1 | //#---------------------------------------------------------------------------
|
---|
2 | //# SDMath.cc: A collection of single dish mathematical operations
|
---|
3 | //#---------------------------------------------------------------------------
|
---|
4 | //# Copyright (C) 2004
|
---|
5 | //# ATNF
|
---|
6 | //#
|
---|
7 | //# This program is free software; you can redistribute it and/or modify it
|
---|
8 | //# under the terms of the GNU General Public License as published by the Free
|
---|
9 | //# Software Foundation; either version 2 of the License, or (at your option)
|
---|
10 | //# any later version.
|
---|
11 | //#
|
---|
12 | //# This program is distributed in the hope that it will be useful, but
|
---|
13 | //# WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | //# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
---|
15 | //# Public License for more details.
|
---|
16 | //#
|
---|
17 | //# You should have received a copy of the GNU General Public License along
|
---|
18 | //# with this program; if not, write to the Free Software Foundation, Inc.,
|
---|
19 | //# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
|
---|
20 | //#
|
---|
21 | //# Correspondence concerning this software should be addressed as follows:
|
---|
22 | //# Internet email: Malte.Marquarding@csiro.au
|
---|
23 | //# Postal address: Malte Marquarding,
|
---|
24 | //# Australia Telescope National Facility,
|
---|
25 | //# P.O. Box 76,
|
---|
26 | //# Epping, NSW, 2121,
|
---|
27 | //# AUSTRALIA
|
---|
28 | //#
|
---|
29 | //# $Id:
|
---|
30 | //#---------------------------------------------------------------------------
|
---|
31 | #include <vector>
|
---|
32 |
|
---|
33 | #include <casa/aips.h>
|
---|
34 | #include <casa/iostream.h>
|
---|
35 | #include <casa/iomanip.h>
|
---|
36 | #include <casa/BasicSL/String.h>
|
---|
37 | #include <casa/Arrays/IPosition.h>
|
---|
38 | #include <casa/Arrays/Array.h>
|
---|
39 | #include <casa/Arrays/ArrayIter.h>
|
---|
40 | #include <casa/Arrays/VectorIter.h>
|
---|
41 | #include <casa/Arrays/ArrayMath.h>
|
---|
42 | #include <casa/Arrays/ArrayLogical.h>
|
---|
43 | #include <casa/Arrays/MaskedArray.h>
|
---|
44 | #include <casa/Arrays/MaskArrMath.h>
|
---|
45 | #include <casa/Arrays/MaskArrLogi.h>
|
---|
46 | #include <casa/Arrays/Matrix.h>
|
---|
47 | #include <casa/BasicMath/Math.h>
|
---|
48 | #include <casa/Containers/Block.h>
|
---|
49 | #include <casa/Exceptions.h>
|
---|
50 | #include <casa/Quanta/Quantum.h>
|
---|
51 | #include <casa/Quanta/Unit.h>
|
---|
52 | #include <casa/Quanta/MVEpoch.h>
|
---|
53 | #include <casa/Quanta/MVTime.h>
|
---|
54 | #include <casa/Utilities/Assert.h>
|
---|
55 |
|
---|
56 | #include <coordinates/Coordinates/SpectralCoordinate.h>
|
---|
57 | #include <coordinates/Coordinates/CoordinateSystem.h>
|
---|
58 | #include <coordinates/Coordinates/CoordinateUtil.h>
|
---|
59 | #include <coordinates/Coordinates/FrequencyAligner.h>
|
---|
60 |
|
---|
61 | #include <lattices/Lattices/LatticeUtilities.h>
|
---|
62 | #include <lattices/Lattices/RebinLattice.h>
|
---|
63 |
|
---|
64 | #include <measures/Measures/MEpoch.h>
|
---|
65 | #include <measures/Measures/MDirection.h>
|
---|
66 | #include <measures/Measures/MPosition.h>
|
---|
67 |
|
---|
68 | #include <scimath/Mathematics/VectorKernel.h>
|
---|
69 | #include <scimath/Mathematics/Convolver.h>
|
---|
70 | #include <scimath/Mathematics/InterpolateArray1D.h>
|
---|
71 | #include <scimath/Functionals/Polynomial.h>
|
---|
72 |
|
---|
73 | #include <tables/Tables/Table.h>
|
---|
74 | #include <tables/Tables/ScalarColumn.h>
|
---|
75 | #include <tables/Tables/ArrayColumn.h>
|
---|
76 | #include <tables/Tables/ReadAsciiTable.h>
|
---|
77 |
|
---|
78 | #include "MathUtils.h"
|
---|
79 | #include "SDDefs.h"
|
---|
80 | #include "SDAttr.h"
|
---|
81 | #include "SDContainer.h"
|
---|
82 | #include "SDMemTable.h"
|
---|
83 |
|
---|
84 | #include "SDMath.h"
|
---|
85 |
|
---|
86 | using namespace casa;
|
---|
87 | using namespace asap;
|
---|
88 |
|
---|
89 |
|
---|
90 | SDMath::SDMath()
|
---|
91 | {;}
|
---|
92 |
|
---|
93 | SDMath::SDMath(const SDMath& other)
|
---|
94 | {
|
---|
95 |
|
---|
96 | // No state
|
---|
97 |
|
---|
98 | }
|
---|
99 |
|
---|
100 | SDMath& SDMath::operator=(const SDMath& other)
|
---|
101 | {
|
---|
102 | if (this != &other) {
|
---|
103 | // No state
|
---|
104 | }
|
---|
105 | return *this;
|
---|
106 | }
|
---|
107 |
|
---|
108 | SDMath::~SDMath()
|
---|
109 | {;}
|
---|
110 |
|
---|
111 |
|
---|
112 |
|
---|
113 | SDMemTable* SDMath::frequencyAlignment (const SDMemTable& in, const String& refTime,
|
---|
114 | const String& method, Bool perFreqID) const
|
---|
115 | {
|
---|
116 | // Get frame info from Table
|
---|
117 |
|
---|
118 | std::vector<std::string> info = in.getCoordInfo();
|
---|
119 |
|
---|
120 | // Parse frequency system
|
---|
121 |
|
---|
122 | String systemStr(info[1]);
|
---|
123 | String baseSystemStr(info[3]);
|
---|
124 | if (baseSystemStr==systemStr) {
|
---|
125 | throw(AipsError("You have not set a frequency frame different from the initial - use function set_freqframe"));
|
---|
126 | }
|
---|
127 | //
|
---|
128 | MFrequency::Types freqSystem;
|
---|
129 | MFrequency::getType(freqSystem, systemStr);
|
---|
130 |
|
---|
131 | // Do it
|
---|
132 |
|
---|
133 | return frequencyAlign (in, freqSystem, refTime, method, perFreqID);
|
---|
134 | }
|
---|
135 |
|
---|
136 |
|
---|
137 |
|
---|
138 | CountedPtr<SDMemTable> SDMath::average(const Block<CountedPtr<SDMemTable> >& in,
|
---|
139 | const Vector<Bool>& mask, Bool scanAv,
|
---|
140 | const String& weightStr, Bool alignFreq) const
|
---|
141 | //
|
---|
142 | // Weighted averaging of spectra from one or more Tables.
|
---|
143 | //
|
---|
144 | {
|
---|
145 |
|
---|
146 | // Convert weight type
|
---|
147 |
|
---|
148 | WeightType wtType = NONE;
|
---|
149 | convertWeightString(wtType, weightStr);
|
---|
150 |
|
---|
151 | // Create output Table by cloning from the first table
|
---|
152 |
|
---|
153 | SDMemTable* pTabOut = new SDMemTable(*in[0],True);
|
---|
154 |
|
---|
155 | // Setup
|
---|
156 |
|
---|
157 | IPosition shp = in[0]->rowAsMaskedArray(0).shape(); // Must not change
|
---|
158 | Array<Float> arr(shp);
|
---|
159 | Array<Bool> barr(shp);
|
---|
160 | const Bool useMask = (mask.nelements() == shp(asap::ChanAxis));
|
---|
161 |
|
---|
162 | // Columns from Tables
|
---|
163 |
|
---|
164 | ROArrayColumn<Float> tSysCol;
|
---|
165 | ROScalarColumn<Double> mjdCol;
|
---|
166 | ROScalarColumn<String> srcNameCol;
|
---|
167 | ROScalarColumn<Double> intCol;
|
---|
168 | ROArrayColumn<uInt> fqIDCol;
|
---|
169 | ROScalarColumn<Int> scanIDCol;
|
---|
170 |
|
---|
171 | // Create accumulation MaskedArray. We accumulate for each channel,if,pol,beam
|
---|
172 | // Note that the mask of the accumulation array will ALWAYS remain ALL True.
|
---|
173 | // The MA is only used so that when data which is masked Bad is added to it,
|
---|
174 | // that data does not contribute.
|
---|
175 |
|
---|
176 | Array<Float> zero(shp);
|
---|
177 | zero=0.0;
|
---|
178 | Array<Bool> good(shp);
|
---|
179 | good = True;
|
---|
180 | MaskedArray<Float> sum(zero,good);
|
---|
181 |
|
---|
182 | // Counter arrays
|
---|
183 |
|
---|
184 | Array<Float> nPts(shp); // Number of points
|
---|
185 | nPts = 0.0;
|
---|
186 | Array<Float> nInc(shp); // Increment
|
---|
187 | nInc = 1.0;
|
---|
188 |
|
---|
189 | // Create accumulation Array for variance. We accumulate for
|
---|
190 | // each if,pol,beam, but average over channel. So we need
|
---|
191 | // a shape with one less axis dropping channels.
