source: trunk/src/STMath.cpp @ 2163

Last change on this file since 2163 was 2163, checked in by Malte Marquarding, 13 years ago

Remove various compiler warnings

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 167.2 KB
Line 
1//
2// C++ Implementation: STMath
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2006
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12
13#include <casa/iomanip.h>
14#include <casa/Exceptions/Error.h>
15#include <casa/Containers/Block.h>
16#include <casa/BasicSL/String.h>
17#include <casa/Arrays/MaskArrLogi.h>
18#include <casa/Arrays/MaskArrMath.h>
19#include <casa/Arrays/ArrayLogical.h>
20#include <casa/Arrays/ArrayMath.h>
21#include <casa/Arrays/Slice.h>
22#include <casa/Arrays/Slicer.h>
23#include <casa/Containers/RecordField.h>
24#include <tables/Tables/TableRow.h>
25#include <tables/Tables/TableVector.h>
26#include <tables/Tables/TabVecMath.h>
27#include <tables/Tables/ExprNode.h>
28#include <tables/Tables/TableRecord.h>
29#include <tables/Tables/TableParse.h>
30#include <tables/Tables/ReadAsciiTable.h>
31#include <tables/Tables/TableIter.h>
32#include <tables/Tables/TableCopy.h>
33#include <scimath/Mathematics/FFTServer.h>
34
35#include <lattices/Lattices/LatticeUtilities.h>
36
37#include <coordinates/Coordinates/SpectralCoordinate.h>
38#include <coordinates/Coordinates/CoordinateSystem.h>
39#include <coordinates/Coordinates/CoordinateUtil.h>
40#include <coordinates/Coordinates/FrequencyAligner.h>
41
42#include <scimath/Mathematics/VectorKernel.h>
43#include <scimath/Mathematics/Convolver.h>
44#include <scimath/Functionals/Polynomial.h>
45
46#include <atnf/PKSIO/SrcType.h>
47
48#include <casa/Logging/LogIO.h>
49#include <sstream>
50
51#include "MathUtils.h"
52#include "RowAccumulator.h"
53#include "STAttr.h"
54#include "STSelector.h"
55
56#include "STMath.h"
57using namespace casa;
58
59using namespace asap;
60
61// tolerance for direction comparison (rad)
62#define TOL_OTF    1.0e-15
63#define TOL_POINT  2.9088821e-4  // 1 arcmin
64
65STMath::STMath(bool insitu) :
66  insitu_(insitu)
67{
68}
69
70
71STMath::~STMath()
72{
73}
74
75CountedPtr<Scantable>
76STMath::average( const std::vector<CountedPtr<Scantable> >& in,
77                 const std::vector<bool>& mask,
78                 const std::string& weight,
79                 const std::string& avmode)
80{
81  LogIO os( LogOrigin( "STMath", "average()", WHERE ) ) ;
82  if ( avmode == "SCAN" && in.size() != 1 )
83    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
84                    "Use merge first."));
85  WeightType wtype = stringToWeight(weight);
86
87  // check if OTF observation
88  String obstype = in[0]->getHeader().obstype ;
89  Double tol = 0.0 ;
90  if ( (obstype.find( "OTF" ) != String::npos) || (obstype.find( "OBSERVE_TARGET" ) != String::npos) ) {
91    tol = TOL_OTF ;
92  }
93  else {
94    tol = TOL_POINT ;
95  }
96
97  // output
98  // clone as this is non insitu
99  bool insitu = insitu_;
100  setInsitu(false);
101  CountedPtr< Scantable > out = getScantable(in[0], true);
102  setInsitu(insitu);
103  std::vector<CountedPtr<Scantable> >::const_iterator stit = in.begin();
104  ++stit;
105  while ( stit != in.end() ) {
106    out->appendToHistoryTable((*stit)->history());
107    ++stit;
108  }
109
110  Table& tout = out->table();
111
112  /// @todo check if all scantables are conformant
113
114  ArrayColumn<Float> specColOut(tout,"SPECTRA");
115  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
116  ArrayColumn<Float> tsysColOut(tout,"TSYS");
117  ScalarColumn<Double> mjdColOut(tout,"TIME");
118  ScalarColumn<Double> intColOut(tout,"INTERVAL");
119  ScalarColumn<uInt> cycColOut(tout,"CYCLENO");
120  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
121
122  // set up the output table rows. These are based on the structure of the
123  // FIRST scantable in the vector
124  const Table& baset = in[0]->table();
125
126  Block<String> cols(3);
127  cols[0] = String("BEAMNO");
128  cols[1] = String("IFNO");
129  cols[2] = String("POLNO");
130  if ( avmode == "SOURCE" ) {
131    cols.resize(4);
132    cols[3] = String("SRCNAME");
133  }
134  if ( avmode == "SCAN"  && in.size() == 1) {
135    //cols.resize(4);
136    //cols[3] = String("SCANNO");
137    cols.resize(5);
138    cols[3] = String("SRCNAME");
139    cols[4] = String("SCANNO");
140  }
141  uInt outrowCount = 0;
142  TableIterator iter(baset, cols);
143//   int count = 0 ;
144  while (!iter.pastEnd()) {
145    Table subt = iter.table();
146//     // copy the first row of this selection into the new table
147//     tout.addRow();
148//     TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
149//     // re-index to 0
150//     if ( avmode != "SCAN" && avmode != "SOURCE" ) {
151//       scanColOut.put(outrowCount, uInt(0));
152//     }
153//     ++outrowCount;
154    MDirection::ScalarColumn dircol ;
155    dircol.attach( subt, "DIRECTION" ) ;
156    Int length = subt.nrow() ;
157    vector< Vector<Double> > dirs ;
158    vector<int> indexes ;
159    for ( Int i = 0 ; i < length ; i++ ) {
160      Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
161      //os << << count++ << ": " ;
162      //os << "[" << t[0] << "," << t[1] << "]" << LogIO::POST ;
163      bool adddir = true ;
164      for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
165        //if ( allTrue( t == dirs[j] ) ) {
166        Double dx = t[0] - dirs[j][0] ;
167        Double dy = t[1] - dirs[j][1] ;
168        Double dd = sqrt( dx * dx + dy * dy ) ;
169        //if ( allNearAbs( t, dirs[j], tol ) ) {
170        if ( dd <= tol ) {
171          adddir = false ;
172          break ;
173        }
174      }
175      if ( adddir ) {
176        dirs.push_back( t ) ;
177        indexes.push_back( i ) ;
178      }
179    }
180    uInt rowNum = dirs.size() ;
181    tout.addRow( rowNum ) ;
182    for ( uInt i = 0 ; i < rowNum ; i++ ) {
183      TableCopy::copyRows( tout, subt, outrowCount+i, indexes[i], 1 ) ;
184      // re-index to 0
185      if ( avmode != "SCAN" && avmode != "SOURCE" ) {
186        scanColOut.put(outrowCount+i, uInt(0));
187      }       
188    }
189    outrowCount += rowNum ;
190    ++iter;
191  }
192  RowAccumulator acc(wtype);
193  Vector<Bool> cmask(mask);
194  acc.setUserMask(cmask);
195  ROTableRow row(tout);
196  ROArrayColumn<Float> specCol, tsysCol;
197  ROArrayColumn<uChar> flagCol;
198  ROScalarColumn<Double> mjdCol, intCol;
199  ROScalarColumn<Int> scanIDCol;
200
201  Vector<uInt> rowstodelete;
202
203  for (uInt i=0; i < tout.nrow(); ++i) {
204    for ( int j=0; j < int(in.size()); ++j ) {
205      const Table& tin = in[j]->table();
206      const TableRecord& rec = row.get(i);
207      ROScalarColumn<Double> tmp(tin, "TIME");
208      Double td;tmp.get(0,td);
209      Table basesubt = tin( tin.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
210                         && tin.col("IFNO") == Int(rec.asuInt("IFNO"))
211                         && tin.col("POLNO") == Int(rec.asuInt("POLNO")) );
212      Table subt;
213      if ( avmode == "SOURCE") {
214        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME"));
215      } else if (avmode == "SCAN") {
216        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME")
217                      && basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) );
218      } else {
219        subt = basesubt;
220      }
221
222      vector<uInt> removeRows ;
223      uInt nrsubt = subt.nrow() ;
224      for ( uInt irow = 0 ; irow < nrsubt ; irow++ ) {
225        //if ( !allTrue((subt.col("DIRECTION").getArrayDouble(TableExprId(irow)))==rec.asArrayDouble("DIRECTION")) ) {
226        Vector<Double> x0 = (subt.col("DIRECTION").getArrayDouble(TableExprId(irow))) ;
227        Vector<Double> x1 = rec.asArrayDouble("DIRECTION") ;
228        double dx = x0[0] - x1[0] ;
229        double dy = x0[0] - x1[0] ;
230        Double dd = sqrt( dx * dx + dy * dy ) ;
231        //if ( !allNearAbs((subt.col("DIRECTION").getArrayDouble(TableExprId(irow))), rec.asArrayDouble("DIRECTION"), tol ) ) {
232        if ( dd > tol ) {
233          removeRows.push_back( irow ) ;
234        }
235      }
236      if ( removeRows.size() != 0 ) {
237        subt.removeRow( removeRows ) ;
238      }
239     
240      if ( nrsubt == removeRows.size() )
241        throw(AipsError("Averaging data is empty.")) ;
242
243      specCol.attach(subt,"SPECTRA");
244      flagCol.attach(subt,"FLAGTRA");
245      tsysCol.attach(subt,"TSYS");
246      intCol.attach(subt,"INTERVAL");
247      mjdCol.attach(subt,"TIME");
248      Vector<Float> spec,tsys;
249      Vector<uChar> flag;
250      Double inter,time;
251      for (uInt k = 0; k < subt.nrow(); ++k ) {
252        flagCol.get(k, flag);
253        Vector<Bool> bflag(flag.shape());
254        convertArray(bflag, flag);
255        /*
256        if ( allEQ(bflag, True) ) {
257        continue;//don't accumulate
258        }
259        */
260        specCol.get(k, spec);
261        tsysCol.get(k, tsys);
262        intCol.get(k, inter);
263        mjdCol.get(k, time);
264        // spectrum has to be added last to enable weighting by the other values
265        acc.add(spec, !bflag, tsys, inter, time);
266      }
267
268      // If there exists a channel at which all the input spectra are masked,
269      // spec has 'nan' values for that channel and it may affect the following
270      // processes. To avoid this, replacing 'nan' values in spec with
271      // weighted-mean of all spectra in the following line.
272      // (done for CAS-2776, 2011/04/07 by Wataru Kawasaki)
273      acc.replaceNaN();
274    }
275    const Vector<Bool>& msk = acc.getMask();
276    if ( allEQ(msk, False) ) {
277      uint n = rowstodelete.nelements();
278      rowstodelete.resize(n+1, True);
279      rowstodelete[n] = i;
280      continue;
281    }
282    //write out
283    if (acc.state()) {
284      Vector<uChar> flg(msk.shape());
285      convertArray(flg, !msk);
286      for (uInt k = 0; k < flg.nelements(); ++k) {
287        uChar userFlag = 1 << 7;
288        if (msk[k]==True) userFlag = 0 << 7;
289        flg(k) = userFlag;
290      }
291
292      flagColOut.put(i, flg);
293      specColOut.put(i, acc.getSpectrum());
294      tsysColOut.put(i, acc.getTsys());
295      intColOut.put(i, acc.getInterval());
296      mjdColOut.put(i, acc.getTime());
297      // we should only have one cycle now -> reset it to be 0
298      // frequency switched data has different CYCLENO for different IFNO
299      // which requires resetting this value
300      cycColOut.put(i, uInt(0));
301    } else {
302      ostringstream oss;
303      oss << "For output row="<<i<<", all input rows of data are flagged. no averaging" << endl;
304      pushLog(String(oss));
305    }
306    acc.reset();
307  }
308
309  if (rowstodelete.nelements() > 0) {
310    os << rowstodelete << LogIO::POST ;
311    tout.removeRow(rowstodelete);
312    if (tout.nrow() == 0) {
313      throw(AipsError("Can't average fully flagged data."));
314    }
315  }
316  return out;
317}
318
319CountedPtr< Scantable >
320STMath::averageChannel( const CountedPtr < Scantable > & in,
321                          const std::string & mode,
322                          const std::string& avmode )
323{
324  (void) mode; // currently unused
325  // check if OTF observation
326  String obstype = in->getHeader().obstype ;
327  Double tol = 0.0 ;
328  if ( obstype.find( "OTF" ) != String::npos ) {
329    tol = TOL_OTF ;
330  }
331  else {
332    tol = TOL_POINT ;
333  }
334
335  // clone as this is non insitu
336  bool insitu = insitu_;
337  setInsitu(false);
338  CountedPtr< Scantable > out = getScantable(in, true);
339  setInsitu(insitu);
340  Table& tout = out->table();
341  ArrayColumn<Float> specColOut(tout,"SPECTRA");
342  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
343  ArrayColumn<Float> tsysColOut(tout,"TSYS");
344  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
345  ScalarColumn<Double> intColOut(tout, "INTERVAL");
346  Table tmp = in->table().sort("BEAMNO");
347  Block<String> cols(3);
348  cols[0] = String("BEAMNO");
349  cols[1] = String("IFNO");
350  cols[2] = String("POLNO");
351  if ( avmode == "SCAN") {
352    cols.resize(4);
353    cols[3] = String("SCANNO");
354  }
355  uInt outrowCount = 0;
356  uChar userflag = 1 << 7;
357  TableIterator iter(tmp, cols);
358  while (!iter.pastEnd()) {
359    Table subt = iter.table();
360    ROArrayColumn<Float> specCol, tsysCol;
361    ROArrayColumn<uChar> flagCol;
362    ROScalarColumn<Double> intCol(subt, "INTERVAL");
363    specCol.attach(subt,"SPECTRA");
364    flagCol.attach(subt,"FLAGTRA");
365    tsysCol.attach(subt,"TSYS");
366//     tout.addRow();
367//     TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
368//     if ( avmode != "SCAN") {
369//       scanColOut.put(outrowCount, uInt(0));
370//     }
371//     Vector<Float> tmp;
372//     specCol.get(0, tmp);
373//     uInt nchan = tmp.nelements();
374//     // have to do channel by channel here as MaskedArrMath
375//     // doesn't have partialMedians
376//     Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
377//     Vector<Float> outspec(nchan);
378//     Vector<uChar> outflag(nchan,0);
379//     Vector<Float> outtsys(1);/// @fixme when tsys is channel based
380//     for (uInt i=0; i<nchan; ++i) {
381//       Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
382//       MaskedArray<Float> ma = maskedArray(specs,flags);
383//       outspec[i] = median(ma);
384//       if ( allEQ(ma.getMask(), False) )
385//         outflag[i] = userflag;// flag data
386//     }
387//     outtsys[0] = median(tsysCol.getColumn());
388//     specColOut.put(outrowCount, outspec);
389//     flagColOut.put(outrowCount, outflag);
390//     tsysColOut.put(outrowCount, outtsys);
391//     Double intsum = sum(intCol.getColumn());
392//     intColOut.put(outrowCount, intsum);
393//     ++outrowCount;
394//     ++iter;
395    MDirection::ScalarColumn dircol ;
396    dircol.attach( subt, "DIRECTION" ) ;
397    Int length = subt.nrow() ;
398    vector< Vector<Double> > dirs ;
399    vector<int> indexes ;
400    for ( Int i = 0 ; i < length ; i++ ) {
401      Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
402      bool adddir = true ;
403      for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
404        //if ( allTrue( t == dirs[j] ) ) {
405        Double dx = t[0] - dirs[j][0] ;
406        Double dy = t[1] - dirs[j][1] ;
407        Double dd = sqrt( dx * dx + dy * dy ) ;
408        //if ( allNearAbs( t, dirs[j], tol ) ) {
409        if ( dd <= tol ) {
410          adddir = false ;
411          break ;
412        }
413      }
414      if ( adddir ) {
415        dirs.push_back( t ) ;
416        indexes.push_back( i ) ;
417      }
418    }
419    uInt rowNum = dirs.size() ;
420    tout.addRow( rowNum );
421    for ( uInt i = 0 ; i < rowNum ; i++ ) {
422      TableCopy::copyRows(tout, subt, outrowCount+i, indexes[i], 1) ;
423      if ( avmode != "SCAN") {
424        //scanColOut.put(outrowCount+i, uInt(0));
425      }
426    }
427    MDirection::ScalarColumn dircolOut ;
428    dircolOut.attach( tout, "DIRECTION" ) ;
429    for ( uInt irow = 0 ; irow < rowNum ; irow++ ) {
430      Vector<Double> t = dircolOut(outrowCount+irow).getAngle(Unit(String("rad"))).getValue() ;
431      Vector<Float> tmp;
432      specCol.get(0, tmp);
433      uInt nchan = tmp.nelements();
434      // have to do channel by channel here as MaskedArrMath
435      // doesn't have partialMedians
436      Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
437      // mask spectra for different DIRECTION
438      for ( uInt jrow = 0 ; jrow < subt.nrow() ; jrow++ ) {
439        Vector<Double> direction = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
440        //if ( t[0] != direction[0] || t[1] != direction[1] ) {
441        Double dx = t[0] - direction[0] ;
442        Double dy = t[1] - direction[1] ;
443        Double dd = sqrt( dx * dx + dy * dy ) ;
444        //if ( !allNearAbs( t, direction, tol ) ) {
445        if ( dd > tol ) {
446          flags[jrow] = userflag ;
447        }
448      }
449      Vector<Float> outspec(nchan);
450      Vector<uChar> outflag(nchan,0);
451      Vector<Float> outtsys(1);/// @fixme when tsys is channel based
452      for (uInt i=0; i<nchan; ++i) {
453        Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
454        MaskedArray<Float> ma = maskedArray(specs,flags);
455        outspec[i] = median(ma);
456        if ( allEQ(ma.getMask(), False) )
457          outflag[i] = userflag;// flag data
458      }
459      outtsys[0] = median(tsysCol.getColumn());
460      specColOut.put(outrowCount+irow, outspec);
461      flagColOut.put(outrowCount+irow, outflag);
462      tsysColOut.put(outrowCount+irow, outtsys);
463      Vector<Double> integ = intCol.getColumn() ;
464      MaskedArray<Double> mi = maskedArray( integ, flags ) ;
465      Double intsum = sum(mi);
466      intColOut.put(outrowCount+irow, intsum);
467    }
468    outrowCount += rowNum ;
469    ++iter;
470  }
471  return out;
472}
473
474CountedPtr< Scantable > STMath::getScantable(const CountedPtr< Scantable >& in,
475                                             bool droprows)
476{
477  if (insitu_) {
478    return in;
479  }
480  else {
481    // clone
482    return CountedPtr<Scantable>(new Scantable(*in, Bool(droprows)));
483  }
484}
485
486CountedPtr< Scantable > STMath::unaryOperate( const CountedPtr< Scantable >& in,
487                                              float val,
488                                              const std::string& mode,
489                                              bool tsys )
490{
491  CountedPtr< Scantable > out = getScantable(in, false);
492  Table& tab = out->table();
493  ArrayColumn<Float> specCol(tab,"SPECTRA");
494  ArrayColumn<Float> tsysCol(tab,"TSYS");
495  if (mode=="DIV") val = 1.0/val ;
496  else if (mode=="SUB") val *= -1.0 ;
497  for (uInt i=0; i<tab.nrow(); ++i) {
498    Vector<Float> spec;
499    Vector<Float> ts;
500    specCol.get(i, spec);
501    tsysCol.get(i, ts);
502    if (mode == "MUL" || mode == "DIV") {
503      //if (mode == "DIV") val = 1.0/val;
504      spec *= val;
505      specCol.put(i, spec);
506      if ( tsys ) {
507        ts *= val;
508        tsysCol.put(i, ts);
509      }
510    } else if ( mode == "ADD"  || mode == "SUB") {
511      //if (mode == "SUB") val *= -1.0;
512      spec += val;
513      specCol.put(i, spec);
514      if ( tsys ) {
515        ts += val;
516        tsysCol.put(i, ts);
517      }
518    }
519  }
520  return out;
521}
522
523CountedPtr< Scantable > STMath::arrayOperate( const CountedPtr< Scantable >& in,
524                                              const std::vector<float> val,
525                                              const std::string& mode,
526                                              const std::string& opmode,
527                                              bool tsys )
528{
529  CountedPtr< Scantable > out ;
530  if ( opmode == "channel" ) {
531    out = arrayOperateChannel( in, val, mode, tsys ) ;
532  }
533  else if ( opmode == "row" ) {
534    out = arrayOperateRow( in, val, mode, tsys ) ;
535  }
536  else {
537    throw( AipsError( "Unknown array operation mode." ) ) ;
538  }
539  return out ;
540}
541
542CountedPtr< Scantable > STMath::arrayOperateChannel( const CountedPtr< Scantable >& in,
543                                                     const std::vector<float> val,
544                                                     const std::string& mode,
545                                                     bool tsys )
546{
547  if ( val.size() == 1 ){
548    return unaryOperate( in, val[0], mode, tsys ) ;
549  }
550
551  // conformity of SPECTRA and TSYS
552  if ( tsys ) {
553    TableIterator titer(in->table(), "IFNO");
554    while ( !titer.pastEnd() ) {
555      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
556      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
557      Array<Float> spec = specCol.getColumn() ;
558      Array<Float> ts = tsysCol.getColumn() ;
559      if ( !spec.conform( ts ) ) {
560        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
561      }
562      titer.next() ;
563    }
564  }
565
566  // check if all spectra in the scantable have the same number of channel
567  vector<uInt> nchans;
568  vector<uInt> ifnos = in->getIFNos() ;
569  for ( uInt i = 0 ; i < ifnos.size() ; i++ ) {
570    nchans.push_back( in->nchan( ifnos[i] ) ) ;
571  }
572  Vector<uInt> mchans( nchans ) ;
573  if ( anyNE( mchans, mchans[0] ) ) {
574    throw( AipsError("All spectra in the input scantable must have the same number of channel for vector operation." ) ) ;
575  }
576
577  // check if vector size is equal to nchan
578  Vector<Float> fact( val ) ;
579  if ( fact.nelements() != mchans[0] ) {
580    throw( AipsError("Vector size must be 1 or be same as number of channel.") ) ;
581  }
582
583  // check divided by zero
584  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
585    throw( AipsError("Divided by zero is not recommended." ) ) ;
586  }
587
588  CountedPtr< Scantable > out = getScantable(in, false);
589  Table& tab = out->table();
590  ArrayColumn<Float> specCol(tab,"SPECTRA");
591  ArrayColumn<Float> tsysCol(tab,"TSYS");
592  if (mode == "DIV") fact = (float)1.0 / fact;
593  else if (mode == "SUB") fact *= (float)-1.0 ;
594  for (uInt i=0; i<tab.nrow(); ++i) {
595    Vector<Float> spec;
596    Vector<Float> ts;
597    specCol.get(i, spec);
598    tsysCol.get(i, ts);
599    if (mode == "MUL" || mode == "DIV") {
600      //if (mode == "DIV") fact = (float)1.0 / fact;
601      spec *= fact;
602      specCol.put(i, spec);
603      if ( tsys ) {
604        ts *= fact;
605        tsysCol.put(i, ts);
606      }
607    } else if ( mode == "ADD"  || mode == "SUB") {
608      //if (mode == "SUB") fact *= (float)-1.0 ;
609      spec += fact;
610      specCol.put(i, spec);
611      if ( tsys ) {
612        ts += fact;
613        tsysCol.put(i, ts);
614      }
615    }
616  }
617  return out;
618}
619
620CountedPtr< Scantable > STMath::arrayOperateRow( const CountedPtr< Scantable >& in,
621                                                 const std::vector<float> val,
622                                                 const std::string& mode,
623                                                 bool tsys )
624{
625  if ( val.size() == 1 ) {
626    return unaryOperate( in, val[0], mode, tsys ) ;
627  }
628
629  // conformity of SPECTRA and TSYS
630  if ( tsys ) {
631    TableIterator titer(in->table(), "IFNO");
632    while ( !titer.pastEnd() ) {
633      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
634      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
635      Array<Float> spec = specCol.getColumn() ;
636      Array<Float> ts = tsysCol.getColumn() ;
637      if ( !spec.conform( ts ) ) {
638        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
639      }
640      titer.next() ;
641    }
642  }
643
644  // check if vector size is equal to nrow
645  Vector<Float> fact( val ) ;
646  if (fact.nelements() != uInt(in->nrow())) {
647    throw( AipsError("Vector size must be 1 or be same as number of row.") ) ;
