source: trunk/src/SDMath.cc @ 414

Last change on this file since 414 was 414, checked in by mar637, 19 years ago

cerr to cout changes were appropriate.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 53.4 KB
Line 
1//#---------------------------------------------------------------------------
2//# SDMath.cc: A collection of single dish mathematical operations
3//#---------------------------------------------------------------------------
4//# Copyright (C) 2004
5//# ATNF
6//#
7//# This program is free software; you can redistribute it and/or modify it
8//# under the terms of the GNU General Public License as published by the Free
9//# Software Foundation; either version 2 of the License, or (at your option)
10//# any later version.
11//#
12//# This program is distributed in the hope that it will be useful, but
13//# WITHOUT ANY WARRANTY; without even the implied warranty of
14//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
15//# Public License for more details.
16//#
17//# You should have received a copy of the GNU General Public License along
18//# with this program; if not, write to the Free Software Foundation, Inc.,
19//# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
20//#
21//# Correspondence concerning this software should be addressed as follows:
22//#        Internet email: Malte.Marquarding@csiro.au
23//#        Postal address: Malte Marquarding,
24//#                        Australia Telescope National Facility,
25//#                        P.O. Box 76,
26//#                        Epping, NSW, 2121,
27//#                        AUSTRALIA
28//#
29//# $Id:
30//#---------------------------------------------------------------------------
31#include <vector>
32
33#include <casa/aips.h>
34#include <casa/iostream.h>
35#include <casa/iomanip.h>
36#include <casa/BasicSL/String.h>
37#include <casa/Arrays/IPosition.h>
38#include <casa/Arrays/Array.h>
39#include <casa/Arrays/ArrayIter.h>
40#include <casa/Arrays/VectorIter.h>
41#include <casa/Arrays/ArrayMath.h>
42#include <casa/Arrays/ArrayLogical.h>
43#include <casa/Arrays/MaskedArray.h>
44#include <casa/Arrays/MaskArrMath.h>
45#include <casa/Arrays/MaskArrLogi.h>
46#include <casa/Arrays/Matrix.h>
47#include <casa/BasicMath/Math.h>
48#include <casa/Containers/Block.h>
49#include <casa/Exceptions.h>
50#include <casa/Quanta/Quantum.h>
51#include <casa/Quanta/Unit.h>
52#include <casa/Quanta/MVEpoch.h>
53#include <casa/Quanta/MVTime.h>
54#include <casa/Utilities/Assert.h>
55
56#include <coordinates/Coordinates/SpectralCoordinate.h>
57#include <coordinates/Coordinates/CoordinateSystem.h>
58#include <coordinates/Coordinates/CoordinateUtil.h>
59#include <coordinates/Coordinates/FrequencyAligner.h>
60
61#include <lattices/Lattices/LatticeUtilities.h>
62#include <lattices/Lattices/RebinLattice.h>
63
64#include <measures/Measures/MEpoch.h>
65#include <measures/Measures/MDirection.h>
66#include <measures/Measures/MPosition.h>
67
68#include <scimath/Mathematics/VectorKernel.h>
69#include <scimath/Mathematics/Convolver.h>
70#include <scimath/Mathematics/InterpolateArray1D.h>
71#include <scimath/Functionals/Polynomial.h>
72
73#include <tables/Tables/Table.h>
74#include <tables/Tables/ScalarColumn.h>
75#include <tables/Tables/ArrayColumn.h>
76#include <tables/Tables/ReadAsciiTable.h>
77
78#include "MathUtils.h"
79#include "SDDefs.h"
80#include "SDAttr.h"
81#include "SDContainer.h"
82#include "SDMemTable.h"
83
84#include "SDMath.h"
85
86using namespace casa;
87using namespace asap;
88
89
90SDMath::SDMath()
91{;}
92
93SDMath::SDMath(const SDMath& other)
94{
95
96// No state
97
98}
99
100SDMath& SDMath::operator=(const SDMath& other)
101{
102  if (this != &other) {
103// No state
104  }
105  return *this;
106}
107
108SDMath::~SDMath()
109{;}
110
111
112
113SDMemTable* SDMath::frequencyAlignment (const SDMemTable& in, const String& refTime,
114                                         const String& method, Bool perFreqID) const
115{
116// Get frame info from Table
117
118   std::vector<std::string> info = in.getCoordInfo();
119
120// Parse frequency system
121
122   String systemStr(info[1]);
123   String baseSystemStr(info[3]);
124   if (baseSystemStr==systemStr) {
125      throw(AipsError("You have not set a frequency frame different from the initial - use function set_freqframe"));
126   }
127//
128   MFrequency::Types freqSystem;
129   MFrequency::getType(freqSystem, systemStr);
130
131// Do it
132
133   return frequencyAlign (in, freqSystem, refTime, method, perFreqID);
134}
135
136
137
138CountedPtr<SDMemTable> SDMath::average(const Block<CountedPtr<SDMemTable> >& in,
139                                       const Vector<Bool>& mask, Bool scanAv,
140                                       const String& weightStr, Bool alignFreq) const
141//
142// Weighted averaging of spectra from one or more Tables.
143//
144{
145
146// Convert weight type
147 
148  WeightType wtType = NONE;
149  convertWeightString(wtType, weightStr);
150
151// Create output Table by cloning from the first table
152
153  SDMemTable* pTabOut = new SDMemTable(*in[0],True);
154
155// Setup
156
157  IPosition shp = in[0]->rowAsMaskedArray(0).shape();      // Must not change
158  Array<Float> arr(shp);
159  Array<Bool> barr(shp);
160  const Bool useMask = (mask.nelements() == shp(asap::ChanAxis));
161
162// Columns from Tables
163
164  ROArrayColumn<Float> tSysCol;
165  ROScalarColumn<Double> mjdCol;
166  ROScalarColumn<String> srcNameCol;
167  ROScalarColumn<Double> intCol;
168  ROArrayColumn<uInt> fqIDCol;
169  ROScalarColumn<Int> scanIDCol;
170
171// Create accumulation MaskedArray. We accumulate for each channel,if,pol,beam
172// Note that the mask of the accumulation array will ALWAYS remain ALL True.
173// The MA is only used so that when data which is masked Bad is added to it,
174// that data does not contribute.
175
176  Array<Float> zero(shp);
177  zero=0.0;
178  Array<Bool> good(shp);
179  good = True;
180  MaskedArray<Float> sum(zero,good);
181
182// Counter arrays
183
184  Array<Float> nPts(shp);             // Number of points
185  nPts = 0.0;
186  Array<Float> nInc(shp);             // Increment
187  nInc = 1.0;
188
189// Create accumulation Array for variance. We accumulate for
190// each if,pol,beam, but average over channel.  So we need
191// a shape with one less axis dropping channels.