|
---|
192 |
|
---|
193 | const uInt nAxesSub = shp.nelements() - 1;
|
---|
194 | IPosition shp2(nAxesSub);
|
---|
195 | for (uInt i=0,j=0; i<(nAxesSub+1); i++) {
|
---|
196 | if (i!=asap::ChanAxis) {
|
---|
197 | shp2(j) = shp(i);
|
---|
198 | j++;
|
---|
199 | }
|
---|
200 | }
|
---|
201 | Array<Float> sumSq(shp2);
|
---|
202 | sumSq = 0.0;
|
---|
203 | IPosition pos2(nAxesSub,0); // For indexing
|
---|
204 |
|
---|
205 | // Time-related accumulators
|
---|
206 |
|
---|
207 | Double time;
|
---|
208 | Double timeSum = 0.0;
|
---|
209 | Double intSum = 0.0;
|
---|
210 | Double interval = 0.0;
|
---|
211 |
|
---|
212 | // To get the right shape for the Tsys accumulator we need to
|
---|
213 | // access a column from the first table. The shape of this
|
---|
214 | // array must not change
|
---|
215 |
|
---|
216 | Array<Float> tSysSum;
|
---|
217 | {
|
---|
218 | const Table& tabIn = in[0]->table();
|
---|
219 | tSysCol.attach(tabIn,"TSYS");
|
---|
220 | tSysSum.resize(tSysCol.shape(0));
|
---|
221 | }
|
---|
222 | tSysSum =0.0;
|
---|
223 | Array<Float> tSys;
|
---|
224 |
|
---|
225 | // Scan and row tracking
|
---|
226 |
|
---|
227 | Int oldScanID = 0;
|
---|
228 | Int outScanID = 0;
|
---|
229 | Int scanID = 0;
|
---|
230 | Int rowStart = 0;
|
---|
231 | Int nAccum = 0;
|
---|
232 | Int tableStart = 0;
|
---|
233 |
|
---|
234 | // Source and FreqID
|
---|
235 |
|
---|
236 | String sourceName, oldSourceName, sourceNameStart;
|
---|
237 | Vector<uInt> freqID, freqIDStart, oldFreqID;
|
---|
238 |
|
---|
239 | // Loop over tables
|
---|
240 |
|
---|
241 | Float fac = 1.0;
|
---|
242 | const uInt nTables = in.nelements();
|
---|
243 | for (uInt iTab=0; iTab<nTables; iTab++) {
|
---|
244 |
|
---|
245 | // Should check that the frequency tables don't change if doing FreqAlignment
|
---|
246 |
|
---|
247 | // Attach columns to Table
|
---|
248 |
|
---|
249 | const Table& tabIn = in[iTab]->table();
|
---|
250 | tSysCol.attach(tabIn, "TSYS");
|
---|
251 | mjdCol.attach(tabIn, "TIME");
|
---|
252 | srcNameCol.attach(tabIn, "SRCNAME");
|
---|
253 | intCol.attach(tabIn, "INTERVAL");
|
---|
254 | fqIDCol.attach(tabIn, "FREQID");
|
---|
255 | scanIDCol.attach(tabIn, "SCANID");
|
---|
256 |
|
---|
257 | // Find list of start/end rows for each scan
|
---|
258 |
|
---|
259 | // Loop over rows in Table
|
---|
260 |
|
---|
261 | const uInt nRows = in[iTab]->nRow();
|
---|
262 | for (uInt iRow=0; iRow<nRows; iRow++) {
|
---|
263 |
|
---|
264 | // Check conformance
|
---|
265 |
|
---|
266 | IPosition shp2 = in[iTab]->rowAsMaskedArray(iRow).shape();
|
---|
267 | if (!shp.isEqual(shp2)) {
|
---|
268 | throw (AipsError("Shapes for all rows must be the same"));
|
---|
269 | }
|
---|
270 |
|
---|
271 | // If we are not doing scan averages, make checks for source and
|
---|
272 | // frequency setup and warn if averaging across them
|
---|
273 |
|
---|
274 | scanIDCol.getScalar(iRow, scanID);
|
---|
275 |
|
---|
276 | // Get quantities from columns
|
---|
277 |
|
---|
278 | srcNameCol.getScalar(iRow, sourceName);
|
---|
279 | mjdCol.get(iRow, time);
|
---|
280 | tSysCol.get(iRow, tSys);
|
---|
281 | intCol.get(iRow, interval);
|
---|
282 | fqIDCol.get(iRow, freqID);
|
---|
283 |
|
---|
284 | // Initialize first source and freqID
|
---|
285 |
|
---|
286 | if (iRow==0 && iTab==0) {
|
---|
287 | sourceNameStart = sourceName;
|
---|
288 | freqIDStart = freqID;
|
---|
289 | }
|
---|
290 |
|
---|
291 | // If we are doing scan averages, see if we are at the end of an
|
---|
292 | // accumulation period (scan). We must check soutce names too,
|
---|
293 | // since we might have two tables with one scan each but different
|
---|
294 | // source names; we shouldn't average different sources together
|
---|
295 |
|
---|
296 | if (scanAv && ( (scanID != oldScanID) ||
|
---|
297 | (iRow==0 && iTab>0 && sourceName!=oldSourceName))) {
|
---|
298 |
|
---|
299 | // Normalize data in 'sum' accumulation array according to weighting scheme
|
---|
300 |
|
---|
301 | normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);
|
---|
302 |
|
---|
303 | // Get ScanContainer for the first row of this averaged Scan
|
---|
304 |
|
---|
305 | SDContainer scOut = in[iTab]->getSDContainer(rowStart);
|
---|
306 |
|
---|
307 | // Fill scan container. The source and freqID come from the
|
---|
308 | // first row of the first table that went into this average (
|
---|
309 | // should be the same for all rows in the scan average)
|
---|
310 |
|
---|
311 | Float nR(nAccum);
|
---|
312 | fillSDC(scOut, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
|
---|
313 | timeSum/nR, intSum, sourceNameStart, freqIDStart);
|
---|
314 |
|
---|
315 | // Write container out to Table
|
---|
316 |
|
---|
317 | pTabOut->putSDContainer(scOut);
|
---|
318 |
|
---|
319 | // Reset accumulators
|
---|
320 |
|
---|
321 | sum = 0.0;
|
---|
322 | sumSq = 0.0;
|
---|
323 | nAccum = 0;
|
---|
324 | //
|
---|
325 | tSysSum =0.0;
|
---|
326 | timeSum = 0.0;
|
---|
327 | intSum = 0.0;
|
---|
328 | nPts = 0.0;
|
---|
329 |
|
---|
330 | // Increment
|
---|
331 |
|
---|
332 | rowStart = iRow; // First row for next accumulation
|
---|
333 | tableStart = iTab; // First table for next accumulation
|
---|
334 | sourceNameStart = sourceName; // First source name for next accumulation
|
---|
335 | freqIDStart = freqID; // First FreqID for next accumulation
|
---|
336 | //
|
---|
337 | oldScanID = scanID;
|
---|
338 | outScanID += 1; // Scan ID for next accumulation period
|
---|
339 | }
|
---|
340 |
|
---|
341 | // Accumulate
|
---|
342 |
|
---|
343 | accumulate(timeSum, intSum, nAccum, sum, sumSq, nPts, tSysSum,
|
---|
344 | tSys, nInc, mask, time, interval, in, iTab, iRow, asap::ChanAxis,
|
---|
345 | nAxesSub, useMask, wtType);
|
---|
346 | //
|
---|
347 | oldSourceName = sourceName;
|
---|
348 | oldFreqID = freqID;
|
---|
349 | }
|
---|
350 | }
|
---|
351 |
|
---|
352 | // OK at this point we have accumulation data which is either
|
---|
353 | // - accumulated from all tables into one row
|
---|
354 | // or
|
---|
355 | // - accumulated from the last scan average
|
---|
356 | //
|
---|
357 | // Normalize data in 'sum' accumulation array according to weighting scheme
|
---|
358 |
|
---|
359 | normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);
|
---|
360 |
|
---|
361 | // Create and fill container. The container we clone will be from
|
---|
362 | // the last Table and the first row that went into the current
|
---|
363 | // accumulation. It probably doesn't matter that much really...
|
---|
364 |
|
---|
365 | Float nR(nAccum);
|
---|
366 | SDContainer scOut = in[tableStart]->getSDContainer(rowStart);
|
---|
367 | fillSDC(scOut, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
|
---|
368 | timeSum/nR, intSum, sourceNameStart, freqIDStart);
|
---|
369 | pTabOut->putSDContainer(scOut);
|
---|
370 | pTabOut->resetCursor();
|
---|
371 | //
|
---|
372 | return CountedPtr<SDMemTable>(pTabOut);
|
---|
373 | }
|
---|
374 |
|
---|
375 |
|
---|
376 |
|
---|
377 | CountedPtr<SDMemTable> SDMath::binaryOperate (const CountedPtr<SDMemTable>& left,
|
---|
378 | const CountedPtr<SDMemTable>& right,
|
---|
379 | const String& op, Bool preserve,
|
---|
380 | Bool doTSys) const
|
---|
381 | {
|
---|
382 |
|
---|
383 | // Check operator
|
---|
384 |
|
---|
385 | String op2(op);
|
---|
386 | op2.upcase();
|
---|
387 | uInt what = 0;
|
---|
388 | if (op2=="ADD") {
|
---|
389 | what = 0;
|
---|
390 | } else if (op2=="SUB") {
|
---|
391 | what = 1;
|
---|
392 | } else if (op2=="MUL") {
|
---|
393 | what = 2;
|
---|
394 | } else if (op2=="DIV") {
|
---|
395 | what = 3;
|
---|
396 | } else if (op2=="QUOTIENT") {
|
---|
397 | what = 4;
|
---|
398 | doTSys = True;
|
---|
399 | } else {
|
---|
400 | throw( AipsError("Unrecognized operation"));
|
---|
401 | }
|
---|
402 |
|
---|
403 | // Check rows
|
---|
404 |
|
---|
405 | const uInt nRowLeft = left->nRow();
|
---|
406 | const uInt nRowRight = right->nRow();
|
---|
407 | Bool ok = (nRowRight==1&&nRowLeft>0) ||
|
---|
408 | (nRowRight>=1&&nRowLeft==nRowRight);
|
---|
409 | if (!ok) {
|
---|
410 | throw (AipsError("The right Scan Table can have one row or the same number of rows as the left Scan Table"));
|
---|
411 | }
|
---|
412 |
|
---|
413 | // Input Tables
|
---|
414 |
|
---|
415 | const Table& tLeft = left->table();
|
---|
416 | const Table& tRight = right->table();
|
---|
417 |
|
---|
418 | // TSys columns
|
---|
419 |
|
---|
420 | ROArrayColumn<Float> tSysLeftCol, tSysRightCol;
|
---|
421 | if (doTSys) {
|
---|
422 | tSysLeftCol.attach(tLeft, "TSYS");
|
---|
423 | tSysRightCol.attach(tRight, "TSYS");
|
---|
424 | }
|
---|
425 |
|
---|
426 | // First row for right
|
---|
427 |
|
---|
428 | Array<Float> tSysLeftArr, tSysRightArr;
|
---|
429 | if (doTSys) tSysRightCol.get(0, tSysRightArr);
|
---|
430 | MaskedArray<Float>* pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(0));
|
---|
431 | IPosition shpRight = pMRight->shape();
|
---|
432 |
|
---|
433 | // Output Table cloned from left
|
---|
434 |
|
---|
435 | SDMemTable* pTabOut = new SDMemTable(*left, True);
|
---|
436 |
|
---|
437 | // Loop over rows
|
---|
438 |
|
---|
439 | for (uInt i=0; i<nRowLeft; i++) {
|
---|
440 |
|
---|
441 | // Get data
|
---|
442 |
|
---|
443 | MaskedArray<Float> mLeft(left->rowAsMaskedArray(i));
|
---|
444 | IPosition shpLeft = mLeft.shape();
|
---|
445 | if (doTSys) tSysLeftCol.get(i, tSysLeftArr);
|
---|
446 | //
|
---|
447 | if (nRowRight>1) {
|
---|
448 | delete pMRight;
|
---|
449 | pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(i));
|
---|
450 | shpRight = pMRight->shape();
|
---|
451 | if (doTSys) tSysRightCol.get(i, tSysRightArr);
|
---|
452 | }
|
---|
453 | //
|
---|
454 | if (!shpRight.isEqual(shpLeft)) {
|
---|
455 | throw(AipsError("left and right scan tables are not conformant"));
|
---|
456 | }
|
---|
457 | if (doTSys) {
|
---|
458 | if (!tSysRightArr.shape().isEqual(tSysRightArr.shape())) {
|
---|
459 | throw(AipsError("left and right Tsys data are not conformant"));
|
---|
460 | }
|
---|
461 | if (!shpRight.isEqual(tSysRightArr.shape())) {
|
---|
462 | throw(AipsError("left and right scan tables are not conformant"));
|
---|
463 | }
|
---|
464 | }
|
---|
465 |
|
---|
466 | // Make container
|
---|
467 |
|
---|
468 | SDContainer sc = left->getSDContainer(i);
|
---|
469 |
|
---|
470 | // Operate on data and TSys
|
---|
471 |
|
---|
472 | if (what==0) {
|
---|
473 | MaskedArray<Float> tmp = mLeft + *pMRight;
|
---|
474 | putDataInSDC(sc, tmp.getArray(), tmp.getMask());
|
---|
475 | if (doTSys) sc.putTsys(tSysLeftArr+tSysRightArr);
|
---|
476 | } else if (what==1) {
|
---|
477 | MaskedArray<Float> tmp = mLeft - *pMRight;
|
---|
478 | putDataInSDC(sc, tmp.getArray(), tmp.getMask());
|
---|
479 | if (doTSys) sc.putTsys(tSysLeftArr-tSysRightArr);
|
---|
480 | } else if (what==2) {
|
---|
481 | MaskedArray<Float> tmp = mLeft * *pMRight;
|
---|
482 | putDataInSDC(sc, tmp.getArray(), tmp.getMask());
|
---|
483 | if (doTSys) sc.putTsys(tSysLeftArr*tSysRightArr);
|
---|
484 | } else if (what==3) {
|
---|
485 | MaskedArray<Float> tmp = mLeft / *pMRight;
|
---|
486 | putDataInSDC(sc, tmp.getArray(), tmp.getMask());
|
---|
487 | if (doTSys) sc.putTsys(tSysLeftArr/tSysRightArr);
|
---|
488 | } else if (what==4) {
|
---|
489 | if (preserve) {
|
---|
490 | MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) - tSysRightArr;
|
---|
491 | putDataInSDC(sc, tmp.getArray(), tmp.getMask());
|
---|
492 | } else {
|
---|
493 | MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) - tSysLeftArr;
|
---|
494 | putDataInSDC(sc, tmp.getArray(), tmp.getMask());
|
---|
495 | }
|
---|
496 | sc.putTsys(tSysRightArr);
|
---|
497 | }
|
---|
498 |
|
---|
499 | // Put new row in output Table
|
---|
500 |
|
---|
501 | pTabOut->putSDContainer(sc);
|
---|
502 | }
|
---|
503 | if (pMRight) delete pMRight;
|
---|
504 | pTabOut->resetCursor();
|
---|
505 | //
|
---|
506 | return CountedPtr<SDMemTable>(pTabOut);
|
---|
507 | }
|
---|
508 |
|
---|
509 |
|
---|
510 |
|
---|
511 | std::vector<float> SDMath::statistic(const CountedPtr<SDMemTable>& in,
|
---|
512 | const Vector<Bool>& mask,
|
---|
513 | const String& which, Int row) const
|
---|
514 | //
|
---|
515 | // Perhaps iteration over pol/beam/if should be in here
|
---|
516 | // and inside the nrow iteration ?