648  }
649
650  // check divided by zero
651  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
652    throw( AipsError("Divided by zero is not recommended." ) ) ;
653  }
654
655  CountedPtr< Scantable > out = getScantable(in, false);
656  Table& tab = out->table();
657  ArrayColumn<Float> specCol(tab,"SPECTRA");
658  ArrayColumn<Float> tsysCol(tab,"TSYS");
659  if (mode == "DIV") fact = (float)1.0 / fact;
660  if (mode == "SUB") fact *= (float)-1.0 ;
661  for (uInt i=0; i<tab.nrow(); ++i) {
662    Vector<Float> spec;
663    Vector<Float> ts;
664    specCol.get(i, spec);
665    tsysCol.get(i, ts);
666    if (mode == "MUL" || mode == "DIV") {
667      spec *= fact[i];
668      specCol.put(i, spec);
669      if ( tsys ) {
670        ts *= fact[i];
671        tsysCol.put(i, ts);
672      }
673    } else if ( mode == "ADD"  || mode == "SUB") {
674      spec += fact[i];
675      specCol.put(i, spec);
676      if ( tsys ) {
677        ts += fact[i];
678        tsysCol.put(i, ts);
679      }
680    }
681  }
682  return out;
683}
684
685CountedPtr< Scantable > STMath::array2dOperate( const CountedPtr< Scantable >& in,
686                                                const std::vector< std::vector<float> > val,
687                                                const std::string& mode,
688                                                bool tsys )
689{
690  // conformity of SPECTRA and TSYS
691  if ( tsys ) {
692    TableIterator titer(in->table(), "IFNO");
693    while ( !titer.pastEnd() ) {
694      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
695      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
696      Array<Float> spec = specCol.getColumn() ;
697      Array<Float> ts = tsysCol.getColumn() ;
698      if ( !spec.conform( ts ) ) {
699        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
700      }
701      titer.next() ;
702    }
703  }
704
705  // some checks
706  vector<uInt> nchans;
707  for (Int i = 0 ; i < in->nrow() ; i++) {
708    nchans.push_back((in->getSpectrum(i)).size());
709  }
710  //Vector<uInt> mchans( nchans ) ;
711  vector< Vector<Float> > facts ;
712  for ( uInt i = 0 ; i < nchans.size() ; i++ ) {
713    Vector<Float> tmp( val[i] ) ;
714    // check divided by zero
715    if ( ( mode == "DIV" ) && anyEQ( tmp, (float)0.0 ) ) {
716      throw( AipsError("Divided by zero is not recommended." ) ) ;
717    }
718    // conformity check
719    if ( tmp.nelements() != nchans[i] ) {
720      stringstream ss ;
721      ss << "Row " << i << ": Vector size must be same as number of channel." ;
722      throw( AipsError( ss.str() ) ) ;
723    }
724    facts.push_back( tmp ) ;
725  }
726
727
728  CountedPtr< Scantable > out = getScantable(in, false);
729  Table& tab = out->table();
730  ArrayColumn<Float> specCol(tab,"SPECTRA");
731  ArrayColumn<Float> tsysCol(tab,"TSYS");
732  for (uInt i=0; i<tab.nrow(); ++i) {
733    Vector<Float> fact = facts[i] ;
734    Vector<Float> spec;
735    Vector<Float> ts;
736    specCol.get(i, spec);
737    tsysCol.get(i, ts);
738    if (mode == "MUL" || mode == "DIV") {
739      if (mode == "DIV") fact = (float)1.0 / fact;
740      spec *= fact;
741      specCol.put(i, spec);
742      if ( tsys ) {
743        ts *= fact;
744        tsysCol.put(i, ts);
745      }
746    } else if ( mode == "ADD"  || mode == "SUB") {
747      if (mode == "SUB") fact *= (float)-1.0 ;
748      spec += fact;
749      specCol.put(i, spec);
750      if ( tsys ) {
751        ts += fact;
752        tsysCol.put(i, ts);
753      }
754    }
755  }
756  return out;
757}
758
759CountedPtr<Scantable> STMath::binaryOperate(const CountedPtr<Scantable>& left,
760                                            const CountedPtr<Scantable>& right,
761                                            const std::string& mode)
762{
763  bool insitu = insitu_;
764  if ( ! left->conformant(*right) ) {
765    throw(AipsError("'left' and 'right' scantables are not conformant."));
766  }
767  setInsitu(false);
768  CountedPtr< Scantable > out = getScantable(left, false);
769  setInsitu(insitu);
770  Table& tout = out->table();
771  Block<String> coln(5);
772  coln[0] = "SCANNO";  coln[1] = "CYCLENO";  coln[2] = "BEAMNO";
773  coln[3] = "IFNO";  coln[4] = "POLNO";
774  Table tmpl = tout.sort(coln);
775  Table tmpr = right->table().sort(coln);
776  ArrayColumn<Float> lspecCol(tmpl,"SPECTRA");
777  ROArrayColumn<Float> rspecCol(tmpr,"SPECTRA");
778  ArrayColumn<uChar> lflagCol(tmpl,"FLAGTRA");
779  ROArrayColumn<uChar> rflagCol(tmpr,"FLAGTRA");
780
781  for (uInt i=0; i<tout.nrow(); ++i) {
782    Vector<Float> lspecvec, rspecvec;
783    Vector<uChar> lflagvec, rflagvec;
784    lspecvec = lspecCol(i);    rspecvec = rspecCol(i);
785    lflagvec = lflagCol(i);    rflagvec = rflagCol(i);
786    MaskedArray<Float> mleft = maskedArray(lspecvec, lflagvec);
787    MaskedArray<Float> mright = maskedArray(rspecvec, rflagvec);
788    if (mode == "ADD") {
789      mleft += mright;
790    } else if ( mode == "SUB") {
791      mleft -= mright;
792    } else if ( mode == "MUL") {
793      mleft *= mright;
794    } else if ( mode == "DIV") {
795      mleft /= mright;
796    } else {
797      throw(AipsError("Illegal binary operator"));
798    }
799    lspecCol.put(i, mleft.getArray());
800  }
801  return out;
802}
803
804
805
806MaskedArray<Float> STMath::maskedArray( const Vector<Float>& s,
807                                        const Vector<uChar>& f)
808{
809  Vector<Bool> mask;
810  mask.resize(f.shape());
811  convertArray(mask, f);
812  return MaskedArray<Float>(s,!mask);
813}
814
815MaskedArray<Double> STMath::maskedArray( const Vector<Double>& s,
816                                         const Vector<uChar>& f)
817{
818  Vector<Bool> mask;
819  mask.resize(f.shape());
820  convertArray(mask, f);
821  return MaskedArray<Double>(s,!mask);
822}
823
824Vector<uChar> STMath::flagsFromMA(const MaskedArray<Float>& ma)
825{
826  const Vector<Bool>& m = ma.getMask();
827  Vector<uChar> flags(m.shape());
828  convertArray(flags, !m);
829  return flags;
830}
831
832CountedPtr< Scantable > STMath::autoQuotient( const CountedPtr< Scantable >& in,
833                                              const std::string & mode,
834                                              bool preserve )
835{
836  /// @todo make other modes available
837  /// modes should be "nearest", "pair"
838  // make this operation non insitu
839  (void) mode; //currently unused
840  const Table& tin = in->table();
841  Table ons = tin(tin.col("SRCTYPE") == Int(SrcType::PSON));
842  Table offs = tin(tin.col("SRCTYPE") == Int(SrcType::PSOFF));
843  if ( offs.nrow() == 0 )
844    throw(AipsError("No 'off' scans present."));
845  // put all "on" scans into output table
846
847  bool insitu = insitu_;
848  setInsitu(false);
849  CountedPtr< Scantable > out = getScantable(in, true);
850  setInsitu(insitu);
851  Table& tout = out->table();
852
853  TableCopy::copyRows(tout, ons);
854  TableRow row(tout);
855  ROScalarColumn<Double> offtimeCol(offs, "TIME");
856  ArrayColumn<Float> outspecCol(tout, "SPECTRA");
857  ROArrayColumn<Float> outtsysCol(tout, "TSYS");
858  ArrayColumn<uChar> outflagCol(tout, "FLAGTRA");
859  for (uInt i=0; i < tout.nrow(); ++i) {
860    const TableRecord& rec = row.get(i);
861    Double ontime = rec.asDouble("TIME");
862    Table presel = offs(offs.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
863                        && offs.col("IFNO") == Int(rec.asuInt("IFNO"))
864                        && offs.col("POLNO") == Int(rec.asuInt("POLNO")) );
865    ROScalarColumn<Double> offtimeCol(presel, "TIME");
866
867    Double mindeltat = min(abs(offtimeCol.getColumn() - ontime));
868    // Timestamp may vary within a cycle ???!!!
869    // increase this by 0.01 sec in case of rounding errors...
870    // There might be a better way to do this.
871    // fix to this fix. TIME is MJD, so 1.0d not 1.0s
872    mindeltat += 0.01/24./60./60.;
873    Table sel = presel( abs(presel.col("TIME")-ontime) <= mindeltat);
874
875    if ( sel.nrow() < 1 )  {
876      throw(AipsError("No closest in time found... This could be a rounding "
877                      "issue. Try quotient instead."));
878    }
879    TableRow offrow(sel);
880    const TableRecord& offrec = offrow.get(0);//should only be one row
881    RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
882    RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
883    RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
884    /// @fixme this assumes tsys is a scalar not vector
885    Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
886    Vector<Float> specon, tsyson;
887    outtsysCol.get(i, tsyson);
888    outspecCol.get(i, specon);
889    Vector<uChar> flagon;
890    outflagCol.get(i, flagon);
891    MaskedArray<Float> mon = maskedArray(specon, flagon);
892    MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
893    MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
894    if (preserve) {
895      quot -= tsysoffscalar;
896    } else {
897      quot -= tsyson[0];
898    }
899    outspecCol.put(i, quot.getArray());
900    outflagCol.put(i, flagsFromMA(quot));
901  }
902  // renumber scanno
903  TableIterator it(tout, "SCANNO");
904  uInt i = 0;
905  while ( !it.pastEnd() ) {
906    Table t = it.table();
907    TableVector<uInt> vec(t, "SCANNO");
908    vec = i;
909    ++i;
910    ++it;
911  }
912  return out;
913}
914
915
916CountedPtr< Scantable > STMath::quotient( const CountedPtr< Scantable > & on,
917                                          const CountedPtr< Scantable > & off,
918                                          bool preserve )
919{
920  bool insitu = insitu_;
921  if ( ! on->conformant(*off) ) {
922    throw(AipsError("'on' and 'off' scantables are not conformant."));
923  }
924  setInsitu(false);
925  CountedPtr< Scantable > out = getScantable(on, false);
926  setInsitu(insitu);
927  Table& tout = out->table();
928  const Table& toff = off->table();
929  TableIterator sit(tout, "SCANNO");
930  TableIterator s2it(toff, "SCANNO");
931  while ( !sit.pastEnd() ) {
932    Table ton = sit.table();
933    TableRow row(ton);
934    Table t = s2it.table();
935    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
936    ROArrayColumn<Float> outtsysCol(ton, "TSYS");
937    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
938    for (uInt i=0; i < ton.nrow(); ++i) {
939      const TableRecord& rec = row.get(i);
940      Table offsel = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
941                          && t.col("IFNO") == Int(rec.asuInt("IFNO"))
942                          && t.col("POLNO") == Int(rec.asuInt("POLNO")) );
943      if ( offsel.nrow() == 0 )
944        throw AipsError("STMath::quotient: no matching off");
945      TableRow offrow(offsel);
946      const TableRecord& offrec = offrow.get(0);//should be ncycles - take first
947      RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
948      RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
949      RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
950      Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
951      Vector<Float> specon, tsyson;
952      outtsysCol.get(i, tsyson);
953      outspecCol.get(i, specon);
954      Vector<uChar> flagon;
955      outflagCol.get(i, flagon);
956      MaskedArray<Float> mon = maskedArray(specon, flagon);
957      MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
958      MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
959      if (preserve) {
960        quot -= tsysoffscalar;
961      } else {
962        quot -= tsyson[0];
963      }
964      outspecCol.put(i, quot.getArray());
965      outflagCol.put(i, flagsFromMA(quot));
966    }
967    ++sit;
968    ++s2it;
969    // take the first off for each on scan which doesn't have a
970    // matching off scan
971    // non <= noff:  matching pairs, non > noff matching pairs then first off
972    if ( s2it.pastEnd() ) s2it.reset();
973  }
974  return out;
975}
976
977// dototalpower (migration of GBTIDL procedure dototalpower.pro)
978// calibrate the CAL on-off pair. It calculate Tsys and average CAL on-off subintegrations
979// do it for each cycles in a specific scan.
980CountedPtr< Scantable > STMath::dototalpower( const CountedPtr< Scantable >& calon,
981                                              const CountedPtr< Scantable >& caloff, Float tcal )
982{
983if ( ! calon->conformant(*caloff) ) {
984    throw(AipsError("'CAL on' and 'CAL off' scantables are not conformant."));
985  }
986  setInsitu(false);
987  CountedPtr< Scantable > out = getScantable(caloff, false);
988  Table& tout = out->table();
989  const Table& tcon = calon->table();
990  Vector<Float> tcalout;
991  Vector<Float> tcalout2;  //debug
992
993  if ( tout.nrow() != tcon.nrow() ) {
994    throw(AipsError("Mismatch in number of rows to form cal on - off pair."));
995  }
996  // iteration by scanno or cycle no.
997  TableIterator sit(tout, "SCANNO");
998  TableIterator s2it(tcon, "SCANNO");
999  while ( !sit.pastEnd() ) {
1000    Table toff = sit.table();
1001    TableRow row(toff);
1002    Table t = s2it.table();
1003    ScalarColumn<Double> outintCol(toff, "INTERVAL");
1004    ArrayColumn<Float> outspecCol(toff, "SPECTRA");
1005    ArrayColumn<Float> outtsysCol(toff, "TSYS");
1006    ArrayColumn<uChar> outflagCol(toff, "FLAGTRA");
1007    ROScalarColumn<uInt> outtcalIdCol(toff, "TCAL_ID");
1008    ROScalarColumn<uInt> outpolCol(toff, "POLNO");
1009    ROScalarColumn<Double> onintCol(t, "INTERVAL");
1010    ROArrayColumn<Float> onspecCol(t, "SPECTRA");
1011    ROArrayColumn<Float> ontsysCol(t, "TSYS");
1012    ROArrayColumn<uChar> onflagCol(t, "FLAGTRA");
1013    //ROScalarColumn<uInt> ontcalIdCol(t, "TCAL_ID");
1014
1015    for (uInt i=0; i < toff.nrow(); ++i) {
1016      //skip these checks -> assumes the data order are the same between the cal on off pairs
1017      //
1018      Vector<Float> specCalon, specCaloff;
1019      // to store scalar (mean) tsys
1020      Vector<Float> tsysout(1);
1021      uInt tcalId, polno;
1022      Double offint, onint;
1023      outpolCol.get(i, polno);
1024      outspecCol.get(i, specCaloff);
1025      onspecCol.get(i, specCalon);
1026      Vector<uChar> flagCaloff, flagCalon;
1027      outflagCol.get(i, flagCaloff);
1028      onflagCol.get(i, flagCalon);
1029      outtcalIdCol.get(i, tcalId);
1030      outintCol.get(i, offint);
1031      onintCol.get(i, onint);
1032      // caluculate mean Tsys
1033      uInt nchan = specCaloff.nelements();
1034      // percentage of edge cut off
1035      uInt pc = 10;
1036      uInt bchan = nchan/pc;
1037      uInt echan = nchan-bchan;
1038
1039      Slicer chansl(IPosition(1,bchan-1), IPosition(1,echan-1), IPosition(1,1),Slicer::endIsLast);
1040      Vector<Float> testsubsp = specCaloff(chansl);
1041      MaskedArray<Float> spoff = maskedArray( specCaloff(chansl),flagCaloff(chansl) );
1042      MaskedArray<Float> spon = maskedArray( specCalon(chansl),flagCalon(chansl) );
1043      MaskedArray<Float> spdiff = spon-spoff;
1044      uInt noff = spoff.nelementsValid();
1045      //uInt non = spon.nelementsValid();
1046      uInt ndiff = spdiff.nelementsValid();
1047      Float meantsys;
1048
1049/**
1050      Double subspec, subdiff;
1051      uInt usednchan;
1052      subspec = 0;
1053      subdiff = 0;
1054      usednchan = 0;
1055      for(uInt k=(bchan-1); k<echan; k++) {
1056        subspec += specCaloff[k];
1057        subdiff += static_cast<Double>(specCalon[k]-specCaloff[k]);
1058        ++usednchan;
1059      }
1060**/
1061      // get tcal if input tcal <= 0
1062      String tcalt;
1063      Float tcalUsed;
1064      tcalUsed = tcal;
1065      if ( tcal <= 0.0 ) {
1066        caloff->tcal().getEntry(tcalt, tcalout, tcalId);
1067//         if (polno<=3) {
1068//           tcalUsed = tcalout[polno];
1069//         }
1070//         else {
1071//           tcalUsed = tcalout[0];
1072//         }
1073        if ( tcalout.size() == 1 )
1074          tcalUsed = tcalout[0] ;
1075        else if ( tcalout.size() == nchan )
1076          tcalUsed = mean(tcalout) ;
1077        else {
1078          uInt ipol = polno ;
1079          if ( ipol > 3 ) ipol = 0 ;
1080          tcalUsed = tcalout[ipol] ;
1081        }
1082      }
1083
1084      Float meanoff;
1085      Float meandiff;
1086      if (noff && ndiff) {
1087         //Debug
1088         //if(noff!=ndiff) cerr<<"noff and ndiff is not equal"<<endl;
1089         //LogIO os( LogOrigin( "STMath", "dototalpower()", WHERE ) ) ;
1090         //if(noff!=ndiff) os<<"noff and ndiff is not equal"<<LogIO::POST;
1091         meanoff = sum(spoff)/noff;
1092         meandiff = sum(spdiff)/ndiff;
1093         meantsys= (meanoff/meandiff )*tcalUsed + tcalUsed/2;
1094      }
1095      else {
1096         meantsys=1;
1097      }
1098
1099      tsysout[0] = Float(meantsys);
1100      MaskedArray<Float> mcaloff = maskedArray(specCaloff, flagCaloff);
1101      MaskedArray<Float> mcalon = maskedArray(specCalon, flagCalon);
1102      MaskedArray<Float> sig =   Float(0.5) * (mcaloff + mcalon);
1103      //uInt ncaloff = mcaloff.nelementsValid();
1104      //uInt ncalon = mcalon.nelementsValid();
1105
1106      outintCol.put(i, offint+onint);
1107      outspecCol.put(i, sig.getArray());
1108      outflagCol.put(i, flagsFromMA(sig));
1109      outtsysCol.put(i, tsysout);
1110    }
1111    ++sit;
1112    ++s2it;
1113  }
1114  return out;
1115}
1116
1117//dosigref - migrated from GBT IDL's dosigref.pro, do calibration of position switch
1118// observatiions.
1119// input: sig and ref scantables, and an optional boxcar smoothing width(default width=0,
1120//        no smoothing).
1121// output: resultant scantable [= (sig-ref/ref)*tsys]
1122CountedPtr< Scantable > STMath::dosigref( const CountedPtr < Scantable >& sig,
1123                                          const CountedPtr < Scantable >& ref,
1124                                          int smoothref,
1125                                          casa::Float tsysv,
1126                                          casa::Float tau )
1127{
1128if ( ! ref->conformant(*sig) ) {
1129    throw(AipsError("'sig' and 'ref' scantables are not conformant."));
1130  }
1131  setInsitu(false);
1132  CountedPtr< Scantable > out = getScantable(sig, false);
1133  CountedPtr< Scantable > smref;
1134  if ( smoothref > 1 ) {
1135    float fsmoothref = static_cast<float>(smoothref);
1136    std::string inkernel = "boxcar";
1137    smref = smooth(ref, inkernel, fsmoothref );
1138    ostringstream oss;
1139    oss<<"Applied smoothing of "<<fsmoothref<<" on the reference."<<endl;
1140    pushLog(String(oss));
1141  }
1142  else {
1143    smref = ref;
1144  }
1145  Table& tout = out->table();
1146  const Table& tref = smref->table();
1147  if ( tout.nrow() != tref.nrow() ) {
1148    throw(AipsError("Mismatch in number of rows to form on-source and reference pair."));
1149  }
1150  // iteration by scanno? or cycle no.
1151  TableIterator sit(tout, "SCANNO");
1152  TableIterator s2it(tref, "SCANNO");
1153  while ( !sit.pastEnd() ) {
1154    Table ton = sit.table();
1155    Table t = s2it.table();
1156    ScalarColumn<Double> outintCol(ton, "INTERVAL");
1157    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1158    ArrayColumn<Float> outtsysCol(ton, "TSYS");
1159    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1160    ArrayColumn<Float> refspecCol(t, "SPECTRA");
1161    ROScalarColumn<Double> refintCol(t, "INTERVAL");
1162    ROArrayColumn<Float> reftsysCol(t, "TSYS");
1163    ArrayColumn<uChar> refflagCol(t, "FLAGTRA");
1164    ROScalarColumn<Float> refelevCol(t, "ELEVATION");
1165    for (uInt i=0; i < ton.nrow(); ++i) {
1166
1167      Double onint, refint;
1168      Vector<Float> specon, specref;
1169      // to store scalar (mean) tsys
1170      Vector<Float> tsysref;
1171      outintCol.get(i, onint);
1172      refintCol.get(i, refint);
1173      outspecCol.get(i, specon);
1174      refspecCol.get(i, specref);
1175      Vector<uChar> flagref, flagon;
1176      outflagCol.get(i, flagon);
1177      refflagCol.get(i, flagref);
1178      reftsysCol.get(i, tsysref);
1179
1180      Float tsysrefscalar;
1181      if ( tsysv > 0.0 ) {
1182        ostringstream oss;
1183        Float elev;
1184        refelevCol.get(i, elev);
1185        oss << "user specified Tsys = " << tsysv;
1186        // do recalc elevation if EL = 0
1187        if ( elev == 0 ) {
1188          throw(AipsError("EL=0, elevation data is missing."));
1189        } else {
1190          if ( tau <= 0.0 ) {
1191            throw(AipsError("Valid tau is not supplied."));
1192          } else {
1193            tsysrefscalar = tsysv * exp(tau/elev);
1194          }
1195        }
1196        oss << ", corrected (for El) tsys= "<<tsysrefscalar;
1197        pushLog(String(oss));
1198      }
1199      else {
1200        tsysrefscalar = tsysref[0];
1201      }
1202      //get quotient spectrum
1203      MaskedArray<Float> mref = maskedArray(specref, flagref);
1204      MaskedArray<Float> mon = maskedArray(specon, flagon);
1205      MaskedArray<Float> specres =   tsysrefscalar*((mon - mref)/mref);
1206      Double resint = onint*refint*smoothref/(onint+refint*smoothref);
1207
1208      //Debug
1209      //cerr<<"Tsys used="<<tsysrefscalar<<endl;
1210      //LogIO os( LogOrigin( "STMath", "dosigref", WHERE ) ) ;
1211      //os<<"Tsys used="<<tsysrefscalar<<LogIO::POST;
1212      // fill the result, replay signal tsys by reference tsys
1213      outintCol.put(i, resint);
1214      outspecCol.put(i, specres.getArray());
1215      outflagCol.put(i, flagsFromMA(specres));
1216      outtsysCol.put(i, tsysref);
1217    }
1218    ++sit;
1219    ++s2it;
1220  }
1221  return out;
1222}
1223
1224CountedPtr< Scantable > STMath::donod(const casa::CountedPtr<Scantable>& s,
1225                                     const std::vector<int>& scans,
1226                                     int smoothref,
1227                                     casa::Float tsysv,
1228                                     casa::Float tau,
1229                                     casa::Float tcal )
1230
1231{
1232  setInsitu(false);
1233  STSelector sel;
1234  std::vector<int> scan1, scan2, beams, types;
1235  std::vector< vector<int> > scanpair;
1236  //std::vector<string> calstate;
1237  std::vector<int> calstate;
1238  String msg;
1239
1240  CountedPtr< Scantable > s1b1on, s1b1off, s1b2on, s1b2off;
1241  CountedPtr< Scantable > s2b1on, s2b1off, s2b2on, s2b2off;
1242
1243  std::vector< CountedPtr< Scantable > > sctables;
1244  sctables.push_back(s1b1on);
1245  sctables.push_back(s1b1off);
1246  sctables.push_back(s1b2on);
1247  sctables.push_back(s1b2off);
1248  sctables.push_back(s2b1on);
1249  sctables.push_back(s2b1off);
1250  sctables.push_back(s2b2on);
1251  sctables.push_back(s2b2off);
1252
1253  //check scanlist
1254  int n=s->checkScanInfo(scans);
1255  if (n==1) {
1256     throw(AipsError("Incorrect scan pairs. "));
1257  }
1258
1259  // Assume scans contain only a pair of consecutive scan numbers.
1260  // It is assumed that first beam, b1,  is on target.
1261  // There is no check if the first beam is on or not.
