source: trunk/src/STAtmosphere.cpp @ 1709

Last change on this file since 1709 was 1709, checked in by Max Voronkov, 14 years ago

implemented hydrostatic model of the atmosphere

File size: 7.3 KB
Line 
1//#---------------------------------------------------------------------------
2//# STAtmosphere.h: Model of atmospheric opacity
3//#---------------------------------------------------------------------------
4//# Copyright (C) 2004
5//# ATNF
6//#
7//# The code is based on the Fortran code written by Bob Sault for MIRIAD.
8//# Converted to C++ by Max Voronkov. This code uses a simple model of the
9//# atmosphere and Liebe's model (1985) of the complex refractive index of
10//# air.
11//#
12//# The model of the atmosphere is one with an exponential fall-off in
13//# the water vapour content (scale height of 1540 m) and a temperature lapse
14//# rate of 6.5 mK/m. Otherwise the atmosphere obeys the ideal gas equation
15//# and hydrostatic equilibrium.
16//#
17//# This program is free software; you can redistribute it and/or modify it
18//# under the terms of the GNU General Public License as published by the Free
19//# Software Foundation; either version 2 of the License, or (at your option)
20//# any later version.
21//#
22//# This program is distributed in the hope that it will be useful, but
23//# WITHOUT ANY WARRANTY; without even the implied warranty of
24//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
25//# Public License for more details.
26//#
27//# You should have received a copy of the GNU General Public License along
28//# with this program; if not, write to the Free Software Foundation, Inc.,
29//# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
30//#
31//# Correspondence concerning this software should be addressed as follows:
32//#        Internet email: Malte.Marquarding@csiro.au
33//#        Postal address: Malte Marquarding,
34//#                        Australia Telescope National Facility,
35//#                        P.O. Box 76,
36//#                        Epping, NSW, 2121,
37//#                        AUSTRALIA
38//#
39//# $Id: STAtmosphere.h 1346 2007-04-26 03:24:41Z mar637 $
40//#---------------------------------------------------------------------------
41
42// own includes
43#include "STAtmosphere.h"
44
45// casa includes
46#include <casa/Utilities/Assert.h>
47#include <casa/Quanta.h>
48
49// std includes
50#include <cmath>
51
52using namespace casa;
53using namespace asap;
54
55/**
56 * Default Constructor (apart from optional parameters).
57 * The class set up this way will assume International Standard Atmosphere (ISA) conditions,
58 * except for humidity. The latter is assumed to be 50%, which seems more realistic for
59 * Australian telescopes than 0%.
60 * @param[in] wvScale water vapour scale height (m), default is 1540m to match MIRIAD's model
61 * @param[in] maxAlt maximum altitude of the model atmosphere (m), plane parallel layers are spread linearly up to
62 *            this height, default is 10000m to match MIRIAD.
63 * @param[in] nLayers number of plane parallel layers in the model (essentially for a numberical integration),
64 *            default is 50 to match MIRIAD.
65 **/
66STAtmosphere::STAtmosphere(double wvScale, double maxAlt, size_t nLayers) :
67   itsGndTemperature(288.), itsGndPressure(101325.), itsGndHumidity(0.5),
68   itsLapseRate(0.0065), itsWVScale(wvScale), itsMaxAlt(maxAlt),
69   itsHeights(nLayers), itsTemperatures(nLayers),
70   itsDryPressures(nLayers), itsVapourPressures(nLayers)
71{
72  recomputeAtmosphereModel();
73}
74
75/**
76 * Constructor with explicitly given parameters of the atmosphere
77 * @param[in] temperature air temperature at the observatory (K)
78 * @param[in] pressure air pressure at the observatory (Pascals)
79 * @param[in] humidity air humidity at the observatory (fraction)
80 * @param[in] lapseRate temperature lapse rate (K/m), default is 0.0065 K/m to match MIRIAD and ISA
81 * @param[in] wvScale water vapour scale height (m), default is 1540m to match MIRIAD's model