192
193  const uInt nAxesSub = shp.nelements() - 1;
194  IPosition shp2(nAxesSub);
195  for (uInt i=0,j=0; i<(nAxesSub+1); i++) {
196     if (i!=asap::ChanAxis) {
197       shp2(j) = shp(i);
198       j++;
199     }
200  }
201  Array<Float> sumSq(shp2);
202  sumSq = 0.0;
203  IPosition pos2(nAxesSub,0);                        // For indexing
204
205// Time-related accumulators
206
207  Double time;
208  Double timeSum = 0.0;
209  Double intSum = 0.0;
210  Double interval = 0.0;
211
212// To get the right shape for the Tsys accumulator we need to
213// access a column from the first table.  The shape of this
214// array must not change
215
216  Array<Float> tSysSum;
217  {
218    const Table& tabIn = in[0]->table();
219    tSysCol.attach(tabIn,"TSYS");
220    tSysSum.resize(tSysCol.shape(0));
221  }
222  tSysSum =0.0;
223  Array<Float> tSys;
224
225// Scan and row tracking
226
227  Int oldScanID = 0;
228  Int outScanID = 0;
229  Int scanID = 0;
230  Int rowStart = 0;
231  Int nAccum = 0;
232  Int tableStart = 0;
233
234// Source and FreqID
235
236  String sourceName, oldSourceName, sourceNameStart;
237  Vector<uInt> freqID, freqIDStart, oldFreqID;
238
239// Loop over tables
240
241  Float fac = 1.0;
242  const uInt nTables = in.nelements();
243  for (uInt iTab=0; iTab<nTables; iTab++) {
244
245// Should check that the frequency tables don't change if doing FreqAlignment
246
247// Attach columns to Table
248
249     const Table& tabIn = in[iTab]->table();
250     tSysCol.attach(tabIn, "TSYS");
251     mjdCol.attach(tabIn, "TIME");
252     srcNameCol.attach(tabIn, "SRCNAME");
253     intCol.attach(tabIn, "INTERVAL");
254     fqIDCol.attach(tabIn, "FREQID");
255     scanIDCol.attach(tabIn, "SCANID");
256
257// Find list of start/end rows for each scan
258
259// Loop over rows in Table
260
261     const uInt nRows = in[iTab]->nRow();
262     for (uInt iRow=0; iRow<nRows; iRow++) {
263
264// Check conformance
265
266        IPosition shp2 = in[iTab]->rowAsMaskedArray(iRow).shape();
267        if (!shp.isEqual(shp2)) {
268           throw (AipsError("Shapes for all rows must be the same"));
269        }
270
271// If we are not doing scan averages, make checks for source and
272// frequency setup and warn if averaging across them
273
274        scanIDCol.getScalar(iRow, scanID);
275
276// Get quantities from columns
277
278        srcNameCol.getScalar(iRow, sourceName);
279        mjdCol.get(iRow, time);
280        tSysCol.get(iRow, tSys);
281        intCol.get(iRow, interval);
282        fqIDCol.get(iRow, freqID);
283
284// Initialize first source and freqID
285
286        if (iRow==0 && iTab==0) {
287          sourceNameStart = sourceName;
288          freqIDStart = freqID;
289        }
290
291// If we are doing scan averages, see if we are at the end of an
292// accumulation period (scan).  We must check soutce names too,
293// since we might have two tables with one scan each but different
294// source names; we shouldn't average different sources together
295
296        if (scanAv && ( (scanID != oldScanID)  ||
297                        (iRow==0 && iTab>0 && sourceName!=oldSourceName))) {
298
299// Normalize data in 'sum' accumulation array according to weighting scheme
300
301           normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);
302
303// Get ScanContainer for the first row of this averaged Scan
304
305           SDContainer scOut = in[iTab]->getSDContainer(rowStart);
306
307// Fill scan container. The source and freqID come from the
308// first row of the first table that went into this average (
309// should be the same for all rows in the scan average)
310
311           Float nR(nAccum);
312           fillSDC(scOut, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
313                    timeSum/nR, intSum, sourceNameStart, freqIDStart);
314
315// Write container out to Table
316
317           pTabOut->putSDContainer(scOut);
318
319// Reset accumulators
320
321           sum = 0.0;
322           sumSq = 0.0;
323           nAccum = 0;
324//
325           tSysSum =0.0;
326           timeSum = 0.0;
327           intSum = 0.0;
328           nPts = 0.0;
329
330// Increment
331
332           rowStart = iRow;              // First row for next accumulation
333           tableStart = iTab;            // First table for next accumulation
334           sourceNameStart = sourceName; // First source name for next accumulation
335           freqIDStart = freqID;         // First FreqID for next accumulation
336//
337           oldScanID = scanID;
338           outScanID += 1;               // Scan ID for next accumulation period
339        }
340
341// Accumulate
342
343        accumulate(timeSum, intSum, nAccum, sum, sumSq, nPts, tSysSum,
344                    tSys, nInc, mask, time, interval, in, iTab, iRow, asap::ChanAxis,
345                    nAxesSub, useMask, wtType);
346//
347       oldSourceName = sourceName;
348       oldFreqID = freqID;
349     }
350  }
351
352// OK at this point we have accumulation data which is either
353//   - accumulated from all tables into one row
354// or
355//   - accumulated from the last scan average
356//
357// Normalize data in 'sum' accumulation array according to weighting scheme
358
359  normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);
360
361// Create and fill container.  The container we clone will be from
362// the last Table and the first row that went into the current
363// accumulation.  It probably doesn't matter that much really...
364
365  Float nR(nAccum);
366  SDContainer scOut = in[tableStart]->getSDContainer(rowStart);
367  fillSDC(scOut, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
368           timeSum/nR, intSum, sourceNameStart, freqIDStart);
369  pTabOut->putSDContainer(scOut);
370  pTabOut->resetCursor();
371//
372  return CountedPtr<SDMemTable>(pTabOut);
373}
374
375
376
377CountedPtr<SDMemTable> SDMath::binaryOperate (const CountedPtr<SDMemTable>& left,
378                                              const CountedPtr<SDMemTable>& right,
379                                              const String& op, Bool preserve,
380                                              Bool doTSys)  const
381{
382
383// Check operator
384
385  String op2(op);
386  op2.upcase();
387  uInt what = 0;
388  if (op2=="ADD") {
389     what = 0;
390  } else if (op2=="SUB") {
391     what = 1;
392  } else if (op2=="MUL") {
393     what = 2;
394  } else if (op2=="DIV") {
395     what = 3;
396  } else if (op2=="QUOTIENT") {
397     what = 4;
398     doTSys = True;
399  } else {
400    throw( AipsError("Unrecognized operation"));
401  }
402
403// Check rows
404
405  const uInt nRowLeft = left->nRow();
406  const uInt nRowRight = right->nRow();
407  Bool ok = (nRowRight==1&&nRowLeft>0) ||
408            (nRowRight>=1&&nRowLeft==nRowRight);
409  if (!ok) {
410     throw (AipsError("The right Scan Table can have one row or the same number of rows as the left Scan Table"));
411  }
412
413// Input Tables
414
415  const Table& tLeft = left->table();
416  const Table& tRight = right->table();
417
418// TSys columns
419
420  ROArrayColumn<Float> tSysLeftCol, tSysRightCol;
421  if (doTSys) {
422     tSysLeftCol.attach(tLeft, "TSYS");
423     tSysRightCol.attach(tRight, "TSYS");
424  }
425
426// First row for right
427
428  Array<Float> tSysLeftArr, tSysRightArr;
429  if (doTSys) tSysRightCol.get(0, tSysRightArr);
430  MaskedArray<Float>* pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(0));
431  IPosition shpRight = pMRight->shape();
432
433// Output Table cloned from left
434
435  SDMemTable* pTabOut = new SDMemTable(*left, True);
436
437// Loop over rows
438
439  for (uInt i=0; i<nRowLeft; i++) {
440
441// Get data
442
443     MaskedArray<Float> mLeft(left->rowAsMaskedArray(i));
444     IPosition shpLeft = mLeft.shape();
445     if (doTSys) tSysLeftCol.get(i, tSysLeftArr);
446//
447     if (nRowRight>1) {
448        delete pMRight;
449        pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(i));
450        shpRight = pMRight->shape();
451        if (doTSys) tSysRightCol.get(i, tSysRightArr);
452     }
453//
454     if (!shpRight.isEqual(shpLeft)) {
455        throw(AipsError("left and right scan tables are not conformant"));
456     }
457     if (doTSys) {
458        if (!tSysRightArr.shape().isEqual(tSysRightArr.shape())) {
459           throw(AipsError("left and right Tsys data are not conformant"));
460        }
461        if (!shpRight.isEqual(tSysRightArr.shape())) {
462           throw(AipsError("left and right scan tables are not conformant"));
463        }
464     }
465
466// Make container
467
468     SDContainer sc = left->getSDContainer(i);
469
470// Operate on data and TSys
471
472     if (what==0) {                               
473        MaskedArray<Float> tmp = mLeft + *pMRight;
474        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
475        if (doTSys) sc.putTsys(tSysLeftArr+tSysRightArr);
476     } else if (what==1) {
477        MaskedArray<Float> tmp = mLeft - *pMRight;
478        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
479        if (doTSys) sc.putTsys(tSysLeftArr-tSysRightArr);
480     } else if (what==2) {
481        MaskedArray<Float> tmp = mLeft * *pMRight;
482        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
483        if (doTSys) sc.putTsys(tSysLeftArr*tSysRightArr);
484     } else if (what==3) {
485        MaskedArray<Float> tmp = mLeft / *pMRight;
486        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
487        if (doTSys) sc.putTsys(tSysLeftArr/tSysRightArr);
488     } else if (what==4) {
489        if (preserve) {     
490           MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) - tSysRightArr;
491           putDataInSDC(sc, tmp.getArray(), tmp.getMask());
492        } else {
493           MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) - tSysLeftArr;
494           putDataInSDC(sc, tmp.getArray(), tmp.getMask());
495        }
496        sc.putTsys(tSysRightArr);
497     }
498
499// Put new row in output Table
500
501     pTabOut->putSDContainer(sc);
502  }
503  if (pMRight) delete pMRight;
504  pTabOut->resetCursor();
505//
506  return CountedPtr<SDMemTable>(pTabOut);
507}
508
509
510
511std::vector<float> SDMath::statistic(const CountedPtr<SDMemTable>& in,
512                                     const Vector<Bool>& mask,
513                                     const String& which, Int row) const
514//
515// Perhaps iteration over pol/beam/if should be in here
516// and inside the nrow iteration ?