1262  if ( scans.size()==1 ) {
1263    scan1.push_back(scans[0]);
1264    scan2.push_back(scans[0]+1);
1265  } else if ( scans.size()==2 ) {
1266   scan1.push_back(scans[0]);
1267   scan2.push_back(scans[1]);
1268  } else {
1269    if ( scans.size()%2 == 0 ) {
1270      for (uInt i=0; i<scans.size(); i++) {
1271        if (i%2 == 0) {
1272          scan1.push_back(scans[i]);
1273        }
1274        else {
1275          scan2.push_back(scans[i]);
1276        }
1277      }
1278    } else {
1279      throw(AipsError("Odd numbers of scans, cannot form pairs."));
1280    }
1281  }
1282  scanpair.push_back(scan1);
1283  scanpair.push_back(scan2);
1284  //calstate.push_back("*calon");
1285  //calstate.push_back("*[^calon]");
1286  calstate.push_back(SrcType::NODCAL);
1287  calstate.push_back(SrcType::NOD);
1288  CountedPtr< Scantable > ws = getScantable(s, false);
1289  uInt l=0;
1290  while ( l < sctables.size() ) {
1291    for (uInt i=0; i < 2; i++) {
1292      for (uInt j=0; j < 2; j++) {
1293        for (uInt k=0; k < 2; k++) {
1294          sel.reset();
1295          sel.setScans(scanpair[i]);
1296          //sel.setName(calstate[k]);
1297          types.clear();
1298          types.push_back(calstate[k]);
1299          sel.setTypes(types);
1300          beams.clear();
1301          beams.push_back(j);
1302          sel.setBeams(beams);
1303          ws->setSelection(sel);
1304          sctables[l]= getScantable(ws, false);
1305          l++;
1306        }
1307      }
1308    }
1309  }
1310
1311  // replace here by splitData or getData functionality
1312  CountedPtr< Scantable > sig1;
1313  CountedPtr< Scantable > ref1;
1314  CountedPtr< Scantable > sig2;
1315  CountedPtr< Scantable > ref2;
1316  CountedPtr< Scantable > calb1;
1317  CountedPtr< Scantable > calb2;
1318
1319  msg=String("Processing dototalpower for subset of the data");
1320  ostringstream oss1;
1321  oss1 << msg  << endl;
1322  pushLog(String(oss1));
1323  // Debug for IRC CS data
1324  //float tcal1=7.0;
1325  //float tcal2=4.0;
1326  sig1 = dototalpower(sctables[0], sctables[1], tcal=tcal);
1327  ref1 = dototalpower(sctables[2], sctables[3], tcal=tcal);
1328  ref2 = dototalpower(sctables[4], sctables[5], tcal=tcal);
1329  sig2 = dototalpower(sctables[6], sctables[7], tcal=tcal);
1330
1331  // correction of user-specified tsys for elevation here
1332
1333  // dosigref calibration
1334  msg=String("Processing dosigref for subset of the data");
1335  ostringstream oss2;
1336  oss2 << msg  << endl;
1337  pushLog(String(oss2));
1338  calb1=dosigref(sig1,ref2,smoothref,tsysv,tau);
1339  calb2=dosigref(sig2,ref1,smoothref,tsysv,tau);
1340
1341  // iteration by scanno or cycle no.
1342  Table& tcalb1 = calb1->table();
1343  Table& tcalb2 = calb2->table();
1344  TableIterator sit(tcalb1, "SCANNO");
1345  TableIterator s2it(tcalb2, "SCANNO");
1346  while ( !sit.pastEnd() ) {
1347    Table t1 = sit.table();
1348    Table t2= s2it.table();
1349    ArrayColumn<Float> outspecCol(t1, "SPECTRA");
1350    ArrayColumn<Float> outtsysCol(t1, "TSYS");
1351    ArrayColumn<uChar> outflagCol(t1, "FLAGTRA");
1352    ScalarColumn<Double> outintCol(t1, "INTERVAL");
1353    ArrayColumn<Float> t2specCol(t2, "SPECTRA");
1354    ROArrayColumn<Float> t2tsysCol(t2, "TSYS");
1355    ArrayColumn<uChar> t2flagCol(t2, "FLAGTRA");
1356    ROScalarColumn<Double> t2intCol(t2, "INTERVAL");
1357    for (uInt i=0; i < t1.nrow(); ++i) {
1358      Vector<Float> spec1, spec2;
1359      // to store scalar (mean) tsys
1360      Vector<Float> tsys1, tsys2;
1361      Vector<uChar> flag1, flag2;
1362      Double tint1, tint2;
1363      outspecCol.get(i, spec1);
1364      t2specCol.get(i, spec2);
1365      outflagCol.get(i, flag1);
1366      t2flagCol.get(i, flag2);
1367      outtsysCol.get(i, tsys1);
1368      t2tsysCol.get(i, tsys2);
1369      outintCol.get(i, tint1);
1370      t2intCol.get(i, tint2);
1371      // average
1372      // assume scalar tsys for weights
1373      Float wt1, wt2, tsyssq1, tsyssq2;
1374      tsyssq1 = tsys1[0]*tsys1[0];
1375      tsyssq2 = tsys2[0]*tsys2[0];
1376      wt1 = Float(tint1)/tsyssq1;
1377      wt2 = Float(tint2)/tsyssq2;
1378      Float invsumwt=1/(wt1+wt2);
1379      MaskedArray<Float> mspec1 = maskedArray(spec1, flag1);
1380      MaskedArray<Float> mspec2 = maskedArray(spec2, flag2);
1381      MaskedArray<Float> avspec =  invsumwt * (wt1*mspec1 + wt2*mspec2);
1382      //Array<Float> avtsys =  Float(0.5) * (tsys1 + tsys2);
1383      // cerr<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<endl;
1384      // LogIO os( LogOrigin( "STMath", "donod", WHERE ) ) ;
1385      // os<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<LogIO::POST;
1386      tsys1[0] = sqrt(tsyssq1 + tsyssq2);
1387      Array<Float> avtsys =  tsys1;
1388
1389      outspecCol.put(i, avspec.getArray());
1390      outflagCol.put(i, flagsFromMA(avspec));
1391      outtsysCol.put(i, avtsys);
1392    }
1393    ++sit;
1394    ++s2it;
1395  }
1396  return calb1;
1397}
1398
1399//GBTIDL version of frequency switched data calibration
1400CountedPtr< Scantable > STMath::dofs( const CountedPtr< Scantable >& s,
1401                                      const std::vector<int>& scans,
1402                                      int smoothref,
1403                                      casa::Float tsysv,
1404                                      casa::Float tau,
1405                                      casa::Float tcal )
1406{
1407
1408
1409  (void) scans; //currently unused
1410  STSelector sel;
1411  CountedPtr< Scantable > ws = getScantable(s, false);
1412  CountedPtr< Scantable > sig, sigwcal, ref, refwcal;
1413  CountedPtr< Scantable > calsig, calref, out, out1, out2;
1414  Bool nofold=False;
1415  vector<int> types ;
1416
1417  //split the data
1418  //sel.setName("*_fs");
1419  types.push_back( SrcType::FSON ) ;
1420  sel.setTypes( types ) ;
1421  ws->setSelection(sel);
1422  sig = getScantable(ws,false);
1423  sel.reset();
1424  types.clear() ;
1425  //sel.setName("*_fs_calon");
1426  types.push_back( SrcType::FONCAL ) ;
1427  sel.setTypes( types ) ;
1428  ws->setSelection(sel);
1429  sigwcal = getScantable(ws,false);
1430  sel.reset();
1431  types.clear() ;
1432  //sel.setName("*_fsr");
1433  types.push_back( SrcType::FSOFF ) ;
1434  sel.setTypes( types ) ;
1435  ws->setSelection(sel);
1436  ref = getScantable(ws,false);
1437  sel.reset();
1438  types.clear() ;
1439  //sel.setName("*_fsr_calon");
1440  types.push_back( SrcType::FOFFCAL ) ;
1441  sel.setTypes( types ) ;
1442  ws->setSelection(sel);
1443  refwcal = getScantable(ws,false);
1444  sel.reset() ;
1445  types.clear() ;
1446
1447  calsig = dototalpower(sigwcal, sig, tcal=tcal);
1448  calref = dototalpower(refwcal, ref, tcal=tcal);
1449
1450  out1=dosigref(calsig,calref,smoothref,tsysv,tau);
1451  out2=dosigref(calref,calsig,smoothref,tsysv,tau);
1452
1453  Table& tabout1=out1->table();
1454  Table& tabout2=out2->table();
1455  ROScalarColumn<uInt> freqidCol1(tabout1, "FREQ_ID");
1456  ScalarColumn<uInt> freqidCol2(tabout2, "FREQ_ID");
1457  ROArrayColumn<Float> specCol(tabout2, "SPECTRA");
1458  Vector<Float> spec; specCol.get(0, spec);
1459  uInt nchan = spec.nelements();
1460  uInt freqid1; freqidCol1.get(0,freqid1);
1461  uInt freqid2; freqidCol2.get(0,freqid2);
1462  Double rp1, rp2, rv1, rv2, inc1, inc2;
1463  out1->frequencies().getEntry(rp1, rv1, inc1, freqid1);
1464  out2->frequencies().getEntry(rp2, rv2, inc2, freqid2);
1465  //cerr << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << endl ;
1466  //LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1467  //os << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << LogIO::POST ;
1468  if (rp1==rp2) {
1469    Double foffset = rv1 - rv2;
1470    uInt choffset = static_cast<uInt>(foffset/abs(inc2));
1471    if (choffset >= nchan) {
1472      //cerr<<"out-band frequency switching, no folding"<<endl;
1473      LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1474      os<<"out-band frequency switching, no folding"<<LogIO::POST;
1475      nofold = True;
1476    }
1477  }
1478
1479  if (nofold) {
1480    std::vector< CountedPtr< Scantable > > tabs;
1481    tabs.push_back(out1);
1482    tabs.push_back(out2);
1483    out = merge(tabs);
1484  }
1485  else {
1486    //out = out1;
1487    Double choffset = ( rv1 - rv2 ) / inc2 ;
1488    out = dofold( out1, out2, choffset ) ;
1489  }
1490   
1491  return out;
1492}
1493
1494CountedPtr<Scantable> STMath::dofold( const CountedPtr<Scantable> &sig,
1495                                      const CountedPtr<Scantable> &ref,
1496                                      Double choffset,
1497                                      Double choffset2 )
1498{
1499  LogIO os( LogOrigin( "STMath", "dofold", WHERE ) ) ;
1500  os << "choffset=" << choffset << " choffset2=" << choffset2 << LogIO::POST ;
1501
1502  // output scantable
1503  CountedPtr<Scantable> out = getScantable( sig, false ) ;
1504
1505  // separate choffset to integer part and decimal part
1506  Int ioffset = (Int)choffset ;
1507  Double doffset = choffset - ioffset ;
1508  Int ioffset2 = (Int)choffset2 ;
1509  Double doffset2 = choffset2 - ioffset2 ;
1510  os << "ioffset=" << ioffset << " doffset=" << doffset << LogIO::POST ;
1511  os << "ioffset2=" << ioffset2 << " doffset2=" << doffset2 << LogIO::POST ; 
1512
1513  // get column
1514  ROArrayColumn<Float> specCol1( sig->table(), "SPECTRA" ) ;
1515  ROArrayColumn<Float> specCol2( ref->table(), "SPECTRA" ) ;
1516  ROArrayColumn<Float> tsysCol1( sig->table(), "TSYS" ) ;
1517  ROArrayColumn<Float> tsysCol2( ref->table(), "TSYS" ) ;
1518  ROArrayColumn<uChar> flagCol1( sig->table(), "FLAGTRA" ) ;
1519  ROArrayColumn<uChar> flagCol2( ref->table(), "FLAGTRA" ) ;
1520  ROScalarColumn<Double> mjdCol1( sig->table(), "TIME" ) ;
1521  ROScalarColumn<Double> mjdCol2( ref->table(), "TIME" ) ;
1522  ROScalarColumn<Double> intervalCol1( sig->table(), "INTERVAL" ) ;
1523  ROScalarColumn<Double> intervalCol2( ref->table(), "INTERVAL" ) ;
1524
1525  // check
1526  if ( ioffset == 0 ) {
1527    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1528    os << "channel offset is zero, no folding" << LogIO::POST ;
1529    return out ;
1530  }
1531  int nchan = ref->nchan() ;
1532  if ( abs(ioffset) >= nchan ) {
1533    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1534    os << "out-band frequency switching, no folding" << LogIO::POST ;
1535    return out ;
1536  }
1537
1538  // attach column for output scantable
1539  ArrayColumn<Float> specColOut( out->table(), "SPECTRA" ) ;
1540  ArrayColumn<uChar> flagColOut( out->table(), "FLAGTRA" ) ;
1541  ArrayColumn<Float> tsysColOut( out->table(), "TSYS" ) ;
1542  ScalarColumn<Double> mjdColOut( out->table(), "TIME" ) ;
1543  ScalarColumn<Double> intervalColOut( out->table(), "INTERVAL" ) ;
1544  ScalarColumn<uInt> fidColOut( out->table(), "FREQ_ID" ) ;
1545
1546  // for each row
1547  // assume that the data order are same between sig and ref
1548  RowAccumulator acc( asap::W_TINTSYS ) ;
1549  for ( int i = 0 ; i < sig->nrow() ; i++ ) {
1550    // get values
1551    Vector<Float> spsig ;
1552    specCol1.get( i, spsig ) ;
1553    Vector<Float> spref ;
1554    specCol2.get( i, spref ) ;
1555    Vector<Float> tsyssig ;
1556    tsysCol1.get( i, tsyssig ) ;
1557    Vector<Float> tsysref ;
1558    tsysCol2.get( i, tsysref ) ;
1559    Vector<uChar> flagsig ;
1560    flagCol1.get( i, flagsig ) ;
1561    Vector<uChar> flagref ;
1562    flagCol2.get( i, flagref ) ;
1563    Double timesig ;
1564    mjdCol1.get( i, timesig ) ;
1565    Double timeref ;
1566    mjdCol2.get( i, timeref ) ;
1567    Double intsig ;
1568    intervalCol1.get( i, intsig ) ;
1569    Double intref ;
1570    intervalCol2.get( i, intref ) ;
1571
1572    // shift reference spectra
1573    int refchan = spref.nelements() ;
1574    Vector<Float> sspref( spref.nelements() ) ;
1575    Vector<Float> stsysref( tsysref.nelements() ) ;
1576    Vector<uChar> sflagref( flagref.nelements() ) ;
1577    if ( ioffset > 0 ) {
1578      // SPECTRA and FLAGTRA
1579      for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1580        sspref[j] = spref[j+ioffset] ;
1581        sflagref[j] = flagref[j+ioffset] ;
1582      }
1583      for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1584        sspref[j] = spref[j-refchan+ioffset] ;
1585        sflagref[j] = flagref[j-refchan+ioffset] ;
1586      }
1587      spref = sspref.copy() ;
1588      flagref = sflagref.copy() ;
1589      for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1590        sspref[j] = doffset * spref[j+1] + ( 1.0 - doffset ) * spref[j] ;
1591        sflagref[j] = flagref[j+1] + flagref[j] ;
1592      }
1593      sspref[refchan-1] = doffset * spref[0] + ( 1.0 - doffset ) * spref[refchan-1] ;
1594      sflagref[refchan-1] = flagref[0] + flagref[refchan-1] ;
1595
1596      // TSYS
1597      if ( spref.nelements() == tsysref.nelements() ) {
1598        for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1599          stsysref[j] = tsysref[j+ioffset] ;
1600        }
1601        for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1602          stsysref[j] = tsysref[j-refchan+ioffset] ;
1603        }
1604        tsysref = stsysref.copy() ;
1605        for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1606          stsysref[j] = doffset * tsysref[j+1] + ( 1.0 - doffset ) * tsysref[j] ;
1607        }
1608        stsysref[refchan-1] = doffset * tsysref[0] + ( 1.0 - doffset ) * tsysref[refchan-1] ;
1609      }
1610    }
1611    else {
1612      // SPECTRA and FLAGTRA
1613      for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1614        sspref[j] = spref[refchan+ioffset+j] ;
1615        sflagref[j] = flagref[refchan+ioffset+j] ;
1616      }
1617      for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1618        sspref[j] = spref[j+ioffset] ;
1619        sflagref[j] = flagref[j+ioffset] ;
1620      }
1621      spref = sspref.copy() ;
1622      flagref = sflagref.copy() ;
1623      sspref[0] = doffset * spref[refchan-1] + ( 1.0 - doffset ) * spref[0] ;
1624      sflagref[0] = flagref[0] + flagref[refchan-1] ;
1625      for ( int j = 1 ; j < refchan ; j++ ) {
1626        sspref[j] = doffset * spref[j-1] + ( 1.0 - doffset ) * spref[j] ;
1627        sflagref[j] = flagref[j-1] + flagref[j] ;
1628      }
1629      // TSYS
1630      if ( spref.nelements() == tsysref.nelements() ) {
1631        for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1632          stsysref[j] = tsysref[refchan+ioffset+j] ;
1633        }
1634        for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1635          stsysref[j] = tsysref[j+ioffset] ;
1636        }
1637        tsysref = stsysref.copy() ;
1638        stsysref[0] = doffset * tsysref[refchan-1] + ( 1.0 - doffset ) * tsysref[0] ;
1639        for ( int j = 1 ; j < refchan ; j++ ) {
1640          stsysref[j] = doffset * tsysref[j-1] + ( 1.0 - doffset ) * tsysref[j] ;
1641        }
1642      }
1643    }
1644
1645    // shift signal spectra if necessary (only for APEX?)
1646    if ( choffset2 != 0.0 ) {
1647      int sigchan = spsig.nelements() ;
1648      Vector<Float> sspsig( spsig.nelements() ) ;
1649      Vector<Float> stsyssig( tsyssig.nelements() ) ;
1650      Vector<uChar> sflagsig( flagsig.nelements() ) ;
1651      if ( ioffset2 > 0 ) {
1652        // SPECTRA and FLAGTRA
1653        for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1654          sspsig[j] = spsig[j+ioffset2] ;
1655          sflagsig[j] = flagsig[j+ioffset2] ;
1656        }
1657        for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1658          sspsig[j] = spsig[j-sigchan+ioffset2] ;
1659          sflagsig[j] = flagsig[j-sigchan+ioffset2] ;
1660        }
1661        spsig = sspsig.copy() ;
1662        flagsig = sflagsig.copy() ;
1663        for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1664          sspsig[j] = doffset2 * spsig[j+1] + ( 1.0 - doffset2 ) * spsig[j] ;
1665          sflagsig[j] = flagsig[j+1] || flagsig[j] ;
1666        }
1667        sspsig[sigchan-1] = doffset2 * spsig[0] + ( 1.0 - doffset2 ) * spsig[sigchan-1] ;
1668        sflagsig[sigchan-1] = flagsig[0] || flagsig[sigchan-1] ;
1669        // TSTS
1670        if ( spsig.nelements() == tsyssig.nelements() ) {
1671          for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1672            stsyssig[j] = tsyssig[j+ioffset2] ;
1673          }
1674          for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1675            stsyssig[j] = tsyssig[j-sigchan+ioffset2] ;
1676          }
1677          tsyssig = stsyssig.copy() ;
1678          for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1679            stsyssig[j] = doffset2 * tsyssig[j+1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1680          }
1681          stsyssig[sigchan-1] = doffset2 * tsyssig[0] + ( 1.0 - doffset2 ) * tsyssig[sigchan-1] ;
1682        }
1683      }
1684      else {
1685        // SPECTRA and FLAGTRA
1686        for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1687          sspsig[j] = spsig[sigchan+ioffset2+j] ;
1688          sflagsig[j] = flagsig[sigchan+ioffset2+j] ;
1689        }
1690        for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1691          sspsig[j] = spsig[j+ioffset2] ;
1692          sflagsig[j] = flagsig[j+ioffset2] ;
1693        }
1694        spsig = sspsig.copy() ;
1695        flagsig = sflagsig.copy() ;
1696        sspsig[0] = doffset2 * spsig[sigchan-1] + ( 1.0 - doffset2 ) * spsig[0] ;
1697        sflagsig[0] = flagsig[0] + flagsig[sigchan-1] ;
1698        for ( int j = 1 ; j < sigchan ; j++ ) {
1699          sspsig[j] = doffset2 * spsig[j-1] + ( 1.0 - doffset2 ) * spsig[j] ;
1700          sflagsig[j] = flagsig[j-1] + flagsig[j] ;
1701        }
1702        // TSYS
1703        if ( spsig.nelements() == tsyssig.nelements() ) {
1704          for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1705            stsyssig[j] = tsyssig[sigchan+ioffset2+j] ;
1706          }
1707          for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1708            stsyssig[j] = tsyssig[j+ioffset2] ;
1709          }
1710          tsyssig = stsyssig.copy() ;
1711          stsyssig[0] = doffset2 * tsyssig[sigchan-1] + ( 1.0 - doffset2 ) * tsyssig[0] ;
1712          for ( int j = 1 ; j < sigchan ; j++ ) {
1713            stsyssig[j] = doffset2 * tsyssig[j-1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1714          }
1715        }
1716      }
1717    }
1718
1719    // folding
1720    acc.add( spsig, !flagsig, tsyssig, intsig, timesig ) ;
1721    acc.add( sspref, !sflagref, stsysref, intref, timeref ) ;
1722   
1723    // put result
1724    specColOut.put( i, acc.getSpectrum() ) ;
1725    const Vector<Bool> &msk = acc.getMask() ;
1726    Vector<uChar> flg( msk.shape() ) ;
1727    convertArray( flg, !msk ) ;
1728    flagColOut.put( i, flg ) ;
1729    tsysColOut.put( i, acc.getTsys() ) ;
1730    intervalColOut.put( i, acc.getInterval() ) ;
1731    mjdColOut.put( i, acc.getTime() ) ;
1732    // change FREQ_ID to unshifted IF setting (only for APEX?)
1733    if ( choffset2 != 0.0 ) {
1734      uInt freqid = fidColOut( 0 ) ; // assume single-IF data
1735      double refpix, refval, increment ;
1736      out->frequencies().getEntry( refpix, refval, increment, freqid ) ;
1737      refval -= choffset * increment ;
1738      uInt newfreqid = out->frequencies().addEntry( refpix, refval, increment ) ;
1739      Vector<uInt> freqids = fidColOut.getColumn() ;
1740      for ( uInt j = 0 ; j < freqids.nelements() ; j++ ) {
1741        if ( freqids[j] == freqid )
1742          freqids[j] = newfreqid ;
1743      }
1744      fidColOut.putColumn( freqids ) ;
1745    }
1746
1747    acc.reset() ;
1748  }
1749
1750  return out ;
1751}
1752
1753
1754CountedPtr< Scantable > STMath::freqSwitch( const CountedPtr< Scantable >& in )
1755{
1756  // make copy or reference
1757  CountedPtr< Scantable > out = getScantable(in, false);
1758  Table& tout = out->table();
1759  Block<String> cols(4);
1760  cols[0] = String("SCANNO");
1761  cols[1] = String("CYCLENO");
1762  cols[2] = String("BEAMNO");
1763  cols[3] = String("POLNO");
1764  TableIterator iter(tout, cols);
1765  while (!iter.pastEnd()) {
1766    Table subt = iter.table();
1767    // this should leave us with two rows for the two IFs....if not ignore
1768    if (subt.nrow() != 2 ) {
1769      continue;
1770    }
1771    ArrayColumn<Float> specCol(subt, "SPECTRA");
1772    ArrayColumn<Float> tsysCol(subt, "TSYS");
1773    ArrayColumn<uChar> flagCol(subt, "FLAGTRA");
1774    Vector<Float> onspec,offspec, ontsys, offtsys;
1775    Vector<uChar> onflag, offflag;
1776    tsysCol.get(0, ontsys);   tsysCol.get(1, offtsys);
1777    specCol.get(0, onspec);   specCol.get(1, offspec);
1778    flagCol.get(0, onflag);   flagCol.get(1, offflag);
1779    MaskedArray<Float> on  = maskedArray(onspec, onflag);
1780    MaskedArray<Float> off = maskedArray(offspec, offflag);
1781    MaskedArray<Float> oncopy = on.copy();
1782
1783    on /= off; on -= 1.0f;
1784    on *= ontsys[0];
1785    off /= oncopy; off -= 1.0f;
1786    off *= offtsys[0];
1787    specCol.put(0, on.getArray());
1788    const Vector<Bool>& m0 = on.getMask();
1789    Vector<uChar> flags0(m0.shape());
1790    convertArray(flags0, !m0);
1791    flagCol.put(0, flags0);
1792
1793    specCol.put(1, off.getArray());
1794    const Vector<Bool>& m1 = off.getMask();
1795    Vector<uChar> flags1(m1.shape());
1796    convertArray(flags1, !m1);
1797    flagCol.put(1, flags1);
1798    ++iter;
1799  }
1800
1801  return out;
1802}
1803
1804std::vector< float > STMath::statistic( const CountedPtr< Scantable > & in,
1805                                        const std::vector< bool > & mask,
1806                                        const std::string& which )
1807{
1808
1809  Vector<Bool> m(mask);
1810  const Table& tab = in->table();
1811  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1812  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1813  std::vector<float> out;
1814  for (uInt i=0; i < tab.nrow(); ++i ) {
1815    Vector<Float> spec; specCol.get(i, spec);
1816    Vector<uChar> flag; flagCol.get(i, flag);
1817    MaskedArray<Float> ma  = maskedArray(spec, flag);
1818    float outstat = 0.0;
1819    if ( spec.nelements() == m.nelements() ) {
1820      outstat = mathutil::statistics(which, ma(m));
1821    } else {
1822      outstat = mathutil::statistics(which, ma);
1823    }
1824    out.push_back(outstat);
1825  }
1826  return out;
1827}
1828
1829std::vector< float > STMath::statisticRow( const CountedPtr< Scantable > & in,
1830                                        const std::vector< bool > & mask,
1831                                        const std::string& which,
1832                                        int row )
1833{
1834
1835  Vector<Bool> m(mask);
1836  const Table& tab = in->table();
1837  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1838  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1839  std::vector<float> out;
1840
1841  Vector<Float> spec; specCol.get(row, spec);
1842  Vector<uChar> flag; flagCol.get(row, flag);
1843  MaskedArray<Float> ma  = maskedArray(spec, flag);
1844  float outstat = 0.0;
1845  if ( spec.nelements() == m.nelements() ) {
1846    outstat = mathutil::statistics(which, ma(m));
1847  } else {
1848    outstat = mathutil::statistics(which, ma);
1849  }
1850  out.push_back(outstat);
1851
1852  return out;
1853}
1854
1855std::vector< int > STMath::minMaxChan( const CountedPtr< Scantable > & in,
1856                                        const std::vector< bool > & mask,
1857                                        const std::string& which )
1858{
1859
1860  Vector<Bool> m(mask);
1861  const Table& tab = in->table();
1862  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1863  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1864  std::vector<int> out;
1865  for (uInt i=0; i < tab.nrow(); ++i ) {
1866    Vector<Float> spec; specCol.get(i, spec);
1867    Vector<uChar> flag; flagCol.get(i, flag);
1868    MaskedArray<Float> ma  = maskedArray(spec, flag);
1869    if (ma.ndim() != 1) {
1870      throw (ArrayError(
1871          "std::vector<int> STMath::minMaxChan("
1872          "ContedPtr<Scantable> &in, std::vector<bool> &mask, "
1873          " std::string &which)"
1874          " - MaskedArray is not 1D"));
1875    }
1876    IPosition outpos(1,0);
1877    if ( spec.nelements() == m.nelements() ) {
1878      outpos = mathutil::minMaxPos(which, ma(m));
1879    } else {
1880      outpos = mathutil::minMaxPos(which, ma);
1881    }
1882    out.push_back(outpos[0]);
1883  }
1884  return out;
1885}
1886
1887CountedPtr< Scantable > STMath::bin( const CountedPtr< Scantable > & in,
1888                                     int width )
1889{
1890  if ( !in->getSelection().empty() ) throw(AipsError("Can't bin subset of the data."));
1891  CountedPtr< Scantable > out = getScantable(in, false);
1892  Table& tout = out->table();
1893  out->frequencies().rescale(width, "BIN");
1894  ArrayColumn<Float> specCol(tout, "SPECTRA");
1895  ArrayColumn<uChar> flagCol(tout, "FLAGTRA");
1896  for (uInt i=0; i < tout.nrow(); ++i ) {
1897    MaskedArray<Float> main  = maskedArray(specCol(i), flagCol(i));
1898    MaskedArray<Float> maout;
1899    LatticeUtilities::bin(maout, main, 0, Int(width));
1900    /// @todo implement channel based tsys binning
1901    specCol.put(i, maout.getArray());
1902    flagCol.put(i, flagsFromMA(maout));
1903    // take only the first binned spectrum's length for the deprecated
1904    // global header item nChan
1905    if (i==0) tout.rwKeywordSet().define(String("nChan"),
1906                                       Int(maout.getArray().nelements()));
1907  }
1908  return out;
1909}
1910
1911CountedPtr< Scantable > STMath::resample( const CountedPtr< Scantable >& in,
1912                                          const std::string& method,
1913                                          float width )
1914//
1915// Should add the possibility of width being specified in km/s. This means
1916// that for each freqID (SpectralCoordinate) we will need to convert to an
1917// average channel width (say at the reference pixel).  Then we would need
1918// to be careful to make sure each spectrum (of different freqID)
1919// is the same length.
