1 | //#---------------------------------------------------------------------------
|
---|
2 | //# SDMath.cc: A collection of single dish mathematical operations
|
---|
3 | //#---------------------------------------------------------------------------
|
---|
4 | //# Copyright (C) 2004
|
---|
5 | //# ATNF
|
---|
6 | //#
|
---|
7 | //# This program is free software; you can redistribute it and/or modify it
|
---|
8 | //# under the terms of the GNU General Public License as published by the Free
|
---|
9 | //# Software Foundation; either version 2 of the License, or (at your option)
|
---|
10 | //# any later version.
|
---|
11 | //#
|
---|
12 | //# This program is distributed in the hope that it will be useful, but
|
---|
13 | //# WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | //# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
---|
15 | //# Public License for more details.
|
---|
16 | //#
|
---|
17 | //# You should have received a copy of the GNU General Public License along
|
---|
18 | //# with this program; if not, write to the Free Software Foundation, Inc.,
|
---|
19 | //# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
|
---|
20 | //#
|
---|
21 | //# Correspondence concerning this software should be addressed as follows:
|
---|
22 | //# Internet email: Malte.Marquarding@csiro.au
|
---|
23 | //# Postal address: Malte Marquarding,
|
---|
24 | //# Australia Telescope National Facility,
|
---|
25 | //# P.O. Box 76,
|
---|
26 | //# Epping, NSW, 2121,
|
---|
27 | //# AUSTRALIA
|
---|
28 | //#
|
---|
29 | //# $Id:
|
---|
30 | //#---------------------------------------------------------------------------
|
---|
31 | #include <vector>
|
---|
32 |
|
---|
33 | #include <casa/aips.h>
|
---|
34 | #include <casa/iostream.h>
|
---|
35 | #include <casa/iomanip.h>
|
---|
36 | #include <casa/BasicSL/String.h>
|
---|
37 | #include <casa/Arrays/IPosition.h>
|
---|
38 | #include <casa/Arrays/Array.h>
|
---|
39 | #include <casa/Arrays/ArrayIter.h>
|
---|
40 | #include <casa/Arrays/VectorIter.h>
|
---|
41 | #include <casa/Arrays/ArrayMath.h>
|
---|
42 | #include <casa/Arrays/ArrayLogical.h>
|
---|
43 | #include <casa/Arrays/MaskedArray.h>
|
---|
44 | #include <casa/Arrays/MaskArrMath.h>
|
---|
45 | #include <casa/Arrays/MaskArrLogi.h>
|
---|
46 | #include <casa/Arrays/Matrix.h>
|
---|
47 | #include <casa/BasicMath/Math.h>
|
---|
48 | #include <casa/Containers/Block.h>
|
---|
49 | #include <casa/Exceptions.h>
|
---|
50 | #include <casa/Quanta/Quantum.h>
|
---|
51 | #include <casa/Quanta/Unit.h>
|
---|
52 | #include <casa/Quanta/MVEpoch.h>
|
---|
53 | #include <casa/Quanta/MVTime.h>
|
---|
54 | #include <casa/Utilities/Assert.h>
|
---|
55 |
|
---|
56 | #include <coordinates/Coordinates/SpectralCoordinate.h>
|
---|
57 | #include <coordinates/Coordinates/CoordinateSystem.h>
|
---|
58 | #include <coordinates/Coordinates/CoordinateUtil.h>
|
