.tovector(stlout);
693 return stlout;
694}
695
[847]696int Scantable::getIF(int whichrow) const
697{
698 return ifCol_(whichrow);
699}
700
701int Scantable::getPol(int whichrow) const
702{
703 return polCol_(whichrow);
704}
705
[805]706std::string Scantable::formatTime(const MEpoch& me, bool showdate) const
707{
[1947]708 return formatTime(me, showdate, 0);
709}
710
711std::string Scantable::formatTime(const MEpoch& me, bool showdate, uInt prec) const
712{
[805]713 MVTime mvt(me.getValue());
714 if (showdate)
[1947]715 //mvt.setFormat(MVTime::YMD);
716 mvt.setFormat(MVTime::YMD, prec);
[805]717 else
[1947]718 //mvt.setFormat(MVTime::TIME);
719 mvt.setFormat(MVTime::TIME, prec);
[805]720 ostringstream oss;
721 oss << mvt;
722 return String(oss);
723}
[488]724
[805]725void Scantable::calculateAZEL()
726{
727 MPosition mp = getAntennaPosition();
728 MEpoch::ROScalarColumn timeCol(table_, "TIME");
729 ostringstream oss;
730 oss << "Computed azimuth/elevation using " << endl
731 << mp << endl;
[996]732 for (Int i=0; i<nrow(); ++i) {
[805]733 MEpoch me = timeCol(i);
[987]734 MDirection md = getDirection(i);
[805]735 oss << " Time: " << formatTime(me,False) << " Direction: " << formatDirection(md)
736 << endl << " => ";
737 MeasFrame frame(mp, me);
738 Vector<Double> azel =
739 MDirection::Convert(md, MDirection::Ref(MDirection::AZEL,
740 frame)
741 )().getAngle("rad").getValue();
[923]742 azCol_.put(i,Float(azel[0]));
743 elCol_.put(i,Float(azel[1]));
[805]744 oss << "azel: " << azel[0]/C::pi*180.0 << " "
745 << azel[1]/C::pi*180.0 << " (deg)" << endl;
[16]746 }
[805]747 pushLog(String(oss));
748}
[89]749
[1819]750void Scantable::clip(const Float uthres, const Float dthres, bool clipoutside, bool unflag)
751{
752 for (uInt i=0; i<table_.nrow(); ++i) {
753 Vector<uChar> flgs = flagsCol_(i);
754 srchChannelsToClip(i, uthres, dthres, clipoutside, unflag, flgs);
755 flagsCol_.put(i, flgs);
756 }
757}
758
759std::vector<bool> Scantable::getClipMask(int whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag)
760{
761 Vector<uChar> flags;
762 flagsCol_.get(uInt(whichrow), flags);
763 srchChannelsToClip(uInt(whichrow), uthres, dthres, clipoutside, unflag, flags);
764 Vector<Bool> bflag(flags.shape());
765 convertArray(bflag, flags);
766 //bflag = !bflag;
767
768 std::vector<bool> mask;
769 bflag.tovector(mask);
770 return mask;
771}
772
773void Scantable::srchChannelsToClip(uInt whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag,
774 Vector<uChar> flgs)
775{
776 Vector<Float> spcs = specCol_(whichrow);
[2348]777 uInt nchannel = spcs.nelements();
[1819]778 if (spcs.nelements() != nchannel) {
779 throw(AipsError("Data has incorrect number of channels"));
780 }
781 uChar userflag = 1 << 7;
782 if (unflag) {
783 userflag = 0 << 7;
784 }
785 if (clipoutside) {
786 for (uInt j = 0; j < nchannel; ++j) {
787 Float spc = spcs(j);
788 if ((spc >= uthres) || (spc <= dthres)) {
789 flgs(j) = userflag;
790 }
791 }
792 } else {
793 for (uInt j = 0; j < nchannel; ++j) {
794 Float spc = spcs(j);
795 if ((spc < uthres) && (spc > dthres)) {
796 flgs(j) = userflag;
797 }
798 }
799 }
800}
801
[1994]802
803void Scantable::flag( int whichrow, const std::vector<bool>& msk, bool unflag ) {
[1333]804 std::vector<bool>::const_iterator it;
805 uInt ntrue = 0;
[1994]806 if (whichrow >= int(table_.nrow()) ) {
807 throw(AipsError("Invalid row number"));
808 }
[1333]809 for (it = msk.begin(); it != msk.end(); ++it) {
810 if ( *it ) {
811 ntrue++;
812 }
813 }
[1994]814 //if ( selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
815 if ( whichrow == -1 && !unflag && selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
[1000]816 throw(AipsError("Trying to flag whole scantable."));
[1994]817 uChar userflag = 1 << 7;
818 if ( unflag ) {
819 userflag = 0 << 7;
820 }
821 if (whichrow > -1 ) {
822 applyChanFlag(uInt(whichrow), msk, userflag);
823 } else {
[1000]824 for ( uInt i=0; i<table_.nrow(); ++i) {
[1994]825 applyChanFlag(i, msk, userflag);
[1000]826 }
[1994]827 }
828}
829
830void Scantable::applyChanFlag( uInt whichrow, const std::vector<bool>& msk, uChar flagval )
831{
832 if (whichrow >= table_.nrow() ) {
833 throw( casa::indexError<int>( whichrow, "asap::Scantable::applyChanFlag: Invalid row number" ) );
834 }
835 Vector<uChar> flgs = flagsCol_(whichrow);
836 if ( msk.size() == 0 ) {
837 flgs = flagval;
838 flagsCol_.put(whichrow, flgs);
[1000]839 return;
840 }
[2348]841 if ( int(msk.size()) != nchan( getIF(whichrow) ) ) {
[1000]842 throw(AipsError("Mask has incorrect number of channels."));
843 }
[1994]844 if ( flgs.nelements() != msk.size() ) {
845 throw(AipsError("Mask has incorrect number of channels."
846 " Probably varying with IF. Please flag per IF"));
847 }
848 std::vector<bool>::const_iterator it;
849 uInt j = 0;
850 for (it = msk.begin(); it != msk.end(); ++it) {
851 if ( *it ) {
852 flgs(j) = flagval;
[1000]853 }
[1994]854 ++j;
[1000]855 }
[1994]856 flagsCol_.put(whichrow, flgs);
[865]857}
858
[1819]859void Scantable::flagRow(const std::vector<uInt>& rows, bool unflag)
860{
861 if ( selector_.empty() && (rows.size() == table_.nrow()) )
862 throw(AipsError("Trying to flag whole scantable."));
863
864 uInt rowflag = (unflag ? 0 : 1);
865 std::vector<uInt>::const_iterator it;
866 for (it = rows.begin(); it != rows.end(); ++it)
867 flagrowCol_.put(*it, rowflag);
868}
869
[805]870std::vector<bool> Scantable::getMask(int whichrow) const
871{
872 Vector<uChar> flags;
873 flagsCol_.get(uInt(whichrow), flags);
874 Vector<Bool> bflag(flags.shape());
875 convertArray(bflag, flags);
876 bflag = !bflag;
877 std::vector<bool> mask;
878 bflag.tovector(mask);
879 return mask;
880}
[89]881
[896]882std::vector<float> Scantable::getSpectrum( int whichrow,
[902]883 const std::string& poltype ) const
[805]884{
[905]885 String ptype = poltype;
886 if (poltype == "" ) ptype = getPolType();
[902]887 if ( whichrow < 0 || whichrow >= nrow() )
888 throw(AipsError("Illegal row number."));
[896]889 std::vector<float> out;
[805]890 Vector<Float> arr;
[896]891 uInt requestedpol = polCol_(whichrow);
892 String basetype = getPolType();
[905]893 if ( ptype == basetype ) {
[896]894 specCol_.get(whichrow, arr);
895 } else {
[1598]896 CountedPtr<STPol> stpol(STPol::getPolClass(Scantable::factories_,
[1586]897 basetype));
[1334]898 uInt row = uInt(whichrow);
899 stpol->setSpectra(getPolMatrix(row));
[2047]900 Float fang,fhand;
[1586]901 fang = focusTable_.getTotalAngle(mfocusidCol_(row));
[1334]902 fhand = focusTable_.getFeedHand(mfocusidCol_(row));
[1586]903 stpol->setPhaseCorrections(fang, fhand);
[1334]904 arr = stpol->getSpectrum(requestedpol, ptype);
[896]905 }
[902]906 if ( arr.nelements() == 0 )
907 pushLog("Not enough polarisations present to do the conversion.");
[805]908 arr.tovector(out);
909 return out;
[89]910}
[212]911
[1360]912void Scantable::setSpectrum( const std::vector<float>& spec,
[884]913 int whichrow )
914{
915 Vector<Float> spectrum(spec);
916 Vector<Float> arr;
917 specCol_.get(whichrow, arr);
918 if ( spectrum.nelements() != arr.nelements() )
[896]919 throw AipsError("The spectrum has incorrect number of channels.");
[884]920 specCol_.put(whichrow, spectrum);
921}
922
923
[805]924String Scantable::generateName()
[745]925{
[805]926 return (File::newUniqueName("./","temp")).baseName();
[212]927}
928
[805]929const casa::Table& Scantable::table( ) const
[212]930{
[805]931 return table_;
[212]932}
933
[805]934casa::Table& Scantable::table( )
[386]935{
[805]936 return table_;
[386]937}
938
[896]939std::string Scantable::getPolType() const
940{
941 return table_.keywordSet().asString("POLTYPE");
942}
943
[805]944void Scantable::unsetSelection()
[380]945{
[805]946 table_ = originalTable_;
[847]947 attach();
[805]948 selector_.reset();
[380]949}
[386]950
[805]951void Scantable::setSelection( const STSelector& selection )
[430]952{
[805]953 Table tab = const_cast<STSelector&>(selection).apply(originalTable_);
954 if ( tab.nrow() == 0 ) {
955 throw(AipsError("Selection contains no data. Not applying it."));
956 }
957 table_ = tab;
[847]958 attach();
[2084]959// tab.rwKeywordSet().define("nBeam",(Int)(getBeamNos().size())) ;
960// vector<uint> selectedIFs = getIFNos() ;
961// Int newnIF = selectedIFs.size() ;
962// tab.rwKeywordSet().define("nIF",newnIF) ;
963// if ( newnIF != 0 ) {
964// Int newnChan = 0 ;
965// for ( Int i = 0 ; i < newnIF ; i++ ) {
966// Int nChan = nchan( selectedIFs[i] ) ;
967// if ( newnChan > nChan )
968// newnChan = nChan ;
969// }
970// tab.rwKeywordSet().define("nChan",newnChan) ;
971// }
972// tab.rwKeywordSet().define("nPol",(Int)(getPolNos().size())) ;
[805]973 selector_ = selection;
[430]974}
975
[2111]976
[2163]977std::string Scantable::headerSummary()
[447]978{
[805]979 // Format header info
[2111]980// STHeader sdh;
981// sdh = getHeader();
982// sdh.print();
[805]983 ostringstream oss;
984 oss.flags(std::ios_base::left);
[2290]985 String tmp;
986 // Project
987 table_.keywordSet().get("Project", tmp);
988 oss << setw(15) << "Project:" << tmp << endl;
989 // Observation date
990 oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
991 // Observer
992 oss << setw(15) << "Observer:"
993 << table_.keywordSet().asString("Observer") << endl;
994 // Antenna Name
995 table_.keywordSet().get("AntennaName", tmp);
996 oss << setw(15) << "Antenna Name:" << tmp << endl;
997 // Obs type
998 table_.keywordSet().get("Obstype", tmp);
999 // Records (nrow)
1000 oss << setw(15) << "Data Records:" << table_.nrow() << " rows" << endl;
1001 oss << setw(15) << "Obs. Type:" << tmp << endl;
1002 // Beams, IFs, Polarizations, and Channels
[805]1003 oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1004 << setw(15) << "IFs:" << setw(4) << nif() << endl
[896]1005 << setw(15) << "Polarisations:" << setw(4) << npol()
1006 << "(" << getPolType() << ")" << endl
[1694]1007 << setw(15) << "Channels:" << nchan() << endl;
[2290]1008 // Flux unit
1009 table_.keywordSet().get("FluxUnit", tmp);
1010 oss << setw(15) << "Flux Unit:" << tmp << endl;
1011 // Abscissa Unit
1012 oss << setw(15) << "Abscissa:" << getAbcissaLabel(0) << endl;
1013 // Selection
1014 oss << selector_.print() << endl;
1015
1016 return String(oss);
1017}
1018
1019void Scantable::summary( const std::string& filename )
1020{
1021 ostringstream oss;
1022 ofstream ofs;
1023 LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1024
1025 if (filename != "")
1026 ofs.open( filename.c_str(), ios::out );
1027
1028 oss << endl;
1029 oss << asap::SEPERATOR << endl;
1030 oss << " Scan Table Summary" << endl;
1031 oss << asap::SEPERATOR << endl;
1032
1033 // Format header info
1034 oss << headerSummary();
1035 oss << endl;
1036
1037 if (table_.nrow() <= 0){
1038 oss << asap::SEPERATOR << endl;
1039 oss << "The MAIN table is empty: there are no data!!!" << endl;
1040 oss << asap::SEPERATOR << endl;
1041
1042 ols << String(oss) << LogIO::POST;
1043 if (ofs) {
1044 ofs << String(oss) << flush;
1045 ofs.close();
1046 }
1047 return;
1048 }
1049
1050
1051
1052 // main table
1053 String dirtype = "Position ("
1054 + getDirectionRefString()
1055 + ")";
1056 oss.flags(std::ios_base::left);
1057 oss << setw(5) << "Scan"
1058 << setw(15) << "Source"
1059 << setw(35) << "Time range"
1060 << setw(2) << "" << setw(7) << "Int[s]"
1061 << setw(7) << "Record"
1062 << setw(8) << "SrcType"
1063 << setw(8) << "FreqIDs"
1064 << setw(7) << "MolIDs" << endl;
1065 oss << setw(7)<< "" << setw(6) << "Beam"
1066 << setw(23) << dirtype << endl;
1067
1068 oss << asap::SEPERATOR << endl;
1069
1070 // Flush summary and clear up the string
1071 ols << String(oss) << LogIO::POST;
1072 if (ofs) ofs << String(oss) << flush;
1073 oss.str("");
1074 oss.clear();
1075
1076
1077 // Get Freq_ID map
1078 ROScalarColumn<uInt> ftabIds(frequencies().table(), "ID");
1079 Int nfid = ftabIds.nrow();
1080 if (nfid <= 0){
1081 oss << "FREQUENCIES subtable is empty: there are no data!!!" << endl;
1082 oss << asap::SEPERATOR << endl;
1083
1084 ols << String(oss) << LogIO::POST;
1085 if (ofs) {
1086 ofs << String(oss) << flush;
1087 ofs.close();
1088 }
1089 return;
1090 }
1091 // Storages of overall IFNO, POLNO, and nchan per FREQ_ID
1092 // the orders are identical to ID in FREQ subtable
1093 Block< Vector<uInt> > ifNos(nfid), polNos(nfid);
1094 Vector<Int> fIdchans(nfid,-1);
1095 map<uInt, Int> fidMap; // (FREQ_ID, row # in FREQ subtable) pair
1096 for (Int i=0; i < nfid; i++){
1097 // fidMap[freqId] returns row number in FREQ subtable
1098 fidMap.insert(pair<uInt, Int>(ftabIds(i),i));
1099 ifNos[i] = Vector<uInt>();
1100 polNos[i] = Vector<uInt>();
1101 }
1102
1103 TableIterator iter(table_, "SCANNO");
1104
1105 // Vars for keeping track of time, freqids, molIds in a SCANNO
1106 Vector<uInt> freqids;
1107 Vector<uInt> molids;
1108 Vector<uInt> beamids(1,0);
1109 Vector<MDirection> beamDirs;
1110 Vector<Int> stypeids(1,0);
1111 Vector<String> stypestrs;
1112 Int nfreq(1);
1113 Int nmol(1);
1114 uInt nbeam(1);
1115 uInt nstype(1);
1116
1117 Double btime(0.0), etime(0.0);
1118 Double meanIntTim(0.0);
1119
1120 uInt currFreqId(0), ftabRow(0);
1121 Int iflen(0), pollen(0);
1122
1123 while (!iter.pastEnd()) {