1920//
1921{
1922  //InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1923  Int interpMethod(stringToIMethod(method));
1924
1925  CountedPtr< Scantable > out = getScantable(in, false);
1926  Table& tout = out->table();
1927
1928// Resample SpectralCoordinates (one per freqID)
1929  out->frequencies().rescale(width, "RESAMPLE");
1930  TableIterator iter(tout, "IFNO");
1931  TableRow row(tout);
1932  while ( !iter.pastEnd() ) {
1933    Table tab = iter.table();
1934    ArrayColumn<Float> specCol(tab, "SPECTRA");
1935    //ArrayColumn<Float> tsysCol(tout, "TSYS");
1936    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1937    Vector<Float> spec;
1938    Vector<uChar> flag;
1939    specCol.get(0,spec); // the number of channels should be constant per IF
1940    uInt nChanIn = spec.nelements();
1941    Vector<Float> xIn(nChanIn); indgen(xIn);
1942    Int fac =  Int(nChanIn/width);
1943    Vector<Float> xOut(fac+10); // 10 to be safe - resize later
1944    uInt k = 0;
1945    Float x = 0.0;
1946    while (x < Float(nChanIn) ) {
1947      xOut(k) = x;
1948      k++;
1949      x += width;
1950    }
1951    uInt nChanOut = k;
1952    xOut.resize(nChanOut, True);
1953    // process all rows for this IFNO
1954    Vector<Float> specOut;
1955    Vector<Bool> maskOut;
1956    Vector<uChar> flagOut;
1957    for (uInt i=0; i < tab.nrow(); ++i) {
1958      specCol.get(i, spec);
1959      flagCol.get(i, flag);
1960      Vector<Bool> mask(flag.nelements());
1961      convertArray(mask, flag);
1962
1963      IPosition shapeIn(spec.shape());
1964      //sh.nchan = nChanOut;
1965      InterpolateArray1D<Float,Float>::interpolate(specOut, maskOut, xOut,
1966                                                   xIn, spec, mask,
1967                                                   interpMethod, True, True);
1968      /// @todo do the same for channel based Tsys
1969      flagOut.resize(maskOut.nelements());
1970      convertArray(flagOut, maskOut);
1971      specCol.put(i, specOut);
1972      flagCol.put(i, flagOut);
1973    }
1974    ++iter;
1975  }
1976
1977  return out;
1978}
1979
1980STMath::imethod STMath::stringToIMethod(const std::string& in)
1981{
1982  static STMath::imap lookup;
1983
1984  // initialize the lookup table if necessary
1985  if ( lookup.empty() ) {
1986    lookup["nearest"]   = InterpolateArray1D<Double,Float>::nearestNeighbour;
1987    lookup["linear"] = InterpolateArray1D<Double,Float>::linear;
1988    lookup["cubic"]  = InterpolateArray1D<Double,Float>::cubic;
1989    lookup["spline"]  = InterpolateArray1D<Double,Float>::spline;
1990  }
1991
1992  STMath::imap::const_iterator iter = lookup.find(in);
1993
1994  if ( lookup.end() == iter ) {
1995    std::string message = in;
1996    message += " is not a valid interpolation mode";
1997    throw(AipsError(message));
1998  }
1999  return iter->second;
2000}
2001
2002WeightType STMath::stringToWeight(const std::string& in)
2003{
2004  static std::map<std::string, WeightType> lookup;
2005
2006  // initialize the lookup table if necessary
2007  if ( lookup.empty() ) {
2008    lookup["NONE"]   = asap::W_NONE;
2009    lookup["TINT"] = asap::W_TINT;
2010    lookup["TINTSYS"]  = asap::W_TINTSYS;
2011    lookup["TSYS"]  = asap::W_TSYS;
2012    lookup["VAR"]  = asap::W_VAR;
2013  }
2014
2015  std::map<std::string, WeightType>::const_iterator iter = lookup.find(in);
2016
2017  if ( lookup.end() == iter ) {
2018    std::string message = in;
2019    message += " is not a valid weighting mode";
2020    throw(AipsError(message));
2021  }
2022  return iter->second;
2023}
2024
2025CountedPtr< Scantable > STMath::gainElevation( const CountedPtr< Scantable >& in,
2026                                               const vector< float > & coeff,
2027                                               const std::string & filename,
2028                                               const std::string& method)
2029{
2030  // Get elevation data from Scantable and convert to degrees
2031  CountedPtr< Scantable > out = getScantable(in, false);
2032  Table& tab = out->table();
2033  ROScalarColumn<Float> elev(tab, "ELEVATION");
2034  Vector<Float> x = elev.getColumn();
2035  x *= Float(180 / C::pi);                        // Degrees
2036
2037  Vector<Float> coeffs(coeff);
2038  const uInt nc = coeffs.nelements();
2039  if ( filename.length() > 0 && nc > 0 ) {
2040    throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
2041  }
2042
2043  // Correct
2044  if ( nc > 0 || filename.length() == 0 ) {
2045    // Find instrument
2046    Bool throwit = True;
2047    Instrument inst =
2048      STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2049                                throwit);
2050
2051    // Set polynomial
2052    Polynomial<Float>* ppoly = 0;
2053    Vector<Float> coeff;
2054    String msg;
2055    if ( nc > 0 ) {
2056      ppoly = new Polynomial<Float>(nc-1);
2057      coeff = coeffs;
2058      msg = String("user");
2059    } else {
2060      STAttr sdAttr;
2061      coeff = sdAttr.gainElevationPoly(inst);
2062      ppoly = new Polynomial<Float>(coeff.nelements()-1);
2063      msg = String("built in");
2064    }
2065
2066    if ( coeff.nelements() > 0 ) {
2067      ppoly->setCoefficients(coeff);
2068    } else {
2069      delete ppoly;
2070      throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
2071    }
2072    ostringstream oss;
2073    oss << "Making polynomial correction with " << msg << " coefficients:" << endl;
2074    oss << "   " <<  coeff;
2075    pushLog(String(oss));
2076    const uInt nrow = tab.nrow();
2077    Vector<Float> factor(nrow);
2078    for ( uInt i=0; i < nrow; ++i ) {
2079      factor[i] = 1.0 / (*ppoly)(x[i]);
2080    }
2081    delete ppoly;
2082    scaleByVector(tab, factor, true);
2083
2084  } else {
2085    // Read and correct
2086    pushLog("Making correction from ascii Table");
2087    scaleFromAsciiTable(tab, filename, method, x, true);
2088  }
2089  return out;
2090}
2091
2092void STMath::scaleFromAsciiTable(Table& in, const std::string& filename,
2093                                 const std::string& method,
2094                                 const Vector<Float>& xout, bool dotsys)
2095{
2096
2097// Read gain-elevation ascii file data into a Table.
2098
2099  String formatString;
2100  Table tbl = readAsciiTable(formatString, Table::Memory, filename, "", "", False);
2101  scaleFromTable(in, tbl, method, xout, dotsys);
2102}
2103
2104void STMath::scaleFromTable(Table& in,
2105                            const Table& table,
2106                            const std::string& method,
2107                            const Vector<Float>& xout, bool dotsys)
2108{
2109
2110  ROScalarColumn<Float> geElCol(table, "ELEVATION");
2111  ROScalarColumn<Float> geFacCol(table, "FACTOR");
2112  Vector<Float> xin = geElCol.getColumn();
2113  Vector<Float> yin = geFacCol.getColumn();
2114  Vector<Bool> maskin(xin.nelements(),True);
2115
2116  // Interpolate (and extrapolate) with desired method
2117
2118  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2119
2120   Vector<Float> yout;
2121   Vector<Bool> maskout;
2122   InterpolateArray1D<Float,Float>::interpolate(yout, maskout, xout,
2123                                                xin, yin, maskin, interp,
2124                                                True, True);
2125
2126   scaleByVector(in, Float(1.0)/yout, dotsys);
2127}
2128
2129void STMath::scaleByVector( Table& in,
2130                            const Vector< Float >& factor,
2131                            bool dotsys )
2132{
2133  uInt nrow = in.nrow();
2134  if ( factor.nelements() != nrow ) {
2135    throw(AipsError("factors.nelements() != table.nelements()"));
2136  }
2137  ArrayColumn<Float> specCol(in, "SPECTRA");
2138  ArrayColumn<uChar> flagCol(in, "FLAGTRA");
2139  ArrayColumn<Float> tsysCol(in, "TSYS");
2140  for (uInt i=0; i < nrow; ++i) {
2141    MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2142    ma *= factor[i];
2143    specCol.put(i, ma.getArray());
2144    flagCol.put(i, flagsFromMA(ma));
2145    if ( dotsys ) {
2146      Vector<Float> tsys = tsysCol(i);
2147      tsys *= factor[i];
2148      tsysCol.put(i,tsys);
2149    }
2150  }
2151}
2152
2153CountedPtr< Scantable > STMath::convertFlux( const CountedPtr< Scantable >& in,
2154                                             float d, float etaap,
2155                                             float jyperk )
2156{
2157  CountedPtr< Scantable > out = getScantable(in, false);
2158  Table& tab = in->table();
2159  Unit fluxUnit(tab.keywordSet().asString("FluxUnit"));
2160  Unit K(String("K"));
2161  Unit JY(String("Jy"));
2162
2163  bool tokelvin = true;
2164  Double cfac = 1.0;
2165
2166  if ( fluxUnit == JY ) {
2167    pushLog("Converting to K");
2168    Quantum<Double> t(1.0,fluxUnit);
2169    Quantum<Double> t2 = t.get(JY);
2170    cfac = (t2 / t).getValue();               // value to Jy
2171
2172    tokelvin = true;
2173    out->setFluxUnit("K");
2174  } else if ( fluxUnit == K ) {
2175    pushLog("Converting to Jy");
2176    Quantum<Double> t(1.0,fluxUnit);
2177    Quantum<Double> t2 = t.get(K);
2178    cfac = (t2 / t).getValue();              // value to K
2179
2180    tokelvin = false;
2181    out->setFluxUnit("Jy");
2182  } else {
2183    throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
2184  }
2185  // Make sure input values are converted to either Jy or K first...
2186  Float factor = cfac;
2187
2188  // Select method
2189  if (jyperk > 0.0) {
2190    factor *= jyperk;
2191    if ( tokelvin ) factor = 1.0 / jyperk;
2192    ostringstream oss;
2193    oss << "Jy/K = " << jyperk;
2194    pushLog(String(oss));
2195    Vector<Float> factors(tab.nrow(), factor);
2196    scaleByVector(tab,factors, false);
2197  } else if ( etaap > 0.0) {
2198    if (d < 0) {
2199      Instrument inst =
2200        STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2201                                  True);
2202      STAttr sda;
2203      d = sda.diameter(inst);
2204    }
2205    jyperk = STAttr::findJyPerK(etaap, d);
2206    ostringstream oss;
2207    oss << "Jy/K = " << jyperk;
2208    pushLog(String(oss));
2209    factor *= jyperk;
2210    if ( tokelvin ) {
2211      factor = 1.0 / factor;
2212    }
2213    Vector<Float> factors(tab.nrow(), factor);
2214    scaleByVector(tab, factors, False);
2215  } else {
2216
2217    // OK now we must deal with automatic look up of values.
2218    // We must also deal with the fact that the factors need
2219    // to be computed per IF and may be different and may
2220    // change per integration.
2221
2222    pushLog("Looking up conversion factors");
2223    convertBrightnessUnits(out, tokelvin, cfac);
2224  }
2225
2226  return out;
2227}
2228
2229void STMath::convertBrightnessUnits( CountedPtr<Scantable>& in,
2230                                     bool tokelvin, float cfac )
2231{
2232  Table& table = in->table();
2233  Instrument inst =
2234    STAttr::convertInstrument(table.keywordSet().asString("AntennaName"), True);
2235  TableIterator iter(table, "FREQ_ID");
2236  STFrequencies stfreqs = in->frequencies();
2237  STAttr sdAtt;
2238  while (!iter.pastEnd()) {
2239    Table tab = iter.table();
2240    ArrayColumn<Float> specCol(tab, "SPECTRA");
2241    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2242    ROScalarColumn<uInt> freqidCol(tab, "FREQ_ID");
2243    MEpoch::ROScalarColumn timeCol(tab, "TIME");
2244
2245    uInt freqid; freqidCol.get(0, freqid);
2246    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2247    // STAttr.JyPerK has a Vector interface... change sometime.
2248    Vector<Float> freqs(1,stfreqs.getRefFreq(freqid, tmpspec.nelements()));
2249    for ( uInt i=0; i<tab.nrow(); ++i) {
2250      Float jyperk = (sdAtt.JyPerK(inst, timeCol(i), freqs))[0];
2251      Float factor = cfac * jyperk;
2252      if ( tokelvin ) factor = Float(1.0) / factor;
2253      MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2254      ma *= factor;
2255      specCol.put(i, ma.getArray());
2256      flagCol.put(i, flagsFromMA(ma));
2257    }
2258  ++iter;
2259  }
2260}
2261
2262CountedPtr< Scantable > STMath::opacity( const CountedPtr< Scantable > & in,
2263                                         const std::vector<float>& tau )
2264{
2265  CountedPtr< Scantable > out = getScantable(in, false);
2266
2267  Table outtab = out->table();
2268
2269  const Int ntau = uInt(tau.size());
2270  std::vector<float>::const_iterator tauit = tau.begin();
2271  AlwaysAssert((ntau == 1 || ntau == in->nif() || ntau == in->nif() * in->npol()),
2272               AipsError);
2273  TableIterator iiter(outtab, "IFNO");
2274  while ( !iiter.pastEnd() ) {
2275    Table itab = iiter.table();
2276    TableIterator piter(outtab, "POLNO");
2277    while ( !piter.pastEnd() ) {
2278      Table tab = piter.table();
2279      ROScalarColumn<Float> elev(tab, "ELEVATION");
2280      ArrayColumn<Float> specCol(tab, "SPECTRA");
2281      ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2282      ArrayColumn<Float> tsysCol(tab, "TSYS");
2283      for ( uInt i=0; i<tab.nrow(); ++i) {
2284        Float zdist = Float(C::pi_2) - elev(i);
2285        Float factor = exp(*tauit/cos(zdist));
2286        MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2287        ma *= factor;
2288        specCol.put(i, ma.getArray());
2289        flagCol.put(i, flagsFromMA(ma));
2290        Vector<Float> tsys;
2291        tsysCol.get(i, tsys);
2292        tsys *= factor;
2293        tsysCol.put(i, tsys);
2294      }
2295      if (ntau == in->nif()*in->npol() ) {
2296        tauit++;
2297      }
2298      piter++;
2299    }
2300    if (ntau >= in->nif() ) {
2301      tauit++;
2302    }
2303    iiter++;
2304  }
2305  return out;
2306}
2307
2308CountedPtr< Scantable > STMath::smoothOther( const CountedPtr< Scantable >& in,
2309                                             const std::string& kernel,
2310                                             float width, int order)
2311{
2312  CountedPtr< Scantable > out = getScantable(in, false);
2313  Table table = out->table();
2314
2315  TableIterator iter(table, "IFNO");
2316  while (!iter.pastEnd()) {
2317    Table tab = iter.table();
2318    ArrayColumn<Float> specCol(tab, "SPECTRA");
2319    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2320    Vector<Float> spec;
2321    Vector<uChar> flag;
2322    for (uInt i = 0; i < tab.nrow(); ++i) {
2323      specCol.get(i, spec);
2324      flagCol.get(i, flag);
2325      Vector<Bool> mask(flag.nelements());
2326      convertArray(mask, flag);
2327      Vector<Float> specout;
2328      Vector<Bool> maskout;
2329      if (kernel == "hanning") {
2330        mathutil::hanning(specout, maskout, spec, !mask);
2331        convertArray(flag, !maskout);
2332      } else if (kernel == "rmedian") {
2333        mathutil::runningMedian(specout, maskout, spec , mask, width);
2334        convertArray(flag, maskout);
2335      } else if (kernel == "poly") {
2336        mathutil::polyfit(specout, maskout, spec, !mask, width, order);
2337        convertArray(flag, !maskout);
2338      }
2339
2340      for (uInt j = 0; j < flag.nelements(); ++j) {
2341        uChar userFlag = 1 << 7;
2342        if (maskout[j]==True) userFlag = 0 << 7;
2343        flag(j) = userFlag;
2344      }
2345
2346      flagCol.put(i, flag);
2347      specCol.put(i, specout);
2348    }
2349  ++iter;
2350  }
2351  return out;
2352}
2353
2354CountedPtr< Scantable > STMath::smooth( const CountedPtr< Scantable >& in,
2355                                        const std::string& kernel, float width,
2356                                        int order)
2357{
2358  if (kernel == "rmedian"  || kernel == "hanning" || kernel == "poly") {
2359    return smoothOther(in, kernel, width, order);
2360  }
2361  CountedPtr< Scantable > out = getScantable(in, false);
2362  Table& table = out->table();
2363  VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernel);
2364  // same IFNO should have same no of channels
2365  // this saves overhead
2366  TableIterator iter(table, "IFNO");
2367  while (!iter.pastEnd()) {
2368    Table tab = iter.table();
2369    ArrayColumn<Float> specCol(tab, "SPECTRA");
2370    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2371    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2372    uInt nchan = tmpspec.nelements();
2373    Vector<Float> kvec = VectorKernel::make(type, width, nchan, True, False);
2374    Convolver<Float> conv(kvec, IPosition(1,nchan));
2375    Vector<Float> spec;
2376    Vector<uChar> flag;
2377    for ( uInt i=0; i<tab.nrow(); ++i) {
2378      specCol.get(i, spec);
2379      flagCol.get(i, flag);
2380      Vector<Bool> mask(flag.nelements());
2381      convertArray(mask, flag);
2382      Vector<Float> specout;
2383      mathutil::replaceMaskByZero(specout, mask);
2384      conv.linearConv(specout, spec);
2385      specCol.put(i, specout);
2386    }
2387    ++iter;
2388  }
2389  return out;
2390}
2391
2392CountedPtr< Scantable >
2393  STMath::merge( const std::vector< CountedPtr < Scantable > >& in )
2394{
2395  if ( in.size() < 2 ) {
2396    throw(AipsError("Need at least two scantables to perform a merge."));
2397  }
2398  std::vector<CountedPtr < Scantable > >::const_iterator it = in.begin();
2399  bool insitu = insitu_;
2400  setInsitu(false);
2401  CountedPtr< Scantable > out = getScantable(*it, false);
2402  setInsitu(insitu);
2403  Table& tout = out->table();
2404  ScalarColumn<uInt> freqidcol(tout,"FREQ_ID"), molidcol(tout, "MOLECULE_ID");
2405  ScalarColumn<uInt> scannocol(tout,"SCANNO"), focusidcol(tout,"FOCUS_ID");
2406  // Renumber SCANNO to be 0-based
2407  Vector<uInt> scannos = scannocol.getColumn();
2408  uInt offset = min(scannos);
2409  scannos -= offset;
2410  scannocol.putColumn(scannos);
2411  uInt newscanno = max(scannos)+1;
2412  ++it;
2413  while ( it != in.end() ){
2414    if ( ! (*it)->conformant(*out) ) {
2415      // non conformant.
2416      //pushLog(String("Warning: Can't merge scantables as header info differs."));
2417      LogIO os( LogOrigin( "STMath", "merge()", WHERE ) ) ;
2418      os << LogIO::SEVERE << "Can't merge scantables as header informations (any one of AntennaName, Equinox, and FluxUnit) differ." << LogIO::EXCEPTION ;
2419    }
2420    out->appendToHistoryTable((*it)->history());
2421    const Table& tab = (*it)->table();
2422    TableIterator scanit(tab, "SCANNO");
2423    while (!scanit.pastEnd()) {
2424      TableIterator freqit(scanit.table(), "FREQ_ID");
2425      while ( !freqit.pastEnd() ) {
2426        Table thetab = freqit.table();
2427        uInt nrow = tout.nrow();
2428        tout.addRow(thetab.nrow());
2429        TableCopy::copyRows(tout, thetab, nrow, 0, thetab.nrow());
2430        ROTableRow row(thetab);
2431        for ( uInt i=0; i<thetab.nrow(); ++i) {
2432          uInt k = nrow+i;
2433          scannocol.put(k, newscanno);
2434          const TableRecord& rec = row.get(i);
2435          Double rv,rp,inc;
2436          (*it)->frequencies().getEntry(rp, rv, inc, rec.asuInt("FREQ_ID"));
2437          uInt id;
2438          id = out->frequencies().addEntry(rp, rv, inc);
2439          freqidcol.put(k,id);
2440          //String name,fname;Double rf;
2441          Vector<String> name,fname;Vector<Double> rf;
2442          (*it)->molecules().getEntry(rf, name, fname, rec.asuInt("MOLECULE_ID"));
2443          id = out->molecules().addEntry(rf, name, fname);
2444          molidcol.put(k, id);
2445          Float fpa,frot,fax,ftan,fhand,fmount,fuser, fxy, fxyp;
2446          (*it)->focus().getEntry(fpa, fax, ftan, frot, fhand,
2447                                  fmount,fuser, fxy, fxyp,
2448                                  rec.asuInt("FOCUS_ID"));
2449          id = out->focus().addEntry(fpa, fax, ftan, frot, fhand,
2450                                     fmount,fuser, fxy, fxyp);
2451          focusidcol.put(k, id);
2452        }
2453        ++freqit;
2454      }
2455      ++newscanno;
2456      ++scanit;
2457    }
2458    ++it;
2459  }
2460  return out;
2461}
2462
2463CountedPtr< Scantable >
2464  STMath::invertPhase( const CountedPtr < Scantable >& in )
2465{
2466  return applyToPol(in, &STPol::invertPhase, Float(0.0));
2467}
2468
2469CountedPtr< Scantable >
2470  STMath::rotateXYPhase( const CountedPtr < Scantable >& in, float phase )
2471{
2472   return applyToPol(in, &STPol::rotatePhase, Float(phase));
2473}
2474
2475CountedPtr< Scantable >
2476  STMath::rotateLinPolPhase( const CountedPtr < Scantable >& in, float phase )
2477{
2478  return applyToPol(in, &STPol::rotateLinPolPhase, Float(phase));
2479}
2480
2481CountedPtr< Scantable > STMath::applyToPol( const CountedPtr<Scantable>& in,
2482                                             STPol::polOperation fptr,
2483                                             Float phase )
2484{
2485  CountedPtr< Scantable > out = getScantable(in, false);
2486  Table& tout = out->table();
2487  Block<String> cols(4);
2488  cols[0] = String("SCANNO");
2489  cols[1] = String("BEAMNO");
2490  cols[2] = String("IFNO");
2491  cols[3] = String("CYCLENO");
2492  TableIterator iter(tout, cols);
2493  CountedPtr<STPol> stpol = STPol::getPolClass(out->factories_,
2494                                               out->getPolType() );
2495  while (!iter.pastEnd()) {
2496    Table t = iter.table();
2497    ArrayColumn<Float> speccol(t, "SPECTRA");
2498    ScalarColumn<uInt> focidcol(t, "FOCUS_ID");
2499    Matrix<Float> pols(speccol.getColumn());
2500    try {
2501      stpol->setSpectra(pols);
2502      Float fang,fhand;
2503      fang = in->focusTable_.getTotalAngle(focidcol(0));
2504      fhand = in->focusTable_.getFeedHand(focidcol(0));
2505      stpol->setPhaseCorrections(fang, fhand);
2506      // use a member function pointer in STPol.  This only works on
2507      // the STPol pointer itself, not the Counted Pointer so
2508      // derefernce it.