517//
518{
519  const uInt nRow = in->nRow();
520
521// Specify cursor location
522
523  IPosition start, end;
524  getCursorLocation(start, end, *in);
525
526// Loop over rows
527
528  const uInt nEl = mask.nelements();
529  uInt iStart = 0;
530  uInt iEnd = in->nRow()-1;
531// 
532  if (row>=0) {
533     iStart = row;
534     iEnd = row;
535  }
536//
537  std::vector<float> result(iEnd-iStart+1);
538  for (uInt ii=iStart; ii <= iEnd; ++ii) {
539
540// Get row and deconstruct
541
542     MaskedArray<Float> marr(in->rowAsMaskedArray(ii));
543     Array<Float> arr = marr.getArray();
544     Array<Bool> barr = marr.getMask();
545
546// Access desired piece of data
547
548     Array<Float> v((arr(start,end)).nonDegenerate());
549     Array<Bool> m((barr(start,end)).nonDegenerate());
550
551// Apply OTF mask
552
553     MaskedArray<Float> tmp;
554     if (m.nelements()==nEl) {
555       tmp.setData(v,m&&mask);
556     } else {
557       tmp.setData(v,m);
558     }
559
560// Get statistic
561
562     result[ii-iStart] = mathutil::statistics(which, tmp);
563  }
564//
565  return result;
566}
567
568
569SDMemTable* SDMath::bin(const SDMemTable& in, Int width) const
570{
571  SDHeader sh = in.getSDHeader();
572  SDMemTable* pTabOut = new SDMemTable(in, True);
573
574// Bin up SpectralCoordinates
575
576  IPosition factors(1);
577  factors(0) = width;
578  for (uInt j=0; j<in.nCoordinates(); ++j) {
579    CoordinateSystem cSys;
580    cSys.addCoordinate(in.getSpectralCoordinate(j));
581    CoordinateSystem cSysBin =
582      CoordinateUtil::makeBinnedCoordinateSystem(factors, cSys, False);
583//
584    SpectralCoordinate sCBin = cSysBin.spectralCoordinate(0);
585    pTabOut->setCoordinate(sCBin, j);
586  }
587
588// Use RebinLattice to find shape
589
590  IPosition shapeIn(1,sh.nchan);
591  IPosition shapeOut = RebinLattice<Float>::rebinShape(shapeIn, factors);
592  sh.nchan = shapeOut(0);
593  pTabOut->putSDHeader(sh);
594
595// Loop over rows and bin along channel axis
596 
597  for (uInt i=0; i < in.nRow(); ++i) {
598    SDContainer sc = in.getSDContainer(i);
599//
600    Array<Float> tSys(sc.getTsys());                           // Get it out before sc changes shape
601
602// Bin up spectrum
603
604    MaskedArray<Float> marr(in.rowAsMaskedArray(i));
605    MaskedArray<Float> marrout;
606    LatticeUtilities::bin(marrout, marr, asap::ChanAxis, width);
607
608// Put back the binned data and flags
609
610    IPosition ip2 = marrout.shape();
611    sc.resize(ip2);
612//
613    putDataInSDC(sc, marrout.getArray(), marrout.getMask());
614
615// Bin up Tsys. 
616
617    Array<Bool> allGood(tSys.shape(),True);
618    MaskedArray<Float> tSysIn(tSys, allGood, True);
619//
620    MaskedArray<Float> tSysOut;   
621    LatticeUtilities::bin(tSysOut, tSysIn, asap::ChanAxis, width);
622    sc.putTsys(tSysOut.getArray());
623//
624    pTabOut->putSDContainer(sc);
625  }
626  return pTabOut;
627}
628
629SDMemTable* SDMath::resample (const SDMemTable& in, const String& methodStr,
630                              Float width) const
631//
632// Should add the possibility of width being specified in km/s. This means
633// that for each freqID (SpectralCoordinate) we will need to convert to an
634// average channel width (say at the reference pixel).  Then we would need 
635// to be careful to make sure each spectrum (of different freqID)
636// is the same length.
637//
638{
639   Bool doVel = False;
640   if (doVel) {
641      for (uInt j=0; j<in.nCoordinates(); ++j) {
642         SpectralCoordinate sC = in.getSpectralCoordinate(j);
643      }
644   }
645
646// Interpolation method
647
648  InterpolateArray1D<Double,Float>::InterpolationMethod interp;
649  convertInterpString(interp, methodStr);
650  Int interpMethod(interp);
651
652// Make output table
653
654  SDMemTable* pTabOut = new SDMemTable(in, True);
655
656// Resample SpectralCoordinates (one per freqID)
657
658  const uInt nCoord = in.nCoordinates();
659  Vector<Float> offset(1,0.0);
660  Vector<Float> factors(1,1.0/width);
661  Vector<Int> newShape;
662  for (uInt j=0; j<in.nCoordinates(); ++j) {
663    CoordinateSystem cSys;
664    cSys.addCoordinate(in.getSpectralCoordinate(j));
665    CoordinateSystem cSys2 = cSys.subImage(offset, factors, newShape);
666    SpectralCoordinate sC = cSys2.spectralCoordinate(0);
667//
668    pTabOut->setCoordinate(sC, j);
669  }
670
671// Get header
672
673  SDHeader sh = in.getSDHeader();
674
675// Generate resampling vectors
676
677  const uInt nChanIn = sh.nchan;
678  Vector<Float> xIn(nChanIn);
679  indgen(xIn);
680//
681  Int fac =  Int(nChanIn/width);
682  Vector<Float> xOut(fac+10);          // 10 to be safe - resize later
683  uInt i = 0;
684  Float x = 0.0;
685  Bool more = True;
686  while (more) {
687    xOut(i) = x;
688//
689    i++;
690    x += width;
691    if (x>nChanIn-1) more = False;
692  }
693  const uInt nChanOut = i;
694  xOut.resize(nChanOut,True);
695//
696  IPosition shapeIn(in.rowAsMaskedArray(0).shape());
697  sh.nchan = nChanOut;
698  pTabOut->putSDHeader(sh);
699
700// Loop over rows and resample along channel axis
701
702  Array<Float> valuesOut;
703  Array<Bool> maskOut; 
704  Array<Float> tSysOut;
705  Array<Bool> tSysMaskIn(shapeIn,True);
706  Array<Bool> tSysMaskOut;
707  for (uInt i=0; i < in.nRow(); ++i) {
708
709// Get container
710
711     SDContainer sc = in.getSDContainer(i);
712
713// Get data and Tsys
714   
715     const Array<Float>& tSysIn = sc.getTsys();
716     const MaskedArray<Float>& dataIn(in.rowAsMaskedArray(i));
717     Array<Float> valuesIn = dataIn.getArray();
718     Array<Bool> maskIn = dataIn.getMask();
719
720// Interpolate data
721
722     InterpolateArray1D<Float,Float>::interpolate(valuesOut, maskOut, xOut,
723                                                  xIn, valuesIn, maskIn,
724                                                  interpMethod, True, True);
725     sc.resize(valuesOut.shape());
726     putDataInSDC(sc, valuesOut, maskOut);
727
728// Interpolate TSys
729
730     InterpolateArray1D<Float,Float>::interpolate(tSysOut, tSysMaskOut, xOut,
731                                                  xIn, tSysIn, tSysMaskIn,
732                                                  interpMethod, True, True);
733    sc.putTsys(tSysOut);
734
735// Put container in output
736
737    pTabOut->putSDContainer(sc);
738  }
739//
740  return pTabOut;
741}
742
743SDMemTable* SDMath::unaryOperate(const SDMemTable& in, Float val, Bool doAll,
744                                 uInt what, Bool doTSys) const
745//
746// what = 0   Multiply
747//        1   Add
748{
749   SDMemTable* pOut = new SDMemTable(in,False);
750   const Table& tOut = pOut->table();
751   ArrayColumn<Float> specCol(tOut,"SPECTRA"); 
752   ArrayColumn<Float> tSysCol(tOut,"TSYS"); 
753   Array<Float> tSysArr;
754//
755   if (doAll) {
756      for (uInt i=0; i < tOut.nrow(); i++) {
757
758// Modify data
759
760         MaskedArray<Float> dataIn(pOut->rowAsMaskedArray(i));
761         if (what==0) {
762            dataIn  *= val;
763         } else if (what==1) {
764            dataIn += val;
765         }
766         specCol.put(i, dataIn.getArray());
767
768// Modify Tsys
769
770         if (doTSys) {
771            tSysCol.get(i, tSysArr);
772            if (what==0) {