1124 Table subt = iter.table();
1125 uInt snrow = subt.nrow();
1126 ROTableRow row(subt);
1127 const TableRecord& rec = row.get(0);
1128
1129 // relevant columns
1130 ROScalarColumn<Double> mjdCol(subt,"TIME");
1131 ROScalarColumn<Double> intervalCol(subt,"INTERVAL");
1132 MDirection::ROScalarColumn dirCol(subt,"DIRECTION");
1133
1134 ScalarColumn<uInt> freqIdCol(subt,"FREQ_ID");
1135 ScalarColumn<uInt> molIdCol(subt,"MOLECULE_ID");
1136 ROScalarColumn<uInt> beamCol(subt,"BEAMNO");
1137 ROScalarColumn<Int> stypeCol(subt,"SRCTYPE");
1138
1139 ROScalarColumn<uInt> ifNoCol(subt,"IFNO");
1140 ROScalarColumn<uInt> polNoCol(subt,"POLNO");
1141
1142
1143 // Times
1144 meanIntTim = sum(intervalCol.getColumn()) / (double) snrow;
1145 minMax(btime, etime, mjdCol.getColumn());
1146 etime += meanIntTim/C::day;
1147
1148 // MOLECULE_ID and FREQ_ID
1149 molids = getNumbers(molIdCol);
1150 molids.shape(nmol);
1151
1152 freqids = getNumbers(freqIdCol);
1153 freqids.shape(nfreq);
1154
1155 // Add first beamid, and srcNames
1156 beamids.resize(1,False);
1157 beamDirs.resize(1,False);
1158 beamids(0)=beamCol(0);
1159 beamDirs(0)=dirCol(0);
1160 nbeam = 1;
1161
1162 stypeids.resize(1,False);
1163 stypeids(0)=stypeCol(0);
1164 nstype = 1;
1165
1166 // Global listings of nchan/IFNO/POLNO per FREQ_ID
1167 currFreqId=freqIdCol(0);
1168 ftabRow = fidMap[currFreqId];
1169 // Assumes an identical number of channels per FREQ_ID
1170 if (fIdchans(ftabRow) < 0 ) {
1171 RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1172 fIdchans(ftabRow)=(*spec).shape()(0);
1173 }
1174 // Should keep ifNos and polNos form the previous SCANNO
1175 if ( !anyEQ(ifNos[ftabRow],ifNoCol(0)) ) {
1176 ifNos[ftabRow].shape(iflen);
1177 iflen++;
1178 ifNos[ftabRow].resize(iflen,True);
1179 ifNos[ftabRow](iflen-1) = ifNoCol(0);
1180 }
1181 if ( !anyEQ(polNos[ftabRow],polNoCol(0)) ) {
1182 polNos[ftabRow].shape(pollen);
1183 pollen++;
1184 polNos[ftabRow].resize(pollen,True);
1185 polNos[ftabRow](pollen-1) = polNoCol(0);
1186 }
1187
1188 for (uInt i=1; i < snrow; i++){
1189 // Need to list BEAMNO and DIRECTION in the same order
1190 if ( !anyEQ(beamids,beamCol(i)) ) {
1191 nbeam++;
1192 beamids.resize(nbeam,True);
1193 beamids(nbeam-1)=beamCol(i);
1194 beamDirs.resize(nbeam,True);
1195 beamDirs(nbeam-1)=dirCol(i);
1196 }
1197
1198 // SRCTYPE is Int (getNumber takes only uInt)
1199 if ( !anyEQ(stypeids,stypeCol(i)) ) {
1200 nstype++;
1201 stypeids.resize(nstype,True);
1202 stypeids(nstype-1)=stypeCol(i);
1203 }
1204
1205 // Global listings of nchan/IFNO/POLNO per FREQ_ID
1206 currFreqId=freqIdCol(i);
1207 ftabRow = fidMap[currFreqId];
1208 if (fIdchans(ftabRow) < 0 ) {
1209 const TableRecord& rec = row.get(i);
1210 RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1211 fIdchans(ftabRow) = (*spec).shape()(0);
1212 }
1213 if ( !anyEQ(ifNos[ftabRow],ifNoCol(i)) ) {
1214 ifNos[ftabRow].shape(iflen);
1215 iflen++;
1216 ifNos[ftabRow].resize(iflen,True);
1217 ifNos[ftabRow](iflen-1) = ifNoCol(i);
1218 }
1219 if ( !anyEQ(polNos[ftabRow],polNoCol(i)) ) {
1220 polNos[ftabRow].shape(pollen);
1221 pollen++;
1222 polNos[ftabRow].resize(pollen,True);
1223 polNos[ftabRow](pollen-1) = polNoCol(i);
1224 }
1225 } // end of row iteration
1226
1227 stypestrs.resize(nstype,False);
1228 for (uInt j=0; j < nstype; j++)
1229 stypestrs(j) = SrcType::getName(stypeids(j));
1230
1231 // Format Scan summary
1232 oss << setw(4) << std::right << rec.asuInt("SCANNO")
1233 << std::left << setw(1) << ""
1234 << setw(15) << rec.asString("SRCNAME")
1235 << setw(21) << MVTime(btime).string(MVTime::YMD,7)
1236 << setw(3) << " - " << MVTime(etime).string(MVTime::TIME,7)
1237 << setw(3) << "" << setw(6) << meanIntTim << setw(1) << ""
1238 << std::right << setw(5) << snrow << setw(2) << ""
1239 << std::left << stypestrs << setw(1) << ""
1240 << freqids << setw(1) << ""
1241 << molids << endl;
1242 // Format Beam summary
1243 for (uInt j=0; j < nbeam; j++) {
1244 oss << setw(7) << "" << setw(6) << beamids(j) << setw(1) << ""
1245 << formatDirection(beamDirs(j)) << endl;
1246 }
1247 // Flush summary every scan and clear up the string
1248 ols << String(oss) << LogIO::POST;
1249 if (ofs) ofs << String(oss) << flush;
1250 oss.str("");
1251 oss.clear();
1252
1253 ++iter;
1254 } // end of scan iteration
1255 oss << asap::SEPERATOR << endl;
1256
1257 // List FRECUENCIES Table (using STFrequencies.print may be slow)
1258 oss << "FREQUENCIES: " << nfreq << endl;
1259 oss << std::right << setw(5) << "ID" << setw(2) << ""
1260 << std::left << setw(5) << "IFNO" << setw(2) << ""
1261 << setw(8) << "Frame"
1262 << setw(16) << "RefVal"
1263 << setw(7) << "RefPix"
1264 << setw(15) << "Increment"
1265 << setw(9) << "Channels"
1266 << setw(6) << "POLNOs" << endl;
1267 Int tmplen;
1268 for (Int i=0; i < nfid; i++){
1269 // List row=i of FREQUENCIES subtable
1270 ifNos[i].shape(tmplen);
1271 if (tmplen == 1) {
1272 oss << std::right << setw(5) << ftabIds(i) << setw(2) << ""
1273 << setw(3) << ifNos[i](0) << setw(1) << ""
1274 << std::left << setw(46) << frequencies().print(ftabIds(i))
1275 << setw(2) << ""
1276 << std::right << setw(8) << fIdchans[i] << setw(2) << ""
1277 << std::left << polNos[i] << endl;
1278 } else if (tmplen > 0 ) {
1279 // You shouldn't come here
1280 oss << std::left
1281 << "Multiple IFNOs in FREQ_ID = " << ftabIds(i)
1282 << " !!!" << endl;
1283 }
1284 }
1285 oss << asap::SEPERATOR << endl;
1286
1287 // List MOLECULES Table (currently lists all rows)
1288 oss << "MOLECULES: " << endl;
1289 if (molecules().nrow() <= 0) {
1290 oss << " MOLECULES subtable is empty: there are no data" << endl;
1291 } else {
1292 ROTableRow row(molecules().table());
1293 oss << std::right << setw(5) << "ID"
1294 << std::left << setw(3) << ""
1295 << setw(18) << "RestFreq"
1296 << setw(15) << "Name" << endl;
1297 for (Int i=0; i < molecules().nrow(); i++){
1298 const TableRecord& rec=row.get(i);
1299 oss << std::right << setw(5) << rec.asuInt("ID")
1300 << std::left << setw(3) << ""
1301 << rec.asArrayDouble("RESTFREQUENCY") << setw(1) << ""
1302 << rec.asArrayString("NAME") << endl;
1303 }
1304 }
1305 oss << asap::SEPERATOR << endl;
1306 ols << String(oss) << LogIO::POST;
1307 if (ofs) {
1308 ofs << String(oss) << flush;
1309 ofs.close();
1310 }
1311 // return String(oss);
1312}
1313
1314
1315std::string Scantable::oldheaderSummary()
1316{
1317 // Format header info
1318// STHeader sdh;
1319// sdh = getHeader();
1320// sdh.print();
1321 ostringstream oss;
1322 oss.flags(std::ios_base::left);
1323 oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1324 << setw(15) << "IFs:" << setw(4) << nif() << endl
1325 << setw(15) << "Polarisations:" << setw(4) << npol()
1326 << "(" << getPolType() << ")" << endl
1327 << setw(15) << "Channels:" << nchan() << endl;
[805]1328 String tmp;
[860]1329 oss << setw(15) << "Observer:"
1330 << table_.keywordSet().asString("Observer") << endl;
[805]1331 oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1332 table_.keywordSet().get("Project", tmp);
1333 oss << setw(15) << "Project:" << tmp << endl;
1334 table_.keywordSet().get("Obstype", tmp);
1335 oss << setw(15) << "Obs. Type:" << tmp << endl;
1336 table_.keywordSet().get("AntennaName", tmp);
1337 oss << setw(15) << "Antenna Name:" << tmp << endl;
1338 table_.keywordSet().get("FluxUnit", tmp);
1339 oss << setw(15) << "Flux Unit:" << tmp << endl;
[1819]1340 int nid = moleculeTable_.nrow();
1341 Bool firstline = True;
[805]1342 oss << setw(15) << "Rest Freqs:";
[1819]1343 for (int i=0; i<nid; i++) {
[2244]1344 Table t = table_(table_.col("MOLECULE_ID") == i, 1);
[1819]1345 if (t.nrow() > 0) {
1346 Vector<Double> vec(moleculeTable_.getRestFrequency(i));
1347 if (vec.nelements() > 0) {
1348 if (firstline) {
1349 oss << setprecision(10) << vec << " [Hz]" << endl;
1350 firstline=False;
1351 }
1352 else{
1353 oss << setw(15)<<" " << setprecision(10) << vec << " [Hz]" << endl;
1354 }
1355 } else {
1356 oss << "none" << endl;
1357 }
1358 }
[805]1359 }
[941]1360
1361 oss << setw(15) << "Abcissa:" << getAbcissaLabel(0) << endl;
[805]1362 oss << selector_.print() << endl;
[2111]1363 return String(oss);
1364}
1365
[2286]1366 //std::string Scantable::summary( const std::string& filename )
[2290]1367void Scantable::oldsummary( const std::string& filename )
[2111]1368{
1369 ostringstream oss;
[2286]1370 ofstream ofs;
1371 LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1372
1373 if (filename != "")
1374 ofs.open( filename.c_str(), ios::out );
1375
[805]1376 oss << endl;
[2111]1377 oss << asap::SEPERATOR << endl;
1378 oss << " Scan Table Summary" << endl;
1379 oss << asap::SEPERATOR << endl;
1380
1381 // Format header info
[2290]1382 oss << oldheaderSummary();
[2111]1383 oss << endl;
1384
[805]1385 // main table
1386 String dirtype = "Position ("
[987]1387 + getDirectionRefString()
[805]1388 + ")";
[2111]1389 oss.flags(std::ios_base::left);
[941]1390 oss << setw(5) << "Scan" << setw(15) << "Source"
[2005]1391 << setw(10) << "Time" << setw(18) << "Integration"
1392 << setw(15) << "Source Type" << endl;
[941]1393 oss << setw(5) << "" << setw(5) << "Beam" << setw(3) << "" << dirtype << endl;
[1694]1394 oss << setw(10) << "" << setw(3) << "IF" << setw(3) << ""
[805]1395 << setw(8) << "Frame" << setw(16)
[1694]1396 << "RefVal" << setw(10) << "RefPix" << setw(12) << "Increment"
1397 << setw(7) << "Channels"
1398 << endl;
[805]1399 oss << asap::SEPERATOR << endl;
[2286]1400
1401 // Flush summary and clear up the string
1402 ols << String(oss) << LogIO::POST;
1403 if (ofs) ofs << String(oss) << flush;
1404 oss.str("");
1405 oss.clear();
1406
[805]1407 TableIterator iter(table_, "SCANNO");
1408 while (!iter.pastEnd()) {
1409 Table subt = iter.table();
1410 ROTableRow row(subt);
1411 MEpoch::ROScalarColumn timeCol(subt,"TIME");
1412 const TableRecord& rec = row.get(0);
1413 oss << setw(4) << std::right << rec.asuInt("SCANNO")
1414 << std::left << setw(1) << ""
1415 << setw(15) << rec.asString("SRCNAME")
1416 << setw(10) << formatTime(timeCol(0), false);
1417 // count the cycles in the scan
1418 TableIterator cyciter(subt, "CYCLENO");
1419 int nint = 0;
1420 while (!cyciter.pastEnd()) {
1421 ++nint;
1422 ++cyciter;
1423 }
1424 oss << setw(3) << std::right << nint << setw(3) << " x " << std::left
[2005]1425 << setw(11) << formatSec(rec.asFloat("INTERVAL")) << setw(1) << ""
1426 << setw(15) << SrcType::getName(rec.asInt("SRCTYPE")) << endl;
[447]1427
[805]1428 TableIterator biter(subt, "BEAMNO");
1429 while (!biter.pastEnd()) {
1430 Table bsubt = biter.table();
1431 ROTableRow brow(bsubt);
1432 const TableRecord& brec = brow.get(0);
[1000]1433 uInt row0 = bsubt.rowNumbers(table_)[0];
[941]1434 oss << setw(5) << "" << setw(4) << std::right << brec.asuInt("BEAMNO")<< std::left;
[987]1435 oss << setw(4) << "" << formatDirection(getDirection(row0)) << endl;
[805]1436 TableIterator iiter(bsubt, "IFNO");
1437 while (!iiter.pastEnd()) {
1438 Table isubt = iiter.table();
1439 ROTableRow irow(isubt);
1440 const TableRecord& irec = irow.get(0);
[1694]1441 oss << setw(9) << "";
[941]1442 oss << setw(3) << std::right << irec.asuInt("IFNO") << std::left
[1694]1443 << setw(1) << "" << frequencies().print(irec.asuInt("FREQ_ID"))
1444 << setw(3) << "" << nchan(irec.asuInt("IFNO"))
[1375]1445 << endl;
[447]1446
[805]1447 ++iiter;
1448 }
1449 ++biter;
1450 }
[2286]1451 // Flush summary every scan and clear up the string
1452 ols << String(oss) << LogIO::POST;
1453 if (ofs) ofs << String(oss) << flush;
1454 oss.str("");
1455 oss.clear();
1456
[805]1457 ++iter;
[447]1458 }
[2286]1459 oss << asap::SEPERATOR << endl;
1460 ols << String(oss) << LogIO::POST;
1461 if (ofs) {
[2290]1462 ofs << String(oss) << flush;
[2286]1463 ofs.close();
1464 }
1465 // return String(oss);
[447]1466}
1467
[1947]1468// std::string Scantable::getTime(int whichrow, bool showdate) const
1469// {
1470// MEpoch::ROScalarColumn timeCol(table_, "TIME");
1471// MEpoch me;
1472// if (whichrow > -1) {
1473// me = timeCol(uInt(whichrow));
1474// } else {
1475// Double tm;
1476// table_.keywordSet().get("UTC",tm);
1477// me = MEpoch(MVEpoch(tm));
1478// }
1479// return formatTime(me, showdate);
1480// }
1481
1482std::string Scantable::getTime(int whichrow, bool showdate, uInt prec) const
[777]1483{
[805]1484 MEpoch me;
[1947]1485 me = getEpoch(whichrow);
1486 return formatTime(me, showdate, prec);
[777]1487}
[805]1488
[1411]1489MEpoch Scantable::getEpoch(int whichrow) const
1490{
1491 if (whichrow > -1) {
1492 return timeCol_(uInt(whichrow));
1493 } else {
1494 Double tm;
1495 table_.keywordSet().get("UTC",tm);
[1598]1496 return MEpoch(MVEpoch(tm));
[1411]1497 }
1498}
1499
[1068]1500std::string Scantable::getDirectionString(int whichrow) const
1501{
1502 return formatDirection(getDirection(uInt(whichrow)));
1503}
1504
[1598]1505
1506SpectralCoordinate Scantable::getSpectralCoordinate(int whichrow) const {
1507 const MPosition& mp = getAntennaPosition();
1508 const MDirection& md = getDirection(whichrow);
1509 const MEpoch& me = timeCol_(whichrow);
[1819]1510 //Double rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1511 Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