2509      (&(*(stpol))->*fptr)(phase);
2510      speccol.putColumn(stpol->getSpectra());
2511    } catch (AipsError& e) {
2512      //delete stpol;stpol=0;
2513      throw(e);
2514    }
2515    ++iter;
2516  }
2517  //delete stpol;stpol=0;
2518  return out;
2519}
2520
2521CountedPtr< Scantable >
2522  STMath::swapPolarisations( const CountedPtr< Scantable > & in )
2523{
2524  CountedPtr< Scantable > out = getScantable(in, false);
2525  Table& tout = out->table();
2526  Table t0 = tout(tout.col("POLNO") == 0);
2527  Table t1 = tout(tout.col("POLNO") == 1);
2528  if ( t0.nrow() != t1.nrow() )
2529    throw(AipsError("Inconsistent number of polarisations"));
2530  ArrayColumn<Float> speccol0(t0, "SPECTRA");
2531  ArrayColumn<uChar> flagcol0(t0, "FLAGTRA");
2532  ArrayColumn<Float> speccol1(t1, "SPECTRA");
2533  ArrayColumn<uChar> flagcol1(t1, "FLAGTRA");
2534  Matrix<Float> s0 = speccol0.getColumn();
2535  Matrix<uChar> f0 = flagcol0.getColumn();
2536  speccol0.putColumn(speccol1.getColumn());
2537  flagcol0.putColumn(flagcol1.getColumn());
2538  speccol1.putColumn(s0);
2539  flagcol1.putColumn(f0);
2540  return out;
2541}
2542
2543CountedPtr< Scantable >
2544  STMath::averagePolarisations( const CountedPtr< Scantable > & in,
2545                                const std::vector<bool>& mask,
2546                                const std::string& weight )
2547{
2548  if (in->npol() < 2 )
2549    throw(AipsError("averagePolarisations can only be applied to two or more"
2550                    "polarisations"));
2551  bool insitu = insitu_;
2552  setInsitu(false);
2553  CountedPtr< Scantable > pols = getScantable(in, true);
2554  setInsitu(insitu);
2555  Table& tout = pols->table();
2556  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
2557  Table tab = tableCommand(taql, in->table());
2558  if (tab.nrow() == 0 )
2559    throw(AipsError("Could not find  any rows with POLNO==0 and POLNO==1"));
2560  TableCopy::copyRows(tout, tab);
2561  TableVector<uInt> vec(tout, "POLNO");
2562  vec = 0;
2563  pols->table_.rwKeywordSet().define("nPol", Int(1));
2564  pols->table_.rwKeywordSet().define("POLTYPE", String("stokes"));
2565  //pols->table_.rwKeywordSet().define("POLTYPE", in->getPolType());
2566  std::vector<CountedPtr<Scantable> > vpols;
2567  vpols.push_back(pols);
2568  CountedPtr< Scantable > out = average(vpols, mask, weight, "SCAN");
2569  return out;
2570}
2571
2572CountedPtr< Scantable >
2573  STMath::averageBeams( const CountedPtr< Scantable > & in,
2574                        const std::vector<bool>& mask,
2575                        const std::string& weight )
2576{
2577  bool insitu = insitu_;
2578  setInsitu(false);
2579  CountedPtr< Scantable > beams = getScantable(in, false);
2580  setInsitu(insitu);
2581  Table& tout = beams->table();
2582  // give all rows the same BEAMNO
2583  TableVector<uInt> vec(tout, "BEAMNO");
2584  vec = 0;
2585  beams->table_.rwKeywordSet().define("nBeam", Int(1));
2586  std::vector<CountedPtr<Scantable> > vbeams;
2587  vbeams.push_back(beams);
2588  CountedPtr< Scantable > out = average(vbeams, mask, weight, "SCAN");
2589  return out;
2590}
2591
2592
2593CountedPtr< Scantable >
2594  asap::STMath::frequencyAlign( const CountedPtr< Scantable > & in,
2595                                const std::string & refTime,
2596                                const std::string & method)
2597{
2598  // clone as this is not working insitu
2599  bool insitu = insitu_;
2600  setInsitu(false);
2601  CountedPtr< Scantable > out = getScantable(in, false);
2602  setInsitu(insitu);
2603  Table& tout = out->table();
2604  // Get reference Epoch to time of first row or given String
2605  Unit DAY(String("d"));
2606  MEpoch::Ref epochRef(in->getTimeReference());
2607  MEpoch refEpoch;
2608  if (refTime.length()>0) {
2609    Quantum<Double> qt;
2610    if (MVTime::read(qt,refTime)) {
2611      MVEpoch mv(qt);
2612      refEpoch = MEpoch(mv, epochRef);
2613   } else {
2614      throw(AipsError("Invalid format for Epoch string"));
2615   }
2616  } else {
2617    refEpoch = in->timeCol_(0);
2618  }
2619  MPosition refPos = in->getAntennaPosition();
2620
2621  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2622  /*
2623  // Comment from MV.
2624  // the following code has been commented out because different FREQ_IDs have to be aligned together even
2625  // if the frame doesn't change. So far, lack of this check didn't cause any problems.
2626  // test if user frame is different to base frame
2627  if ( in->frequencies().getFrameString(true)
2628       == in->frequencies().getFrameString(false) ) {
2629    throw(AipsError("Can't convert as no output frame has been set"
2630                    " (use set_freqframe) or it is aligned already."));
2631  }
2632  */
2633  MFrequency::Types system = in->frequencies().getFrame();
2634  MVTime mvt(refEpoch.getValue());
2635  String epochout = mvt.string(MVTime::YMD) + String(" (") + refEpoch.getRefString() + String(")");
2636  ostringstream oss;
2637  oss << "Aligned at reference Epoch " << epochout
2638      << " in frame " << MFrequency::showType(system);
2639  pushLog(String(oss));
2640  // set up the iterator
2641  Block<String> cols(4);
2642  // select by constant direction
2643  cols[0] = String("SRCNAME");
2644  cols[1] = String("BEAMNO");
2645  // select by IF ( no of channels varies over this )
2646  cols[2] = String("IFNO");
2647  // select by restfrequency
2648  cols[3] = String("MOLECULE_ID");
2649  TableIterator iter(tout, cols);
2650  while ( !iter.pastEnd() ) {
2651    Table t = iter.table();
2652    MDirection::ROScalarColumn dirCol(t, "DIRECTION");
2653    TableIterator fiter(t, "FREQ_ID");
2654    // determine nchan from the first row. This should work as
2655    // we are iterating over BEAMNO and IFNO    // we should have constant direction
2656
2657    ROArrayColumn<Float> sCol(t, "SPECTRA");
2658    const MDirection direction = dirCol(0);
2659    const uInt nchan = sCol(0).nelements();
2660
2661    // skip operations if there is nothing to align
2662    if (fiter.pastEnd()) {
2663        continue;
2664    }
2665
2666    Table ftab = fiter.table();
2667    // align all frequency ids with respect to the first encountered id
2668    ScalarColumn<uInt> freqidCol(ftab, "FREQ_ID");
2669    // get the SpectralCoordinate for the freqid, which we are iterating over
2670    SpectralCoordinate sC = in->frequencies().getSpectralCoordinate(freqidCol(0));
2671    FrequencyAligner<Float> fa( sC, nchan, refEpoch,
2672                                direction, refPos, system );
2673    // realign the SpectralCoordinate and put into the output Scantable
2674    Vector<String> units(1);
2675    units = String("Hz");
2676    Bool linear=True;
2677    SpectralCoordinate sc2 = fa.alignedSpectralCoordinate(linear);
2678    sc2.setWorldAxisUnits(units);
2679    const uInt id = out->frequencies().addEntry(sc2.referencePixel()[0],
2680                                                sc2.referenceValue()[0],
2681                                                sc2.increment()[0]);
2682    while ( !fiter.pastEnd() ) {
2683      ftab = fiter.table();
2684      // spectral coordinate for the current FREQ_ID
2685      ScalarColumn<uInt> freqidCol2(ftab, "FREQ_ID");
2686      sC = in->frequencies().getSpectralCoordinate(freqidCol2(0));
2687      // create the "global" abcissa for alignment with same FREQ_ID
2688      Vector<Double> abc(nchan);
2689      for (uInt i=0; i<nchan; i++) {
2690           Double w;
2691           sC.toWorld(w,Double(i));
2692           abc[i] = w;
2693      }
2694      TableVector<uInt> tvec(ftab, "FREQ_ID");
2695      // assign new frequency id to all rows
2696      tvec = id;
2697      // cache abcissa for same time stamps, so iterate over those
2698      TableIterator timeiter(ftab, "TIME");
2699      while ( !timeiter.pastEnd() ) {
2700        Table tab = timeiter.table();
2701        ArrayColumn<Float> specCol(tab, "SPECTRA");
2702        ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2703        MEpoch::ROScalarColumn timeCol(tab, "TIME");
2704        // use align abcissa cache after the first row
2705        // these rows should be just be POLNO
2706        bool first = true;
2707        for (int i=0; i<int(tab.nrow()); ++i) {
2708          // input values
2709          Vector<uChar> flag = flagCol(i);
2710          Vector<Bool> mask(flag.shape());
2711          Vector<Float> specOut, spec;
2712          spec  = specCol(i);
2713          Vector<Bool> maskOut;Vector<uChar> flagOut;
2714          convertArray(mask, flag);
2715          // alignment
2716          Bool ok = fa.align(specOut, maskOut, abc, spec,
2717                             mask, timeCol(i), !first,
2718                             interp, False);
2719          (void) ok; // unused stop compiler nagging     
2720          // back into scantable
2721          flagOut.resize(maskOut.nelements());
2722          convertArray(flagOut, maskOut);
2723          flagCol.put(i, flagOut);
2724          specCol.put(i, specOut);
2725          // start abcissa caching
2726          first = false;
2727        }
2728        // next timestamp
2729        ++timeiter;
2730      }
2731      // next FREQ_ID
2732      ++fiter;
2733    }
2734    // next aligner
2735    ++iter;
2736  }
2737  // set this afterwards to ensure we are doing insitu correctly.
2738  out->frequencies().setFrame(system, true);
2739  return out;
2740}
2741
2742CountedPtr<Scantable>
2743  asap::STMath::convertPolarisation( const CountedPtr<Scantable>& in,
2744                                     const std::string & newtype )
2745{
2746  if (in->npol() != 2 && in->npol() != 4)
2747    throw(AipsError("Can only convert two or four polarisations."));
2748  if ( in->getPolType() == newtype )
2749    throw(AipsError("No need to convert."));
2750  if ( ! in->selector_.empty() )
2751    throw(AipsError("Can only convert whole scantable. Unset the selection."));
2752  bool insitu = insitu_;
2753  setInsitu(false);
2754  CountedPtr< Scantable > out = getScantable(in, true);
2755  setInsitu(insitu);
2756  Table& tout = out->table();
2757  tout.rwKeywordSet().define("POLTYPE", String(newtype));
2758
2759  Block<String> cols(4);
2760  cols[0] = "SCANNO";
2761  cols[1] = "CYCLENO";
2762  cols[2] = "BEAMNO";
2763  cols[3] = "IFNO";
2764  TableIterator it(in->originalTable_, cols);
2765  String basetype = in->getPolType();
2766  STPol* stpol = STPol::getPolClass(in->factories_, basetype);
2767  try {
2768    while ( !it.pastEnd() ) {
2769      Table tab = it.table();
2770      uInt row = tab.rowNumbers()[0];
2771      stpol->setSpectra(in->getPolMatrix(row));
2772      Float fang,fhand;
2773      fang = in->focusTable_.getTotalAngle(in->mfocusidCol_(row));
2774      fhand = in->focusTable_.getFeedHand(in->mfocusidCol_(row));
2775      stpol->setPhaseCorrections(fang, fhand);
2776      Int npolout = 0;
2777      for (uInt i=0; i<tab.nrow(); ++i) {
2778        Vector<Float> outvec = stpol->getSpectrum(i, newtype);
2779        if ( outvec.nelements() > 0 ) {
2780          tout.addRow();
2781          TableCopy::copyRows(tout, tab, tout.nrow()-1, 0, 1);
2782          ArrayColumn<Float> sCol(tout,"SPECTRA");
2783          ScalarColumn<uInt> pCol(tout,"POLNO");
2784          sCol.put(tout.nrow()-1 ,outvec);
2785          pCol.put(tout.nrow()-1 ,uInt(npolout));
2786          npolout++;
2787       }
2788      }
2789      tout.rwKeywordSet().define("nPol", npolout);
2790      ++it;
2791    }
2792  } catch (AipsError& e) {
2793    delete stpol;
2794    throw(e);
2795  }
2796  delete stpol;
2797  return out;
2798}
2799
2800CountedPtr< Scantable >
2801  asap::STMath::mxExtract( const CountedPtr< Scantable > & in,
2802                           const std::string & scantype )
2803{
2804  bool insitu = insitu_;
2805  setInsitu(false);
2806  CountedPtr< Scantable > out = getScantable(in, true);
2807  setInsitu(insitu);
2808  Table& tout = out->table();
2809  std::string taql = "SELECT FROM $1 WHERE BEAMNO != REFBEAMNO";
2810  if (scantype == "on") {
2811    taql = "SELECT FROM $1 WHERE BEAMNO == REFBEAMNO";
2812  }
2813  Table tab = tableCommand(taql, in->table());
2814  TableCopy::copyRows(tout, tab);
2815  if (scantype == "on") {
2816    // re-index SCANNO to 0
2817    TableVector<uInt> vec(tout, "SCANNO");
2818    vec = 0;
2819  }
2820  return out;
2821}
2822
2823CountedPtr< Scantable >
2824  asap::STMath::lagFlag( const CountedPtr< Scantable > & in,
2825                         double start, double end,
2826                         const std::string& mode)
2827{
2828  CountedPtr< Scantable > out = getScantable(in, false);
2829  Table& tout = out->table();
2830  TableIterator iter(tout, "FREQ_ID");
2831  FFTServer<Float,Complex> ffts;
2832  while ( !iter.pastEnd() ) {
2833    Table tab = iter.table();
2834    Double rp,rv,inc;
2835    ROTableRow row(tab);
2836    const TableRecord& rec = row.get(0);
2837    uInt freqid = rec.asuInt("FREQ_ID");
2838    out->frequencies().getEntry(rp, rv, inc, freqid);
2839    ArrayColumn<Float> specCol(tab, "SPECTRA");
2840    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2841    for (int i=0; i<int(tab.nrow()); ++i) {
2842      Vector<Float> spec = specCol(i);
2843      Vector<uChar> flag = flagCol(i);
2844      int fstart = -1;
2845      int fend = -1;
2846      for (unsigned int k=0; k < flag.nelements(); ++k ) {
2847        if (flag[k] > 0) {
2848          fstart = k;
2849          while (flag[k] > 0 && k < flag.nelements()) {
2850            fend = k;
2851            k++;
2852          }
2853        }
2854        Float interp = 0.0;
2855        if (fstart-1 > 0 ) {
2856          interp = spec[fstart-1];
2857          if (fend+1 < Int(spec.nelements())) {
2858            interp = (interp+spec[fend+1])/2.0;
2859          }
2860        } else {
2861          interp = spec[fend+1];
2862        }
2863        if (fstart > -1 && fend > -1) {
2864          for (int j=fstart;j<=fend;++j) {
2865            spec[j] = interp;
2866          }
2867        }
2868        fstart =-1;
2869        fend = -1;
2870      }
2871      Vector<Complex> lags;
2872      ffts.fft0(lags, spec);
2873      Int lag0(start+0.5);
2874      Int lag1(end+0.5);
2875      if (mode == "frequency") {
2876        lag0 = Int(spec.nelements()*abs(inc)/(start)+0.5);
2877        lag1 = Int(spec.nelements()*abs(inc)/(end)+0.5);
2878      }
2879      Int lstart =  max(0, lag0);
2880      Int lend =  min(Int(lags.nelements()-1), lag1);
2881      if (lstart == lend) {
2882        lags[lstart] = Complex(0.0);
2883      } else {
2884        if (lstart > lend) {
2885          Int tmp = lend;
2886          lend = lstart;
2887          lstart = tmp;
2888        }
2889        for (int j=lstart; j <=lend ;++j) {
2890          lags[j] = Complex(0.0);
2891        }
2892      }
2893      ffts.fft0(spec, lags);
2894      specCol.put(i, spec);
2895    }
2896    ++iter;
2897  }
2898  return out;
2899}
2900
2901// Averaging spectra with different channel/resolution
2902CountedPtr<Scantable>
2903STMath::new_average( const std::vector<CountedPtr<Scantable> >& in,
2904                     const bool& compel,
2905                     const std::vector<bool>& mask,
2906                     const std::string& weight,
2907                     const std::string& avmode )
2908  throw ( casa::AipsError )
2909{
2910  LogIO os( LogOrigin( "STMath", "new_average()", WHERE ) ) ;
2911  if ( avmode == "SCAN" && in.size() != 1 )
2912    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
2913                    "Use merge first."));
2914 
2915  // check if OTF observation
2916  String obstype = in[0]->getHeader().obstype ;
2917  Double tol = 0.0 ;
2918  if ( obstype.find( "OTF" ) != String::npos ) {
2919    tol = TOL_OTF ;
2920  }
2921  else {
2922    tol = TOL_POINT ;
2923  }
2924
2925  CountedPtr<Scantable> out ;     // processed result
2926  if ( compel ) {
2927    std::vector< CountedPtr<Scantable> > newin ; // input for average process
2928    uInt insize = in.size() ;    // number of input scantables
2929
2930    // TEST: do normal average in each table before IF grouping
2931    os << "Do preliminary averaging" << LogIO::POST ;
2932    vector< CountedPtr<Scantable> > tmpin( insize ) ;
2933    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2934      vector< CountedPtr<Scantable> > v( 1, in[itable] ) ;
2935      tmpin[itable] = average( v, mask, weight, avmode ) ;
2936    }
2937
2938    // warning
2939    os << "Average spectra with different spectral resolution" << LogIO::POST ;
2940
2941    // temporarily set coordinfo
2942    vector<string> oldinfo( insize ) ;
2943    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2944      vector<string> coordinfo = in[itable]->getCoordInfo() ;
2945      oldinfo[itable] = coordinfo[0] ;
2946      coordinfo[0] = "Hz" ;
2947      tmpin[itable]->setCoordInfo( coordinfo ) ;
2948    }
2949
2950    // columns
2951    ScalarColumn<uInt> freqIDCol ;
2952    ScalarColumn<uInt> ifnoCol ;
2953    ScalarColumn<uInt> scannoCol ;
2954
2955
2956    // check IF frequency coverage
2957    // freqid: list of FREQ_ID, which is used, in each table 
2958    // iffreq: list of minimum and maximum frequency for each FREQ_ID in
2959    //         each table
2960    // freqid[insize][numIF]
2961    // freqid: [[id00, id01, ...],
2962    //          [id10, id11, ...],
2963    //          ...
2964    //          [idn0, idn1, ...]]
2965    // iffreq[insize][numIF*2]
2966    // iffreq: [[min_id00, max_id00, min_id01, max_id01, ...],
2967    //          [min_id10, max_id10, min_id11, max_id11, ...],
2968    //          ...
2969    //          [min_idn0, max_idn0, min_idn1, max_idn1, ...]]
2970    //os << "Check IF settings in each table" << LogIO::POST ;
2971    vector< vector<uInt> > freqid( insize );
2972    vector< vector<double> > iffreq( insize ) ;
2973    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2974      uInt rows = tmpin[itable]->nrow() ;
2975      uInt freqnrows = tmpin[itable]->frequencies().table().nrow() ;
2976      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
2977        if ( freqid[itable].size() == freqnrows ) {
2978          break ;
2979        }
2980        else {
2981          freqIDCol.attach( tmpin[itable]->table(), "FREQ_ID" ) ;
2982          ifnoCol.attach( tmpin[itable]->table(), "IFNO" ) ;
2983          uInt id = freqIDCol( irow ) ;
2984          if ( freqid[itable].size() == 0 || count( freqid[itable].begin(), freqid[itable].end(), id ) == 0 ) {
2985            //os << "itable = " << itable << ": IF " << id << " is included in the list" << LogIO::POST ;
2986            vector<double> abcissa = tmpin[itable]->getAbcissa( irow ) ;
2987            freqid[itable].push_back( id ) ;
2988            iffreq[itable].push_back( abcissa[0] - 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
2989            iffreq[itable].push_back( abcissa[abcissa.size()-1] + 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
2990          }
2991        }
2992      }
2993    }
2994
2995    // debug
2996    //os << "IF settings summary:" << endl ;
2997    //for ( uInt i = 0 ; i < freqid.size() ; i++ ) {
2998    //os << "   Table" << i << endl ;
2999    //for ( uInt j = 0 ; j < freqid[i].size() ; j++ ) {
3000    //os << "      id = " << freqid[i][j] << " (min,max) = (" << iffreq[i][2*j] << "," << iffreq[i][2*j+1] << ")" << endl ;
3001    //}
3002    //}
3003    //os << endl ;
3004    //os.post() ;
3005
3006    // IF grouping based on their frequency coverage
3007    // ifgrp: list of table index and FREQ_ID for all members in each IF group
3008    // ifgfreq: list of minimum and maximum frequency in each IF group
3009    // ifgrp[numgrp][nummember*2]
3010    // ifgrp: [[table00, freqrow00, table01, freqrow01, ...],
3011    //         [table10, freqrow10, table11, freqrow11, ...],
3012    //         ...
3013    //         [tablen0, freqrown0, tablen1, freqrown1, ...]]
3014    // ifgfreq[numgrp*2]
3015    // ifgfreq: [min0_grp0, max0_grp0, min1_grp1, max1_grp1, ...]
3016    //os << "IF grouping based on their frequency coverage" << LogIO::POST ;
3017    vector< vector<uInt> > ifgrp ;
3018    vector<double> ifgfreq ;
3019
3020    // parameter for IF grouping
3021    // groupmode = OR    retrieve all region
3022    //             AND   only retrieve overlaped region
3023    //string groupmode = "AND" ;
3024    string groupmode = "OR" ;
3025    uInt sizecr = 0 ;
3026    if ( groupmode == "AND" )
3027      sizecr = 2 ;
3028    else if ( groupmode == "OR" )
3029      sizecr = 0 ;
3030
3031    vector<double> sortedfreq ;
3032    for ( uInt i = 0 ; i < iffreq.size() ; i++ ) {
3033      for ( uInt j = 0 ; j < iffreq[i].size() ; j++ ) {
3034        if ( count( sortedfreq.begin(), sortedfreq.end(), iffreq[i][j] ) == 0 )
3035          sortedfreq.push_back( iffreq[i][j] ) ;
3036      }
3037    }
3038    sort( sortedfreq.begin(), sortedfreq.end() ) ;
3039    for ( vector<double>::iterator i = sortedfreq.begin() ; i != sortedfreq.end()-1 ; i++ ) {
3040      ifgfreq.push_back( *i ) ;
3041      ifgfreq.push_back( *(i+1) ) ;
3042    }
3043    ifgrp.resize( ifgfreq.size()/2 ) ;
3044    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3045      for ( uInt iif = 0 ; iif < freqid[itable].size() ; iif++ ) {
3046        double range0 = iffreq[itable][2*iif] ;
3047        double range1 = iffreq[itable][2*iif+1] ;
3048        for ( uInt j = 0 ; j < ifgrp.size() ; j++ ) {
3049          double fmin = max( range0, ifgfreq[2*j] ) ;
3050          double fmax = min( range1, ifgfreq[2*j+1] ) ;
3051          if ( fmin < fmax ) {
3052            ifgrp[j].push_back( itable ) ;
3053            ifgrp[j].push_back( freqid[itable][iif] ) ;
3054          }
3055        }
3056      }
3057    }
3058    vector< vector<uInt> >::iterator fiter = ifgrp.begin() ;
3059    vector<double>::iterator giter = ifgfreq.begin() ;
3060    while( fiter != ifgrp.end() ) {
3061      if ( fiter->size() <= sizecr ) {
3062        fiter = ifgrp.erase( fiter ) ;
3063        giter = ifgfreq.erase( giter ) ;
3064        giter = ifgfreq.erase( giter ) ;
3065      }
3066      else {
3067        fiter++ ;
3068        advance( giter, 2 ) ;
3069      }
3070    }
3071
3072    // Grouping continuous IF groups (without frequency gap)
3073    // freqgrp: list of IF group indexes in each frequency group
3074    // freqrange: list of minimum and maximum frequency in each frequency group
3075    // freqgrp[numgrp][nummember]
3076    // freqgrp: [[ifgrp00, ifgrp01, ifgrp02, ...],
3077    //           [ifgrp10, ifgrp11, ifgrp12, ...],
3078    //           ...