|
---|
517 | //
|
---|
518 | {
|
---|
519 | const uInt nRow = in->nRow();
|
---|
520 |
|
---|
521 | // Specify cursor location
|
---|
522 |
|
---|
523 | IPosition start, end;
|
---|
524 | Bool doAll = False;
|
---|
525 | setCursorSlice (start, end, doAll, *in);
|
---|
526 |
|
---|
527 | // Loop over rows
|
---|
528 |
|
---|
529 | const uInt nEl = mask.nelements();
|
---|
530 | uInt iStart = 0;
|
---|
531 | uInt iEnd = in->nRow()-1;
|
---|
532 | //
|
---|
533 | if (row>=0) {
|
---|
534 | iStart = row;
|
---|
535 | iEnd = row;
|
---|
536 | }
|
---|
537 | //
|
---|
538 | std::vector<float> result(iEnd-iStart+1);
|
---|
539 | for (uInt ii=iStart; ii <= iEnd; ++ii) {
|
---|
540 |
|
---|
541 | // Get row and deconstruct
|
---|
542 |
|
---|
543 | MaskedArray<Float> dataIn = (in->rowAsMaskedArray(ii))(start,end);
|
---|
544 | Array<Float> v = dataIn.getArray().nonDegenerate();
|
---|
545 | Array<Bool> m = dataIn.getMask().nonDegenerate();
|
---|
546 |
|
---|
547 | // Access desired piece of data
|
---|
548 |
|
---|
549 | // Array<Float> v((arr(start,end)).nonDegenerate());
|
---|
550 | // Array<Bool> m((barr(start,end)).nonDegenerate());
|
---|
551 |
|
---|
552 | // Apply OTF mask
|
---|
553 |
|
---|
554 | MaskedArray<Float> tmp;
|
---|
555 | if (m.nelements()==nEl) {
|
---|
556 | tmp.setData(v,m&&mask);
|
---|
557 | } else {
|
---|
558 | tmp.setData(v,m);
|
---|
559 | }
|
---|
560 |
|
---|
561 | // Get statistic
|
---|
562 |
|
---|
563 | result[ii-iStart] = mathutil::statistics(which, tmp);
|
---|
564 | }
|
---|
565 | //
|
---|
566 | return result;
|
---|
567 | }
|
---|
568 |
|
---|
569 |
|
---|
570 | SDMemTable* SDMath::bin(const SDMemTable& in, Int width) const
|
---|
571 | {
|
---|
572 | SDHeader sh = in.getSDHeader();
|
---|
573 | SDMemTable* pTabOut = new SDMemTable(in, True);
|
---|
574 |
|
---|
575 | // Bin up SpectralCoordinates
|
---|
576 |
|
---|
577 | IPosition factors(1);
|
---|
578 | factors(0) = width;
|
---|
579 | for (uInt j=0; j<in.nCoordinates(); ++j) {
|
---|
580 | CoordinateSystem cSys;
|
---|
581 | cSys.addCoordinate(in.getSpectralCoordinate(j));
|
---|
582 | CoordinateSystem cSysBin =
|
---|
583 | CoordinateUtil::makeBinnedCoordinateSystem(factors, cSys, False);
|
---|
584 | //
|
---|
585 | SpectralCoordinate sCBin = cSysBin.spectralCoordinate(0);
|
---|
586 | pTabOut->setCoordinate(sCBin, j);
|
---|
587 | }
|
---|
588 |
|
---|
589 | // Use RebinLattice to find shape
|
---|
590 |
|
---|
591 | IPosition shapeIn(1,sh.nchan);
|
---|
592 | IPosition shapeOut = RebinLattice<Float>::rebinShape(shapeIn, factors);
|
---|
593 | sh.nchan = shapeOut(0);
|
---|
594 | pTabOut->putSDHeader(sh);
|
---|
595 |
|
---|
596 | // Loop over rows and bin along channel axis
|
---|
597 |
|
---|
598 | for (uInt i=0; i < in.nRow(); ++i) {
|
---|
599 | SDContainer sc = in.getSDContainer(i);
|
---|
600 | //
|
---|
601 | Array<Float> tSys(sc.getTsys()); // Get it out before sc changes shape
|
---|
602 |
|
---|
603 | // Bin up spectrum
|
---|
604 |
|
---|
605 | MaskedArray<Float> marr(in.rowAsMaskedArray(i));
|
---|
606 | MaskedArray<Float> marrout;
|
---|
607 | LatticeUtilities::bin(marrout, marr, asap::ChanAxis, width);
|
---|
608 |
|
---|
609 | // Put back the binned data and flags
|
---|
610 |
|
---|
611 | IPosition ip2 = marrout.shape();
|
---|
612 | sc.resize(ip2);
|
---|
613 | //
|
---|
614 | putDataInSDC(sc, marrout.getArray(), marrout.getMask());
|
---|
615 |
|
---|
616 | // Bin up Tsys.
|
---|
617 |
|
---|
618 | Array<Bool> allGood(tSys.shape(),True);
|
---|
619 | MaskedArray<Float> tSysIn(tSys, allGood, True);
|
---|
620 | //
|
---|
621 | MaskedArray<Float> tSysOut;
|
---|
622 | LatticeUtilities::bin(tSysOut, tSysIn, asap::ChanAxis, width);
|
---|
623 | sc.putTsys(tSysOut.getArray());
|
---|
624 | //
|
---|
625 | pTabOut->putSDContainer(sc);
|
---|
626 | }
|
---|
627 | return pTabOut;
|
---|
628 | }
|
---|
629 |
|
---|
630 | SDMemTable* SDMath::resample (const SDMemTable& in, const String& methodStr,
|
---|
631 | Float width) const
|
---|
632 | //
|
---|
633 | // Should add the possibility of width being specified in km/s. This means
|
---|
634 | // that for each freqID (SpectralCoordinate) we will need to convert to an
|
---|
635 | // average channel width (say at the reference pixel). Then we would need
|
---|
636 | // to be careful to make sure each spectrum (of different freqID)
|
---|
637 | // is the same length.
|
---|
638 | //
|
---|
639 | {
|
---|
640 | Bool doVel = False;
|
---|
641 | if (doVel) {
|
---|
642 | for (uInt j=0; j<in.nCoordinates(); ++j) {
|
---|
643 | SpectralCoordinate sC = in.getSpectralCoordinate(j);
|
---|
644 | }
|
---|
645 | }
|
---|
646 |
|
---|
647 | // Interpolation method
|
---|
648 |
|
---|
649 | InterpolateArray1D<Double,Float>::InterpolationMethod interp;
|
---|
650 | convertInterpString(interp, methodStr);
|
---|
651 | Int interpMethod(interp);
|
---|
652 |
|
---|
653 | // Make output table
|
---|
654 |
|
---|
655 | SDMemTable* pTabOut = new SDMemTable(in, True);
|
---|
656 |
|
---|
657 | // Resample SpectralCoordinates (one per freqID)
|
---|
658 |
|
---|
659 | const uInt nCoord = in.nCoordinates();
|
---|
660 | Vector<Float> offset(1,0.0);
|
---|
661 | Vector<Float> factors(1,1.0/width);
|
---|
662 | Vector<Int> newShape;
|
---|
663 | for (uInt j=0; j<in.nCoordinates(); ++j) {
|
---|
664 | CoordinateSystem cSys;
|
---|
665 | cSys.addCoordinate(in.getSpectralCoordinate(j));
|
---|
666 | CoordinateSystem cSys2 = cSys.subImage(offset, factors, newShape);
|
---|
667 | SpectralCoordinate sC = cSys2.spectralCoordinate(0);
|
---|
668 | //
|
---|
669 | pTabOut->setCoordinate(sC, j);
|
---|
670 | }
|
---|
671 |
|
---|
672 | // Get header
|
---|
673 |
|
---|
674 | SDHeader sh = in.getSDHeader();
|
---|
675 |
|
---|
676 | // Generate resampling vectors
|
---|
677 |
|
---|
678 | const uInt nChanIn = sh.nchan;
|
---|
679 | Vector<Float> xIn(nChanIn);
|
---|
680 | indgen(xIn);
|
---|
681 | //
|
---|
682 | Int fac = Int(nChanIn/width);
|
---|
683 | Vector<Float> xOut(fac+10); // 10 to be safe - resize later
|
---|
684 | uInt i = 0;
|
---|
685 | Float x = 0.0;
|
---|
686 | Bool more = True;
|
---|
687 | while (more) {
|
---|
688 | xOut(i) = x;
|
---|
689 | //
|
---|
690 | i++;
|
---|
691 | x += width;
|
---|
692 | if (x>nChanIn-1) more = False;
|
---|
693 | }
|
---|
694 | const uInt nChanOut = i;
|
---|
695 | xOut.resize(nChanOut,True);
|
---|
696 | //
|
---|
697 | IPosition shapeIn(in.rowAsMaskedArray(0).shape());
|
---|
698 | sh.nchan = nChanOut;
|
---|
699 | pTabOut->putSDHeader(sh);
|
---|
700 |
|
---|
701 | // Loop over rows and resample along channel axis
|
---|
702 |
|
---|
703 | Array<Float> valuesOut;
|
---|
704 | Array<Bool> maskOut;
|
---|
705 | Array<Float> tSysOut;
|
---|
706 | Array<Bool> tSysMaskIn(shapeIn,True);
|
---|
707 | Array<Bool> tSysMaskOut;
|
---|
708 | for (uInt i=0; i < in.nRow(); ++i) {
|
