source: trunk/src/STMath.cpp @ 2177

Last change on this file since 2177 was 2177, checked in by WataruKawasaki, 13 years ago

New Development: Yes

JIRA Issue: Yes CAS-2828

Ready for Test: Yes

Interface Changes:

What Interface Changed:

Test Programs:

Put in Release Notes:

Module(s): SD

Description: created a tool function sd.scantable.fft() to apply FFT for scantable data.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 169.1 KB
Line 
1//
2// C++ Implementation: STMath
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2006
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12
13#include <sstream>
14
15#include <casa/iomanip.h>
16#include <casa/Arrays/MaskArrLogi.h>
17#include <casa/Arrays/MaskArrMath.h>
18#include <casa/Arrays/ArrayLogical.h>
19#include <casa/Arrays/ArrayMath.h>
20#include <casa/Arrays/Slice.h>
21#include <casa/Arrays/Slicer.h>
22#include <casa/BasicSL/String.h>
23#include <casa/Containers/Block.h>
24#include <casa/Containers/RecordField.h>
25#include <casa/Exceptions/Error.h>
26#include <casa/Logging/LogIO.h>
27
28#include <coordinates/Coordinates/CoordinateSystem.h>
29#include <coordinates/Coordinates/CoordinateUtil.h>
30#include <coordinates/Coordinates/FrequencyAligner.h>
31#include <coordinates/Coordinates/SpectralCoordinate.h>
32
33#include <lattices/Lattices/LatticeUtilities.h>
34
35#include <scimath/Functionals/Polynomial.h>
36#include <scimath/Mathematics/Convolver.h>
37#include <scimath/Mathematics/VectorKernel.h>
38
39#include <tables/Tables/ExprNode.h>
40#include <tables/Tables/ReadAsciiTable.h>
41#include <tables/Tables/TableCopy.h>
42#include <tables/Tables/TableIter.h>
43#include <tables/Tables/TableParse.h>
44#include <tables/Tables/TableRecord.h>
45#include <tables/Tables/TableRow.h>
46#include <tables/Tables/TableVector.h>
47#include <tables/Tables/TabVecMath.h>
48
49#include <atnf/PKSIO/SrcType.h>
50
51#include "MathUtils.h"
52#include "RowAccumulator.h"
53#include "STAttr.h"
54#include "STMath.h"
55#include "STSelector.h"
56
57using namespace casa;
58using namespace asap;
59
60// tolerance for direction comparison (rad)
61#define TOL_OTF    1.0e-15
62#define TOL_POINT  2.9088821e-4  // 1 arcmin
63
64STMath::STMath(bool insitu) :
65  insitu_(insitu)
66{
67}
68
69
70STMath::~STMath()
71{
72}
73
74CountedPtr<Scantable>
75STMath::average( const std::vector<CountedPtr<Scantable> >& in,
76                 const std::vector<bool>& mask,
77                 const std::string& weight,
78                 const std::string& avmode)
79{
80  LogIO os( LogOrigin( "STMath", "average()", WHERE ) ) ;
81  if ( avmode == "SCAN" && in.size() != 1 )
82    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
83                    "Use merge first."));
84  WeightType wtype = stringToWeight(weight);
85
86  // check if OTF observation
87  String obstype = in[0]->getHeader().obstype ;
88  Double tol = 0.0 ;
89  if ( (obstype.find( "OTF" ) != String::npos) || (obstype.find( "OBSERVE_TARGET" ) != String::npos) ) {
90    tol = TOL_OTF ;
91  }
92  else {
93    tol = TOL_POINT ;
94  }
95
96  // output
97  // clone as this is non insitu
98  bool insitu = insitu_;
99  setInsitu(false);
100  CountedPtr< Scantable > out = getScantable(in[0], true);
101  setInsitu(insitu);
102  std::vector<CountedPtr<Scantable> >::const_iterator stit = in.begin();
103  ++stit;
104  while ( stit != in.end() ) {
105    out->appendToHistoryTable((*stit)->history());
106    ++stit;
107  }
108
109  Table& tout = out->table();
110
111  /// @todo check if all scantables are conformant
112
113  ArrayColumn<Float> specColOut(tout,"SPECTRA");
114  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
115  ArrayColumn<Float> tsysColOut(tout,"TSYS");
116  ScalarColumn<Double> mjdColOut(tout,"TIME");
117  ScalarColumn<Double> intColOut(tout,"INTERVAL");
118  ScalarColumn<uInt> cycColOut(tout,"CYCLENO");
119  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
120
121  // set up the output table rows. These are based on the structure of the
122  // FIRST scantable in the vector
123  const Table& baset = in[0]->table();
124
125  Block<String> cols(3);
126  cols[0] = String("BEAMNO");
127  cols[1] = String("IFNO");
128  cols[2] = String("POLNO");
129  if ( avmode == "SOURCE" ) {
130    cols.resize(4);
131    cols[3] = String("SRCNAME");
132  }
133  if ( avmode == "SCAN"  && in.size() == 1) {
134    //cols.resize(4);
135    //cols[3] = String("SCANNO");
136    cols.resize(5);
137    cols[3] = String("SRCNAME");
138    cols[4] = String("SCANNO");
139  }
140  uInt outrowCount = 0;
141  TableIterator iter(baset, cols);
142//   int count = 0 ;
143  while (!iter.pastEnd()) {
144    Table subt = iter.table();
145//     // copy the first row of this selection into the new table
146//     tout.addRow();
147//     TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
148//     // re-index to 0
149//     if ( avmode != "SCAN" && avmode != "SOURCE" ) {
150//       scanColOut.put(outrowCount, uInt(0));
151//     }
152//     ++outrowCount;
153    MDirection::ScalarColumn dircol ;
154    dircol.attach( subt, "DIRECTION" ) ;
155    Int length = subt.nrow() ;
156    vector< Vector<Double> > dirs ;
157    vector<int> indexes ;
158    for ( Int i = 0 ; i < length ; i++ ) {
159      Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
160      //os << << count++ << ": " ;
161      //os << "[" << t[0] << "," << t[1] << "]" << LogIO::POST ;
162      bool adddir = true ;
163      for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
164        //if ( allTrue( t == dirs[j] ) ) {
165        Double dx = t[0] - dirs[j][0] ;
166        Double dy = t[1] - dirs[j][1] ;
167        Double dd = sqrt( dx * dx + dy * dy ) ;
168        //if ( allNearAbs( t, dirs[j], tol ) ) {
169        if ( dd <= tol ) {
170          adddir = false ;
171          break ;
172        }
173      }
174      if ( adddir ) {
175        dirs.push_back( t ) ;
176        indexes.push_back( i ) ;
177      }
178    }
179    uInt rowNum = dirs.size() ;
180    tout.addRow( rowNum ) ;
181    for ( uInt i = 0 ; i < rowNum ; i++ ) {
182      TableCopy::copyRows( tout, subt, outrowCount+i, indexes[i], 1 ) ;
183      // re-index to 0
184      if ( avmode != "SCAN" && avmode != "SOURCE" ) {
185        scanColOut.put(outrowCount+i, uInt(0));
186      }       
187    }
188    outrowCount += rowNum ;
189    ++iter;
190  }
191  RowAccumulator acc(wtype);
192  Vector<Bool> cmask(mask);
193  acc.setUserMask(cmask);
194  ROTableRow row(tout);
195  ROArrayColumn<Float> specCol, tsysCol;
196  ROArrayColumn<uChar> flagCol;
197  ROScalarColumn<Double> mjdCol, intCol;
198  ROScalarColumn<Int> scanIDCol;
199
200  Vector<uInt> rowstodelete;
201
202  for (uInt i=0; i < tout.nrow(); ++i) {
203    for ( int j=0; j < int(in.size()); ++j ) {
204      const Table& tin = in[j]->table();
205      const TableRecord& rec = row.get(i);
206      ROScalarColumn<Double> tmp(tin, "TIME");
207      Double td;tmp.get(0,td);
208      Table basesubt = tin( tin.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
209                         && tin.col("IFNO") == Int(rec.asuInt("IFNO"))
210                         && tin.col("POLNO") == Int(rec.asuInt("POLNO")) );
211      Table subt;
212      if ( avmode == "SOURCE") {
213        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME"));
214      } else if (avmode == "SCAN") {
215        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME")
216                      && basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) );
217      } else {
218        subt = basesubt;
219      }
220
221      vector<uInt> removeRows ;
222      uInt nrsubt = subt.nrow() ;
223      for ( uInt irow = 0 ; irow < nrsubt ; irow++ ) {
224        //if ( !allTrue((subt.col("DIRECTION").getArrayDouble(TableExprId(irow)))==rec.asArrayDouble("DIRECTION")) ) {
225        Vector<Double> x0 = (subt.col("DIRECTION").getArrayDouble(TableExprId(irow))) ;
226        Vector<Double> x1 = rec.asArrayDouble("DIRECTION") ;
227        double dx = x0[0] - x1[0] ;
228        double dy = x0[0] - x1[0] ;
229        Double dd = sqrt( dx * dx + dy * dy ) ;
230        //if ( !allNearAbs((subt.col("DIRECTION").getArrayDouble(TableExprId(irow))), rec.asArrayDouble("DIRECTION"), tol ) ) {
231        if ( dd > tol ) {
232          removeRows.push_back( irow ) ;
233        }
234      }
235      if ( removeRows.size() != 0 ) {
236        subt.removeRow( removeRows ) ;
237      }
238     
239      if ( nrsubt == removeRows.size() )
240        throw(AipsError("Averaging data is empty.")) ;
241
242      specCol.attach(subt,"SPECTRA");
243      flagCol.attach(subt,"FLAGTRA");
244      tsysCol.attach(subt,"TSYS");
245      intCol.attach(subt,"INTERVAL");
246      mjdCol.attach(subt,"TIME");
247      Vector<Float> spec,tsys;
248      Vector<uChar> flag;
249      Double inter,time;
250      for (uInt k = 0; k < subt.nrow(); ++k ) {
251        flagCol.get(k, flag);
252        Vector<Bool> bflag(flag.shape());
253        convertArray(bflag, flag);
254        /*
255        if ( allEQ(bflag, True) ) {
256        continue;//don't accumulate
257        }
258        */
259        specCol.get(k, spec);
260        tsysCol.get(k, tsys);
261        intCol.get(k, inter);
262        mjdCol.get(k, time);
263        // spectrum has to be added last to enable weighting by the other values
264        acc.add(spec, !bflag, tsys, inter, time);
265      }
266
267      // If there exists a channel at which all the input spectra are masked,
268      // spec has 'nan' values for that channel and it may affect the following
269      // processes. To avoid this, replacing 'nan' values in spec with
270      // weighted-mean of all spectra in the following line.
271      // (done for CAS-2776, 2011/04/07 by Wataru Kawasaki)
272      acc.replaceNaN();
273    }
274    const Vector<Bool>& msk = acc.getMask();
275    if ( allEQ(msk, False) ) {
276      uint n = rowstodelete.nelements();
277      rowstodelete.resize(n+1, True);
278      rowstodelete[n] = i;
279      continue;
280    }
281    //write out
282    if (acc.state()) {
283      Vector<uChar> flg(msk.shape());
284      convertArray(flg, !msk);
285      for (uInt k = 0; k < flg.nelements(); ++k) {
286        uChar userFlag = 1 << 7;
287        if (msk[k]==True) userFlag = 0 << 7;
288        flg(k) = userFlag;
289      }
290
291      flagColOut.put(i, flg);
292      specColOut.put(i, acc.getSpectrum());
293      tsysColOut.put(i, acc.getTsys());
294      intColOut.put(i, acc.getInterval());
295      mjdColOut.put(i, acc.getTime());
296      // we should only have one cycle now -> reset it to be 0
297      // frequency switched data has different CYCLENO for different IFNO
298      // which requires resetting this value
299      cycColOut.put(i, uInt(0));
300    } else {
301      ostringstream oss;
302      oss << "For output row="<<i<<", all input rows of data are flagged. no averaging" << endl;
303      pushLog(String(oss));
304    }
305    acc.reset();
306  }
307
308  if (rowstodelete.nelements() > 0) {
309    os << rowstodelete << LogIO::POST ;
310    tout.removeRow(rowstodelete);
311    if (tout.nrow() == 0) {
312      throw(AipsError("Can't average fully flagged data."));
313    }
314  }
315  return out;
316}
317
318CountedPtr< Scantable >
319STMath::averageChannel( const CountedPtr < Scantable > & in,
320                          const std::string & mode,
321                          const std::string& avmode )
322{
323  (void) mode; // currently unused
324  // check if OTF observation
325  String obstype = in->getHeader().obstype ;
326  Double tol = 0.0 ;
327  if ( obstype.find( "OTF" ) != String::npos ) {
328    tol = TOL_OTF ;
329  }
330  else {
331    tol = TOL_POINT ;
332  }
333
334  // clone as this is non insitu
335  bool insitu = insitu_;
336  setInsitu(false);
337  CountedPtr< Scantable > out = getScantable(in, true);
338  setInsitu(insitu);
339  Table& tout = out->table();
340  ArrayColumn<Float> specColOut(tout,"SPECTRA");
341  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
342  ArrayColumn<Float> tsysColOut(tout,"TSYS");
343  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
344  ScalarColumn<Double> intColOut(tout, "INTERVAL");
345  Table tmp = in->table().sort("BEAMNO");
346  Block<String> cols(3);
347  cols[0] = String("BEAMNO");
348  cols[1] = String("IFNO");
349  cols[2] = String("POLNO");
350  if ( avmode == "SCAN") {
351    cols.resize(4);
352    cols[3] = String("SCANNO");
353  }
354  uInt outrowCount = 0;
355  uChar userflag = 1 << 7;
356  TableIterator iter(tmp, cols);
357  while (!iter.pastEnd()) {
358    Table subt = iter.table();
359    ROArrayColumn<Float> specCol, tsysCol;
360    ROArrayColumn<uChar> flagCol;
361    ROScalarColumn<Double> intCol(subt, "INTERVAL");
362    specCol.attach(subt,"SPECTRA");
363    flagCol.attach(subt,"FLAGTRA");
364    tsysCol.attach(subt,"TSYS");
365//     tout.addRow();
366//     TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
367//     if ( avmode != "SCAN") {
368//       scanColOut.put(outrowCount, uInt(0));
369//     }
370//     Vector<Float> tmp;
371//     specCol.get(0, tmp);
372//     uInt nchan = tmp.nelements();
373//     // have to do channel by channel here as MaskedArrMath
374//     // doesn't have partialMedians
375//     Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
376//     Vector<Float> outspec(nchan);
377//     Vector<uChar> outflag(nchan,0);
378//     Vector<Float> outtsys(1);/// @fixme when tsys is channel based
379//     for (uInt i=0; i<nchan; ++i) {
380//       Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
381//       MaskedArray<Float> ma = maskedArray(specs,flags);
382//       outspec[i] = median(ma);
383//       if ( allEQ(ma.getMask(), False) )
384//         outflag[i] = userflag;// flag data
385//     }
386//     outtsys[0] = median(tsysCol.getColumn());
387//     specColOut.put(outrowCount, outspec);
388//     flagColOut.put(outrowCount, outflag);
389//     tsysColOut.put(outrowCount, outtsys);
390//     Double intsum = sum(intCol.getColumn());
391//     intColOut.put(outrowCount, intsum);
392//     ++outrowCount;
393//     ++iter;
394    MDirection::ScalarColumn dircol ;
395    dircol.attach( subt, "DIRECTION" ) ;
396    Int length = subt.nrow() ;
397    vector< Vector<Double> > dirs ;
398    vector<int> indexes ;
399    for ( Int i = 0 ; i < length ; i++ ) {
400      Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
401      bool adddir = true ;
402      for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
403        //if ( allTrue( t == dirs[j] ) ) {
404        Double dx = t[0] - dirs[j][0] ;
405        Double dy = t[1] - dirs[j][1] ;
406        Double dd = sqrt( dx * dx + dy * dy ) ;
407        //if ( allNearAbs( t, dirs[j], tol ) ) {
408        if ( dd <= tol ) {
409          adddir = false ;
410          break ;
411        }
412      }
413      if ( adddir ) {
414        dirs.push_back( t ) ;
415        indexes.push_back( i ) ;
416      }
417    }
418    uInt rowNum = dirs.size() ;
419    tout.addRow( rowNum );
420    for ( uInt i = 0 ; i < rowNum ; i++ ) {
421      TableCopy::copyRows(tout, subt, outrowCount+i, indexes[i], 1) ;
422      if ( avmode != "SCAN") {
423        //scanColOut.put(outrowCount+i, uInt(0));
424      }
425    }
426    MDirection::ScalarColumn dircolOut ;
427    dircolOut.attach( tout, "DIRECTION" ) ;
428    for ( uInt irow = 0 ; irow < rowNum ; irow++ ) {
429      Vector<Double> t = dircolOut(outrowCount+irow).getAngle(Unit(String("rad"))).getValue() ;
430      Vector<Float> tmp;
431      specCol.get(0, tmp);
432      uInt nchan = tmp.nelements();
433      // have to do channel by channel here as MaskedArrMath
434      // doesn't have partialMedians
435      Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
436      // mask spectra for different DIRECTION
437      for ( uInt jrow = 0 ; jrow < subt.nrow() ; jrow++ ) {
438        Vector<Double> direction = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
439        //if ( t[0] != direction[0] || t[1] != direction[1] ) {
440        Double dx = t[0] - direction[0] ;
441        Double dy = t[1] - direction[1] ;
442        Double dd = sqrt( dx * dx + dy * dy ) ;
443        //if ( !allNearAbs( t, direction, tol ) ) {
444        if ( dd > tol ) {
445          flags[jrow] = userflag ;
446        }
447      }
448      Vector<Float> outspec(nchan);
449      Vector<uChar> outflag(nchan,0);
450      Vector<Float> outtsys(1);/// @fixme when tsys is channel based
451      for (uInt i=0; i<nchan; ++i) {
452        Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
453        MaskedArray<Float> ma = maskedArray(specs,flags);
454        outspec[i] = median(ma);
455        if ( allEQ(ma.getMask(), False) )
456          outflag[i] = userflag;// flag data
457      }
458      outtsys[0] = median(tsysCol.getColumn());
459      specColOut.put(outrowCount+irow, outspec);
460      flagColOut.put(outrowCount+irow, outflag);
461      tsysColOut.put(outrowCount+irow, outtsys);
462      Vector<Double> integ = intCol.getColumn() ;
463      MaskedArray<Double> mi = maskedArray( integ, flags ) ;
464      Double intsum = sum(mi);
465      intColOut.put(outrowCount+irow, intsum);
466    }
467    outrowCount += rowNum ;
468    ++iter;
469  }
470  return out;
471}
472
473CountedPtr< Scantable > STMath::getScantable(const CountedPtr< Scantable >& in,
474                                             bool droprows)
475{
476  if (insitu_) {
477    return in;
478  }
479  else {
480    // clone
481    return CountedPtr<Scantable>(new Scantable(*in, Bool(droprows)));
482  }
483}
484
485CountedPtr< Scantable > STMath::unaryOperate( const CountedPtr< Scantable >& in,
486                                              float val,
487                                              const std::string& mode,
488                                              bool tsys )
489{
490  CountedPtr< Scantable > out = getScantable(in, false);
491  Table& tab = out->table();
492  ArrayColumn<Float> specCol(tab,"SPECTRA");
493  ArrayColumn<Float> tsysCol(tab,"TSYS");
494  if (mode=="DIV") val = 1.0/val ;
495  else if (mode=="SUB") val *= -1.0 ;
496  for (uInt i=0; i<tab.nrow(); ++i) {
497    Vector<Float> spec;
498    Vector<Float> ts;
499    specCol.get(i, spec);
500    tsysCol.get(i, ts);
501    if (mode == "MUL" || mode == "DIV") {
502      //if (mode == "DIV") val = 1.0/val;
503      spec *= val;
504      specCol.put(i, spec);
505      if ( tsys ) {
506        ts *= val;
507        tsysCol.put(i, ts);
508      }
509    } else if ( mode == "ADD"  || mode == "SUB") {
510      //if (mode == "SUB") val *= -1.0;
511      spec += val;
512      specCol.put(i, spec);
513      if ( tsys ) {
514        ts += val;
515        tsysCol.put(i, ts);
516      }
517    }
518  }
519  return out;
520}
521
522CountedPtr< Scantable > STMath::arrayOperate( const CountedPtr< Scantable >& in,
523                                              const std::vector<float> val,
524                                              const std::string& mode,
525                                              const std::string& opmode,
526                                              bool tsys )
527{
528  CountedPtr< Scantable > out ;
529  if ( opmode == "channel" ) {
530    out = arrayOperateChannel( in, val, mode, tsys ) ;
531  }
532  else if ( opmode == "row" ) {
533    out = arrayOperateRow( in, val, mode, tsys ) ;
534  }
535  else {
536    throw( AipsError( "Unknown array operation mode." ) ) ;
537  }
538  return out ;
539}
540
541CountedPtr< Scantable > STMath::arrayOperateChannel( const CountedPtr< Scantable >& in,
542                                                     const std::vector<float> val,
543                                                     const std::string& mode,
544                                                     bool tsys )
545{
546  if ( val.size() == 1 ){
547    return unaryOperate( in, val[0], mode, tsys ) ;
548  }
549
550  // conformity of SPECTRA and TSYS
551  if ( tsys ) {
552    TableIterator titer(in->table(), "IFNO");
553    while ( !titer.pastEnd() ) {
554      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
555      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
556      Array<Float> spec = specCol.getColumn() ;
557      Array<Float> ts = tsysCol.getColumn() ;
558      if ( !spec.conform( ts ) ) {
559        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
560      }
561      titer.next() ;
562    }
563  }
564
565  // check if all spectra in the scantable have the same number of channel
566  vector<uInt> nchans;
567  vector<uInt> ifnos = in->getIFNos() ;
568  for ( uInt i = 0 ; i < ifnos.size() ; i++ ) {
569    nchans.push_back( in->nchan( ifnos[i] ) ) ;
570  }
571  Vector<uInt> mchans( nchans ) ;
572  if ( anyNE( mchans, mchans[0] ) ) {
573    throw( AipsError("All spectra in the input scantable must have the same number of channel for vector operation." ) ) ;
574  }
575
576  // check if vector size is equal to nchan
577  Vector<Float> fact( val ) ;
578  if ( fact.nelements() != mchans[0] ) {
579    throw( AipsError("Vector size must be 1 or be same as number of channel.") ) ;
580  }
581
582  // check divided by zero
583  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
584    throw( AipsError("Divided by zero is not recommended." ) ) ;
585  }
586
587  CountedPtr< Scantable > out = getScantable(in, false);
588  Table& tab = out->table();
589  ArrayColumn<Float> specCol(tab,"SPECTRA");
590  ArrayColumn<Float> tsysCol(tab,"TSYS");
591  if (mode == "DIV") fact = (float)1.0 / fact;
592  else if (mode == "SUB") fact *= (float)-1.0 ;
593  for (uInt i=0; i<tab.nrow(); ++i) {
594    Vector<Float> spec;
595    Vector<Float> ts;
596    specCol.get(i, spec);
597    tsysCol.get(i, ts);
598    if (mode == "MUL" || mode == "DIV") {
599      //if (mode == "DIV") fact = (float)1.0 / fact;
600      spec *= fact;
601      specCol.put(i, spec);
602      if ( tsys ) {
603        ts *= fact;
604        tsysCol.put(i, ts);
605      }
606    } else if ( mode == "ADD"  || mode == "SUB") {
607      //if (mode == "SUB") fact *= (float)-1.0 ;
608      spec += fact;
609      specCol.put(i, spec);
610      if ( tsys ) {
611        ts += fact;
612        tsysCol.put(i, ts);
613      }
614    }
615  }
616  return out;
617}
618
619CountedPtr< Scantable > STMath::arrayOperateRow( const CountedPtr< Scantable >& in,
620                                                 const std::vector<float> val,
621                                                 const std::string& mode,
622                                                 bool tsys )
623{
624  if ( val.size() == 1 ) {
625    return unaryOperate( in, val[0], mode, tsys ) ;
626  }
627
628  // conformity of SPECTRA and TSYS
629  if ( tsys ) {
630    TableIterator titer(in->table(), "IFNO");
631    while ( !titer.pastEnd() ) {
632      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
633      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
634      Array<Float> spec = specCol.getColumn() ;
635      Array<Float> ts = tsysCol.getColumn() ;
636      if ( !spec.conform( ts ) ) {
637        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
638      }
639      titer.next() ;
640    }
641  }
642
643  // check if vector size is equal to nrow
644  Vector<Float> fact( val ) ;