---|
59 | #include <coordinates/Coordinates/FrequencyAligner.h>
|
---|
60 |
|
---|
61 | #include <lattices/Lattices/LatticeUtilities.h>
|
---|
62 | #include <lattices/Lattices/RebinLattice.h>
|
---|
63 |
|
---|
64 | #include <measures/Measures/MEpoch.h>
|
---|
65 | #include <measures/Measures/MDirection.h>
|
---|
66 | #include <measures/Measures/MPosition.h>
|
---|
67 |
|
---|
68 | #include <scimath/Mathematics/VectorKernel.h>
|
---|
69 | #include <scimath/Mathematics/Convolver.h>
|
---|
70 | #include <scimath/Mathematics/InterpolateArray1D.h>
|
---|
71 | #include <scimath/Functionals/Polynomial.h>
|
---|
72 |
|
---|
73 | #include <tables/Tables/Table.h>
|
---|
74 | #include <tables/Tables/ScalarColumn.h>
|
---|
75 | #include <tables/Tables/ArrayColumn.h>
|
---|
76 | #include <tables/Tables/ReadAsciiTable.h>
|
---|
77 |
|
---|
78 | #include "MathUtils.h"
|
---|
79 | #include "SDDefs.h"
|
---|
80 | #include "SDAttr.h"
|
---|
81 | #include "SDContainer.h"
|
---|
82 | #include "SDMemTable.h"
|
---|
83 |
|
---|
84 | #include "SDMath.h"
|
---|
85 | #include "SDPol.h"
|
---|
86 |
|
---|
87 | using namespace casa;
|
---|
88 | using namespace asap;
|
---|
89 |
|
---|
90 |
|
---|
91 | SDMath::SDMath()
|
---|
92 | {;}
|
---|
93 |
|
---|
94 | SDMath::SDMath(const SDMath& other)
|
---|
95 | {
|
---|
96 |
|
---|
97 | // No state
|
---|
98 |
|
---|
99 | }
|
---|
100 |
|
---|
101 | SDMath& SDMath::operator=(const SDMath& other)
|
---|
102 | {
|
---|
103 | if (this != &other) {
|
---|
104 | // No state
|
---|
105 | }
|
---|
106 | return *this;
|
---|
107 | }
|
---|
108 |
|
---|
109 | SDMath::~SDMath()
|
---|
110 | {;}
|
---|
111 |
|
---|
112 |
|
---|
113 |
|
---|
114 | SDMemTable* SDMath::frequencyAlignment (const SDMemTable& in, const String& refTime,
|
---|
115 | const String& method, Bool perFreqID) const
|
---|
116 | {
|
---|
117 | // Get frame info from Table
|
---|
118 |
|
---|
119 | std::vector<std::string> info = in.getCoordInfo();
|
---|
120 |
|
---|
121 | // Parse frequency system
|
---|
122 |
|
---|
123 | String systemStr(info[1]);
|
---|
124 | String baseSystemStr(info[3]);
|
---|
125 | if (baseSystemStr==systemStr) {
|
---|
126 | throw(AipsError("You have not set a frequency frame different from the initial - use function set_freqframe"));
|
---|
127 | }
|
---|
128 | //
|
---|
129 | MFrequency::Types freqSystem;
|
---|
130 | MFrequency::getType(freqSystem, systemStr);
|
---|
131 |
|
---|
132 | // Do it
|
---|
133 |
|
---|
134 | return frequencyAlign (in, freqSystem, refTime, method, perFreqID);
|
---|
135 | }
|
---|
136 |
|
---|
137 |
|
---|
138 |
|
---|
139 | CountedPtr<SDMemTable> SDMath::average(const Block<CountedPtr<SDMemTable> >& in,
|
---|
140 | const Vector<Bool>& mask, Bool scanAv,
|
---|
141 | const String& weightStr, Bool alignFreq) const
|
---|
142 | //
|
---|
143 | // Weighted averaging of spectra from one or more Tables.