773               tSysArr *= val;
774            } else if (what==1) {
775               tSysArr += val;
776            }
777            tSysCol.put(i, tSysArr);
778         }
779      }
780   } else {
781
782// Get cursor location
783
784      IPosition start, end;
785      getCursorLocation(start, end, in);
786//
787      for (uInt i=0; i < tOut.nrow(); i++) {
788
789// Modify data
790
791         MaskedArray<Float> dataIn(pOut->rowAsMaskedArray(i));
792         MaskedArray<Float> dataIn2 = dataIn(start,end);    // Reference
793         if (what==0) {
794            dataIn2 *= val;
795         } else if (what==1) {
796            dataIn2 += val;
797         }
798         specCol.put(i, dataIn.getArray());
799
800// Modify Tsys
801
802         if (doTSys) {
803            tSysCol.get(i, tSysArr);
804            Array<Float> tSysArr2 = tSysArr(start,end);     // Reference
805            if (what==0) {
806               tSysArr2 *= val;
807            } else if (what==1) {
808               tSysArr2 += val;
809            }
810            tSysCol.put(i, tSysArr);
811         }
812      }
813   }
814//
815   return pOut;
816}
817
818
819
820SDMemTable* SDMath::averagePol(const SDMemTable& in, const Vector<Bool>& mask,
821                               const String& weightStr) const
822//
823// Average all polarizations together, weighted by variance
824//
825{
826   WeightType wtType = NONE;
827   convertWeightString(wtType, weightStr);
828
829   const uInt nRows = in.nRow();
830
831// Create output Table and reshape number of polarizations
832
833  Bool clear=True;
834  SDMemTable* pTabOut = new SDMemTable(in, clear);
835  SDHeader header = pTabOut->getSDHeader();
836  header.npol = 1;
837  pTabOut->putSDHeader(header);
838
839// Shape of input and output data
840
841  const IPosition& shapeIn = in.rowAsMaskedArray(0u, False).shape();
842  IPosition shapeOut(shapeIn);
843  shapeOut(asap::PolAxis) = 1;                          // Average all polarizations
844  if (shapeIn(asap::PolAxis)==1) {
845     throw(AipsError("The input has only one polarisation"));
846  }
847//
848  const uInt nChan = shapeIn(asap::ChanAxis);
849  const IPosition vecShapeOut(4,1,1,1,nChan);     // A multi-dim form of a Vector shape
850  IPosition start(4), end(4);
851
852// Output arrays
853
854  Array<Float> outData(shapeOut, 0.0);
855  Array<Bool> outMask(shapeOut, True);
856  const IPosition axes(2, asap::PolAxis, asap::ChanAxis);              // pol-channel plane
857//
858  const Bool useMask = (mask.nelements() == shapeIn(asap::ChanAxis));
859
860// Loop over rows
861
862   for (uInt iRow=0; iRow<nRows; iRow++) {
863
864// Get data for this row
865
866      MaskedArray<Float> marr(in.rowAsMaskedArray(iRow));
867      Array<Float>& arr = marr.getRWArray();
868      const Array<Bool>& barr = marr.getMask();
869
870// Make iterators to iterate by pol-channel planes
871
872      ReadOnlyArrayIterator<Float> itDataPlane(arr, axes);
873      ReadOnlyArrayIterator<Bool> itMaskPlane(barr, axes);
874
875// Accumulations
876
877      Float fac = 1.0;
878      Vector<Float> vecSum(nChan,0.0);
879
880// Iterate through data by pol-channel planes
881
882      while (!itDataPlane.pastEnd()) {
883
884// Iterate through plane by polarization  and accumulate Vectors
885
886        Vector<Float> t1(nChan); t1 = 0.0;
887        Vector<Bool> t2(nChan); t2 = True;
888        MaskedArray<Float> vecSum(t1,t2);
889        Float norm = 0.0;
890        {
891           ReadOnlyVectorIterator<Float> itDataVec(itDataPlane.array(), 1);
892           ReadOnlyVectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
893           while (!itDataVec.pastEnd()) {     
894
895// Create MA of data & mask (optionally including OTF mask) and  get variance for this spectrum
896
897              if (useMask) {
898                 const MaskedArray<Float> spec(itDataVec.vector(),mask&&itMaskVec.vector());
899                 if (wtType==VAR) fac = 1.0 / variance(spec);
900              } else {
901                 const MaskedArray<Float> spec(itDataVec.vector(),itMaskVec.vector());
902                 if (wtType==VAR) fac = 1.0 / variance(spec);
903              }
904
905// Normalize spectrum (without OTF mask) and accumulate
906
907              const MaskedArray<Float> spec(fac*itDataVec.vector(), itMaskVec.vector());
908              vecSum += spec;
909              norm += fac;
910
911// Next
912
913              itDataVec.next();
914              itMaskVec.next();
915           }
916        }
917
918// Normalize summed spectrum
919
920        vecSum /= norm;
921
922// FInd position in input data array.  We are iterating by pol-channel
923// plane so all that will change is beam and IF and that's what we want.
924
925        IPosition pos = itDataPlane.pos();
926
927// Write out data. This is a bit messy. We have to reform the Vector
928// accumulator into an Array of shape (1,1,1,nChan)
929
930        start = pos;
931        end = pos;
932        end(asap::ChanAxis) = nChan-1;
933        outData(start,end) = vecSum.getArray().reform(vecShapeOut);
934        outMask(start,end) = vecSum.getMask().reform(vecShapeOut);
935
936// Step to next beam/IF combination
937
938        itDataPlane.next();
939        itMaskPlane.next();
940      }
941
942// Generate output container and write it to output table
943
944      SDContainer sc = in.getSDContainer();
945      sc.resize(shapeOut);
946//
947      putDataInSDC(sc, outData, outMask);
948      pTabOut->putSDContainer(sc);
949   }
950
951// Set polarization cursor to 0
952
953  pTabOut->setPol(0);
954//
955  return pTabOut;
956}
957
958
959SDMemTable* SDMath::smooth(const SDMemTable& in,
960                           const casa::String& kernelType,
961                           casa::Float width, Bool doAll) const
962//
963// Should smooth TSys as well
964//
965{
966
967// Number of channels
968
969   SDHeader sh = in.getSDHeader();
970   const uInt nChan = sh.nchan;
971
972// Generate Kernel
973
974   VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernelType);
975   Vector<Float> kernel = VectorKernel::make(type, width, nChan, True, False);
976
977// Generate Convolver
978
979   IPosition shape(1,nChan);
980   Convolver<Float> conv(kernel, shape);
981
982// New Table
983
984   SDMemTable* pTabOut = new SDMemTable(in,True);
985
986// Get cursor location
987         
988  IPosition start, end;
989  getCursorLocation(start, end, in);
990//
991  IPosition shapeOut(4,1);
992
993// Output Vectors
994
995  Vector<Float> valuesOut(nChan);
996  Vector<Bool> maskOut(nChan);
997
998// Loop over rows in Table
999
1000  for (uInt ri=0; ri < in.nRow(); ++ri) {
1001
1002// Get copy of data
1003   
1004    const MaskedArray<Float>& dataIn(in.rowAsMaskedArray(ri));
1005    AlwaysAssert(dataIn.shape()(asap::ChanAxis)==nChan, AipsError);
1006//
1007    Array<Float> valuesIn = dataIn.getArray();
1008    Array<Bool> maskIn = dataIn.getMask();
1009
1010// Branch depending on whether we smooth all locations or just
1011// those pointed at by the current selection cursor
1012
1013    if (doAll) {
1014       VectorIterator<Float> itValues(valuesIn, asap::ChanAxis);
1015       VectorIterator<Bool> itMask(maskIn, asap::ChanAxis);
1016       while (!itValues.pastEnd()) {
1017
1018// Smooth
1019          if (kernelType==VectorKernel::HANNING) {