645  if (fact.nelements() != uInt(in->nrow())) {
646    throw( AipsError("Vector size must be 1 or be same as number of row.") ) ;
647  }
648
649  // check divided by zero
650  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
651    throw( AipsError("Divided by zero is not recommended." ) ) ;
652  }
653
654  CountedPtr< Scantable > out = getScantable(in, false);
655  Table& tab = out->table();
656  ArrayColumn<Float> specCol(tab,"SPECTRA");
657  ArrayColumn<Float> tsysCol(tab,"TSYS");
658  if (mode == "DIV") fact = (float)1.0 / fact;
659  if (mode == "SUB") fact *= (float)-1.0 ;
660  for (uInt i=0; i<tab.nrow(); ++i) {
661    Vector<Float> spec;
662    Vector<Float> ts;
663    specCol.get(i, spec);
664    tsysCol.get(i, ts);
665    if (mode == "MUL" || mode == "DIV") {
666      spec *= fact[i];
667      specCol.put(i, spec);
668      if ( tsys ) {
669        ts *= fact[i];
670        tsysCol.put(i, ts);
671      }
672    } else if ( mode == "ADD"  || mode == "SUB") {
673      spec += fact[i];
674      specCol.put(i, spec);
675      if ( tsys ) {
676        ts += fact[i];
677        tsysCol.put(i, ts);
678      }
679    }
680  }
681  return out;
682}
683
684CountedPtr< Scantable > STMath::array2dOperate( const CountedPtr< Scantable >& in,
685                                                const std::vector< std::vector<float> > val,
686                                                const std::string& mode,
687                                                bool tsys )
688{
689  // conformity of SPECTRA and TSYS
690  if ( tsys ) {
691    TableIterator titer(in->table(), "IFNO");
692    while ( !titer.pastEnd() ) {
693      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
694      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
695      Array<Float> spec = specCol.getColumn() ;
696      Array<Float> ts = tsysCol.getColumn() ;
697      if ( !spec.conform( ts ) ) {
698        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
699      }
700      titer.next() ;
701    }
702  }
703
704  // some checks
705  vector<uInt> nchans;
706  for (Int i = 0 ; i < in->nrow() ; i++) {
707    nchans.push_back((in->getSpectrum(i)).size());
708  }
709  //Vector<uInt> mchans( nchans ) ;
710  vector< Vector<Float> > facts ;
711  for ( uInt i = 0 ; i < nchans.size() ; i++ ) {
712    Vector<Float> tmp( val[i] ) ;
713    // check divided by zero
714    if ( ( mode == "DIV" ) && anyEQ( tmp, (float)0.0 ) ) {
715      throw( AipsError("Divided by zero is not recommended." ) ) ;
716    }
717    // conformity check
718    if ( tmp.nelements() != nchans[i] ) {
719      stringstream ss ;
720      ss << "Row " << i << ": Vector size must be same as number of channel." ;
721      throw( AipsError( ss.str() ) ) ;
722    }
723    facts.push_back( tmp ) ;
724  }
725
726
727  CountedPtr< Scantable > out = getScantable(in, false);
728  Table& tab = out->table();
729  ArrayColumn<Float> specCol(tab,"SPECTRA");
730  ArrayColumn<Float> tsysCol(tab,"TSYS");
731  for (uInt i=0; i<tab.nrow(); ++i) {
732    Vector<Float> fact = facts[i] ;
733    Vector<Float> spec;
734    Vector<Float> ts;
735    specCol.get(i, spec);
736    tsysCol.get(i, ts);
737    if (mode == "MUL" || mode == "DIV") {
738      if (mode == "DIV") fact = (float)1.0 / fact;
739      spec *= fact;
740      specCol.put(i, spec);
741      if ( tsys ) {
742        ts *= fact;
743        tsysCol.put(i, ts);
744      }
745    } else if ( mode == "ADD"  || mode == "SUB") {
746      if (mode == "SUB") fact *= (float)-1.0 ;
747      spec += fact;
748      specCol.put(i, spec);
749      if ( tsys ) {
750        ts += fact;
751        tsysCol.put(i, ts);
752      }
753    }
754  }
755  return out;
756}
757
758CountedPtr<Scantable> STMath::binaryOperate(const CountedPtr<Scantable>& left,
759                                            const CountedPtr<Scantable>& right,
760                                            const std::string& mode)
761{
762  bool insitu = insitu_;
763  if ( ! left->conformant(*right) ) {
764    throw(AipsError("'left' and 'right' scantables are not conformant."));
765  }
766  setInsitu(false);
767  CountedPtr< Scantable > out = getScantable(left, false);
768  setInsitu(insitu);
769  Table& tout = out->table();
770  Block<String> coln(5);
771  coln[0] = "SCANNO";  coln[1] = "CYCLENO";  coln[2] = "BEAMNO";
772  coln[3] = "IFNO";  coln[4] = "POLNO";
773  Table tmpl = tout.sort(coln);
774  Table tmpr = right->table().sort(coln);
775  ArrayColumn<Float> lspecCol(tmpl,"SPECTRA");
776  ROArrayColumn<Float> rspecCol(tmpr,"SPECTRA");
777  ArrayColumn<uChar> lflagCol(tmpl,"FLAGTRA");
778  ROArrayColumn<uChar> rflagCol(tmpr,"FLAGTRA");
779
780  for (uInt i=0; i<tout.nrow(); ++i) {
781    Vector<Float> lspecvec, rspecvec;
782    Vector<uChar> lflagvec, rflagvec;
783    lspecvec = lspecCol(i);    rspecvec = rspecCol(i);
784    lflagvec = lflagCol(i);    rflagvec = rflagCol(i);
785    MaskedArray<Float> mleft = maskedArray(lspecvec, lflagvec);
786    MaskedArray<Float> mright = maskedArray(rspecvec, rflagvec);
787    if (mode == "ADD") {
788      mleft += mright;
789    } else if ( mode == "SUB") {
790      mleft -= mright;
791    } else if ( mode == "MUL") {
792      mleft *= mright;
793    } else if ( mode == "DIV") {
794      mleft /= mright;
795    } else {
796      throw(AipsError("Illegal binary operator"));
797    }
798    lspecCol.put(i, mleft.getArray());
799  }
800  return out;
801}
802
803
804
805MaskedArray<Float> STMath::maskedArray( const Vector<Float>& s,
806                                        const Vector<uChar>& f)
807{
808  Vector<Bool> mask;
809  mask.resize(f.shape());
810  convertArray(mask, f);
811  return MaskedArray<Float>(s,!mask);
812}
813
814MaskedArray<Double> STMath::maskedArray( const Vector<Double>& s,
815                                         const Vector<uChar>& f)
816{
817  Vector<Bool> mask;
818  mask.resize(f.shape());
819  convertArray(mask, f);
820  return MaskedArray<Double>(s,!mask);
821}
822
823Vector<uChar> STMath::flagsFromMA(const MaskedArray<Float>& ma)
824{
825  const Vector<Bool>& m = ma.getMask();
826  Vector<uChar> flags(m.shape());
827  convertArray(flags, !m);
828  return flags;
829}
830
831CountedPtr< Scantable > STMath::autoQuotient( const CountedPtr< Scantable >& in,
832                                              const std::string & mode,
833                                              bool preserve )
834{
835  /// @todo make other modes available
836  /// modes should be "nearest", "pair"
837  // make this operation non insitu
838  (void) mode; //currently unused
839  const Table& tin = in->table();
840  Table ons = tin(tin.col("SRCTYPE") == Int(SrcType::PSON));
841  Table offs = tin(tin.col("SRCTYPE") == Int(SrcType::PSOFF));
842  if ( offs.nrow() == 0 )
843    throw(AipsError("No 'off' scans present."));
844  // put all "on" scans into output table
845
846  bool insitu = insitu_;
847  setInsitu(false);
848  CountedPtr< Scantable > out = getScantable(in, true);
849  setInsitu(insitu);
850  Table& tout = out->table();
851
852  TableCopy::copyRows(tout, ons);
853  TableRow row(tout);
854  ROScalarColumn<Double> offtimeCol(offs, "TIME");
855  ArrayColumn<Float> outspecCol(tout, "SPECTRA");
856  ROArrayColumn<Float> outtsysCol(tout, "TSYS");
857  ArrayColumn<uChar> outflagCol(tout, "FLAGTRA");
858  for (uInt i=0; i < tout.nrow(); ++i) {
859    const TableRecord& rec = row.get(i);
860    Double ontime = rec.asDouble("TIME");
861    Table presel = offs(offs.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
862                        && offs.col("IFNO") == Int(rec.asuInt("IFNO"))
863                        && offs.col("POLNO") == Int(rec.asuInt("POLNO")) );
864    ROScalarColumn<Double> offtimeCol(presel, "TIME");
865
866    Double mindeltat = min(abs(offtimeCol.getColumn() - ontime));
867    // Timestamp may vary within a cycle ???!!!
868    // increase this by 0.01 sec in case of rounding errors...
869    // There might be a better way to do this.
870    // fix to this fix. TIME is MJD, so 1.0d not 1.0s
871    mindeltat += 0.01/24./60./60.;
872    Table sel = presel( abs(presel.col("TIME")-ontime) <= mindeltat);
873
874    if ( sel.nrow() < 1 )  {
875      throw(AipsError("No closest in time found... This could be a rounding "
876                      "issue. Try quotient instead."));
877    }
878    TableRow offrow(sel);
879    const TableRecord& offrec = offrow.get(0);//should only be one row
880    RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
881    RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
882    RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
883    /// @fixme this assumes tsys is a scalar not vector
884    Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
885    Vector<Float> specon, tsyson;
886    outtsysCol.get(i, tsyson);
887    outspecCol.get(i, specon);
888    Vector<uChar> flagon;
889    outflagCol.get(i, flagon);
890    MaskedArray<Float> mon = maskedArray(specon, flagon);
891    MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
892    MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
893    if (preserve) {
894      quot -= tsysoffscalar;
895    } else {
896      quot -= tsyson[0];
897    }
898    outspecCol.put(i, quot.getArray());
899    outflagCol.put(i, flagsFromMA(quot));
900  }
901  // renumber scanno
902  TableIterator it(tout, "SCANNO");
903  uInt i = 0;
904  while ( !it.pastEnd() ) {
905    Table t = it.table();
906    TableVector<uInt> vec(t, "SCANNO");
907    vec = i;
908    ++i;
909    ++it;
910  }
911  return out;
912}
913
914
915CountedPtr< Scantable > STMath::quotient( const CountedPtr< Scantable > & on,
916                                          const CountedPtr< Scantable > & off,
917                                          bool preserve )
918{
919  bool insitu = insitu_;
920  if ( ! on->conformant(*off) ) {
921    throw(AipsError("'on' and 'off' scantables are not conformant."));
922  }
923  setInsitu(false);
924  CountedPtr< Scantable > out = getScantable(on, false);
925  setInsitu(insitu);
926  Table& tout = out->table();
927  const Table& toff = off->table();
928  TableIterator sit(tout, "SCANNO");
929  TableIterator s2it(toff, "SCANNO");
930  while ( !sit.pastEnd() ) {
931    Table ton = sit.table();
932    TableRow row(ton);
933    Table t = s2it.table();
934    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
935    ROArrayColumn<Float> outtsysCol(ton, "TSYS");
936    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
937    for (uInt i=0; i < ton.nrow(); ++i) {
938      const TableRecord& rec = row.get(i);
939      Table offsel = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
940                          && t.col("IFNO") == Int(rec.asuInt("IFNO"))
941                          && t.col("POLNO") == Int(rec.asuInt("POLNO")) );
942      if ( offsel.nrow() == 0 )
943        throw AipsError("STMath::quotient: no matching off");
944      TableRow offrow(offsel);
945      const TableRecord& offrec = offrow.get(0);//should be ncycles - take first
946      RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
947      RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
948      RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
949      Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
950      Vector<Float> specon, tsyson;
951      outtsysCol.get(i, tsyson);
952      outspecCol.get(i, specon);
953      Vector<uChar> flagon;
954      outflagCol.get(i, flagon);
955      MaskedArray<Float> mon = maskedArray(specon, flagon);
956      MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
957      MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
958      if (preserve) {
959        quot -= tsysoffscalar;
960      } else {
961        quot -= tsyson[0];
962      }
963      outspecCol.put(i, quot.getArray());
964      outflagCol.put(i, flagsFromMA(quot));
965    }
966    ++sit;
967    ++s2it;
968    // take the first off for each on scan which doesn't have a
969    // matching off scan
970    // non <= noff:  matching pairs, non > noff matching pairs then first off
971    if ( s2it.pastEnd() ) s2it.reset();
972  }
973  return out;
974}
975
976// dototalpower (migration of GBTIDL procedure dototalpower.pro)
977// calibrate the CAL on-off pair. It calculate Tsys and average CAL on-off subintegrations
978// do it for each cycles in a specific scan.
979CountedPtr< Scantable > STMath::dototalpower( const CountedPtr< Scantable >& calon,
980                                              const CountedPtr< Scantable >& caloff, Float tcal )
981{
982if ( ! calon->conformant(*caloff) ) {
983    throw(AipsError("'CAL on' and 'CAL off' scantables are not conformant."));
984  }
985  setInsitu(false);
986  CountedPtr< Scantable > out = getScantable(caloff, false);
987  Table& tout = out->table();
988  const Table& tcon = calon->table();
989  Vector<Float> tcalout;
990  Vector<Float> tcalout2;  //debug
991
992  if ( tout.nrow() != tcon.nrow() ) {
993    throw(AipsError("Mismatch in number of rows to form cal on - off pair."));
994  }
995  // iteration by scanno or cycle no.
996  TableIterator sit(tout, "SCANNO");
997  TableIterator s2it(tcon, "SCANNO");
998  while ( !sit.pastEnd() ) {
999    Table toff = sit.table();
1000    TableRow row(toff);
1001    Table t = s2it.table();
1002    ScalarColumn<Double> outintCol(toff, "INTERVAL");
1003    ArrayColumn<Float> outspecCol(toff, "SPECTRA");
1004    ArrayColumn<Float> outtsysCol(toff, "TSYS");
1005    ArrayColumn<uChar> outflagCol(toff, "FLAGTRA");
1006    ROScalarColumn<uInt> outtcalIdCol(toff, "TCAL_ID");
1007    ROScalarColumn<uInt> outpolCol(toff, "POLNO");
1008    ROScalarColumn<Double> onintCol(t, "INTERVAL");
1009    ROArrayColumn<Float> onspecCol(t, "SPECTRA");
1010    ROArrayColumn<Float> ontsysCol(t, "TSYS");
1011    ROArrayColumn<uChar> onflagCol(t, "FLAGTRA");
1012    //ROScalarColumn<uInt> ontcalIdCol(t, "TCAL_ID");
1013
1014    for (uInt i=0; i < toff.nrow(); ++i) {
1015      //skip these checks -> assumes the data order are the same between the cal on off pairs
1016      //
1017      Vector<Float> specCalon, specCaloff;
1018      // to store scalar (mean) tsys
1019      Vector<Float> tsysout(1);
1020      uInt tcalId, polno;
1021      Double offint, onint;
1022      outpolCol.get(i, polno);
1023      outspecCol.get(i, specCaloff);
1024      onspecCol.get(i, specCalon);
1025      Vector<uChar> flagCaloff, flagCalon;
1026      outflagCol.get(i, flagCaloff);
1027      onflagCol.get(i, flagCalon);
1028      outtcalIdCol.get(i, tcalId);
1029      outintCol.get(i, offint);
1030      onintCol.get(i, onint);
1031      // caluculate mean Tsys
1032      uInt nchan = specCaloff.nelements();
1033      // percentage of edge cut off
1034      uInt pc = 10;
1035      uInt bchan = nchan/pc;
1036      uInt echan = nchan-bchan;
1037
1038      Slicer chansl(IPosition(1,bchan-1), IPosition(1,echan-1), IPosition(1,1),Slicer::endIsLast);
1039      Vector<Float> testsubsp = specCaloff(chansl);
1040      MaskedArray<Float> spoff = maskedArray( specCaloff(chansl),flagCaloff(chansl) );
1041      MaskedArray<Float> spon = maskedArray( specCalon(chansl),flagCalon(chansl) );
1042      MaskedArray<Float> spdiff = spon-spoff;
1043      uInt noff = spoff.nelementsValid();
1044      //uInt non = spon.nelementsValid();
1045      uInt ndiff = spdiff.nelementsValid();
1046      Float meantsys;
1047
1048/**
1049      Double subspec, subdiff;
1050      uInt usednchan;
1051      subspec = 0;
1052      subdiff = 0;
1053      usednchan = 0;
1054      for(uInt k=(bchan-1); k<echan; k++) {
1055        subspec += specCaloff[k];
1056        subdiff += static_cast<Double>(specCalon[k]-specCaloff[k]);
1057        ++usednchan;
1058      }
1059**/
1060      // get tcal if input tcal <= 0
1061      String tcalt;
1062      Float tcalUsed;
1063      tcalUsed = tcal;
1064      if ( tcal <= 0.0 ) {
1065        caloff->tcal().getEntry(tcalt, tcalout, tcalId);
1066//         if (polno<=3) {
1067//           tcalUsed = tcalout[polno];
1068//         }
1069//         else {
1070//           tcalUsed = tcalout[0];
1071//         }
1072        if ( tcalout.size() == 1 )
1073          tcalUsed = tcalout[0] ;
1074        else if ( tcalout.size() == nchan )
1075          tcalUsed = mean(tcalout) ;
1076        else {
1077          uInt ipol = polno ;
1078          if ( ipol > 3 ) ipol = 0 ;
1079          tcalUsed = tcalout[ipol] ;
1080        }
1081      }
1082
1083      Float meanoff;
1084      Float meandiff;
1085      if (noff && ndiff) {
1086         //Debug
1087         //if(noff!=ndiff) cerr<<"noff and ndiff is not equal"<<endl;
1088         //LogIO os( LogOrigin( "STMath", "dototalpower()", WHERE ) ) ;
1089         //if(noff!=ndiff) os<<"noff and ndiff is not equal"<<LogIO::POST;
1090         meanoff = sum(spoff)/noff;
1091         meandiff = sum(spdiff)/ndiff;
1092         meantsys= (meanoff/meandiff )*tcalUsed + tcalUsed/2;
1093      }
1094      else {
1095         meantsys=1;
1096      }
1097
1098      tsysout[0] = Float(meantsys);
1099      MaskedArray<Float> mcaloff = maskedArray(specCaloff, flagCaloff);
1100      MaskedArray<Float> mcalon = maskedArray(specCalon, flagCalon);
1101      MaskedArray<Float> sig =   Float(0.5) * (mcaloff + mcalon);
1102      //uInt ncaloff = mcaloff.nelementsValid();
1103      //uInt ncalon = mcalon.nelementsValid();
1104
1105      outintCol.put(i, offint+onint);
1106      outspecCol.put(i, sig.getArray());
1107      outflagCol.put(i, flagsFromMA(sig));
1108      outtsysCol.put(i, tsysout);
1109    }
1110    ++sit;
1111    ++s2it;
1112  }
1113  return out;
1114}
1115
1116//dosigref - migrated from GBT IDL's dosigref.pro, do calibration of position switch
1117// observatiions.
1118// input: sig and ref scantables, and an optional boxcar smoothing width(default width=0,
1119//        no smoothing).
1120// output: resultant scantable [= (sig-ref/ref)*tsys]
1121CountedPtr< Scantable > STMath::dosigref( const CountedPtr < Scantable >& sig,
1122                                          const CountedPtr < Scantable >& ref,
1123                                          int smoothref,
1124                                          casa::Float tsysv,
1125                                          casa::Float tau )
1126{
1127if ( ! ref->conformant(*sig) ) {
1128    throw(AipsError("'sig' and 'ref' scantables are not conformant."));
1129  }
1130  setInsitu(false);
1131  CountedPtr< Scantable > out = getScantable(sig, false);
1132  CountedPtr< Scantable > smref;
1133  if ( smoothref > 1 ) {
1134    float fsmoothref = static_cast<float>(smoothref);
1135    std::string inkernel = "boxcar";
1136    smref = smooth(ref, inkernel, fsmoothref );
1137    ostringstream oss;
1138    oss<<"Applied smoothing of "<<fsmoothref<<" on the reference."<<endl;
1139    pushLog(String(oss));
1140  }
1141  else {
1142    smref = ref;
1143  }
1144  Table& tout = out->table();
1145  const Table& tref = smref->table();
1146  if ( tout.nrow() != tref.nrow() ) {
1147    throw(AipsError("Mismatch in number of rows to form on-source and reference pair."));
1148  }
1149  // iteration by scanno? or cycle no.
1150  TableIterator sit(tout, "SCANNO");
1151  TableIterator s2it(tref, "SCANNO");
1152  while ( !sit.pastEnd() ) {
1153    Table ton = sit.table();
1154    Table t = s2it.table();
1155    ScalarColumn<Double> outintCol(ton, "INTERVAL");
1156    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1157    ArrayColumn<Float> outtsysCol(ton, "TSYS");
1158    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1159    ArrayColumn<Float> refspecCol(t, "SPECTRA");
1160    ROScalarColumn<Double> refintCol(t, "INTERVAL");
1161    ROArrayColumn<Float> reftsysCol(t, "TSYS");
1162    ArrayColumn<uChar> refflagCol(t, "FLAGTRA");
1163    ROScalarColumn<Float> refelevCol(t, "ELEVATION");
1164    for (uInt i=0; i < ton.nrow(); ++i) {
1165
1166      Double onint, refint;
1167      Vector<Float> specon, specref;
1168      // to store scalar (mean) tsys
1169      Vector<Float> tsysref;
1170      outintCol.get(i, onint);
1171      refintCol.get(i, refint);
1172      outspecCol.get(i, specon);
1173      refspecCol.get(i, specref);
1174      Vector<uChar> flagref, flagon;
1175      outflagCol.get(i, flagon);
1176      refflagCol.get(i, flagref);
1177      reftsysCol.get(i, tsysref);
1178
1179      Float tsysrefscalar;
1180      if ( tsysv > 0.0 ) {
1181        ostringstream oss;
1182        Float elev;
1183        refelevCol.get(i, elev);
1184        oss << "user specified Tsys = " << tsysv;
1185        // do recalc elevation if EL = 0
1186        if ( elev == 0 ) {
1187          throw(AipsError("EL=0, elevation data is missing."));
1188        } else {
1189          if ( tau <= 0.0 ) {
1190            throw(AipsError("Valid tau is not supplied."));
1191          } else {
1192            tsysrefscalar = tsysv * exp(tau/elev);
1193          }
1194        }
1195        oss << ", corrected (for El) tsys= "<<tsysrefscalar;
1196        pushLog(String(oss));
1197      }
1198      else {
1199        tsysrefscalar = tsysref[0];
1200      }
1201      //get quotient spectrum
1202      MaskedArray<Float> mref = maskedArray(specref, flagref);
1203      MaskedArray<Float> mon = maskedArray(specon, flagon);
1204      MaskedArray<Float> specres =   tsysrefscalar*((mon - mref)/mref);
1205      Double resint = onint*refint*smoothref/(onint+refint*smoothref);
1206
1207      //Debug
1208      //cerr<<"Tsys used="<<tsysrefscalar<<endl;
1209      //LogIO os( LogOrigin( "STMath", "dosigref", WHERE ) ) ;
1210      //os<<"Tsys used="<<tsysrefscalar<<LogIO::POST;
1211      // fill the result, replay signal tsys by reference tsys
1212      outintCol.put(i, resint);
1213      outspecCol.put(i, specres.getArray());
1214      outflagCol.put(i, flagsFromMA(specres));
1215      outtsysCol.put(i, tsysref);
1216    }
1217    ++sit;
1218    ++s2it;
1219  }
1220  return out;
1221}
1222
1223CountedPtr< Scantable > STMath::donod(const casa::CountedPtr<Scantable>& s,
1224                                     const std::vector<int>& scans,
1225                                     int smoothref,
1226                                     casa::Float tsysv,
1227                                     casa::Float tau,
1228                                     casa::Float tcal )
1229
1230{
1231  setInsitu(false);
1232  STSelector sel;
1233  std::vector<int> scan1, scan2, beams, types;
1234  std::vector< vector<int> > scanpair;
1235  //std::vector<string> calstate;
1236  std::vector<int> calstate;
1237  String msg;
1238
1239  CountedPtr< Scantable > s1b1on, s1b1off, s1b2on, s1b2off;
1240  CountedPtr< Scantable > s2b1on, s2b1off, s2b2on, s2b2off;
1241
1242  std::vector< CountedPtr< Scantable > > sctables;
1243  sctables.push_back(s1b1on);
1244  sctables.push_back(s1b1off);
1245  sctables.push_back(s1b2on);
1246  sctables.push_back(s1b2off);
1247  sctables.push_back(s2b1on);
1248  sctables.push_back(s2b1off);
1249  sctables.push_back(s2b2on);
1250  sctables.push_back(s2b2off);
1251
1252  //check scanlist
1253  int n=s->checkScanInfo(scans);
1254  if (n==1) {
1255     throw(AipsError("Incorrect scan pairs. "));
1256  }
1257
1258  // Assume scans contain only a pair of consecutive scan numbers.
1259  // It is assumed that first beam, b1,  is on target.
1260  // There is no check if the first beam is on or not.
