[1708] | 1 | //#---------------------------------------------------------------------------
|
---|
| 2 | //# STAtmosphere.h: Model of atmospheric opacity
|
---|
| 3 | //#---------------------------------------------------------------------------
|
---|
| 4 | //# Copyright (C) 2004
|
---|
| 5 | //# ATNF
|
---|
| 6 | //#
|
---|
| 7 | //# The code is based on the Fortran code written by Bob Sault for MIRIAD.
|
---|
| 8 | //# Converted to C++ by Max Voronkov. This code uses a simple model of the
|
---|
| 9 | //# atmosphere and Liebe's model (1985) of the complex refractive index of
|
---|
| 10 | //# air.
|
---|
| 11 | //#
|
---|
| 12 | //# The model of the atmosphere is one with an exponential fall-off in
|
---|
| 13 | //# the water vapour content (scale height of 1540 m) and a temperature lapse
|
---|
| 14 | //# rate of 6.5 mK/m. Otherwise the atmosphere obeys the ideal gas equation
|
---|
| 15 | //# and hydrostatic equilibrium.
|
---|
| 16 | //#
|
---|
| 17 | //# This program is free software; you can redistribute it and/or modify it
|
---|
| 18 | //# under the terms of the GNU General Public License as published by the Free
|
---|
| 19 | //# Software Foundation; either version 2 of the License, or (at your option)
|
---|
| 20 | //# any later version.
|
---|
| 21 | //#
|
---|
| 22 | //# This program is distributed in the hope that it will be useful, but
|
---|
| 23 | //# WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 24 | //# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
---|
| 25 | //# Public License for more details.
|
---|
| 26 | //#
|
---|
| 27 | //# You should have received a copy of the GNU General Public License along
|
---|
| 28 | //# with this program; if not, write to the Free Software Foundation, Inc.,
|
---|
| 29 | //# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
|
---|
| 30 | //#
|
---|
| 31 | //# Correspondence concerning this software should be addressed as follows:
|
---|
| 32 | //# Internet email: Malte.Marquarding@csiro.au
|
---|
| 33 | //# Postal address: Malte Marquarding,
|
---|
| 34 | //# Australia Telescope National Facility,
|
---|
| 35 | //# P.O. Box 76,
|
---|
| 36 | //# Epping, NSW, 2121,
|
---|
| 37 | //# AUSTRALIA
|
---|
| 38 | //#
|
---|
| 39 | //# $Id: STAtmosphere.h 1346 2007-04-26 03:24:41Z mar637 $
|
---|
| 40 | //#---------------------------------------------------------------------------
|
---|
| 41 |
|
---|
| 42 | // own includes
|
---|
| 43 | #include "STAtmosphere.h"
|
---|
| 44 |
|
---|
| 45 | // casa includes
|
---|
| 46 | #include <casa/Utilities/Assert.h>
|
---|
[1709] | 47 | #include <casa/Quanta.h>
|
---|
[1708] | 48 |
|
---|
[1709] | 49 | // std includes
|
---|
| 50 | #include <cmath>
|
---|
| 51 |
|
---|
[1708] | 52 | using namespace casa;
|
---|
| 53 | using namespace asap;
|
---|
| 54 |
|
---|
| 55 | /**
|
---|
| 56 | * Default Constructor (apart from optional parameters).
|
---|
| 57 | * The class set up this way will assume International Standard Atmosphere (ISA) conditions,
|
---|
| 58 | * except for humidity. The latter is assumed to be 50%, which seems more realistic for
|
---|
| 59 | * Australian telescopes than 0%.
|
---|
| 60 | * @param[in] wvScale water vapour scale height (m), default is 1540m to match MIRIAD's model
|
---|
| 61 | * @param[in] maxAlt maximum altitude of the model atmosphere (m), plane parallel layers are spread linearly up to
|
---|
| 62 | * this height, default is 10000m to match MIRIAD.
|
---|
| 63 | * @param[in] nLayers number of plane parallel layers in the model (essentially for a numberical integration),
|
---|
| 64 | * default is 50 to match MIRIAD.