82 * @param[in] maxAlt maximum altitude of the model atmosphere (m), plane parallel layers are spread linearly up to
83 *            this height, default is 10000m to match MIRIAD.
84 * @param[in] nLayers number of plane parallel layers in the model (essentially for a numberical integration),
85 *            default is 50 to match MIRIAD.
86 **/
87STAtmosphere::STAtmosphere(double temperature, double pressure, double humidity, double lapseRate,
88               double wvScale, double maxAlt, size_t nLayers) :
89   itsGndTemperature(temperature), itsGndPressure(pressure), itsGndHumidity(humidity),
90   itsLapseRate(lapseRate), itsWVScale(wvScale), itsMaxAlt(maxAlt),
91   itsHeights(nLayers), itsTemperatures(nLayers),
92   itsDryPressures(nLayers), itsVapourPressures(nLayers)
93{
94  recomputeAtmosphereModel();
95}
96               
97/**
98 * Set the new weather station data, recompute the model
99 * @param[in] temperature air temperature at the observatory (K)
100 * @param[in] pressure air pressure at the observatory (Pascals)
101 * @param[in] humidity air humidity at the observatory (fraction)
102 **/
103void STAtmosphere::setWeather(double temperature, double pressure, double humidity)
104{
105  itsGndTemperature = temperature;
106  itsGndPressure = pressure;
107  itsGndHumidity = humidity;
108  recomputeAtmosphereModel();
109}
110
111/**
112 * Build the atmosphere model based on exponential fall-off, ideal gas and hydrostatic
113 * equilibrium. The model parameters are taken from the data members of this class.
114 **/
115void STAtmosphere::recomputeAtmosphereModel()
116{
117  AlwaysAssert(itsGndTemperature > 0, AipsError);
118  AlwaysAssert(itsGndPressure > 0., AipsError);
119  AlwaysAssert((itsGndHumidity >= 0.) && (itsGndHumidity<=1.), AipsError);
120  AlwaysAssert(itsMaxAlt > 0., AipsError);
121  AlwaysAssert(itsWVScale > 0., AipsError);
122 
123  const double heightStep = itsMaxAlt/double(nLayers());
124  // molar mass of the air
125  const double M = 28.96e-3;
126  // free-fall acceleration
127  const double g = 9.81;
128  const double wvGndSaturationPressure = wvSaturationPressure(itsGndTemperature);
129  for (size_t layer = 0; layer < nLayers(); ++layer) {
130       const double height = double(layer)*heightStep;
131       itsHeights[layer] = height;
132       itsTemperatures[layer] = itsGndTemperature/(1.+itsLapseRate*height/itsGndTemperature);
133       const double pressure = itsGndPressure * exp(-M*g/(QC::R.get().getValue()*itsGndTemperature)*
134                   (height+0.5*itsLapseRate*height*height/itsGndTemperature));
135       itsVapourPressures[layer] = casa::min(itsGndHumidity*exp(-height/itsWVScale)*wvGndSaturationPressure,
136                                             wvSaturationPressure(itsTemperatures[layer]));
137       itsDryPressures[layer] = pressure - itsVapourPressures[layer];                                     
138  }
139}
140 
141/**
142 * Obtain the number of model layers, do consistency check that everything is
143 * resized accordingly
144 * @retrun number of model layers
145 **/
146size_t STAtmosphere::nLayers() const
147{
148  const size_t result = itsHeights.size();
149  DebugAssert(result > 0, AipsError);
150  DebugAssert(itsTemperatures.size() == result, AipsError);
151  DebugAssert(itsDryPressures.size() == result, AipsError);
152  DebugAssert(itsVapourPressures.size() == result, AipsError); 
153  return result;
154}
155
156/**
157 * Determine the saturation pressure of water vapour for the given temperature.
158 *
159 * Reference:
160 * Waters, Refraction effects in the neutral atmosphere. Methods of
161 * Experimental Physics, vol 12B, p 186-200 (1976).
162 *   
163 * @param[in] temperature temperature in K
164 * @return vapour saturation pressure (Pascals)
165 **/
166double STAtmosphere::wvSaturationPressure(double temperature)
167{
168  if (temperature > 215.) {
169      return 0.;
170  }
171  const double theta = 300.0/temperature;
172  return 1e5/(41.51/std::pow(theta,5)*std::pow(10.,9.834*theta-10.0));
173}
174
Note: See TracBrowser for help on using the repository browser.