1261  if ( scans.size()==1 ) {
1262    scan1.push_back(scans[0]);
1263    scan2.push_back(scans[0]+1);
1264  } else if ( scans.size()==2 ) {
1265   scan1.push_back(scans[0]);
1266   scan2.push_back(scans[1]);
1267  } else {
1268    if ( scans.size()%2 == 0 ) {
1269      for (uInt i=0; i<scans.size(); i++) {
1270        if (i%2 == 0) {
1271          scan1.push_back(scans[i]);
1272        }
1273        else {
1274          scan2.push_back(scans[i]);
1275        }
1276      }
1277    } else {
1278      throw(AipsError("Odd numbers of scans, cannot form pairs."));
1279    }
1280  }
1281  scanpair.push_back(scan1);
1282  scanpair.push_back(scan2);
1283  //calstate.push_back("*calon");
1284  //calstate.push_back("*[^calon]");
1285  calstate.push_back(SrcType::NODCAL);
1286  calstate.push_back(SrcType::NOD);
1287  CountedPtr< Scantable > ws = getScantable(s, false);
1288  uInt l=0;
1289  while ( l < sctables.size() ) {
1290    for (uInt i=0; i < 2; i++) {
1291      for (uInt j=0; j < 2; j++) {
1292        for (uInt k=0; k < 2; k++) {
1293          sel.reset();
1294          sel.setScans(scanpair[i]);
1295          //sel.setName(calstate[k]);
1296          types.clear();
1297          types.push_back(calstate[k]);
1298          sel.setTypes(types);
1299          beams.clear();
1300          beams.push_back(j);
1301          sel.setBeams(beams);
1302          ws->setSelection(sel);
1303          sctables[l]= getScantable(ws, false);
1304          l++;
1305        }
1306      }
1307    }
1308  }
1309
1310  // replace here by splitData or getData functionality
1311  CountedPtr< Scantable > sig1;
1312  CountedPtr< Scantable > ref1;
1313  CountedPtr< Scantable > sig2;
1314  CountedPtr< Scantable > ref2;
1315  CountedPtr< Scantable > calb1;
1316  CountedPtr< Scantable > calb2;
1317
1318  msg=String("Processing dototalpower for subset of the data");
1319  ostringstream oss1;
1320  oss1 << msg  << endl;
1321  pushLog(String(oss1));
1322  // Debug for IRC CS data
1323  //float tcal1=7.0;
1324  //float tcal2=4.0;
1325  sig1 = dototalpower(sctables[0], sctables[1], tcal=tcal);
1326  ref1 = dototalpower(sctables[2], sctables[3], tcal=tcal);
1327  ref2 = dototalpower(sctables[4], sctables[5], tcal=tcal);
1328  sig2 = dototalpower(sctables[6], sctables[7], tcal=tcal);
1329
1330  // correction of user-specified tsys for elevation here
1331
1332  // dosigref calibration
1333  msg=String("Processing dosigref for subset of the data");
1334  ostringstream oss2;
1335  oss2 << msg  << endl;
1336  pushLog(String(oss2));
1337  calb1=dosigref(sig1,ref2,smoothref,tsysv,tau);
1338  calb2=dosigref(sig2,ref1,smoothref,tsysv,tau);
1339
1340  // iteration by scanno or cycle no.
1341  Table& tcalb1 = calb1->table();
1342  Table& tcalb2 = calb2->table();
1343  TableIterator sit(tcalb1, "SCANNO");
1344  TableIterator s2it(tcalb2, "SCANNO");
1345  while ( !sit.pastEnd() ) {
1346    Table t1 = sit.table();
1347    Table t2= s2it.table();
1348    ArrayColumn<Float> outspecCol(t1, "SPECTRA");
1349    ArrayColumn<Float> outtsysCol(t1, "TSYS");
1350    ArrayColumn<uChar> outflagCol(t1, "FLAGTRA");
1351    ScalarColumn<Double> outintCol(t1, "INTERVAL");
1352    ArrayColumn<Float> t2specCol(t2, "SPECTRA");
1353    ROArrayColumn<Float> t2tsysCol(t2, "TSYS");
1354    ArrayColumn<uChar> t2flagCol(t2, "FLAGTRA");
1355    ROScalarColumn<Double> t2intCol(t2, "INTERVAL");
1356    for (uInt i=0; i < t1.nrow(); ++i) {
1357      Vector<Float> spec1, spec2;
1358      // to store scalar (mean) tsys
1359      Vector<Float> tsys1, tsys2;
1360      Vector<uChar> flag1, flag2;
1361      Double tint1, tint2;
1362      outspecCol.get(i, spec1);
1363      t2specCol.get(i, spec2);
1364      outflagCol.get(i, flag1);
1365      t2flagCol.get(i, flag2);
1366      outtsysCol.get(i, tsys1);
1367      t2tsysCol.get(i, tsys2);
1368      outintCol.get(i, tint1);
1369      t2intCol.get(i, tint2);
1370      // average
1371      // assume scalar tsys for weights
1372      Float wt1, wt2, tsyssq1, tsyssq2;
1373      tsyssq1 = tsys1[0]*tsys1[0];
1374      tsyssq2 = tsys2[0]*tsys2[0];
1375      wt1 = Float(tint1)/tsyssq1;
1376      wt2 = Float(tint2)/tsyssq2;
1377      Float invsumwt=1/(wt1+wt2);
1378      MaskedArray<Float> mspec1 = maskedArray(spec1, flag1);
1379      MaskedArray<Float> mspec2 = maskedArray(spec2, flag2);
1380      MaskedArray<Float> avspec =  invsumwt * (wt1*mspec1 + wt2*mspec2);
1381      //Array<Float> avtsys =  Float(0.5) * (tsys1 + tsys2);
1382      // cerr<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<endl;
1383      // LogIO os( LogOrigin( "STMath", "donod", WHERE ) ) ;
1384      // os<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<LogIO::POST;
1385      tsys1[0] = sqrt(tsyssq1 + tsyssq2);
1386      Array<Float> avtsys =  tsys1;
1387
1388      outspecCol.put(i, avspec.getArray());
1389      outflagCol.put(i, flagsFromMA(avspec));
1390      outtsysCol.put(i, avtsys);
1391    }
1392    ++sit;
1393    ++s2it;
1394  }
1395  return calb1;
1396}
1397
1398//GBTIDL version of frequency switched data calibration
1399CountedPtr< Scantable > STMath::dofs( const CountedPtr< Scantable >& s,
1400                                      const std::vector<int>& scans,
1401                                      int smoothref,
1402                                      casa::Float tsysv,
1403                                      casa::Float tau,
1404                                      casa::Float tcal )
1405{
1406
1407
1408  (void) scans; //currently unused
1409  STSelector sel;
1410  CountedPtr< Scantable > ws = getScantable(s, false);
1411  CountedPtr< Scantable > sig, sigwcal, ref, refwcal;
1412  CountedPtr< Scantable > calsig, calref, out, out1, out2;
1413  Bool nofold=False;
1414  vector<int> types ;
1415
1416  //split the data
1417  //sel.setName("*_fs");
1418  types.push_back( SrcType::FSON ) ;
1419  sel.setTypes( types ) ;
1420  ws->setSelection(sel);
1421  sig = getScantable(ws,false);
1422  sel.reset();
1423  types.clear() ;
1424  //sel.setName("*_fs_calon");
1425  types.push_back( SrcType::FONCAL ) ;
1426  sel.setTypes( types ) ;
1427  ws->setSelection(sel);
1428  sigwcal = getScantable(ws,false);
1429  sel.reset();
1430  types.clear() ;
1431  //sel.setName("*_fsr");
1432  types.push_back( SrcType::FSOFF ) ;
1433  sel.setTypes( types ) ;
1434  ws->setSelection(sel);
1435  ref = getScantable(ws,false);
1436  sel.reset();
1437  types.clear() ;
1438  //sel.setName("*_fsr_calon");
1439  types.push_back( SrcType::FOFFCAL ) ;
1440  sel.setTypes( types ) ;
1441  ws->setSelection(sel);
1442  refwcal = getScantable(ws,false);
1443  sel.reset() ;
1444  types.clear() ;
1445
1446  calsig = dototalpower(sigwcal, sig, tcal=tcal);
1447  calref = dototalpower(refwcal, ref, tcal=tcal);
1448
1449  out1=dosigref(calsig,calref,smoothref,tsysv,tau);
1450  out2=dosigref(calref,calsig,smoothref,tsysv,tau);
1451
1452  Table& tabout1=out1->table();
1453  Table& tabout2=out2->table();
1454  ROScalarColumn<uInt> freqidCol1(tabout1, "FREQ_ID");
1455  ScalarColumn<uInt> freqidCol2(tabout2, "FREQ_ID");
1456  ROArrayColumn<Float> specCol(tabout2, "SPECTRA");
1457  Vector<Float> spec; specCol.get(0, spec);
1458  uInt nchan = spec.nelements();
1459  uInt freqid1; freqidCol1.get(0,freqid1);
1460  uInt freqid2; freqidCol2.get(0,freqid2);
1461  Double rp1, rp2, rv1, rv2, inc1, inc2;
1462  out1->frequencies().getEntry(rp1, rv1, inc1, freqid1);
1463  out2->frequencies().getEntry(rp2, rv2, inc2, freqid2);
1464  //cerr << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << endl ;
1465  //LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1466  //os << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << LogIO::POST ;
1467  if (rp1==rp2) {
1468    Double foffset = rv1 - rv2;
1469    uInt choffset = static_cast<uInt>(foffset/abs(inc2));
1470    if (choffset >= nchan) {
1471      //cerr<<"out-band frequency switching, no folding"<<endl;
1472      LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1473      os<<"out-band frequency switching, no folding"<<LogIO::POST;
1474      nofold = True;
1475    }
1476  }
1477
1478  if (nofold) {
1479    std::vector< CountedPtr< Scantable > > tabs;
1480    tabs.push_back(out1);
1481    tabs.push_back(out2);
1482    out = merge(tabs);
1483  }
1484  else {
1485    //out = out1;
1486    Double choffset = ( rv1 - rv2 ) / inc2 ;
1487    out = dofold( out1, out2, choffset ) ;
1488  }
1489   
1490  return out;
1491}
1492
1493CountedPtr<Scantable> STMath::dofold( const CountedPtr<Scantable> &sig,
1494                                      const CountedPtr<Scantable> &ref,
1495                                      Double choffset,
1496                                      Double choffset2 )
1497{
1498  LogIO os( LogOrigin( "STMath", "dofold", WHERE ) ) ;
1499  os << "choffset=" << choffset << " choffset2=" << choffset2 << LogIO::POST ;
1500
1501  // output scantable
1502  CountedPtr<Scantable> out = getScantable( sig, false ) ;
1503
1504  // separate choffset to integer part and decimal part
1505  Int ioffset = (Int)choffset ;
1506  Double doffset = choffset - ioffset ;
1507  Int ioffset2 = (Int)choffset2 ;
1508  Double doffset2 = choffset2 - ioffset2 ;
1509  os << "ioffset=" << ioffset << " doffset=" << doffset << LogIO::POST ;
1510  os << "ioffset2=" << ioffset2 << " doffset2=" << doffset2 << LogIO::POST ; 
1511
1512  // get column
1513  ROArrayColumn<Float> specCol1( sig->table(), "SPECTRA" ) ;
1514  ROArrayColumn<Float> specCol2( ref->table(), "SPECTRA" ) ;
1515  ROArrayColumn<Float> tsysCol1( sig->table(), "TSYS" ) ;
1516  ROArrayColumn<Float> tsysCol2( ref->table(), "TSYS" ) ;
1517  ROArrayColumn<uChar> flagCol1( sig->table(), "FLAGTRA" ) ;
1518  ROArrayColumn<uChar> flagCol2( ref->table(), "FLAGTRA" ) ;
1519  ROScalarColumn<Double> mjdCol1( sig->table(), "TIME" ) ;
1520  ROScalarColumn<Double> mjdCol2( ref->table(), "TIME" ) ;
1521  ROScalarColumn<Double> intervalCol1( sig->table(), "INTERVAL" ) ;
1522  ROScalarColumn<Double> intervalCol2( ref->table(), "INTERVAL" ) ;
1523
1524  // check
1525  if ( ioffset == 0 ) {
1526    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1527    os << "channel offset is zero, no folding" << LogIO::POST ;
1528    return out ;
1529  }
1530  int nchan = ref->nchan() ;
1531  if ( abs(ioffset) >= nchan ) {
1532    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1533    os << "out-band frequency switching, no folding" << LogIO::POST ;
1534    return out ;
1535  }
1536
1537  // attach column for output scantable
1538  ArrayColumn<Float> specColOut( out->table(), "SPECTRA" ) ;
1539  ArrayColumn<uChar> flagColOut( out->table(), "FLAGTRA" ) ;
1540  ArrayColumn<Float> tsysColOut( out->table(), "TSYS" ) ;
1541  ScalarColumn<Double> mjdColOut( out->table(), "TIME" ) ;
1542  ScalarColumn<Double> intervalColOut( out->table(), "INTERVAL" ) ;
1543  ScalarColumn<uInt> fidColOut( out->table(), "FREQ_ID" ) ;
1544
1545  // for each row
1546  // assume that the data order are same between sig and ref
1547  RowAccumulator acc( asap::W_TINTSYS ) ;
1548  for ( int i = 0 ; i < sig->nrow() ; i++ ) {
1549    // get values
1550    Vector<Float> spsig ;
1551    specCol1.get( i, spsig ) ;
1552    Vector<Float> spref ;
1553    specCol2.get( i, spref ) ;
1554    Vector<Float> tsyssig ;
1555    tsysCol1.get( i, tsyssig ) ;
1556    Vector<Float> tsysref ;
1557    tsysCol2.get( i, tsysref ) ;
1558    Vector<uChar> flagsig ;
1559    flagCol1.get( i, flagsig ) ;
1560    Vector<uChar> flagref ;
1561    flagCol2.get( i, flagref ) ;
1562    Double timesig ;
1563    mjdCol1.get( i, timesig ) ;
1564    Double timeref ;
1565    mjdCol2.get( i, timeref ) ;
1566    Double intsig ;
1567    intervalCol1.get( i, intsig ) ;
1568    Double intref ;
1569    intervalCol2.get( i, intref ) ;
1570
1571    // shift reference spectra
1572    int refchan = spref.nelements() ;
1573    Vector<Float> sspref( spref.nelements() ) ;
1574    Vector<Float> stsysref( tsysref.nelements() ) ;
1575    Vector<uChar> sflagref( flagref.nelements() ) ;
1576    if ( ioffset > 0 ) {
1577      // SPECTRA and FLAGTRA
1578      for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1579        sspref[j] = spref[j+ioffset] ;
1580        sflagref[j] = flagref[j+ioffset] ;
1581      }
1582      for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1583        sspref[j] = spref[j-refchan+ioffset] ;
1584        sflagref[j] = flagref[j-refchan+ioffset] ;
1585      }
1586      spref = sspref.copy() ;
1587      flagref = sflagref.copy() ;
1588      for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1589        sspref[j] = doffset * spref[j+1] + ( 1.0 - doffset ) * spref[j] ;
1590        sflagref[j] = flagref[j+1] + flagref[j] ;
1591      }
1592      sspref[refchan-1] = doffset * spref[0] + ( 1.0 - doffset ) * spref[refchan-1] ;
1593      sflagref[refchan-1] = flagref[0] + flagref[refchan-1] ;
1594
1595      // TSYS
1596      if ( spref.nelements() == tsysref.nelements() ) {
1597        for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1598          stsysref[j] = tsysref[j+ioffset] ;
1599        }
1600        for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1601          stsysref[j] = tsysref[j-refchan+ioffset] ;
1602        }
1603        tsysref = stsysref.copy() ;
1604        for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1605          stsysref[j] = doffset * tsysref[j+1] + ( 1.0 - doffset ) * tsysref[j] ;
1606        }
1607        stsysref[refchan-1] = doffset * tsysref[0] + ( 1.0 - doffset ) * tsysref[refchan-1] ;
1608      }
1609    }
1610    else {
1611      // SPECTRA and FLAGTRA
1612      for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1613        sspref[j] = spref[refchan+ioffset+j] ;
1614        sflagref[j] = flagref[refchan+ioffset+j] ;
1615      }
1616      for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1617        sspref[j] = spref[j+ioffset] ;
1618        sflagref[j] = flagref[j+ioffset] ;
1619      }
1620      spref = sspref.copy() ;
1621      flagref = sflagref.copy() ;
1622      sspref[0] = doffset * spref[refchan-1] + ( 1.0 - doffset ) * spref[0] ;
1623      sflagref[0] = flagref[0] + flagref[refchan-1] ;
1624      for ( int j = 1 ; j < refchan ; j++ ) {
1625        sspref[j] = doffset * spref[j-1] + ( 1.0 - doffset ) * spref[j] ;
1626        sflagref[j] = flagref[j-1] + flagref[j] ;
1627      }
1628      // TSYS
1629      if ( spref.nelements() == tsysref.nelements() ) {
1630        for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1631          stsysref[j] = tsysref[refchan+ioffset+j] ;
1632        }
1633        for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1634          stsysref[j] = tsysref[j+ioffset] ;
1635        }
1636        tsysref = stsysref.copy() ;
1637        stsysref[0] = doffset * tsysref[refchan-1] + ( 1.0 - doffset ) * tsysref[0] ;
1638        for ( int j = 1 ; j < refchan ; j++ ) {
1639          stsysref[j] = doffset * tsysref[j-1] + ( 1.0 - doffset ) * tsysref[j] ;
1640        }
1641      }
1642    }
1643
1644    // shift signal spectra if necessary (only for APEX?)
1645    if ( choffset2 != 0.0 ) {
1646      int sigchan = spsig.nelements() ;
1647      Vector<Float> sspsig( spsig.nelements() ) ;
1648      Vector<Float> stsyssig( tsyssig.nelements() ) ;
1649      Vector<uChar> sflagsig( flagsig.nelements() ) ;
1650      if ( ioffset2 > 0 ) {
1651        // SPECTRA and FLAGTRA
1652        for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1653          sspsig[j] = spsig[j+ioffset2] ;
1654          sflagsig[j] = flagsig[j+ioffset2] ;
1655        }
1656        for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1657          sspsig[j] = spsig[j-sigchan+ioffset2] ;
1658          sflagsig[j] = flagsig[j-sigchan+ioffset2] ;
1659        }
1660        spsig = sspsig.copy() ;
1661        flagsig = sflagsig.copy() ;
1662        for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1663          sspsig[j] = doffset2 * spsig[j+1] + ( 1.0 - doffset2 ) * spsig[j] ;
1664          sflagsig[j] = flagsig[j+1] || flagsig[j] ;
1665        }
1666        sspsig[sigchan-1] = doffset2 * spsig[0] + ( 1.0 - doffset2 ) * spsig[sigchan-1] ;
1667        sflagsig[sigchan-1] = flagsig[0] || flagsig[sigchan-1] ;
1668        // TSTS
1669        if ( spsig.nelements() == tsyssig.nelements() ) {
1670          for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1671            stsyssig[j] = tsyssig[j+ioffset2] ;
1672          }
1673          for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1674            stsyssig[j] = tsyssig[j-sigchan+ioffset2] ;
1675          }
1676          tsyssig = stsyssig.copy() ;
1677          for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1678            stsyssig[j] = doffset2 * tsyssig[j+1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1679          }
1680          stsyssig[sigchan-1] = doffset2 * tsyssig[0] + ( 1.0 - doffset2 ) * tsyssig[sigchan-1] ;
1681        }
1682      }
1683      else {
1684        // SPECTRA and FLAGTRA
1685        for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1686          sspsig[j] = spsig[sigchan+ioffset2+j] ;
1687          sflagsig[j] = flagsig[sigchan+ioffset2+j] ;
1688        }
1689        for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1690          sspsig[j] = spsig[j+ioffset2] ;
1691          sflagsig[j] = flagsig[j+ioffset2] ;
1692        }
1693        spsig = sspsig.copy() ;
1694        flagsig = sflagsig.copy() ;
1695        sspsig[0] = doffset2 * spsig[sigchan-1] + ( 1.0 - doffset2 ) * spsig[0] ;
1696        sflagsig[0] = flagsig[0] + flagsig[sigchan-1] ;
1697        for ( int j = 1 ; j < sigchan ; j++ ) {
1698          sspsig[j] = doffset2 * spsig[j-1] + ( 1.0 - doffset2 ) * spsig[j] ;
1699          sflagsig[j] = flagsig[j-1] + flagsig[j] ;
1700        }
1701        // TSYS
1702        if ( spsig.nelements() == tsyssig.nelements() ) {
1703          for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1704            stsyssig[j] = tsyssig[sigchan+ioffset2+j] ;
1705          }
1706          for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1707            stsyssig[j] = tsyssig[j+ioffset2] ;
1708          }
1709          tsyssig = stsyssig.copy() ;
1710          stsyssig[0] = doffset2 * tsyssig[sigchan-1] + ( 1.0 - doffset2 ) * tsyssig[0] ;
1711          for ( int j = 1 ; j < sigchan ; j++ ) {
1712            stsyssig[j] = doffset2 * tsyssig[j-1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1713          }
1714        }
1715      }
1716    }
1717
1718    // folding
1719    acc.add( spsig, !flagsig, tsyssig, intsig, timesig ) ;
1720    acc.add( sspref, !sflagref, stsysref, intref, timeref ) ;
1721   
1722    // put result
1723    specColOut.put( i, acc.getSpectrum() ) ;
1724    const Vector<Bool> &msk = acc.getMask() ;
1725    Vector<uChar> flg( msk.shape() ) ;
1726    convertArray( flg, !msk ) ;
1727    flagColOut.put( i, flg ) ;
1728    tsysColOut.put( i, acc.getTsys() ) ;
1729    intervalColOut.put( i, acc.getInterval() ) ;
1730    mjdColOut.put( i, acc.getTime() ) ;
1731    // change FREQ_ID to unshifted IF setting (only for APEX?)
1732    if ( choffset2 != 0.0 ) {
1733      uInt freqid = fidColOut( 0 ) ; // assume single-IF data
1734      double refpix, refval, increment ;
1735      out->frequencies().getEntry( refpix, refval, increment, freqid ) ;
1736      refval -= choffset * increment ;
1737      uInt newfreqid = out->frequencies().addEntry( refpix, refval, increment ) ;
1738      Vector<uInt> freqids = fidColOut.getColumn() ;
1739      for ( uInt j = 0 ; j < freqids.nelements() ; j++ ) {
1740        if ( freqids[j] == freqid )
1741          freqids[j] = newfreqid ;
1742      }
1743      fidColOut.putColumn( freqids ) ;
1744    }
1745
1746    acc.reset() ;
1747  }
1748
1749  return out ;
1750}
1751
1752
1753CountedPtr< Scantable > STMath::freqSwitch( const CountedPtr< Scantable >& in )
1754{
1755  // make copy or reference
1756  CountedPtr< Scantable > out = getScantable(in, false);
1757  Table& tout = out->table();
1758  Block<String> cols(4);
1759  cols[0] = String("SCANNO");
1760  cols[1] = String("CYCLENO");
1761  cols[2] = String("BEAMNO");
1762  cols[3] = String("POLNO");
1763  TableIterator iter(tout, cols);
1764  while (!iter.pastEnd()) {
1765    Table subt = iter.table();
1766    // this should leave us with two rows for the two IFs....if not ignore
1767    if (subt.nrow() != 2 ) {
1768      continue;
1769    }
1770    ArrayColumn<Float> specCol(subt, "SPECTRA");
1771    ArrayColumn<Float> tsysCol(subt, "TSYS");
1772    ArrayColumn<uChar> flagCol(subt, "FLAGTRA");
1773    Vector<Float> onspec,offspec, ontsys, offtsys;
1774    Vector<uChar> onflag, offflag;
1775    tsysCol.get(0, ontsys);   tsysCol.get(1, offtsys);
1776    specCol.get(0, onspec);   specCol.get(1, offspec);
1777    flagCol.get(0, onflag);   flagCol.get(1, offflag);
1778    MaskedArray<Float> on  = maskedArray(onspec, onflag);
1779    MaskedArray<Float> off = maskedArray(offspec, offflag);
1780    MaskedArray<Float> oncopy = on.copy();
1781
1782    on /= off; on -= 1.0f;
1783    on *= ontsys[0];
1784    off /= oncopy; off -= 1.0f;
1785    off *= offtsys[0];
1786    specCol.put(0, on.getArray());
1787    const Vector<Bool>& m0 = on.getMask();
1788    Vector<uChar> flags0(m0.shape());
1789    convertArray(flags0, !m0);
1790    flagCol.put(0, flags0);
1791
1792    specCol.put(1, off.getArray());
1793    const Vector<Bool>& m1 = off.getMask();
1794    Vector<uChar> flags1(m1.shape());
1795    convertArray(flags1, !m1);
1796    flagCol.put(1, flags1);
1797    ++iter;
1798  }
1799
1800  return out;
1801}
1802
1803std::vector< float > STMath::statistic( const CountedPtr< Scantable > & in,
1804                                        const std::vector< bool > & mask,
1805                                        const std::string& which )
1806{
1807
1808  Vector<Bool> m(mask);
1809  const Table& tab = in->table();
1810  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1811  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1812  std::vector<float> out;
1813  for (uInt i=0; i < tab.nrow(); ++i ) {
1814    Vector<Float> spec; specCol.get(i, spec);
1815    Vector<uChar> flag; flagCol.get(i, flag);
1816    MaskedArray<Float> ma  = maskedArray(spec, flag);
1817    float outstat = 0.0;
1818    if ( spec.nelements() == m.nelements() ) {
1819      outstat = mathutil::statistics(which, ma(m));
1820    } else {
1821      outstat = mathutil::statistics(which, ma);
1822    }
1823    out.push_back(outstat);
1824  }
1825  return out;
1826}
1827
1828std::vector< float > STMath::statisticRow( const CountedPtr< Scantable > & in,
1829                                        const std::vector< bool > & mask,
1830                                        const std::string& which,
1831                                        int row )
1832{
1833
1834  Vector<Bool> m(mask);
1835  const Table& tab = in->table();
1836  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1837  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1838  std::vector<float> out;
1839
1840  Vector<Float> spec; specCol.get(row, spec);
1841  Vector<uChar> flag; flagCol.get(row, flag);
1842  MaskedArray<Float> ma  = maskedArray(spec, flag);
1843  float outstat = 0.0;
1844  if ( spec.nelements() == m.nelements() ) {
1845    outstat = mathutil::statistics(which, ma(m));
1846  } else {
1847    outstat = mathutil::statistics(which, ma);
1848  }
1849  out.push_back(outstat);
1850
1851  return out;
1852}
1853
1854std::vector< int > STMath::minMaxChan( const CountedPtr< Scantable > & in,
1855                                        const std::vector< bool > & mask,
1856                                        const std::string& which )
1857{
1858
1859  Vector<Bool> m(mask);
1860  const Table& tab = in->table();
1861  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1862  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1863  std::vector<int> out;
1864  for (uInt i=0; i < tab.nrow(); ++i ) {
1865    Vector<Float> spec; specCol.get(i, spec);
1866    Vector<uChar> flag; flagCol.get(i, flag);
1867    MaskedArray<Float> ma  = maskedArray(spec, flag);
1868    if (ma.ndim() != 1) {
1869      throw (ArrayError(
1870          "std::vector<int> STMath::minMaxChan("
1871          "ContedPtr<Scantable> &in, std::vector<bool> &mask, "
1872          " std::string &which)"
1873          " - MaskedArray is not 1D"));
1874    }
1875    IPosition outpos(1,0);
1876    if ( spec.nelements() == m.nelements() ) {
1877      outpos = mathutil::minMaxPos(which, ma(m));
1878    } else {
1879      outpos = mathutil::minMaxPos(which, ma);
1880    }
1881    out.push_back(outpos[0]);
1882  }
1883  return out;
1884}
1885
1886CountedPtr< Scantable > STMath::bin( const CountedPtr< Scantable > & in,
1887                                     int width )
1888{
1889  if ( !in->getSelection().empty() ) throw(AipsError("Can't bin subset of the data."));
1890  CountedPtr< Scantable > out = getScantable(in, false);
1891  Table& tout = out->table();
1892  out->frequencies().rescale(width, "BIN");
1893  ArrayColumn<Float> specCol(tout, "SPECTRA");
1894  ArrayColumn<uChar> flagCol(tout, "FLAGTRA");
1895  for (uInt i=0; i < tout.nrow(); ++i ) {
1896    MaskedArray<Float> main  = maskedArray(specCol(i), flagCol(i));
1897    MaskedArray<Float> maout;
1898    LatticeUtilities::bin(maout, main, 0, Int(width));
1899    /// @todo implement channel based tsys binning
1900    specCol.put(i, maout.getArray());
1901    flagCol.put(i, flagsFromMA(maout));
1902    // take only the first binned spectrum's length for the deprecated
1903    // global header item nChan
1904    if (i==0) tout.rwKeywordSet().define(String("nChan"),
1905                                       Int(maout.getArray().nelements()));
1906  }
1907  return out;
1908}
1909
1910CountedPtr< Scantable > STMath::resample( const CountedPtr< Scantable >& in,
1911                                          const std::string& method,
1912                                          float width )
1913//
1914// Should add the possibility of width being specified in km/s. This means
1915// that for each freqID (SpectralCoordinate) we will need to convert to an
1916// average channel width (say at the reference pixel).  Then we would need
1917// to be careful to make sure each spectrum (of different freqID)
1918// is the same length.