|
---|
| 65 | **/
|
---|
| 66 | STAtmosphere::STAtmosphere(double wvScale, double maxAlt, size_t nLayers) :
|
---|
[1709] | 67 | itsGndTemperature(288.), itsGndPressure(101325.), itsGndHumidity(0.5),
|
---|
[1708] | 68 | itsLapseRate(0.0065), itsWVScale(wvScale), itsMaxAlt(maxAlt),
|
---|
| 69 | itsHeights(nLayers), itsTemperatures(nLayers),
|
---|
| 70 | itsDryPressures(nLayers), itsVapourPressures(nLayers)
|
---|
| 71 | {
|
---|
| 72 | recomputeAtmosphereModel();
|
---|
| 73 | }
|
---|
| 74 |
|
---|
| 75 | /**
|
---|
| 76 | * Constructor with explicitly given parameters of the atmosphere
|
---|
| 77 | * @param[in] temperature air temperature at the observatory (K)
|
---|
| 78 | * @param[in] pressure air pressure at the observatory (Pascals)
|
---|
| 79 | * @param[in] humidity air humidity at the observatory (fraction)
|
---|
| 80 | * @param[in] lapseRate temperature lapse rate (K/m), default is 0.0065 K/m to match MIRIAD and ISA
|
---|
| 81 | * @param[in] wvScale water vapour scale height (m), default is 1540m to match MIRIAD's model
|
---|
| 82 | * @param[in] maxAlt maximum altitude of the model atmosphere (m), plane parallel layers are spread linearly up to
|
---|
| 83 | * this height, default is 10000m to match MIRIAD.
|
---|
| 84 | * @param[in] nLayers number of plane parallel layers in the model (essentially for a numberical integration),
|
---|
| 85 | * default is 50 to match MIRIAD.
|
---|
| 86 | **/
|
---|
| 87 | STAtmosphere::STAtmosphere(double temperature, double pressure, double humidity, double lapseRate,
|
---|
| 88 | double wvScale, double maxAlt, size_t nLayers) :
|
---|
[1709] | 89 | itsGndTemperature(temperature), itsGndPressure(pressure), itsGndHumidity(humidity),
|
---|
[1708] | 90 | itsLapseRate(lapseRate), itsWVScale(wvScale), itsMaxAlt(maxAlt),
|
---|
| 91 | itsHeights(nLayers), itsTemperatures(nLayers),
|
---|
| 92 | itsDryPressures(nLayers), itsVapourPressures(nLayers)
|
---|
| 93 | {
|
---|
| 94 | recomputeAtmosphereModel();
|
---|
| 95 | }
|
---|
| 96 |
|
---|
| 97 | /**
|
---|
| 98 | * Set the new weather station data, recompute the model
|
---|
| 99 | * @param[in] temperature air temperature at the observatory (K)
|
---|
| 100 | * @param[in] pressure air pressure at the observatory (Pascals)
|
---|
| 101 | * @param[in] humidity air humidity at the observatory (fraction)
|
---|
| 102 | **/
|
---|
| 103 | void STAtmosphere::setWeather(double temperature, double pressure, double humidity)
|
---|
| 104 | {
|
---|
| 105 | itsGndTemperature = temperature;
|
---|
[1709] | 106 | itsGndPressure = pressure;
|
---|
| 107 | itsGndHumidity = humidity;
|
---|
[1708] | 108 | recomputeAtmosphereModel();
|
---|
| 109 | }
|
---|
| 110 |
|
---|
| 111 | /**
|
---|
| 112 | * Build the atmosphere model based on exponential fall-off, ideal gas and hydrostatic
|
---|
| 113 | * equilibrium. The model parameters are taken from the data members of this class.