|
---|
144 | //
|
---|
145 | {
|
---|
146 |
|
---|
147 | // Convert weight type
|
---|
148 |
|
---|
149 | WeightType wtType = NONE;
|
---|
150 | convertWeightString(wtType, weightStr);
|
---|
151 |
|
---|
152 | // Create output Table by cloning from the first table
|
---|
153 |
|
---|
154 | SDMemTable* pTabOut = new SDMemTable(*in[0],True);
|
---|
155 |
|
---|
156 | // Setup
|
---|
157 |
|
---|
158 | IPosition shp = in[0]->rowAsMaskedArray(0).shape(); // Must not change
|
---|
159 | Array<Float> arr(shp);
|
---|
160 | Array<Bool> barr(shp);
|
---|
161 | const Bool useMask = (mask.nelements() == shp(asap::ChanAxis));
|
---|
162 |
|
---|
163 | // Columns from Tables
|
---|
164 |
|
---|
165 | ROArrayColumn<Float> tSysCol;
|
---|
166 | ROScalarColumn<Double> mjdCol;
|
---|
167 | ROScalarColumn<String> srcNameCol;
|
---|
168 | ROScalarColumn<Double> intCol;
|
---|
169 | ROArrayColumn<uInt> fqIDCol;
|
---|
170 | ROScalarColumn<Int> scanIDCol;
|
---|
171 |
|
---|
172 | // Create accumulation MaskedArray. We accumulate for each channel,if,pol,beam
|
---|
173 | // Note that the mask of the accumulation array will ALWAYS remain ALL True.
|
---|
174 | // The MA is only used so that when data which is masked Bad is added to it,
|
---|
175 | // that data does not contribute.
|
---|
176 |
|
---|
177 | Array<Float> zero(shp);
|
---|
178 | zero=0.0;
|
---|
179 | Array<Bool> good(shp);
|
---|
180 | good = True;
|
---|
181 | MaskedArray<Float> sum(zero,good);
|
---|
182 |
|
---|
183 | // Counter arrays
|
---|
184 |
|
---|
185 | Array<Float> nPts(shp); // Number of points
|
---|
186 | nPts = 0.0;
|
---|
187 | Array<Float> nInc(shp); // Increment
|
---|
188 | nInc = 1.0;
|
---|
189 |
|
---|
190 | // Create accumulation Array for variance. We accumulate for
|
---|
191 | // each if,pol,beam, but average over channel. So we need
|
---|
192 | // a shape with one less axis dropping channels.
|
---|
193 |
|
---|
194 | const uInt nAxesSub = shp.nelements() - 1;
|
---|
195 | IPosition shp2(nAxesSub);
|
---|
196 | for (uInt i=0,j=0; i<(nAxesSub+1); i++) {
|
---|
197 | if (i!=asap::ChanAxis) {
|
---|
198 | shp2(j) = shp(i);
|
---|
199 | j++;
|
---|
200 | }
|
---|
201 | }
|
---|
202 | Array<Float> sumSq(shp2);
|
---|
203 | sumSq = 0.0;
|
---|
204 | IPosition pos2(nAxesSub,0); // For indexing
|
---|
205 |
|
---|
206 | // Time-related accumulators
|
---|
207 |
|
---|
208 | Double time;
|
---|
209 | Double timeSum = 0.0;
|
---|
210 | Double intSum = 0.0;
|
---|
211 | Double interval = 0.0;
|
---|
212 |
|
---|
213 | // To get the right shape for the Tsys accumulator we need to
|
---|
214 | // access a column from the first table. The shape of this
|
---|
215 | // array must not change
|
---|
216 |
|
---|
217 | Array<Float> tSysSum;
|
---|
218 | {
|
---|
219 | const Table& tabIn = in[0]->table();
|
---|
220 | tSysCol.attach(tabIn,"TSYS");
|
---|
221 | tSysSum.resize(tSysCol.shape(0));
|
---|
222 | }
|
---|
223 | tSysSum =0.0;
|
---|
224 | Array<Float> tSys;
|
---|