1919//
1920{
1921  //InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1922  Int interpMethod(stringToIMethod(method));
1923
1924  CountedPtr< Scantable > out = getScantable(in, false);
1925  Table& tout = out->table();
1926
1927// Resample SpectralCoordinates (one per freqID)
1928  out->frequencies().rescale(width, "RESAMPLE");
1929  TableIterator iter(tout, "IFNO");
1930  TableRow row(tout);
1931  while ( !iter.pastEnd() ) {
1932    Table tab = iter.table();
1933    ArrayColumn<Float> specCol(tab, "SPECTRA");
1934    //ArrayColumn<Float> tsysCol(tout, "TSYS");
1935    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1936    Vector<Float> spec;
1937    Vector<uChar> flag;
1938    specCol.get(0,spec); // the number of channels should be constant per IF
1939    uInt nChanIn = spec.nelements();
1940    Vector<Float> xIn(nChanIn); indgen(xIn);
1941    Int fac =  Int(nChanIn/width);
1942    Vector<Float> xOut(fac+10); // 10 to be safe - resize later
1943    uInt k = 0;
1944    Float x = 0.0;
1945    while (x < Float(nChanIn) ) {
1946      xOut(k) = x;
1947      k++;
1948      x += width;
1949    }
1950    uInt nChanOut = k;
1951    xOut.resize(nChanOut, True);
1952    // process all rows for this IFNO
1953    Vector<Float> specOut;
1954    Vector<Bool> maskOut;
1955    Vector<uChar> flagOut;
1956    for (uInt i=0; i < tab.nrow(); ++i) {
1957      specCol.get(i, spec);
1958      flagCol.get(i, flag);
1959      Vector<Bool> mask(flag.nelements());
1960      convertArray(mask, flag);
1961
1962      IPosition shapeIn(spec.shape());
1963      //sh.nchan = nChanOut;
1964      InterpolateArray1D<Float,Float>::interpolate(specOut, maskOut, xOut,
1965                                                   xIn, spec, mask,
1966                                                   interpMethod, True, True);
1967      /// @todo do the same for channel based Tsys
1968      flagOut.resize(maskOut.nelements());
1969      convertArray(flagOut, maskOut);
1970      specCol.put(i, specOut);
1971      flagCol.put(i, flagOut);
1972    }
1973    ++iter;
1974  }
1975
1976  return out;
1977}
1978
1979STMath::imethod STMath::stringToIMethod(const std::string& in)
1980{
1981  static STMath::imap lookup;
1982
1983  // initialize the lookup table if necessary
1984  if ( lookup.empty() ) {
1985    lookup["nearest"]   = InterpolateArray1D<Double,Float>::nearestNeighbour;
1986    lookup["linear"] = InterpolateArray1D<Double,Float>::linear;
1987    lookup["cubic"]  = InterpolateArray1D<Double,Float>::cubic;
1988    lookup["spline"]  = InterpolateArray1D<Double,Float>::spline;
1989  }
1990
1991  STMath::imap::const_iterator iter = lookup.find(in);
1992
1993  if ( lookup.end() == iter ) {
1994    std::string message = in;
1995    message += " is not a valid interpolation mode";
1996    throw(AipsError(message));
1997  }
1998  return iter->second;
1999}
2000
2001WeightType STMath::stringToWeight(const std::string& in)
2002{
2003  static std::map<std::string, WeightType> lookup;
2004
2005  // initialize the lookup table if necessary
2006  if ( lookup.empty() ) {
2007    lookup["NONE"]   = asap::W_NONE;
2008    lookup["TINT"] = asap::W_TINT;
2009    lookup["TINTSYS"]  = asap::W_TINTSYS;
2010    lookup["TSYS"]  = asap::W_TSYS;
2011    lookup["VAR"]  = asap::W_VAR;
2012  }
2013
2014  std::map<std::string, WeightType>::const_iterator iter = lookup.find(in);
2015
2016  if ( lookup.end() == iter ) {
2017    std::string message = in;
2018    message += " is not a valid weighting mode";
2019    throw(AipsError(message));
2020  }
2021  return iter->second;
2022}
2023
2024CountedPtr< Scantable > STMath::gainElevation( const CountedPtr< Scantable >& in,
2025                                               const vector< float > & coeff,
2026                                               const std::string & filename,
2027                                               const std::string& method)
2028{
2029  // Get elevation data from Scantable and convert to degrees
2030  CountedPtr< Scantable > out = getScantable(in, false);
2031  Table& tab = out->table();
2032  ROScalarColumn<Float> elev(tab, "ELEVATION");
2033  Vector<Float> x = elev.getColumn();
2034  x *= Float(180 / C::pi);                        // Degrees
2035
2036  Vector<Float> coeffs(coeff);
2037  const uInt nc = coeffs.nelements();
2038  if ( filename.length() > 0 && nc > 0 ) {
2039    throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
2040  }
2041
2042  // Correct
2043  if ( nc > 0 || filename.length() == 0 ) {
2044    // Find instrument
2045    Bool throwit = True;
2046    Instrument inst =
2047      STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2048                                throwit);
2049
2050    // Set polynomial
2051    Polynomial<Float>* ppoly = 0;
2052    Vector<Float> coeff;
2053    String msg;
2054    if ( nc > 0 ) {
2055      ppoly = new Polynomial<Float>(nc-1);
2056      coeff = coeffs;
2057      msg = String("user");
2058    } else {
2059      STAttr sdAttr;
2060      coeff = sdAttr.gainElevationPoly(inst);
2061      ppoly = new Polynomial<Float>(coeff.nelements()-1);
2062      msg = String("built in");
2063    }
2064
2065    if ( coeff.nelements() > 0 ) {
2066      ppoly->setCoefficients(coeff);
2067    } else {
2068      delete ppoly;
2069      throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
2070    }
2071    ostringstream oss;
2072    oss << "Making polynomial correction with " << msg << " coefficients:" << endl;
2073    oss << "   " <<  coeff;
2074    pushLog(String(oss));
2075    const uInt nrow = tab.nrow();
2076    Vector<Float> factor(nrow);
2077    for ( uInt i=0; i < nrow; ++i ) {
2078      factor[i] = 1.0 / (*ppoly)(x[i]);
2079    }
2080    delete ppoly;
2081    scaleByVector(tab, factor, true);
2082
2083  } else {
2084    // Read and correct
2085    pushLog("Making correction from ascii Table");
2086    scaleFromAsciiTable(tab, filename, method, x, true);
2087  }
2088  return out;
2089}
2090
2091void STMath::scaleFromAsciiTable(Table& in, const std::string& filename,
2092                                 const std::string& method,
2093                                 const Vector<Float>& xout, bool dotsys)
2094{
2095
2096// Read gain-elevation ascii file data into a Table.
2097
2098  String formatString;
2099  Table tbl = readAsciiTable(formatString, Table::Memory, filename, "", "", False);
2100  scaleFromTable(in, tbl, method, xout, dotsys);
2101}
2102
2103void STMath::scaleFromTable(Table& in,
2104                            const Table& table,
2105                            const std::string& method,
2106                            const Vector<Float>& xout, bool dotsys)
2107{
2108
2109  ROScalarColumn<Float> geElCol(table, "ELEVATION");
2110  ROScalarColumn<Float> geFacCol(table, "FACTOR");
2111  Vector<Float> xin = geElCol.getColumn();
2112  Vector<Float> yin = geFacCol.getColumn();
2113  Vector<Bool> maskin(xin.nelements(),True);
2114
2115  // Interpolate (and extrapolate) with desired method
2116
2117  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2118
2119   Vector<Float> yout;
2120   Vector<Bool> maskout;
2121   InterpolateArray1D<Float,Float>::interpolate(yout, maskout, xout,
2122                                                xin, yin, maskin, interp,
2123                                                True, True);
2124
2125   scaleByVector(in, Float(1.0)/yout, dotsys);
2126}
2127
2128void STMath::scaleByVector( Table& in,
2129                            const Vector< Float >& factor,
2130                            bool dotsys )
2131{
2132  uInt nrow = in.nrow();
2133  if ( factor.nelements() != nrow ) {
2134    throw(AipsError("factors.nelements() != table.nelements()"));
2135  }
2136  ArrayColumn<Float> specCol(in, "SPECTRA");
2137  ArrayColumn<uChar> flagCol(in, "FLAGTRA");
2138  ArrayColumn<Float> tsysCol(in, "TSYS");
2139  for (uInt i=0; i < nrow; ++i) {
2140    MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2141    ma *= factor[i];
2142    specCol.put(i, ma.getArray());
2143    flagCol.put(i, flagsFromMA(ma));
2144    if ( dotsys ) {
2145      Vector<Float> tsys = tsysCol(i);
2146      tsys *= factor[i];
2147      tsysCol.put(i,tsys);
2148    }
2149  }
2150}
2151
2152CountedPtr< Scantable > STMath::convertFlux( const CountedPtr< Scantable >& in,
2153                                             float d, float etaap,
2154                                             float jyperk )
2155{
2156  CountedPtr< Scantable > out = getScantable(in, false);
2157  Table& tab = in->table();
2158  Unit fluxUnit(tab.keywordSet().asString("FluxUnit"));
2159  Unit K(String("K"));
2160  Unit JY(String("Jy"));
2161
2162  bool tokelvin = true;
2163  Double cfac = 1.0;
2164
2165  if ( fluxUnit == JY ) {
2166    pushLog("Converting to K");
2167    Quantum<Double> t(1.0,fluxUnit);
2168    Quantum<Double> t2 = t.get(JY);
2169    cfac = (t2 / t).getValue();               // value to Jy
2170
2171    tokelvin = true;
2172    out->setFluxUnit("K");
2173  } else if ( fluxUnit == K ) {
2174    pushLog("Converting to Jy");
2175    Quantum<Double> t(1.0,fluxUnit);
2176    Quantum<Double> t2 = t.get(K);
2177    cfac = (t2 / t).getValue();              // value to K
2178
2179    tokelvin = false;
2180    out->setFluxUnit("Jy");
2181  } else {
2182    throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
2183  }
2184  // Make sure input values are converted to either Jy or K first...
2185  Float factor = cfac;
2186
2187  // Select method
2188  if (jyperk > 0.0) {
2189    factor *= jyperk;
2190    if ( tokelvin ) factor = 1.0 / jyperk;
2191    ostringstream oss;
2192    oss << "Jy/K = " << jyperk;
2193    pushLog(String(oss));
2194    Vector<Float> factors(tab.nrow(), factor);
2195    scaleByVector(tab,factors, false);
2196  } else if ( etaap > 0.0) {
2197    if (d < 0) {
2198      Instrument inst =
2199        STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2200                                  True);
2201      STAttr sda;
2202      d = sda.diameter(inst);
2203    }
2204    jyperk = STAttr::findJyPerK(etaap, d);
2205    ostringstream oss;
2206    oss << "Jy/K = " << jyperk;
2207    pushLog(String(oss));
2208    factor *= jyperk;
2209    if ( tokelvin ) {
2210      factor = 1.0 / factor;
2211    }
2212    Vector<Float> factors(tab.nrow(), factor);
2213    scaleByVector(tab, factors, False);
2214  } else {
2215
2216    // OK now we must deal with automatic look up of values.
2217    // We must also deal with the fact that the factors need
2218    // to be computed per IF and may be different and may
2219    // change per integration.
2220
2221    pushLog("Looking up conversion factors");
2222    convertBrightnessUnits(out, tokelvin, cfac);
2223  }
2224
2225  return out;
2226}
2227
2228void STMath::convertBrightnessUnits( CountedPtr<Scantable>& in,
2229                                     bool tokelvin, float cfac )
2230{
2231  Table& table = in->table();
2232  Instrument inst =
2233    STAttr::convertInstrument(table.keywordSet().asString("AntennaName"), True);
2234  TableIterator iter(table, "FREQ_ID");
2235  STFrequencies stfreqs = in->frequencies();
2236  STAttr sdAtt;
2237  while (!iter.pastEnd()) {
2238    Table tab = iter.table();
2239    ArrayColumn<Float> specCol(tab, "SPECTRA");
2240    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2241    ROScalarColumn<uInt> freqidCol(tab, "FREQ_ID");
2242    MEpoch::ROScalarColumn timeCol(tab, "TIME");
2243
2244    uInt freqid; freqidCol.get(0, freqid);
2245    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2246    // STAttr.JyPerK has a Vector interface... change sometime.
2247    Vector<Float> freqs(1,stfreqs.getRefFreq(freqid, tmpspec.nelements()));
2248    for ( uInt i=0; i<tab.nrow(); ++i) {
2249      Float jyperk = (sdAtt.JyPerK(inst, timeCol(i), freqs))[0];
2250      Float factor = cfac * jyperk;
2251      if ( tokelvin ) factor = Float(1.0) / factor;
2252      MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2253      ma *= factor;
2254      specCol.put(i, ma.getArray());
2255      flagCol.put(i, flagsFromMA(ma));
2256    }
2257  ++iter;
2258  }
2259}
2260
2261CountedPtr< Scantable > STMath::opacity( const CountedPtr< Scantable > & in,
2262                                         const std::vector<float>& tau )
2263{
2264  CountedPtr< Scantable > out = getScantable(in, false);
2265
2266  Table outtab = out->table();
2267
2268  const Int ntau = uInt(tau.size());
2269  std::vector<float>::const_iterator tauit = tau.begin();
2270  AlwaysAssert((ntau == 1 || ntau == in->nif() || ntau == in->nif() * in->npol()),
2271               AipsError);
2272  TableIterator iiter(outtab, "IFNO");
2273  while ( !iiter.pastEnd() ) {
2274    Table itab = iiter.table();
2275    TableIterator piter(outtab, "POLNO");
2276    while ( !piter.pastEnd() ) {
2277      Table tab = piter.table();
2278      ROScalarColumn<Float> elev(tab, "ELEVATION");
2279      ArrayColumn<Float> specCol(tab, "SPECTRA");
2280      ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2281      ArrayColumn<Float> tsysCol(tab, "TSYS");
2282      for ( uInt i=0; i<tab.nrow(); ++i) {
2283        Float zdist = Float(C::pi_2) - elev(i);
2284        Float factor = exp(*tauit/cos(zdist));
2285        MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2286        ma *= factor;
2287        specCol.put(i, ma.getArray());
2288        flagCol.put(i, flagsFromMA(ma));
2289        Vector<Float> tsys;
2290        tsysCol.get(i, tsys);
2291        tsys *= factor;
2292        tsysCol.put(i, tsys);
2293      }
2294      if (ntau == in->nif()*in->npol() ) {
2295        tauit++;
2296      }
2297      piter++;
2298    }
2299    if (ntau >= in->nif() ) {
2300      tauit++;
2301    }
2302    iiter++;
2303  }
2304  return out;
2305}
2306
2307CountedPtr< Scantable > STMath::smoothOther( const CountedPtr< Scantable >& in,
2308                                             const std::string& kernel,
2309                                             float width, int order)
2310{
2311  CountedPtr< Scantable > out = getScantable(in, false);
2312  Table table = out->table();
2313
2314  TableIterator iter(table, "IFNO");
2315  while (!iter.pastEnd()) {
2316    Table tab = iter.table();
2317    ArrayColumn<Float> specCol(tab, "SPECTRA");
2318    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2319    Vector<Float> spec;
2320    Vector<uChar> flag;
2321    for (uInt i = 0; i < tab.nrow(); ++i) {
2322      specCol.get(i, spec);
2323      flagCol.get(i, flag);
2324      Vector<Bool> mask(flag.nelements());
2325      convertArray(mask, flag);
2326      Vector<Float> specout;
2327      Vector<Bool> maskout;
2328      if (kernel == "hanning") {
2329        mathutil::hanning(specout, maskout, spec, !mask);
2330        convertArray(flag, !maskout);
2331      } else if (kernel == "rmedian") {
2332        mathutil::runningMedian(specout, maskout, spec , mask, width);
2333        convertArray(flag, maskout);
2334      } else if (kernel == "poly") {
2335        mathutil::polyfit(specout, maskout, spec, !mask, width, order);
2336        convertArray(flag, !maskout);
2337      }
2338
2339      for (uInt j = 0; j < flag.nelements(); ++j) {
2340        uChar userFlag = 1 << 7;
2341        if (maskout[j]==True) userFlag = 0 << 7;
2342        flag(j) = userFlag;
2343      }
2344
2345      flagCol.put(i, flag);
2346      specCol.put(i, specout);
2347    }
2348  ++iter;
2349  }
2350  return out;
2351}
2352
2353CountedPtr< Scantable > STMath::smooth( const CountedPtr< Scantable >& in,
2354                                        const std::string& kernel, float width,
2355                                        int order)
2356{
2357  if (kernel == "rmedian"  || kernel == "hanning" || kernel == "poly") {
2358    return smoothOther(in, kernel, width, order);
2359  }
2360  CountedPtr< Scantable > out = getScantable(in, false);
2361  Table& table = out->table();
2362  VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernel);
2363  // same IFNO should have same no of channels
2364  // this saves overhead
2365  TableIterator iter(table, "IFNO");
2366  while (!iter.pastEnd()) {
2367    Table tab = iter.table();
2368    ArrayColumn<Float> specCol(tab, "SPECTRA");
2369    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2370    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2371    uInt nchan = tmpspec.nelements();
2372    Vector<Float> kvec = VectorKernel::make(type, width, nchan, True, False);
2373    Convolver<Float> conv(kvec, IPosition(1,nchan));
2374    Vector<Float> spec;
2375    Vector<uChar> flag;
2376    for ( uInt i=0; i<tab.nrow(); ++i) {
2377      specCol.get(i, spec);
2378      flagCol.get(i, flag);
2379      Vector<Bool> mask(flag.nelements());
2380      convertArray(mask, flag);
2381      Vector<Float> specout;
2382      mathutil::replaceMaskByZero(specout, mask);
2383      conv.linearConv(specout, spec);
2384      specCol.put(i, specout);
2385    }
2386    ++iter;
2387  }
2388  return out;
2389}
2390
2391CountedPtr< Scantable >
2392  STMath::merge( const std::vector< CountedPtr < Scantable > >& in )
2393{
2394  if ( in.size() < 2 ) {
2395    throw(AipsError("Need at least two scantables to perform a merge."));
2396  }
2397  std::vector<CountedPtr < Scantable > >::const_iterator it = in.begin();
2398  bool insitu = insitu_;
2399  setInsitu(false);
2400  CountedPtr< Scantable > out = getScantable(*it, false);
2401  setInsitu(insitu);
2402  Table& tout = out->table();
2403  ScalarColumn<uInt> freqidcol(tout,"FREQ_ID"), molidcol(tout, "MOLECULE_ID");
2404  ScalarColumn<uInt> scannocol(tout,"SCANNO"), focusidcol(tout,"FOCUS_ID");
2405  // Renumber SCANNO to be 0-based
2406  Vector<uInt> scannos = scannocol.getColumn();
2407  uInt offset = min(scannos);
2408  scannos -= offset;
2409  scannocol.putColumn(scannos);
2410  uInt newscanno = max(scannos)+1;
2411  ++it;
2412  while ( it != in.end() ){
2413    if ( ! (*it)->conformant(*out) ) {
2414      // non conformant.
2415      //pushLog(String("Warning: Can't merge scantables as header info differs."));
2416      LogIO os( LogOrigin( "STMath", "merge()", WHERE ) ) ;
2417      os << LogIO::SEVERE << "Can't merge scantables as header informations (any one of AntennaName, Equinox, and FluxUnit) differ." << LogIO::EXCEPTION ;
2418    }
2419    out->appendToHistoryTable((*it)->history());
2420    const Table& tab = (*it)->table();
2421    TableIterator scanit(tab, "SCANNO");
2422    while (!scanit.pastEnd()) {
2423      TableIterator freqit(scanit.table(), "FREQ_ID");
2424      while ( !freqit.pastEnd() ) {
2425        Table thetab = freqit.table();
2426        uInt nrow = tout.nrow();
2427        tout.addRow(thetab.nrow());
2428        TableCopy::copyRows(tout, thetab, nrow, 0, thetab.nrow());
2429        ROTableRow row(thetab);
2430        for ( uInt i=0; i<thetab.nrow(); ++i) {
2431          uInt k = nrow+i;
2432          scannocol.put(k, newscanno);
2433          const TableRecord& rec = row.get(i);
2434          Double rv,rp,inc;
2435          (*it)->frequencies().getEntry(rp, rv, inc, rec.asuInt("FREQ_ID"));
2436          uInt id;
2437          id = out->frequencies().addEntry(rp, rv, inc);
2438          freqidcol.put(k,id);
2439          //String name,fname;Double rf;
2440          Vector<String> name,fname;Vector<Double> rf;
2441          (*it)->molecules().getEntry(rf, name, fname, rec.asuInt("MOLECULE_ID"));
2442          id = out->molecules().addEntry(rf, name, fname);
2443          molidcol.put(k, id);
2444          Float fpa,frot,fax,ftan,fhand,fmount,fuser, fxy, fxyp;
2445          (*it)->focus().getEntry(fpa, fax, ftan, frot, fhand,
2446                                  fmount,fuser, fxy, fxyp,
2447                                  rec.asuInt("FOCUS_ID"));
2448          id = out->focus().addEntry(fpa, fax, ftan, frot, fhand,
2449                                     fmount,fuser, fxy, fxyp);
2450          focusidcol.put(k, id);
2451        }
2452        ++freqit;
2453      }
2454      ++newscanno;
2455      ++scanit;
2456    }
2457    ++it;
2458  }
2459  return out;
2460}
2461
2462CountedPtr< Scantable >
2463  STMath::invertPhase( const CountedPtr < Scantable >& in )
2464{
2465  return applyToPol(in, &STPol::invertPhase, Float(0.0));
2466}
2467
2468CountedPtr< Scantable >
2469  STMath::rotateXYPhase( const CountedPtr < Scantable >& in, float phase )
2470{
2471   return applyToPol(in, &STPol::rotatePhase, Float(phase));
2472}
2473
2474CountedPtr< Scantable >
2475  STMath::rotateLinPolPhase( const CountedPtr < Scantable >& in, float phase )
2476{
2477  return applyToPol(in, &STPol::rotateLinPolPhase, Float(phase));
2478}
2479
2480CountedPtr< Scantable > STMath::applyToPol( const CountedPtr<Scantable>& in,
2481                                             STPol::polOperation fptr,
2482                                             Float phase )
2483{
2484  CountedPtr< Scantable > out = getScantable(in, false);
2485  Table& tout = out->table();
2486  Block<String> cols(4);
2487  cols[0] = String("SCANNO");
2488  cols[1] = String("BEAMNO");
2489  cols[2] = String("IFNO");
2490  cols[3] = String("CYCLENO");
2491  TableIterator iter(tout, cols);
2492  CountedPtr<STPol> stpol = STPol::getPolClass(out->factories_,
2493                                               out->getPolType() );
2494  while (!iter.pastEnd()) {
2495    Table t = iter.table();
2496    ArrayColumn<Float> speccol(t, "SPECTRA");
2497    ScalarColumn<uInt> focidcol(t, "FOCUS_ID");
2498    Matrix<Float> pols(speccol.getColumn());
2499    try {
2500      stpol->setSpectra(pols);
2501      Float fang,fhand;
2502      fang = in->focusTable_.getTotalAngle(focidcol(0));
2503      fhand = in->focusTable_.getFeedHand(focidcol(0));
2504      stpol->setPhaseCorrections(fang, fhand);
2505      // use a member function pointer in STPol.  This only works on
2506      // the STPol pointer itself, not the Counted Pointer so
2507      // derefernce it.