---|
709 |
|
---|
710 | // Get container
|
---|
711 |
|
---|
712 | SDContainer sc = in.getSDContainer(i);
|
---|
713 |
|
---|
714 | // Get data and Tsys
|
---|
715 |
|
---|
716 | const Array<Float>& tSysIn = sc.getTsys();
|
---|
717 | const MaskedArray<Float>& dataIn(in.rowAsMaskedArray(i));
|
---|
718 | Array<Float> valuesIn = dataIn.getArray();
|
---|
719 | Array<Bool> maskIn = dataIn.getMask();
|
---|
720 |
|
---|
721 | // Interpolate data
|
---|
722 |
|
---|
723 | InterpolateArray1D<Float,Float>::interpolate(valuesOut, maskOut, xOut,
|
---|
724 | xIn, valuesIn, maskIn,
|
---|
725 | interpMethod, True, True);
|
---|
726 | sc.resize(valuesOut.shape());
|
---|
727 | putDataInSDC(sc, valuesOut, maskOut);
|
---|
728 |
|
---|
729 | // Interpolate TSys
|
---|
730 |
|
---|
731 | InterpolateArray1D<Float,Float>::interpolate(tSysOut, tSysMaskOut, xOut,
|
---|
732 | xIn, tSysIn, tSysMaskIn,
|
---|
733 | interpMethod, True, True);
|
---|
734 | sc.putTsys(tSysOut);
|
---|
735 |
|
---|
736 | // Put container in output
|
---|
737 |
|
---|
738 | pTabOut->putSDContainer(sc);
|
---|
739 | }
|
---|
740 | //
|
---|
741 | return pTabOut;
|
---|
742 | }
|
---|
743 |
|
---|
744 | SDMemTable* SDMath::unaryOperate(const SDMemTable& in, Float val, Bool doAll,
|
---|
745 | uInt what, Bool doTSys) const
|
---|
746 | //
|
---|
747 | // what = 0 Multiply
|
---|
748 | // 1 Add
|
---|
749 | {
|
---|
750 | SDMemTable* pOut = new SDMemTable(in,False);
|
---|
751 | const Table& tOut = pOut->table();
|
---|
752 | ArrayColumn<Float> specCol(tOut,"SPECTRA");
|
---|
753 | ArrayColumn<Float> tSysCol(tOut,"TSYS");
|
---|
754 | Array<Float> tSysArr;
|
---|
755 |
|
---|
756 | // Get data slice bounds
|
---|
757 |
|
---|
758 | IPosition start, end;
|
---|
759 | setCursorSlice (start, end, doAll, in);
|
---|
760 | //
|
---|
761 | for (uInt i=0; i<tOut.nrow(); i++) {
|
---|
762 |
|
---|
763 | // Modify data
|
---|
764 |
|
---|
765 | MaskedArray<Float> dataIn(pOut->rowAsMaskedArray(i));
|
---|
766 | MaskedArray<Float> dataIn2 = dataIn(start,end); // Reference
|
---|
767 | if (what==0) {
|
---|
768 | dataIn2 *= val;
|
---|
769 | } else if (what==1) {
|
---|
770 | dataIn2 += val;
|
---|
771 | }
|
---|
772 | specCol.put(i, dataIn.getArray());
|
---|
773 |
|
---|
774 | // Modify Tsys
|
---|
775 |
|
---|
776 | if (doTSys) {
|
---|
777 | tSysCol.get(i, tSysArr);
|
---|
778 | Array<Float> tSysArr2 = tSysArr(start,end); // Reference
|
---|
779 | if (what==0) {
|
---|
780 | tSysArr2 *= val;
|
---|
781 | } else if (what==1) {
|
---|
782 | tSysArr2 += val;
|
---|
783 | }
|
---|
784 | tSysCol.put(i, tSysArr);
|
---|
785 | }
|
---|
786 | }
|
---|
787 | //
|
---|
788 | return pOut;
|
---|
789 | }
|
---|
790 |
|
---|
791 |
|
---|
792 |
|
---|
793 | SDMemTable* SDMath::averagePol(const SDMemTable& in, const Vector<Bool>& mask,
|
---|
794 | const String& weightStr) const
|
---|
795 | //
|
---|
796 | // Average all polarizations together, weighted by variance
|
---|
797 | //
|
---|
798 | {
|
---|
799 | WeightType wtType = NONE;
|
---|
800 | convertWeightString(wtType, weightStr);
|
---|
801 |
|
---|
802 | const uInt nRows = in.nRow();
|
---|
803 |
|
---|
804 | // Create output Table and reshape number of polarizations
|
---|
805 |
|
---|
806 | Bool clear=True;
|
---|
807 | SDMemTable* pTabOut = new SDMemTable(in, clear);
|
---|
808 | SDHeader header = pTabOut->getSDHeader();
|
---|
809 | header.npol = 1;
|
---|
810 | pTabOut->putSDHeader(header);
|
---|
811 |
|
---|
812 | // Shape of input and output data
|
---|
813 |
|
---|
814 | const IPosition& shapeIn = in.rowAsMaskedArray(0u, False).shape();
|
---|
815 | IPosition shapeOut(shapeIn);
|
---|
816 | shapeOut(asap::PolAxis) = 1; // Average all polarizations
|
---|
817 | if (shapeIn(asap::PolAxis)==1) {
|
---|
818 | throw(AipsError("The input has only one polarisation"));
|
---|
819 | }
|
---|
820 | //
|
---|
821 | const uInt nChan = shapeIn(asap::ChanAxis);
|
---|
822 | const IPosition vecShapeOut(4,1,1,1,nChan); // A multi-dim form of a Vector shape
|
---|
823 | IPosition start(4), end(4);
|
---|
824 |
|
---|
825 | // Output arrays
|
---|
826 |
|
---|
827 | Array<Float> outData(shapeOut, 0.0);
|
---|
828 | Array<Bool> outMask(shapeOut, True);
|
---|
829 | const IPosition axes(2, asap::PolAxis, asap::ChanAxis); // pol-channel plane
|
---|
830 | //
|
---|
831 | const Bool useMask = (mask.nelements() == shapeIn(asap::ChanAxis));
|
---|
832 |
|
---|
833 | // Loop over rows
|
---|
834 |
|
---|
835 | for (uInt iRow=0; iRow<nRows; iRow++) {
|
---|
836 |
|
---|
837 | // Get data for this row
|
---|
838 |
|
---|
839 | MaskedArray<Float> marr(in.rowAsMaskedArray(iRow));
|
---|
840 | Array<Float>& arr = marr.getRWArray();
|
---|
841 | const Array<Bool>& barr = marr.getMask();
|
---|
842 |
|
---|
843 | // Make iterators to iterate by pol-channel planes
|
---|
844 |
|
---|
845 | ReadOnlyArrayIterator<Float> itDataPlane(arr, axes);
|
---|
846 | ReadOnlyArrayIterator<Bool> itMaskPlane(barr, axes);
|
---|
847 |
|
---|
848 | // Accumulations
|
---|
849 |
|
---|
850 | Float fac = 1.0;
|
---|
851 | Vector<Float> vecSum(nChan,0.0);
|
---|
852 |
|
---|
853 | // Iterate through data by pol-channel planes
|
---|
854 |
|
---|
855 | while (!itDataPlane.pastEnd()) {
|
---|
856 |
|
---|
857 | // Iterate through plane by polarization and accumulate Vectors
|
---|
858 |
|
---|
859 | Vector<Float> t1(nChan); t1 = 0.0;
|
---|
860 | Vector<Bool> t2(nChan); t2 = True;
|
---|
861 | MaskedArray<Float> vecSum(t1,t2);
|
---|
862 | Float norm = 0.0;
|
---|
863 | {
|
---|
864 | ReadOnlyVectorIterator<Float> itDataVec(itDataPlane.array(), 1);
|
---|
865 | ReadOnlyVectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
|
---|
866 | while (!itDataVec.pastEnd()) {
|
---|
867 |
|
---|
868 | // Create MA of data & mask (optionally including OTF mask) and get variance for this spectrum
|
---|
869 |
|
---|
870 | if (useMask) {
|
---|
871 | const MaskedArray<Float> spec(itDataVec.vector(),mask&&itMaskVec.vector());
|
---|
872 | if (wtType==VAR) fac = 1.0 / variance(spec);
|
---|
873 | } else {
|
---|
874 | const MaskedArray<Float> spec(itDataVec.vector(),itMaskVec.vector());
|
---|
875 | if (wtType==VAR) fac = 1.0 / variance(spec);
|
---|
876 | }
|
---|
877 |
|
---|
878 | // Normalize spectrum (without OTF mask) and accumulate
|
---|
879 |
|
---|
880 | const MaskedArray<Float> spec(fac*itDataVec.vector(), itMaskVec.vector());
|
---|
881 | vecSum += spec;
|
---|
882 | norm += fac;
|
---|
883 |
|
---|
884 | // Next
|
---|
885 |
|
---|
886 | itDataVec.next();
|
---|
887 | itMaskVec.next();
|
---|
888 | }
|
---|
889 | }
|
---|
890 |
|
---|
891 | // Normalize summed spectrum
|
---|
892 |
|
---|
893 | vecSum /= norm;
|
---|
894 |
|
---|
895 | // FInd position in input data array. We are iterating by pol-channel
|
---|
896 | // plane so all that will change is beam and IF and that's what we want.