[2346]1512 return freqTable_.getSpectralCoordinate(md, mp, me, rf,
[1598]1513 mfreqidCol_(whichrow));
1514}
1515
[1360]1516std::vector< double > Scantable::getAbcissa( int whichrow ) const
[865]1517{
[1507]1518 if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal row number"));
[865]1519 std::vector<double> stlout;
1520 int nchan = specCol_(whichrow).nelements();
[2346]1521 String us = freqTable_.getUnitString();
[865]1522 if ( us == "" || us == "pixel" || us == "channel" ) {
1523 for (int i=0; i<nchan; ++i) {
1524 stlout.push_back(double(i));
1525 }
1526 return stlout;
1527 }
[1598]1528 SpectralCoordinate spc = getSpectralCoordinate(whichrow);
[865]1529 Vector<Double> pixel(nchan);
1530 Vector<Double> world;
1531 indgen(pixel);
1532 if ( Unit(us) == Unit("Hz") ) {
1533 for ( int i=0; i < nchan; ++i) {
1534 Double world;
1535 spc.toWorld(world, pixel[i]);
1536 stlout.push_back(double(world));
1537 }
1538 } else if ( Unit(us) == Unit("km/s") ) {
1539 Vector<Double> world;
1540 spc.pixelToVelocity(world, pixel);
1541 world.tovector(stlout);
1542 }
1543 return stlout;
1544}
[1360]1545void Scantable::setDirectionRefString( const std::string & refstr )
[987]1546{
1547 MDirection::Types mdt;
1548 if (refstr != "" && !MDirection::getType(mdt, refstr)) {
1549 throw(AipsError("Illegal Direction frame."));
1550 }
1551 if ( refstr == "" ) {
1552 String defaultstr = MDirection::showType(dirCol_.getMeasRef().getType());
1553 table_.rwKeywordSet().define("DIRECTIONREF", defaultstr);
1554 } else {
1555 table_.rwKeywordSet().define("DIRECTIONREF", String(refstr));
1556 }
1557}
[865]1558
[1360]1559std::string Scantable::getDirectionRefString( ) const
[987]1560{
1561 return table_.keywordSet().asString("DIRECTIONREF");
1562}
1563
1564MDirection Scantable::getDirection(int whichrow ) const
1565{
1566 String usertype = table_.keywordSet().asString("DIRECTIONREF");
1567 String type = MDirection::showType(dirCol_.getMeasRef().getType());
1568 if ( usertype != type ) {
1569 MDirection::Types mdt;
1570 if (!MDirection::getType(mdt, usertype)) {
1571 throw(AipsError("Illegal Direction frame."));
1572 }
1573 return dirCol_.convert(uInt(whichrow), mdt);
1574 } else {
1575 return dirCol_(uInt(whichrow));
1576 }
1577}
1578
[847]1579std::string Scantable::getAbcissaLabel( int whichrow ) const
1580{
[996]1581 if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal ro number"));
[847]1582 const MPosition& mp = getAntennaPosition();
[987]1583 const MDirection& md = getDirection(whichrow);
[847]1584 const MEpoch& me = timeCol_(whichrow);
[1819]1585 //const Double& rf = mmolidCol_(whichrow);
1586 const Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
[847]1587 SpectralCoordinate spc =
[2346]1588 freqTable_.getSpectralCoordinate(md, mp, me, rf, mfreqidCol_(whichrow));
[847]1589
1590 String s = "Channel";
[2346]1591 Unit u = Unit(freqTable_.getUnitString());
[847]1592 if (u == Unit("km/s")) {
[1170]1593 s = CoordinateUtil::axisLabel(spc, 0, True,True, True);
[847]1594 } else if (u == Unit("Hz")) {
1595 Vector<String> wau(1);wau = u.getName();
1596 spc.setWorldAxisUnits(wau);
[1170]1597 s = CoordinateUtil::axisLabel(spc, 0, True, True, False);
[847]1598 }
1599 return s;
1600
1601}
1602
[1819]1603/**
1604void asap::Scantable::setRestFrequencies( double rf, const std::string& name,
[1170]1605 const std::string& unit )
[1819]1606**/
1607void Scantable::setRestFrequencies( vector<double> rf, const vector<std::string>& name,
1608 const std::string& unit )
1609
[847]1610{
[923]1611 ///@todo lookup in line table to fill in name and formattedname
[847]1612 Unit u(unit);
[1819]1613 //Quantum<Double> urf(rf, u);
1614 Quantum<Vector<Double> >urf(rf, u);
1615 Vector<String> formattedname(0);
1616 //cerr<<"Scantable::setRestFrequnecies="<<urf<<endl;
1617
1618 //uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), name, "");
1619 uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), mathutil::toVectorString(name), formattedname);
[847]1620 TableVector<uInt> tabvec(table_, "MOLECULE_ID");
1621 tabvec = id;
1622}
1623
[1819]1624/**
1625void asap::Scantable::setRestFrequencies( const std::string& name )
[847]1626{
1627 throw(AipsError("setRestFrequencies( const std::string& name ) NYI"));
1628 ///@todo implement
1629}
[1819]1630**/
[2012]1631
[1819]1632void Scantable::setRestFrequencies( const vector<std::string>& name )
1633{
[2163]1634 (void) name; // suppress unused warning
[1819]1635 throw(AipsError("setRestFrequencies( const vector<std::string>& name ) NYI"));
1636 ///@todo implement
1637}
[847]1638
[1360]1639std::vector< unsigned int > Scantable::rownumbers( ) const
[852]1640{
1641 std::vector<unsigned int> stlout;
1642 Vector<uInt> vec = table_.rowNumbers();
1643 vec.tovector(stlout);
1644 return stlout;
1645}
1646
[865]1647
[1360]1648Matrix<Float> Scantable::getPolMatrix( uInt whichrow ) const
[896]1649{
1650 ROTableRow row(table_);
1651 const TableRecord& rec = row.get(whichrow);
1652 Table t =
1653 originalTable_( originalTable_.col("SCANNO") == Int(rec.asuInt("SCANNO"))
1654 && originalTable_.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1655 && originalTable_.col("IFNO") == Int(rec.asuInt("IFNO"))
1656 && originalTable_.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
1657 ROArrayColumn<Float> speccol(t, "SPECTRA");
1658 return speccol.getColumn();
1659}
[865]1660
[1360]1661std::vector< std::string > Scantable::columnNames( ) const
[902]1662{
1663 Vector<String> vec = table_.tableDesc().columnNames();
1664 return mathutil::tovectorstring(vec);
1665}
[896]1666
[1360]1667MEpoch::Types Scantable::getTimeReference( ) const
[915]1668{
1669 return MEpoch::castType(timeCol_.getMeasRef().getType());
[972]1670}
[915]1671
[1360]1672void Scantable::addFit( const STFitEntry& fit, int row )
[972]1673{
[1819]1674 //cout << mfitidCol_(uInt(row)) << endl;
1675 LogIO os( LogOrigin( "Scantable", "addFit()", WHERE ) ) ;
1676 os << mfitidCol_(uInt(row)) << LogIO::POST ;
[972]1677 uInt id = fitTable_.addEntry(fit, mfitidCol_(uInt(row)));
1678 mfitidCol_.put(uInt(row), id);
1679}
[915]1680
[1360]1681void Scantable::shift(int npix)
1682{
1683 Vector<uInt> fids(mfreqidCol_.getColumn());
1684 genSort( fids, Sort::Ascending,
1685 Sort::QuickSort|Sort::NoDuplicates );
1686 for (uInt i=0; i<fids.nelements(); ++i) {
[1567]1687 frequencies().shiftRefPix(npix, fids[i]);
[1360]1688 }
1689}
[987]1690
[1819]1691String Scantable::getAntennaName() const
[1391]1692{
1693 String out;
1694 table_.keywordSet().get("AntennaName", out);
[1987]1695 String::size_type pos1 = out.find("@") ;
1696 String::size_type pos2 = out.find("//") ;
1697 if ( pos2 != String::npos )
[2036]1698 out = out.substr(pos2+2,pos1-pos2-2) ;
[1987]1699 else if ( pos1 != String::npos )
1700 out = out.substr(0,pos1) ;
[1391]1701 return out;
[987]1702}
[1391]1703
[1730]1704int Scantable::checkScanInfo(const std::vector<int>& scanlist) const
[1391]1705{
1706 String tbpath;
1707 int ret = 0;
1708 if ( table_.keywordSet().isDefined("GBT_GO") ) {
1709 table_.keywordSet().get("GBT_GO", tbpath);
1710 Table t(tbpath,Table::Old);
1711 // check each scan if other scan of the pair exist
1712 int nscan = scanlist.size();
1713 for (int i = 0; i < nscan; i++) {
1714 Table subt = t( t.col("SCAN") == scanlist[i]+1 );
1715 if (subt.nrow()==0) {
[1819]1716 //cerr <<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<endl;
1717 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1718 os <<LogIO::WARN<<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<LogIO::POST;
[1391]1719 ret = 1;
1720 break;
1721 }
1722 ROTableRow row(subt);
1723 const TableRecord& rec = row.get(0);
1724 int scan1seqn = rec.asuInt("PROCSEQN");
1725 int laston1 = rec.asuInt("LASTON");
1726 if ( rec.asuInt("PROCSIZE")==2 ) {
1727 if ( i < nscan-1 ) {
1728 Table subt2 = t( t.col("SCAN") == scanlist[i+1]+1 );
1729 if ( subt2.nrow() == 0) {
[1819]1730 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1731
1732 //cerr<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<endl;
1733 os<<LogIO::WARN<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<LogIO::POST;
[1391]1734 ret = 1;
1735 break;
1736 }
1737 ROTableRow row2(subt2);
1738 const TableRecord& rec2 = row2.get(0);
1739 int scan2seqn = rec2.asuInt("PROCSEQN");
1740 int laston2 = rec2.asuInt("LASTON");
1741 if (scan1seqn == 1 && scan2seqn == 2) {
1742 if (laston1 == laston2) {
[1819]1743 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1744 //cerr<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1745 os<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
[1391]1746 i +=1;
1747 }
1748 else {
[1819]1749 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1750 //cerr<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1751 os<<LogIO::WARN<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
[1391]1752 }
1753 }
1754 else if (scan1seqn==2 && scan2seqn == 1) {
1755 if (laston1 == laston2) {
[1819]1756 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1757 //cerr<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<endl;
1758 os<<LogIO::WARN<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<LogIO::POST;
[1391]1759 ret = 1;
1760 break;
1761 }
1762 }
1763 else {
[1819]1764 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1765 //cerr<<"The other scan for "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<endl;
1766 os<<LogIO::WARN<<"The other scan for "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<LogIO::POST;
[1391]1767 ret = 1;
1768 break;
1769 }
1770 }
1771 }
1772 else {
[1819]1773 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1774 //cerr<<"The scan does not appear to be standard obsevation."<<endl;
1775 os<<LogIO::WARN<<"The scan does not appear to be standard obsevation."<<LogIO::POST;
[1391]1776 }
1777 //if ( i >= nscan ) break;
1778 }
1779 }
1780 else {
[1819]1781 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1782 //cerr<<"No reference to GBT_GO table."<<endl;
1783 os<<LogIO::WARN<<"No reference to GBT_GO table."<<LogIO::POST;
[1391]1784 ret = 1;
1785 }
1786 return ret;
1787}
1788
[1730]1789std::vector<double> Scantable::getDirectionVector(int whichrow) const
[1391]1790{
1791 Vector<Double> Dir = dirCol_(whichrow).getAngle("rad").getValue();
1792 std::vector<double> dir;
1793 Dir.tovector(dir);
1794 return dir;
1795}
1796
[1819]1797void asap::Scantable::reshapeSpectrum( int nmin, int nmax )
1798 throw( casa::AipsError )
1799{
1800 // assumed that all rows have same nChan
1801 Vector<Float> arr = specCol_( 0 ) ;
1802 int nChan = arr.nelements() ;
1803
1804 // if nmin < 0 or nmax < 0, nothing to do
1805 if ( nmin < 0 ) {
1806 throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1807 }
1808 if ( nmax < 0 ) {
1809 throw( casa::indexError<int>( nmax, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1810 }
1811
1812 // if nmin > nmax, exchange values
1813 if ( nmin > nmax ) {
1814 int tmp = nmax ;
1815 nmax = nmin ;
1816 nmin = tmp ;
1817 LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1818 os << "Swap values. Applied range is ["
1819 << nmin << ", " << nmax << "]" << LogIO::POST ;
1820 }
1821
1822 // if nmin exceeds nChan, nothing to do
1823 if ( nmin >= nChan ) {
1824 throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Specified minimum exceeds nChan." ) ) ;
1825 }
1826
1827 // if nmax exceeds nChan, reset nmax to nChan
1828 if ( nmax >= nChan ) {
1829 if ( nmin == 0 ) {
1830 // nothing to do
1831 LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1832 os << "Whole range is selected. Nothing to do." << LogIO::POST ;
1833 return ;
1834 }
1835 else {
1836 LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1837 os << "Specified maximum exceeds nChan. Applied range is ["
1838 << nmin << ", " << nChan-1 << "]." << LogIO::POST ;
1839 nmax = nChan - 1 ;
1840 }
1841 }
1842
1843 // reshape specCol_ and flagCol_
1844 for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1845 reshapeSpectrum( nmin, nmax, irow ) ;
1846 }
1847
1848 // update FREQUENCIES subtable
1849 Double refpix ;
1850 Double refval ;
1851 Double increment ;
[2346]1852 int freqnrow = freqTable_.table().nrow() ;
[1819]1853 Vector<uInt> oldId( freqnrow ) ;
1854 Vector<uInt> newId( freqnrow ) ;
1855 for ( int irow = 0 ; irow < freqnrow ; irow++ ) {
[2346]1856 freqTable_.getEntry( refpix, refval, increment, irow ) ;
[1819]1857 /***
1858 * need to shift refpix to nmin
1859 * note that channel nmin in old index will be channel 0 in new one
1860 ***/
1861 refval = refval - ( refpix - nmin ) * increment ;
1862 refpix = 0 ;
[2346]1863 freqTable_.setEntry( refpix, refval, increment, irow ) ;
[1819]1864 }
1865
1866 // update nchan
1867 int newsize = nmax - nmin + 1 ;
1868 table_.rwKeywordSet().define( "nChan", newsize ) ;
1869
1870 // update bandwidth
1871 // assumed all spectra in the scantable have same bandwidth
1872 table_.rwKeywordSet().define( "Bandwidth", increment * newsize ) ;
1873
1874 return ;
1875}
1876
1877void asap::Scantable::reshapeSpectrum( int nmin, int nmax, int irow )
1878{
1879 // reshape specCol_ and flagCol_
1880 Vector<Float> oldspec = specCol_( irow ) ;
1881 Vector<uChar> oldflag = flagsCol_( irow ) ;