1020             mathutil::hanning(valuesOut, maskOut, itValues.vector(), itMask.vector());
1021             itMask.vector() = maskOut;
1022          } else {
1023             mathutil::replaceMaskByZero(itValues.vector(), itMask.vector());
1024             conv.linearConv(valuesOut, itValues.vector());
1025          }
1026//
1027          itValues.vector() = valuesOut;
1028//
1029          itValues.next();
1030          itMask.next();
1031       }
1032    } else {
1033
1034// Set multi-dim Vector shape
1035
1036       shapeOut(asap::ChanAxis) = valuesIn.shape()(asap::ChanAxis);
1037
1038// Stuff about with shapes so that we don't have conformance run-time errors
1039
1040       Vector<Float> valuesIn2 = valuesIn(start,end).nonDegenerate();
1041       Vector<Bool> maskIn2 = maskIn(start,end).nonDegenerate();
1042
1043// Smooth
1044
1045       if (kernelType==VectorKernel::HANNING) {
1046          mathutil::hanning(valuesOut, maskOut, valuesIn2, maskIn2);
1047          maskIn(start,end) = maskOut.reform(shapeOut);
1048       } else {
1049          mathutil::replaceMaskByZero(valuesIn2, maskIn2);
1050          conv.linearConv(valuesOut, valuesIn2);
1051       }
1052//
1053       valuesIn(start,end) = valuesOut.reform(shapeOut);
1054    }
1055
1056// Create and put back
1057
1058    SDContainer sc = in.getSDContainer(ri);
1059    putDataInSDC(sc, valuesIn, maskIn);
1060//
1061    pTabOut->putSDContainer(sc);
1062  }
1063//
1064  return pTabOut;
1065}
1066
1067
1068
1069SDMemTable* SDMath::convertFlux (const SDMemTable& in, Float D, Float etaAp,
1070                                 Float JyPerK, Bool doAll) const
1071//
1072// etaAp = aperture efficiency
1073// D     = geometric diameter (m)
1074// JyPerK
1075//
1076{
1077  SDHeader sh = in.getSDHeader();
1078  SDMemTable* pTabOut = new SDMemTable(in, True);
1079
1080// Find out how to convert values into Jy and K (e.g. units might be mJy or mK)
1081// Also automatically find out what we are converting to according to the
1082// flux unit
1083
1084  Unit fluxUnit(sh.fluxunit);
1085  Unit K(String("K"));
1086  Unit JY(String("Jy"));
1087//
1088  Bool toKelvin = True;
1089  Double cFac = 1.0;   
1090  if (fluxUnit==JY) {
1091     cout << "Converting to K" << endl;
1092//
1093     Quantum<Double> t(1.0,fluxUnit);
1094     Quantum<Double> t2 = t.get(JY);
1095     cFac = (t2 / t).getValue();               // value to Jy
1096//
1097     toKelvin = True;
1098     sh.fluxunit = "K";
1099  } else if (fluxUnit==K) {
1100     cout << "Converting to Jy" << endl;
1101//
1102     Quantum<Double> t(1.0,fluxUnit);
1103     Quantum<Double> t2 = t.get(K);
1104     cFac = (t2 / t).getValue();              // value to K
1105//
1106     toKelvin = False;
1107     sh.fluxunit = "Jy";
1108  } else {
1109     throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
1110  }
1111  pTabOut->putSDHeader(sh);
1112
1113// Make sure input values are converted to either Jy or K first...
1114
1115  Float factor = cFac;
1116
1117// Select method
1118
1119  if (JyPerK>0.0) {
1120     factor *= JyPerK;
1121     if (toKelvin) factor = 1.0 / JyPerK;
1122//
1123     cout << "Applying supplied conversion factor = " << factor << endl;
1124     Vector<Float> factors(in.nRow(), factor);
1125     correctFromVector (pTabOut, in, doAll, factors);
1126  } else if (etaAp>0.0) {
1127     factor *= SDAttr::findJyPerKFac (etaAp, D);
1128     if (toKelvin) {
1129        factor = 1.0 / factor;
1130     }
1131//
1132     cout << "Applying supplied conversion factor = " << factor << endl;
1133     Vector<Float> factors(in.nRow(), factor);
1134     correctFromVector (pTabOut, in, doAll, factors);
1135  } else {
1136
1137// OK now we must deal with automatic look up of values.
1138// We must also deal with the fact that the factors need
1139// to be computed per IF and may be different and may
1140// change per integration.
1141
1142     cout << "Looking up conversion factors" << endl;
1143     convertBrightnessUnits (pTabOut, in, toKelvin, cFac, doAll);
1144  }
1145//
1146  return pTabOut;
1147}
1148
1149
1150
1151
1152
1153SDMemTable* SDMath::gainElevation (const SDMemTable& in, const Vector<Float>& coeffs,
1154                                   const String& fileName,
1155                                   const String& methodStr, Bool doAll) const
1156{
1157
1158// Get header and clone output table
1159
1160  SDHeader sh = in.getSDHeader();
1161  SDMemTable* pTabOut = new SDMemTable(in, True);
1162
1163// Get elevation data from SDMemTable and convert to degrees
1164
1165  const Table& tab = in.table();
1166  ROScalarColumn<Float> elev(tab, "ELEVATION");
1167  Vector<Float> x = elev.getColumn();
1168  x *= Float(180 / C::pi);                        // Degrees
1169//
1170  const uInt nC = coeffs.nelements();
1171  if (fileName.length()>0 && nC>0) {
1172     throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
1173  }
1174
1175// Correct
1176
1177  if (nC>0 || fileName.length()==0) {
1178
1179// Find instrument
1180
1181     Bool throwIt = True;
1182     Instrument inst = SDMemTable::convertInstrument (sh.antennaname, throwIt);
1183     
1184// Set polynomial
1185
1186     Polynomial<Float>* pPoly = 0;
1187     Vector<Float> coeff;
1188     String msg;
1189     if (nC>0) {
1190        pPoly = new Polynomial<Float>(nC);
1191        coeff = coeffs;
1192        msg = String("user");
1193     } else {
1194        SDAttr sdAttr;
1195        coeff = sdAttr.gainElevationPoly(inst);
1196        pPoly = new Polynomial<Float>(3);
1197        msg = String("built in");
1198     }
1199//
1200     if (coeff.nelements()>0) {
1201        pPoly->setCoefficients(coeff);
1202     } else {
1203        throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
1204     }
1205//
1206     cout << "Making polynomial correction with " << msg << " coefficients" << endl;
1207     const uInt nRow = in.nRow();
1208     Vector<Float> factor(nRow);
1209     for (uInt i=0; i<nRow; i++) {
1210        factor[i] = (*pPoly)(x[i]);
1211     }
1212     delete pPoly;
1213//
1214     correctFromVector (pTabOut, in, doAll, factor);
1215  } else {
1216
1217// Indicate which columns to read from ascii file
1218
1219     String col0("ELEVATION");
1220     String col1("FACTOR");
1221
1222// Read and correct
1223
1224     cout << "Making correction from ascii Table" << endl;
1225     correctFromAsciiTable (pTabOut, in, fileName, col0, col1,
1226                            methodStr, doAll, x);
1227   }
1228//
1229   return pTabOut;
1230}
1231
1232 
1233
1234SDMemTable* SDMath::opacity (const SDMemTable& in, Float tau, Bool doAll) const
1235{
1236
1237// Get header and clone output table
1238
1239  SDHeader sh = in.getSDHeader();
1240  SDMemTable* pTabOut = new SDMemTable(in, True);
1241
1242// Get elevation data from SDMemTable and convert to degrees
1243
1244  const Table& tab = in.table();
1245  ROScalarColumn<Float> elev(tab, "ELEVATION");
1246  Vector<Float> zDist = elev.getColumn();
1247  zDist = Float(C::pi_2) - zDist;
1248
1249// Generate correction factor
1250
1251  const uInt nRow = in.nRow();
1252  Vector<Float> factor(nRow);
1253  Vector<Float> factor2(nRow);
1254  for (uInt i=0; i<nRow; i++) {
1255     factor[i] = exp(tau)/cos(zDist[i]);
1256  }
1257
1258// Correct
1259