225 |
|
---|
226 | // Scan and row tracking
|
---|
227 |
|
---|
228 | Int oldScanID = 0;
|
---|
229 | Int outScanID = 0;
|
---|
230 | Int scanID = 0;
|
---|
231 | Int rowStart = 0;
|
---|
232 | Int nAccum = 0;
|
---|
233 | Int tableStart = 0;
|
---|
234 |
|
---|
235 | // Source and FreqID
|
---|
236 |
|
---|
237 | String sourceName, oldSourceName, sourceNameStart;
|
---|
238 | Vector<uInt> freqID, freqIDStart, oldFreqID;
|
---|
239 |
|
---|
240 | // Loop over tables
|
---|
241 |
|
---|
242 | Float fac = 1.0;
|
---|
243 | const uInt nTables = in.nelements();
|
---|
244 | for (uInt iTab=0; iTab<nTables; iTab++) {
|
---|
245 |
|
---|
246 | // Should check that the frequency tables don't change if doing FreqAlignment
|
---|
247 |
|
---|
248 | // Attach columns to Table
|
---|
249 |
|
---|
250 | const Table& tabIn = in[iTab]->table();
|
---|
251 | tSysCol.attach(tabIn, "TSYS");
|
---|
252 | mjdCol.attach(tabIn, "TIME");
|
---|
253 | srcNameCol.attach(tabIn, "SRCNAME");
|
---|
254 | intCol.attach(tabIn, "INTERVAL");
|
---|
255 | fqIDCol.attach(tabIn, "FREQID");
|
---|
256 | scanIDCol.attach(tabIn, "SCANID");
|
---|
257 |
|
---|
258 | // Find list of start/end rows for each scan
|
---|
259 |
|
---|
260 | // Loop over rows in Table
|
---|
261 |
|
---|
262 | const uInt nRows = in[iTab]->nRow();
|
---|
263 | for (uInt iRow=0; iRow<nRows; iRow++) {
|
---|
264 |
|
---|
265 | // Check conformance
|
---|
266 |
|
---|
267 | IPosition shp2 = in[iTab]->rowAsMaskedArray(iRow).shape();
|
---|
268 | if (!shp.isEqual(shp2)) {
|
---|
269 | throw (AipsError("Shapes for all rows must be the same"));
|
---|
270 | }
|
---|
271 |
|
---|
272 | // If we are not doing scan averages, make checks for source and
|
---|
273 | // frequency setup and warn if averaging across them
|
---|
274 |
|
---|
275 | scanIDCol.getScalar(iRow, scanID);
|
---|
276 |
|
---|
277 | // Get quantities from columns
|
---|
278 |
|
---|
279 | srcNameCol.getScalar(iRow, sourceName);
|
---|
280 | mjdCol.get(iRow, time);
|
---|
281 | tSysCol.get(iRow, tSys);
|
---|
282 | intCol.get(iRow, interval);
|
---|
283 | fqIDCol.get(iRow, freqID);
|
---|
284 |
|
---|
285 | // Initialize first source and freqID
|
---|
286 |
|
---|
287 | if (iRow==0 && iTab==0) {
|
---|
288 | sourceNameStart = sourceName;
|
---|
289 | freqIDStart = freqID;
|
---|
290 | }
|
---|
291 |
|
---|
292 | // If we are doing scan averages, see if we are at the end of an
|
---|
293 | // accumulation period (scan). We must check soutce names too,
|
---|
294 | // since we might have two tables with one scan each but different
|
---|
295 | // source names; we shouldn't average different sources together
|
---|
296 |
|
---|
297 | if (scanAv && ( (scanID != oldScanID) ||
|
---|
298 | (iRow==0 && iTab>0 && sourceName!=oldSourceName))) {
|
---|
299 |
|
---|
300 | // Normalize data in 'sum' accumulation array according to weighting scheme
|
---|
301 |
|
---|
302 | normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);
|
---|
303 |
