source: trunk/src/STAtmosphere.cpp@ 1710

Last change on this file since 1710 was 1710, checked in by Max Voronkov, 15 years ago

added the code to calculate dry refractivity of the atmosphere

File size: 12.8 KB
Line 
1//#---------------------------------------------------------------------------
2//# STAtmosphere.h: Model of atmospheric opacity
3//#---------------------------------------------------------------------------
4//# Copyright (C) 2004
5//# ATNF
6//#
7//# The code is based on the Fortran code written by Bob Sault for MIRIAD.
8//# Converted to C++ by Max Voronkov. This code uses a simple model of the
9//# atmosphere and Liebe's model (1985) of the complex refractive index of
10//# air.
11//#
12//# The model of the atmosphere is one with an exponential fall-off in
13//# the water vapour content (scale height of 1540 m) and a temperature lapse
14//# rate of 6.5 mK/m. Otherwise the atmosphere obeys the ideal gas equation
15//# and hydrostatic equilibrium.
16//#
17//# This program is free software; you can redistribute it and/or modify it
18//# under the terms of the GNU General Public License as published by the Free
19//# Software Foundation; either version 2 of the License, or (at your option)
20//# any later version.
21//#
22//# This program is distributed in the hope that it will be useful, but
23//# WITHOUT ANY WARRANTY; without even the implied warranty of
24//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
25//# Public License for more details.
26//#
27//# You should have received a copy of the GNU General Public License along
28//# with this program; if not, write to the Free Software Foundation, Inc.,
29//# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
30//#
31//# Correspondence concerning this software should be addressed as follows:
32//# Internet email: Malte.Marquarding@csiro.au
33//# Postal address: Malte Marquarding,
34//# Australia Telescope National Facility,
35//# P.O. Box 76,
36//# Epping, NSW, 2121,
37//# AUSTRALIA
38//#
39//# $Id: STAtmosphere.h 1346 2007-04-26 03:24:41Z mar637 $
40//#---------------------------------------------------------------------------
41
42// own includes
43#include "STAtmosphere.h"
44
45// casa includes
46#include <casa/Utilities/Assert.h>
47#include <casa/Quanta.h>
48
49// std includes
50#include <cmath>
51
52using namespace casa;
53using namespace asap;
54
55/**
56 * Default Constructor (apart from optional parameters).
57 * The class set up this way will assume International Standard Atmosphere (ISA) conditions,
58 * except for humidity. The latter is assumed to be 50%, which seems more realistic for
59 * Australian telescopes than 0%.
60 * @param[in] wvScale water vapour scale height (m), default is 1540m to match MIRIAD's model
61 * @param[in] maxAlt maximum altitude of the model atmosphere (m), plane parallel layers are spread linearly up to
62 * this height, default is 10000m to match MIRIAD.
63 * @param[in] nLayers number of plane parallel layers in the model (essentially for a numberical integration),
64 * default is 50 to match MIRIAD.
65 **/
66STAtmosphere::STAtmosphere(double wvScale, double maxAlt, size_t nLayers) :
67 itsGndTemperature(288.), itsGndPressure(101325.), itsGndHumidity(0.5),
68 itsLapseRate(0.0065), itsWVScale(wvScale), itsMaxAlt(maxAlt),
69 itsHeights(nLayers), itsTemperatures(nLayers),
70 itsDryPressures(nLayers), itsVapourPressures(nLayers)
71{
72 recomputeAtmosphereModel();
73}
74
75/**
76 * Constructor with explicitly given parameters of the atmosphere
77 * @param[in] temperature air temperature at the observatory (K)
78 * @param[in] pressure air pressure at the observatory (Pascals)
79 * @param[in] humidity air humidity at the observatory (fraction)
80 * @param[in] lapseRate temperature lapse rate (K/m), default is 0.0065 K/m to match MIRIAD and ISA
81 * @param[in] wvScale water vapour scale height (m), default is 1540m to match MIRIAD's model
82 * @param[in] maxAlt maximum altitude of the model atmosphere (m), plane parallel layers are spread linearly up to
83 * this height, default is 10000m to match MIRIAD.
84 * @param[in] nLayers number of plane parallel layers in the model (essentially for a numberical integration),
85 * default is 50 to match MIRIAD.