3079    //           [ifgrpn0, ifgrpn1, ifgrpn2, ...]]
3080    // freqrange[numgrp*2]
3081    // freqrange: [min_grp0, max_grp0, min_grp1, max_grp1, ...]
3082    vector< vector<uInt> > freqgrp ;
3083    double freqrange = 0.0 ;
3084    uInt grpnum = 0 ;
3085    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3086      // Assumed that ifgfreq was sorted
3087      if ( grpnum != 0 && freqrange == ifgfreq[2*i] ) {
3088        freqgrp[grpnum-1].push_back( i ) ;
3089      }
3090      else {
3091        vector<uInt> grp0( 1, i ) ;
3092        freqgrp.push_back( grp0 ) ;
3093        grpnum++ ;
3094      }
3095      freqrange = ifgfreq[2*i+1] ;
3096    }
3097       
3098
3099    // print IF groups
3100    ostringstream oss ;
3101    oss << "IF Group summary: " << endl ;
3102    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3103    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3104      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3105      for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3106        oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3107      }
3108      oss << endl ;
3109    }
3110    oss << endl ;
3111    os << oss.str() << LogIO::POST ;
3112   
3113    // print frequency group
3114    oss.str("") ;
3115    oss << "Frequency Group summary: " << endl ;
3116    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: IF_GROUP_ID" << endl ;
3117    for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3118      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*freqgrp[i][0]] << "," << ifgfreq[2*freqgrp[i][freqgrp[i].size()-1]+1] << "]: " ;
3119      for ( uInt j = 0 ; j < freqgrp[i].size() ; j++ ) {
3120        oss << freqgrp[i][j] << " " ;
3121      }
3122      oss << endl ;
3123    }
3124    oss << endl ;
3125    os << oss.str() << LogIO::POST ;
3126
3127    // membership check
3128    // groups: list of IF group indexes whose frequency range overlaps with
3129    //         that of each table and IF
3130    // groups[numtable][numIF][nummembership]
3131    // groups: [[[grp, grp,...], [grp, grp,...],...],
3132    //          [[grp, grp,...], [grp, grp,...],...],
3133    //          ...
3134    //          [[grp, grp,...], [grp, grp,...],...]]
3135    vector< vector< vector<uInt> > > groups( insize ) ;
3136    for ( uInt i = 0 ; i < insize ; i++ ) {
3137      groups[i].resize( freqid[i].size() ) ;
3138    }
3139    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3140      for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3141        uInt tableid = ifgrp[igrp][2*imem] ;
3142        vector<uInt>::iterator iter = find( freqid[tableid].begin(), freqid[tableid].end(), ifgrp[igrp][2*imem+1] ) ;
3143        if ( iter != freqid[tableid].end() ) {
3144          uInt rowid = distance( freqid[tableid].begin(), iter ) ;
3145          groups[tableid][rowid].push_back( igrp ) ;
3146        }
3147      }
3148    }
3149
3150    // print membership
3151    //oss.str("") ;
3152    //for ( uInt i = 0 ; i < insize ; i++ ) {
3153    //oss << "Table " << i << endl ;
3154    //for ( uInt j = 0 ; j < groups[i].size() ; j++ ) {
3155    //oss << "   FREQ_ID " <<  setw( 2 ) << freqid[i][j] << ": " ;
3156    //for ( uInt k = 0 ; k < groups[i][j].size() ; k++ ) {
3157    //oss << setw( 2 ) << groups[i][j][k] << " " ;
3158    //}
3159    //oss << endl ;
3160    //}
3161    //}
3162    //os << oss.str() << LogIO::POST ;
3163
3164    // set back coordinfo
3165    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3166      vector<string> coordinfo = tmpin[itable]->getCoordInfo() ;
3167      coordinfo[0] = oldinfo[itable] ;
3168      tmpin[itable]->setCoordInfo( coordinfo ) ;
3169    }
3170
3171    // Create additional table if needed
3172    bool oldInsitu = insitu_ ;
3173    setInsitu( false ) ;
3174    vector< vector<uInt> > addrow( insize ) ;
3175    vector<uInt> addtable( insize, 0 ) ;
3176    vector<uInt> newtableids( insize ) ;
3177    vector<uInt> newifids( insize, 0 ) ;
3178    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3179      //os << "Table " << itable << ": " ;
3180      for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3181        addrow[itable].push_back( groups[itable][ifrow].size()-1 ) ;
3182        //os << addrow[itable][ifrow] << " " ;
3183      }
3184      addtable[itable] = *max_element( addrow[itable].begin(), addrow[itable].end() ) ;
3185      //os << "(" << addtable[itable] << ")" << LogIO::POST ;
3186    }
3187    newin.resize( insize ) ;
3188    copy( tmpin.begin(), tmpin.end(), newin.begin() ) ;
3189    for ( uInt i = 0 ; i < insize ; i++ ) {
3190      newtableids[i] = i ;
3191    }
3192    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3193      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3194        CountedPtr<Scantable> add = getScantable( newin[itable], false ) ;
3195        vector<int> freqidlist ;
3196        for ( uInt i = 0 ; i < groups[itable].size() ; i++ ) {
3197          if ( groups[itable][i].size() > iadd + 1 ) {
3198            freqidlist.push_back( freqid[itable][i] ) ;
3199          }
3200        }
3201        stringstream taqlstream ;
3202        taqlstream << "SELECT FROM $1 WHERE FREQ_ID IN [" ;
3203        for ( uInt i = 0 ; i < freqidlist.size() ; i++ ) {
3204          taqlstream << freqidlist[i] ;
3205          if ( i < freqidlist.size() - 1 )
3206            taqlstream << "," ;
3207          else
3208            taqlstream << "]" ;
3209        }
3210        string taql = taqlstream.str() ;
3211        //os << "taql = " << taql << LogIO::POST ;
3212        STSelector selector = STSelector() ;
3213        selector.setTaQL( taql ) ;
3214        add->setSelection( selector ) ;
3215        newin.push_back( add ) ;
3216        newtableids.push_back( itable ) ;
3217        newifids.push_back( iadd + 1 ) ;
3218      }
3219    }
3220
3221    // udpate ifgrp
3222    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3223      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3224        for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3225          if ( groups[itable][ifrow].size() > iadd + 1 ) {
3226            uInt igrp = groups[itable][ifrow][iadd+1] ;
3227            for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3228              if ( ifgrp[igrp][2*imem] == newtableids[iadd+insize] && ifgrp[igrp][2*imem+1] == freqid[newtableids[iadd+insize]][ifrow] ) {
3229                ifgrp[igrp][2*imem] = insize + iadd ;
3230              }
3231            }
3232          }
3233        }
3234      }
3235    }
3236
3237    // print IF groups again for debug
3238    //oss.str( "" ) ;
3239    //oss << "IF Group summary: " << endl ;
3240    //oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3241    //for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3242    //oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3243    //for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3244    //oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3245    //}
3246    //oss << endl ;
3247    //}
3248    //oss << endl ;
3249    //os << oss.str() << LogIO::POST ;
3250
3251    // reset SCANNO and IFNO/FREQ_ID: IF is reset by the result of sortation
3252    os << "All scan number is set to 0" << LogIO::POST ;
3253    //os << "All IF number is set to IF group index" << LogIO::POST ;
3254    insize = newin.size() ;
3255    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3256      uInt rows = newin[itable]->nrow() ;
3257      Table &tmpt = newin[itable]->table() ;
3258      freqIDCol.attach( tmpt, "FREQ_ID" ) ;
3259      scannoCol.attach( tmpt, "SCANNO" ) ;
3260      ifnoCol.attach( tmpt, "IFNO" ) ;
3261      for ( uInt irow=0 ; irow < rows ; irow++ ) {
3262        scannoCol.put( irow, 0 ) ;
3263        uInt freqID = freqIDCol( irow ) ;
3264        vector<uInt>::iterator iter = find( freqid[newtableids[itable]].begin(), freqid[newtableids[itable]].end(), freqID ) ;
3265        if ( iter != freqid[newtableids[itable]].end() ) {
3266          uInt index = distance( freqid[newtableids[itable]].begin(), iter ) ;
3267          ifnoCol.put( irow, groups[newtableids[itable]][index][newifids[itable]] ) ;
3268        }
3269        else {
3270          throw(AipsError("IF grouping was wrong in additional tables.")) ;
3271        }
3272      }
3273    }
3274    oldinfo.resize( insize ) ;
3275    setInsitu( oldInsitu ) ;
3276
3277    // temporarily set coordinfo
3278    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3279      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3280      oldinfo[itable] = coordinfo[0] ;
3281      coordinfo[0] = "Hz" ;
3282      newin[itable]->setCoordInfo( coordinfo ) ;
3283    }
3284
3285    // save column values in the vector
3286    vector< vector<uInt> > freqTableIdVec( insize ) ;
3287    vector< vector<uInt> > freqIdVec( insize ) ;
3288    vector< vector<uInt> > ifNoVec( insize ) ;
3289    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3290      ScalarColumn<uInt> freqIDs ;
3291      freqIDs.attach( newin[itable]->frequencies().table(), "ID" ) ;
3292      ifnoCol.attach( newin[itable]->table(), "IFNO" ) ;
3293      freqIDCol.attach( newin[itable]->table(), "FREQ_ID" ) ;
3294      for ( uInt irow = 0 ; irow < newin[itable]->frequencies().table().nrow() ; irow++ ) {
3295        freqTableIdVec[itable].push_back( freqIDs( irow ) ) ;
3296      }
3297      for ( uInt irow = 0 ; irow < newin[itable]->table().nrow() ; irow++ ) {
3298        freqIdVec[itable].push_back( freqIDCol( irow ) ) ;
3299        ifNoVec[itable].push_back( ifnoCol( irow ) ) ;
3300      }
3301    }
3302
3303    // reset spectra and flagtra: pick up common part of frequency coverage
3304    //os << "Pick common frequency range and align resolution" << LogIO::POST ;
3305    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3306      uInt rows = newin[itable]->nrow() ;
3307      int nminchan = -1 ;
3308      int nmaxchan = -1 ;
3309      vector<uInt> freqIdUpdate ;
3310      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3311        uInt ifno = ifNoVec[itable][irow] ;  // IFNO is reset by group index
3312        double minfreq = ifgfreq[2*ifno] ;
3313        double maxfreq = ifgfreq[2*ifno+1] ;
3314        //os << "frequency range: [" << minfreq << "," << maxfreq << "]" << LogIO::POST ;
3315        vector<double> abcissa = newin[itable]->getAbcissa( irow ) ;
3316        int nchan = abcissa.size() ;
3317        double resol = abcissa[1] - abcissa[0] ;
3318        //os << "abcissa range  : [" << abcissa[0] << "," << abcissa[nchan-1] << "]" << LogIO::POST ;
3319        if ( minfreq <= abcissa[0] )
3320          nminchan = 0 ;
3321        else {
3322          //double cfreq = ( minfreq - abcissa[0] ) / resol ;
3323          double cfreq = ( minfreq - abcissa[0] + 0.5 * resol ) / resol ;
3324          nminchan = int(cfreq) + ( ( cfreq - int(cfreq) <= 0.5 ) ? 0 : 1 ) ;
3325        }
3326        if ( maxfreq >= abcissa[abcissa.size()-1] )
3327          nmaxchan = abcissa.size() - 1 ;
3328        else {
3329          //double cfreq = ( abcissa[abcissa.size()-1] - maxfreq ) / resol ;
3330          double cfreq = ( abcissa[abcissa.size()-1] - maxfreq + 0.5 * resol ) / resol ;
3331          nmaxchan = abcissa.size() - 1 - int(cfreq) - ( ( cfreq - int(cfreq) >= 0.5 ) ? 1 : 0 ) ;
3332        }
3333        //os << "channel range (" << irow << "): [" << nminchan << "," << nmaxchan << "]" << LogIO::POST ;
3334        if ( nmaxchan > nminchan ) {
3335          newin[itable]->reshapeSpectrum( nminchan, nmaxchan, irow ) ;
3336          int newchan = nmaxchan - nminchan + 1 ;
3337          if ( count( freqIdUpdate.begin(), freqIdUpdate.end(), freqIdVec[itable][irow] ) == 0 && newchan < nchan )
3338            freqIdUpdate.push_back( freqIdVec[itable][irow] ) ;
3339        }
3340        else {
3341          throw(AipsError("Failed to pick up common part of frequency range.")) ;
3342        }
3343      }
3344      for ( uInt i = 0 ; i < freqIdUpdate.size() ; i++ ) {
3345        uInt freqId = freqIdUpdate[i] ;
3346        Double refpix ;
3347        Double refval ;
3348        Double increment ;
3349       
3350        // update row
3351        newin[itable]->frequencies().getEntry( refpix, refval, increment, freqId ) ;
3352        refval = refval - ( refpix - nminchan ) * increment ;
3353        refpix = 0 ;
3354        newin[itable]->frequencies().setEntry( refpix, refval, increment, freqId ) ;
3355      }   
3356    }
3357
3358   
3359    // reset spectra and flagtra: align spectral resolution
3360    //os << "Align spectral resolution" << LogIO::POST ;
3361    // gmaxdnu: the coarsest frequency resolution in the frequency group
3362    // gmemid: member index that have a resolution equal to gmaxdnu
3363    // gmaxdnu[numfreqgrp]
3364    // gmaxdnu: [dnu0, dnu1, ...]
3365    // gmemid[numfreqgrp]
3366    // gmemid: [id0, id1, ...]
3367    vector<double> gmaxdnu( freqgrp.size(), 0.0 ) ;
3368    vector<uInt> gmemid( freqgrp.size(), 0 ) ;
3369    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3370      double maxdnu = 0.0 ;       // maximum (coarsest) frequency resolution
3371      int minchan = INT_MAX ;     // minimum channel number
3372      Double refpixref = -1 ;     // reference of 'reference pixel'
3373      Double refvalref = -1 ;     // reference of 'reference frequency'
3374      Double refinc = -1 ;        // reference frequency resolution
3375      uInt refreqid ;
3376      uInt reftable = INT_MAX;
3377      // process only if group member > 1
3378      if ( ifgrp[igrp].size() > 2 ) {
3379        // find minchan and maxdnu in each group
3380        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3381          uInt tableid = ifgrp[igrp][2*imem] ;
3382          uInt rowid = ifgrp[igrp][2*imem+1] ;
3383          vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3384          if ( iter != freqIdVec[tableid].end() ) {
3385            uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3386            vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3387            int nchan = abcissa.size() ;
3388            double dnu = abcissa[1] - abcissa[0] ;
3389            //os << "GROUP " << igrp << " (" << tableid << "," << rowid << "): nchan = " << nchan << " (minchan = " << minchan << ")" << LogIO::POST ;
3390            if ( nchan < minchan ) {
3391              minchan = nchan ;
3392              maxdnu = dnu ;
3393              newin[tableid]->frequencies().getEntry( refpixref, refvalref, refinc, rowid ) ;
3394              refreqid = rowid ;
3395              reftable = tableid ;
3396            }
3397          }
3398        }
3399        // regrid spectra in each group
3400        os << "GROUP " << igrp << endl ;
3401        os << "   Channel number is adjusted to " << minchan << endl ;
3402        os << "   Corresponding frequency resolution is " << maxdnu << "Hz" << LogIO::POST ;
3403        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3404          uInt tableid = ifgrp[igrp][2*imem] ;
3405          uInt rowid = ifgrp[igrp][2*imem+1] ;
3406          freqIDCol.attach( newin[tableid]->table(), "FREQ_ID" ) ;
3407          //os << "tableid = " << tableid << " rowid = " << rowid << ": " << LogIO::POST ;
3408          //os << "   regridChannel applied to " ;
3409          //if ( tableid != reftable )
3410          refreqid = newin[tableid]->frequencies().addEntry( refpixref, refvalref, refinc ) ;
3411          for ( uInt irow = 0 ; irow < newin[tableid]->table().nrow() ; irow++ ) {
3412            uInt tfreqid = freqIdVec[tableid][irow] ;
3413            if ( tfreqid == rowid ) {     
3414              //os << irow << " " ;
3415              newin[tableid]->regridChannel( minchan, maxdnu, irow ) ;
3416              freqIDCol.put( irow, refreqid ) ;
3417              freqIdVec[tableid][irow] = refreqid ;
3418            }
3419          }
3420          //os << LogIO::POST ;
3421        }
3422      }
3423      else {
3424        uInt tableid = ifgrp[igrp][0] ;
3425        uInt rowid = ifgrp[igrp][1] ;
3426        vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3427        if ( iter != freqIdVec[tableid].end() ) {
3428          uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3429          vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3430          minchan = abcissa.size() ;
3431          maxdnu = abcissa[1] - abcissa[0] ;
3432        }
3433      }
3434      for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3435        if ( count( freqgrp[i].begin(), freqgrp[i].end(), igrp ) > 0 ) {
3436          if ( maxdnu > gmaxdnu[i] ) {
3437            gmaxdnu[i] = maxdnu ;
3438            gmemid[i] = igrp ;
3439          }
3440          break ;
3441        }
3442      }
3443    }
3444
3445    // set back coordinfo
3446    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3447      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3448      coordinfo[0] = oldinfo[itable] ;
3449      newin[itable]->setCoordInfo( coordinfo ) ;
3450    }     
3451
3452    // accumulate all rows into the first table
3453    // NOTE: assumed in.size() = 1
3454    vector< CountedPtr<Scantable> > tmp( 1 ) ;
3455    if ( newin.size() == 1 )
3456      tmp[0] = newin[0] ;
3457    else
3458      tmp[0] = merge( newin ) ;
3459
3460    //return tmp[0] ;
3461
3462    // average
3463    CountedPtr<Scantable> tmpout = average( tmp, mask, weight, avmode ) ;
3464
3465    //return tmpout ;
3466
3467    // combine frequency group
3468    os << "Combine spectra based on frequency grouping" << LogIO::POST ;
3469    os << "IFNO is renumbered as frequency group ID (see above)" << LogIO::POST ;
3470    vector<string> coordinfo = tmpout->getCoordInfo() ;
3471    oldinfo[0] = coordinfo[0] ;
3472    coordinfo[0] = "Hz" ;
3473    tmpout->setCoordInfo( coordinfo ) ;
3474    // create proformas of output table
3475    stringstream taqlstream ;
3476    taqlstream << "SELECT FROM $1 WHERE IFNO IN [" ;
3477    for ( uInt i = 0 ; i < gmemid.size() ; i++ ) {
3478      taqlstream << gmemid[i] ;
3479      if ( i < gmemid.size() - 1 )
3480        taqlstream << "," ;
3481      else
3482        taqlstream << "]" ;
3483    }
3484    string taql = taqlstream.str() ;
3485    //os << "taql = " << taql << LogIO::POST ;
3486    STSelector selector = STSelector() ;
3487    selector.setTaQL( taql ) ;
3488    oldInsitu = insitu_ ;
3489    setInsitu( false ) ;
3490    out = getScantable( tmpout, false ) ;
3491    setInsitu( oldInsitu ) ;
3492    out->setSelection( selector ) ;
3493    // regrid rows
3494    ifnoCol.attach( tmpout->table(), "IFNO" ) ;
3495    for ( uInt irow = 0 ; irow < tmpout->table().nrow() ; irow++ ) {
3496      uInt ifno = ifnoCol( irow ) ;
3497      for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3498        if ( count( freqgrp[igrp].begin(), freqgrp[igrp].end(), ifno ) > 0 ) {
3499          vector<double> abcissa = tmpout->getAbcissa( irow ) ;
3500          double bw = ( abcissa[1] - abcissa[0] ) * abcissa.size() ;
3501          int nchan = (int)( bw / gmaxdnu[igrp] ) ;
3502          tmpout->regridChannel( nchan, gmaxdnu[igrp], irow ) ;
3503          break ;
3504        }
3505      }
3506    }
3507    // combine spectra
3508    ArrayColumn<Float> specColOut ;
3509    specColOut.attach( out->table(), "SPECTRA" ) ;
3510    ArrayColumn<uChar> flagColOut ;
3511    flagColOut.attach( out->table(), "FLAGTRA" ) ;
3512    ScalarColumn<uInt> ifnoColOut ;
3513    ifnoColOut.attach( out->table(), "IFNO" ) ;
3514    ScalarColumn<uInt> polnoColOut ;
3515    polnoColOut.attach( out->table(), "POLNO" ) ;
3516    ScalarColumn<uInt> freqidColOut ;
3517    freqidColOut.attach( out->table(), "FREQ_ID" ) ;
3518    MDirection::ScalarColumn dirColOut ;
3519    dirColOut.attach( out->table(), "DIRECTION" ) ;
3520    Table &tab = tmpout->table() ;
3521    Block<String> cols(1);
3522    cols[0] = String("POLNO") ;
3523    TableIterator iter( tab, cols ) ;
3524    bool done = false ;
3525    vector< vector<uInt> > sizes( freqgrp.size() ) ;
3526    while( !iter.pastEnd() ) {
3527      vector< vector<Float> > specout( freqgrp.size() ) ;
3528      vector< vector<uChar> > flagout( freqgrp.size() ) ;
3529      ArrayColumn<Float> specCols ;
3530      specCols.attach( iter.table(), "SPECTRA" ) ;
3531      ArrayColumn<uChar> flagCols ;
3532      flagCols.attach( iter.table(), "FLAGTRA" ) ;
3533      ifnoCol.attach( iter.table(), "IFNO" ) ;
3534      ScalarColumn<uInt> polnos ;
3535      polnos.attach( iter.table(), "POLNO" ) ;
3536      MDirection::ScalarColumn dircol ;
3537      dircol.attach( iter.table(), "DIRECTION" ) ;
3538      uInt polno = polnos( 0 ) ;
3539      //os << "POLNO iteration: " << polno << LogIO::POST ;
3540//       for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3541//      sizes[igrp].resize( freqgrp[igrp].size() ) ;
3542//      for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3543//        for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3544//          uInt ifno = ifnoCol( irow ) ;
3545//          if ( ifno == freqgrp[igrp][imem] ) {
3546//            Vector<Float> spec = specCols( irow ) ;
3547//            Vector<uChar> flag = flagCols( irow ) ;
3548//            vector<Float> svec ;
3549//            spec.tovector( svec ) ;
3550//            vector<uChar> fvec ;
3551//            flag.tovector( fvec ) ;
3552//            //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3553//            specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3554//            flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3555//            //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3556//            sizes[igrp][imem] = spec.nelements() ;
3557//          }
3558//        }
3559//      }
3560//      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3561//        uInt ifout = ifnoColOut( irow ) ;
3562//        uInt polout = polnoColOut( irow ) ;
3563//        if ( ifout == gmemid[igrp] && polout == polno ) {
3564//          // set SPECTRA and FRAGTRA
3565//          Vector<Float> newspec( specout[igrp] ) ;
3566//          Vector<uChar> newflag( flagout[igrp] ) ;
3567//          specColOut.put( irow, newspec ) ;
3568//          flagColOut.put( irow, newflag ) ;
3569//          // IFNO renumbering
3570//          ifnoColOut.put( irow, igrp ) ;
3571//        }
3572//      }
3573//       }
3574      // get a list of number of channels for each frequency group member
3575      if ( !done ) {
3576        for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3577          sizes[igrp].resize( freqgrp[igrp].size() ) ;
3578          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3579            for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3580              uInt ifno = ifnoCol( irow ) ;
3581              if ( ifno == freqgrp[igrp][imem] ) {
3582                Vector<Float> spec = specCols( irow ) ;
3583                sizes[igrp][imem] = spec.nelements() ;
3584                break ;
3585              }               
3586            }
3587          }
3588        }
3589        done = true ;
3590      }
3591      // combine spectra
3592      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3593        uInt polout = polnoColOut( irow ) ;
3594        if ( polout == polno ) {
3595          uInt ifout = ifnoColOut( irow ) ;
3596          Vector<Double> direction = dirColOut(irow).getAngle(Unit(String("rad"))).getValue() ;
3597          uInt igrp ;
3598          for ( uInt jgrp = 0 ; jgrp < freqgrp.size() ; jgrp++ ) {
3599            if ( ifout == gmemid[jgrp] ) {
3600              igrp = jgrp ;
3601              break ;
3602            }
3603          }
3604          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3605            for ( uInt jrow = 0 ; jrow < iter.table().nrow() ; jrow++ ) {
3606              uInt ifno = ifnoCol( jrow ) ;
3607              Vector<Double> tdir = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
3608              //if ( ifno == freqgrp[igrp][imem] && allTrue( tdir == direction  ) ) {
3609              Double dx = tdir[0] - direction[0] ;
3610              Double dy = tdir[1] - direction[1] ;
3611              Double dd = sqrt( dx * dx + dy * dy ) ;
3612              //if ( ifno == freqgrp[igrp][imem] && allNearAbs( tdir, direction, tol ) ) {
3613              if ( ifno == freqgrp[igrp][imem] && dd <= tol ) {
3614                Vector<Float> spec = specCols( jrow ) ;
3615                Vector<uChar> flag = flagCols( jrow ) ;
3616                vector<Float> svec ;
3617                spec.tovector( svec ) ;
3618                vector<uChar> fvec ;
3619                flag.tovector( fvec ) ;
3620                //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3621                specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3622                flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3623                //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3624              }
3625            }
3626          }
3627          // set SPECTRA and FRAGTRA
3628          Vector<Float> newspec( specout[igrp] ) ;
3629          Vector<uChar> newflag( flagout[igrp] ) ;
3630          specColOut.put( irow, newspec ) ;
3631          flagColOut.put( irow, newflag ) ;
3632          // IFNO renumbering
3633          ifnoColOut.put( irow, igrp ) ;
3634        }
3635      }
3636      iter++ ;
3637    }
3638    // update FREQUENCIES subtable
3639    vector<bool> updated( freqgrp.size(), false ) ;
3640    for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3641      uInt index = 0 ;
3642      uInt pixShift = 0 ;
3643      while ( freqgrp[igrp][index] != gmemid[igrp] ) {
3644        pixShift += sizes[igrp][index++] ;
3645      }
3646      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3647        if ( ifnoColOut( irow ) == gmemid[igrp] && !updated[igrp] ) {
3648          uInt freqidOut = freqidColOut( irow ) ;
3649          //os << "freqgrp " << igrp << " freqidOut = " << freqidOut << LogIO::POST ;
3650          double refpix ;
3651          double refval ;
3652          double increm ;
3653          out->frequencies().getEntry( refpix, refval, increm, freqidOut ) ;
3654          refpix += pixShift ;
3655          out->frequencies().setEntry( refpix, refval, increm, freqidOut ) ;
3656          updated[igrp] = true ;
3657        }
3658      }
3659    }
3660
3661    //out = tmpout ;
3662
3663    coordinfo = tmpout->getCoordInfo() ;
3664    coordinfo[0] = oldinfo[0] ;
3665    tmpout->setCoordInfo( coordinfo ) ;
3666  }
3667  else {
3668    // simple average
3669    out =  average( in, mask, weight, avmode ) ;
3670  }
3671 
3672  return out ;
3673}
3674
3675CountedPtr<Scantable> STMath::cwcal( const CountedPtr<Scantable>& s,
3676                                     const String calmode,
3677                                     const String antname )
3678{
3679  // frequency switch
3680  if ( calmode == "fs" ) {
3681    return cwcalfs( s, antname ) ;
3682  }
3683  else {
3684    vector<bool> masks = s->getMask( 0 ) ;
3685    vector<int> types ;
3686
3687    // sky scan
3688    STSelector sel = STSelector() ;
3689    types.push_back( SrcType::SKY ) ;
3690    sel.setTypes( types ) ;
3691    s->setSelection( sel ) ;
3692    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3693    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
3694    s->unsetSelection() ;
3695    sel.reset() ;
3696    types.clear() ;
3697
3698    // hot scan
3699    types.push_back( SrcType::HOT ) ;
3700    sel.setTypes( types ) ;
3701    s->setSelection( sel ) ;
3702    tmp.clear() ;
3703    tmp.push_back( getScantable( s, false ) ) ;
3704    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
3705    s->unsetSelection() ;
3706    sel.reset() ;
3707    types.clear() ;
3708   
3709    // cold scan
3710    CountedPtr<Scantable> acold ;
3711//     types.push_back( SrcType::COLD ) ;
3712//     sel.setTypes( types ) ;
3713//     s->setSelection( sel ) ;
3714//     tmp.clear() ;
3715//     tmp.push_back( getScantable( s, false ) ) ;
3716//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCNAN" ) ;
3717//     s->unsetSelection() ;
3718//     sel.reset() ;
3719//     types.clear() ;
3720
3721    // off scan
3722    types.push_back( SrcType::PSOFF ) ;
3723    sel.setTypes( types ) ;
3724    s->setSelection( sel ) ;
3725    tmp.clear() ;
3726    tmp.push_back( getScantable( s, false ) ) ;
3727    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3728    s->unsetSelection() ;
3729    sel.reset() ;
3730    types.clear() ;
3731   
3732    // on scan
3733    bool insitu = insitu_ ;
3734    insitu_ = false ;
3735    CountedPtr<Scantable> out = getScantable( s, true ) ;
3736    insitu_ = insitu ;
3737    types.push_back( SrcType::PSON ) ;
3738    sel.setTypes( types ) ;
3739    s->setSelection( sel ) ;
3740    TableCopy::copyRows( out->table(), s->table() ) ;
3741    s->unsetSelection() ;
3742    sel.reset() ;
3743    types.clear() ;
3744   
3745    // process each on scan
3746    ArrayColumn<Float> tsysCol ;
3747    tsysCol.attach( out->table(), "TSYS" ) ;
3748    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3749      vector<float> sp = getCalibratedSpectra( out, aoff, asky, ahot, acold, i, antname ) ;
3750      out->setSpectrum( sp, i ) ;
3751      string reftime = out->getTime( i ) ;
3752      vector<int> ii( 1, out->getIF( i ) ) ;
3753      vector<int> ib( 1, out->getBeam( i ) ) ;
3754      vector<int> ip( 1, out->getPol( i ) ) ;
3755      sel.setIFs( ii ) ;
3756      sel.setBeams( ib ) ;
3757      sel.setPolarizations( ip ) ;
3758      asky->setSelection( sel ) ;   
3759      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
3760      const Vector<Float> Vtsys( sptsys ) ;
3761      tsysCol.put( i, Vtsys ) ;
3762      asky->unsetSelection() ;
3763      sel.reset() ;
3764    }
3765
3766    // flux unit
3767    out->setFluxUnit( "K" ) ;
3768
3769    return out ;
3770  }
3771}
3772 
3773CountedPtr<Scantable> STMath::almacal( const CountedPtr<Scantable>& s,
3774                                       const String calmode )
3775{
3776  // frequency switch
3777  if ( calmode == "fs" ) {
3778    return almacalfs( s ) ;
3779  }
3780  else {
3781    vector<bool> masks = s->getMask( 0 ) ;
3782   
3783    // off scan
3784    STSelector sel = STSelector() ;
3785    vector<int> types ;
3786    types.push_back( SrcType::PSOFF ) ;
3787    sel.setTypes( types ) ;
3788    s->setSelection( sel ) ;
3789    // TODO 2010/01/08 TN
3790    // Grouping by time should be needed before averaging.