|
---|
| 114 | **/
|
---|
| 115 | void STAtmosphere::recomputeAtmosphereModel()
|
---|
| 116 | {
|
---|
[1709] | 117 | AlwaysAssert(itsGndTemperature > 0, AipsError);
|
---|
| 118 | AlwaysAssert(itsGndPressure > 0., AipsError);
|
---|
| 119 | AlwaysAssert((itsGndHumidity >= 0.) && (itsGndHumidity<=1.), AipsError);
|
---|
| 120 | AlwaysAssert(itsMaxAlt > 0., AipsError);
|
---|
| 121 | AlwaysAssert(itsWVScale > 0., AipsError);
|
---|
| 122 |
|
---|
| 123 | const double heightStep = itsMaxAlt/double(nLayers());
|
---|
| 124 | // molar mass of the air
|
---|
| 125 | const double M = 28.96e-3;
|
---|
| 126 | // free-fall acceleration
|
---|
| 127 | const double g = 9.81;
|
---|
| 128 | const double wvGndSaturationPressure = wvSaturationPressure(itsGndTemperature);
|
---|
| 129 | for (size_t layer = 0; layer < nLayers(); ++layer) {
|
---|
| 130 | const double height = double(layer)*heightStep;
|
---|
| 131 | itsHeights[layer] = height;
|
---|
| 132 | itsTemperatures[layer] = itsGndTemperature/(1.+itsLapseRate*height/itsGndTemperature);
|
---|
| 133 | const double pressure = itsGndPressure * exp(-M*g/(QC::R.get().getValue()*itsGndTemperature)*
|
---|
| 134 | (height+0.5*itsLapseRate*height*height/itsGndTemperature));
|
---|
| 135 | itsVapourPressures[layer] = casa::min(itsGndHumidity*exp(-height/itsWVScale)*wvGndSaturationPressure,
|
---|
| 136 | wvSaturationPressure(itsTemperatures[layer]));
|
---|
| 137 | itsDryPressures[layer] = pressure - itsVapourPressures[layer];
|
---|
| 138 | }
|
---|
[1708] | 139 | }
|
---|
| 140 |
|
---|
| 141 | /**
|
---|
| 142 | * Obtain the number of model layers, do consistency check that everything is
|
---|
| 143 | * resized accordingly
|
---|
| 144 | * @retrun number of model layers
|
---|
| 145 | **/
|
---|
| 146 | size_t STAtmosphere::nLayers() const
|
---|
| 147 | {
|
---|
| 148 | const size_t result = itsHeights.size();
|
---|
[1709] | 149 | DebugAssert(result > 0, AipsError);
|
---|
[1708] | 150 | DebugAssert(itsTemperatures.size() == result, AipsError);
|
---|
| 151 | DebugAssert(itsDryPressures.size() == result, AipsError);
|
---|
| 152 | DebugAssert(itsVapourPressures.size() == result, AipsError);
|
---|
| 153 | return result;
|
---|
| 154 | }
|
---|
| 155 |
|
---|
[1709] | 156 | /**
|
---|
| 157 | * Determine the saturation pressure of water vapour for the given temperature.
|
---|
| 158 | *
|
---|
| 159 | * Reference:
|
---|
| 160 | * Waters, Refraction effects in the neutral atmosphere. Methods of
|
---|
| 161 | * Experimental Physics, vol 12B, p 186-200 (1976).
|
---|
| 162 | *
|
---|
| 163 | * @param[in] temperature temperature in K
|
---|
| 164 | * @return vapour saturation pressure (Pascals)
|
---|
| 165 | **/
|
---|
| 166 | double STAtmosphere::wvSaturationPressure(double temperature)
|
---|
| 167 | {
|
---|
| 168 | if (temperature > 215.) {
|
---|
| 169 | return 0.;
|
---|
| 170 | }
|
---|
| 171 | const double theta = 300.0/temperature;
|
---|
| 172 | return 1e5/(41.51/std::pow(theta,5)*std::pow(10.,9.834*theta-10.0));
|
---|
| 173 | }
|
---|
| 174 |
|
---|
[1710] | 175 | /**
|
---|
| 176 | * Compute the complex refractivity of the dry components of the atmosphere