|
---|
304 | // Get ScanContainer for the first row of this averaged Scan
|
---|
305 |
|
---|
306 | SDContainer scOut = in[iTab]->getSDContainer(rowStart);
|
---|
307 |
|
---|
308 | // Fill scan container. The source and freqID come from the
|
---|
309 | // first row of the first table that went into this average (
|
---|
310 | // should be the same for all rows in the scan average)
|
---|
311 |
|
---|
312 | Float nR(nAccum);
|
---|
313 | fillSDC(scOut, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
|
---|
314 | timeSum/nR, intSum, sourceNameStart, freqIDStart);
|
---|
315 |
|
---|
316 | // Write container out to Table
|
---|
317 |
|
---|
318 | pTabOut->putSDContainer(scOut);
|
---|
319 |
|
---|
320 | // Reset accumulators
|
---|
321 |
|
---|
322 | sum = 0.0;
|
---|
323 | sumSq = 0.0;
|
---|
324 | nAccum = 0;
|
---|
325 | //
|
---|
326 | tSysSum =0.0;
|
---|
327 | timeSum = 0.0;
|
---|
328 | intSum = 0.0;
|
---|
329 | nPts = 0.0;
|
---|
330 |
|
---|
331 | // Increment
|
---|
332 |
|
---|
333 | rowStart = iRow; // First row for next accumulation
|
---|
334 | tableStart = iTab; // First table for next accumulation
|
---|
335 | sourceNameStart = sourceName; // First source name for next accumulation
|
---|
336 | freqIDStart = freqID; // First FreqID for next accumulation
|
---|
337 | //
|
---|
338 | oldScanID = scanID;
|
---|
339 | outScanID += 1; // Scan ID for next accumulation period
|
---|
340 | }
|
---|
341 |
|
---|
342 | // Accumulate
|
---|
343 |
|
---|
344 | accumulate(timeSum, intSum, nAccum, sum, sumSq, nPts, tSysSum,
|
---|
345 | tSys, nInc, mask, time, interval, in, iTab, iRow, asap::ChanAxis,
|
---|
346 | nAxesSub, useMask, wtType);
|
---|
347 | //
|
---|
348 | oldSourceName = sourceName;
|
---|
349 | oldFreqID = freqID;
|
---|
350 | }
|
---|
351 | }
|
---|
352 |
|
---|
353 | // OK at this point we have accumulation data which is either
|
---|
354 | // - accumulated from all tables into one row
|
---|
355 | // or
|
---|
356 | // - accumulated from the last scan average
|
---|
357 | //
|
---|
358 | // Normalize data in 'sum' accumulation array according to weighting scheme
|
---|
359 |
|
---|
360 | normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);
|
---|
361 |
|
---|
362 | // Create and fill container. The container we clone will be from
|
---|
363 | // the last Table and the first row that went into the current
|
---|
364 | // accumulation. It probably doesn't matter that much really...
|
---|
365 |
|
---|
366 | Float nR(nAccum);
|
---|
367 | SDContainer scOut = in[tableStart]->getSDContainer(rowStart);
|
---|
368 | fillSDC(scOut, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
|
---|
369 | timeSum/nR, intSum, sourceNameStart, freqIDStart);
|
---|
370 | pTabOut->putSDContainer(scOut);
|
---|
371 | pTabOut->resetCursor();
|
---|
372 | //
|
---|
373 | return CountedPtr<SDMemTable>(pTabOut);
|
---|
374 | }
|
---|
375 |
|
---|
376 |
|
---|
377 |
|
---|
378 | CountedPtr<SDMemTable> SDMath::binaryOperate (const CountedPtr<SDMemTable>& left,