3791    // Each group must have own unique SCANNO (should be renumbered).
3792    // See PIPELINE/SDCalibration.py
3793    CountedPtr<Scantable> soff = getScantable( s, false ) ;
3794    Table ttab = soff->table() ;
3795    ROScalarColumn<Double> timeCol( ttab, "TIME" ) ;
3796    uInt nrow = timeCol.nrow() ;
3797    Vector<Double> timeSep( nrow - 1 ) ;
3798    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3799      timeSep[i] = timeCol(i+1) - timeCol(i) ;
3800    }
3801    ScalarColumn<Double> intervalCol( ttab, "INTERVAL" ) ;
3802    Vector<Double> interval = intervalCol.getColumn() ;
3803    interval /= 86400.0 ;
3804    ScalarColumn<uInt> scanCol( ttab, "SCANNO" ) ;
3805    vector<uInt> glist ;
3806    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3807      double gap = 2.0 * timeSep[i] / ( interval[i] + interval[i+1] ) ;
3808      //cout << "gap[" << i << "]=" << setw(5) << gap << endl ;
3809      if ( gap > 1.1 ) {
3810        glist.push_back( i ) ;
3811      }
3812    }
3813    Vector<uInt> gaplist( glist ) ;
3814    //cout << "gaplist = " << gaplist << endl ;
3815    uInt newid = 0 ;
3816    for ( uInt i = 0 ; i < nrow ; i++ ) {
3817      scanCol.put( i, newid ) ;
3818      if ( i == gaplist[newid] ) {
3819        newid++ ;
3820      }
3821    }
3822    //cout << "new scancol = " << scanCol.getColumn() << endl ;
3823    vector< CountedPtr<Scantable> > tmp( 1, soff ) ;
3824    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3825    //cout << "aoff.nrow = " << aoff->nrow() << endl ;
3826    s->unsetSelection() ;
3827    sel.reset() ;
3828    types.clear() ;
3829   
3830    // on scan
3831    bool insitu = insitu_ ;
3832    insitu_ = false ;
3833    CountedPtr<Scantable> out = getScantable( s, true ) ;
3834    insitu_ = insitu ;
3835    types.push_back( SrcType::PSON ) ;
3836    sel.setTypes( types ) ;
3837    s->setSelection( sel ) ;
3838    TableCopy::copyRows( out->table(), s->table() ) ;
3839    s->unsetSelection() ;
3840    sel.reset() ;
3841    types.clear() ;
3842   
3843    // process each on scan
3844    ArrayColumn<Float> tsysCol ;
3845    tsysCol.attach( out->table(), "TSYS" ) ;
3846    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3847      vector<float> sp = getCalibratedSpectra( out, aoff, i ) ;
3848      out->setSpectrum( sp, i ) ;
3849    }
3850
3851    // flux unit
3852    out->setFluxUnit( "K" ) ;
3853
3854    return out ;
3855  }
3856}
3857
3858CountedPtr<Scantable> STMath::cwcalfs( const CountedPtr<Scantable>& s,
3859                                       const String antname )
3860{
3861  vector<int> types ;
3862
3863  // APEX calibration mode
3864  int apexcalmode = 1 ;
3865 
3866  if ( antname.find( "APEX" ) != string::npos ) {
3867    // check if off scan exists or not
3868    STSelector sel = STSelector() ;
3869    //sel.setName( offstr1 ) ;
3870    types.push_back( SrcType::FLOOFF ) ;
3871    sel.setTypes( types ) ;
3872    try {
3873      s->setSelection( sel ) ;
3874    }
3875    catch ( AipsError &e ) {
3876      apexcalmode = 0 ;
3877    }
3878    sel.reset() ;
3879  }
3880  s->unsetSelection() ;
3881  types.clear() ;
3882
3883  vector<bool> masks = s->getMask( 0 ) ;
3884  CountedPtr<Scantable> ssig, sref ;
3885  CountedPtr<Scantable> out ;
3886
3887  if ( antname.find( "APEX" ) != string::npos ) {
3888    // APEX calibration
3889    // sky scan
3890    STSelector sel = STSelector() ;
3891    types.push_back( SrcType::FLOSKY ) ;
3892    sel.setTypes( types ) ;
3893    s->setSelection( sel ) ;
3894    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3895    CountedPtr<Scantable> askylo = average( tmp, masks, "TINT", "SCAN" ) ;
3896    s->unsetSelection() ;
3897    sel.reset() ;
3898    types.clear() ;
3899    types.push_back( SrcType::FHISKY ) ;
3900    sel.setTypes( types ) ;
3901    s->setSelection( sel ) ;
3902    tmp.clear() ;
3903    tmp.push_back( getScantable( s, false ) ) ;
3904    CountedPtr<Scantable> askyhi = average( tmp, masks, "TINT", "SCAN" ) ;
3905    s->unsetSelection() ;
3906    sel.reset() ;
3907    types.clear() ;
3908   
3909    // hot scan
3910    types.push_back( SrcType::FLOHOT ) ;
3911    sel.setTypes( types ) ;
3912    s->setSelection( sel ) ;
3913    tmp.clear() ;
3914    tmp.push_back( getScantable( s, false ) ) ;
3915    CountedPtr<Scantable> ahotlo = average( tmp, masks, "TINT", "SCAN" ) ;
3916    s->unsetSelection() ;
3917    sel.reset() ;
3918    types.clear() ;
3919    types.push_back( SrcType::FHIHOT ) ;
3920    sel.setTypes( types ) ;
3921    s->setSelection( sel ) ;
3922    tmp.clear() ;
3923    tmp.push_back( getScantable( s, false ) ) ;
3924    CountedPtr<Scantable> ahothi = average( tmp, masks, "TINT", "SCAN" ) ;
3925    s->unsetSelection() ;
3926    sel.reset() ;
3927    types.clear() ;
3928   
3929    // cold scan
3930    CountedPtr<Scantable> acoldlo, acoldhi ;
3931//     types.push_back( SrcType::FLOCOLD ) ;
3932//     sel.setTypes( types ) ;
3933//     s->setSelection( sel ) ;
3934//     tmp.clear() ;
3935//     tmp.push_back( getScantable( s, false ) ) ;
3936//     CountedPtr<Scantable> acoldlo = average( tmp, masks, "TINT", "SCAN" ) ;
3937//     s->unsetSelection() ;
3938//     sel.reset() ;
3939//     types.clear() ;
3940//     types.push_back( SrcType::FHICOLD ) ;
3941//     sel.setTypes( types ) ;
3942//     s->setSelection( sel ) ;
3943//     tmp.clear() ;
3944//     tmp.push_back( getScantable( s, false ) ) ;
3945//     CountedPtr<Scantable> acoldhi = average( tmp, masks, "TINT", "SCAN" ) ;
3946//     s->unsetSelection() ;
3947//     sel.reset() ;
3948//     types.clear() ;
3949
3950    // ref scan
3951    bool insitu = insitu_ ;
3952    insitu_ = false ;
3953    sref = getScantable( s, true ) ;
3954    insitu_ = insitu ;
3955    types.push_back( SrcType::FSLO ) ;
3956    sel.setTypes( types ) ;
3957    s->setSelection( sel ) ;
3958    TableCopy::copyRows( sref->table(), s->table() ) ;
3959    s->unsetSelection() ;
3960    sel.reset() ;
3961    types.clear() ;
3962   
3963    // sig scan
3964    insitu_ = false ;
3965    ssig = getScantable( s, true ) ;
3966    insitu_ = insitu ;
3967    types.push_back( SrcType::FSHI ) ;
3968    sel.setTypes( types ) ;
3969    s->setSelection( sel ) ;
3970    TableCopy::copyRows( ssig->table(), s->table() ) ;
3971    s->unsetSelection() ;
3972    sel.reset() ; 
3973    types.clear() ;
3974         
3975    if ( apexcalmode == 0 ) {
3976      // APEX fs data without off scan
3977      // process each sig and ref scan
3978      ArrayColumn<Float> tsysCollo ;
3979      tsysCollo.attach( ssig->table(), "TSYS" ) ;
3980      ArrayColumn<Float> tsysColhi ;
3981      tsysColhi.attach( sref->table(), "TSYS" ) ;
3982      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
3983        vector< CountedPtr<Scantable> > sky( 2 ) ;
3984        sky[0] = askylo ;
3985        sky[1] = askyhi ;
3986        vector< CountedPtr<Scantable> > hot( 2 ) ;
3987        hot[0] = ahotlo ;
3988        hot[1] = ahothi ;
3989        vector< CountedPtr<Scantable> > cold( 2 ) ;
3990        //cold[0] = acoldlo ;
3991        //cold[1] = acoldhi ;
3992        vector<float> sp = getFSCalibratedSpectra( ssig, sref, sky, hot, cold, i ) ;
3993        ssig->setSpectrum( sp, i ) ;
3994        string reftime = ssig->getTime( i ) ;
3995        vector<int> ii( 1, ssig->getIF( i ) ) ;
3996        vector<int> ib( 1, ssig->getBeam( i ) ) ;
3997        vector<int> ip( 1, ssig->getPol( i ) ) ;
3998        sel.setIFs( ii ) ;
3999        sel.setBeams( ib ) ;
4000        sel.setPolarizations( ip ) ;
4001        askylo->setSelection( sel ) ;
4002        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4003        const Vector<Float> Vtsyslo( sptsys ) ;
4004        tsysCollo.put( i, Vtsyslo ) ;
4005        askylo->unsetSelection() ;
4006        sel.reset() ;
4007        sky[0] = askyhi ;
4008        sky[1] = askylo ;
4009        hot[0] = ahothi ;
4010        hot[1] = ahotlo ;
4011        cold[0] = acoldhi ;
4012        cold[1] = acoldlo ;
4013        sp = getFSCalibratedSpectra( sref, ssig, sky, hot, cold, i ) ;
4014        sref->setSpectrum( sp, i ) ;
4015        reftime = sref->getTime( i ) ;
4016        ii[0] = sref->getIF( i )  ;
4017        ib[0] = sref->getBeam( i ) ;
4018        ip[0] = sref->getPol( i ) ;
4019        sel.setIFs( ii ) ;
4020        sel.setBeams( ib ) ;
4021        sel.setPolarizations( ip ) ;
4022        askyhi->setSelection( sel ) ;   
4023        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4024        const Vector<Float> Vtsyshi( sptsys ) ;
4025        tsysColhi.put( i, Vtsyshi ) ;
4026        askyhi->unsetSelection() ;
4027        sel.reset() ;
4028      }
4029    }
4030    else if ( apexcalmode == 1 ) {
4031      // APEX fs data with off scan
4032      // off scan
4033      types.push_back( SrcType::FLOOFF ) ;
4034      sel.setTypes( types ) ;
4035      s->setSelection( sel ) ;
4036      tmp.clear() ;
4037      tmp.push_back( getScantable( s, false ) ) ;
4038      CountedPtr<Scantable> aofflo = average( tmp, masks, "TINT", "SCAN" ) ;
4039      s->unsetSelection() ;
4040      sel.reset() ;
4041      types.clear() ;
4042      types.push_back( SrcType::FHIOFF ) ;
4043      sel.setTypes( types ) ;
4044      s->setSelection( sel ) ;
4045      tmp.clear() ;
4046      tmp.push_back( getScantable( s, false ) ) ;
4047      CountedPtr<Scantable> aoffhi = average( tmp, masks, "TINT", "SCAN" ) ;
4048      s->unsetSelection() ;
4049      sel.reset() ;
4050      types.clear() ;
4051     
4052      // process each sig and ref scan
4053      ArrayColumn<Float> tsysCollo ;
4054      tsysCollo.attach( ssig->table(), "TSYS" ) ;
4055      ArrayColumn<Float> tsysColhi ;
4056      tsysColhi.attach( sref->table(), "TSYS" ) ;
4057      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4058        vector<float> sp = getCalibratedSpectra( ssig, aofflo, askylo, ahotlo, acoldlo, i, antname ) ;
4059        ssig->setSpectrum( sp, i ) ;
4060        sp = getCalibratedSpectra( sref, aoffhi, askyhi, ahothi, acoldhi, i, antname ) ;
4061        string reftime = ssig->getTime( i ) ;
4062        vector<int> ii( 1, ssig->getIF( i ) ) ;
4063        vector<int> ib( 1, ssig->getBeam( i ) ) ;
4064        vector<int> ip( 1, ssig->getPol( i ) ) ;
4065        sel.setIFs( ii ) ;
4066        sel.setBeams( ib ) ;
4067        sel.setPolarizations( ip ) ;
4068        askylo->setSelection( sel ) ;
4069        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4070        const Vector<Float> Vtsyslo( sptsys ) ;
4071        tsysCollo.put( i, Vtsyslo ) ;
4072        askylo->unsetSelection() ;
4073        sel.reset() ;
4074        sref->setSpectrum( sp, i ) ;
4075        reftime = sref->getTime( i ) ;
4076        ii[0] = sref->getIF( i )  ;
4077        ib[0] = sref->getBeam( i ) ;
4078        ip[0] = sref->getPol( i ) ;
4079        sel.setIFs( ii ) ;
4080        sel.setBeams( ib ) ;
4081        sel.setPolarizations( ip ) ;
4082        askyhi->setSelection( sel ) ;   
4083        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4084        const Vector<Float> Vtsyshi( sptsys ) ;
4085        tsysColhi.put( i, Vtsyshi ) ;
4086        askyhi->unsetSelection() ;
4087        sel.reset() ;
4088      }
4089    }
4090  }
4091  else {
4092    // non-APEX fs data
4093    // sky scan
4094    STSelector sel = STSelector() ;
4095    types.push_back( SrcType::SKY ) ;
4096    sel.setTypes( types ) ;
4097    s->setSelection( sel ) ;
4098    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
4099    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
4100    s->unsetSelection() ;
4101    sel.reset() ;
4102    types.clear() ;
4103   
4104    // hot scan
4105    types.push_back( SrcType::HOT ) ;
4106    sel.setTypes( types ) ;
4107    s->setSelection( sel ) ;
4108    tmp.clear() ;
4109    tmp.push_back( getScantable( s, false ) ) ;
4110    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
4111    s->unsetSelection() ;
4112    sel.reset() ;
4113    types.clear() ;
4114
4115    // cold scan
4116    CountedPtr<Scantable> acold ;
4117//     types.push_back( SrcType::COLD ) ;
4118//     sel.setTypes( types ) ;
4119//     s->setSelection( sel ) ;
4120//     tmp.clear() ;
4121//     tmp.push_back( getScantable( s, false ) ) ;
4122//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCAN" ) ;
4123//     s->unsetSelection() ;
4124//     sel.reset() ;
4125//     types.clear() ;
4126   
4127    // ref scan
4128    bool insitu = insitu_ ;
4129    insitu_ = false ;
4130    sref = getScantable( s, true ) ;
4131    insitu_ = insitu ;
4132    types.push_back( SrcType::FSOFF ) ;
4133    sel.setTypes( types ) ;
4134    s->setSelection( sel ) ;
4135    TableCopy::copyRows( sref->table(), s->table() ) ;
4136    s->unsetSelection() ;
4137    sel.reset() ;
4138    types.clear() ;
4139   
4140    // sig scan
4141    insitu_ = false ;
4142    ssig = getScantable( s, true ) ;
4143    insitu_ = insitu ;
4144    types.push_back( SrcType::FSON ) ;
4145    sel.setTypes( types ) ;
4146    s->setSelection( sel ) ;
4147    TableCopy::copyRows( ssig->table(), s->table() ) ;
4148    s->unsetSelection() ;
4149    sel.reset() ;
4150    types.clear() ;
4151
4152    // process each sig and ref scan
4153    ArrayColumn<Float> tsysColsig ;
4154    tsysColsig.attach( ssig->table(), "TSYS" ) ;
4155    ArrayColumn<Float> tsysColref ;
4156    tsysColref.attach( ssig->table(), "TSYS" ) ;
4157    for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4158      vector<float> sp = getFSCalibratedSpectra( ssig, sref, asky, ahot, acold, i ) ;
4159      ssig->setSpectrum( sp, i ) ;
4160      string reftime = ssig->getTime( i ) ;
4161      vector<int> ii( 1, ssig->getIF( i ) ) ;
4162      vector<int> ib( 1, ssig->getBeam( i ) ) ;
4163      vector<int> ip( 1, ssig->getPol( i ) ) ;
4164      sel.setIFs( ii ) ;
4165      sel.setBeams( ib ) ;
4166      sel.setPolarizations( ip ) ;
4167      asky->setSelection( sel ) ;
4168      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
4169      const Vector<Float> Vtsys( sptsys ) ;
4170      tsysColsig.put( i, Vtsys ) ;
4171      asky->unsetSelection() ;
4172      sel.reset() ;
4173      sp = getFSCalibratedSpectra( sref, ssig, asky, ahot, acold, i ) ;
4174      sref->setSpectrum( sp, i ) ;
4175      tsysColref.put( i, Vtsys ) ;
4176    }
4177  }
4178
4179  // do folding if necessary
4180  Table sigtab = ssig->table() ;
4181  Table reftab = sref->table() ;
4182  ScalarColumn<uInt> sigifnoCol ;
4183  ScalarColumn<uInt> refifnoCol ;
4184  ScalarColumn<uInt> sigfidCol ;
4185  ScalarColumn<uInt> reffidCol ;
4186  Int nchan = (Int)ssig->nchan() ;
4187  sigifnoCol.attach( sigtab, "IFNO" ) ;
4188  refifnoCol.attach( reftab, "IFNO" ) ;
4189  sigfidCol.attach( sigtab, "FREQ_ID" ) ;
4190  reffidCol.attach( reftab, "FREQ_ID" ) ;
4191  Vector<uInt> sfids( sigfidCol.getColumn() ) ;
4192  Vector<uInt> rfids( reffidCol.getColumn() ) ;
4193  vector<uInt> sfids_unique ;
4194  vector<uInt> rfids_unique ;
4195  vector<uInt> sifno_unique ;
4196  vector<uInt> rifno_unique ;
4197  for ( uInt i = 0 ; i < sfids.nelements() ; i++ ) {
4198    if ( count( sfids_unique.begin(), sfids_unique.end(), sfids[i] ) == 0 ) {
4199      sfids_unique.push_back( sfids[i] ) ;
4200      sifno_unique.push_back( ssig->getIF( i ) ) ;
4201    }
4202    if ( count( rfids_unique.begin(), rfids_unique.end(),  rfids[i] ) == 0 ) {
4203      rfids_unique.push_back( rfids[i] ) ;
4204      rifno_unique.push_back( sref->getIF( i ) ) ;
4205    }
4206  }
4207  double refpix_sig, refval_sig, increment_sig ;
4208  double refpix_ref, refval_ref, increment_ref ;
4209  vector< CountedPtr<Scantable> > tmp( sfids_unique.size() ) ;
4210  for ( uInt i = 0 ; i < sfids_unique.size() ; i++ ) {
4211    ssig->frequencies().getEntry( refpix_sig, refval_sig, increment_sig, sfids_unique[i] ) ;
4212    sref->frequencies().getEntry( refpix_ref, refval_ref, increment_ref, rfids_unique[i] ) ;
4213    if ( refpix_sig == refpix_ref ) {
4214      double foffset = refval_ref - refval_sig ;
4215      int choffset = static_cast<int>(foffset/increment_sig) ;
4216      double doffset = foffset / increment_sig ;
4217      if ( abs(choffset) >= nchan ) {
4218        LogIO os( LogOrigin( "STMath", "cwcalfs", WHERE ) ) ;
4219        os << "FREQ_ID=[" << sfids_unique[i] << "," << rfids_unique[i] << "]: out-band frequency switching, no folding" << LogIO::POST ;
4220        os << "Just return signal data" << LogIO::POST ;
4221        //std::vector< CountedPtr<Scantable> > tabs ;
4222        //tabs.push_back( ssig ) ;
4223        //tabs.push_back( sref ) ;
4224        //out = merge( tabs ) ;
4225        tmp[i] = ssig ;
4226      }
4227      else {
4228        STSelector sel = STSelector() ;
4229        vector<int> v( 1, sifno_unique[i] ) ;
4230        sel.setIFs( v ) ;
4231        ssig->setSelection( sel ) ;
4232        sel.reset() ;
4233        v[0] = rifno_unique[i] ;
4234        sel.setIFs( v ) ;
4235        sref->setSelection( sel ) ;
4236        sel.reset() ;
4237        if ( antname.find( "APEX" ) != string::npos ) {
4238          tmp[i] = dofold( ssig, sref, 0.5*doffset, -0.5*doffset ) ;
4239          //tmp[i] = dofold( ssig, sref, doffset ) ;
4240        }
4241        else {
4242          tmp[i] = dofold( ssig, sref, doffset ) ;
4243        }
4244        ssig->unsetSelection() ;
4245        sref->unsetSelection() ;
4246      }
4247    }
4248  }
4249
4250  if ( tmp.size() > 1 ) {
4251    out = merge( tmp ) ;
4252  }
4253  else {
4254    out = tmp[0] ;
4255  }
4256
4257  // flux unit
4258  out->setFluxUnit( "K" ) ;
4259
4260  return out ;
4261}
4262
4263CountedPtr<Scantable> STMath::almacalfs( const CountedPtr<Scantable>& s )
4264{
4265  (void) s; //currently unused
4266  CountedPtr<Scantable> out ;
4267
4268  return out ;
4269}
4270
4271vector<float> STMath::getSpectrumFromTime( string reftime,
4272                                           CountedPtr<Scantable>& s,
4273                                           string mode )
4274{
4275  LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4276  vector<float> sp ;
4277
4278  if ( s->nrow() == 0 ) {
4279    os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4280    return sp ;
4281  }
4282  else if ( s->nrow() == 1 ) {
4283    //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4284    return s->getSpectrum( 0 ) ;
4285  }
4286  else {
4287    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4288    if ( mode == "before" ) {
4289      int id = -1 ;
4290      if ( idx[0] != -1 ) {
4291        id = idx[0] ;
4292      }
4293      else if ( idx[1] != -1 ) {
4294        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4295        id = idx[1] ;
4296      }
4297      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4298      sp = s->getSpectrum( id ) ;
4299    }
4300    else if ( mode == "after" ) {
4301      int id = -1 ;
4302      if ( idx[1] != -1 ) {
4303        id = idx[1] ;
4304      }
4305      else if ( idx[0] != -1 ) {
4306        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4307        id = idx[1] ;
4308      }
4309      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4310      sp = s->getSpectrum( id ) ;
4311    }
4312    else if ( mode == "nearest" ) {
4313      int id = -1 ;
4314      if ( idx[0] == -1 ) {
4315        id = idx[1] ;
4316      }
4317      else if ( idx[1] == -1 ) {
4318        id = idx[0] ;
4319      }
4320      else if ( idx[0] == idx[1] ) {
4321        id = idx[0] ;
4322      }
4323      else {
4324        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4325        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4326        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4327        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4328        double tref = getMJD( reftime ) ;
4329        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4330          id = idx[1] ;
4331        }
4332        else {
4333          id = idx[0] ;
4334        }
4335      }
4336      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4337      sp = s->getSpectrum( id ) ;     
4338    }
4339    else if ( mode == "linear" ) {
4340      if ( idx[0] == -1 ) {
4341        // use after
4342        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4343        int id = idx[1] ;
4344        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4345        sp = s->getSpectrum( id ) ;
4346      }
4347      else if ( idx[1] == -1 ) {
4348        // use before
4349        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4350        int id = idx[0] ;
4351        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4352        sp = s->getSpectrum( id ) ;
4353      }
4354      else if ( idx[0] == idx[1] ) {