|
---|
| 177 | * (oxygen lines) at the given frequency.
|
---|
| 178 | * @param[in] freq frequency (Hz)
|
---|
| 179 | * @param[in] temperature air temperature (K)
|
---|
| 180 | * @param[in] pDry partial pressure of dry components (Pascals)
|
---|
| 181 | * @param[in] pVapour partial pressure of water vapour (Pascals)
|
---|
| 182 | * @return complex refractivity
|
---|
| 183 | **/
|
---|
| 184 | std::complex<double> STAtmosphere::dryRefractivity(double freq, double temperature,
|
---|
| 185 | double pDry, double pVapour)
|
---|
| 186 | {
|
---|
| 187 | // the number of parameters per atmospheric line and the number of lines taken into account
|
---|
| 188 | const size_t nLineParams = 7;
|
---|
| 189 | const size_t nLines = 48;
|
---|
| 190 | // actual tabulated values
|
---|
| 191 | const double lines[nLines][nLineParams] =
|
---|
| 192 | {{49.452379, 0.12E-6, 11.830, 8.40E-3, 0.0, 5.60E-3, 1.7},
|
---|
| 193 | {49.962257, 0.34E-6, 10.720, 8.50E-3, 0.0, 5.60E-3, 1.7},
|
---|
| 194 | {50.474238, 0.94E-6, 9.690, 8.60E-3, 0.0, 5.60E-3, 1.7},
|
---|
| 195 | {50.987748, 2.46E-6, 8.690, 8.70E-3, 0.0, 5.50E-3, 1.7},
|
---|
| 196 | {51.503350, 6.08E-6, 7.740, 8.90E-3, 0.0, 5.60E-3, 1.8},
|
---|
| 197 | {52.021409, 14.14E-6, 6.840, 9.20E-3, 0.0, 5.50E-3, 1.8},
|
---|
| 198 | {52.542393, 31.02E-6, 6.000, 9.40E-3, 0.0, 5.70E-3, 1.8},
|
---|
| 199 | {53.066906, 64.10E-6, 5.220, 9.70E-3, 0.0, 5.30E-3, 1.9},
|
---|
| 200 | {53.595748, 124.70E-6, 4.480, 10.00E-3, 0.0, 5.40E-3, 1.8},
|
---|
| 201 | {54.129999, 228.00E-6, 3.810, 10.20E-3, 0.0, 4.80E-3, 2.0},
|
---|
| 202 | {54.671157, 391.80E-6, 3.190, 10.50E-3, 0.0, 4.80E-3, 1.9},
|
---|
| 203 | {55.221365, 631.60E-6, 2.620, 10.79E-3, 0.0, 4.17E-3, 2.1},
|
---|
| 204 | {55.783800, 953.50E-6, 2.115, 11.10E-3, 0.0, 3.75E-3, 2.1},
|
---|
| 205 | {56.264777, 548.90E-6, 0.010, 16.46E-3, 0.0, 7.74E-3, 0.9},
|
---|
| 206 | {56.363387, 1344.00E-6, 1.655, 11.44E-3, 0.0, 2.97E-3, 2.3},
|
---|
| 207 | {56.968180, 1763.00E-6, 1.255, 11.81E-3, 0.0, 2.12E-3, 2.5},
|
---|
| 208 | {57.612481, 2141.00E-6, 0.910, 12.21E-3, 0.0, 0.94E-3, 3.7},
|
---|
| 209 | {58.323874, 2386.00E-6, 0.621, 12.66E-3, 0.0, -0.55E-3, -3.1},
|
---|
| 210 | {58.446589, 1457.00E-6, 0.079, 14.49E-3, 0.0, 5.97E-3, 0.8},
|
---|
| 211 | {59.164204, 2404.00E-6, 0.386, 13.19E-3, 0.0, -2.44E-3, 0.1},
|
---|
| 212 | {59.590982, 2112.00E-6, 0.207, 13.60E-3, 0.0, 3.44E-3, 0.5},
|
---|
| 213 | {60.306057, 2124.00E-6, 0.207, 13.82E-3, 0.0, -4.13E-3, 0.7},
|
---|
| 214 | {60.434775, 2461.00E-6, 0.386, 12.97E-3, 0.0, 1.32E-3, -1.0},
|
---|
| 215 | {61.150558, 2504.00E-6, 0.621, 12.48E-3, 0.0, -0.36E-3, 5.8},
|
---|
| 216 | {61.800152, 2298.00E-6, 0.910, 12.07E-3, 0.0, -1.59E-3, 2.9},
|
---|
| 217 | {62.411212, 1933.00E-6, 1.255, 11.71E-3, 0.0, -2.66E-3, 2.3},
|
---|
| 218 | {62.486253, 1517.00E-6, 0.078, 14.68E-3, 0.0, -4.77E-3, 0.9},
|
---|
| 219 | {62.997974, 1503.00E-6, 1.660, 11.39E-3, 0.0, -3.34E-3, 2.2},
|
---|
| 220 | {63.568515, 1087.00E-6, 2.110, 11.08E-3, 0.0, -4.17E-3, 2.0},
|
---|
| 221 | {64.127764, 733.50E-6, 2.620, 10.78E-3, 0.0, -4.48E-3, 2.0},
|
---|
| 222 | {64.678900, 463.50E-6, 3.190, 10.50E-3, 0.0, -5.10E-3, 1.8},