1260  correctFromVector (pTabOut, in, doAll, factor);
1261//
1262  return pTabOut;
1263}
1264
1265
1266
1267
1268// 'private' functions
1269
1270void SDMath::convertBrightnessUnits (SDMemTable* pTabOut, const SDMemTable& in,
1271                                     Bool toKelvin, Float cFac, Bool doAll) const
1272{
1273
1274// Get header
1275
1276   SDHeader sh = in.getSDHeader();
1277   const uInt nChan = sh.nchan;
1278
1279// Get instrument
1280
1281   Bool throwIt = True;
1282   Instrument inst = SDMemTable::convertInstrument (sh.antennaname, throwIt);
1283
1284// Get Diameter (m)
1285
1286   SDAttr sdAtt;
1287
1288// Get epoch of first row
1289
1290   MEpoch dateObs = in.getEpoch(0);
1291
1292// Generate a Vector of correction factors. One per FreqID
1293
1294   SDFrequencyTable sdft = in.getSDFreqTable();
1295   Vector<uInt> freqIDs;
1296//
1297   Vector<Float> freqs(sdft.length());
1298   for (uInt i=0; i<sdft.length(); i++) {
1299      freqs(i) = (nChan/2 - sdft.referencePixel(i))*sdft.increment(i) + sdft.referenceValue(i);
1300   }
1301//
1302   Vector<Float> JyPerK = sdAtt.JyPerK(inst, dateObs, freqs);
1303   cout << "Jy/K = " << JyPerK << endl;
1304   Vector<Float> factors = cFac * JyPerK;
1305   if (toKelvin) factors = Float(1.0) / factors;
1306
1307// For operations only on specified cursor location
1308
1309   IPosition start, end;
1310   getCursorLocation(start, end, in);
1311   const uInt ifAxis = in.getIF();
1312
1313// Iteration axes
1314
1315   IPosition axes(asap::nAxes-1,0);
1316   for (uInt i=0,j=0; i<asap::nAxes; i++) {
1317      if (i!=asap::IFAxis) {
1318         axes(j++) = i;
1319      }
1320   }
1321
1322// Loop over rows and apply correction factor
1323
1324   Float factor = 1.0; 
1325   const uInt axis = asap::ChanAxis;
1326   for (uInt i=0; i < in.nRow(); ++i) {
1327
1328// Get data
1329
1330      MaskedArray<Float> dataIn(in.rowAsMaskedArray(i));
1331      Array<Float>& values = dataIn.getRWArray();
1332
1333// Get SDCOntainer
1334
1335      SDContainer sc = in.getSDContainer(i);
1336
1337// Get FreqIDs
1338
1339      freqIDs = sc.getFreqMap();
1340
1341// Now the conversion factor depends only upon frequency
1342// So we need to iterate through by IF only giving
1343// us BEAM/POL/CHAN cubes
1344
1345      if (doAll) {
1346         ArrayIterator<Float> itIn(values, axes);
1347         uInt ax = 0;
1348         while (!itIn.pastEnd()) {
1349           itIn.array() *= factors(freqIDs(ax));         // Writes back to dataIn
1350           itIn.next();
1351         }
1352      } else {
1353         MaskedArray<Float> dataIn2 = dataIn(start,end);  // reference
1354         dataIn2 *= factors(freqIDs(ifAxis));
1355      }
1356
1357// Write out
1358
1359      putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
1360//
1361      pTabOut->putSDContainer(sc);
1362   }
1363}
1364
1365
1366
1367SDMemTable* SDMath::frequencyAlign (const SDMemTable& in,
1368                                   MFrequency::Types freqSystem,
1369                                   const String& refTime,
1370                                   const String& methodStr,
1371                                   Bool perFreqID) const
1372{
1373// Get Header
1374
1375   SDHeader sh = in.getSDHeader();
1376   const uInt nChan = sh.nchan;
1377   const uInt nRows = in.nRow();
1378   const uInt nIF = sh.nif;
1379
1380// Get Table reference
1381
1382   const Table& tabIn = in.table();
1383
1384// Get Columns from Table
1385
1386   ROScalarColumn<Double> mjdCol(tabIn, "TIME");
1387   ROScalarColumn<String> srcCol(tabIn, "SRCNAME");
1388   ROArrayColumn<uInt> fqIDCol(tabIn, "FREQID");
1389   Vector<Double> times = mjdCol.getColumn();
1390
1391// Generate DataDesc table
1392 
1393   Matrix<uInt> ddIdx;
1394   SDDataDesc dDesc;
1395   generateDataDescTable (ddIdx, dDesc, nIF, in, tabIn, srcCol, fqIDCol, perFreqID);
1396
1397// Get reference Epoch to time of first row or given String
1398
1399   Unit DAY(String("d"));
1400   MEpoch::Ref epochRef(in.getTimeReference());
1401   MEpoch refEpoch;
1402   if (refTime.length()>0) {
1403      refEpoch = epochFromString(refTime, in.getTimeReference());
1404   } else {
1405      refEpoch = in.getEpoch(0);
1406   }
1407   cout << "Aligning at reference Epoch " << formatEpoch(refEpoch)
1408        << " in frame " << MFrequency::showType(freqSystem) << endl;
1409   
1410// Get Reference Position
1411
1412   MPosition refPos = in.getAntennaPosition();
1413
1414// Create FrequencyAligner Block. One FA for each possible
1415// source/freqID (perFreqID=True) or source/IF (perFreqID=False) combination
1416
1417   PtrBlock<FrequencyAligner<Float>* > a(dDesc.length());
1418   generateFrequencyAligners (a, dDesc, in, nChan, freqSystem, refPos,
1419                              refEpoch, perFreqID);
1420
1421// Generate and fill output Frequency Table.  WHen perFreqID=True, there is one output FreqID
1422// for each entry in the SDDataDesc table.  However, in perFreqID=False mode, there may be
1423// some degeneracy, so we need a little translation map
1424
1425   SDFrequencyTable freqTabOut = in.getSDFreqTable();
1426   freqTabOut.setLength(0);
1427   Vector<String> units(1);
1428   units = String("Hz");
1429   Bool linear=True;
1430//
1431   Vector<uInt> ddFQTrans(dDesc.length(),0);
1432   for (uInt i=0; i<dDesc.length(); i++) {
1433
1434// Get Aligned SC in Hz
1435
1436      SpectralCoordinate sC = a[i]->alignedSpectralCoordinate(linear);
1437      sC.setWorldAxisUnits(units);
1438
1439// Add FreqID
1440
1441      uInt idx = freqTabOut.addFrequency(sC.referencePixel()[0],
1442                                         sC.referenceValue()[0],
1443                                         sC.increment()[0]);
1444      ddFQTrans(i) = idx;                                       // output FreqID = ddFQTrans(ddIdx)
1445   }
1446
1447// Interpolation method
1448
1449   InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1450   convertInterpString(interp, methodStr);
1451
1452// New output Table
1453
1454   cout << "Create output table" << endl;
1455   SDMemTable* pTabOut = new SDMemTable(in,True);
1456   pTabOut->putSDFreqTable(freqTabOut);
1457
1458// Loop over rows in Table
1459
1460   Bool extrapolate=False;
1461   const IPosition polChanAxes(2, asap::PolAxis, asap::ChanAxis);
1462   Bool useCachedAbcissa = False;
1463   Bool first = True;
1464   Bool ok;
1465   Vector<Float> yOut;
1466   Vector<Bool> maskOut;
1467   Vector<uInt> freqID(nIF);
1468   uInt ifIdx, faIdx;
1469   Vector<Double> xIn;
1470//
1471   for (uInt iRow=0; iRow<nRows; ++iRow) {
1472      if (iRow%10==0) {
1473         cout << "Processing row " << iRow << endl;
1474      }
1475
1476// Get EPoch
1477
1478     Quantum<Double> tQ2(times[iRow],DAY);
1479     MVEpoch mv2(tQ2);
1480     MEpoch epoch(mv2, epochRef);
1481
1482// Get copy of data
1483   
1484     const MaskedArray<Float>& mArrIn(in.rowAsMaskedArray(iRow));
1485     Array<Float> values = mArrIn.getArray();
1486     Array<Bool> mask = mArrIn.getMask();
1487
1488// For each row, the Frequency abcissa will be the same regardless
1489// of polarization.  For all other axes (IF and BEAM) the abcissa
1490// will change.  So we iterate through the data by pol-chan planes
1491// to mimimize the work.  Probably won't work for multiple beams
1492// at this point.