2508      (&(*(stpol))->*fptr)(phase);
2509      speccol.putColumn(stpol->getSpectra());
2510    } catch (AipsError& e) {
2511      //delete stpol;stpol=0;
2512      throw(e);
2513    }
2514    ++iter;
2515  }
2516  //delete stpol;stpol=0;
2517  return out;
2518}
2519
2520CountedPtr< Scantable >
2521  STMath::swapPolarisations( const CountedPtr< Scantable > & in )
2522{
2523  CountedPtr< Scantable > out = getScantable(in, false);
2524  Table& tout = out->table();
2525  Table t0 = tout(tout.col("POLNO") == 0);
2526  Table t1 = tout(tout.col("POLNO") == 1);
2527  if ( t0.nrow() != t1.nrow() )
2528    throw(AipsError("Inconsistent number of polarisations"));
2529  ArrayColumn<Float> speccol0(t0, "SPECTRA");
2530  ArrayColumn<uChar> flagcol0(t0, "FLAGTRA");
2531  ArrayColumn<Float> speccol1(t1, "SPECTRA");
2532  ArrayColumn<uChar> flagcol1(t1, "FLAGTRA");
2533  Matrix<Float> s0 = speccol0.getColumn();
2534  Matrix<uChar> f0 = flagcol0.getColumn();
2535  speccol0.putColumn(speccol1.getColumn());
2536  flagcol0.putColumn(flagcol1.getColumn());
2537  speccol1.putColumn(s0);
2538  flagcol1.putColumn(f0);
2539  return out;
2540}
2541
2542CountedPtr< Scantable >
2543  STMath::averagePolarisations( const CountedPtr< Scantable > & in,
2544                                const std::vector<bool>& mask,
2545                                const std::string& weight )
2546{
2547  if (in->npol() < 2 )
2548    throw(AipsError("averagePolarisations can only be applied to two or more"
2549                    "polarisations"));
2550  bool insitu = insitu_;
2551  setInsitu(false);
2552  CountedPtr< Scantable > pols = getScantable(in, true);
2553  setInsitu(insitu);
2554  Table& tout = pols->table();
2555  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
2556  Table tab = tableCommand(taql, in->table());
2557  if (tab.nrow() == 0 )
2558    throw(AipsError("Could not find  any rows with POLNO==0 and POLNO==1"));
2559  TableCopy::copyRows(tout, tab);
2560  TableVector<uInt> vec(tout, "POLNO");
2561  vec = 0;
2562  pols->table_.rwKeywordSet().define("nPol", Int(1));
2563  pols->table_.rwKeywordSet().define("POLTYPE", String("stokes"));
2564  //pols->table_.rwKeywordSet().define("POLTYPE", in->getPolType());
2565  std::vector<CountedPtr<Scantable> > vpols;
2566  vpols.push_back(pols);
2567  CountedPtr< Scantable > out = average(vpols, mask, weight, "SCAN");
2568  return out;
2569}
2570
2571CountedPtr< Scantable >
2572  STMath::averageBeams( const CountedPtr< Scantable > & in,
2573                        const std::vector<bool>& mask,
2574                        const std::string& weight )
2575{
2576  bool insitu = insitu_;
2577  setInsitu(false);
2578  CountedPtr< Scantable > beams = getScantable(in, false);
2579  setInsitu(insitu);
2580  Table& tout = beams->table();
2581  // give all rows the same BEAMNO
2582  TableVector<uInt> vec(tout, "BEAMNO");
2583  vec = 0;
2584  beams->table_.rwKeywordSet().define("nBeam", Int(1));
2585  std::vector<CountedPtr<Scantable> > vbeams;
2586  vbeams.push_back(beams);
2587  CountedPtr< Scantable > out = average(vbeams, mask, weight, "SCAN");
2588  return out;
2589}
2590
2591
2592CountedPtr< Scantable >
2593  asap::STMath::frequencyAlign( const CountedPtr< Scantable > & in,
2594                                const std::string & refTime,
2595                                const std::string & method)
2596{
2597  // clone as this is not working insitu
2598  bool insitu = insitu_;
2599  setInsitu(false);
2600  CountedPtr< Scantable > out = getScantable(in, false);
2601  setInsitu(insitu);
2602  Table& tout = out->table();
2603  // Get reference Epoch to time of first row or given String
2604  Unit DAY(String("d"));
2605  MEpoch::Ref epochRef(in->getTimeReference());
2606  MEpoch refEpoch;
2607  if (refTime.length()>0) {
2608    Quantum<Double> qt;
2609    if (MVTime::read(qt,refTime)) {
2610      MVEpoch mv(qt);
2611      refEpoch = MEpoch(mv, epochRef);
2612   } else {
2613      throw(AipsError("Invalid format for Epoch string"));
2614   }
2615  } else {
2616    refEpoch = in->timeCol_(0);
2617  }
2618  MPosition refPos = in->getAntennaPosition();
2619
2620  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2621  /*
2622  // Comment from MV.
2623  // the following code has been commented out because different FREQ_IDs have to be aligned together even
2624  // if the frame doesn't change. So far, lack of this check didn't cause any problems.
2625  // test if user frame is different to base frame
2626  if ( in->frequencies().getFrameString(true)
2627       == in->frequencies().getFrameString(false) ) {
2628    throw(AipsError("Can't convert as no output frame has been set"
2629                    " (use set_freqframe) or it is aligned already."));
2630  }
2631  */
2632  MFrequency::Types system = in->frequencies().getFrame();
2633  MVTime mvt(refEpoch.getValue());
2634  String epochout = mvt.string(MVTime::YMD) + String(" (") + refEpoch.getRefString() + String(")");
2635  ostringstream oss;
2636  oss << "Aligned at reference Epoch " << epochout
2637      << " in frame " << MFrequency::showType(system);
2638  pushLog(String(oss));
2639  // set up the iterator
2640  Block<String> cols(4);
2641  // select by constant direction
2642  cols[0] = String("SRCNAME");
2643  cols[1] = String("BEAMNO");
2644  // select by IF ( no of channels varies over this )
2645  cols[2] = String("IFNO");
2646  // select by restfrequency
2647  cols[3] = String("MOLECULE_ID");
2648  TableIterator iter(tout, cols);
2649  while ( !iter.pastEnd() ) {
2650    Table t = iter.table();
2651    MDirection::ROScalarColumn dirCol(t, "DIRECTION");
2652    TableIterator fiter(t, "FREQ_ID");
2653    // determine nchan from the first row. This should work as
2654    // we are iterating over BEAMNO and IFNO    // we should have constant direction
2655
2656    ROArrayColumn<Float> sCol(t, "SPECTRA");
2657    const MDirection direction = dirCol(0);
2658    const uInt nchan = sCol(0).nelements();
2659
2660    // skip operations if there is nothing to align
2661    if (fiter.pastEnd()) {
2662        continue;
2663    }
2664
2665    Table ftab = fiter.table();
2666    // align all frequency ids with respect to the first encountered id
2667    ScalarColumn<uInt> freqidCol(ftab, "FREQ_ID");
2668    // get the SpectralCoordinate for the freqid, which we are iterating over
2669    SpectralCoordinate sC = in->frequencies().getSpectralCoordinate(freqidCol(0));
2670    FrequencyAligner<Float> fa( sC, nchan, refEpoch,
2671                                direction, refPos, system );
2672    // realign the SpectralCoordinate and put into the output Scantable
2673    Vector<String> units(1);
2674    units = String("Hz");
2675    Bool linear=True;
2676    SpectralCoordinate sc2 = fa.alignedSpectralCoordinate(linear);
2677    sc2.setWorldAxisUnits(units);
2678    const uInt id = out->frequencies().addEntry(sc2.referencePixel()[0],
2679                                                sc2.referenceValue()[0],
2680                                                sc2.increment()[0]);
2681    while ( !fiter.pastEnd() ) {
2682      ftab = fiter.table();
2683      // spectral coordinate for the current FREQ_ID
2684      ScalarColumn<uInt> freqidCol2(ftab, "FREQ_ID");
2685      sC = in->frequencies().getSpectralCoordinate(freqidCol2(0));
2686      // create the "global" abcissa for alignment with same FREQ_ID
2687      Vector<Double> abc(nchan);
2688      for (uInt i=0; i<nchan; i++) {
2689           Double w;
2690           sC.toWorld(w,Double(i));
2691           abc[i] = w;
2692      }
2693      TableVector<uInt> tvec(ftab, "FREQ_ID");
2694      // assign new frequency id to all rows
2695      tvec = id;
2696      // cache abcissa for same time stamps, so iterate over those
2697      TableIterator timeiter(ftab, "TIME");
2698      while ( !timeiter.pastEnd() ) {
2699        Table tab = timeiter.table();
2700        ArrayColumn<Float> specCol(tab, "SPECTRA");
2701        ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2702        MEpoch::ROScalarColumn timeCol(tab, "TIME");
2703        // use align abcissa cache after the first row
2704        // these rows should be just be POLNO
2705        bool first = true;
2706        for (int i=0; i<int(tab.nrow()); ++i) {
2707          // input values
2708          Vector<uChar> flag = flagCol(i);
2709          Vector<Bool> mask(flag.shape());
2710          Vector<Float> specOut, spec;
2711          spec  = specCol(i);
2712          Vector<Bool> maskOut;Vector<uChar> flagOut;
2713          convertArray(mask, flag);
2714          // alignment
2715          Bool ok = fa.align(specOut, maskOut, abc, spec,
2716                             mask, timeCol(i), !first,
2717                             interp, False);
2718          (void) ok; // unused stop compiler nagging     
2719          // back into scantable
2720          flagOut.resize(maskOut.nelements());
2721          convertArray(flagOut, maskOut);
2722          flagCol.put(i, flagOut);
2723          specCol.put(i, specOut);
2724          // start abcissa caching
2725          first = false;
2726        }
2727        // next timestamp
2728        ++timeiter;
2729      }
2730      // next FREQ_ID
2731      ++fiter;
2732    }
2733    // next aligner
2734    ++iter;
2735  }
2736  // set this afterwards to ensure we are doing insitu correctly.
2737  out->frequencies().setFrame(system, true);
2738  return out;
2739}
2740
2741CountedPtr<Scantable>
2742  asap::STMath::convertPolarisation( const CountedPtr<Scantable>& in,
2743                                     const std::string & newtype )
2744{
2745  if (in->npol() != 2 && in->npol() != 4)
2746    throw(AipsError("Can only convert two or four polarisations."));
2747  if ( in->getPolType() == newtype )
2748    throw(AipsError("No need to convert."));
2749  if ( ! in->selector_.empty() )
2750    throw(AipsError("Can only convert whole scantable. Unset the selection."));
2751  bool insitu = insitu_;
2752  setInsitu(false);
2753  CountedPtr< Scantable > out = getScantable(in, true);
2754  setInsitu(insitu);
2755  Table& tout = out->table();
2756  tout.rwKeywordSet().define("POLTYPE", String(newtype));
2757
2758  Block<String> cols(4);
2759  cols[0] = "SCANNO";
2760  cols[1] = "CYCLENO";
2761  cols[2] = "BEAMNO";
2762  cols[3] = "IFNO";
2763  TableIterator it(in->originalTable_, cols);
2764  String basetype = in->getPolType();
2765  STPol* stpol = STPol::getPolClass(in->factories_, basetype);
2766  try {
2767    while ( !it.pastEnd() ) {
2768      Table tab = it.table();
2769      uInt row = tab.rowNumbers()[0];
2770      stpol->setSpectra(in->getPolMatrix(row));
2771      Float fang,fhand;
2772      fang = in->focusTable_.getTotalAngle(in->mfocusidCol_(row));
2773      fhand = in->focusTable_.getFeedHand(in->mfocusidCol_(row));
2774      stpol->setPhaseCorrections(fang, fhand);
2775      Int npolout = 0;
2776      for (uInt i=0; i<tab.nrow(); ++i) {
2777        Vector<Float> outvec = stpol->getSpectrum(i, newtype);
2778        if ( outvec.nelements() > 0 ) {
2779          tout.addRow();
2780          TableCopy::copyRows(tout, tab, tout.nrow()-1, 0, 1);
2781          ArrayColumn<Float> sCol(tout,"SPECTRA");
2782          ScalarColumn<uInt> pCol(tout,"POLNO");
2783          sCol.put(tout.nrow()-1 ,outvec);
2784          pCol.put(tout.nrow()-1 ,uInt(npolout));
2785          npolout++;
2786       }
2787      }
2788      tout.rwKeywordSet().define("nPol", npolout);
2789      ++it;
2790    }
2791  } catch (AipsError& e) {
2792    delete stpol;
2793    throw(e);
2794  }
2795  delete stpol;
2796  return out;
2797}
2798
2799CountedPtr< Scantable >
2800  asap::STMath::mxExtract( const CountedPtr< Scantable > & in,
2801                           const std::string & scantype )
2802{
2803  bool insitu = insitu_;
2804  setInsitu(false);
2805  CountedPtr< Scantable > out = getScantable(in, true);
2806  setInsitu(insitu);
2807  Table& tout = out->table();
2808  std::string taql = "SELECT FROM $1 WHERE BEAMNO != REFBEAMNO";
2809  if (scantype == "on") {
2810    taql = "SELECT FROM $1 WHERE BEAMNO == REFBEAMNO";
2811  }
2812  Table tab = tableCommand(taql, in->table());
2813  TableCopy::copyRows(tout, tab);
2814  if (scantype == "on") {
2815    // re-index SCANNO to 0
2816    TableVector<uInt> vec(tout, "SCANNO");
2817    vec = 0;
2818  }
2819  return out;
2820}
2821
2822std::vector<float>
2823  asap::STMath::fft( const casa::CountedPtr< Scantable > & in,
2824                     const std::vector<int>& whichrow,
2825                     bool getRealImag )
2826{
2827  std::vector<float> res;
2828  Table tab = in->table();
2829  ArrayColumn<Float> specCol(tab, "SPECTRA");
2830  ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2831  FFTServer<Float,Complex> ffts;
2832
2833  if (whichrow.size() < 1) {          // for all rows (by default)
2834    int nrow = int(tab.nrow());
2835    for (int i = 0; i < nrow; ++i) {
2836      Vector<Float> spec = specCol(i);
2837      Vector<uChar> flag = flagCol(i);
2838      doFFT(res, ffts, getRealImag, spec, flag);
2839    }
2840  } else {                           // for specified rows
2841    for (uInt i = 0; i < whichrow.size(); ++i) {
2842      Vector<Float> spec = specCol(whichrow[i]);
2843      Vector<uChar> flag = flagCol(whichrow[i]);
2844      doFFT(res, ffts, getRealImag, spec, flag);
2845    }
2846  }
2847
2848  return res;
2849}
2850
2851void asap::STMath::doFFT( std::vector<float>& out,
2852                          FFTServer<Float,Complex>& ffts,
2853                          bool getRealImag,
2854                          Vector<Float>& spec,
2855                          Vector<uChar>& flag )
2856{
2857  doZeroOrderInterpolation(spec, flag);
2858
2859  Vector<Complex> fftout;
2860  ffts.fft0(fftout, spec);
2861
2862  float norm = float(2.0/double(spec.size()));
2863  if (getRealImag) {
2864    for (uInt j = 0; j < fftout.size(); ++j) {
2865      out.push_back(real(fftout[j])*norm);
2866      out.push_back(imag(fftout[j])*norm);
2867    }
2868  } else {
2869    for (uInt j = 0; j < fftout.size(); ++j) {
2870      out.push_back(abs(fftout[j])*norm);
2871      out.push_back(arg(fftout[j]));
2872    }
2873  }
2874
2875}
2876
2877void asap::STMath::doZeroOrderInterpolation( Vector<Float>& spec,
2878                                             Vector<uChar>& flag )
2879{
2880  int fstart = -1;
2881  int fend = -1;
2882  for (uInt i = 0; i < flag.nelements(); ++i) {
2883    if (flag[i] > 0) {
2884      fstart = i;
2885      while (flag[i] > 0 && i < flag.nelements()) {
2886        fend = i;
2887        i++;
2888      }
2889    }
2890
2891    // execute interpolation as the following criteria:
2892    // (1) for a masked region inside the spectrum, replace the spectral
2893    //     values with the mean of those at the two channels just outside
2894    //     the both edges of the masked region.
2895    // (2) for a masked region at the spectral edge, replace the values
2896    //     with the one at the nearest non-masked channel.
2897    //     (ZOH, but bilateral)
2898    Float interp = 0.0;
2899    if (fstart-1 > 0) {
2900      interp = spec[fstart-1];
2901      if (fend+1 < Int(spec.nelements())) {
2902        interp = (interp + spec[fend+1]) / 2.0;
2903      }
2904    } else {
2905      interp = spec[fend+1];
2906    }
2907    if (fstart > -1 && fend > -1) {
2908      for (int j = fstart; j <= fend; ++j) {
2909        spec[j] = interp;
2910      }
2911    }
2912
2913    fstart = -1;
2914    fend = -1;
2915  }
2916}
2917
2918CountedPtr<Scantable>
2919  asap::STMath::lagFlag( const CountedPtr<Scantable>& in,
2920                         double start, double end,
2921                         const std::string& mode )
2922{
2923  CountedPtr<Scantable> out = getScantable(in, false);
2924  Table& tout = out->table();
2925  TableIterator iter(tout, "FREQ_ID");
2926  FFTServer<Float,Complex> ffts;
2927
2928  while ( !iter.pastEnd() ) {
2929    Table tab = iter.table();
2930    Double rp,rv,inc;
2931    ROTableRow row(tab);
2932    const TableRecord& rec = row.get(0);
2933    uInt freqid = rec.asuInt("FREQ_ID");
2934    out->frequencies().getEntry(rp, rv, inc, freqid);
2935    ArrayColumn<Float> specCol(tab, "SPECTRA");
2936    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2937
2938    for (int i=0; i<int(tab.nrow()); ++i) {
2939      Vector<Float> spec = specCol(i);
2940      Vector<uChar> flag = flagCol(i);
2941      doZeroOrderInterpolation(spec, flag);
2942
2943      Vector<Complex> lags;
2944      ffts.fft0(lags, spec);
2945
2946      Int lag0(start+0.5);
2947      Int lag1(end+0.5);
2948      if (mode == "frequency") {
2949        lag0 = Int(spec.nelements()*abs(inc)/(start)+0.5);
2950        lag1 = Int(spec.nelements()*abs(inc)/(end)+0.5);
2951      }
2952      Int lstart =  max(0, lag0);
2953      Int lend   =  min(Int(lags.nelements()-1), lag1);
2954      if (lstart == lend) {
2955        lags[lstart] = Complex(0.0);
2956      } else {
2957        if (lstart > lend) {
2958          Int tmp = lend;
2959          lend = lstart;
2960          lstart = tmp;
2961        }
2962        for (int j=lstart; j <=lend ;++j) {
2963          lags[j] = Complex(0.0);
2964        }
2965      }
2966
2967      ffts.fft0(spec, lags);
2968
2969      specCol.put(i, spec);
2970    }
2971    ++iter;
2972  }
2973  return out;
2974}
2975
2976// Averaging spectra with different channel/resolution
2977CountedPtr<Scantable>
2978STMath::new_average( const std::vector<CountedPtr<Scantable> >& in,
2979                     const bool& compel,
2980                     const std::vector<bool>& mask,
2981                     const std::string& weight,
2982                     const std::string& avmode )
2983  throw ( casa::AipsError )
2984{
2985  LogIO os( LogOrigin( "STMath", "new_average()", WHERE ) ) ;
2986  if ( avmode == "SCAN" && in.size() != 1 )
2987    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
2988                    "Use merge first."));
2989 
2990  // check if OTF observation
2991  String obstype = in[0]->getHeader().obstype ;
2992  Double tol = 0.0 ;
2993  if ( obstype.find( "OTF" ) != String::npos ) {
2994    tol = TOL_OTF ;
2995  }
2996  else {
2997    tol = TOL_POINT ;
2998  }
2999
3000  CountedPtr<Scantable> out ;     // processed result
3001  if ( compel ) {
3002    std::vector< CountedPtr<Scantable> > newin ; // input for average process
3003    uInt insize = in.size() ;    // number of input scantables
3004
3005    // TEST: do normal average in each table before IF grouping
3006    os << "Do preliminary averaging" << LogIO::POST ;
3007    vector< CountedPtr<Scantable> > tmpin( insize ) ;
3008    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3009      vector< CountedPtr<Scantable> > v( 1, in[itable] ) ;
3010      tmpin[itable] = average( v, mask, weight, avmode ) ;
3011    }
3012
3013    // warning
3014    os << "Average spectra with different spectral resolution" << LogIO::POST ;
3015
3016    // temporarily set coordinfo
3017    vector<string> oldinfo( insize ) ;
3018    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3019      vector<string> coordinfo = in[itable]->getCoordInfo() ;
3020      oldinfo[itable] = coordinfo[0] ;
3021      coordinfo[0] = "Hz" ;
3022      tmpin[itable]->setCoordInfo( coordinfo ) ;
3023    }
3024
3025    // columns
3026    ScalarColumn<uInt> freqIDCol ;
3027    ScalarColumn<uInt> ifnoCol ;
3028    ScalarColumn<uInt> scannoCol ;
3029
3030
3031    // check IF frequency coverage
3032    // freqid: list of FREQ_ID, which is used, in each table 
3033    // iffreq: list of minimum and maximum frequency for each FREQ_ID in
3034    //         each table
3035    // freqid[insize][numIF]
3036    // freqid: [[id00, id01, ...],
3037    //          [id10, id11, ...],
3038    //          ...
3039    //          [idn0, idn1, ...]]
3040    // iffreq[insize][numIF*2]
3041    // iffreq: [[min_id00, max_id00, min_id01, max_id01, ...],
3042    //          [min_id10, max_id10, min_id11, max_id11, ...],
3043    //          ...
3044    //          [min_idn0, max_idn0, min_idn1, max_idn1, ...]]
3045    //os << "Check IF settings in each table" << LogIO::POST ;
3046    vector< vector<uInt> > freqid( insize );
3047    vector< vector<double> > iffreq( insize ) ;
3048    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3049      uInt rows = tmpin[itable]->nrow() ;
3050      uInt freqnrows = tmpin[itable]->frequencies().table().nrow() ;
3051      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3052        if ( freqid[itable].size() == freqnrows ) {
3053          break ;
3054        }
3055        else {
3056          freqIDCol.attach( tmpin[itable]->table(), "FREQ_ID" ) ;
3057          ifnoCol.attach( tmpin[itable]->table(), "IFNO" ) ;
3058          uInt id = freqIDCol( irow ) ;
3059          if ( freqid[itable].size() == 0 || count( freqid[itable].begin(), freqid[itable].end(), id ) == 0 ) {
3060            //os << "itable = " << itable << ": IF " << id << " is included in the list" << LogIO::POST ;
3061            vector<double> abcissa = tmpin[itable]->getAbcissa( irow ) ;
3062            freqid[itable].push_back( id ) ;
3063            iffreq[itable].push_back( abcissa[0] - 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
3064            iffreq[itable].push_back( abcissa[abcissa.size()-1] + 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
3065          }
3066        }
3067      }
3068    }
3069
3070    // debug
3071    //os << "IF settings summary:" << endl ;
3072    //for ( uInt i = 0 ; i < freqid.size() ; i++ ) {
3073    //os << "   Table" << i << endl ;
3074    //for ( uInt j = 0 ; j < freqid[i].size() ; j++ ) {
3075    //os << "      id = " << freqid[i][j] << " (min,max) = (" << iffreq[i][2*j] << "," << iffreq[i][2*j+1] << ")" << endl ;
3076    //}
3077    //}
3078    //os << endl ;
3079    //os.post() ;
3080
3081    // IF grouping based on their frequency coverage
3082    // ifgrp: list of table index and FREQ_ID for all members in each IF group
3083    // ifgfreq: list of minimum and maximum frequency in each IF group
3084    // ifgrp[numgrp][nummember*2]
3085    // ifgrp: [[table00, freqrow00, table01, freqrow01, ...],
3086    //         [table10, freqrow10, table11, freqrow11, ...],
3087    //         ...
3088    //         [tablen0, freqrown0, tablen1, freqrown1, ...]]
3089    // ifgfreq[numgrp*2]
3090    // ifgfreq: [min0_grp0, max0_grp0, min1_grp1, max1_grp1, ...]