|
---|
897 |
|
---|
898 | IPosition pos = itDataPlane.pos();
|
---|
899 |
|
---|
900 | // Write out data. This is a bit messy. We have to reform the Vector
|
---|
901 | // accumulator into an Array of shape (1,1,1,nChan)
|
---|
902 |
|
---|
903 | start = pos;
|
---|
904 | end = pos;
|
---|
905 | end(asap::ChanAxis) = nChan-1;
|
---|
906 | outData(start,end) = vecSum.getArray().reform(vecShapeOut);
|
---|
907 | outMask(start,end) = vecSum.getMask().reform(vecShapeOut);
|
---|
908 |
|
---|
909 | // Step to next beam/IF combination
|
---|
910 |
|
---|
911 | itDataPlane.next();
|
---|
912 | itMaskPlane.next();
|
---|
913 | }
|
---|
914 |
|
---|
915 | // Generate output container and write it to output table
|
---|
916 |
|
---|
917 | SDContainer sc = in.getSDContainer();
|
---|
918 | sc.resize(shapeOut);
|
---|
919 | //
|
---|
920 | putDataInSDC(sc, outData, outMask);
|
---|
921 | pTabOut->putSDContainer(sc);
|
---|
922 | }
|
---|
923 |
|
---|
924 | // Set polarization cursor to 0
|
---|
925 |
|
---|
926 | pTabOut->setPol(0);
|
---|
927 | //
|
---|
928 | return pTabOut;
|
---|
929 | }
|
---|
930 |
|
---|
931 |
|
---|
932 | SDMemTable* SDMath::smooth(const SDMemTable& in,
|
---|
933 | const casa::String& kernelType,
|
---|
934 | casa::Float width, Bool doAll) const
|
---|
935 | //
|
---|
936 | // Should smooth TSys as well
|
---|
937 | //
|
---|
938 | {
|
---|
939 |
|
---|
940 | // Number of channels
|
---|
941 |
|
---|
942 | const uInt nChan = in.nChan();
|
---|
943 |
|
---|
944 | // Generate Kernel
|
---|
945 |
|
---|
946 | VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernelType);
|
---|
947 | Vector<Float> kernel = VectorKernel::make(type, width, nChan, True, False);
|
---|
948 |
|
---|
949 | // Generate Convolver
|
---|
950 |
|
---|
951 | IPosition shape(1,nChan);
|
---|
952 | Convolver<Float> conv(kernel, shape);
|
---|
953 |
|
---|
954 | // New Table
|
---|
955 |
|
---|
956 | SDMemTable* pTabOut = new SDMemTable(in,True);
|
---|
957 |
|
---|
958 | // Output Vectors
|
---|
959 |
|
---|
960 | Vector<Float> valuesOut(nChan);
|
---|
961 | Vector<Bool> maskOut(nChan);
|
---|
962 |
|
---|
963 | // Get data slice bounds
|
---|
964 |
|
---|
965 | IPosition start, end;
|
---|
966 | setCursorSlice (start, end, doAll, in);
|
---|
967 |
|
---|
968 | // Loop over rows in Table
|
---|
969 |
|
---|
970 | for (uInt ri=0; ri < in.nRow(); ++ri) {
|
---|
971 |
|
---|
972 | // Get slice of data
|
---|
973 |
|
---|
974 | MaskedArray<Float> dataIn = in.rowAsMaskedArray(ri);
|
---|
975 |
|
---|
976 | // Deconstruct and get slices which reference these arrays
|
---|
977 |
|
---|
978 | Array<Float> valuesIn = dataIn.getArray();
|
---|
979 | Array<Bool> maskIn = dataIn.getMask();
|
---|
980 | //
|
---|
981 | Array<Float> valuesIn2 = valuesIn(start,end); // ref to valuesIn
|
---|
982 | Array<Bool> maskIn2 = maskIn(start,end);
|
---|
983 |
|
---|
984 | // Iterate through by spectra
|
---|
985 |
|
---|
986 | VectorIterator<Float> itValues(valuesIn2, asap::ChanAxis);
|
---|
987 | VectorIterator<Bool> itMask(maskIn2, asap::ChanAxis);
|
---|
988 | while (!itValues.pastEnd()) {
|
---|
989 |
|
---|
990 | // Smooth
|
---|
991 |
|
---|
992 | if (kernelType==VectorKernel::HANNING) {
|
---|
993 | mathutil::hanning(valuesOut, maskOut, itValues.vector(), itMask.vector());
|
---|
994 | itMask.vector() = maskOut;
|
---|
995 | } else {
|
---|
996 | mathutil::replaceMaskByZero(itValues.vector(), itMask.vector());
|
---|
997 | conv.linearConv(valuesOut, itValues.vector());
|
---|
998 | }
|
---|
999 | //
|
---|
1000 | itValues.vector() = valuesOut;
|
---|
1001 | //
|
---|
1002 | itValues.next();
|
---|
1003 | itMask.next();
|
---|
1004 | }
|
---|
1005 |
|
---|
1006 | // Create and put back
|
---|
1007 |
|
---|
1008 | SDContainer sc = in.getSDContainer(ri);
|
---|
1009 | putDataInSDC(sc, valuesIn, maskIn);
|
---|
1010 | //
|
---|
1011 | pTabOut->putSDContainer(sc);
|
---|
1012 | }
|
---|
1013 | //
|
---|
1014 | return pTabOut;
|
---|
1015 | }
|
---|
1016 |
|
---|
1017 |
|
---|
1018 |
|
---|
1019 | SDMemTable* SDMath::convertFlux (const SDMemTable& in, Float D, Float etaAp,
|
---|
1020 | Float JyPerK, Bool doAll) const
|
---|
1021 | //
|
---|
1022 | // etaAp = aperture efficiency
|
---|
1023 | // D = geometric diameter (m)
|
---|
1024 | // JyPerK
|
---|
1025 | //
|
---|
1026 | {
|
---|
1027 | SDHeader sh = in.getSDHeader();
|
---|
1028 | SDMemTable* pTabOut = new SDMemTable(in, True);
|
---|
1029 |
|
---|
1030 | // Find out how to convert values into Jy and K (e.g. units might be mJy or mK)
|
---|
1031 | // Also automatically find out what we are converting to according to the
|
---|
1032 | // flux unit
|
---|
1033 |
|
---|
1034 | Unit fluxUnit(sh.fluxunit);
|
---|
1035 | Unit K(String("K"));
|
---|
1036 | Unit JY(String("Jy"));
|
---|
1037 | //
|
---|
1038 | Bool toKelvin = True;
|
---|
1039 | Double cFac = 1.0;
|
---|
1040 | if (fluxUnit==JY) {
|
---|
1041 | cout << "Converting to K" << endl;
|
---|
1042 | //
|
---|
1043 | Quantum<Double> t(1.0,fluxUnit);
|
---|
1044 | Quantum<Double> t2 = t.get(JY);
|
---|
1045 | cFac = (t2 / t).getValue(); // value to Jy
|
---|
1046 | //
|
---|
1047 | toKelvin = True;
|
---|
1048 | sh.fluxunit = "K";
|
---|
1049 | } else if (fluxUnit==K) {
|
---|
1050 | cout << "Converting to Jy" << endl;
|
---|
1051 | //
|
---|
1052 | Quantum<Double> t(1.0,fluxUnit);
|
---|
1053 | Quantum<Double> t2 = t.get(K);
|
---|
1054 | cFac = (t2 / t).getValue(); // value to K
|
---|
1055 | //
|
---|
1056 | toKelvin = False;
|
---|
1057 | sh.fluxunit = "Jy";
|
---|
1058 | } else {
|
---|
1059 | throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
|
---|
1060 | }
|
---|
1061 | pTabOut->putSDHeader(sh);
|
---|
1062 |
|
---|
1063 | // Make sure input values are converted to either Jy or K first...
|
---|
1064 |
|
---|
1065 | Float factor = cFac;
|
---|
1066 |
|
---|
1067 | // Select method
|
---|
1068 |
|
---|
1069 | if (JyPerK>0.0) {
|
---|
1070 | factor *= JyPerK;
|
---|
1071 | if (toKelvin) factor = 1.0 / JyPerK;
|
---|
1072 | //
|
---|
1073 | cout << "Applying supplied conversion factor = " << factor << endl;
|
---|
1074 | Vector<Float> factors(in.nRow(), factor);
|
---|
1075 | correctFromVector (pTabOut, in, doAll, factors);
|
---|
1076 | } else if (etaAp>0.0) {
|
---|
1077 | factor *= SDAttr::findJyPerKFac (etaAp, D);
|
---|
1078 | if (toKelvin) {
|
---|
1079 | factor = 1.0 / factor;
|
---|
1080 | }
|
---|
1081 | //
|
---|
1082 | cout << "Applying supplied conversion factor = " << factor << endl;
|
---|
1083 | Vector<Float> factors(in.nRow(), factor);
|
---|
1084 | correctFromVector (pTabOut, in, doAll, factors);
|
---|
1085 | } else {
|
---|
1086 |
|
---|
1087 | // OK now we must deal with automatic look up of values.
|
---|
1088 | // We must also deal with the fact that the factors need
|
---|
1089 | // to be computed per IF and may be different and may
|
---|
1090 | // change per integration.
|
---|
1091 |
|
---|
1092 | cout << "Looking up conversion factors" << endl;
|
---|
1093 | convertBrightnessUnits (pTabOut, in, toKelvin, cFac, doAll);
|
---|
1094 | }
|
---|
1095 | //
|
---|
1096 | return pTabOut;
|
---|
1097 | }
|
---|
1098 |
|
---|
1099 |
|
---|
1100 |
|
---|
1101 |
|
---|
1102 |
|
---|
1103 | SDMemTable* SDMath::gainElevation (const SDMemTable& in, const Vector<Float>& coeffs,
|
---|
1104 | const String& fileName,
|
---|
1105 | const String& methodStr, Bool doAll) const
|
---|
1106 | {
|
---|
1107 |
|
---|
1108 | // Get header and clone output table
|
---|
1109 |
|
---|
1110 | SDHeader sh = in.getSDHeader();
|
---|
1111 | SDMemTable* pTabOut = new SDMemTable(in, True);
|
---|
1112 |
|
---|
1113 | // Get elevation data from SDMemTable and convert to degrees
|
---|
1114 |
|
---|
1115 | const Table& tab = in.table();
|
---|
1116 | ROScalarColumn<Float> elev(tab, "ELEVATION");
|
---|
1117 | Vector<Float> x = elev.getColumn();
|
---|
1118 | x *= Float(180 / C::pi); // Degrees
|
---|
1119 | //
|
---|
1120 | const uInt nC = coeffs.nelements();
|
---|
1121 | if (fileName.length()>0 && nC>0) {
|
---|
1122 | throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
|
---|
1123 | }
|
---|
1124 |
|
---|
1125 | // Correct
|
---|
1126 |
|
---|
1127 | if (nC>0 || fileName.length()==0) {
|
---|
1128 |
|
---|
1129 | // Find instrument
|
---|
1130 |
|
---|
1131 | Bool throwIt = True;
|
---|
1132 | Instrument inst = SDMemTable::convertInstrument (sh.antennaname, throwIt);
|
---|
1133 |
|
---|
1134 | // Set polynomial
|
---|
1135 |
|
---|
1136 | Polynomial<Float>* pPoly = 0;
|
---|
1137 | Vector<Float> coeff;
|
---|
1138 | String msg;
|
---|
1139 | if (nC>0) {
|
---|
1140 | pPoly = new Polynomial<Float>(nC);
|
---|
1141 | coeff = coeffs;
|
---|
1142 | msg = String("user");
|
---|
1143 | } else {
|
---|
1144 | SDAttr sdAttr;
|
---|
1145 | coeff = sdAttr.gainElevationPoly(inst);
|
---|
1146 | pPoly = new Polynomial<Float>(3);
|
---|
1147 | msg = String("built in");
|
---|
1148 | }
|
---|
1149 | //
|
---|
1150 | if (coeff.nelements()>0) {
|
---|
1151 | pPoly->setCoefficients(coeff);
|
---|
1152 | } else {
|
---|
1153 | throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
|
---|
1154 | }
|
---|
1155 | //
|
---|
1156 | cout << "Making polynomial correction with " << msg << " coefficients" << endl;
|
---|
1157 | const uInt nRow = in.nRow();
|
---|
1158 | Vector<Float> factor(nRow);
|
---|
1159 | for (uInt i=0; i<nRow; i++) {
|
---|
1160 | factor[i] = (*pPoly)(x[i]);
|
---|
1161 | }
|
---|
1162 | delete pPoly;
|
---|
1163 | //
|
---|
1164 | correctFromVector (pTabOut, in, doAll, factor);
|
---|
1165 | } else {
|
---|
1166 |
|
---|
1167 | // Indicate which columns to read from ascii file
|
---|
1168 |
|
---|
1169 | String col0("ELEVATION");
|
---|
1170 | String col1("FACTOR");
|
---|
1171 |
|
---|
1172 | // Read and correct
|
---|
1173 |
|
---|
1174 | cout << "Making correction from ascii Table" << endl;
|
---|
1175 | correctFromAsciiTable (pTabOut, in, fileName, col0, col1,
|
---|
1176 | methodStr, doAll, x);
|
---|
1177 | }
|
---|
1178 | //
|
---|
1179 | return pTabOut;
|
---|
1180 | }
|
---|
1181 |
|
---|
1182 |
|
---|
1183 |
|
---|
1184 | SDMemTable* SDMath::opacity (const SDMemTable& in, Float tau, Bool doAll) const