1882 uInt newsize = nmax - nmin + 1 ;
1883 specCol_.put( irow, oldspec( Slice( nmin, newsize, 1 ) ) ) ;
1884 flagsCol_.put( irow, oldflag( Slice( nmin, newsize, 1 ) ) ) ;
1885
1886 return ;
1887}
1888
[2435]1889void asap::Scantable::regridSpecChannel( double dnu, int nChan )
1890{
1891 LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1892 os << "Regrid abcissa with spectral resoultion " << dnu << " " << freqTable_.getUnitString() << " with channel number " << ((nChan>0)? String(nChan) : "covering band width")<< LogIO::POST ;
1893 int freqnrow = freqTable_.table().nrow() ;
1894 Vector<bool> firstTime( freqnrow, true ) ;
1895 double oldincr, factor;
1896 uInt currId;
1897 Double refpix ;
1898 Double refval ;
1899 Double increment ;
1900 for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1901 currId = mfreqidCol_(irow);
1902 vector<double> abcissa = getAbcissa( irow ) ;
1903 if (nChan < 0) {
1904 int oldsize = abcissa.size() ;
1905 double bw = (abcissa[oldsize-1]-abcissa[0]) + \
1906 0.5 * (abcissa[1]-abcissa[0] + abcissa[oldsize-1]-abcissa[oldsize-2]) ;
1907 nChan = int( ceil( abs(bw/dnu) ) ) ;
1908 }
1909 // actual regridding
1910 regridChannel( nChan, dnu, irow ) ;
[2433]1911
[2435]1912 // update FREQUENCIES subtable
1913 if (firstTime[currId]) {
1914 oldincr = abcissa[1]-abcissa[0] ;
1915 factor = dnu/oldincr ;
1916 firstTime[currId] = false ;
1917 freqTable_.getEntry( refpix, refval, increment, currId ) ;
[2463]1918
[2437]1919 //refval = refval - ( refpix + 0.5 * (1 - factor) ) * increment ;
[2463]1920 if (factor > 0 ) {
[2462]1921 refpix = (refpix + 0.5)/factor - 0.5;
1922 } else {
[2463]1923 refpix = (abcissa.size() - 0.5 - refpix)/abs(factor) - 0.5;
[2462]1924 }
[2435]1925 freqTable_.setEntry( refpix, refval, increment*factor, currId ) ;
[2463]1926 //os << "ID" << currId << ": channel width (Orig) = " << oldincr << " [" << freqTable_.getUnitString() << "], scale factor = " << factor << LogIO::POST ;
1927 //os << " frequency increment (Orig) = " << increment << "-> (New) " << increment*factor << LogIO::POST ;
[2435]1928 }
1929 }
1930}
1931
[1819]1932void asap::Scantable::regridChannel( int nChan, double dnu )
1933{
1934 LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1935 os << "Regrid abcissa with channel number " << nChan << " and spectral resoultion " << dnu << "Hz." << LogIO::POST ;
1936 // assumed that all rows have same nChan
1937 Vector<Float> arr = specCol_( 0 ) ;
1938 int oldsize = arr.nelements() ;
1939
1940 // if oldsize == nChan, nothing to do
1941 if ( oldsize == nChan ) {
1942 os << "Specified channel number is same as current one. Nothing to do." << LogIO::POST ;
1943 return ;
1944 }
1945
1946 // if oldChan < nChan, unphysical operation
1947 if ( oldsize < nChan ) {
1948 os << "Unphysical operation. Nothing to do." << LogIO::POST ;
1949 return ;
1950 }
1951
[2433]1952 // change channel number for specCol_, flagCol_, and tsysCol_ (if necessary)
[1819]1953 vector<string> coordinfo = getCoordInfo() ;
1954 string oldinfo = coordinfo[0] ;
1955 coordinfo[0] = "Hz" ;
1956 setCoordInfo( coordinfo ) ;
1957 for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1958 regridChannel( nChan, dnu, irow ) ;
1959 }
1960 coordinfo[0] = oldinfo ;
1961 setCoordInfo( coordinfo ) ;
1962
1963
1964 // NOTE: this method does not update metadata such as
1965 // FREQUENCIES subtable, nChan, Bandwidth, etc.
1966
1967 return ;
1968}
1969
1970void asap::Scantable::regridChannel( int nChan, double dnu, int irow )
1971{
1972 // logging
1973 //ofstream ofs( "average.log", std::ios::out | std::ios::app ) ;
1974 //ofs << "IFNO = " << getIF( irow ) << " irow = " << irow << endl ;
1975
1976 Vector<Float> oldspec = specCol_( irow ) ;
1977 Vector<uChar> oldflag = flagsCol_( irow ) ;
[2431]1978 Vector<Float> oldtsys = tsysCol_( irow ) ;
[1819]1979 Vector<Float> newspec( nChan, 0 ) ;
[2431]1980 Vector<uChar> newflag( nChan, true ) ;
1981 Vector<Float> newtsys ;
1982 bool regridTsys = false ;
1983 if (oldtsys.size() == oldspec.size()) {
1984 regridTsys = true ;
1985 newtsys.resize(nChan,false) ;
1986 newtsys = 0 ;
1987 }
[1819]1988
1989 // regrid
1990 vector<double> abcissa = getAbcissa( irow ) ;
1991 int oldsize = abcissa.size() ;
1992 double olddnu = abcissa[1] - abcissa[0] ;
[2462]1993 //int ichan = 0 ;
[1819]1994 double wsum = 0.0 ;
[2433]1995 Vector<double> zi( nChan+1 ) ;
1996 Vector<double> yi( oldsize + 1 ) ;
[1819]1997 yi[0] = abcissa[0] - 0.5 * olddnu ;
[2431]1998 for ( int ii = 1 ; ii < oldsize ; ii++ )
[2433]1999 yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2000 yi[oldsize] = abcissa[oldsize-1] \
2001 + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
[2462]2002 //zi[0] = abcissa[0] - 0.5 * olddnu ;
2003 zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2004 for ( int ii = 1 ; ii < nChan ; ii++ )
2005 zi[ii] = zi[0] + dnu * ii ;
2006 zi[nChan] = zi[nChan-1] + dnu ;
2007 // Access zi and yi in ascending order
2008 int izs = ((dnu > 0) ? 0 : nChan ) ;
2009 int ize = ((dnu > 0) ? nChan : 0 ) ;
2010 int izincr = ((dnu > 0) ? 1 : -1 ) ;
2011 int ichan = ((olddnu > 0) ? 0 : oldsize ) ;
2012 int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2013 int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2014 //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2015 int ii = izs ;
2016 while (ii != ize) {
2017 // always zl < zr
2018 double zl = zi[ii] ;
2019 double zr = zi[ii+izincr] ;
2020 // Need to access smaller index for the new spec, flag, and tsys.
2021 // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2022 int i = min(ii, ii+izincr) ;
2023 //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2024 int jj = ichan ;
2025 while (jj != iye) {
2026 // always yl < yr
2027 double yl = yi[jj] ;
2028 double yr = yi[jj+iyincr] ;
2029 // Need to access smaller index for the original spec, flag, and tsys.
2030 // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2031 int j = min(jj, jj+iyincr) ;
2032 if ( yr <= zl ) {
2033 jj += iyincr ;
2034 continue ;
[1819]2035 }
[2462]2036 else if ( yl <= zl ) {
2037 if ( yr < zr ) {
2038 if (!oldflag[j]) {
2039 newspec[i] += oldspec[j] * ( yr - zl ) ;
2040 if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2041 wsum += ( yr - zl ) ;
2042 }
2043 newflag[i] = newflag[i] && oldflag[j] ;
2044 }
2045 else {
2046 if (!oldflag[j]) {
2047 newspec[i] += oldspec[j] * abs(dnu) ;
2048 if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2049 wsum += abs(dnu) ;
2050 }
2051 newflag[i] = newflag[i] && oldflag[j] ;
2052 ichan = jj ;
2053 break ;
2054 }
[2431]2055 }
[2462]2056 else if ( yl < zr ) {
2057 if ( yr <= zr ) {
2058 if (!oldflag[j]) {
2059 newspec[i] += oldspec[j] * ( yr - yl ) ;
2060 if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2061 wsum += ( yr - yl ) ;
2062 }
2063 newflag[i] = newflag[i] && oldflag[j] ;
2064 }
2065 else {
2066 if (!oldflag[j]) {
2067 newspec[i] += oldspec[j] * ( zr - yl ) ;
2068 if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2069 wsum += ( zr - yl ) ;
2070 }
2071 newflag[i] = newflag[i] && oldflag[j] ;
2072 ichan = jj ;
2073 break ;
2074 }
[1819]2075 }
[2462]2076 else {
2077 ichan = jj - iyincr ;
2078 break ;
[2431]2079 }
[2462]2080 jj += iyincr ;
[1819]2081 }
[2462]2082 if ( wsum != 0.0 ) {
2083 newspec[i] /= wsum ;
2084 if (regridTsys) newtsys[i] /= wsum ;
2085 }
2086 wsum = 0.0 ;
2087 ii += izincr ;
[1819]2088 }
[2462]2089// if ( dnu > 0.0 ) {
2090// for ( int ii = 0 ; ii < nChan ; ii++ ) {
2091// double zl = zi[ii] ;
2092// double zr = zi[ii+1] ;
2093// for ( int j = ichan ; j < oldsize ; j++ ) {
2094// double yl = yi[j] ;
2095// double yr = yi[j+1] ;
2096// if ( yl <= zl ) {
2097// if ( yr <= zl ) {
2098// continue ;
2099// }
2100// else if ( yr <= zr ) {
2101// if (!oldflag[j]) {
2102// newspec[ii] += oldspec[j] * ( yr - zl ) ;
2103// if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - zl ) ;
2104// wsum += ( yr - zl ) ;
2105// }
2106// newflag[ii] = newflag[ii] && oldflag[j] ;
2107// }
2108// else {
2109// if (!oldflag[j]) {
2110// newspec[ii] += oldspec[j] * dnu ;
2111// if (regridTsys) newtsys[ii] += oldtsys[j] * dnu ;
2112// wsum += dnu ;
2113// }
2114// newflag[ii] = newflag[ii] && oldflag[j] ;
2115// ichan = j ;
2116// break ;
2117// }
2118// }
2119// else if ( yl < zr ) {
2120// if ( yr <= zr ) {
2121// if (!oldflag[j]) {
2122// newspec[ii] += oldspec[j] * ( yr - yl ) ;
2123// if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - yl ) ;
2124// wsum += ( yr - yl ) ;
2125// }
2126// newflag[ii] = newflag[ii] && oldflag[j] ;
2127// }
2128// else {
2129// if (!oldflag[j]) {
2130// newspec[ii] += oldspec[j] * ( zr - yl ) ;
2131// if (regridTsys) newtsys[ii] += oldtsys[j] * ( zr - yl ) ;
2132// wsum += ( zr - yl ) ;
2133// }
2134// newflag[ii] = newflag[ii] && oldflag[j] ;
2135// ichan = j ;
2136// break ;
2137// }
2138// }
2139// else {
2140// ichan = j - 1 ;
2141// break ;
2142// }
2143// }
2144// if ( wsum != 0.0 ) {
2145// newspec[ii] /= wsum ;
2146// if (regridTsys) newtsys[ii] /= wsum ;
2147// }
2148// wsum = 0.0 ;
2149// }
[1819]2150// }
[2462]2151// else if ( dnu < 0.0 ) {
2152// for ( int ii = 0 ; ii < nChan ; ii++ ) {
2153// double zl = zi[ii] ;
2154// double zr = zi[ii+1] ;
2155// for ( int j = ichan ; j < oldsize ; j++ ) {
2156// double yl = yi[j] ;
2157// double yr = yi[j+1] ;
2158// if ( yl >= zl ) {
2159// if ( yr >= zl ) {
2160// continue ;
2161// }
2162// else if ( yr >= zr ) {
2163// if (!oldflag[j]) {
2164// newspec[ii] += oldspec[j] * abs( yr - zl ) ;
2165// if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - zl ) ;
2166// wsum += abs( yr - zl ) ;
2167// }
2168// newflag[ii] = newflag[ii] && oldflag[j] ;
2169// }
2170// else {
2171// if (!oldflag[j]) {
2172// newspec[ii] += oldspec[j] * abs( dnu ) ;
2173// if (regridTsys) newtsys[ii] += oldtsys[j] * abs( dnu ) ;
2174// wsum += abs( dnu ) ;
2175// }
2176// newflag[ii] = newflag[ii] && oldflag[j] ;
2177// ichan = j ;
2178// break ;
2179// }
2180// }
2181// else if ( yl > zr ) {
2182// if ( yr >= zr ) {
2183// if (!oldflag[j]) {
2184// newspec[ii] += oldspec[j] * abs( yr - yl ) ;
2185// if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - yl ) ;
2186// wsum += abs( yr - yl ) ;
2187// }
2188// newflag[ii] = newflag[ii] && oldflag[j] ;
2189// }
2190// else {
2191// if (!oldflag[j]) {
2192// newspec[ii] += oldspec[j] * abs( zr - yl ) ;
2193// if (regridTsys) newtsys[ii] += oldtsys[j] * abs( zr - yl ) ;
2194// wsum += abs( zr - yl ) ;
2195// }
2196// newflag[ii] = newflag[ii] && oldflag[j] ;
2197// ichan = j ;
2198// break ;
2199// }
2200// }
2201// else {
2202// ichan = j - 1 ;
2203// break ;
2204// }
2205// }
2206// if ( wsum != 0.0 ) {
2207// newspec[ii] /= wsum ;
2208// if (regridTsys) newtsys[ii] /= wsum ;
2209// }
2210// wsum = 0.0 ;
[1819]2211// }
2212// }
[2462]2213// // //ofs << "olddnu = " << olddnu << ", dnu = " << dnu << endl ;
2214// // pile += dnu ;
2215// // wedge = olddnu * ( refChan + 1 ) ;
2216// // while ( wedge < pile ) {
2217// // newspec[0] += olddnu * oldspec[refChan] ;
2218// // newflag[0] = newflag[0] || oldflag[refChan] ;
2219// // //ofs << "channel " << refChan << " is included in new channel 0" << endl ;
2220// // refChan++ ;
2221// // wedge += olddnu ;
2222// // wsum += olddnu ;
2223// // //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2224// // }
2225// // frac = ( wedge - pile ) / olddnu ;
2226// // wsum += ( 1.0 - frac ) * olddnu ;
2227// // newspec[0] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2228// // newflag[0] = newflag[0] || oldflag[refChan] ;
2229// // //ofs << "channel " << refChan << " is partly included in new channel 0" << " with fraction of " << ( 1.0 - frac ) << endl ;
2230// // //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2231// // newspec[0] /= wsum ;
2232// // //ofs << "newspec[0] = " << newspec[0] << endl ;
2233// // //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
[1819]2234
[2462]2235// // /***
2236// // * ichan = 1 - nChan-2
2237// // ***/
2238// // for ( int ichan = 1 ; ichan < nChan - 1 ; ichan++ ) {
2239// // pile += dnu ;
2240// // newspec[ichan] += frac * olddnu * oldspec[refChan] ;
2241// // newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2242// // //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << frac << endl ;
2243// // refChan++ ;
2244// // wedge += olddnu ;
2245// // wsum = frac * olddnu ;
2246// // //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2247// // while ( wedge < pile ) {
2248// // newspec[ichan] += olddnu * oldspec[refChan] ;
2249// // newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2250// // //ofs << "channel " << refChan << " is included in new channel " << ichan << endl ;
2251// // refChan++ ;
2252// // wedge += olddnu ;
2253// // wsum += olddnu ;
2254// // //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2255// // }
2256// // frac = ( wedge - pile ) / olddnu ;
2257// // wsum += ( 1.0 - frac ) * olddnu ;
2258// // newspec[ichan] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2259// // newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2260// // //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << ( 1.0 - frac ) << endl ;