1493
1494     ArrayIterator<Float> itValuesPlane(values, polChanAxes);
1495     ArrayIterator<Bool> itMaskPlane(mask, polChanAxes);
1496     while (!itValuesPlane.pastEnd()) {
1497
1498// Find the IF index and then the FA PtrBlock index
1499
1500        const IPosition& pos = itValuesPlane.pos();
1501        ifIdx = pos(asap::IFAxis);
1502        faIdx = ddIdx(iRow,ifIdx);
1503
1504// Generate abcissa for perIF.  Could cache this in a Matrix
1505// on a per scan basis.   Pretty expensive doing it for every row.
1506
1507        if (!perFreqID) {
1508           xIn.resize(nChan);
1509           uInt fqID = dDesc.secID(ddIdx(iRow,ifIdx));
1510           SpectralCoordinate sC = in.getSpectralCoordinate(fqID);
1511           Double w;
1512           for (uInt i=0; i<nChan; i++) {
1513              sC.toWorld(w,Double(i));
1514              xIn[i] = w;
1515           }
1516        }
1517//
1518        VectorIterator<Float> itValuesVec(itValuesPlane.array(), 1);
1519        VectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
1520
1521// Iterate through the plane by vector and align
1522
1523        first = True;
1524        useCachedAbcissa=False;
1525        while (!itValuesVec.pastEnd()) {     
1526           if (perFreqID) {
1527              ok = a[faIdx]->align (yOut, maskOut, itValuesVec.vector(),
1528                                    itMaskVec.vector(), epoch, useCachedAbcissa,
1529                                    interp, extrapolate);
1530           } else {
1531              ok = a[faIdx]->align (yOut, maskOut, xIn, itValuesVec.vector(),
1532                                    itMaskVec.vector(), epoch, useCachedAbcissa,
1533                                    interp, extrapolate);
1534           }
1535//
1536           itValuesVec.vector() = yOut;
1537           itMaskVec.vector() = maskOut;
1538//
1539           itValuesVec.next();
1540           itMaskVec.next();
1541//
1542           if (first) {
1543              useCachedAbcissa = True;
1544              first = False;
1545           }
1546        }
1547//
1548       itValuesPlane.next();
1549       itMaskPlane.next();
1550     }
1551
1552// Create SDContainer and put back
1553
1554    SDContainer sc = in.getSDContainer(iRow);
1555    putDataInSDC(sc, values, mask);
1556
1557// Set output FreqIDs
1558
1559    for (uInt i=0; i<nIF; i++) {
1560       uInt idx = ddIdx(iRow,i);               // Index into SDDataDesc table
1561       freqID(i) = ddFQTrans(idx);             // FreqID in output FQ table
1562    }
1563    sc.putFreqMap(freqID);
1564//
1565    pTabOut->putSDContainer(sc);
1566   }
1567
1568// Now we must set the base and extra frames to the
1569// input frame
1570
1571   std::vector<string> info = pTabOut->getCoordInfo();
1572   info[1] = MFrequency::showType(freqSystem);   // Conversion frame
1573   info[3] = info[1];                            // Base frame
1574   pTabOut->setCoordInfo(info);
1575
1576// Clean up PointerBlock
1577
1578   for (uInt i=0; i<a.nelements(); i++) delete a[i];
1579//
1580   return pTabOut;
1581}
1582
1583
1584void SDMath::fillSDC(SDContainer& sc,
1585                     const Array<Bool>& mask,
1586                     const Array<Float>& data,
1587                     const Array<Float>& tSys,
1588                     Int scanID, Double timeStamp,
1589                     Double interval, const String& sourceName,
1590                     const Vector<uInt>& freqID) const
1591{
1592// Data and mask
1593
1594  putDataInSDC(sc, data, mask);
1595
1596// TSys
1597
1598  sc.putTsys(tSys);
1599
1600// Time things
1601
1602  sc.timestamp = timeStamp;
1603  sc.interval = interval;
1604  sc.scanid = scanID;
1605//
1606  sc.sourcename = sourceName;
1607  sc.putFreqMap(freqID);
1608}
1609
1610void SDMath::normalize(MaskedArray<Float>& sum,
1611                        const Array<Float>& sumSq,
1612                        const Array<Float>& nPts,
1613                        WeightType wtType, Int axis,
1614                        Int nAxesSub) const
1615{
1616   IPosition pos2(nAxesSub,0);
1617//
1618   if (wtType==NONE) {
1619
1620// We just average by the number of points accumulated.
1621// We need to make a MA out of nPts so that no divide by
1622// zeros occur
1623
1624      MaskedArray<Float> t(nPts, (nPts>Float(0.0)));
1625      sum /= t;
1626   } else if (wtType==VAR) {
1627
1628// Normalize each spectrum by sum(1/var) where the variance
1629// is worked out for each spectrum
1630
1631      Array<Float>& data = sum.getRWArray();
1632      VectorIterator<Float> itData(data, axis);
1633      while (!itData.pastEnd()) {
1634         pos2 = itData.pos().getFirst(nAxesSub);
1635         itData.vector() /= sumSq(pos2);
1636         itData.next();
1637      }
1638   } else if (wtType==TSYS) {
1639   }
1640}
1641
1642
1643void SDMath::accumulate(Double& timeSum, Double& intSum, Int& nAccum,
1644                        MaskedArray<Float>& sum, Array<Float>& sumSq,
1645                        Array<Float>& nPts, Array<Float>& tSysSum,
1646                        const Array<Float>& tSys, const Array<Float>& nInc,
1647                        const Vector<Bool>& mask, Double time, Double interval,
1648                        const Block<CountedPtr<SDMemTable> >& in,
1649                        uInt iTab, uInt iRow, uInt axis,
1650                        uInt nAxesSub, Bool useMask,
1651                        WeightType wtType) const
1652{
1653
1654// Get data
1655
1656   MaskedArray<Float> dataIn(in[iTab]->rowAsMaskedArray(iRow));
1657   Array<Float>& valuesIn = dataIn.getRWArray();           // writable reference
1658   const Array<Bool>& maskIn = dataIn.getMask();          // RO reference
1659//
1660   if (wtType==NONE) {
1661      const MaskedArray<Float> n(nInc,dataIn.getMask());
1662      nPts += n;                               // Only accumulates where mask==T
1663   } else if (wtType==VAR) {
1664
1665// We are going to average the data, weighted by the noise for each pol, beam and IF.