3091    //os << "IF grouping based on their frequency coverage" << LogIO::POST ;
3092    vector< vector<uInt> > ifgrp ;
3093    vector<double> ifgfreq ;
3094
3095    // parameter for IF grouping
3096    // groupmode = OR    retrieve all region
3097    //             AND   only retrieve overlaped region
3098    //string groupmode = "AND" ;
3099    string groupmode = "OR" ;
3100    uInt sizecr = 0 ;
3101    if ( groupmode == "AND" )
3102      sizecr = 2 ;
3103    else if ( groupmode == "OR" )
3104      sizecr = 0 ;
3105
3106    vector<double> sortedfreq ;
3107    for ( uInt i = 0 ; i < iffreq.size() ; i++ ) {
3108      for ( uInt j = 0 ; j < iffreq[i].size() ; j++ ) {
3109        if ( count( sortedfreq.begin(), sortedfreq.end(), iffreq[i][j] ) == 0 )
3110          sortedfreq.push_back( iffreq[i][j] ) ;
3111      }
3112    }
3113    sort( sortedfreq.begin(), sortedfreq.end() ) ;
3114    for ( vector<double>::iterator i = sortedfreq.begin() ; i != sortedfreq.end()-1 ; i++ ) {
3115      ifgfreq.push_back( *i ) ;
3116      ifgfreq.push_back( *(i+1) ) ;
3117    }
3118    ifgrp.resize( ifgfreq.size()/2 ) ;
3119    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3120      for ( uInt iif = 0 ; iif < freqid[itable].size() ; iif++ ) {
3121        double range0 = iffreq[itable][2*iif] ;
3122        double range1 = iffreq[itable][2*iif+1] ;
3123        for ( uInt j = 0 ; j < ifgrp.size() ; j++ ) {
3124          double fmin = max( range0, ifgfreq[2*j] ) ;
3125          double fmax = min( range1, ifgfreq[2*j+1] ) ;
3126          if ( fmin < fmax ) {
3127            ifgrp[j].push_back( itable ) ;
3128            ifgrp[j].push_back( freqid[itable][iif] ) ;
3129          }
3130        }
3131      }
3132    }
3133    vector< vector<uInt> >::iterator fiter = ifgrp.begin() ;
3134    vector<double>::iterator giter = ifgfreq.begin() ;
3135    while( fiter != ifgrp.end() ) {
3136      if ( fiter->size() <= sizecr ) {
3137        fiter = ifgrp.erase( fiter ) ;
3138        giter = ifgfreq.erase( giter ) ;
3139        giter = ifgfreq.erase( giter ) ;
3140      }
3141      else {
3142        fiter++ ;
3143        advance( giter, 2 ) ;
3144      }
3145    }
3146
3147    // Grouping continuous IF groups (without frequency gap)
3148    // freqgrp: list of IF group indexes in each frequency group
3149    // freqrange: list of minimum and maximum frequency in each frequency group
3150    // freqgrp[numgrp][nummember]
3151    // freqgrp: [[ifgrp00, ifgrp01, ifgrp02, ...],
3152    //           [ifgrp10, ifgrp11, ifgrp12, ...],
3153    //           ...
3154    //           [ifgrpn0, ifgrpn1, ifgrpn2, ...]]
3155    // freqrange[numgrp*2]
3156    // freqrange: [min_grp0, max_grp0, min_grp1, max_grp1, ...]
3157    vector< vector<uInt> > freqgrp ;
3158    double freqrange = 0.0 ;
3159    uInt grpnum = 0 ;
3160    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3161      // Assumed that ifgfreq was sorted
3162      if ( grpnum != 0 && freqrange == ifgfreq[2*i] ) {
3163        freqgrp[grpnum-1].push_back( i ) ;
3164      }
3165      else {
3166        vector<uInt> grp0( 1, i ) ;
3167        freqgrp.push_back( grp0 ) ;
3168        grpnum++ ;
3169      }
3170      freqrange = ifgfreq[2*i+1] ;
3171    }
3172       
3173
3174    // print IF groups
3175    ostringstream oss ;
3176    oss << "IF Group summary: " << endl ;
3177    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3178    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3179      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3180      for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3181        oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3182      }
3183      oss << endl ;
3184    }
3185    oss << endl ;
3186    os << oss.str() << LogIO::POST ;
3187   
3188    // print frequency group
3189    oss.str("") ;
3190    oss << "Frequency Group summary: " << endl ;
3191    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: IF_GROUP_ID" << endl ;
3192    for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3193      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*freqgrp[i][0]] << "," << ifgfreq[2*freqgrp[i][freqgrp[i].size()-1]+1] << "]: " ;
3194      for ( uInt j = 0 ; j < freqgrp[i].size() ; j++ ) {
3195        oss << freqgrp[i][j] << " " ;
3196      }
3197      oss << endl ;
3198    }
3199    oss << endl ;
3200    os << oss.str() << LogIO::POST ;
3201
3202    // membership check
3203    // groups: list of IF group indexes whose frequency range overlaps with
3204    //         that of each table and IF
3205    // groups[numtable][numIF][nummembership]
3206    // groups: [[[grp, grp,...], [grp, grp,...],...],
3207    //          [[grp, grp,...], [grp, grp,...],...],
3208    //          ...
3209    //          [[grp, grp,...], [grp, grp,...],...]]
3210    vector< vector< vector<uInt> > > groups( insize ) ;
3211    for ( uInt i = 0 ; i < insize ; i++ ) {
3212      groups[i].resize( freqid[i].size() ) ;
3213    }
3214    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3215      for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3216        uInt tableid = ifgrp[igrp][2*imem] ;
3217        vector<uInt>::iterator iter = find( freqid[tableid].begin(), freqid[tableid].end(), ifgrp[igrp][2*imem+1] ) ;
3218        if ( iter != freqid[tableid].end() ) {
3219          uInt rowid = distance( freqid[tableid].begin(), iter ) ;
3220          groups[tableid][rowid].push_back( igrp ) ;
3221        }
3222      }
3223    }
3224
3225    // print membership
3226    //oss.str("") ;
3227    //for ( uInt i = 0 ; i < insize ; i++ ) {
3228    //oss << "Table " << i << endl ;
3229    //for ( uInt j = 0 ; j < groups[i].size() ; j++ ) {
3230    //oss << "   FREQ_ID " <<  setw( 2 ) << freqid[i][j] << ": " ;
3231    //for ( uInt k = 0 ; k < groups[i][j].size() ; k++ ) {
3232    //oss << setw( 2 ) << groups[i][j][k] << " " ;
3233    //}
3234    //oss << endl ;
3235    //}
3236    //}
3237    //os << oss.str() << LogIO::POST ;
3238
3239    // set back coordinfo
3240    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3241      vector<string> coordinfo = tmpin[itable]->getCoordInfo() ;
3242      coordinfo[0] = oldinfo[itable] ;
3243      tmpin[itable]->setCoordInfo( coordinfo ) ;
3244    }
3245
3246    // Create additional table if needed
3247    bool oldInsitu = insitu_ ;
3248    setInsitu( false ) ;
3249    vector< vector<uInt> > addrow( insize ) ;
3250    vector<uInt> addtable( insize, 0 ) ;
3251    vector<uInt> newtableids( insize ) ;
3252    vector<uInt> newifids( insize, 0 ) ;
3253    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3254      //os << "Table " << itable << ": " ;
3255      for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3256        addrow[itable].push_back( groups[itable][ifrow].size()-1 ) ;
3257        //os << addrow[itable][ifrow] << " " ;
3258      }
3259      addtable[itable] = *max_element( addrow[itable].begin(), addrow[itable].end() ) ;
3260      //os << "(" << addtable[itable] << ")" << LogIO::POST ;
3261    }
3262    newin.resize( insize ) ;
3263    copy( tmpin.begin(), tmpin.end(), newin.begin() ) ;
3264    for ( uInt i = 0 ; i < insize ; i++ ) {
3265      newtableids[i] = i ;
3266    }
3267    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3268      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3269        CountedPtr<Scantable> add = getScantable( newin[itable], false ) ;
3270        vector<int> freqidlist ;
3271        for ( uInt i = 0 ; i < groups[itable].size() ; i++ ) {
3272          if ( groups[itable][i].size() > iadd + 1 ) {
3273            freqidlist.push_back( freqid[itable][i] ) ;
3274          }
3275        }
3276        stringstream taqlstream ;
3277        taqlstream << "SELECT FROM $1 WHERE FREQ_ID IN [" ;
3278        for ( uInt i = 0 ; i < freqidlist.size() ; i++ ) {
3279          taqlstream << freqidlist[i] ;
3280          if ( i < freqidlist.size() - 1 )
3281            taqlstream << "," ;
3282          else
3283            taqlstream << "]" ;
3284        }
3285        string taql = taqlstream.str() ;
3286        //os << "taql = " << taql << LogIO::POST ;
3287        STSelector selector = STSelector() ;
3288        selector.setTaQL( taql ) ;
3289        add->setSelection( selector ) ;
3290        newin.push_back( add ) ;
3291        newtableids.push_back( itable ) ;
3292        newifids.push_back( iadd + 1 ) ;
3293      }
3294    }
3295
3296    // udpate ifgrp
3297    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3298      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3299        for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3300          if ( groups[itable][ifrow].size() > iadd + 1 ) {
3301            uInt igrp = groups[itable][ifrow][iadd+1] ;
3302            for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3303              if ( ifgrp[igrp][2*imem] == newtableids[iadd+insize] && ifgrp[igrp][2*imem+1] == freqid[newtableids[iadd+insize]][ifrow] ) {
3304                ifgrp[igrp][2*imem] = insize + iadd ;
3305              }
3306            }
3307          }
3308        }
3309      }
3310    }
3311
3312    // print IF groups again for debug
3313    //oss.str( "" ) ;
3314    //oss << "IF Group summary: " << endl ;
3315    //oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3316    //for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3317    //oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3318    //for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3319    //oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3320    //}
3321    //oss << endl ;
3322    //}
3323    //oss << endl ;
3324    //os << oss.str() << LogIO::POST ;
3325
3326    // reset SCANNO and IFNO/FREQ_ID: IF is reset by the result of sortation
3327    os << "All scan number is set to 0" << LogIO::POST ;
3328    //os << "All IF number is set to IF group index" << LogIO::POST ;
3329    insize = newin.size() ;
3330    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3331      uInt rows = newin[itable]->nrow() ;
3332      Table &tmpt = newin[itable]->table() ;
3333      freqIDCol.attach( tmpt, "FREQ_ID" ) ;
3334      scannoCol.attach( tmpt, "SCANNO" ) ;
3335      ifnoCol.attach( tmpt, "IFNO" ) ;
3336      for ( uInt irow=0 ; irow < rows ; irow++ ) {
3337        scannoCol.put( irow, 0 ) ;
3338        uInt freqID = freqIDCol( irow ) ;
3339        vector<uInt>::iterator iter = find( freqid[newtableids[itable]].begin(), freqid[newtableids[itable]].end(), freqID ) ;
3340        if ( iter != freqid[newtableids[itable]].end() ) {
3341          uInt index = distance( freqid[newtableids[itable]].begin(), iter ) ;
3342          ifnoCol.put( irow, groups[newtableids[itable]][index][newifids[itable]] ) ;
3343        }
3344        else {
3345          throw(AipsError("IF grouping was wrong in additional tables.")) ;
3346        }
3347      }
3348    }
3349    oldinfo.resize( insize ) ;
3350    setInsitu( oldInsitu ) ;
3351
3352    // temporarily set coordinfo
3353    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3354      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3355      oldinfo[itable] = coordinfo[0] ;
3356      coordinfo[0] = "Hz" ;
3357      newin[itable]->setCoordInfo( coordinfo ) ;
3358    }
3359
3360    // save column values in the vector
3361    vector< vector<uInt> > freqTableIdVec( insize ) ;
3362    vector< vector<uInt> > freqIdVec( insize ) ;
3363    vector< vector<uInt> > ifNoVec( insize ) ;
3364    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3365      ScalarColumn<uInt> freqIDs ;
3366      freqIDs.attach( newin[itable]->frequencies().table(), "ID" ) ;
3367      ifnoCol.attach( newin[itable]->table(), "IFNO" ) ;
3368      freqIDCol.attach( newin[itable]->table(), "FREQ_ID" ) ;
3369      for ( uInt irow = 0 ; irow < newin[itable]->frequencies().table().nrow() ; irow++ ) {
3370        freqTableIdVec[itable].push_back( freqIDs( irow ) ) ;
3371      }
3372      for ( uInt irow = 0 ; irow < newin[itable]->table().nrow() ; irow++ ) {
3373        freqIdVec[itable].push_back( freqIDCol( irow ) ) ;
3374        ifNoVec[itable].push_back( ifnoCol( irow ) ) ;
3375      }
3376    }
3377
3378    // reset spectra and flagtra: pick up common part of frequency coverage
3379    //os << "Pick common frequency range and align resolution" << LogIO::POST ;
3380    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3381      uInt rows = newin[itable]->nrow() ;
3382      int nminchan = -1 ;
3383      int nmaxchan = -1 ;
3384      vector<uInt> freqIdUpdate ;
3385      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3386        uInt ifno = ifNoVec[itable][irow] ;  // IFNO is reset by group index
3387        double minfreq = ifgfreq[2*ifno] ;
3388        double maxfreq = ifgfreq[2*ifno+1] ;
3389        //os << "frequency range: [" << minfreq << "," << maxfreq << "]" << LogIO::POST ;
3390        vector<double> abcissa = newin[itable]->getAbcissa( irow ) ;
3391        int nchan = abcissa.size() ;
3392        double resol = abcissa[1] - abcissa[0] ;
3393        //os << "abcissa range  : [" << abcissa[0] << "," << abcissa[nchan-1] << "]" << LogIO::POST ;
3394        if ( minfreq <= abcissa[0] )
3395          nminchan = 0 ;
3396        else {
3397          //double cfreq = ( minfreq - abcissa[0] ) / resol ;
3398          double cfreq = ( minfreq - abcissa[0] + 0.5 * resol ) / resol ;
3399          nminchan = int(cfreq) + ( ( cfreq - int(cfreq) <= 0.5 ) ? 0 : 1 ) ;
3400        }
3401        if ( maxfreq >= abcissa[abcissa.size()-1] )
3402          nmaxchan = abcissa.size() - 1 ;
3403        else {
3404          //double cfreq = ( abcissa[abcissa.size()-1] - maxfreq ) / resol ;
3405          double cfreq = ( abcissa[abcissa.size()-1] - maxfreq + 0.5 * resol ) / resol ;
3406          nmaxchan = abcissa.size() - 1 - int(cfreq) - ( ( cfreq - int(cfreq) >= 0.5 ) ? 1 : 0 ) ;
3407        }
3408        //os << "channel range (" << irow << "): [" << nminchan << "," << nmaxchan << "]" << LogIO::POST ;
3409        if ( nmaxchan > nminchan ) {
3410          newin[itable]->reshapeSpectrum( nminchan, nmaxchan, irow ) ;
3411          int newchan = nmaxchan - nminchan + 1 ;
3412          if ( count( freqIdUpdate.begin(), freqIdUpdate.end(), freqIdVec[itable][irow] ) == 0 && newchan < nchan )
3413            freqIdUpdate.push_back( freqIdVec[itable][irow] ) ;
3414        }
3415        else {
3416          throw(AipsError("Failed to pick up common part of frequency range.")) ;
3417        }
3418      }
3419      for ( uInt i = 0 ; i < freqIdUpdate.size() ; i++ ) {
3420        uInt freqId = freqIdUpdate[i] ;
3421        Double refpix ;
3422        Double refval ;
3423        Double increment ;
3424       
3425        // update row
3426        newin[itable]->frequencies().getEntry( refpix, refval, increment, freqId ) ;
3427        refval = refval - ( refpix - nminchan ) * increment ;
3428        refpix = 0 ;
3429        newin[itable]->frequencies().setEntry( refpix, refval, increment, freqId ) ;
3430      }   
3431    }
3432
3433   
3434    // reset spectra and flagtra: align spectral resolution
3435    //os << "Align spectral resolution" << LogIO::POST ;
3436    // gmaxdnu: the coarsest frequency resolution in the frequency group
3437    // gmemid: member index that have a resolution equal to gmaxdnu
3438    // gmaxdnu[numfreqgrp]
3439    // gmaxdnu: [dnu0, dnu1, ...]
3440    // gmemid[numfreqgrp]
3441    // gmemid: [id0, id1, ...]
3442    vector<double> gmaxdnu( freqgrp.size(), 0.0 ) ;
3443    vector<uInt> gmemid( freqgrp.size(), 0 ) ;
3444    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3445      double maxdnu = 0.0 ;       // maximum (coarsest) frequency resolution
3446      int minchan = INT_MAX ;     // minimum channel number
3447      Double refpixref = -1 ;     // reference of 'reference pixel'
3448      Double refvalref = -1 ;     // reference of 'reference frequency'
3449      Double refinc = -1 ;        // reference frequency resolution
3450      uInt refreqid ;
3451      uInt reftable = INT_MAX;
3452      // process only if group member > 1
3453      if ( ifgrp[igrp].size() > 2 ) {
3454        // find minchan and maxdnu in each group
3455        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3456          uInt tableid = ifgrp[igrp][2*imem] ;
3457          uInt rowid = ifgrp[igrp][2*imem+1] ;
3458          vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3459          if ( iter != freqIdVec[tableid].end() ) {
3460            uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3461            vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3462            int nchan = abcissa.size() ;
3463            double dnu = abcissa[1] - abcissa[0] ;
3464            //os << "GROUP " << igrp << " (" << tableid << "," << rowid << "): nchan = " << nchan << " (minchan = " << minchan << ")" << LogIO::POST ;
3465            if ( nchan < minchan ) {
3466              minchan = nchan ;
3467              maxdnu = dnu ;
3468              newin[tableid]->frequencies().getEntry( refpixref, refvalref, refinc, rowid ) ;
3469              refreqid = rowid ;
3470              reftable = tableid ;
3471            }
3472          }
3473        }
3474        // regrid spectra in each group
3475        os << "GROUP " << igrp << endl ;
3476        os << "   Channel number is adjusted to " << minchan << endl ;
3477        os << "   Corresponding frequency resolution is " << maxdnu << "Hz" << LogIO::POST ;
3478        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3479          uInt tableid = ifgrp[igrp][2*imem] ;
3480          uInt rowid = ifgrp[igrp][2*imem+1] ;
3481          freqIDCol.attach( newin[tableid]->table(), "FREQ_ID" ) ;
3482          //os << "tableid = " << tableid << " rowid = " << rowid << ": " << LogIO::POST ;
3483          //os << "   regridChannel applied to " ;
3484          //if ( tableid != reftable )
3485          refreqid = newin[tableid]->frequencies().addEntry( refpixref, refvalref, refinc ) ;
3486          for ( uInt irow = 0 ; irow < newin[tableid]->table().nrow() ; irow++ ) {
3487            uInt tfreqid = freqIdVec[tableid][irow] ;
3488            if ( tfreqid == rowid ) {     
3489              //os << irow << " " ;
3490              newin[tableid]->regridChannel( minchan, maxdnu, irow ) ;
3491              freqIDCol.put( irow, refreqid ) ;
3492              freqIdVec[tableid][irow] = refreqid ;
3493            }
3494          }
3495          //os << LogIO::POST ;
3496        }
3497      }
3498      else {
3499        uInt tableid = ifgrp[igrp][0] ;
3500        uInt rowid = ifgrp[igrp][1] ;
3501        vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3502        if ( iter != freqIdVec[tableid].end() ) {
3503          uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3504          vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3505          minchan = abcissa.size() ;
3506          maxdnu = abcissa[1] - abcissa[0] ;
3507        }
3508      }
3509      for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3510        if ( count( freqgrp[i].begin(), freqgrp[i].end(), igrp ) > 0 ) {
3511          if ( maxdnu > gmaxdnu[i] ) {
3512            gmaxdnu[i] = maxdnu ;
3513            gmemid[i] = igrp ;
3514          }
3515          break ;
3516        }
3517      }
3518    }
3519
3520    // set back coordinfo
3521    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3522      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3523      coordinfo[0] = oldinfo[itable] ;
3524      newin[itable]->setCoordInfo( coordinfo ) ;
3525    }     
3526
3527    // accumulate all rows into the first table
3528    // NOTE: assumed in.size() = 1
3529    vector< CountedPtr<Scantable> > tmp( 1 ) ;
3530    if ( newin.size() == 1 )
3531      tmp[0] = newin[0] ;
3532    else
3533      tmp[0] = merge( newin ) ;
3534
3535    //return tmp[0] ;
3536
3537    // average
3538    CountedPtr<Scantable> tmpout = average( tmp, mask, weight, avmode ) ;
3539
3540    //return tmpout ;
3541
3542    // combine frequency group
3543    os << "Combine spectra based on frequency grouping" << LogIO::POST ;
3544    os << "IFNO is renumbered as frequency group ID (see above)" << LogIO::POST ;
3545    vector<string> coordinfo = tmpout->getCoordInfo() ;
3546    oldinfo[0] = coordinfo[0] ;
3547    coordinfo[0] = "Hz" ;
3548    tmpout->setCoordInfo( coordinfo ) ;
3549    // create proformas of output table
3550    stringstream taqlstream ;
3551    taqlstream << "SELECT FROM $1 WHERE IFNO IN [" ;
3552    for ( uInt i = 0 ; i < gmemid.size() ; i++ ) {
3553      taqlstream << gmemid[i] ;
3554      if ( i < gmemid.size() - 1 )
3555        taqlstream << "," ;
3556      else
3557        taqlstream << "]" ;
3558    }
3559    string taql = taqlstream.str() ;
3560    //os << "taql = " << taql << LogIO::POST ;
3561    STSelector selector = STSelector() ;
3562    selector.setTaQL( taql ) ;
3563    oldInsitu = insitu_ ;
3564    setInsitu( false ) ;
3565    out = getScantable( tmpout, false ) ;
3566    setInsitu( oldInsitu ) ;
3567    out->setSelection( selector ) ;
3568    // regrid rows
3569    ifnoCol.attach( tmpout->table(), "IFNO" ) ;
3570    for ( uInt irow = 0 ; irow < tmpout->table().nrow() ; irow++ ) {
3571      uInt ifno = ifnoCol( irow ) ;
3572      for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3573        if ( count( freqgrp[igrp].begin(), freqgrp[igrp].end(), ifno ) > 0 ) {
3574          vector<double> abcissa = tmpout->getAbcissa( irow ) ;
3575          double bw = ( abcissa[1] - abcissa[0] ) * abcissa.size() ;
3576          int nchan = (int)( bw / gmaxdnu[igrp] ) ;
3577          tmpout->regridChannel( nchan, gmaxdnu[igrp], irow ) ;
3578          break ;
3579        }
3580      }
3581    }
3582    // combine spectra
3583    ArrayColumn<Float> specColOut ;
3584    specColOut.attach( out->table(), "SPECTRA" ) ;
3585    ArrayColumn<uChar> flagColOut ;
3586    flagColOut.attach( out->table(), "FLAGTRA" ) ;
3587    ScalarColumn<uInt> ifnoColOut ;
3588    ifnoColOut.attach( out->table(), "IFNO" ) ;
3589    ScalarColumn<uInt> polnoColOut ;
3590    polnoColOut.attach( out->table(), "POLNO" ) ;
3591    ScalarColumn<uInt> freqidColOut ;
3592    freqidColOut.attach( out->table(), "FREQ_ID" ) ;
3593    MDirection::ScalarColumn dirColOut ;
3594    dirColOut.attach( out->table(), "DIRECTION" ) ;
3595    Table &tab = tmpout->table() ;
3596    Block<String> cols(1);
3597    cols[0] = String("POLNO") ;
3598    TableIterator iter( tab, cols ) ;
3599    bool done = false ;
3600    vector< vector<uInt> > sizes( freqgrp.size() ) ;
3601    while( !iter.pastEnd() ) {
3602      vector< vector<Float> > specout( freqgrp.size() ) ;
3603      vector< vector<uChar> > flagout( freqgrp.size() ) ;
3604      ArrayColumn<Float> specCols ;
3605      specCols.attach( iter.table(), "SPECTRA" ) ;
3606      ArrayColumn<uChar> flagCols ;
3607      flagCols.attach( iter.table(), "FLAGTRA" ) ;
3608      ifnoCol.attach( iter.table(), "IFNO" ) ;
3609      ScalarColumn<uInt> polnos ;
3610      polnos.attach( iter.table(), "POLNO" ) ;
3611      MDirection::ScalarColumn dircol ;
3612      dircol.attach( iter.table(), "DIRECTION" ) ;
3613      uInt polno = polnos( 0 ) ;
3614      //os << "POLNO iteration: " << polno << LogIO::POST ;
3615//       for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3616//      sizes[igrp].resize( freqgrp[igrp].size() ) ;
3617//      for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3618//        for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3619//          uInt ifno = ifnoCol( irow ) ;
3620//          if ( ifno == freqgrp[igrp][imem] ) {
3621//            Vector<Float> spec = specCols( irow ) ;
3622//            Vector<uChar> flag = flagCols( irow ) ;
3623//            vector<Float> svec ;
3624//            spec.tovector( svec ) ;
3625//            vector<uChar> fvec ;
3626//            flag.tovector( fvec ) ;
3627//            //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3628//            specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3629//            flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3630//            //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3631//            sizes[igrp][imem] = spec.nelements() ;
3632//          }
3633//        }
3634//      }
3635//      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3636//        uInt ifout = ifnoColOut( irow ) ;
3637//        uInt polout = polnoColOut( irow ) ;
3638//        if ( ifout == gmemid[igrp] && polout == polno ) {
3639//          // set SPECTRA and FRAGTRA
3640//          Vector<Float> newspec( specout[igrp] ) ;
3641//          Vector<uChar> newflag( flagout[igrp] ) ;
3642//          specColOut.put( irow, newspec ) ;
3643//          flagColOut.put( irow, newflag ) ;
3644//          // IFNO renumbering