|
---|
| 223 | {65.224067, 274.80E-6, 3.810, 10.20E-3, 0.0, -5.10E-3, 1.9},
|
---|
| 224 | {65.764769, 153.00E-6, 4.480, 10.00E-3, 0.0, -5.70E-3, 1.8},
|
---|
| 225 | {66.302088, 80.09E-6, 5.220, 9.70E-3, 0.0, -5.50E-3, 1.8},
|
---|
| 226 | {66.836827, 39.46E-6, 6.000, 9.40E-3, 0.0, -5.90E-3, 1.7},
|
---|
| 227 | {67.369595, 18.32E-6, 6.840, 9.20E-3, 0.0, -5.60E-3, 1.8},
|
---|
| 228 | {67.900862, 8.01E-6, 7.740, 8.90E-3, 0.0, -5.80E-3, 1.7},
|
---|
| 229 | {68.431001, 3.30E-6, 8.690, 8.70E-3, 0.0, -5.70E-3, 1.7},
|
---|
| 230 | {68.960306, 1.28E-6, 9.690, 8.60E-3, 0.0, -5.60E-3, 1.7},
|
---|
| 231 | {69.489021, 0.47E-6, 10.720, 8.50E-3, 0.0, -5.60E-3, 1.7},
|
---|
| 232 | {70.017342, 0.16E-6, 11.830, 8.40E-3, 0.0, -5.60E-3, 1.7},
|
---|
| 233 | {118.750341, 945.00E-6, 0.000, 15.92E-3, 0.0, -0.44E-3, 0.9},
|
---|
| 234 | {368.498350, 67.90E-6, 0.020, 19.20E-3, 0.6, 0.00E00, 1.0},
|
---|
| 235 | {424.763120, 638.00E-6, 0.011, 19.16E-3, 0.6, 0.00E00, 1.0},
|
---|
| 236 | {487.249370, 235.00E-6, 0.011, 19.20E-3, 0.6, 0.00E00, 1.0},
|
---|
| 237 | {715.393150, 99.60E-6, 0.089, 18.10E-3, 0.6, 0.00E00, 1.0},
|
---|
| 238 | {773.838730, 671.00E-6, 0.079, 18.10E-3, 0.6, 0.00E00, 1.0},
|
---|
| 239 | {834.145330, 180.00E-6, 0.079, 18.10E-3, 0.6, 0.00E00, 1.0}};
|
---|
| 240 |
|
---|
| 241 | // convert to the units of Liebe
|
---|
| 242 | const double theta = 300./temperature;
|
---|
| 243 | const double kPaPVap = 0.001*pVapour;
|
---|
| 244 | const double kPaPDry = 0.001*pDry;
|
---|
| 245 | const double fGHz = freq * 1e-9;
|
---|
| 246 |
|
---|
| 247 | // some coefficients
|
---|
| 248 | const double ap = 1.4e-10*(1-1.2e-5*std::pow(fGHz,1.5));
|
---|
| 249 | const double gamma0 = 5.6e-3*(kPaPDry + 1.1*kPaPVap)*std::pow(theta,0.8);
|
---|
| 250 | // initial refractivity
|
---|
| 251 | std::complex<double> result(2.588*kPaPDry*theta +
|
---|
| 252 | 3.07e-4*(1.0/(1.0+std::pow(fGHz/gamma0,2))-1)*kPaPDry*theta*theta,
|
---|
| 253 | (2*3.07e-4/(gamma0*(1+std::pow(fGHz/gamma0,2))*(1+std::pow(fGHz/60,2))) +
|
---|
| 254 | ap*kPaPDry*std::pow(theta,2.5))*fGHz*kPaPDry*theta*theta);
|
---|
| 255 | // sum the contributions of all the lines
|
---|
| 256 | for (size_t l = 0; l < nLines; ++l) {
|
---|
| 257 | const double S = lines[l][1]*kPaPDry*std::pow(theta,3)*exp(lines[l][2]*(1.-theta));
|
---|
| 258 | const double gamma = lines[l][3]*(kPaPDry*std::pow(theta,0.8-lines[l][4]) + 1.1*kPaPVap*theta);
|
---|
| 259 | const double delta = lines[l][5]*kPaPDry*std::pow(theta,lines[l][6]);
|
---|
| 260 | const double x = (lines[l][0]-fGHz)*(lines[l][0]-fGHz) + gamma*gamma;
|
---|
| 261 | const double y = (lines[l][0]+fGHz)*(lines[l][0]+fGHz) + gamma*gamma;
|
---|
| 262 | const double z = (lines[l][0]+gamma*gamma/lines[l][0]);
|
---|
| 263 | result += std::complex<double> (S*( (z-fGHz)/x + (z+fGHz)/y - 2./lines[l][0] +
|
---|
| 264 | delta*(1/x-1/y)*gamma*fGHz/lines[l][0]),
|
---|
| 265 | S*( (1/x+1/y)*gamma*fGHz/lines[l][0] -
|
---|
| 266 | delta*((lines[l][0]-fGHz)/x + (lines[l][0]+fGHz)/y)*fGHz/lines[l][0]));
|
---|
| 267 | }
|
---|
| 268 |
|
---|
| 269 | return result;
|
---|
| 270 | }
|
---|