86 **/
87STAtmosphere::STAtmosphere(double temperature, double pressure, double humidity, double lapseRate,
88 double wvScale, double maxAlt, size_t nLayers) :
89 itsGndTemperature(temperature), itsGndPressure(pressure), itsGndHumidity(humidity),
90 itsLapseRate(lapseRate), itsWVScale(wvScale), itsMaxAlt(maxAlt),
91 itsHeights(nLayers), itsTemperatures(nLayers),
92 itsDryPressures(nLayers), itsVapourPressures(nLayers)
93{
94 recomputeAtmosphereModel();
95}
96
97/**
98 * Set the new weather station data, recompute the model
99 * @param[in] temperature air temperature at the observatory (K)
100 * @param[in] pressure air pressure at the observatory (Pascals)
101 * @param[in] humidity air humidity at the observatory (fraction)
102 **/
103void STAtmosphere::setWeather(double temperature, double pressure, double humidity)
104{
105 itsGndTemperature = temperature;
106 itsGndPressure = pressure;
107 itsGndHumidity = humidity;
108 recomputeAtmosphereModel();
109}
110
111/**
112 * Build the atmosphere model based on exponential fall-off, ideal gas and hydrostatic
113 * equilibrium. The model parameters are taken from the data members of this class.
114 **/
115void STAtmosphere::recomputeAtmosphereModel()
116{
117 AlwaysAssert(itsGndTemperature > 0, AipsError);
118 AlwaysAssert(itsGndPressure > 0., AipsError);
119 AlwaysAssert((itsGndHumidity >= 0.) && (itsGndHumidity<=1.), AipsError);
120 AlwaysAssert(itsMaxAlt > 0., AipsError);
121 AlwaysAssert(itsWVScale > 0., AipsError);
122
123 const double heightStep = itsMaxAlt/double(nLayers());
124 // molar mass of the air
125 const double M = 28.96e-3;
126 // free-fall acceleration
127 const double g = 9.81;
128 const double wvGndSaturationPressure = wvSaturationPressure(itsGndTemperature);
129 for (size_t layer = 0; layer < nLayers(); ++layer) {
130 const double height = double(layer)*heightStep;
131 itsHeights[layer] = height;
132 itsTemperatures[layer] = itsGndTemperature/(1.+itsLapseRate*height/itsGndTemperature);
133 const double pressure = itsGndPressure * exp(-M*g/(QC::R.get().getValue()*itsGndTemperature)*
134 (height+0.5*itsLapseRate*height*height/itsGndTemperature));
135 itsVapourPressures[layer] = casa::min(itsGndHumidity*exp(-height/itsWVScale)*wvGndSaturationPressure,
136 wvSaturationPressure(itsTemperatures[layer]));
137 itsDryPressures[layer] = pressure - itsVapourPressures[layer];
138 }
139}
140
141/**
142 * Obtain the number of model layers, do consistency check that everything is
143 * resized accordingly
144 * @retrun number of model layers
145 **/
146size_t STAtmosphere::nLayers() const
147{
148 const size_t result = itsHeights.size();
149 DebugAssert(result > 0, AipsError);
150 DebugAssert(itsTemperatures.size() == result, AipsError);
151 DebugAssert(itsDryPressures.size() == result, AipsError);
152 DebugAssert(itsVapourPressures.size() == result, AipsError);
153 return result;
154}
155
156/**
157 * Determine the saturation pressure of water vapour for the given temperature.
158 *
159 * Reference:
160 * Waters, Refraction effects in the neutral atmosphere. Methods of
161 * Experimental Physics, vol 12B, p 186-200 (1976).
162 *
163 * @param[in] temperature temperature in K
164 * @return vapour saturation pressure (Pascals)
165 **/
166double STAtmosphere::wvSaturationPressure(double temperature)
167{
168 if (temperature > 215.) {
169 return 0.;
170 }
171 const double theta = 300.0/temperature;
172 return 1e5/(41.51/std::pow(theta,5)*std::pow(10.,9.834*theta-10.0));
173}
174
175/**
176 * Compute the complex refractivity of the dry components of the atmosphere
177 * (oxygen lines) at the given frequency.