|
---|
379 | const CountedPtr<SDMemTable>& right,
|
---|
380 | const String& op, Bool preserve,
|
---|
381 | Bool doTSys) const
|
---|
382 | {
|
---|
383 |
|
---|
384 | // Check operator
|
---|
385 |
|
---|
386 | String op2(op);
|
---|
387 | op2.upcase();
|
---|
388 | uInt what = 0;
|
---|
389 | if (op2=="ADD") {
|
---|
390 | what = 0;
|
---|
391 | } else if (op2=="SUB") {
|
---|
392 | what = 1;
|
---|
393 | } else if (op2=="MUL") {
|
---|
394 | what = 2;
|
---|
395 | } else if (op2=="DIV") {
|
---|
396 | what = 3;
|
---|
397 | } else if (op2=="QUOTIENT") {
|
---|
398 | what = 4;
|
---|
399 | doTSys = True;
|
---|
400 | } else {
|
---|
401 | throw( AipsError("Unrecognized operation"));
|
---|
402 | }
|
---|
403 |
|
---|
404 | // Check rows
|
---|
405 |
|
---|
406 | const uInt nRowLeft = left->nRow();
|
---|
407 | const uInt nRowRight = right->nRow();
|
---|
408 | Bool ok = (nRowRight==1&&nRowLeft>0) ||
|
---|
409 | (nRowRight>=1&&nRowLeft==nRowRight);
|
---|
410 | if (!ok) {
|
---|
411 | throw (AipsError("The right Scan Table can have one row or the same number of rows as the left Scan Table"));
|
---|
412 | }
|
---|
413 |
|
---|
414 | // Input Tables
|
---|
415 |
|
---|
416 | const Table& tLeft = left->table();
|
---|
417 | const Table& tRight = right->table();
|
---|
418 |
|
---|
419 | // TSys columns
|
---|
420 |
|
---|
421 | ROArrayColumn<Float> tSysLeftCol, tSysRightCol;
|
---|
422 | if (doTSys) {
|
---|
423 | tSysLeftCol.attach(tLeft, "TSYS");
|
---|
424 | tSysRightCol.attach(tRight, "TSYS");
|
---|
425 | }
|
---|
426 |
|
---|
427 | // First row for right
|
---|
428 |
|
---|
429 | Array<Float> tSysLeftArr, tSysRightArr;
|
---|
430 | if (doTSys) tSysRightCol.get(0, tSysRightArr);
|
---|
431 | MaskedArray<Float>* pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(0));
|
---|
432 | IPosition shpRight = pMRight->shape();
|
---|
433 |
|
---|
434 | // Output Table cloned from left
|
---|
435 |
|
---|
436 | SDMemTable* pTabOut = new SDMemTable(*left, True);
|
---|
437 |
|
---|
438 | // Loop over rows
|
---|
439 |
|
---|
440 | for (uInt i=0; i<nRowLeft; i++) {
|
---|
441 |
|
---|
442 | // Get data
|
---|
443 |
|
---|
444 | MaskedArray<Float> mLeft(left->rowAsMaskedArray(i));
|
---|
445 | IPosition shpLeft = mLeft.shape();
|
---|
446 | if (doTSys) tSysLeftCol.get(i, tSysLeftArr);
|
---|
447 | //
|
---|
448 | if (nRowRight>1) {
|
---|
449 | delete pMRight;
|
---|
450 | pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(i));
|
---|
451 | shpRight = pMRight->shape();
|
---|
452 | if (doTSys) tSysRightCol.get(i, tSysRightArr);
|
---|
453 | }
|
---|
454 | //
|
---|
455 | if (!shpRight.isEqual(shpLeft)) {
|
---|
456 | throw(AipsError("left and right scan tables are not conformant"));
|
---|
457 | }
|
---|
458 | if (doTSys) {
|
---|
459 | if (!tSysRightArr.shape().isEqual(tSysRightArr.shape())) {
|
---|
460 | throw(AipsError("left and right Tsys data are not conformant"));
|
---|
461 | }
|
---|