2261// // //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2262// // //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2263// // newspec[ichan] /= wsum ;
2264// // //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << endl ;
2265// // }
[1819]2266
[2462]2267// // /***
2268// // * ichan = nChan-1
2269// // ***/
2270// // // NOTE: Assumed that all spectra have the same bandwidth
2271// // pile += dnu ;
2272// // newspec[nChan-1] += frac * olddnu * oldspec[refChan] ;
2273// // newflag[nChan-1] = newflag[nChan-1] || oldflag[refChan] ;
2274// // //ofs << "channel " << refChan << " is partly included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2275// // refChan++ ;
2276// // wedge += olddnu ;
2277// // wsum = frac * olddnu ;
2278// // //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2279// // for ( int jchan = refChan ; jchan < oldsize ; jchan++ ) {
2280// // newspec[nChan-1] += olddnu * oldspec[jchan] ;
2281// // newflag[nChan-1] = newflag[nChan-1] || oldflag[jchan] ;
2282// // wsum += olddnu ;
2283// // //ofs << "channel " << jchan << " is included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2284// // //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2285// // }
2286// // //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2287// // //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2288// // newspec[nChan-1] /= wsum ;
2289// // //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << endl ;
[1819]2290
[2462]2291// // // ofs.close() ;
2292
[2032]2293 specCol_.put( irow, newspec ) ;
2294 flagsCol_.put( irow, newflag ) ;
[2431]2295 if (regridTsys) tsysCol_.put( irow, newtsys );
[1819]2296
2297 return ;
2298}
2299
[1730]2300std::vector<float> Scantable::getWeather(int whichrow) const
2301{
2302 std::vector<float> out(5);
2303 //Float temperature, pressure, humidity, windspeed, windaz;
2304 weatherTable_.getEntry(out[0], out[1], out[2], out[3], out[4],
2305 mweatheridCol_(uInt(whichrow)));
2306
2307
2308 return out;
[1391]2309}
[1730]2310
[2047]2311bool Scantable::getFlagtraFast(uInt whichrow)
[1907]2312{
2313 uChar flag;
2314 Vector<uChar> flags;
[2047]2315 flagsCol_.get(whichrow, flags);
[2012]2316 flag = flags[0];
[2047]2317 for (uInt i = 1; i < flags.size(); ++i) {
[2012]2318 flag &= flags[i];
2319 }
2320 return ((flag >> 7) == 1);
2321}
2322
[2277]2323void Scantable::polyBaseline(const std::vector<bool>& mask, int order, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
[2047]2324{
[2193]2325 try {
2326 ofstream ofs;
2327 String coordInfo = "";
2328 bool hasSameNchan = true;
2329 bool outTextFile = false;
[2047]2330
[2193]2331 if (blfile != "") {
2332 ofs.open(blfile.c_str(), ios::out | ios::app);
2333 if (ofs) outTextFile = true;
2334 }
[2047]2335
[2193]2336 if (outLogger || outTextFile) {
2337 coordInfo = getCoordInfo()[0];
2338 if (coordInfo == "") coordInfo = "channel";
2339 hasSameNchan = hasSameNchanOverIFs();
2340 }
[2047]2341
[2193]2342 Fitter fitter = Fitter();
2343 fitter.setExpression("poly", order);
2344 //fitter.setIterClipping(thresClip, nIterClip);
[2047]2345
[2193]2346 int nRow = nrow();
2347 std::vector<bool> chanMask;
2348 bool showProgress;
2349 int minNRow;
2350 parseProgressInfo(progressInfo, showProgress, minNRow);
[2047]2351
[2193]2352 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2353 chanMask = getCompositeChanMask(whichrow, mask);
2354 fitBaseline(chanMask, whichrow, fitter);
2355 setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
[2277]2356 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "polyBaseline()", fitter);
[2193]2357 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
2358 }
2359
2360 if (outTextFile) ofs.close();
2361
2362 } catch (...) {
2363 throw;
[2047]2364 }
2365}
2366
[2189]2367void Scantable::autoPolyBaseline(const std::vector<bool>& mask, int order, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
[2047]2368{
[2193]2369 try {
2370 ofstream ofs;
2371 String coordInfo = "";
2372 bool hasSameNchan = true;
2373 bool outTextFile = false;
[2047]2374
[2193]2375 if (blfile != "") {
2376 ofs.open(blfile.c_str(), ios::out | ios::app);
2377 if (ofs) outTextFile = true;
2378 }
[2047]2379
[2193]2380 if (outLogger || outTextFile) {
2381 coordInfo = getCoordInfo()[0];
2382 if (coordInfo == "") coordInfo = "channel";
2383 hasSameNchan = hasSameNchanOverIFs();
2384 }
[2047]2385
[2193]2386 Fitter fitter = Fitter();
2387 fitter.setExpression("poly", order);
2388 //fitter.setIterClipping(thresClip, nIterClip);
[2047]2389
[2193]2390 int nRow = nrow();
2391 std::vector<bool> chanMask;
2392 int minEdgeSize = getIFNos().size()*2;
2393 STLineFinder lineFinder = STLineFinder();
2394 lineFinder.setOptions(threshold, 3, chanAvgLimit);
[2047]2395
[2193]2396 bool showProgress;
2397 int minNRow;
2398 parseProgressInfo(progressInfo, showProgress, minNRow);
[2189]2399
[2193]2400 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
[2047]2401
[2193]2402 //-------------------------------------------------------
2403 //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
2404 //-------------------------------------------------------
2405 int edgeSize = edge.size();
2406 std::vector<int> currentEdge;
2407 if (edgeSize >= 2) {
2408 int idx = 0;
2409 if (edgeSize > 2) {
2410 if (edgeSize < minEdgeSize) {
2411 throw(AipsError("Length of edge element info is less than that of IFs"));
2412 }
2413 idx = 2 * getIF(whichrow);
[2047]2414 }
[2193]2415 currentEdge.push_back(edge[idx]);
2416 currentEdge.push_back(edge[idx+1]);
2417 } else {
2418 throw(AipsError("Wrong length of edge element"));
[2047]2419 }
[2193]2420 lineFinder.setData(getSpectrum(whichrow));
2421 lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
2422 chanMask = lineFinder.getMask();
2423 //-------------------------------------------------------
2424
2425 fitBaseline(chanMask, whichrow, fitter);
2426 setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
2427
2428 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoPolyBaseline()", fitter);
2429 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
[2047]2430 }
2431
[2193]2432 if (outTextFile) ofs.close();
[2047]2433
[2193]2434 } catch (...) {
2435 throw;
[2047]2436 }
2437}
2438
[2189]2439void Scantable::cubicSplineBaseline(const std::vector<bool>& mask, int nPiece, float thresClip, int nIterClip, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
[2081]2440{
[2193]2441 try {
2442 ofstream ofs;
2443 String coordInfo = "";
2444 bool hasSameNchan = true;
2445 bool outTextFile = false;
[2012]2446
[2193]2447 if (blfile != "") {
2448 ofs.open(blfile.c_str(), ios::out | ios::app);
2449 if (ofs) outTextFile = true;
2450 }
[2012]2451
[2193]2452 if (outLogger || outTextFile) {
2453 coordInfo = getCoordInfo()[0];
2454 if (coordInfo == "") coordInfo = "channel";
2455 hasSameNchan = hasSameNchanOverIFs();
2456 }
[2012]2457
[2193]2458 //Fitter fitter = Fitter();
2459 //fitter.setExpression("cspline", nPiece);
2460 //fitter.setIterClipping(thresClip, nIterClip);
[2012]2461
[2193]2462 bool showProgress;
2463 int minNRow;
2464 parseProgressInfo(progressInfo, showProgress, minNRow);
[2012]2465
[2344]2466 int nRow = nrow();
2467 std::vector<bool> chanMask;
2468
2469 //--------------------------------
[2193]2470 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2471 chanMask = getCompositeChanMask(whichrow, mask);
2472 //fitBaseline(chanMask, whichrow, fitter);
2473 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
[2344]2474 std::vector<int> pieceEdges(nPiece+1);
2475 std::vector<float> params(nPiece*4);
[2193]2476 int nClipped = 0;
2477 std::vector<float> res = doCubicSplineFitting(getSpectrum(whichrow), chanMask, nPiece, pieceEdges, params, nClipped, thresClip, nIterClip, getResidual);
2478 setSpectrum(res, whichrow);
2479 //
[2012]2480
[2193]2481 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "cubicSplineBaseline()", pieceEdges, params, nClipped);
2482 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
2483 }
[2344]2484 //--------------------------------
2485
[2193]2486 if (outTextFile) ofs.close();
2487
2488 } catch (...) {
2489 throw;
[2012]2490 }
2491}
2492
[2189]2493void Scantable::autoCubicSplineBaseline(const std::vector<bool>& mask, int nPiece, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
[2012]2494{
[2193]2495 try {
2496 ofstream ofs;
2497 String coordInfo = "";
2498 bool hasSameNchan = true;
2499 bool outTextFile = false;
[2012]2500
[2193]2501 if (blfile != "") {
2502 ofs.open(blfile.c_str(), ios::out | ios::app);
2503 if (ofs) outTextFile = true;
2504 }
[2012]2505
[2193]2506 if (outLogger || outTextFile) {
2507 coordInfo = getCoordInfo()[0];
2508 if (coordInfo == "") coordInfo = "channel";
2509 hasSameNchan = hasSameNchanOverIFs();
2510 }
[2012]2511
[2193]2512 //Fitter fitter = Fitter();
2513 //fitter.setExpression("cspline", nPiece);
2514 //fitter.setIterClipping(thresClip, nIterClip);
[2012]2515
[2193]2516 int nRow = nrow();
2517 std::vector<bool> chanMask;
2518 int minEdgeSize = getIFNos().size()*2;
2519 STLineFinder lineFinder = STLineFinder();
2520 lineFinder.setOptions(threshold, 3, chanAvgLimit);
[2012]2521
[2193]2522 bool showProgress;
2523 int minNRow;
2524 parseProgressInfo(progressInfo, showProgress, minNRow);
[2189]2525
[2193]2526 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
[2012]2527
[2193]2528 //-------------------------------------------------------
2529 //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
2530 //-------------------------------------------------------
2531 int edgeSize = edge.size();
2532 std::vector<int> currentEdge;
2533 if (edgeSize >= 2) {
2534 int idx = 0;
2535 if (edgeSize > 2) {
2536 if (edgeSize < minEdgeSize) {
2537 throw(AipsError("Length of edge element info is less than that of IFs"));
2538 }
2539 idx = 2 * getIF(whichrow);
[2012]2540 }
[2193]2541 currentEdge.push_back(edge[idx]);
2542 currentEdge.push_back(edge[idx+1]);
2543 } else {
2544 throw(AipsError("Wrong length of edge element"));
[2012]2545 }
[2193]2546 lineFinder.setData(getSpectrum(whichrow));
2547 lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
2548 chanMask = lineFinder.getMask();
2549 //-------------------------------------------------------
2550
2551
2552 //fitBaseline(chanMask, whichrow, fitter);
2553 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
[2344]2554 std::vector<int> pieceEdges(nPiece+1);
2555 std::vector<float> params(nPiece*4);
[2193]2556 int nClipped = 0;
2557 std::vector<float> res = doCubicSplineFitting(getSpectrum(whichrow), chanMask, nPiece, pieceEdges, params, nClipped, thresClip, nIterClip, getResidual);
2558 setSpectrum(res, whichrow);
2559 //
2560
2561 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoCubicSplineBaseline()", pieceEdges, params, nClipped);
2562 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
[1907]2563 }
[2012]2564
[2193]2565 if (outTextFile) ofs.close();
[2012]2566
[2193]2567 } catch (...) {
2568 throw;
[2012]2569 }
[1730]2570}
[1907]2571
[2193]2572std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data, const std::vector<bool>& mask, int nPiece, std::vector<int>& idxEdge, std::vector<float>& params, int& nClipped, float thresClip, int nIterClip, bool getResidual)
[2081]2573{
2574 if (data.size() != mask.size()) {
2575 throw(AipsError("data and mask sizes are not identical"));
2576 }
[2012]2577 if (nPiece < 1) {
[2094]2578 throw(AipsError("number of the sections must be one or more"));
[2012]2579 }
2580
2581 int nChan = data.size();
[2344]2582 std::vector<int> maskArray(nChan);
2583 std::vector<int> x(nChan);
2584 int j = 0;
[2012]2585 for (int i = 0; i < nChan; ++i) {
[2344]2586 maskArray[i] = mask[i] ? 1 : 0;
[2012]2587 if (mask[i]) {
[2344]2588 x[j] = i;
2589 j++;
[2012]2590 }
2591 }
[2344]2592 int initNData = j;
[2012]2593
[2193]2594 if (initNData < nPiece) {
2595 throw(AipsError("too few non-flagged channels"));
2596 }
[2081]2597
2598 int nElement = (int)(floor(floor((double)(initNData/nPiece))+0.5));
[2344]2599 std::vector<double> invEdge(nPiece-1);
2600 idxEdge[0] = x[0];
[2012]2601 for (int i = 1; i < nPiece; ++i) {
[2047]2602 int valX = x[nElement*i];
[2344]2603 idxEdge[i] = valX;
2604 invEdge[i-1] = 1.0/(double)valX;
[2012]2605 }
[2344]2606 idxEdge[nPiece] = x[initNData-1]+1;
[2064]2607
[2081]2608 int nData = initNData;
2609 int nDOF = nPiece + 3; //number of parameters to solve, namely, 4+(nPiece-1).
2610
[2344]2611 std::vector<double> x1(nChan), x2(nChan), x3(nChan);
2612 std::vector<double> z1(nChan), x1z1(nChan), x2z1(nChan), x3z1(nChan);
2613 std::vector<double> r1(nChan), residual(nChan);
[2012]2614 for (int i = 0; i < nChan; ++i) {
[2064]2615 double di = (double)i;
2616 double dD = (double)data[i];
[2344]2617 x1[i] = di;
2618 x2[i] = di*di;
2619 x3[i] = di*di*di;
2620 z1[i] = dD;
2621 x1z1[i] = dD*di;
2622 x2z1[i] = dD*di*di;
2623 x3z1[i] = dD*di*di*di;
2624 r1[i] = 0.0;
2625 residual[i] = 0.0;
[2012]2626 }
2627
2628 for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
[2064]2629 // xMatrix : horizontal concatenation of
2630 // the least-sq. matrix (left) and an
2631 // identity matrix (right).
2632 // the right part is used to calculate the inverse matrix of the left part.