178 * @param[in] freq frequency (Hz)
179 * @param[in] temperature air temperature (K)
180 * @param[in] pDry partial pressure of dry components (Pascals)
181 * @param[in] pVapour partial pressure of water vapour (Pascals)
182 * @return complex refractivity
183 **/
184std::complex<double> STAtmosphere::dryRefractivity(double freq, double temperature,
185 double pDry, double pVapour)
186{
187 // the number of parameters per atmospheric line and the number of lines taken into account
188 const size_t nLineParams = 7;
189 const size_t nLines = 48;
190 // actual tabulated values
191 const double lines[nLines][nLineParams] =
192 {{49.452379, 0.12E-6, 11.830, 8.40E-3, 0.0, 5.60E-3, 1.7},
193 {49.962257, 0.34E-6, 10.720, 8.50E-3, 0.0, 5.60E-3, 1.7},
194 {50.474238, 0.94E-6, 9.690, 8.60E-3, 0.0, 5.60E-3, 1.7},
195 {50.987748, 2.46E-6, 8.690, 8.70E-3, 0.0, 5.50E-3, 1.7},
196 {51.503350, 6.08E-6, 7.740, 8.90E-3, 0.0, 5.60E-3, 1.8},
197 {52.021409, 14.14E-6, 6.840, 9.20E-3, 0.0, 5.50E-3, 1.8},
198 {52.542393, 31.02E-6, 6.000, 9.40E-3, 0.0, 5.70E-3, 1.8},
199 {53.066906, 64.10E-6, 5.220, 9.70E-3, 0.0, 5.30E-3, 1.9},
200 {53.595748, 124.70E-6, 4.480, 10.00E-3, 0.0, 5.40E-3, 1.8},
201 {54.129999, 228.00E-6, 3.810, 10.20E-3, 0.0, 4.80E-3, 2.0},
202 {54.671157, 391.80E-6, 3.190, 10.50E-3, 0.0, 4.80E-3, 1.9},
203 {55.221365, 631.60E-6, 2.620, 10.79E-3, 0.0, 4.17E-3, 2.1},
204 {55.783800, 953.50E-6, 2.115, 11.10E-3, 0.0, 3.75E-3, 2.1},
205 {56.264777, 548.90E-6, 0.010, 16.46E-3, 0.0, 7.74E-3, 0.9},
206 {56.363387, 1344.00E-6, 1.655, 11.44E-3, 0.0, 2.97E-3, 2.3},
207 {56.968180, 1763.00E-6, 1.255, 11.81E-3, 0.0, 2.12E-3, 2.5},
208 {57.612481, 2141.00E-6, 0.910, 12.21E-3, 0.0, 0.94E-3, 3.7},
209 {58.323874, 2386.00E-6, 0.621, 12.66E-3, 0.0, -0.55E-3, -3.1},
210 {58.446589, 1457.00E-6, 0.079, 14.49E-3, 0.0, 5.97E-3, 0.8},
211 {59.164204, 2404.00E-6, 0.386, 13.19E-3, 0.0, -2.44E-3, 0.1},
212 {59.590982, 2112.00E-6, 0.207, 13.60E-3, 0.0, 3.44E-3, 0.5},
213 {60.306057, 2124.00E-6, 0.207, 13.82E-3, 0.0, -4.13E-3, 0.7},
214 {60.434775, 2461.00E-6, 0.386, 12.97E-3, 0.0, 1.32E-3, -1.0},
215 {61.150558, 2504.00E-6, 0.621, 12.48E-3, 0.0, -0.36E-3, 5.8},
216 {61.800152, 2298.00E-6, 0.910, 12.07E-3, 0.0, -1.59E-3, 2.9},
217 {62.411212, 1933.00E-6, 1.255, 11.71E-3, 0.0, -2.66E-3, 2.3},
218 {62.486253, 1517.00E-6, 0.078, 14.68E-3, 0.0, -4.77E-3, 0.9},
219 {62.997974, 1503.00E-6, 1.660, 11.39E-3, 0.0, -3.34E-3, 2.2},
220 {63.568515, 1087.00E-6, 2.110, 11.08E-3, 0.0, -4.17E-3, 2.0},
221 {64.127764, 733.50E-6, 2.620, 10.78E-3, 0.0, -4.48E-3, 2.0},
222 {64.678900, 463.50E-6, 3.190, 10.50E-3, 0.0, -5.10E-3, 1.8},