|
---|
1185 | {
|
---|
1186 |
|
---|
1187 | // Get header and clone output table
|
---|
1188 |
|
---|
1189 | SDHeader sh = in.getSDHeader();
|
---|
1190 | SDMemTable* pTabOut = new SDMemTable(in, True);
|
---|
1191 |
|
---|
1192 | // Get elevation data from SDMemTable and convert to degrees
|
---|
1193 |
|
---|
1194 | const Table& tab = in.table();
|
---|
1195 | ROScalarColumn<Float> elev(tab, "ELEVATION");
|
---|
1196 | Vector<Float> zDist = elev.getColumn();
|
---|
1197 | zDist = Float(C::pi_2) - zDist;
|
---|
1198 |
|
---|
1199 | // Generate correction factor
|
---|
1200 |
|
---|
1201 | const uInt nRow = in.nRow();
|
---|
1202 | Vector<Float> factor(nRow);
|
---|
1203 | Vector<Float> factor2(nRow);
|
---|
1204 | for (uInt i=0; i<nRow; i++) {
|
---|
1205 | factor[i] = exp(tau)/cos(zDist[i]);
|
---|
1206 | }
|
---|
1207 |
|
---|
1208 | // Correct
|
---|
1209 |
|
---|
1210 | correctFromVector (pTabOut, in, doAll, factor);
|
---|
1211 | //
|
---|
1212 | return pTabOut;
|
---|
1213 | }
|
---|
1214 |
|
---|
1215 |
|
---|
1216 |
|
---|
1217 |
|
---|
1218 | // 'private' functions
|
---|
1219 |
|
---|
1220 | void SDMath::convertBrightnessUnits (SDMemTable* pTabOut, const SDMemTable& in,
|
---|
1221 | Bool toKelvin, Float cFac, Bool doAll) const
|
---|
1222 | {
|
---|
1223 |
|
---|
1224 | // Get header
|
---|
1225 |
|
---|
1226 | SDHeader sh = in.getSDHeader();
|
---|
1227 | const uInt nChan = sh.nchan;
|
---|
1228 |
|
---|
1229 | // Get instrument
|
---|
1230 |
|
---|
1231 | Bool throwIt = True;
|
---|
1232 | Instrument inst = SDMemTable::convertInstrument (sh.antennaname, throwIt);
|
---|
1233 |
|
---|
1234 | // Get Diameter (m)
|
---|
1235 |
|
---|
1236 | SDAttr sdAtt;
|
---|
1237 |
|
---|
1238 | // Get epoch of first row
|
---|
1239 |
|
---|
1240 | MEpoch dateObs = in.getEpoch(0);
|
---|
1241 |
|
---|
1242 | // Generate a Vector of correction factors. One per FreqID
|
---|
1243 |
|
---|
1244 | SDFrequencyTable sdft = in.getSDFreqTable();
|
---|
1245 | Vector<uInt> freqIDs;
|
---|
1246 | //
|
---|
1247 | Vector<Float> freqs(sdft.length());
|
---|
1248 | for (uInt i=0; i<sdft.length(); i++) {
|
---|
1249 | freqs(i) = (nChan/2 - sdft.referencePixel(i))*sdft.increment(i) + sdft.referenceValue(i);
|
---|
1250 | }
|
---|
1251 | //
|
---|
1252 | Vector<Float> JyPerK = sdAtt.JyPerK(inst, dateObs, freqs);
|
---|
1253 | cout << "Jy/K = " << JyPerK << endl;
|
---|
1254 | Vector<Float> factors = cFac * JyPerK;
|
---|
1255 | if (toKelvin) factors = Float(1.0) / factors;
|
---|
1256 |
|
---|
1257 | // Get data slice bounds
|
---|
1258 |
|
---|
1259 | IPosition start, end;
|
---|
1260 | setCursorSlice (start, end, doAll, in);
|
---|
1261 | const uInt ifAxis = in.getIF();
|
---|
1262 |
|
---|
1263 | // Iteration axes
|
---|
1264 |
|
---|
1265 | IPosition axes(asap::nAxes-1,0);
|
---|
1266 | for (uInt i=0,j=0; i<asap::nAxes; i++) {
|
---|
1267 | if (i!=asap::IFAxis) {
|
---|
1268 | axes(j++) = i;
|
---|
1269 | }
|
---|
1270 | }
|
---|
1271 |
|
---|
1272 | // Loop over rows and apply correction factor
|
---|
1273 |
|
---|
1274 | Float factor = 1.0;
|
---|
1275 | const uInt axis = asap::ChanAxis;
|
---|
1276 | for (uInt i=0; i < in.nRow(); ++i) {
|
---|
1277 |
|
---|
1278 | // Get data
|
---|
1279 |
|
---|
1280 | MaskedArray<Float> dataIn = in.rowAsMaskedArray(i);
|
---|
1281 | Array<Float>& values = dataIn.getRWArray(); // Ref to dataIn
|
---|
1282 | Array<Float> values2 = values(start,end); // Ref to values to dataIn
|
---|
1283 |
|
---|
1284 | // Get SDCOntainer
|
---|
1285 |
|
---|
1286 | SDContainer sc = in.getSDContainer(i);
|
---|
1287 |
|
---|
1288 | // Get FreqIDs
|
---|
1289 |
|
---|
1290 | freqIDs = sc.getFreqMap();
|
---|
1291 |
|
---|
1292 | // Now the conversion factor depends only upon frequency
|
---|
1293 | // So we need to iterate through by IF only giving
|
---|
1294 | // us BEAM/POL/CHAN cubes
|
---|
1295 |
|
---|
1296 | ArrayIterator<Float> itIn(values2, axes);
|
---|
1297 | uInt ax = 0;
|
---|
1298 | while (!itIn.pastEnd()) {
|
---|
1299 | itIn.array() *= factors(freqIDs(ax)); // Writes back to dataIn
|
---|
1300 | itIn.next();
|
---|
1301 | }
|
---|
1302 |
|
---|
1303 | // Write out
|
---|
1304 |
|
---|
1305 | putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
|
---|
1306 | //
|
---|
1307 | pTabOut->putSDContainer(sc);
|
---|
1308 | }
|
---|
1309 | }
|
---|
1310 |
|
---|
1311 |
|
---|
1312 |
|
---|
1313 | SDMemTable* SDMath::frequencyAlign (const SDMemTable& in,
|
---|
1314 | MFrequency::Types freqSystem,
|
---|
1315 | const String& refTime,
|
---|
1316 | const String& methodStr,
|
---|
1317 | Bool perFreqID) const
|
---|
1318 | {
|
---|
1319 | // Get Header
|
---|
1320 |
|
---|
1321 | SDHeader sh = in.getSDHeader();
|
---|
1322 | const uInt nChan = sh.nchan;
|
---|
1323 | const uInt nRows = in.nRow();
|
---|
1324 | const uInt nIF = sh.nif;
|
---|
1325 |
|
---|
1326 | // Get Table reference
|
---|
1327 |
|
---|
1328 | const Table& tabIn = in.table();
|
---|
1329 |
|
---|
1330 | // Get Columns from Table
|
---|
1331 |
|
---|
1332 | ROScalarColumn<Double> mjdCol(tabIn, "TIME");
|
---|
1333 | ROScalarColumn<String> srcCol(tabIn, "SRCNAME");
|
---|
1334 | ROArrayColumn<uInt> fqIDCol(tabIn, "FREQID");
|
---|
1335 | Vector<Double> times = mjdCol.getColumn();
|
---|
1336 |
|
---|
1337 | // Generate DataDesc table
|
---|
1338 |
|
---|
1339 | Matrix<uInt> ddIdx;
|
---|
1340 | SDDataDesc dDesc;
|
---|
1341 | generateDataDescTable (ddIdx, dDesc, nIF, in, tabIn, srcCol, fqIDCol, perFreqID);
|
---|
1342 |
|
---|
1343 | // Get reference Epoch to time of first row or given String
|
---|
1344 |
|
---|
1345 | Unit DAY(String("d"));
|
---|
1346 | MEpoch::Ref epochRef(in.getTimeReference());
|
---|
1347 | MEpoch refEpoch;
|
---|
1348 | if (refTime.length()>0) {
|
---|
1349 | refEpoch = epochFromString(refTime, in.getTimeReference());
|
---|
1350 | } else {
|
---|
1351 | refEpoch = in.getEpoch(0);
|
---|
1352 | }
|
---|
1353 | cout << "Aligning at reference Epoch " << formatEpoch(refEpoch)
|
---|
1354 | << " in frame " << MFrequency::showType(freqSystem) << endl;
|
---|
1355 |
|
---|
1356 | // Get Reference Position
|
---|
1357 |
|
---|
1358 | MPosition refPos = in.getAntennaPosition();
|
---|
1359 |
|
---|
1360 | // Create FrequencyAligner Block. One FA for each possible
|
---|
1361 | // source/freqID (perFreqID=True) or source/IF (perFreqID=False) combination
|
---|
1362 |
|
---|
1363 | PtrBlock<FrequencyAligner<Float>* > a(dDesc.length());
|
---|
1364 | generateFrequencyAligners (a, dDesc, in, nChan, freqSystem, refPos,
|
---|
1365 | refEpoch, perFreqID);
|
---|
1366 |
|
---|
1367 | // Generate and fill output Frequency Table. WHen perFreqID=True, there is one output FreqID
|
---|
1368 | // for each entry in the SDDataDesc table. However, in perFreqID=False mode, there may be
|
---|
1369 | // some degeneracy, so we need a little translation map
|
---|
1370 |
|
---|
1371 | SDFrequencyTable freqTabOut = in.getSDFreqTable();
|
---|
1372 | freqTabOut.setLength(0);
|
---|
1373 | Vector<String> units(1);
|
---|
1374 | units = String("Hz");
|
---|
1375 | Bool linear=True;
|
---|
1376 | //
|
---|
1377 | Vector<uInt> ddFQTrans(dDesc.length(),0);
|
---|
1378 | for (uInt i=0; i<dDesc.length(); i++) {
|
---|
1379 |
|
---|
1380 | // Get Aligned SC in Hz
|
---|
1381 |
|
---|
1382 | SpectralCoordinate sC = a[i]->alignedSpectralCoordinate(linear);
|
---|
1383 | sC.setWorldAxisUnits(units);
|
---|
1384 |
|
---|
1385 | // Add FreqID
|
---|
1386 |
|
---|
1387 | uInt idx = freqTabOut.addFrequency(sC.referencePixel()[0],
|
---|
1388 | sC.referenceValue()[0],
|
---|
1389 | sC.increment()[0]);
|
---|
1390 | ddFQTrans(i) = idx; // output FreqID = ddFQTrans(ddIdx)
|
---|
1391 | }
|
---|
1392 |
|
---|
1393 | // Interpolation method
|
---|
1394 |
|
---|
1395 | InterpolateArray1D<Double,Float>::InterpolationMethod interp;
|
---|
1396 | convertInterpString(interp, methodStr);
|
---|
1397 |
|
---|
1398 | // New output Table
|
---|
1399 |
|
---|
1400 | cout << "Create output table" << endl;
|
---|
1401 | SDMemTable* pTabOut = new SDMemTable(in,True);
|
---|
1402 | pTabOut->putSDFreqTable(freqTabOut);
|
---|
1403 |
|
---|
1404 | // Loop over rows in Table
|
---|
1405 |
|
---|
1406 | Bool extrapolate=False;
|
---|
1407 | const IPosition polChanAxes(2, asap::PolAxis, asap::ChanAxis);
|
---|
1408 | Bool useCachedAbcissa = False;
|
---|
1409 | Bool first = True;
|
---|
1410 | Bool ok;
|
---|
1411 | Vector<Float> yOut;
|
---|
1412 | Vector<Bool> maskOut;
|
---|
1413 | Vector<uInt> freqID(nIF);
|
---|
1414 | uInt ifIdx, faIdx;
|
---|
1415 | Vector<Double> xIn;
|
---|
1416 | //
|
---|
1417 | for (uInt iRow=0; iRow<nRows; ++iRow) {
|
---|
1418 | if (iRow%10==0) {
|
---|
1419 | cout << "Processing row " << iRow << endl;
|
---|
1420 | }
|
---|
1421 |
|
---|
1422 | // Get EPoch
|
---|
1423 |
|
---|
1424 | Quantum<Double> tQ2(times[iRow],DAY);
|
---|
1425 | MVEpoch mv2(tQ2);
|
---|
1426 | MEpoch epoch(mv2, epochRef);
|
---|
1427 |
|
---|
1428 | // Get copy of data
|
---|
1429 |
|
---|
1430 | const MaskedArray<Float>& mArrIn(in.rowAsMaskedArray(iRow));
|
---|
1431 | Array<Float> values = mArrIn.getArray();
|
---|
1432 | Array<Bool> mask = mArrIn.getMask();
|
---|
1433 |
|
---|
1434 | // For each row, the Frequency abcissa will be the same regardless
|
---|
1435 | // of polarization. For all other axes (IF and BEAM) the abcissa
|
---|
1436 | // will change. So we iterate through the data by pol-chan planes
|
---|
1437 | // to mimimize the work. Probably won't work for multiple beams
|
---|
1438 | // at this point.
|
---|
1439 |
|
---|
1440 | ArrayIterator<Float> itValuesPlane(values, polChanAxes);
|
---|
1441 | ArrayIterator<Bool> itMaskPlane(mask, polChanAxes);
|
---|
1442 | while (!itValuesPlane.pastEnd()) {
|
---|
1443 |
|
---|
1444 | // Find the IF index and then the FA PtrBlock index
|
---|
1445 |
|
---|
1446 | const IPosition& pos = itValuesPlane.pos();
|
---|
1447 | ifIdx = pos(asap::IFAxis);
|
---|
1448 | faIdx = ddIdx(iRow,ifIdx);
|
---|
1449 |
|
---|
1450 | // Generate abcissa for perIF. Could cache this in a Matrix
|
---|
1451 | // on a per scan basis. Pretty expensive doing it for every row.