3645//          ifnoColOut.put( irow, igrp ) ;
3646//        }
3647//      }
3648//       }
3649      // get a list of number of channels for each frequency group member
3650      if ( !done ) {
3651        for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3652          sizes[igrp].resize( freqgrp[igrp].size() ) ;
3653          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3654            for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3655              uInt ifno = ifnoCol( irow ) ;
3656              if ( ifno == freqgrp[igrp][imem] ) {
3657                Vector<Float> spec = specCols( irow ) ;
3658                sizes[igrp][imem] = spec.nelements() ;
3659                break ;
3660              }               
3661            }
3662          }
3663        }
3664        done = true ;
3665      }
3666      // combine spectra
3667      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3668        uInt polout = polnoColOut( irow ) ;
3669        if ( polout == polno ) {
3670          uInt ifout = ifnoColOut( irow ) ;
3671          Vector<Double> direction = dirColOut(irow).getAngle(Unit(String("rad"))).getValue() ;
3672          uInt igrp ;
3673          for ( uInt jgrp = 0 ; jgrp < freqgrp.size() ; jgrp++ ) {
3674            if ( ifout == gmemid[jgrp] ) {
3675              igrp = jgrp ;
3676              break ;
3677            }
3678          }
3679          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3680            for ( uInt jrow = 0 ; jrow < iter.table().nrow() ; jrow++ ) {
3681              uInt ifno = ifnoCol( jrow ) ;
3682              Vector<Double> tdir = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
3683              //if ( ifno == freqgrp[igrp][imem] && allTrue( tdir == direction  ) ) {
3684              Double dx = tdir[0] - direction[0] ;
3685              Double dy = tdir[1] - direction[1] ;
3686              Double dd = sqrt( dx * dx + dy * dy ) ;
3687              //if ( ifno == freqgrp[igrp][imem] && allNearAbs( tdir, direction, tol ) ) {
3688              if ( ifno == freqgrp[igrp][imem] && dd <= tol ) {
3689                Vector<Float> spec = specCols( jrow ) ;
3690                Vector<uChar> flag = flagCols( jrow ) ;
3691                vector<Float> svec ;
3692                spec.tovector( svec ) ;
3693                vector<uChar> fvec ;
3694                flag.tovector( fvec ) ;
3695                //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3696                specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3697                flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3698                //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3699              }
3700            }
3701          }
3702          // set SPECTRA and FRAGTRA
3703          Vector<Float> newspec( specout[igrp] ) ;
3704          Vector<uChar> newflag( flagout[igrp] ) ;
3705          specColOut.put( irow, newspec ) ;
3706          flagColOut.put( irow, newflag ) ;
3707          // IFNO renumbering
3708          ifnoColOut.put( irow, igrp ) ;
3709        }
3710      }
3711      iter++ ;
3712    }
3713    // update FREQUENCIES subtable
3714    vector<bool> updated( freqgrp.size(), false ) ;
3715    for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3716      uInt index = 0 ;
3717      uInt pixShift = 0 ;
3718      while ( freqgrp[igrp][index] != gmemid[igrp] ) {
3719        pixShift += sizes[igrp][index++] ;
3720      }
3721      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3722        if ( ifnoColOut( irow ) == gmemid[igrp] && !updated[igrp] ) {
3723          uInt freqidOut = freqidColOut( irow ) ;
3724          //os << "freqgrp " << igrp << " freqidOut = " << freqidOut << LogIO::POST ;
3725          double refpix ;
3726          double refval ;
3727          double increm ;
3728          out->frequencies().getEntry( refpix, refval, increm, freqidOut ) ;
3729          refpix += pixShift ;
3730          out->frequencies().setEntry( refpix, refval, increm, freqidOut ) ;
3731          updated[igrp] = true ;
3732        }
3733      }
3734    }
3735
3736    //out = tmpout ;
3737
3738    coordinfo = tmpout->getCoordInfo() ;
3739    coordinfo[0] = oldinfo[0] ;
3740    tmpout->setCoordInfo( coordinfo ) ;
3741  }
3742  else {
3743    // simple average
3744    out =  average( in, mask, weight, avmode ) ;
3745  }
3746 
3747  return out ;
3748}
3749
3750CountedPtr<Scantable> STMath::cwcal( const CountedPtr<Scantable>& s,
3751                                     const String calmode,
3752                                     const String antname )
3753{
3754  // frequency switch
3755  if ( calmode == "fs" ) {
3756    return cwcalfs( s, antname ) ;
3757  }
3758  else {
3759    vector<bool> masks = s->getMask( 0 ) ;
3760    vector<int> types ;
3761
3762    // sky scan
3763    STSelector sel = STSelector() ;
3764    types.push_back( SrcType::SKY ) ;
3765    sel.setTypes( types ) ;
3766    s->setSelection( sel ) ;
3767    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3768    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
3769    s->unsetSelection() ;
3770    sel.reset() ;
3771    types.clear() ;
3772
3773    // hot scan
3774    types.push_back( SrcType::HOT ) ;
3775    sel.setTypes( types ) ;
3776    s->setSelection( sel ) ;
3777    tmp.clear() ;
3778    tmp.push_back( getScantable( s, false ) ) ;
3779    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
3780    s->unsetSelection() ;
3781    sel.reset() ;
3782    types.clear() ;
3783   
3784    // cold scan
3785    CountedPtr<Scantable> acold ;
3786//     types.push_back( SrcType::COLD ) ;
3787//     sel.setTypes( types ) ;
3788//     s->setSelection( sel ) ;
3789//     tmp.clear() ;
3790//     tmp.push_back( getScantable( s, false ) ) ;
3791//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCNAN" ) ;
3792//     s->unsetSelection() ;
3793//     sel.reset() ;
3794//     types.clear() ;
3795
3796    // off scan
3797    types.push_back( SrcType::PSOFF ) ;
3798    sel.setTypes( types ) ;
3799    s->setSelection( sel ) ;
3800    tmp.clear() ;
3801    tmp.push_back( getScantable( s, false ) ) ;
3802    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3803    s->unsetSelection() ;
3804    sel.reset() ;
3805    types.clear() ;
3806   
3807    // on scan
3808    bool insitu = insitu_ ;
3809    insitu_ = false ;
3810    CountedPtr<Scantable> out = getScantable( s, true ) ;
3811    insitu_ = insitu ;
3812    types.push_back( SrcType::PSON ) ;
3813    sel.setTypes( types ) ;
3814    s->setSelection( sel ) ;
3815    TableCopy::copyRows( out->table(), s->table() ) ;
3816    s->unsetSelection() ;
3817    sel.reset() ;
3818    types.clear() ;
3819   
3820    // process each on scan
3821    ArrayColumn<Float> tsysCol ;
3822    tsysCol.attach( out->table(), "TSYS" ) ;
3823    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3824      vector<float> sp = getCalibratedSpectra( out, aoff, asky, ahot, acold, i, antname ) ;
3825      out->setSpectrum( sp, i ) ;
3826      string reftime = out->getTime( i ) ;
3827      vector<int> ii( 1, out->getIF( i ) ) ;
3828      vector<int> ib( 1, out->getBeam( i ) ) ;
3829      vector<int> ip( 1, out->getPol( i ) ) ;
3830      sel.setIFs( ii ) ;
3831      sel.setBeams( ib ) ;
3832      sel.setPolarizations( ip ) ;
3833      asky->setSelection( sel ) ;   
3834      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
3835      const Vector<Float> Vtsys( sptsys ) ;
3836      tsysCol.put( i, Vtsys ) ;
3837      asky->unsetSelection() ;
3838      sel.reset() ;
3839    }
3840
3841    // flux unit
3842    out->setFluxUnit( "K" ) ;
3843
3844    return out ;
3845  }
3846}
3847 
3848CountedPtr<Scantable> STMath::almacal( const CountedPtr<Scantable>& s,
3849                                       const String calmode )
3850{
3851  // frequency switch
3852  if ( calmode == "fs" ) {
3853    return almacalfs( s ) ;
3854  }
3855  else {
3856    vector<bool> masks = s->getMask( 0 ) ;
3857   
3858    // off scan
3859    STSelector sel = STSelector() ;
3860    vector<int> types ;
3861    types.push_back( SrcType::PSOFF ) ;
3862    sel.setTypes( types ) ;
3863    s->setSelection( sel ) ;
3864    // TODO 2010/01/08 TN
3865    // Grouping by time should be needed before averaging.
3866    // Each group must have own unique SCANNO (should be renumbered).
3867    // See PIPELINE/SDCalibration.py
3868    CountedPtr<Scantable> soff = getScantable( s, false ) ;
3869    Table ttab = soff->table() ;
3870    ROScalarColumn<Double> timeCol( ttab, "TIME" ) ;
3871    uInt nrow = timeCol.nrow() ;
3872    Vector<Double> timeSep( nrow - 1 ) ;
3873    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3874      timeSep[i] = timeCol(i+1) - timeCol(i) ;
3875    }
3876    ScalarColumn<Double> intervalCol( ttab, "INTERVAL" ) ;
3877    Vector<Double> interval = intervalCol.getColumn() ;
3878    interval /= 86400.0 ;
3879    ScalarColumn<uInt> scanCol( ttab, "SCANNO" ) ;
3880    vector<uInt> glist ;
3881    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3882      double gap = 2.0 * timeSep[i] / ( interval[i] + interval[i+1] ) ;
3883      //cout << "gap[" << i << "]=" << setw(5) << gap << endl ;
3884      if ( gap > 1.1 ) {
3885        glist.push_back( i ) ;
3886      }
3887    }
3888    Vector<uInt> gaplist( glist ) ;
3889    //cout << "gaplist = " << gaplist << endl ;
3890    uInt newid = 0 ;
3891    for ( uInt i = 0 ; i < nrow ; i++ ) {
3892      scanCol.put( i, newid ) ;
3893      if ( i == gaplist[newid] ) {
3894        newid++ ;
3895      }
3896    }
3897    //cout << "new scancol = " << scanCol.getColumn() << endl ;
3898    vector< CountedPtr<Scantable> > tmp( 1, soff ) ;
3899    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3900    //cout << "aoff.nrow = " << aoff->nrow() << endl ;
3901    s->unsetSelection() ;
3902    sel.reset() ;
3903    types.clear() ;
3904   
3905    // on scan
3906    bool insitu = insitu_ ;
3907    insitu_ = false ;
3908    CountedPtr<Scantable> out = getScantable( s, true ) ;
3909    insitu_ = insitu ;
3910    types.push_back( SrcType::PSON ) ;
3911    sel.setTypes( types ) ;
3912    s->setSelection( sel ) ;
3913    TableCopy::copyRows( out->table(), s->table() ) ;
3914    s->unsetSelection() ;
3915    sel.reset() ;
3916    types.clear() ;
3917   
3918    // process each on scan
3919    ArrayColumn<Float> tsysCol ;
3920    tsysCol.attach( out->table(), "TSYS" ) ;
3921    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3922      vector<float> sp = getCalibratedSpectra( out, aoff, i ) ;
3923      out->setSpectrum( sp, i ) ;
3924    }
3925
3926    // flux unit
3927    out->setFluxUnit( "K" ) ;
3928
3929    return out ;
3930  }
3931}
3932
3933CountedPtr<Scantable> STMath::cwcalfs( const CountedPtr<Scantable>& s,
3934                                       const String antname )
3935{
3936  vector<int> types ;
3937
3938  // APEX calibration mode
3939  int apexcalmode = 1 ;
3940 
3941  if ( antname.find( "APEX" ) != string::npos ) {
3942    // check if off scan exists or not
3943    STSelector sel = STSelector() ;
3944    //sel.setName( offstr1 ) ;
3945    types.push_back( SrcType::FLOOFF ) ;
3946    sel.setTypes( types ) ;
3947    try {
3948      s->setSelection( sel ) ;
3949    }
3950    catch ( AipsError &e ) {
3951      apexcalmode = 0 ;
3952    }
3953    sel.reset() ;
3954  }
3955  s->unsetSelection() ;
3956  types.clear() ;
3957
3958  vector<bool> masks = s->getMask( 0 ) ;
3959  CountedPtr<Scantable> ssig, sref ;
3960  CountedPtr<Scantable> out ;
3961
3962  if ( antname.find( "APEX" ) != string::npos ) {
3963    // APEX calibration
3964    // sky scan
3965    STSelector sel = STSelector() ;
3966    types.push_back( SrcType::FLOSKY ) ;
3967    sel.setTypes( types ) ;
3968    s->setSelection( sel ) ;
3969    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3970    CountedPtr<Scantable> askylo = average( tmp, masks, "TINT", "SCAN" ) ;
3971    s->unsetSelection() ;
3972    sel.reset() ;
3973    types.clear() ;
3974    types.push_back( SrcType::FHISKY ) ;
3975    sel.setTypes( types ) ;
3976    s->setSelection( sel ) ;
3977    tmp.clear() ;
3978    tmp.push_back( getScantable( s, false ) ) ;
3979    CountedPtr<Scantable> askyhi = average( tmp, masks, "TINT", "SCAN" ) ;
3980    s->unsetSelection() ;
3981    sel.reset() ;
3982    types.clear() ;
3983   
3984    // hot scan
3985    types.push_back( SrcType::FLOHOT ) ;
3986    sel.setTypes( types ) ;
3987    s->setSelection( sel ) ;
3988    tmp.clear() ;
3989    tmp.push_back( getScantable( s, false ) ) ;
3990    CountedPtr<Scantable> ahotlo = average( tmp, masks, "TINT", "SCAN" ) ;
3991    s->unsetSelection() ;
3992    sel.reset() ;
3993    types.clear() ;
3994    types.push_back( SrcType::FHIHOT ) ;
3995    sel.setTypes( types ) ;
3996    s->setSelection( sel ) ;
3997    tmp.clear() ;
3998    tmp.push_back( getScantable( s, false ) ) ;
3999    CountedPtr<Scantable> ahothi = average( tmp, masks, "TINT", "SCAN" ) ;
4000    s->unsetSelection() ;
4001    sel.reset() ;
4002    types.clear() ;
4003   
4004    // cold scan
4005    CountedPtr<Scantable> acoldlo, acoldhi ;
4006//     types.push_back( SrcType::FLOCOLD ) ;
4007//     sel.setTypes( types ) ;
4008//     s->setSelection( sel ) ;
4009//     tmp.clear() ;
4010//     tmp.push_back( getScantable( s, false ) ) ;
4011//     CountedPtr<Scantable> acoldlo = average( tmp, masks, "TINT", "SCAN" ) ;
4012//     s->unsetSelection() ;
4013//     sel.reset() ;
4014//     types.clear() ;
4015//     types.push_back( SrcType::FHICOLD ) ;
4016//     sel.setTypes( types ) ;
4017//     s->setSelection( sel ) ;
4018//     tmp.clear() ;
4019//     tmp.push_back( getScantable( s, false ) ) ;
4020//     CountedPtr<Scantable> acoldhi = average( tmp, masks, "TINT", "SCAN" ) ;
4021//     s->unsetSelection() ;
4022//     sel.reset() ;
4023//     types.clear() ;
4024
4025    // ref scan
4026    bool insitu = insitu_ ;
4027    insitu_ = false ;
4028    sref = getScantable( s, true ) ;
4029    insitu_ = insitu ;
4030    types.push_back( SrcType::FSLO ) ;
4031    sel.setTypes( types ) ;
4032    s->setSelection( sel ) ;
4033    TableCopy::copyRows( sref->table(), s->table() ) ;
4034    s->unsetSelection() ;
4035    sel.reset() ;
4036    types.clear() ;
4037   
4038    // sig scan
4039    insitu_ = false ;
4040    ssig = getScantable( s, true ) ;
4041    insitu_ = insitu ;
4042    types.push_back( SrcType::FSHI ) ;
4043    sel.setTypes( types ) ;
4044    s->setSelection( sel ) ;
4045    TableCopy::copyRows( ssig->table(), s->table() ) ;
4046    s->unsetSelection() ;
4047    sel.reset() ; 
4048    types.clear() ;
4049         
4050    if ( apexcalmode == 0 ) {
4051      // APEX fs data without off scan
4052      // process each sig and ref scan
4053      ArrayColumn<Float> tsysCollo ;
4054      tsysCollo.attach( ssig->table(), "TSYS" ) ;
4055      ArrayColumn<Float> tsysColhi ;
4056      tsysColhi.attach( sref->table(), "TSYS" ) ;
4057      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4058        vector< CountedPtr<Scantable> > sky( 2 ) ;
4059        sky[0] = askylo ;
4060        sky[1] = askyhi ;
4061        vector< CountedPtr<Scantable> > hot( 2 ) ;
4062        hot[0] = ahotlo ;
4063        hot[1] = ahothi ;
4064        vector< CountedPtr<Scantable> > cold( 2 ) ;
4065        //cold[0] = acoldlo ;
4066        //cold[1] = acoldhi ;
4067        vector<float> sp = getFSCalibratedSpectra( ssig, sref, sky, hot, cold, i ) ;
4068        ssig->setSpectrum( sp, i ) ;
4069        string reftime = ssig->getTime( i ) ;
4070        vector<int> ii( 1, ssig->getIF( i ) ) ;
4071        vector<int> ib( 1, ssig->getBeam( i ) ) ;
4072        vector<int> ip( 1, ssig->getPol( i ) ) ;
4073        sel.setIFs( ii ) ;
4074        sel.setBeams( ib ) ;
4075        sel.setPolarizations( ip ) ;
4076        askylo->setSelection( sel ) ;
4077        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4078        const Vector<Float> Vtsyslo( sptsys ) ;
4079        tsysCollo.put( i, Vtsyslo ) ;
4080        askylo->unsetSelection() ;
4081        sel.reset() ;
4082        sky[0] = askyhi ;
4083        sky[1] = askylo ;
4084        hot[0] = ahothi ;
4085        hot[1] = ahotlo ;
4086        cold[0] = acoldhi ;
4087        cold[1] = acoldlo ;
4088        sp = getFSCalibratedSpectra( sref, ssig, sky, hot, cold, i ) ;
4089        sref->setSpectrum( sp, i ) ;
4090        reftime = sref->getTime( i ) ;
4091        ii[0] = sref->getIF( i )  ;
4092        ib[0] = sref->getBeam( i ) ;
4093        ip[0] = sref->getPol( i ) ;
4094        sel.setIFs( ii ) ;
4095        sel.setBeams( ib ) ;
4096        sel.setPolarizations( ip ) ;
4097        askyhi->setSelection( sel ) ;   
4098        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4099        const Vector<Float> Vtsyshi( sptsys ) ;
4100        tsysColhi.put( i, Vtsyshi ) ;
4101        askyhi->unsetSelection() ;
4102        sel.reset() ;
4103      }
4104    }
4105    else if ( apexcalmode == 1 ) {
4106      // APEX fs data with off scan
4107      // off scan
4108      types.push_back( SrcType::FLOOFF ) ;
4109      sel.setTypes( types ) ;
4110      s->setSelection( sel ) ;
4111      tmp.clear() ;
4112      tmp.push_back( getScantable( s, false ) ) ;
4113      CountedPtr<Scantable> aofflo = average( tmp, masks, "TINT", "SCAN" ) ;
4114      s->unsetSelection() ;
4115      sel.reset() ;
4116      types.clear() ;
4117      types.push_back( SrcType::FHIOFF ) ;
4118      sel.setTypes( types ) ;
4119      s->setSelection( sel ) ;
4120      tmp.clear() ;
4121      tmp.push_back( getScantable( s, false ) ) ;
4122      CountedPtr<Scantable> aoffhi = average( tmp, masks, "TINT", "SCAN" ) ;
4123      s->unsetSelection() ;
4124      sel.reset() ;
4125      types.clear() ;
4126     
4127      // process each sig and ref scan
4128      ArrayColumn<Float> tsysCollo ;
4129      tsysCollo.attach( ssig->table(), "TSYS" ) ;
4130      ArrayColumn<Float> tsysColhi ;
4131      tsysColhi.attach( sref->table(), "TSYS" ) ;
4132      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4133        vector<float> sp = getCalibratedSpectra( ssig, aofflo, askylo, ahotlo, acoldlo, i, antname ) ;
4134        ssig->setSpectrum( sp, i ) ;
4135        sp = getCalibratedSpectra( sref, aoffhi, askyhi, ahothi, acoldhi, i, antname ) ;
4136        string reftime = ssig->getTime( i ) ;
4137        vector<int> ii( 1, ssig->getIF( i ) ) ;
4138        vector<int> ib( 1, ssig->getBeam( i ) ) ;
4139        vector<int> ip( 1, ssig->getPol( i ) ) ;
4140        sel.setIFs( ii ) ;
4141        sel.setBeams( ib ) ;
4142        sel.setPolarizations( ip ) ;
4143        askylo->setSelection( sel ) ;
4144        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4145        const Vector<Float> Vtsyslo( sptsys ) ;
4146        tsysCollo.put( i, Vtsyslo ) ;
4147        askylo->unsetSelection() ;
4148        sel.reset() ;
4149        sref->setSpectrum( sp, i ) ;
4150        reftime = sref->getTime( i ) ;
4151        ii[0] = sref->getIF( i )  ;
4152        ib[0] = sref->getBeam( i ) ;
4153        ip[0] = sref->getPol( i ) ;
4154        sel.setIFs( ii ) ;
4155        sel.setBeams( ib ) ;
4156        sel.setPolarizations( ip ) ;
4157        askyhi->setSelection( sel ) ;   
4158        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4159        const Vector<Float> Vtsyshi( sptsys ) ;
4160        tsysColhi.put( i, Vtsyshi ) ;
4161        askyhi->unsetSelection() ;
4162        sel.reset() ;
4163      }
4164    }
4165  }
4166  else {
4167    // non-APEX fs data
4168    // sky scan
4169    STSelector sel = STSelector() ;
4170    types.push_back( SrcType::SKY ) ;
4171    sel.setTypes( types ) ;
4172    s->setSelection( sel ) ;
4173    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
4174    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
4175    s->unsetSelection() ;
4176    sel.reset() ;
4177    types.clear() ;
4178   
4179    // hot scan
4180    types.push_back( SrcType::HOT ) ;
4181    sel.setTypes( types ) ;
4182    s->setSelection( sel ) ;
4183    tmp.clear() ;
4184    tmp.push_back( getScantable( s, false ) ) ;
4185    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
4186    s->unsetSelection() ;
4187    sel.reset() ;
4188    types.clear() ;
4189
4190    // cold scan
4191    CountedPtr<Scantable> acold ;
4192//     types.push_back( SrcType::COLD ) ;
4193//     sel.setTypes( types ) ;
4194//     s->setSelection( sel ) ;
4195//     tmp.clear() ;
4196//     tmp.push_back( getScantable( s, false ) ) ;
4197//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCAN" ) ;
4198//     s->unsetSelection() ;
4199//     sel.reset() ;
4200//     types.clear() ;
4201   
4202    // ref scan
4203    bool insitu = insitu_ ;
4204    insitu_ = false ;
4205    sref = getScantable( s, true ) ;
4206    insitu_ = insitu ;
4207    types.push_back( SrcType::FSOFF ) ;
4208    sel.setTypes( types ) ;
4209    s->setSelection( sel ) ;
4210    TableCopy::copyRows( sref->table(), s->table() ) ;
4211    s->unsetSelection() ;
4212    sel.reset() ;
4213    types.clear() ;
4214   
4215    // sig scan
4216    insitu_ = false ;
4217    ssig = getScantable( s, true ) ;
4218    insitu_ = insitu ;
4219    types.push_back( SrcType::FSON ) ;
4220    sel.setTypes( types ) ;
4221    s->setSelection( sel ) ;
4222    TableCopy::copyRows( ssig->table(), s->table() ) ;
4223    s->unsetSelection() ;
4224    sel.reset() ;
4225    types.clear() ;
4226
4227    // process each sig and ref scan
4228    ArrayColumn<Float> tsysColsig ;
4229    tsysColsig.attach( ssig->table(), "TSYS" ) ;
4230    ArrayColumn<Float> tsysColref ;
4231    tsysColref.attach( ssig->table(), "TSYS" ) ;
4232    for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4233      vector<float> sp = getFSCalibratedSpectra( ssig, sref, asky, ahot, acold, i ) ;
4234      ssig->setSpectrum( sp, i ) ;
4235      string reftime = ssig->getTime( i ) ;
4236      vector<int> ii( 1, ssig->getIF( i ) ) ;
4237      vector<int> ib( 1, ssig->getBeam( i ) ) ;
4238      vector<int> ip( 1, ssig->getPol( i ) ) ;
4239      sel.setIFs( ii ) ;
4240      sel.setBeams( ib ) ;
4241      sel.setPolarizations( ip ) ;
4242      asky->setSelection( sel ) ;
4243      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
4244      const Vector<Float> Vtsys( sptsys ) ;
4245      tsysColsig.put( i, Vtsys ) ;
4246      asky->unsetSelection() ;
4247      sel.reset() ;
4248      sp = getFSCalibratedSpectra( sref, ssig, asky, ahot, acold, i ) ;
4249      sref->setSpectrum( sp, i ) ;
4250      tsysColref.put( i, Vtsys ) ;
4251    }
4252  }
4253
4254  // do folding if necessary
4255  Table sigtab = ssig->table() ;
4256  Table reftab = sref->table() ;
4257  ScalarColumn<uInt> sigifnoCol ;
4258  ScalarColumn<uInt> refifnoCol ;
4259  ScalarColumn<uInt> sigfidCol ;
4260  ScalarColumn<uInt> reffidCol ;
4261  Int nchan = (Int)ssig->nchan() ;
4262  sigifnoCol.attach( sigtab, "IFNO" ) ;
4263  refifnoCol.attach( reftab, "IFNO" ) ;
4264  sigfidCol.attach( sigtab, "FREQ_ID" ) ;
4265  reffidCol.attach( reftab, "FREQ_ID" ) ;
4266  Vector<uInt> sfids( sigfidCol.getColumn() ) ;
4267  Vector<uInt> rfids( reffidCol.getColumn() ) ;
4268  vector<uInt> sfids_unique ;
4269  vector<uInt> rfids_unique ;
4270  vector<uInt> sifno_unique ;
4271  vector<uInt> rifno_unique ;
4272  for ( uInt i = 0 ; i < sfids.nelements() ; i++ ) {
4273    if ( count( sfids_unique.begin(), sfids_unique.end(), sfids[i] ) == 0 ) {
4274      sfids_unique.push_back( sfids[i] ) ;
4275      sifno_unique.push_back( ssig->getIF( i ) ) ;
4276    }
4277    if ( count( rfids_unique.begin(), rfids_unique.end(),  rfids[i] ) == 0 ) {
4278      rfids_unique.push_back( rfids[i] ) ;
4279      rifno_unique.push_back( sref->getIF( i ) ) ;
4280    }
4281  }
4282  double refpix_sig, refval_sig, increment_sig ;
4283  double refpix_ref, refval_ref, increment_ref ;
4284  vector< CountedPtr<Scantable> > tmp( sfids_unique.size() ) ;
4285  for ( uInt i = 0 ; i < sfids_unique.size() ; i++ ) {
4286    ssig->frequencies().getEntry( refpix_sig, refval_sig, increment_sig, sfids_unique[i] ) ;
4287    sref->frequencies().getEntry( refpix_ref, refval_ref, increment_ref, rfids_unique[i] ) ;
4288    if ( refpix_sig == refpix_ref ) {
4289      double foffset = refval_ref - refval_sig ;
4290      int choffset = static_cast<int>(foffset/increment_sig) ;
4291      double doffset = foffset / increment_sig ;
4292      if ( abs(choffset) >= nchan ) {
4293        LogIO os( LogOrigin( "STMath", "cwcalfs", WHERE ) ) ;
4294        os << "FREQ_ID=[" << sfids_unique[i] << "," << rfids_unique[i] << "]: out-band frequency switching, no folding" << LogIO::POST ;
4295        os << "Just return signal data" << LogIO::POST ;
4296        //std::vector< CountedPtr<Scantable> > tabs ;
4297        //tabs.push_back( ssig ) ;