[2012]2633 double xMatrix[nDOF][2*nDOF];
2634 double zMatrix[nDOF];
2635 for (int i = 0; i < nDOF; ++i) {
2636 for (int j = 0; j < 2*nDOF; ++j) {
2637 xMatrix[i][j] = 0.0;
2638 }
2639 xMatrix[i][nDOF+i] = 1.0;
2640 zMatrix[i] = 0.0;
2641 }
2642
2643 for (int n = 0; n < nPiece; ++n) {
[2193]2644 int nUseDataInPiece = 0;
[2064]2645 for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
2646
[2012]2647 if (maskArray[i] == 0) continue;
[2064]2648
[2012]2649 xMatrix[0][0] += 1.0;
[2064]2650 xMatrix[0][1] += x1[i];
2651 xMatrix[0][2] += x2[i];
2652 xMatrix[0][3] += x3[i];
2653 xMatrix[1][1] += x2[i];
2654 xMatrix[1][2] += x3[i];
2655 xMatrix[1][3] += x2[i]*x2[i];
2656 xMatrix[2][2] += x2[i]*x2[i];
2657 xMatrix[2][3] += x3[i]*x2[i];
2658 xMatrix[3][3] += x3[i]*x3[i];
[2012]2659 zMatrix[0] += z1[i];
[2064]2660 zMatrix[1] += x1z1[i];
2661 zMatrix[2] += x2z1[i];
2662 zMatrix[3] += x3z1[i];
2663
[2012]2664 for (int j = 0; j < n; ++j) {
[2064]2665 double q = 1.0 - x1[i]*invEdge[j];
[2012]2666 q = q*q*q;
2667 xMatrix[0][j+4] += q;
[2064]2668 xMatrix[1][j+4] += q*x1[i];
2669 xMatrix[2][j+4] += q*x2[i];
2670 xMatrix[3][j+4] += q*x3[i];
[2012]2671 for (int k = 0; k < j; ++k) {
[2064]2672 double r = 1.0 - x1[i]*invEdge[k];
[2012]2673 r = r*r*r;
2674 xMatrix[k+4][j+4] += r*q;
2675 }
2676 xMatrix[j+4][j+4] += q*q;
2677 zMatrix[j+4] += q*z1[i];
2678 }
[2064]2679
[2193]2680 nUseDataInPiece++;
[2012]2681 }
[2193]2682
2683 if (nUseDataInPiece < 1) {
2684 std::vector<string> suffixOfPieceNumber(4);
2685 suffixOfPieceNumber[0] = "th";
2686 suffixOfPieceNumber[1] = "st";
2687 suffixOfPieceNumber[2] = "nd";
2688 suffixOfPieceNumber[3] = "rd";
2689 int idxNoDataPiece = (n % 10 <= 3) ? n : 0;
2690 ostringstream oss;
2691 oss << "all channels clipped or masked in " << n << suffixOfPieceNumber[idxNoDataPiece];
2692 oss << " piece of the spectrum. can't execute fitting anymore.";
2693 throw(AipsError(String(oss)));
2694 }
[2012]2695 }
2696
2697 for (int i = 0; i < nDOF; ++i) {
2698 for (int j = 0; j < i; ++j) {
2699 xMatrix[i][j] = xMatrix[j][i];
2700 }
2701 }
2702
[2344]2703 std::vector<double> invDiag(nDOF);
[2012]2704 for (int i = 0; i < nDOF; ++i) {
[2344]2705 invDiag[i] = 1.0/xMatrix[i][i];
[2012]2706 for (int j = 0; j < nDOF; ++j) {
2707 xMatrix[i][j] *= invDiag[i];
2708 }
2709 }
2710
2711 for (int k = 0; k < nDOF; ++k) {
2712 for (int i = 0; i < nDOF; ++i) {
2713 if (i != k) {
2714 double factor1 = xMatrix[k][k];
2715 double factor2 = xMatrix[i][k];
2716 for (int j = k; j < 2*nDOF; ++j) {
2717 xMatrix[i][j] *= factor1;
2718 xMatrix[i][j] -= xMatrix[k][j]*factor2;
2719 xMatrix[i][j] /= factor1;
2720 }
2721 }
2722 }
2723 double xDiag = xMatrix[k][k];
2724 for (int j = k; j < 2*nDOF; ++j) {
2725 xMatrix[k][j] /= xDiag;
2726 }
2727 }
2728
2729 for (int i = 0; i < nDOF; ++i) {
2730 for (int j = 0; j < nDOF; ++j) {
2731 xMatrix[i][nDOF+j] *= invDiag[j];
2732 }
2733 }
2734 //compute a vector y which consists of the coefficients of the best-fit spline curves
2735 //(a0,a1,a2,a3(,b3,c3,...)), namely, the ones for the leftmost piece and the ones of
2736 //cubic terms for the other pieces (in case nPiece>1).
[2344]2737 std::vector<double> y(nDOF);
[2012]2738 for (int i = 0; i < nDOF; ++i) {
[2344]2739 y[i] = 0.0;
[2012]2740 for (int j = 0; j < nDOF; ++j) {
2741 y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
2742 }
2743 }
2744
2745 double a0 = y[0];
2746 double a1 = y[1];
2747 double a2 = y[2];
2748 double a3 = y[3];
2749
[2344]2750 int j = 0;
[2012]2751 for (int n = 0; n < nPiece; ++n) {
[2064]2752 for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
2753 r1[i] = a0 + a1*x1[i] + a2*x2[i] + a3*x3[i];
[2012]2754 }
[2344]2755 params[j] = a0;
2756 params[j+1] = a1;
2757 params[j+2] = a2;
2758 params[j+3] = a3;
2759 j += 4;
[2012]2760
2761 if (n == nPiece-1) break;
2762
2763 double d = y[4+n];
[2064]2764 double iE = invEdge[n];
2765 a0 += d;
2766 a1 -= 3.0*d*iE;
2767 a2 += 3.0*d*iE*iE;
2768 a3 -= d*iE*iE*iE;
[2012]2769 }
2770
[2344]2771 //subtract constant value for masked regions at the edge of spectrum
2772 if (idxEdge[0] > 0) {
2773 int n = idxEdge[0];
2774 for (int i = 0; i < idxEdge[0]; ++i) {
2775 //--cubic extrapolate--
2776 //r1[i] = params[0] + params[1]*x1[i] + params[2]*x2[i] + params[3]*x3[i];
2777 //--linear extrapolate--
2778 //r1[i] = (r1[n+1] - r1[n])/(x1[n+1] - x1[n])*(x1[i] - x1[n]) + r1[n];
2779 //--constant--
2780 r1[i] = r1[n];
2781 }
2782 }
2783 if (idxEdge[nPiece] < nChan) {
2784 int n = idxEdge[nPiece]-1;
2785 for (int i = idxEdge[nPiece]; i < nChan; ++i) {
2786 //--cubic extrapolate--
2787 //int m = 4*(nPiece-1);
2788 //r1[i] = params[m] + params[m+1]*x1[i] + params[m+2]*x2[i] + params[m+3]*x3[i];
2789 //--linear extrapolate--
2790 //r1[i] = (r1[n-1] - r1[n])/(x1[n-1] - x1[n])*(x1[i] - x1[n]) + r1[n];
2791 //--constant--
2792 r1[i] = r1[n];
2793 }
2794 }
2795
2796 for (int i = 0; i < nChan; ++i) {
2797 residual[i] = z1[i] - r1[i];
2798 }
2799
[2012]2800 if ((nClip == nIterClip) || (thresClip <= 0.0)) {
2801 break;
2802 } else {
2803 double stdDev = 0.0;
2804 for (int i = 0; i < nChan; ++i) {
[2081]2805 stdDev += residual[i]*residual[i]*(double)maskArray[i];
[2012]2806 }
2807 stdDev = sqrt(stdDev/(double)nData);
2808
2809 double thres = stdDev * thresClip;
2810 int newNData = 0;
2811 for (int i = 0; i < nChan; ++i) {
[2081]2812 if (abs(residual[i]) >= thres) {
[2012]2813 maskArray[i] = 0;
2814 }
2815 if (maskArray[i] > 0) {
2816 newNData++;
2817 }
2818 }
[2081]2819 if (newNData == nData) {
[2064]2820 break; //no more flag to add. iteration stops.
[2012]2821 } else {
[2081]2822 nData = newNData;
[2012]2823 }
2824 }
2825 }
2826
[2193]2827 nClipped = initNData - nData;
2828
[2344]2829 std::vector<float> result(nChan);
[2058]2830 if (getResidual) {
2831 for (int i = 0; i < nChan; ++i) {
[2344]2832 result[i] = (float)residual[i];
[2058]2833 }
2834 } else {
2835 for (int i = 0; i < nChan; ++i) {
[2344]2836 result[i] = (float)r1[i];
[2058]2837 }
[2012]2838 }
2839
[2058]2840 return result;
[2012]2841}
2842
[2344]2843void Scantable::selectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves)
[2081]2844{
[2186]2845 nWaves.clear();
2846
2847 if (applyFFT) {
2848 string fftThAttr;
2849 float fftThSigma;
2850 int fftThTop;
2851 parseThresholdExpression(fftThresh, fftThAttr, fftThSigma, fftThTop);
2852 doSelectWaveNumbers(whichrow, chanMask, fftMethod, fftThSigma, fftThTop, fftThAttr, nWaves);
2853 }
2854
[2411]2855 addAuxWaveNumbers(whichrow, addNWaves, rejectNWaves, nWaves);
[2186]2856}
2857
2858void Scantable::parseThresholdExpression(const std::string& fftThresh, std::string& fftThAttr, float& fftThSigma, int& fftThTop)
2859{
2860 uInt idxSigma = fftThresh.find("sigma");
2861 uInt idxTop = fftThresh.find("top");
2862
2863 if (idxSigma == fftThresh.size() - 5) {
2864 std::istringstream is(fftThresh.substr(0, fftThresh.size() - 5));
2865 is >> fftThSigma;
2866 fftThAttr = "sigma";
2867 } else if (idxTop == 0) {
2868 std::istringstream is(fftThresh.substr(3));
2869 is >> fftThTop;
2870 fftThAttr = "top";
2871 } else {
2872 bool isNumber = true;
2873 for (uInt i = 0; i < fftThresh.size()-1; ++i) {
2874 char ch = (fftThresh.substr(i, 1).c_str())[0];
2875 if (!(isdigit(ch) || (fftThresh.substr(i, 1) == "."))) {
2876 isNumber = false;
2877 break;
2878 }
2879 }
2880 if (isNumber) {
2881 std::istringstream is(fftThresh);
2882 is >> fftThSigma;
2883 fftThAttr = "sigma";
2884 } else {
2885 throw(AipsError("fftthresh has a wrong value"));
2886 }
2887 }
2888}
2889
2890void Scantable::doSelectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const std::string& fftMethod, const float fftThSigma, const int fftThTop, const std::string& fftThAttr, std::vector<int>& nWaves)
2891{
2892 std::vector<float> fspec;
2893 if (fftMethod == "fft") {
2894 fspec = execFFT(whichrow, chanMask, false, true);
2895 //} else if (fftMethod == "lsp") {
2896 // fspec = lombScarglePeriodogram(whichrow);
2897 }
2898
2899 if (fftThAttr == "sigma") {
2900 float mean = 0.0;
2901 float mean2 = 0.0;
2902 for (uInt i = 0; i < fspec.size(); ++i) {
2903 mean += fspec[i];
2904 mean2 += fspec[i]*fspec[i];
2905 }
2906 mean /= float(fspec.size());
2907 mean2 /= float(fspec.size());
2908 float thres = mean + fftThSigma * float(sqrt(mean2 - mean*mean));
2909
2910 for (uInt i = 0; i < fspec.size(); ++i) {
2911 if (fspec[i] >= thres) {
2912 nWaves.push_back(i);
2913 }
2914 }
2915
2916 } else if (fftThAttr == "top") {
2917 for (int i = 0; i < fftThTop; ++i) {
2918 float max = 0.0;
2919 int maxIdx = 0;
2920 for (uInt j = 0; j < fspec.size(); ++j) {
2921 if (fspec[j] > max) {
2922 max = fspec[j];
2923 maxIdx = j;
2924 }
2925 }
2926 nWaves.push_back(maxIdx);
2927 fspec[maxIdx] = 0.0;
2928 }
2929
2930 }
2931
2932 if (nWaves.size() > 1) {
2933 sort(nWaves.begin(), nWaves.end());
2934 }
2935}
2936
[2411]2937void Scantable::addAuxWaveNumbers(const int whichrow, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves)
[2186]2938{
[2411]2939 std::vector<int> tempAddNWaves, tempRejectNWaves;
[2186]2940 for (uInt i = 0; i < addNWaves.size(); ++i) {
[2411]2941 tempAddNWaves.push_back(addNWaves[i]);
2942 }
2943 if ((tempAddNWaves.size() == 2) && (tempAddNWaves[1] == -999)) {
2944 setWaveNumberListUptoNyquistFreq(whichrow, tempAddNWaves);
2945 }
2946
2947 for (uInt i = 0; i < rejectNWaves.size(); ++i) {
2948 tempRejectNWaves.push_back(rejectNWaves[i]);
2949 }
2950 if ((tempRejectNWaves.size() == 2) && (tempRejectNWaves[1] == -999)) {
2951 setWaveNumberListUptoNyquistFreq(whichrow, tempRejectNWaves);
2952 }
2953
2954 for (uInt i = 0; i < tempAddNWaves.size(); ++i) {
[2186]2955 bool found = false;
2956 for (uInt j = 0; j < nWaves.size(); ++j) {
[2411]2957 if (nWaves[j] == tempAddNWaves[i]) {
[2186]2958 found = true;
2959 break;
2960 }
2961 }
[2411]2962 if (!found) nWaves.push_back(tempAddNWaves[i]);
[2186]2963 }
2964
[2411]2965 for (uInt i = 0; i < tempRejectNWaves.size(); ++i) {
[2186]2966 for (std::vector<int>::iterator j = nWaves.begin(); j != nWaves.end(); ) {
[2411]2967 if (*j == tempRejectNWaves[i]) {
[2186]2968 j = nWaves.erase(j);
2969 } else {
2970 ++j;
2971 }
2972 }
2973 }
2974
2975 if (nWaves.size() > 1) {
2976 sort(nWaves.begin(), nWaves.end());
2977 unique(nWaves.begin(), nWaves.end());
2978 }
2979}
2980
[2411]2981void Scantable::setWaveNumberListUptoNyquistFreq(const int whichrow, std::vector<int>& nWaves)
2982{
2983 if ((nWaves.size() == 2)&&(nWaves[1] == -999)) {
2984 int val = nWaves[0];
2985 int nyquistFreq = nchan(getIF(whichrow))/2+1;
2986 nWaves.clear();
2987 if (val > nyquistFreq) { // for safety, at least nWaves contains a constant; CAS-3759
2988 nWaves.push_back(0);
2989 }
2990 while (val <= nyquistFreq) {
2991 nWaves.push_back(val);
2992 val++;
2993 }
2994 }
2995}
2996
[2189]2997void Scantable::sinusoidBaseline(const std::vector<bool>& mask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, float thresClip, int nIterClip, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
[2186]2998{
[2193]2999 try {
3000 ofstream ofs;
3001 String coordInfo = "";
3002 bool hasSameNchan = true;
3003 bool outTextFile = false;
[2012]3004
[2193]3005 if (blfile != "") {
3006 ofs.open(blfile.c_str(), ios::out | ios::app);
3007 if (ofs) outTextFile = true;
3008 }
[2012]3009
[2193]3010 if (outLogger || outTextFile) {
3011 coordInfo = getCoordInfo()[0];
3012 if (coordInfo == "") coordInfo = "channel";
3013 hasSameNchan = hasSameNchanOverIFs();
3014 }
[2012]3015