223 {65.224067, 274.80E-6, 3.810, 10.20E-3, 0.0, -5.10E-3, 1.9},
224 {65.764769, 153.00E-6, 4.480, 10.00E-3, 0.0, -5.70E-3, 1.8},
225 {66.302088, 80.09E-6, 5.220, 9.70E-3, 0.0, -5.50E-3, 1.8},
226 {66.836827, 39.46E-6, 6.000, 9.40E-3, 0.0, -5.90E-3, 1.7},
227 {67.369595, 18.32E-6, 6.840, 9.20E-3, 0.0, -5.60E-3, 1.8},
228 {67.900862, 8.01E-6, 7.740, 8.90E-3, 0.0, -5.80E-3, 1.7},
229 {68.431001, 3.30E-6, 8.690, 8.70E-3, 0.0, -5.70E-3, 1.7},
230 {68.960306, 1.28E-6, 9.690, 8.60E-3, 0.0, -5.60E-3, 1.7},
231 {69.489021, 0.47E-6, 10.720, 8.50E-3, 0.0, -5.60E-3, 1.7},
232 {70.017342, 0.16E-6, 11.830, 8.40E-3, 0.0, -5.60E-3, 1.7},
233 {118.750341, 945.00E-6, 0.000, 15.92E-3, 0.0, -0.44E-3, 0.9},
234 {368.498350, 67.90E-6, 0.020, 19.20E-3, 0.6, 0.00E00, 1.0},
235 {424.763120, 638.00E-6, 0.011, 19.16E-3, 0.6, 0.00E00, 1.0},
236 {487.249370, 235.00E-6, 0.011, 19.20E-3, 0.6, 0.00E00, 1.0},
237 {715.393150, 99.60E-6, 0.089, 18.10E-3, 0.6, 0.00E00, 1.0},
238 {773.838730, 671.00E-6, 0.079, 18.10E-3, 0.6, 0.00E00, 1.0},
239 {834.145330, 180.00E-6, 0.079, 18.10E-3, 0.6, 0.00E00, 1.0}};
240
241 // convert to the units of Liebe
242 const double theta = 300./temperature;
243 const double kPaPVap = 0.001*pVapour;
244 const double kPaPDry = 0.001*pDry;
245 const double fGHz = freq * 1e-9;
246
247 // some coefficients
248 const double ap = 1.4e-10*(1-1.2e-5*std::pow(fGHz,1.5));
249 const double gamma0 = 5.6e-3*(kPaPDry + 1.1*kPaPVap)*std::pow(theta,0.8);
250 // initial refractivity
251 std::complex<double> result(2.588*kPaPDry*theta +
252 3.07e-4*(1.0/(1.0+std::pow(fGHz/gamma0,2))-1)*kPaPDry*theta*theta,
253 (2*3.07e-4/(gamma0*(1+std::pow(fGHz/gamma0,2))*(1+std::pow(fGHz/60,2))) +
254 ap*kPaPDry*std::pow(theta,2.5))*fGHz*kPaPDry*theta*theta);
255 // sum the contributions of all the lines
256 for (size_t l = 0; l < nLines; ++l) {
257 const double S = lines[l][1]*kPaPDry*std::pow(theta,3)*exp(lines[l][2]*(1.-theta));
258 const double gamma = lines[l][3]*(kPaPDry*std::pow(theta,0.8-lines[l][4]) + 1.1*kPaPVap*theta);
259 const double delta = lines[l][5]*kPaPDry*std::pow(theta,lines[l][6]);
260 const double x = (lines[l][0]-fGHz)*(lines[l][0]-fGHz) + gamma*gamma;
261 const double y = (lines[l][0]+fGHz)*(lines[l][0]+fGHz) + gamma*gamma;
262 const double z = (lines[l][0]+gamma*gamma/lines[l][0]);
263 result += std::complex<double> (S*( (z-fGHz)/x + (z+fGHz)/y - 2./lines[l][0] +
264 delta*(1/x-1/y)*gamma*fGHz/lines[l][0]),
265 S*( (1/x+1/y)*gamma*fGHz/lines[l][0] -
266 delta*((lines[l][0]-fGHz)/x + (lines[l][0]+fGHz)/y)*fGHz/lines[l][0]));
267 }
268
269 return result;
270}
Note: See TracBrowser for help on using the repository browser.