|
---|
1452 |
|
---|
1453 | if (!perFreqID) {
|
---|
1454 | xIn.resize(nChan);
|
---|
1455 | uInt fqID = dDesc.secID(ddIdx(iRow,ifIdx));
|
---|
1456 | SpectralCoordinate sC = in.getSpectralCoordinate(fqID);
|
---|
1457 | Double w;
|
---|
1458 | for (uInt i=0; i<nChan; i++) {
|
---|
1459 | sC.toWorld(w,Double(i));
|
---|
1460 | xIn[i] = w;
|
---|
1461 | }
|
---|
1462 | }
|
---|
1463 | //
|
---|
1464 | VectorIterator<Float> itValuesVec(itValuesPlane.array(), 1);
|
---|
1465 | VectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
|
---|
1466 |
|
---|
1467 | // Iterate through the plane by vector and align
|
---|
1468 |
|
---|
1469 | first = True;
|
---|
1470 | useCachedAbcissa=False;
|
---|
1471 | while (!itValuesVec.pastEnd()) {
|
---|
1472 | if (perFreqID) {
|
---|
1473 | ok = a[faIdx]->align (yOut, maskOut, itValuesVec.vector(),
|
---|
1474 | itMaskVec.vector(), epoch, useCachedAbcissa,
|
---|
1475 | interp, extrapolate);
|
---|
1476 | } else {
|
---|
1477 | ok = a[faIdx]->align (yOut, maskOut, xIn, itValuesVec.vector(),
|
---|
1478 | itMaskVec.vector(), epoch, useCachedAbcissa,
|
---|
1479 | interp, extrapolate);
|
---|
1480 | }
|
---|
1481 | //
|
---|
1482 | itValuesVec.vector() = yOut;
|
---|
1483 | itMaskVec.vector() = maskOut;
|
---|
1484 | //
|
---|
1485 | itValuesVec.next();
|
---|
1486 | itMaskVec.next();
|
---|
1487 | //
|
---|
1488 | if (first) {
|
---|
1489 | useCachedAbcissa = True;
|
---|
1490 | first = False;
|
---|
1491 | }
|
---|
1492 | }
|
---|
1493 | //
|
---|
1494 | itValuesPlane.next();
|
---|
1495 | itMaskPlane.next();
|
---|
1496 | }
|
---|
1497 |
|
---|
1498 | // Create SDContainer and put back
|
---|
1499 |
|
---|
1500 | SDContainer sc = in.getSDContainer(iRow);
|
---|
1501 | putDataInSDC(sc, values, mask);
|
---|
1502 |
|
---|
1503 | // Set output FreqIDs
|
---|
1504 |
|
---|
1505 | for (uInt i=0; i<nIF; i++) {
|
---|
1506 | uInt idx = ddIdx(iRow,i); // Index into SDDataDesc table
|
---|
1507 | freqID(i) = ddFQTrans(idx); // FreqID in output FQ table
|
---|
1508 | }
|
---|
1509 | sc.putFreqMap(freqID);
|
---|
1510 | //
|
---|
1511 | pTabOut->putSDContainer(sc);
|
---|
1512 | }
|
---|
1513 |
|
---|
1514 | // Now we must set the base and extra frames to the
|
---|
1515 | // input frame
|
---|
1516 |
|
---|
1517 | std::vector<string> info = pTabOut->getCoordInfo();
|
---|
1518 | info[1] = MFrequency::showType(freqSystem); // Conversion frame
|
---|
1519 | info[3] = info[1]; // Base frame
|
---|
1520 | pTabOut->setCoordInfo(info);
|
---|
1521 |
|
---|
1522 | // Clean up PointerBlock
|
---|
1523 |
|
---|
1524 | for (uInt i=0; i<a.nelements(); i++) delete a[i];
|
---|
1525 | //
|
---|
1526 | return pTabOut;
|
---|
1527 | }
|
---|
1528 |
|
---|
1529 |
|
---|
1530 | void SDMath::fillSDC(SDContainer& sc,
|
---|
1531 | const Array<Bool>& mask,
|
---|
1532 | const Array<Float>& data,
|
---|
1533 | const Array<Float>& tSys,
|
---|
1534 | Int scanID, Double timeStamp,
|
---|
1535 | Double interval, const String& sourceName,
|
---|
1536 | const Vector<uInt>& freqID) const
|
---|
1537 | {
|
---|
1538 | // Data and mask
|
---|
1539 |
|
---|
1540 | putDataInSDC(sc, data, mask);
|
---|
1541 |
|
---|
1542 | // TSys
|
---|
1543 |
|
---|
1544 | sc.putTsys(tSys);
|
---|
1545 |
|
---|
1546 | // Time things
|
---|
1547 |
|
---|
1548 | sc.timestamp = timeStamp;
|
---|
1549 | sc.interval = interval;
|
---|
1550 | sc.scanid = scanID;
|
---|
1551 | //
|
---|
1552 | sc.sourcename = sourceName;
|
---|
1553 | sc.putFreqMap(freqID);
|
---|
1554 | }
|
---|
1555 |
|
---|
1556 | void SDMath::normalize(MaskedArray<Float>& sum,
|
---|
1557 | const Array<Float>& sumSq,
|
---|
1558 | const Array<Float>& nPts,
|
---|
1559 | WeightType wtType, Int axis,
|
---|
1560 | Int nAxesSub) const
|
---|
1561 | {
|
---|
1562 | IPosition pos2(nAxesSub,0);
|
---|
1563 | //
|
---|
1564 | if (wtType==NONE) {
|
---|
1565 |
|
---|
1566 | // We just average by the number of points accumulated.
|
---|
1567 | // We need to make a MA out of nPts so that no divide by
|
---|
1568 | // zeros occur
|
---|
1569 |
|
---|
1570 | MaskedArray<Float> t(nPts, (nPts>Float(0.0)));
|
---|
1571 | sum /= t;
|
---|
1572 | } else if (wtType==VAR) {
|
---|
1573 |
|
---|
1574 | // Normalize each spectrum by sum(1/var) where the variance
|
---|
1575 | // is worked out for each spectrum
|
---|
1576 |
|
---|
1577 | Array<Float>& data = sum.getRWArray();
|
---|
1578 | VectorIterator<Float> itData(data, axis);
|
---|
1579 | while (!itData.pastEnd()) {
|
---|
1580 | pos2 = itData.pos().getFirst(nAxesSub);
|
---|
1581 | itData.vector() /= sumSq(pos2);
|
---|
1582 | itData.next();
|
---|
1583 | }
|
---|
1584 | } else if (wtType==TSYS) {
|
---|
1585 | }
|
---|
1586 | }
|
---|
1587 |
|
---|
1588 |
|
---|
1589 | void SDMath::accumulate(Double& timeSum, Double& intSum, Int& nAccum,
|
---|
1590 | MaskedArray<Float>& sum, Array<Float>& sumSq,
|
---|
1591 | Array<Float>& nPts, Array<Float>& tSysSum,
|
---|
1592 | const Array<Float>& tSys, const Array<Float>& nInc,
|
---|
1593 | const Vector<Bool>& mask, Double time, Double interval,
|
---|
1594 | const Block<CountedPtr<SDMemTable> >& in,
|
---|
1595 | uInt iTab, uInt iRow, uInt axis,
|
---|
1596 | uInt nAxesSub, Bool useMask,
|
---|
1597 | WeightType wtType) const
|
---|
1598 | {
|
---|
1599 |
|
---|
1600 | // Get data
|
---|
1601 |
|
---|
1602 | MaskedArray<Float> dataIn(in[iTab]->rowAsMaskedArray(iRow));
|
---|
1603 | Array<Float>& valuesIn = dataIn.getRWArray(); // writable reference
|
---|
1604 | const Array<Bool>& maskIn = dataIn.getMask(); // RO reference
|
---|
1605 | //
|
---|
1606 | if (wtType==NONE) {
|
---|
1607 | const MaskedArray<Float> n(nInc,dataIn.getMask());
|
---|
1608 | nPts += n; // Only accumulates where mask==T
|
---|
1609 | } else if (wtType==VAR) {
|
---|
1610 |
|
---|
1611 | // We are going to average the data, weighted by the noise for each pol, beam and IF.