[2193]3016 //Fitter fitter = Fitter();
3017 //fitter.setExpression("sinusoid", nWaves);
3018 //fitter.setIterClipping(thresClip, nIterClip);
[2012]3019
[2193]3020 int nRow = nrow();
3021 std::vector<bool> chanMask;
3022 std::vector<int> nWaves;
[2012]3023
[2193]3024 bool showProgress;
3025 int minNRow;
3026 parseProgressInfo(progressInfo, showProgress, minNRow);
[2189]3027
[2193]3028 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3029 chanMask = getCompositeChanMask(whichrow, mask);
3030 selectWaveNumbers(whichrow, chanMask, applyFFT, fftMethod, fftThresh, addNWaves, rejectNWaves, nWaves);
[2186]3031
[2193]3032 //FOR DEBUGGING------------
[2411]3033 /*
[2193]3034 if (whichrow < 0) {// == nRow -1) {
3035 cout << "+++ i=" << setw(3) << whichrow << ", IF=" << setw(2) << getIF(whichrow);
3036 if (applyFFT) {
[2186]3037 cout << "[ ";
3038 for (uInt j = 0; j < nWaves.size(); ++j) {
3039 cout << nWaves[j] << ", ";
3040 }
3041 cout << " ] " << endl;
[2193]3042 }
3043 cout << flush;
[2186]3044 }
[2411]3045 */
[2193]3046 //-------------------------
3047
3048 //fitBaseline(chanMask, whichrow, fitter);
3049 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
3050 std::vector<float> params;
3051 int nClipped = 0;
3052 std::vector<float> res = doSinusoidFitting(getSpectrum(whichrow), chanMask, nWaves, params, nClipped, thresClip, nIterClip, getResidual);
3053 setSpectrum(res, whichrow);
3054 //
3055
3056 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "sinusoidBaseline()", params, nClipped);
3057 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
[2186]3058 }
3059
[2193]3060 if (outTextFile) ofs.close();
[2012]3061
[2193]3062 } catch (...) {
3063 throw;
[1931]3064 }
[1907]3065}
3066
[2189]3067void Scantable::autoSinusoidBaseline(const std::vector<bool>& mask, const bool applyFFT, const std::string& fftMethod, const std::string& fftThresh, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, const std::string& progressInfo, const bool outLogger, const std::string& blfile)
[2012]3068{
[2193]3069 try {
3070 ofstream ofs;
3071 String coordInfo = "";
3072 bool hasSameNchan = true;
3073 bool outTextFile = false;
[2012]3074
[2193]3075 if (blfile != "") {
3076 ofs.open(blfile.c_str(), ios::out | ios::app);
3077 if (ofs) outTextFile = true;
3078 }
[2012]3079
[2193]3080 if (outLogger || outTextFile) {
3081 coordInfo = getCoordInfo()[0];
3082 if (coordInfo == "") coordInfo = "channel";
3083 hasSameNchan = hasSameNchanOverIFs();
3084 }
[2012]3085
[2193]3086 //Fitter fitter = Fitter();
3087 //fitter.setExpression("sinusoid", nWaves);
3088 //fitter.setIterClipping(thresClip, nIterClip);
[2012]3089
[2193]3090 int nRow = nrow();
3091 std::vector<bool> chanMask;
3092 std::vector<int> nWaves;
[2186]3093
[2193]3094 int minEdgeSize = getIFNos().size()*2;
3095 STLineFinder lineFinder = STLineFinder();
3096 lineFinder.setOptions(threshold, 3, chanAvgLimit);
[2012]3097
[2193]3098 bool showProgress;
3099 int minNRow;
3100 parseProgressInfo(progressInfo, showProgress, minNRow);
[2189]3101
[2193]3102 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
[2012]3103
[2193]3104 //-------------------------------------------------------
3105 //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
3106 //-------------------------------------------------------
3107 int edgeSize = edge.size();
3108 std::vector<int> currentEdge;
3109 if (edgeSize >= 2) {
3110 int idx = 0;
3111 if (edgeSize > 2) {
3112 if (edgeSize < minEdgeSize) {
3113 throw(AipsError("Length of edge element info is less than that of IFs"));
3114 }
3115 idx = 2 * getIF(whichrow);
[2012]3116 }
[2193]3117 currentEdge.push_back(edge[idx]);
3118 currentEdge.push_back(edge[idx+1]);
3119 } else {
3120 throw(AipsError("Wrong length of edge element"));
[2012]3121 }
[2193]3122 lineFinder.setData(getSpectrum(whichrow));
3123 lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
3124 chanMask = lineFinder.getMask();
3125 //-------------------------------------------------------
3126
3127 selectWaveNumbers(whichrow, chanMask, applyFFT, fftMethod, fftThresh, addNWaves, rejectNWaves, nWaves);
3128
3129 //fitBaseline(chanMask, whichrow, fitter);
3130 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
3131 std::vector<float> params;
3132 int nClipped = 0;
3133 std::vector<float> res = doSinusoidFitting(getSpectrum(whichrow), chanMask, nWaves, params, nClipped, thresClip, nIterClip, getResidual);
3134 setSpectrum(res, whichrow);
3135 //
3136
3137 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoSinusoidBaseline()", params, nClipped);
3138 showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
[2012]3139 }
3140
[2193]3141 if (outTextFile) ofs.close();
[2012]3142
[2193]3143 } catch (...) {
3144 throw;
[2047]3145 }
3146}
3147
[2193]3148std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data, const std::vector<bool>& mask, const std::vector<int>& waveNumbers, std::vector<float>& params, int& nClipped, float thresClip, int nIterClip, bool getResidual)
[2081]3149{
[2047]3150 if (data.size() != mask.size()) {
[2081]3151 throw(AipsError("data and mask sizes are not identical"));
[2047]3152 }
[2081]3153 if (data.size() < 2) {
3154 throw(AipsError("data size is too short"));
3155 }
3156 if (waveNumbers.size() == 0) {
[2186]3157 throw(AipsError("no wave numbers given"));
[2081]3158 }
3159 std::vector<int> nWaves; // sorted and uniqued array of wave numbers
3160 nWaves.reserve(waveNumbers.size());
3161 copy(waveNumbers.begin(), waveNumbers.end(), back_inserter(nWaves));
3162 sort(nWaves.begin(), nWaves.end());
3163 std::vector<int>::iterator end_it = unique(nWaves.begin(), nWaves.end());
3164 nWaves.erase(end_it, nWaves.end());
3165
3166 int minNWaves = nWaves[0];
3167 if (minNWaves < 0) {
[2058]3168 throw(AipsError("wave number must be positive or zero (i.e. constant)"));
3169 }
[2081]3170 bool hasConstantTerm = (minNWaves == 0);
[2047]3171
3172 int nChan = data.size();
3173 std::vector<int> maskArray;
3174 std::vector<int> x;
3175 for (int i = 0; i < nChan; ++i) {
3176 maskArray.push_back(mask[i] ? 1 : 0);
3177 if (mask[i]) {
3178 x.push_back(i);
3179 }
3180 }
3181
[2081]3182 int initNData = x.size();
[2047]3183
[2081]3184 int nData = initNData;
3185 int nDOF = nWaves.size() * 2 - (hasConstantTerm ? 1 : 0); //number of parameters to solve.
3186
3187 const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
[2186]3188 double baseXFactor = 2.0*PI/(double)(nChan-1); //the denominator (nChan-1) should be changed to (xdata[nChan-1]-xdata[0]) for accepting x-values given in velocity or frequency when this function is moved to fitter. (2011/03/30 WK)
[2081]3189
3190 // xArray : contains elemental values for computing the least-square matrix.
3191 // xArray.size() is nDOF and xArray[*].size() is nChan.
3192 // Each xArray element are as follows:
3193 // xArray[0] = {1.0, 1.0, 1.0, ..., 1.0},
3194 // xArray[2n-1] = {sin(nPI/L*x[0]), sin(nPI/L*x[1]), ..., sin(nPI/L*x[nChan])},
3195 // xArray[2n] = {cos(nPI/L*x[0]), cos(nPI/L*x[1]), ..., cos(nPI/L*x[nChan])},
3196 // where (1 <= n <= nMaxWavesInSW),
3197 // or,
3198 // xArray[2n-1] = {sin(wn[n]PI/L*x[0]), sin(wn[n]PI/L*x[1]), ..., sin(wn[n]PI/L*x[nChan])},
3199 // xArray[2n] = {cos(wn[n]PI/L*x[0]), cos(wn[n]PI/L*x[1]), ..., cos(wn[n]PI/L*x[nChan])},
3200 // where wn[n] denotes waveNumbers[n] (1 <= n <= waveNumbers.size()).
3201 std::vector<std::vector<double> > xArray;
3202 if (hasConstantTerm) {
3203 std::vector<double> xu;
3204 for (int j = 0; j < nChan; ++j) {
3205 xu.push_back(1.0);
3206 }
3207 xArray.push_back(xu);
3208 }
3209 for (uInt i = (hasConstantTerm ? 1 : 0); i < nWaves.size(); ++i) {
3210 double xFactor = baseXFactor*(double)nWaves[i];
3211 std::vector<double> xs, xc;
3212 xs.clear();
3213 xc.clear();
3214 for (int j = 0; j < nChan; ++j) {
3215 xs.push_back(sin(xFactor*(double)j));
3216 xc.push_back(cos(xFactor*(double)j));
3217 }
3218 xArray.push_back(xs);
3219 xArray.push_back(xc);
3220 }
3221
3222 std::vector<double> z1, r1, residual;
[2047]3223 for (int i = 0; i < nChan; ++i) {
[2081]3224 z1.push_back((double)data[i]);
[2047]3225 r1.push_back(0.0);
[2081]3226 residual.push_back(0.0);
[2047]3227 }
3228
3229 for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
[2081]3230 // xMatrix : horizontal concatenation of
3231 // the least-sq. matrix (left) and an
3232 // identity matrix (right).
3233 // the right part is used to calculate the inverse matrix of the left part.
[2047]3234 double xMatrix[nDOF][2*nDOF];
3235 double zMatrix[nDOF];
3236 for (int i = 0; i < nDOF; ++i) {
3237 for (int j = 0; j < 2*nDOF; ++j) {
3238 xMatrix[i][j] = 0.0;
[2012]3239 }
[2047]3240 xMatrix[i][nDOF+i] = 1.0;
3241 zMatrix[i] = 0.0;
3242 }
3243
[2193]3244 int nUseData = 0;
[2081]3245 for (int k = 0; k < nChan; ++k) {
3246 if (maskArray[k] == 0) continue;
3247
3248 for (int i = 0; i < nDOF; ++i) {
3249 for (int j = i; j < nDOF; ++j) {
3250 xMatrix[i][j] += xArray[i][k] * xArray[j][k];
3251 }
3252 zMatrix[i] += z1[k] * xArray[i][k];
3253 }
[2193]3254
3255 nUseData++;
[2047]3256 }
3257
[2193]3258 if (nUseData < 1) {
3259 throw(AipsError("all channels clipped or masked. can't execute fitting anymore."));
3260 }
3261
[2047]3262 for (int i = 0; i < nDOF; ++i) {
3263 for (int j = 0; j < i; ++j) {
3264 xMatrix[i][j] = xMatrix[j][i];
[2012]3265 }
3266 }
3267
[2047]3268 std::vector<double> invDiag;
3269 for (int i = 0; i < nDOF; ++i) {
3270 invDiag.push_back(1.0/xMatrix[i][i]);
3271 for (int j = 0; j < nDOF; ++j) {
3272 xMatrix[i][j] *= invDiag[i];
3273 }
3274 }
3275
3276 for (int k = 0; k < nDOF; ++k) {
3277 for (int i = 0; i < nDOF; ++i) {
3278 if (i != k) {
3279 double factor1 = xMatrix[k][k];
3280 double factor2 = xMatrix[i][k];
3281 for (int j = k; j < 2*nDOF; ++j) {
3282 xMatrix[i][j] *= factor1;
3283 xMatrix[i][j] -= xMatrix[k][j]*factor2;
3284 xMatrix[i][j] /= factor1;
3285 }
3286 }
3287 }
3288 double xDiag = xMatrix[k][k];
3289 for (int j = k; j < 2*nDOF; ++j) {
3290 xMatrix[k][j] /= xDiag;
3291 }
3292 }
3293
3294 for (int i = 0; i < nDOF; ++i) {
3295 for (int j = 0; j < nDOF; ++j) {
3296 xMatrix[i][nDOF+j] *= invDiag[j];
3297 }
3298 }
3299 //compute a vector y which consists of the coefficients of the sinusoids forming the
[2081]3300 //best-fit curves (a0,s1,c1,s2,c2,...), where a0 is constant and s* and c* are of sine
3301 //and cosine functions, respectively.
[2047]3302 std::vector<double> y;
[2081]3303 params.clear();
[2047]3304 for (int i = 0; i < nDOF; ++i) {
3305 y.push_back(0.0);
3306 for (int j = 0; j < nDOF; ++j) {
3307 y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
3308 }
[2081]3309 params.push_back(y[i]);
[2047]3310 }
3311
3312 for (int i = 0; i < nChan; ++i) {
[2081]3313 r1[i] = y[0];
3314 for (int j = 1; j < nDOF; ++j) {
3315 r1[i] += y[j]*xArray[j][i];
3316 }
3317 residual[i] = z1[i] - r1[i];
[2047]3318 }
3319
3320 if ((nClip == nIterClip) || (thresClip <= 0.0)) {
3321 break;
3322 } else {
3323 double stdDev = 0.0;
3324 for (int i = 0; i < nChan; ++i) {
[2081]3325 stdDev += residual[i]*residual[i]*(double)maskArray[i];
[2047]3326 }
3327 stdDev = sqrt(stdDev/(double)nData);
3328
3329 double thres = stdDev * thresClip;
3330 int newNData = 0;
3331 for (int i = 0; i < nChan; ++i) {
[2081]3332 if (abs(residual[i]) >= thres) {
[2047]3333 maskArray[i] = 0;
3334 }
3335 if (maskArray[i] > 0) {
3336 newNData++;
3337 }
3338 }
[2081]3339 if (newNData == nData) {
3340 break; //no more flag to add. iteration stops.