462 | if (!shpRight.isEqual(tSysRightArr.shape())) {
|
---|
463 | throw(AipsError("left and right scan tables are not conformant"));
|
---|
464 | }
|
---|
465 | }
|
---|
466 |
|
---|
467 | // Make container
|
---|
468 |
|
---|
469 | SDContainer sc = left->getSDContainer(i);
|
---|
470 |
|
---|
471 | // Operate on data and TSys
|
---|
472 |
|
---|
473 | if (what==0) {
|
---|
474 | MaskedArray<Float> tmp = mLeft + *pMRight;
|
---|
475 | putDataInSDC(sc, tmp.getArray(), tmp.getMask());
|
---|
476 | if (doTSys) sc.putTsys(tSysLeftArr+tSysRightArr);
|
---|
477 | } else if (what==1) {
|
---|
478 | MaskedArray<Float> tmp = mLeft - *pMRight;
|
---|
479 | putDataInSDC(sc, tmp.getArray(), tmp.getMask());
|
---|
480 | if (doTSys) sc.putTsys(tSysLeftArr-tSysRightArr);
|
---|
481 | } else if (what==2) {
|
---|
482 | MaskedArray<Float> tmp = mLeft * *pMRight;
|
---|
483 | putDataInSDC(sc, tmp.getArray(), tmp.getMask());
|
---|
484 | if (doTSys) sc.putTsys(tSysLeftArr*tSysRightArr);
|
---|
485 | } else if (what==3) {
|
---|
486 | MaskedArray<Float> tmp = mLeft / *pMRight;
|
---|
487 | putDataInSDC(sc, tmp.getArray(), tmp.getMask());
|
---|
488 | if (doTSys) sc.putTsys(tSysLeftArr/tSysRightArr);
|
---|
489 | } else if (what==4) {
|
---|
490 | if (preserve) {
|
---|
491 | MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) - tSysRightArr;
|
---|
492 | putDataInSDC(sc, tmp.getArray(), tmp.getMask());
|
---|
493 | } else {
|
---|
494 | MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) - tSysLeftArr;
|
---|
495 | putDataInSDC(sc, tmp.getArray(), tmp.getMask());
|
---|
496 | }
|
---|
497 | sc.putTsys(tSysRightArr);
|
---|
498 | }
|
---|
499 |
|
---|
500 | // Put new row in output Table
|
---|
501 |
|
---|
502 | pTabOut->putSDContainer(sc);
|
---|
503 | }
|
---|
504 | if (pMRight) delete pMRight;
|
---|
505 | pTabOut->resetCursor();
|
---|
506 | //
|
---|
507 | return CountedPtr<SDMemTable>(pTabOut);
|
---|
508 | }
|
---|
509 |
|
---|
510 |
|
---|
511 |
|
---|
512 | std::vector<float> SDMath::statistic(const CountedPtr<SDMemTable>& in,
|
---|
513 | const Vector<Bool>& mask,
|
---|
514 | const String& which, Int row) const
|
---|
515 | //
|
---|
516 | // Perhaps iteration over pol/beam/if should be in here
|
---|
517 | // and inside the nrow iteration ?
|
---|
518 | //
|
---|
519 | {
|
---|
520 | const uInt nRow = in->nRow();
|
---|
521 |
|
---|
522 | // Specify cursor location
|
---|
523 |
|
---|
524 | IPosition start, end;
|
---|
525 | Bool doAll = False;
|
---|
526 | setCursorSlice (start, end, doAll, *in);
|
---|
527 |
|
---|
528 | // Loop over rows
|
---|
529 |
|
---|
530 | const uInt nEl = mask.nelements();
|
---|
531 | uInt iStart = 0;
|
---|
532 | uInt iEnd = in->nRow()-1;
|
---|
533 | //
|
---|
534 | if (row>=0) {
|
---|
535 | iStart = row;
|
---|
536 | iEnd = row;
|
---|
537 | }
|
---|
538 | //
|
---|
539 | std::vector<float> result(iEnd-iStart+1);
|
---|
540 | for (uInt ii=iStart; ii <= iEnd; ++ii) {
|
---|
541 |
|
---|