4298        //tabs.push_back( sref ) ;
4299        //out = merge( tabs ) ;
4300        tmp[i] = ssig ;
4301      }
4302      else {
4303        STSelector sel = STSelector() ;
4304        vector<int> v( 1, sifno_unique[i] ) ;
4305        sel.setIFs( v ) ;
4306        ssig->setSelection( sel ) ;
4307        sel.reset() ;
4308        v[0] = rifno_unique[i] ;
4309        sel.setIFs( v ) ;
4310        sref->setSelection( sel ) ;
4311        sel.reset() ;
4312        if ( antname.find( "APEX" ) != string::npos ) {
4313          tmp[i] = dofold( ssig, sref, 0.5*doffset, -0.5*doffset ) ;
4314          //tmp[i] = dofold( ssig, sref, doffset ) ;
4315        }
4316        else {
4317          tmp[i] = dofold( ssig, sref, doffset ) ;
4318        }
4319        ssig->unsetSelection() ;
4320        sref->unsetSelection() ;
4321      }
4322    }
4323  }
4324
4325  if ( tmp.size() > 1 ) {
4326    out = merge( tmp ) ;
4327  }
4328  else {
4329    out = tmp[0] ;
4330  }
4331
4332  // flux unit
4333  out->setFluxUnit( "K" ) ;
4334
4335  return out ;
4336}
4337
4338CountedPtr<Scantable> STMath::almacalfs( const CountedPtr<Scantable>& s )
4339{
4340  (void) s; //currently unused
4341  CountedPtr<Scantable> out ;
4342
4343  return out ;
4344}
4345
4346vector<float> STMath::getSpectrumFromTime( string reftime,
4347                                           CountedPtr<Scantable>& s,
4348                                           string mode )
4349{
4350  LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4351  vector<float> sp ;
4352
4353  if ( s->nrow() == 0 ) {
4354    os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4355    return sp ;
4356  }
4357  else if ( s->nrow() == 1 ) {
4358    //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4359    return s->getSpectrum( 0 ) ;
4360  }
4361  else {
4362    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4363    if ( mode == "before" ) {
4364      int id = -1 ;
4365      if ( idx[0] != -1 ) {
4366        id = idx[0] ;
4367      }
4368      else if ( idx[1] != -1 ) {
4369        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4370        id = idx[1] ;
4371      }
4372      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4373      sp = s->getSpectrum( id ) ;
4374    }
4375    else if ( mode == "after" ) {
4376      int id = -1 ;
4377      if ( idx[1] != -1 ) {
4378        id = idx[1] ;
4379      }
4380      else if ( idx[0] != -1 ) {
4381        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4382        id = idx[1] ;
4383      }
4384      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4385      sp = s->getSpectrum( id ) ;
4386    }
4387    else if ( mode == "nearest" ) {
4388      int id = -1 ;
4389      if ( idx[0] == -1 ) {
4390        id = idx[1] ;
4391      }
4392      else if ( idx[1] == -1 ) {
4393        id = idx[0] ;
4394      }
4395      else if ( idx[0] == idx[1] ) {
4396        id = idx[0] ;
4397      }
4398      else {
4399        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4400        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4401        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4402        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4403        double tref = getMJD( reftime ) ;
4404        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4405          id = idx[1] ;
4406        }
4407        else {
4408          id = idx[0] ;
4409        }
4410      }
4411      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4412      sp = s->getSpectrum( id ) ;     
4413    }
4414    else if ( mode == "linear" ) {
4415      if ( idx[0] == -1 ) {
4416        // use after
4417        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4418        int id = idx[1] ;
4419        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4420        sp = s->getSpectrum( id ) ;
4421      }
4422      else if ( idx[1] == -1 ) {
4423        // use before
4424        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4425        int id = idx[0] ;
4426        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4427        sp = s->getSpectrum( id ) ;
4428      }
4429      else if ( idx[0] == idx[1] ) {
4430        // use before
4431        //os << "No need to interporate." << LogIO::POST ;
4432        int id = idx[0] ;
4433        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4434        sp = s->getSpectrum( id ) ;
4435      }
4436      else {
4437        // do interpolation
4438        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4439        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4440        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4441        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4442        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4443        double tref = getMJD( reftime ) ;
4444        vector<float> sp0 = s->getSpectrum( idx[0] ) ;
4445        vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4446        for ( unsigned int i = 0 ; i < sp0.size() ; i++ ) {
4447          float v = ( sp1[i] - sp0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + sp0[i] ;
4448          sp.push_back( v ) ;
4449        }
4450      }
4451    }
4452    else {
4453      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4454    }
4455    return sp ;
4456  }
4457}
4458
4459double STMath::getMJD( string strtime )
4460{
4461  if ( strtime.find("/") == string::npos ) {
4462    // MJD time string
4463    return atof( strtime.c_str() ) ;
4464  }
4465  else {
4466    // string in YYYY/MM/DD/HH:MM:SS format
4467    uInt year = atoi( strtime.substr( 0, 4 ).c_str() ) ;
4468    uInt month = atoi( strtime.substr( 5, 2 ).c_str() ) ;
4469    uInt day = atoi( strtime.substr( 8, 2 ).c_str() ) ;
4470    uInt hour = atoi( strtime.substr( 11, 2 ).c_str() ) ;
4471    uInt minute = atoi( strtime.substr( 14, 2 ).c_str() ) ;
4472    uInt sec = atoi( strtime.substr( 17, 2 ).c_str() ) ;
4473    Time t( year, month, day, hour, minute, sec ) ;
4474    return t.modifiedJulianDay() ;
4475  }
4476}
4477
4478vector<int> STMath::getRowIdFromTime( string reftime, CountedPtr<Scantable> &s )
4479{
4480  double reft = getMJD( reftime ) ;
4481  double dtmin = 1.0e100 ;
4482  double dtmax = -1.0e100 ;
4483  vector<double> dt ;
4484  int just_before = -1 ;
4485  int just_after = -1 ;
4486  for ( int i = 0 ; i < s->nrow() ; i++ ) {
4487    dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
4488  }
4489  for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4490    if ( dt[i] > 0.0 ) {
4491      // after reftime
4492      if ( dt[i] < dtmin ) {
4493        just_after = i ;
4494        dtmin = dt[i] ;
4495      }
4496    }
4497    else if ( dt[i] < 0.0 ) {
4498      // before reftime
4499      if ( dt[i] > dtmax ) {
4500        just_before = i ;
4501        dtmax = dt[i] ;
4502      }
4503    }
4504    else {
4505      // just a reftime
4506      just_before = i ;
4507      just_after = i ;
4508      dtmax = 0 ;
4509      dtmin = 0 ;
4510      break ;
4511    }
4512  }
4513
4514  vector<int> v ;
4515  v.push_back( just_before ) ;
4516  v.push_back( just_after ) ;
4517
4518  return v ;
4519}
4520
4521vector<float> STMath::getTcalFromTime( string reftime,
4522                                       CountedPtr<Scantable>& s,
4523                                       string mode )
4524{
4525  LogIO os( LogOrigin( "STMath", "getTcalFromTime", WHERE ) ) ;
4526  vector<float> tcal ;
4527  STTcal tcalTable = s->tcal() ;
4528  String time ;
4529  Vector<Float> tcalval ;
4530  if ( s->nrow() == 0 ) {
4531    os << LogIO::SEVERE << "No row in the input scantable. Return empty tcal." << LogIO::POST ;
4532    return tcal ;
4533  }
4534  else if ( s->nrow() == 1 ) {
4535    uInt tcalid = s->getTcalId( 0 ) ;
4536    //os << "use row " << 0 << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4537    tcalTable.getEntry( time, tcalval, tcalid ) ;
4538    tcalval.tovector( tcal ) ;
4539    return tcal ;
4540  }
4541  else {
4542    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4543    if ( mode == "before" ) {
4544      int id = -1 ;
4545      if ( idx[0] != -1 ) {
4546        id = idx[0] ;
4547      }
4548      else if ( idx[1] != -1 ) {
4549        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4550        id = idx[1] ;
4551      }
4552      uInt tcalid = s->getTcalId( id ) ;
4553      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4554      tcalTable.getEntry( time, tcalval, tcalid ) ;
4555      tcalval.tovector( tcal ) ;
4556    }
4557    else if ( mode == "after" ) {
4558      int id = -1 ;
4559      if ( idx[1] != -1 ) {
4560        id = idx[1] ;
4561      }
4562      else if ( idx[0] != -1 ) {
4563        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4564        id = idx[1] ;
4565      }
4566      uInt tcalid = s->getTcalId( id ) ;
4567      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4568      tcalTable.getEntry( time, tcalval, tcalid ) ;
4569      tcalval.tovector( tcal ) ;
4570    }
4571    else if ( mode == "nearest" ) {
4572      int id = -1 ;
4573      if ( idx[0] == -1 ) {
4574        id = idx[1] ;
4575      }
4576      else if ( idx[1] == -1 ) {
4577        id = idx[0] ;
4578      }
4579      else if ( idx[0] == idx[1] ) {
4580        id = idx[0] ;
4581      }
4582      else {
4583        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4584        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4585        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4586        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4587        double tref = getMJD( reftime ) ;
4588        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4589          id = idx[1] ;
4590        }
4591        else {
4592          id = idx[0] ;
4593        }
4594      }
4595      uInt tcalid = s->getTcalId( id ) ;
4596      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4597      tcalTable.getEntry( time, tcalval, tcalid ) ;
4598      tcalval.tovector( tcal ) ;
4599    }
4600    else if ( mode == "linear" ) {
4601      if ( idx[0] == -1 ) {
4602        // use after
4603        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4604        int id = idx[1] ;
4605        uInt tcalid = s->getTcalId( id ) ;
4606        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4607        tcalTable.getEntry( time, tcalval, tcalid ) ;
4608        tcalval.tovector( tcal ) ;
4609      }
4610      else if ( idx[1] == -1 ) {
4611        // use before
4612        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4613        int id = idx[0] ;
4614        uInt tcalid = s->getTcalId( id ) ;
4615        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4616        tcalTable.getEntry( time, tcalval, tcalid ) ;
4617        tcalval.tovector( tcal ) ;
4618      }
4619      else if ( idx[0] == idx[1] ) {
4620        // use before
4621        //os << "No need to interporate." << LogIO::POST ;
4622        int id = idx[0] ;
4623        uInt tcalid = s->getTcalId( id ) ;
4624        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4625        tcalTable.getEntry( time, tcalval, tcalid ) ;
4626        tcalval.tovector( tcal ) ;
4627      }
4628      else {
4629        // do interpolation
4630        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4631        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4632        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4633        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4634        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4635        double tref = getMJD( reftime ) ;
4636        vector<float> tcal0 ;
4637        vector<float> tcal1 ;
4638        uInt tcalid0 = s->getTcalId( idx[0] ) ;
4639        uInt tcalid1 = s->getTcalId( idx[1] ) ;
4640        tcalTable.getEntry( time, tcalval, tcalid0 ) ;
4641        tcalval.tovector( tcal0 ) ;
4642        tcalTable.getEntry( time, tcalval, tcalid1 ) ;
4643        tcalval.tovector( tcal1 ) ;       
4644        for ( unsigned int i = 0 ; i < tcal0.size() ; i++ ) {
4645          float v = ( tcal1[i] - tcal0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tcal0[i] ;
4646          tcal.push_back( v ) ;
4647        }
4648      }
4649    }
4650    else {
4651      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4652    }
4653    return tcal ;
4654  }
4655}
4656
4657vector<float> STMath::getTsysFromTime( string reftime,
4658                                       CountedPtr<Scantable>& s,
4659                                       string mode )
4660{
4661  LogIO os( LogOrigin( "STMath", "getTsysFromTime", WHERE ) ) ;
4662  ArrayColumn<Float> tsysCol ;
4663  tsysCol.attach( s->table(), "TSYS" ) ;
4664  vector<float> tsys ;
4665  String time ;
4666  Vector<Float> tsysval ;
4667  if ( s->nrow() == 0 ) {
4668    os << LogIO::SEVERE << "No row in the input scantable. Return empty tsys." << LogIO::POST ;
4669    return tsys ;
4670  }
4671  else if ( s->nrow() == 1 ) {
4672    //os << "use row " << 0 << LogIO::POST ;
4673    tsysval = tsysCol( 0 ) ;
4674    tsysval.tovector( tsys ) ;
4675    return tsys ;
4676  }
4677  else {
4678    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4679    if ( mode == "before" ) {
4680      int id = -1 ;
4681      if ( idx[0] != -1 ) {
4682        id = idx[0] ;
4683      }
4684      else if ( idx[1] != -1 ) {
4685        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4686        id = idx[1] ;
4687      }
4688      //os << "use row " << id << LogIO::POST ;
4689      tsysval = tsysCol( id ) ;
4690      tsysval.tovector( tsys ) ;
4691    }
4692    else if ( mode == "after" ) {
4693      int id = -1 ;
4694      if ( idx[1] != -1 ) {
4695        id = idx[1] ;
4696      }
4697      else if ( idx[0] != -1 ) {
4698        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4699        id = idx[1] ;
4700      }
4701      //os << "use row " << id << LogIO::POST ;
4702      tsysval = tsysCol( id ) ;
4703      tsysval.tovector( tsys ) ;
4704    }
4705    else if ( mode == "nearest" ) {
4706      int id = -1 ;
4707      if ( idx[0] == -1 ) {
4708        id = idx[1] ;
4709      }
4710      else if ( idx[1] == -1 ) {
4711        id = idx[0] ;
4712      }
4713      else if ( idx[0] == idx[1] ) {
4714        id = idx[0] ;
4715      }
4716      else {
4717        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4718        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4719        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4720        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4721        double tref = getMJD( reftime ) ;
4722        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4723          id = idx[1] ;
4724        }
4725        else {
4726          id = idx[0] ;
4727        }
4728      }
4729      //os << "use row " << id << LogIO::POST ;
4730      tsysval = tsysCol( id ) ;
4731      tsysval.tovector( tsys ) ;
4732    }
4733    else if ( mode == "linear" ) {
4734      if ( idx[0] == -1 ) {
4735        // use after
4736        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4737        int id = idx[1] ;
4738        //os << "use row " << id << LogIO::POST ;
4739        tsysval = tsysCol( id ) ;
4740        tsysval.tovector( tsys ) ;
4741      }
4742      else if ( idx[1] == -1 ) {
4743        // use before
4744        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4745        int id = idx[0] ;
4746        //os << "use row " << id << LogIO::POST ;
4747        tsysval = tsysCol( id ) ;
4748        tsysval.tovector( tsys ) ;
4749      }
4750      else if ( idx[0] == idx[1] ) {
4751        // use before
4752        //os << "No need to interporate." << LogIO::POST ;
4753        int id = idx[0] ;
4754        //os << "use row " << id << LogIO::POST ;
4755        tsysval = tsysCol( id ) ;
4756        tsysval.tovector( tsys ) ;
4757      }
4758      else {
4759        // do interpolation
4760        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4761        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4762        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4763        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4764        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4765        double tref = getMJD( reftime ) ;
4766        vector<float> tsys0 ;
4767        vector<float> tsys1 ;
4768        tsysval = tsysCol( idx[0] ) ;
4769        tsysval.tovector( tsys0 ) ;
4770        tsysval = tsysCol( idx[1] ) ;
4771        tsysval.tovector( tsys1 ) ;       
4772        for ( unsigned int i = 0 ; i < tsys0.size() ; i++ ) {
4773          float v = ( tsys1[i] - tsys0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tsys0[i] ;
4774          tsys.push_back( v ) ;
4775        }
4776      }
4777    }
4778    else {
4779      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4780    }
4781    return tsys ;
4782  }
4783}
4784
4785vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4786                                            CountedPtr<Scantable>& off,
4787                                            CountedPtr<Scantable>& sky,
4788                                            CountedPtr<Scantable>& hot,
4789                                            CountedPtr<Scantable>& cold,
4790                                            int index,
4791                                            string antname )
4792{
4793  (void) cold; //currently unused
4794  string reftime = on->getTime( index ) ;
4795  vector<int> ii( 1, on->getIF( index ) ) ;
4796  vector<int> ib( 1, on->getBeam( index ) ) ;
4797  vector<int> ip( 1, on->getPol( index ) ) ;
4798  vector<int> ic( 1, on->getScan( index ) ) ;
4799  STSelector sel = STSelector() ;
4800  sel.setIFs( ii ) ;
4801  sel.setBeams( ib ) ;
4802  sel.setPolarizations( ip ) ;
4803  sky->setSelection( sel ) ;
4804  hot->setSelection( sel ) ;
4805  //cold->setSelection( sel ) ;
4806  off->setSelection( sel ) ;
4807  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4808  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4809  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4810  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4811  vector<float> spec = on->getSpectrum( index ) ;
4812  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4813  vector<float> sp( tcal.size() ) ;
4814  if ( antname.find( "APEX" ) != string::npos ) {
4815    // using gain array
4816    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4817      float v = ( ( spec[j] - spoff[j] ) / spoff[j] )
4818        * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4819      sp[j] = v ;
4820    }
4821  }
4822  else {
4823    // Chopper-Wheel calibration (Ulich & Haas 1976)
4824    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4825      float v = ( spec[j] - spoff[j] ) / ( sphot[j] - spsky[j] ) * tcal[j] ;
4826      sp[j] = v ;
4827    }
4828  }
4829  sel.reset() ;
4830  sky->unsetSelection() ;
4831  hot->unsetSelection() ;
4832  //cold->unsetSelection() ;
4833  off->unsetSelection() ;
4834
4835  return sp ;
4836}
4837
4838vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4839                                            CountedPtr<Scantable>& off,
4840                                            int index )
4841{
4842  string reftime = on->getTime( index ) ;
4843  vector<int> ii( 1, on->getIF( index ) ) ;
4844  vector<int> ib( 1, on->getBeam( index ) ) ;
4845  vector<int> ip( 1, on->getPol( index ) ) ;
4846  vector<int> ic( 1, on->getScan( index ) ) ;
4847  STSelector sel = STSelector() ;
4848  sel.setIFs( ii ) ;
4849  sel.setBeams( ib ) ;
4850  sel.setPolarizations( ip ) ;
4851  off->setSelection( sel ) ;
4852  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4853  vector<float> spec = on->getSpectrum( index ) ;
4854  //vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4855  //vector<float> tsys = on->getTsysVec( index ) ;
4856  ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
4857  Vector<Float> tsys = tsysCol( index ) ;
4858  vector<float> sp( spec.size() ) ;
4859  // ALMA Calibration
4860  //
4861  // Ta* = Tsys * ( ON - OFF ) / OFF
4862  //
4863  // 2010/01/07 Takeshi Nakazato
4864  unsigned int tsyssize = tsys.nelements() ;
4865  unsigned int spsize = sp.size() ;
4866  for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
4867    float tscale = 0.0 ;
4868    if ( tsyssize == spsize )
4869      tscale = tsys[j] ;
4870    else
4871      tscale = tsys[0] ;
4872    float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
4873    sp[j] = v ;
4874  }
4875  sel.reset() ;
4876  off->unsetSelection() ;
4877
4878  return sp ;
4879}
4880
4881vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4882                                              CountedPtr<Scantable>& ref,
4883                                              CountedPtr<Scantable>& sky,
4884                                              CountedPtr<Scantable>& hot,
4885                                              CountedPtr<Scantable>& cold,
4886                                              int index )
4887{
4888  (void) cold; //currently unused
4889  string reftime = sig->getTime( index ) ;
4890  vector<int> ii( 1, sig->getIF( index ) ) ;
4891  vector<int> ib( 1, sig->getBeam( index ) ) ;
4892  vector<int> ip( 1, sig->getPol( index ) ) ;
4893  vector<int> ic( 1, sig->getScan( index ) ) ;
4894  STSelector sel = STSelector() ;
4895  sel.setIFs( ii ) ;
4896  sel.setBeams( ib ) ;
4897  sel.setPolarizations( ip ) ;
4898  sky->setSelection( sel ) ;
4899  hot->setSelection( sel ) ;
4900  //cold->setSelection( sel ) ;
4901  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4902  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4903  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4904  vector<float> spref = ref->getSpectrum( index ) ;
4905  vector<float> spsig = sig->getSpectrum( index ) ;
4906  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4907  vector<float> sp( tcal.size() ) ;
4908  for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4909    float v = tcal[j] * spsky[j] / ( sphot[j] - spsky[j] ) * ( spsig[j] - spref[j] ) / spref[j] ;
4910    sp[j] = v ;
4911  }
4912  sel.reset() ;
4913  sky->unsetSelection() ;
4914  hot->unsetSelection() ;
4915  //cold->unsetSelection() ;
4916
4917  return sp ;
4918}
4919
4920vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4921                                              CountedPtr<Scantable>& ref,
4922                                              vector< CountedPtr<Scantable> >& sky,
4923                                              vector< CountedPtr<Scantable> >& hot,
4924                                              vector< CountedPtr<Scantable> >& cold,
4925                                              int index )
4926{
4927  (void) cold; //currently unused
4928  string reftime = sig->getTime( index ) ;
4929  vector<int> ii( 1, sig->getIF( index ) ) ;
4930  vector<int> ib( 1, sig->getBeam( index ) ) ;
4931  vector<int> ip( 1, sig->getPol( index ) ) ;
4932  vector<int> ic( 1, sig->getScan( index ) ) ;
4933  STSelector sel = STSelector() ;
4934  sel.setIFs( ii ) ;
4935  sel.setBeams( ib ) ;
4936  sel.setPolarizations( ip ) ;
4937  sky[0]->setSelection( sel ) ;
4938  hot[0]->setSelection( sel ) ;
4939  //cold[0]->setSelection( sel ) ;
4940  vector<float> spskys = getSpectrumFromTime( reftime, sky[0], "linear" ) ;
4941  vector<float> sphots = getSpectrumFromTime( reftime, hot[0], "linear" ) ;
4942  //vector<float> spcolds = getSpectrumFromTime( reftime, cold[0], "linear" ) ;
4943  vector<float> tcals = getTcalFromTime( reftime, sky[0], "linear" ) ;
4944  sel.reset() ;
4945  ii[0] = ref->getIF( index ) ;
4946  sel.setIFs( ii ) ;
4947  sel.setBeams( ib ) ;
4948  sel.setPolarizations( ip ) ;
4949  sky[1]->setSelection( sel ) ;
4950  hot[1]->setSelection( sel ) ;
4951  //cold[1]->setSelection( sel ) ;
4952  vector<float> spskyr = getSpectrumFromTime( reftime, sky[1], "linear" ) ;
4953  vector<float> sphotr = getSpectrumFromTime( reftime, hot[1], "linear" ) ;
4954  //vector<float> spcoldr = getSpectrumFromTime( reftime, cold[1], "linear" ) ;
4955  vector<float> tcalr = getTcalFromTime( reftime, sky[1], "linear" ) ; 
4956  vector<float> spref = ref->getSpectrum( index ) ;
4957  vector<float> spsig = sig->getSpectrum( index ) ;
4958  vector<float> sp( tcals.size() ) ;
4959  for ( unsigned int j = 0 ; j < tcals.size() ; j++ ) {
4960    float v = tcals[j] * spsig[j] / ( sphots[j] - spskys[j] ) - tcalr[j] * spref[j] / ( sphotr[j] - spskyr[j] ) ;
4961    sp[j] = v ;
4962  }
4963  sel.reset() ;
4964  sky[0]->unsetSelection() ;
4965  hot[0]->unsetSelection() ;
4966  //cold[0]->unsetSelection() ;
4967  sky[1]->unsetSelection() ;
4968  hot[1]->unsetSelection() ;
4969  //cold[1]->unsetSelection() ;
4970
4971  return sp ;
4972}
Note: See TracBrowser for help on using the repository browser.