1666// So therefore we need to iterate through by spectrum (axis 3)
1667
1668      VectorIterator<Float> itData(valuesIn, axis);
1669      ReadOnlyVectorIterator<Bool> itMask(maskIn, axis);
1670      Float fac = 1.0;
1671      IPosition pos(nAxesSub,0); 
1672//
1673      while (!itData.pastEnd()) {
1674
1675// Make MaskedArray of Vector, optionally apply OTF mask, and find scaling factor
1676
1677        if (useMask) {
1678           MaskedArray<Float> tmp(itData.vector(),mask&&itMask.vector());
1679           fac = 1.0/variance(tmp);
1680        } else {
1681           MaskedArray<Float> tmp(itData.vector(),itMask.vector());
1682           fac = 1.0/variance(tmp);
1683        }
1684
1685// Scale data
1686
1687        itData.vector() *= fac;     // Writes back into 'dataIn'
1688//
1689// Accumulate variance per if/pol/beam averaged over spectrum
1690// This method to get pos2 from itData.pos() is only valid
1691// because the spectral axis is the last one (so we can just
1692// copy the first nAXesSub positions out)
1693
1694        pos = itData.pos().getFirst(nAxesSub);
1695        sumSq(pos) += fac;
1696//
1697        itData.next();
1698        itMask.next();
1699      }
1700   } else if (wtType==TSYS) {
1701   }
1702
1703// Accumulate sum of (possibly scaled) data
1704
1705   sum += dataIn;
1706
1707// Accumulate Tsys, time, and interval
1708
1709   tSysSum += tSys;
1710   timeSum += time;
1711   intSum += interval;
1712   nAccum += 1;
1713}
1714
1715
1716
1717
1718void SDMath::getCursorLocation(IPosition& start, IPosition& end,
1719                               const SDMemTable& in) const
1720{
1721  const uInt nDim = 4;
1722  const uInt i = in.getBeam();
1723  const uInt j = in.getIF();
1724  const uInt k = in.getPol();
1725  const uInt n = in.nChan();
1726//
1727  start.resize(nDim);
1728  start(0) = i;
1729  start(1) = j;
1730  start(2) = k;
1731  start(3) = 0;
1732//
1733  end.resize(nDim);
1734  end(0) = i;
1735  end(1) = j;
1736  end(2) = k;
1737  end(3) = n-1;
1738}
1739
1740
1741void SDMath::convertWeightString(WeightType& wtType, const String& weightStr) const
1742{
1743  String tStr(weightStr);
1744  tStr.upcase();
1745  if (tStr.contains(String("NONE"))) {
1746     wtType = NONE;
1747  } else if (tStr.contains(String("VAR"))) {
1748     wtType = VAR;
1749  } else if (tStr.contains(String("TSYS"))) {
1750     wtType = TSYS;
1751     throw(AipsError("T_sys weighting not yet implemented"));
1752  } else {
1753    throw(AipsError("Unrecognized weighting type"));
1754  }
1755}
1756
1757
1758void SDMath::convertInterpString(casa::InterpolateArray1D<Double,Float>::InterpolationMethod& type, 
1759                                 const casa::String& interp) const
1760{
1761  String tStr(interp);
1762  tStr.upcase();
1763  if (tStr.contains(String("NEAR"))) {
1764     type = InterpolateArray1D<Double,Float>::nearestNeighbour;
1765  } else if (tStr.contains(String("LIN"))) {
1766     type = InterpolateArray1D<Double,Float>::linear;
1767  } else if (tStr.contains(String("CUB"))) {
1768     type = InterpolateArray1D<Double,Float>::cubic;
1769  } else if (tStr.contains(String("SPL"))) {
1770     type = InterpolateArray1D<Double,Float>::spline;
1771  } else {
1772    throw(AipsError("Unrecognized interpolation type"));
1773  }
1774}
1775
1776void SDMath::putDataInSDC(SDContainer& sc, const Array<Float>& data,
1777                          const Array<Bool>& mask) const
1778{
1779    sc.putSpectrum(data);
1780//
1781    Array<uChar> outflags(data.shape());
1782    convertArray(outflags,!mask);
1783    sc.putFlags(outflags);
1784}
1785
1786Table SDMath::readAsciiFile (const String& fileName) const
1787{
1788   String formatString;
1789   Table tbl = readAsciiTable (formatString, Table::Memory, fileName, "", "", False);
1790   return tbl;
1791}
1792
1793
1794
1795void SDMath::correctFromAsciiTable(SDMemTable* pTabOut,
1796                                   const SDMemTable& in, const String& fileName,
1797                                   const String& col0, const String& col1,
1798                                   const String& methodStr, Bool doAll,
1799                                   const Vector<Float>& xOut) const
1800{
1801
1802// Read gain-elevation ascii file data into a Table.
1803
1804  Table geTable = readAsciiFile (fileName);
1805//
1806  correctFromTable (pTabOut, in, geTable, col0, col1, methodStr, doAll, xOut);
1807}
1808
1809void SDMath::correctFromTable(SDMemTable* pTabOut, const SDMemTable& in,
1810                              const Table& tTable, const String& col0,
1811                              const String& col1,
1812                              const String& methodStr, Bool doAll,
1813                              const Vector<Float>& xOut) const
1814{
1815
1816// Get data from Table
1817
1818  ROScalarColumn<Float> geElCol(tTable, col0);
1819  ROScalarColumn<Float> geFacCol(tTable, col1);
1820  Vector<Float> xIn = geElCol.getColumn();
1821  Vector<Float> yIn = geFacCol.getColumn();
1822  Vector<Bool> maskIn(xIn.nelements(),True);
1823
1824// Interpolate (and extrapolate) with desired method
1825
1826   InterpolateArray1D<Double,Float>::InterpolationMethod method;
1827   convertInterpString(method, methodStr);
1828   Int intMethod(method);
1829//
1830   Vector<Float> yOut;
1831   Vector<Bool> maskOut;
1832   InterpolateArray1D<Float,Float>::interpolate(yOut, maskOut, xOut,
1833                                                xIn, yIn, maskIn, intMethod,
1834                                                True, True);
1835// Apply
1836
1837   correctFromVector (pTabOut, in, doAll, yOut);
1838}
1839
1840
1841void SDMath::correctFromVector (SDMemTable* pTabOut, const SDMemTable& in,
1842                                Bool doAll, const Vector<Float>& factor) const
1843{
1844
1845// For operations only on specified cursor location
1846
1847  IPosition start, end;
1848  getCursorLocation(start, end, in);
1849
1850// Loop over rows and apply correction factor
1851 
1852  const uInt axis = asap::ChanAxis;
1853  for (uInt i=0; i < in.nRow(); ++i) {
1854
1855// Get data
1856
1857    MaskedArray<Float> dataIn(in.rowAsMaskedArray(i));
1858
1859// Apply factor
1860
1861    if (doAll) {
1862       dataIn *= factor[i];
1863    } else {
1864       MaskedArray<Float> dataIn2 = dataIn(start,end);  // reference
1865       dataIn2 *= factor[i];
1866    }
1867
1868// Write out
1869
1870    SDContainer sc = in.getSDContainer(i);
1871    putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
1872//
1873    pTabOut->putSDContainer(sc);
1874  }
1875}
1876
1877
1878
1879
1880void SDMath::generateDataDescTable (Matrix<uInt>& ddIdx,
1881                                    SDDataDesc& dDesc,
1882                                    uInt nIF,
1883                                    const SDMemTable& in,
1884                                    const Table& tabIn,
1885                                    const ROScalarColumn<String>& srcCol,
1886                                    const ROArrayColumn<uInt>& fqIDCol,
1887                                    Bool perFreqID) const
1888{
1889   const uInt nRows = tabIn.nrow();
1890   ddIdx.resize(nRows,nIF);
1891//
1892   String srcName;
1893   Vector<uInt> freqIDs;
1894   for (uInt iRow=0; iRow<nRows; iRow++) {
1895      srcCol.get(iRow, srcName);
1896      fqIDCol.get(iRow, freqIDs);
1897      const MDirection& dir = in.getDirection(iRow);
1898//
1899      if (perFreqID) {
1900
1901// One entry per source/freqID pair
1902
1903         for (uInt iIF=0; iIF<nIF; iIF++) {
1904            ddIdx(iRow,iIF) = dDesc.addEntry(srcName, freqIDs[iIF], dir, 0);
1905         }
1906      } else {
1907
1908// One entry per source/IF pair.  Hang onto the FreqID as well
1909
1910         for (uInt iIF=0; iIF<nIF; iIF++) {
1911            ddIdx(iRow,iIF) = dDesc.addEntry(srcName, iIF, dir, freqIDs[iIF]);
1912         }
1913      }
1914   }
1915}
1916
1917
1918
1919
1920
1921MEpoch SDMath::epochFromString (const String& str, MEpoch::Types timeRef) const
1922{
1923   Quantum<Double> qt;
1924   if (MVTime::read(qt,str)) {
1925      MVEpoch mv(qt);
1926      MEpoch me(mv, timeRef);
1927      return me;
1928   } else {
1929      throw(AipsError("Invalid format for Epoch string"));
1930   }
1931}
1932
1933
1934String SDMath::formatEpoch(const MEpoch& epoch)  const
1935{
1936   MVTime mvt(epoch.getValue());
1937   return mvt.string(MVTime::YMD) + String(" (") + epoch.getRefString() + String(")");
1938}
1939
1940
1941
1942void SDMath::generateFrequencyAligners (PtrBlock<FrequencyAligner<Float>* >& a,
1943                                        const SDDataDesc& dDesc,
1944                                        const SDMemTable& in, uInt nChan,
1945                                        MFrequency::Types system,
1946                                        const MPosition& refPos,
1947                                        const MEpoch& refEpoch,
1948                                        Bool perFreqID) const
1949{
1950   for (uInt i=0; i<dDesc.length(); i++) {
1951      uInt ID = dDesc.ID(i);
1952      uInt secID = dDesc.secID(i);
1953      const MDirection& refDir = dDesc.secDir(i);
1954//
1955      if (perFreqID) {
1956
1957// One aligner per source/FreqID pair. 
1958
1959         SpectralCoordinate sC = in.getSpectralCoordinate(ID);
1960         a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
1961      } else {
1962
1963// One aligner per source/IF pair.  But we still need the FreqID to
1964// get the right SC.  Hence the messing about with the secondary ID
1965
1966         SpectralCoordinate sC = in.getSpectralCoordinate(secID);
1967         a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
1968      }
1969   }
1970}
Note: See TracBrowser for help on using the repository browser.