4355        // use before
4356        //os << "No need to interporate." << LogIO::POST ;
4357        int id = idx[0] ;
4358        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4359        sp = s->getSpectrum( id ) ;
4360      }
4361      else {
4362        // do interpolation
4363        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4364        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4365        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4366        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4367        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4368        double tref = getMJD( reftime ) ;
4369        vector<float> sp0 = s->getSpectrum( idx[0] ) ;
4370        vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4371        for ( unsigned int i = 0 ; i < sp0.size() ; i++ ) {
4372          float v = ( sp1[i] - sp0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + sp0[i] ;
4373          sp.push_back( v ) ;
4374        }
4375      }
4376    }
4377    else {
4378      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4379    }
4380    return sp ;
4381  }
4382}
4383
4384double STMath::getMJD( string strtime )
4385{
4386  if ( strtime.find("/") == string::npos ) {
4387    // MJD time string
4388    return atof( strtime.c_str() ) ;
4389  }
4390  else {
4391    // string in YYYY/MM/DD/HH:MM:SS format
4392    uInt year = atoi( strtime.substr( 0, 4 ).c_str() ) ;
4393    uInt month = atoi( strtime.substr( 5, 2 ).c_str() ) ;
4394    uInt day = atoi( strtime.substr( 8, 2 ).c_str() ) ;
4395    uInt hour = atoi( strtime.substr( 11, 2 ).c_str() ) ;
4396    uInt minute = atoi( strtime.substr( 14, 2 ).c_str() ) ;
4397    uInt sec = atoi( strtime.substr( 17, 2 ).c_str() ) ;
4398    Time t( year, month, day, hour, minute, sec ) ;
4399    return t.modifiedJulianDay() ;
4400  }
4401}
4402
4403vector<int> STMath::getRowIdFromTime( string reftime, CountedPtr<Scantable> &s )
4404{
4405  double reft = getMJD( reftime ) ;
4406  double dtmin = 1.0e100 ;
4407  double dtmax = -1.0e100 ;
4408  vector<double> dt ;
4409  int just_before = -1 ;
4410  int just_after = -1 ;
4411  for ( int i = 0 ; i < s->nrow() ; i++ ) {
4412    dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
4413  }
4414  for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4415    if ( dt[i] > 0.0 ) {
4416      // after reftime
4417      if ( dt[i] < dtmin ) {
4418        just_after = i ;
4419        dtmin = dt[i] ;
4420      }
4421    }
4422    else if ( dt[i] < 0.0 ) {
4423      // before reftime
4424      if ( dt[i] > dtmax ) {
4425        just_before = i ;
4426        dtmax = dt[i] ;
4427      }
4428    }
4429    else {
4430      // just a reftime
4431      just_before = i ;
4432      just_after = i ;
4433      dtmax = 0 ;
4434      dtmin = 0 ;
4435      break ;
4436    }
4437  }
4438
4439  vector<int> v ;
4440  v.push_back( just_before ) ;
4441  v.push_back( just_after ) ;
4442
4443  return v ;
4444}
4445
4446vector<float> STMath::getTcalFromTime( string reftime,
4447                                       CountedPtr<Scantable>& s,
4448                                       string mode )
4449{
4450  LogIO os( LogOrigin( "STMath", "getTcalFromTime", WHERE ) ) ;
4451  vector<float> tcal ;
4452  STTcal tcalTable = s->tcal() ;
4453  String time ;
4454  Vector<Float> tcalval ;
4455  if ( s->nrow() == 0 ) {
4456    os << LogIO::SEVERE << "No row in the input scantable. Return empty tcal." << LogIO::POST ;
4457    return tcal ;
4458  }
4459  else if ( s->nrow() == 1 ) {
4460    uInt tcalid = s->getTcalId( 0 ) ;
4461    //os << "use row " << 0 << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4462    tcalTable.getEntry( time, tcalval, tcalid ) ;
4463    tcalval.tovector( tcal ) ;
4464    return tcal ;
4465  }
4466  else {
4467    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4468    if ( mode == "before" ) {
4469      int id = -1 ;
4470      if ( idx[0] != -1 ) {
4471        id = idx[0] ;
4472      }
4473      else if ( idx[1] != -1 ) {
4474        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4475        id = idx[1] ;
4476      }
4477      uInt tcalid = s->getTcalId( id ) ;
4478      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4479      tcalTable.getEntry( time, tcalval, tcalid ) ;
4480      tcalval.tovector( tcal ) ;
4481    }
4482    else if ( mode == "after" ) {
4483      int id = -1 ;
4484      if ( idx[1] != -1 ) {
4485        id = idx[1] ;
4486      }
4487      else if ( idx[0] != -1 ) {
4488        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4489        id = idx[1] ;
4490      }
4491      uInt tcalid = s->getTcalId( id ) ;
4492      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4493      tcalTable.getEntry( time, tcalval, tcalid ) ;
4494      tcalval.tovector( tcal ) ;
4495    }
4496    else if ( mode == "nearest" ) {
4497      int id = -1 ;
4498      if ( idx[0] == -1 ) {
4499        id = idx[1] ;
4500      }
4501      else if ( idx[1] == -1 ) {
4502        id = idx[0] ;
4503      }
4504      else if ( idx[0] == idx[1] ) {
4505        id = idx[0] ;
4506      }
4507      else {
4508        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4509        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4510        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4511        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4512        double tref = getMJD( reftime ) ;
4513        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4514          id = idx[1] ;
4515        }
4516        else {
4517          id = idx[0] ;
4518        }
4519      }
4520      uInt tcalid = s->getTcalId( id ) ;
4521      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4522      tcalTable.getEntry( time, tcalval, tcalid ) ;
4523      tcalval.tovector( tcal ) ;
4524    }
4525    else if ( mode == "linear" ) {
4526      if ( idx[0] == -1 ) {
4527        // use after
4528        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4529        int id = idx[1] ;
4530        uInt tcalid = s->getTcalId( id ) ;
4531        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4532        tcalTable.getEntry( time, tcalval, tcalid ) ;
4533        tcalval.tovector( tcal ) ;
4534      }
4535      else if ( idx[1] == -1 ) {
4536        // use before
4537        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4538        int id = idx[0] ;
4539        uInt tcalid = s->getTcalId( id ) ;
4540        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4541        tcalTable.getEntry( time, tcalval, tcalid ) ;
4542        tcalval.tovector( tcal ) ;
4543      }
4544      else if ( idx[0] == idx[1] ) {
4545        // use before
4546        //os << "No need to interporate." << LogIO::POST ;
4547        int id = idx[0] ;
4548        uInt tcalid = s->getTcalId( id ) ;
4549        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4550        tcalTable.getEntry( time, tcalval, tcalid ) ;
4551        tcalval.tovector( tcal ) ;
4552      }
4553      else {
4554        // do interpolation
4555        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4556        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4557        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4558        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4559        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4560        double tref = getMJD( reftime ) ;
4561        vector<float> tcal0 ;
4562        vector<float> tcal1 ;
4563        uInt tcalid0 = s->getTcalId( idx[0] ) ;
4564        uInt tcalid1 = s->getTcalId( idx[1] ) ;
4565        tcalTable.getEntry( time, tcalval, tcalid0 ) ;
4566        tcalval.tovector( tcal0 ) ;
4567        tcalTable.getEntry( time, tcalval, tcalid1 ) ;
4568        tcalval.tovector( tcal1 ) ;       
4569        for ( unsigned int i = 0 ; i < tcal0.size() ; i++ ) {
4570          float v = ( tcal1[i] - tcal0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tcal0[i] ;
4571          tcal.push_back( v ) ;
4572        }
4573      }
4574    }
4575    else {
4576      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4577    }
4578    return tcal ;
4579  }
4580}
4581
4582vector<float> STMath::getTsysFromTime( string reftime,
4583                                       CountedPtr<Scantable>& s,
4584                                       string mode )
4585{
4586  LogIO os( LogOrigin( "STMath", "getTsysFromTime", WHERE ) ) ;
4587  ArrayColumn<Float> tsysCol ;
4588  tsysCol.attach( s->table(), "TSYS" ) ;
4589  vector<float> tsys ;
4590  String time ;
4591  Vector<Float> tsysval ;
4592  if ( s->nrow() == 0 ) {
4593    os << LogIO::SEVERE << "No row in the input scantable. Return empty tsys." << LogIO::POST ;
4594    return tsys ;
4595  }
4596  else if ( s->nrow() == 1 ) {
4597    //os << "use row " << 0 << LogIO::POST ;
4598    tsysval = tsysCol( 0 ) ;
4599    tsysval.tovector( tsys ) ;
4600    return tsys ;
4601  }
4602  else {
4603    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4604    if ( mode == "before" ) {
4605      int id = -1 ;
4606      if ( idx[0] != -1 ) {
4607        id = idx[0] ;
4608      }
4609      else if ( idx[1] != -1 ) {
4610        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4611        id = idx[1] ;
4612      }
4613      //os << "use row " << id << LogIO::POST ;
4614      tsysval = tsysCol( id ) ;
4615      tsysval.tovector( tsys ) ;
4616    }
4617    else if ( mode == "after" ) {
4618      int id = -1 ;
4619      if ( idx[1] != -1 ) {
4620        id = idx[1] ;
4621      }
4622      else if ( idx[0] != -1 ) {
4623        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4624        id = idx[1] ;
4625      }
4626      //os << "use row " << id << LogIO::POST ;
4627      tsysval = tsysCol( id ) ;
4628      tsysval.tovector( tsys ) ;
4629    }
4630    else if ( mode == "nearest" ) {
4631      int id = -1 ;
4632      if ( idx[0] == -1 ) {
4633        id = idx[1] ;
4634      }
4635      else if ( idx[1] == -1 ) {
4636        id = idx[0] ;
4637      }
4638      else if ( idx[0] == idx[1] ) {
4639        id = idx[0] ;
4640      }
4641      else {
4642        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4643        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4644        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4645        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4646        double tref = getMJD( reftime ) ;
4647        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4648          id = idx[1] ;
4649        }
4650        else {
4651          id = idx[0] ;
4652        }
4653      }
4654      //os << "use row " << id << LogIO::POST ;
4655      tsysval = tsysCol( id ) ;
4656      tsysval.tovector( tsys ) ;
4657    }
4658    else if ( mode == "linear" ) {
4659      if ( idx[0] == -1 ) {
4660        // use after
4661        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4662        int id = idx[1] ;
4663        //os << "use row " << id << LogIO::POST ;
4664        tsysval = tsysCol( id ) ;
4665        tsysval.tovector( tsys ) ;
4666      }
4667      else if ( idx[1] == -1 ) {
4668        // use before
4669        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4670        int id = idx[0] ;
4671        //os << "use row " << id << LogIO::POST ;
4672        tsysval = tsysCol( id ) ;
4673        tsysval.tovector( tsys ) ;
4674      }
4675      else if ( idx[0] == idx[1] ) {
4676        // use before
4677        //os << "No need to interporate." << LogIO::POST ;
4678        int id = idx[0] ;
4679        //os << "use row " << id << LogIO::POST ;
4680        tsysval = tsysCol( id ) ;
4681        tsysval.tovector( tsys ) ;
4682      }
4683      else {
4684        // do interpolation
4685        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4686        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4687        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4688        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4689        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4690        double tref = getMJD( reftime ) ;
4691        vector<float> tsys0 ;
4692        vector<float> tsys1 ;
4693        tsysval = tsysCol( idx[0] ) ;
4694        tsysval.tovector( tsys0 ) ;
4695        tsysval = tsysCol( idx[1] ) ;
4696        tsysval.tovector( tsys1 ) ;       
4697        for ( unsigned int i = 0 ; i < tsys0.size() ; i++ ) {
4698          float v = ( tsys1[i] - tsys0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tsys0[i] ;
4699          tsys.push_back( v ) ;
4700        }
4701      }
4702    }
4703    else {
4704      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4705    }
4706    return tsys ;
4707  }
4708}
4709
4710vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4711                                            CountedPtr<Scantable>& off,
4712                                            CountedPtr<Scantable>& sky,
4713                                            CountedPtr<Scantable>& hot,
4714                                            CountedPtr<Scantable>& cold,
4715                                            int index,
4716                                            string antname )
4717{
4718  (void) cold; //currently unused
4719  string reftime = on->getTime( index ) ;
4720  vector<int> ii( 1, on->getIF( index ) ) ;
4721  vector<int> ib( 1, on->getBeam( index ) ) ;
4722  vector<int> ip( 1, on->getPol( index ) ) ;
4723  vector<int> ic( 1, on->getScan( index ) ) ;
4724  STSelector sel = STSelector() ;
4725  sel.setIFs( ii ) ;
4726  sel.setBeams( ib ) ;
4727  sel.setPolarizations( ip ) ;
4728  sky->setSelection( sel ) ;
4729  hot->setSelection( sel ) ;
4730  //cold->setSelection( sel ) ;
4731  off->setSelection( sel ) ;
4732  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4733  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4734  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4735  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4736  vector<float> spec = on->getSpectrum( index ) ;
4737  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4738  vector<float> sp( tcal.size() ) ;
4739  if ( antname.find( "APEX" ) != string::npos ) {
4740    // using gain array
4741    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4742      float v = ( ( spec[j] - spoff[j] ) / spoff[j] )
4743        * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4744      sp[j] = v ;
4745    }
4746  }
4747  else {
4748    // Chopper-Wheel calibration (Ulich & Haas 1976)
4749    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4750      float v = ( spec[j] - spoff[j] ) / ( sphot[j] - spsky[j] ) * tcal[j] ;
4751      sp[j] = v ;
4752    }
4753  }
4754  sel.reset() ;
4755  sky->unsetSelection() ;
4756  hot->unsetSelection() ;
4757  //cold->unsetSelection() ;
4758  off->unsetSelection() ;
4759
4760  return sp ;
4761}
4762
4763vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4764                                            CountedPtr<Scantable>& off,
4765                                            int index )
4766{
4767  string reftime = on->getTime( index ) ;
4768  vector<int> ii( 1, on->getIF( index ) ) ;
4769  vector<int> ib( 1, on->getBeam( index ) ) ;
4770  vector<int> ip( 1, on->getPol( index ) ) ;
4771  vector<int> ic( 1, on->getScan( index ) ) ;
4772  STSelector sel = STSelector() ;
4773  sel.setIFs( ii ) ;
4774  sel.setBeams( ib ) ;
4775  sel.setPolarizations( ip ) ;
4776  off->setSelection( sel ) ;
4777  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4778  vector<float> spec = on->getSpectrum( index ) ;
4779  //vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4780  //vector<float> tsys = on->getTsysVec( index ) ;
4781  ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
4782  Vector<Float> tsys = tsysCol( index ) ;
4783  vector<float> sp( spec.size() ) ;
4784  // ALMA Calibration
4785  //
4786  // Ta* = Tsys * ( ON - OFF ) / OFF
4787  //
4788  // 2010/01/07 Takeshi Nakazato
4789  unsigned int tsyssize = tsys.nelements() ;
4790  unsigned int spsize = sp.size() ;
4791  for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
4792    float tscale = 0.0 ;
4793    if ( tsyssize == spsize )
4794      tscale = tsys[j] ;
4795    else
4796      tscale = tsys[0] ;
4797    float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
4798    sp[j] = v ;
4799  }
4800  sel.reset() ;
4801  off->unsetSelection() ;
4802
4803  return sp ;
4804}
4805
4806vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4807                                              CountedPtr<Scantable>& ref,
4808                                              CountedPtr<Scantable>& sky,
4809                                              CountedPtr<Scantable>& hot,
4810                                              CountedPtr<Scantable>& cold,
4811                                              int index )
4812{
4813  (void) cold; //currently unused
4814  string reftime = sig->getTime( index ) ;
4815  vector<int> ii( 1, sig->getIF( index ) ) ;
4816  vector<int> ib( 1, sig->getBeam( index ) ) ;
4817  vector<int> ip( 1, sig->getPol( index ) ) ;
4818  vector<int> ic( 1, sig->getScan( index ) ) ;
4819  STSelector sel = STSelector() ;
4820  sel.setIFs( ii ) ;
4821  sel.setBeams( ib ) ;
4822  sel.setPolarizations( ip ) ;
4823  sky->setSelection( sel ) ;
4824  hot->setSelection( sel ) ;
4825  //cold->setSelection( sel ) ;
4826  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4827  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4828  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4829  vector<float> spref = ref->getSpectrum( index ) ;
4830  vector<float> spsig = sig->getSpectrum( index ) ;
4831  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4832  vector<float> sp( tcal.size() ) ;
4833  for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4834    float v = tcal[j] * spsky[j] / ( sphot[j] - spsky[j] ) * ( spsig[j] - spref[j] ) / spref[j] ;
4835    sp[j] = v ;
4836  }
4837  sel.reset() ;
4838  sky->unsetSelection() ;
4839  hot->unsetSelection() ;
4840  //cold->unsetSelection() ;
4841
4842  return sp ;
4843}
4844
4845vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4846                                              CountedPtr<Scantable>& ref,
4847                                              vector< CountedPtr<Scantable> >& sky,
4848                                              vector< CountedPtr<Scantable> >& hot,
4849                                              vector< CountedPtr<Scantable> >& cold,
4850                                              int index )
4851{
4852  (void) cold; //currently unused
4853  string reftime = sig->getTime( index ) ;
4854  vector<int> ii( 1, sig->getIF( index ) ) ;
4855  vector<int> ib( 1, sig->getBeam( index ) ) ;
4856  vector<int> ip( 1, sig->getPol( index ) ) ;
4857  vector<int> ic( 1, sig->getScan( index ) ) ;
4858  STSelector sel = STSelector() ;
4859  sel.setIFs( ii ) ;
4860  sel.setBeams( ib ) ;
4861  sel.setPolarizations( ip ) ;
4862  sky[0]->setSelection( sel ) ;
4863  hot[0]->setSelection( sel ) ;
4864  //cold[0]->setSelection( sel ) ;
4865  vector<float> spskys = getSpectrumFromTime( reftime, sky[0], "linear" ) ;
4866  vector<float> sphots = getSpectrumFromTime( reftime, hot[0], "linear" ) ;
4867  //vector<float> spcolds = getSpectrumFromTime( reftime, cold[0], "linear" ) ;
4868  vector<float> tcals = getTcalFromTime( reftime, sky[0], "linear" ) ;
4869  sel.reset() ;
4870  ii[0] = ref->getIF( index ) ;
4871  sel.setIFs( ii ) ;
4872  sel.setBeams( ib ) ;
4873  sel.setPolarizations( ip ) ;
4874  sky[1]->setSelection( sel ) ;
4875  hot[1]->setSelection( sel ) ;
4876  //cold[1]->setSelection( sel ) ;
4877  vector<float> spskyr = getSpectrumFromTime( reftime, sky[1], "linear" ) ;
4878  vector<float> sphotr = getSpectrumFromTime( reftime, hot[1], "linear" ) ;
4879  //vector<float> spcoldr = getSpectrumFromTime( reftime, cold[1], "linear" ) ;
4880  vector<float> tcalr = getTcalFromTime( reftime, sky[1], "linear" ) ; 
4881  vector<float> spref = ref->getSpectrum( index ) ;
4882  vector<float> spsig = sig->getSpectrum( index ) ;
4883  vector<float> sp( tcals.size() ) ;
4884  for ( unsigned int j = 0 ; j < tcals.size() ; j++ ) {
4885    float v = tcals[j] * spsig[j] / ( sphots[j] - spskys[j] ) - tcalr[j] * spref[j] / ( sphotr[j] - spskyr[j] ) ;
4886    sp[j] = v ;
4887  }
4888  sel.reset() ;
4889  sky[0]->unsetSelection() ;
4890  hot[0]->unsetSelection() ;
4891  //cold[0]->unsetSelection() ;
4892  sky[1]->unsetSelection() ;
4893  hot[1]->unsetSelection() ;
4894  //cold[1]->unsetSelection() ;
4895
4896  return sp ;
4897}
Note: See TracBrowser for help on using the repository browser.