|
---|
1612 | // So therefore we need to iterate through by spectrum (axis 3)
|
---|
1613 |
|
---|
1614 | VectorIterator<Float> itData(valuesIn, axis);
|
---|
1615 | ReadOnlyVectorIterator<Bool> itMask(maskIn, axis);
|
---|
1616 | Float fac = 1.0;
|
---|
1617 | IPosition pos(nAxesSub,0);
|
---|
1618 | //
|
---|
1619 | while (!itData.pastEnd()) {
|
---|
1620 |
|
---|
1621 | // Make MaskedArray of Vector, optionally apply OTF mask, and find scaling factor
|
---|
1622 |
|
---|
1623 | if (useMask) {
|
---|
1624 | MaskedArray<Float> tmp(itData.vector(),mask&&itMask.vector());
|
---|
1625 | fac = 1.0/variance(tmp);
|
---|
1626 | } else {
|
---|
1627 | MaskedArray<Float> tmp(itData.vector(),itMask.vector());
|
---|
1628 | fac = 1.0/variance(tmp);
|
---|
1629 | }
|
---|
1630 |
|
---|
1631 | // Scale data
|
---|
1632 |
|
---|
1633 | itData.vector() *= fac; // Writes back into 'dataIn'
|
---|
1634 | //
|
---|
1635 | // Accumulate variance per if/pol/beam averaged over spectrum
|
---|
1636 | // This method to get pos2 from itData.pos() is only valid
|
---|
1637 | // because the spectral axis is the last one (so we can just
|
---|
1638 | // copy the first nAXesSub positions out)
|
---|
1639 |
|
---|
1640 | pos = itData.pos().getFirst(nAxesSub);
|
---|
1641 | sumSq(pos) += fac;
|
---|
1642 | //
|
---|
1643 | itData.next();
|
---|
1644 | itMask.next();
|
---|
1645 | }
|
---|
1646 | } else if (wtType==TSYS) {
|
---|
1647 | }
|
---|
1648 |
|
---|
1649 | // Accumulate sum of (possibly scaled) data
|
---|
1650 |
|
---|
1651 | sum += dataIn;
|
---|
1652 |
|
---|
1653 | // Accumulate Tsys, time, and interval
|
---|
1654 |
|
---|
1655 | tSysSum += tSys;
|
---|
1656 | timeSum += time;
|
---|
1657 | intSum += interval;
|
---|
1658 | nAccum += 1;
|
---|
1659 | }
|
---|
1660 |
|
---|
1661 |
|
---|
1662 | void SDMath::setCursorSlice (IPosition& start, IPosition& end, Bool doAll, const SDMemTable& in) const
|
---|
1663 | {
|
---|
1664 | const uInt nDim = asap::nAxes;
|
---|
1665 | DebugAssert(nDim==4,AipsError);
|
---|
1666 | //
|
---|
1667 | start.resize(nDim);
|
---|
1668 | end.resize(nDim);
|
---|
1669 | if (doAll) {
|
---|
1670 | start = 0;
|
---|
1671 | end(0) = in.nBeam()-1;
|
---|
1672 | end(1) = in.nIF()-1;
|
---|
1673 | end(2) = in.nPol()-1;
|
---|
1674 | end(3) = in.nChan()-1;
|
---|
1675 | } else {
|
---|
1676 | start(0) = in.getBeam();
|
---|
1677 | end(0) = start(0);
|
---|
1678 | //
|
---|
1679 | start(1) = in.getIF();
|
---|
1680 | end(1) = start(1);
|
---|
1681 | //
|
---|
1682 | start(2) = in.getPol();
|
---|
1683 | end(2) = start(2);
|
---|
1684 | //
|
---|
1685 | start(3) = 0;
|
---|
1686 | end(3) = in.nChan()-1;
|
---|
1687 | }
|
---|
1688 | }
|
---|
1689 |
|
---|
1690 |
|
---|
1691 | void SDMath::convertWeightString(WeightType& wtType, const String& weightStr) const
|
---|
1692 | {
|
---|
1693 | String tStr(weightStr);
|
---|
1694 | tStr.upcase();
|
---|
1695 | if (tStr.contains(String("NONE"))) {
|
---|
1696 | wtType = NONE;
|
---|
1697 | } else if (tStr.contains(String("VAR"))) {
|
---|
1698 | wtType = VAR;
|
---|
1699 | } else if (tStr.contains(String("TSYS"))) {
|
---|
1700 | wtType = TSYS;
|
---|
1701 | throw(AipsError("T_sys weighting not yet implemented"));
|
---|
1702 | } else {
|
---|
1703 | throw(AipsError("Unrecognized weighting type"));
|
---|
1704 | }
|
---|
1705 | }
|
---|
1706 |
|
---|
1707 |
|
---|
1708 | void SDMath::convertInterpString(casa::InterpolateArray1D<Double,Float>::InterpolationMethod& type,
|
---|
1709 | const casa::String& interp) const
|
---|
1710 | {
|
---|
1711 | String tStr(interp);
|
---|
1712 | tStr.upcase();
|
---|
1713 | if (tStr.contains(String("NEAR"))) {
|
---|
1714 | type = InterpolateArray1D<Double,Float>::nearestNeighbour;
|
---|
1715 | } else if (tStr.contains(String("LIN"))) {
|
---|
1716 | type = InterpolateArray1D<Double,Float>::linear;
|
---|
1717 | } else if (tStr.contains(String("CUB"))) {
|
---|
1718 | type = InterpolateArray1D<Double,Float>::cubic;
|
---|
1719 | } else if (tStr.contains(String("SPL"))) {
|
---|
1720 | type = InterpolateArray1D<Double,Float>::spline;
|
---|
1721 | } else {
|
---|
1722 | throw(AipsError("Unrecognized interpolation type"));
|
---|
1723 | }
|
---|
1724 | }
|
---|
1725 |
|
---|
1726 | void SDMath::putDataInSDC(SDContainer& sc, const Array<Float>& data,
|
---|
1727 | const Array<Bool>& mask) const
|
---|
1728 | {
|
---|
1729 | sc.putSpectrum(data);
|
---|
1730 | //
|
---|
1731 | Array<uChar> outflags(data.shape());
|
---|
1732 | convertArray(outflags,!mask);
|
---|
1733 | sc.putFlags(outflags);
|
---|
1734 | }
|
---|
1735 |
|
---|
1736 | Table SDMath::readAsciiFile (const String& fileName) const
|
---|
1737 | {
|
---|
1738 | String formatString;
|
---|
1739 | Table tbl = readAsciiTable (formatString, Table::Memory, fileName, "", "", False);
|
---|
1740 | return tbl;
|
---|
1741 | }
|
---|
1742 |
|
---|
1743 |
|
---|
1744 |
|
---|
1745 | void SDMath::correctFromAsciiTable(SDMemTable* pTabOut,
|
---|
1746 | const SDMemTable& in, const String& fileName,
|
---|
1747 | const String& col0, const String& col1,
|
---|
1748 | const String& methodStr, Bool doAll,
|
---|
1749 | const Vector<Float>& xOut) const
|
---|
1750 | {
|
---|
1751 |
|
---|
1752 | // Read gain-elevation ascii file data into a Table.
|
---|
1753 |
|
---|
1754 | Table geTable = readAsciiFile (fileName);
|
---|
1755 | //
|
---|
1756 | correctFromTable (pTabOut, in, geTable, col0, col1, methodStr, doAll, xOut);
|
---|
1757 | }
|
---|
1758 |
|
---|
1759 | void SDMath::correctFromTable(SDMemTable* pTabOut, const SDMemTable& in,
|
---|
1760 | const Table& tTable, const String& col0,
|
---|
1761 | const String& col1,
|
---|
1762 | const String& methodStr, Bool doAll,
|
---|
1763 | const Vector<Float>& xOut) const
|
---|
1764 | {
|
---|
1765 |
|
---|
1766 | // Get data from Table
|
---|
1767 |
|
---|
1768 | ROScalarColumn<Float> geElCol(tTable, col0);
|
---|
1769 | ROScalarColumn<Float> geFacCol(tTable, col1);
|
---|
1770 | Vector<Float> xIn = geElCol.getColumn();
|
---|
1771 | Vector<Float> yIn = geFacCol.getColumn();
|
---|
1772 | Vector<Bool> maskIn(xIn.nelements(),True);
|
---|
1773 |
|
---|
1774 | // Interpolate (and extrapolate) with desired method
|
---|
1775 |
|
---|
1776 | InterpolateArray1D<Double,Float>::InterpolationMethod method;
|
---|
1777 | convertInterpString(method, methodStr);
|
---|
1778 | Int intMethod(method);
|
---|
1779 | //
|
---|
1780 | Vector<Float> yOut;
|
---|
1781 | Vector<Bool> maskOut;
|
---|
1782 | InterpolateArray1D<Float,Float>::interpolate(yOut, maskOut, xOut,
|
---|
1783 | xIn, yIn, maskIn, intMethod,
|
---|
1784 | True, True);
|
---|
1785 | // Apply
|
---|
1786 |
|
---|
1787 | correctFromVector (pTabOut, in, doAll, yOut);
|
---|
1788 | }
|
---|
1789 |
|
---|
1790 |
|
---|
1791 | void SDMath::correctFromVector (SDMemTable* pTabOut, const SDMemTable& in,
|
---|
1792 | Bool doAll, const Vector<Float>& factor) const
|
---|
1793 | {
|
---|
1794 |
|
---|
1795 | // Set up data slice
|
---|
1796 |
|
---|
1797 | IPosition start, end;
|
---|
1798 | setCursorSlice (start, end, doAll, in);
|
---|
1799 |
|
---|
1800 | // Loop over rows and apply correction factor
|
---|
1801 |
|
---|
1802 | const uInt axis = asap::ChanAxis;
|
---|
1803 | for (uInt i=0; i < in.nRow(); ++i) {
|
---|
1804 |
|
---|
1805 | // Get data
|
---|
1806 |
|
---|
1807 | MaskedArray<Float> dataIn(in.rowAsMaskedArray(i));
|
---|
1808 | MaskedArray<Float> dataIn2 = dataIn(start,end); // reference to dataIn
|
---|
1809 |
|
---|
1810 | // Apply factor
|
---|
1811 |
|
---|
1812 | dataIn2 *= factor[i];
|
---|
1813 |
|
---|
1814 | // Write out
|
---|
1815 |
|
---|
1816 | SDContainer sc = in.getSDContainer(i);
|
---|
1817 | putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
|
---|
1818 | //
|
---|
1819 | pTabOut->putSDContainer(sc);
|
---|
1820 | }
|
---|
1821 | }
|
---|
1822 |
|
---|
1823 |
|
---|
1824 |
|
---|
1825 |
|
---|
1826 | void SDMath::generateDataDescTable (Matrix<uInt>& ddIdx,
|
---|
1827 | SDDataDesc& dDesc,
|
---|
1828 | uInt nIF,
|
---|
1829 | const SDMemTable& in,
|
---|
1830 | const Table& tabIn,
|
---|
1831 | const ROScalarColumn<String>& srcCol,
|
---|
1832 | const ROArrayColumn<uInt>& fqIDCol,
|
---|
1833 | Bool perFreqID) const
|
---|
1834 | {
|
---|
1835 | const uInt nRows = tabIn.nrow();
|
---|
1836 | ddIdx.resize(nRows,nIF);
|
---|
1837 | //
|
---|
1838 | String srcName;
|
---|
1839 | Vector<uInt> freqIDs;
|
---|
1840 | for (uInt iRow=0; iRow<nRows; iRow++) {
|
---|
1841 | srcCol.get(iRow, srcName);
|
---|
1842 | fqIDCol.get(iRow, freqIDs);
|
---|
1843 | const MDirection& dir = in.getDirection(iRow);
|
---|
1844 | //
|
---|
1845 | if (perFreqID) {
|
---|
1846 |
|
---|
1847 | // One entry per source/freqID pair
|
---|
1848 |
|
---|
1849 | for (uInt iIF=0; iIF<nIF; iIF++) {
|
---|
1850 | ddIdx(iRow,iIF) = dDesc.addEntry(srcName, freqIDs[iIF], dir, 0);
|
---|
1851 | }
|
---|
1852 | } else {
|
---|
1853 |
|
---|
1854 | // One entry per source/IF pair. Hang onto the FreqID as well
|
---|
1855 |
|
---|
1856 | for (uInt iIF=0; iIF<nIF; iIF++) {
|
---|
1857 | ddIdx(iRow,iIF) = dDesc.addEntry(srcName, iIF, dir, freqIDs[iIF]);
|
---|
1858 | }
|
---|
1859 | }
|
---|
1860 | }
|
---|
1861 | }
|
---|
1862 |
|
---|
1863 |
|
---|
1864 |
|
---|
1865 |
|
---|
1866 |
|
---|
1867 | MEpoch SDMath::epochFromString (const String& str, MEpoch::Types timeRef) const
|
---|
1868 | {
|
---|
1869 | Quantum<Double> qt;
|
---|
1870 | if (MVTime::read(qt,str)) {
|
---|
1871 | MVEpoch mv(qt);
|
---|
1872 | MEpoch me(mv, timeRef);
|
---|
1873 | return me;
|
---|
1874 | } else {
|
---|
1875 | throw(AipsError("Invalid format for Epoch string"));
|
---|
1876 | }
|
---|
1877 | }
|
---|
1878 |
|
---|
1879 |
|
---|
1880 | String SDMath::formatEpoch(const MEpoch& epoch) const
|
---|
1881 | {
|
---|
1882 | MVTime mvt(epoch.getValue());
|
---|
1883 | return mvt.string(MVTime::YMD) + String(" (") + epoch.getRefString() + String(")");
|
---|
1884 | }
|
---|
1885 |
|
---|
1886 |
|
---|
1887 |
|
---|
1888 | void SDMath::generateFrequencyAligners (PtrBlock<FrequencyAligner<Float>* >& a,
|
---|
1889 | const SDDataDesc& dDesc,
|
---|
1890 | const SDMemTable& in, uInt nChan,
|
---|
1891 | MFrequency::Types system,
|
---|
1892 | const MPosition& refPos,
|
---|
1893 | const MEpoch& refEpoch,
|
---|
1894 | Bool perFreqID) const
|
---|
1895 | {
|
---|
1896 | for (uInt i=0; i<dDesc.length(); i++) {
|
---|
1897 | uInt ID = dDesc.ID(i);
|
---|
1898 | uInt secID = dDesc.secID(i);
|
---|
1899 | const MDirection& refDir = dDesc.secDir(i);
|
---|
1900 | //
|
---|
1901 | if (perFreqID) {
|
---|
1902 |
|
---|
1903 | // One aligner per source/FreqID pair.
|
---|
1904 |
|
---|
1905 | SpectralCoordinate sC = in.getSpectralCoordinate(ID);
|
---|
1906 | a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
|
---|
1907 | } else {
|
---|
1908 |
|
---|
1909 | // One aligner per source/IF pair. But we still need the FreqID to
|
---|
1910 | // get the right SC. Hence the messing about with the secondary ID
|
---|
1911 |
|
---|
1912 | SpectralCoordinate sC = in.getSpectralCoordinate(secID);
|
---|
1913 | a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
|
---|
1914 | }
|
---|
1915 | }
|
---|
1916 | }
|
---|