[2047]3341 } else {
[2081]3342 nData = newNData;
[2047]3343 }
3344 }
[2012]3345 }
3346
[2193]3347 nClipped = initNData - nData;
3348
[2058]3349 std::vector<float> result;
3350 if (getResidual) {
3351 for (int i = 0; i < nChan; ++i) {
[2081]3352 result.push_back((float)residual[i]);
[2058]3353 }
3354 } else {
3355 for (int i = 0; i < nChan; ++i) {
3356 result.push_back((float)r1[i]);
3357 }
[2047]3358 }
3359
[2058]3360 return result;
[2012]3361}
3362
[2047]3363void Scantable::fitBaseline(const std::vector<bool>& mask, int whichrow, Fitter& fitter)
3364{
[2081]3365 std::vector<double> dAbcissa = getAbcissa(whichrow);
3366 std::vector<float> abcissa;
3367 for (uInt i = 0; i < dAbcissa.size(); ++i) {
3368 abcissa.push_back((float)dAbcissa[i]);
[2047]3369 }
3370 std::vector<float> spec = getSpectrum(whichrow);
[2012]3371
[2081]3372 fitter.setData(abcissa, spec, mask);
[2047]3373 fitter.lfit();
3374}
3375
3376std::vector<bool> Scantable::getCompositeChanMask(int whichrow, const std::vector<bool>& inMask)
3377{
[2186]3378 std::vector<bool> mask = getMask(whichrow);
3379 uInt maskSize = mask.size();
[2410]3380 if (inMask.size() != 0) {
3381 if (maskSize != inMask.size()) {
3382 throw(AipsError("mask sizes are not the same."));
3383 }
3384 for (uInt i = 0; i < maskSize; ++i) {
3385 mask[i] = mask[i] && inMask[i];
3386 }
[2047]3387 }
3388
[2186]3389 return mask;
[2047]3390}
3391
3392/*
3393std::vector<bool> Scantable::getCompositeChanMask(int whichrow, const std::vector<bool>& inMask, const std::vector<int>& edge, const int minEdgeSize, STLineFinder& lineFinder)
3394{
3395 int edgeSize = edge.size();
3396 std::vector<int> currentEdge;
3397 if (edgeSize >= 2) {
3398 int idx = 0;
3399 if (edgeSize > 2) {
3400 if (edgeSize < minEdgeSize) {
3401 throw(AipsError("Length of edge element info is less than that of IFs"));
3402 }
3403 idx = 2 * getIF(whichrow);
3404 }
3405 currentEdge.push_back(edge[idx]);
3406 currentEdge.push_back(edge[idx+1]);
3407 } else {
3408 throw(AipsError("Wrong length of edge element"));
3409 }
3410
3411 lineFinder.setData(getSpectrum(whichrow));
3412 lineFinder.findLines(getCompositeChanMask(whichrow, inMask), currentEdge, whichrow);
3413
3414 return lineFinder.getMask();
3415}
3416*/
3417
3418/* for poly. the variations of outputFittingResult() should be merged into one eventually (2011/3/10 WK) */
[2186]3419void Scantable::outputFittingResult(bool outLogger, bool outTextFile, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, Fitter& fitter)
3420{
[2047]3421 if (outLogger || outTextFile) {
3422 std::vector<float> params = fitter.getParameters();
3423 std::vector<bool> fixed = fitter.getFixedParameters();
3424 float rms = getRms(chanMask, whichrow);
3425 String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
3426
3427 if (outLogger) {
3428 LogIO ols(LogOrigin("Scantable", funcName, WHERE));
[2193]3429 ols << formatBaselineParams(params, fixed, rms, -1, masklist, whichrow, false) << LogIO::POST ;
[2047]3430 }
3431 if (outTextFile) {
[2193]3432 ofs << formatBaselineParams(params, fixed, rms, -1, masklist, whichrow, true) << flush;
[2047]3433 }
3434 }
3435}
3436
3437/* for cspline. will be merged once cspline is available in fitter (2011/3/10 WK) */
[2193]3438void Scantable::outputFittingResult(bool outLogger, bool outTextFile, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, const std::vector<int>& edge, const std::vector<float>& params, const int nClipped)
[2186]3439{
[2047]3440 if (outLogger || outTextFile) {
3441 float rms = getRms(chanMask, whichrow);
3442 String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
[2081]3443 std::vector<bool> fixed;
3444 fixed.clear();
[2047]3445
3446 if (outLogger) {
3447 LogIO ols(LogOrigin("Scantable", funcName, WHERE));
[2193]3448 ols << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped, masklist, whichrow, false) << LogIO::POST ;
[2047]3449 }
3450 if (outTextFile) {
[2193]3451 ofs << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped, masklist, whichrow, true) << flush;
[2047]3452 }
3453 }
3454}
3455
3456/* for sinusoid. will be merged once sinusoid is available in fitter (2011/3/10 WK) */
[2193]3457void Scantable::outputFittingResult(bool outLogger, bool outTextFile, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, const std::vector<float>& params, const int nClipped)
[2186]3458{
[2047]3459 if (outLogger || outTextFile) {
3460 float rms = getRms(chanMask, whichrow);
3461 String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
[2081]3462 std::vector<bool> fixed;
3463 fixed.clear();
[2047]3464
3465 if (outLogger) {
3466 LogIO ols(LogOrigin("Scantable", funcName, WHERE));
[2193]3467 ols << formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, false) << LogIO::POST ;
[2047]3468 }
3469 if (outTextFile) {
[2193]3470 ofs << formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, true) << flush;
[2047]3471 }
3472 }
3473}
3474
[2189]3475void Scantable::parseProgressInfo(const std::string& progressInfo, bool& showProgress, int& minNRow)
[2186]3476{
[2189]3477 int idxDelimiter = progressInfo.find(",");
3478 if (idxDelimiter < 0) {
3479 throw(AipsError("wrong value in 'showprogress' parameter")) ;
3480 }
3481 showProgress = (progressInfo.substr(0, idxDelimiter) == "true");
3482 std::istringstream is(progressInfo.substr(idxDelimiter+1));
3483 is >> minNRow;
3484}
3485
3486void Scantable::showProgressOnTerminal(const int nProcessed, const int nTotal, const bool showProgress, const int nTotalThreshold)
3487{
3488 if (showProgress && (nTotal >= nTotalThreshold)) {
[2186]3489 int nInterval = int(floor(double(nTotal)/100.0));
3490 if (nInterval == 0) nInterval++;
3491
[2193]3492 if (nProcessed % nInterval == 0) {
[2189]3493 printf("\r"); //go to the head of line
[2186]3494 printf("\x1b[31m\x1b[1m"); //set red color, highlighted
[2189]3495 printf("[%3d%%]", (int)(100.0*(double(nProcessed+1))/(double(nTotal))) );
3496 printf("\x1b[39m\x1b[0m"); //set default attributes
[2186]3497 fflush(NULL);
3498 }
[2193]3499
[2186]3500 if (nProcessed == nTotal - 1) {
3501 printf("\r\x1b[K"); //clear
3502 fflush(NULL);
3503 }
[2193]3504
[2186]3505 }
3506}
3507
3508std::vector<float> Scantable::execFFT(const int whichrow, const std::vector<bool>& inMask, bool getRealImag, bool getAmplitudeOnly)
3509{
3510 std::vector<bool> mask = getMask(whichrow);
3511
3512 if (inMask.size() > 0) {
3513 uInt maskSize = mask.size();
3514 if (maskSize != inMask.size()) {
3515 throw(AipsError("mask sizes are not the same."));
3516 }
3517 for (uInt i = 0; i < maskSize; ++i) {
3518 mask[i] = mask[i] && inMask[i];
3519 }
3520 }
3521
3522 Vector<Float> spec = getSpectrum(whichrow);
3523 mathutil::doZeroOrderInterpolation(spec, mask);
3524
3525 FFTServer<Float,Complex> ffts;
3526 Vector<Complex> fftres;
3527 ffts.fft0(fftres, spec);
3528
3529 std::vector<float> res;
3530 float norm = float(2.0/double(spec.size()));
3531
3532 if (getRealImag) {
3533 for (uInt i = 0; i < fftres.size(); ++i) {
3534 res.push_back(real(fftres[i])*norm);
3535 res.push_back(imag(fftres[i])*norm);
3536 }
3537 } else {
3538 for (uInt i = 0; i < fftres.size(); ++i) {
3539 res.push_back(abs(fftres[i])*norm);
3540 if (!getAmplitudeOnly) res.push_back(arg(fftres[i]));
3541 }
3542 }
3543
3544 return res;
3545}
3546
3547
3548float Scantable::getRms(const std::vector<bool>& mask, int whichrow)
3549{
[2012]3550 Vector<Float> spec;
3551 specCol_.get(whichrow, spec);
3552
3553 float mean = 0.0;
3554 float smean = 0.0;
3555 int n = 0;
[2047]3556 for (uInt i = 0; i < spec.nelements(); ++i) {
[2012]3557 if (mask[i]) {
3558 mean += spec[i];
3559 smean += spec[i]*spec[i];
3560 n++;
3561 }
3562 }
3563
3564 mean /= (float)n;
3565 smean /= (float)n;
3566
3567 return sqrt(smean - mean*mean);
3568}
3569
3570
[2186]3571std::string Scantable::formatBaselineParamsHeader(int whichrow, const std::string& masklist, bool verbose) const
[2012]3572{
3573 ostringstream oss;
3574
3575 if (verbose) {
3576 oss << " Scan[" << getScan(whichrow) << "]";
3577 oss << " Beam[" << getBeam(whichrow) << "]";
3578 oss << " IF[" << getIF(whichrow) << "]";
3579 oss << " Pol[" << getPol(whichrow) << "]";
3580 oss << " Cycle[" << getCycle(whichrow) << "]: " << endl;
3581 oss << "Fitter range = " << masklist << endl;
3582 oss << "Baseline parameters" << endl;
3583 oss << flush;
3584 }
3585
3586 return String(oss);
3587}
3588
[2193]3589std::string Scantable::formatBaselineParamsFooter(float rms, int nClipped, bool verbose) const
[2012]3590{
3591 ostringstream oss;
3592
3593 if (verbose) {
3594 oss << "Results of baseline fit" << endl;
3595 oss << " rms = " << setprecision(6) << rms << endl;
[2193]3596 if (nClipped >= 0) {
3597 oss << " Number of clipped channels = " << nClipped << endl;
3598 }
[2094]3599 for (int i = 0; i < 60; ++i) {
3600 oss << "-";
3601 }
[2131]3602 oss << endl;
[2094]3603 oss << flush;
[2012]3604 }
3605
3606 return String(oss);
3607}
3608
[2186]3609std::string Scantable::formatBaselineParams(const std::vector<float>& params,
3610 const std::vector<bool>& fixed,
3611 float rms,
[2193]3612 int nClipped,
[2186]3613 const std::string& masklist,
3614 int whichrow,
3615 bool verbose,
3616 int start, int count,
3617 bool resetparamid) const
[2047]3618{
[2064]3619 int nParam = (int)(params.size());
[2047]3620
[2064]3621 if (nParam < 1) {
3622 return(" Not fitted");
3623 } else {
3624
3625 ostringstream oss;
3626 oss << formatBaselineParamsHeader(whichrow, masklist, verbose);
3627
3628 if (start < 0) start = 0;
3629 if (count < 0) count = nParam;
3630 int end = start + count;
3631 if (end > nParam) end = nParam;
3632 int paramidoffset = (resetparamid) ? (-start) : 0;
3633
3634 for (int i = start; i < end; ++i) {
3635 if (i > start) {
[2047]3636 oss << ",";
3637 }
[2064]3638 std::string sFix = ((fixed.size() > 0) && (fixed[i]) && verbose) ? "(fixed)" : "";
3639 oss << " p" << (i+paramidoffset) << sFix << "= " << right << setw(13) << setprecision(6) << params[i];
[2047]3640 }
[2064]3641
3642 oss << endl;
[2193]3643 oss << formatBaselineParamsFooter(rms, nClipped, verbose);
[2064]3644
3645 return String(oss);
[2047]3646 }
3647
3648}
3649
[2193]3650 std::string Scantable::formatPiecewiseBaselineParams(const std::vector<int>& ranges, const std::vector<float>& params, const std::vector<bool>& fixed, float rms, int nClipped, const std::string& masklist, int whichrow, bool verbose) const
[2012]3651{
[2064]3652 int nOutParam = (int)(params.size());
3653 int nPiece = (int)(ranges.size()) - 1;
[2012]3654
[2064]3655 if (nOutParam < 1) {
3656 return(" Not fitted");
3657 } else if (nPiece < 0) {
[2193]3658 return formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, verbose);
[2064]3659 } else if (nPiece < 1) {
3660 return(" Bad count of the piece edge info");
3661 } else if (nOutParam % nPiece != 0) {
3662 return(" Bad count of the output baseline parameters");
3663 } else {
3664
3665 int nParam = nOutParam / nPiece;
3666
3667 ostringstream oss;
3668 oss << formatBaselineParamsHeader(whichrow, masklist, verbose);
3669
3670 stringstream ss;
3671 ss << ranges[nPiece] << flush;
3672 int wRange = ss.str().size() * 2 + 5;
3673
3674 for (int i = 0; i < nPiece; ++i) {
[2047]3675 ss.str("");
[2064]3676 ss << " [" << ranges[i] << "," << (ranges[i+1]-1) << "]";
3677 oss << left << setw(wRange) << ss.str();
[2193]3678 oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, i*nParam, nParam, true);
[2012]3679 }
[2064]3680
[2193]3681 oss << formatBaselineParamsFooter(rms, nClipped, verbose);
[2064]3682
3683 return String(oss);
[2012]3684 }
3685
3686}
3687
[2047]3688bool Scantable::hasSameNchanOverIFs()
[2012]3689{
[2047]3690 int nIF = nif(-1);
3691 int nCh;
3692 int totalPositiveNChan = 0;
3693 int nPositiveNChan = 0;
[2012]3694
[2047]3695 for (int i = 0; i < nIF; ++i) {
3696 nCh = nchan(i);
3697 if (nCh > 0) {
3698 totalPositiveNChan += nCh;
3699 nPositiveNChan++;
[2012]3700 }
3701 }
3702
[2047]3703 return (totalPositiveNChan == (nPositiveNChan * nchan(0)));
[2012]3704}
3705
[2047]3706std::string Scantable::getMaskRangeList(const std::vector<bool>& mask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, bool verbose)
[2012]3707{
[2427]3708 if (mask.size() <= 0) {
3709 throw(AipsError("The mask elements should be > 0"));
[2012]3710 }
[2047]3711 int IF = getIF(whichrow);
3712 if (mask.size() != (uInt)nchan(IF)) {
[2012]3713 throw(AipsError("Number of channels in scantable != number of mask elements"));
3714 }
3715
[2047]3716 if (verbose) {
[2012]3717 LogIO logOs(LogOrigin("Scantable", "getMaskRangeList()", WHERE));
3718 logOs << LogIO::WARN << "The current mask window unit is " << coordInfo;
3719 if (!hasSameNchan) {
[2047]3720 logOs << endl << "This mask is only valid for IF=" << IF;
[2012]3721 }
3722 logOs << LogIO::POST;
3723 }
3724
3725 std::vector<double> abcissa = getAbcissa(whichrow);
[2047]3726 std::vector<int> edge = getMaskEdgeIndices(mask);
3727
[2012]3728 ostringstream oss;
3729 oss.setf(ios::fixed);
3730 oss << setprecision(1) << "[";
[2047]3731 for (uInt i = 0; i < edge.size(); i+=2) {
[2012]3732 if (i > 0) oss << ",";
[2047]3733 oss << "[" << (float)abcissa[edge[i]] << "," << (float)abcissa[edge[i+1]] << "]";
[2012]3734 }
3735 oss << "]" << flush;
3736
3737 return String(oss);
3738}
3739
[2047]3740std::vector<int> Scantable::getMaskEdgeIndices(const std::vector<bool>& mask)
[2012]3741{
[2427]3742 if (mask.size() <= 0) {
3743 throw(AipsError("The mask elements should be > 0"));
[2012]3744 }
3745
[2047]3746 std::vector<int> out, startIndices, endIndices;
3747 int maskSize = mask.size();
[2012]3748
[2047]3749 startIndices.clear();
3750 endIndices.clear();
3751
3752 if (mask[0]) {
3753 startIndices.push_back(0);
[2012]3754 }
[2047]3755 for (int i = 1; i < maskSize; ++i) {
3756 if ((!mask[i-1]) && mask[i]) {
3757 startIndices.push_back(i);
3758 } else if (mask[i-1] && (!mask[i])) {
3759 endIndices.push_back(i-1);
3760 }
[2012]3761 }
[2047]3762 if (mask[maskSize-1]) {
3763 endIndices.push_back(maskSize-1);
3764 }
[2012]3765
[2047]3766 if (startIndices.size() != endIndices.size()) {
3767 throw(AipsError("Inconsistent Mask Size: bad data?"));
3768 }
3769 for (uInt i = 0; i < startIndices.size(); ++i) {
3770 if (startIndices[i] > endIndices[i]) {
3771 throw(AipsError("Mask start index > mask end index"));
[2012]3772 }
3773 }
3774
[2047]3775 out.clear();
3776 for (uInt i = 0; i < startIndices.size(); ++i) {
3777 out.push_back(startIndices[i]);
3778 out.push_back(endIndices[i]);
3779 }
3780
[2012]3781 return out;
3782}
3783
[2161]3784vector<float> Scantable::getTsysSpectrum( int whichrow ) const
3785{
3786 Vector<Float> tsys( tsysCol_(whichrow) ) ;
3787 vector<float> stlTsys ;
3788 tsys.tovector( stlTsys ) ;
3789 return stlTsys ;
3790}
[2012]3791
3792
[1907]3793}
[1819]3794//namespace asap
Note: See TracBrowser for help on using the repository browser.