542 | // Get row and deconstruct
|
---|
543 |
|
---|
544 | MaskedArray<Float> dataIn = (in->rowAsMaskedArray(ii))(start,end);
|
---|
545 | Array<Float> v = dataIn.getArray().nonDegenerate();
|
---|
546 | Array<Bool> m = dataIn.getMask().nonDegenerate();
|
---|
547 |
|
---|
548 | // Access desired piece of data
|
---|
549 |
|
---|
550 | // Array<Float> v((arr(start,end)).nonDegenerate());
|
---|
551 | // Array<Bool> m((barr(start,end)).nonDegenerate());
|
---|
552 |
|
---|
553 | // Apply OTF mask
|
---|
554 |
|
---|
555 | MaskedArray<Float> tmp;
|
---|
556 | if (m.nelements()==nEl) {
|
---|
557 | tmp.setData(v,m&&mask);
|
---|
558 | } else {
|
---|
559 | tmp.setData(v,m);
|
---|
560 | }
|
---|
561 |
|
---|
562 | // Get statistic
|
---|
563 |
|
---|
564 | result[ii-iStart] = mathutil::statistics(which, tmp);
|
---|
565 | }
|
---|
566 | //
|
---|
567 | return result;
|
---|
568 | }
|
---|
569 |
|
---|
570 |
|
---|
571 | SDMemTable* SDMath::bin(const SDMemTable& in, Int width) const
|
---|
572 | {
|
---|
573 | SDHeader sh = in.getSDHeader();
|
---|
574 | SDMemTable* pTabOut = new SDMemTable(in, True);
|
---|
575 |
|
---|
576 | // Bin up SpectralCoordinates
|
---|
577 |
|
---|
578 | IPosition factors(1);
|
---|
579 | factors(0) = width;
|
---|
580 | for (uInt j=0; j<in.nCoordinates(); ++j) {
|
---|
581 | CoordinateSystem cSys;
|
---|
582 | cSys.addCoordinate(in.getSpectralCoordinate(j));
|
---|
583 | CoordinateSystem cSysBin =
|
---|
584 | CoordinateUtil::makeBinnedCoordinateSystem(factors, cSys, False);
|
---|
585 | //
|
---|
586 | SpectralCoordinate sCBin = cSysBin.spectralCoordinate(0);
|
---|
587 | pTabOut->setCoordinate(sCBin, j);
|
---|
588 | }
|
---|
589 |
|
---|
590 | // Use RebinLattice to find shape
|
---|
591 |
|
---|
592 | IPosition shapeIn(1,sh.nchan);
|
---|
593 | IPosition shapeOut = RebinLattice<Float>::rebinShape(shapeIn, factors);
|
---|
594 | sh.nchan = shapeOut(0);
|
---|
595 | pTabOut->putSDHeader(sh);
|
---|
596 |
|
---|
597 | // Loop over rows and bin along channel axis
|
---|
598 |
|
---|
599 | for (uInt i=0; i < in.nRow(); ++i) {
|
---|
600 | SDContainer sc = in.getSDContainer(i);
|
---|
601 | //
|
---|
602 | Array<Float> tSys(sc.getTsys()); // Get it out before sc changes shape
|
---|
603 |
|
---|
604 | // Bin up spectrum
|
---|
605 |
|
---|
606 | MaskedArray<Float> marr(in.rowAsMaskedArray(i));
|
---|
607 | MaskedArray<Float> marrout;
|
---|
608 | LatticeUtilities::bin(marrout, marr, asap::ChanAxis, width);
|
---|
609 |
|
---|
610 | // Put back the binned data and flags
|
---|
611 |
|
---|
612 | IPosition ip2 = marrout.shape();
|
---|
613 | sc.resize(ip2);
|
---|
614 | //
|
---|
615 | putDataInSDC(sc, marrout.getArray(), marrout.getMask());
|
---|
616 |
|
---|
617 | // Bin up Tsys.
|
---|
618 |
|
---|
619 | Array<Bool> allGood(tSys.shape(),True);
|
---|
620 | MaskedArray<Float> tSysIn(tSys, allGood, True);
|
---|
621 | //
|
---|
622 | MaskedArray<Float> tSysOut;
|
---|
623 | LatticeUtilities::bin(tSysOut, tSysIn, asap::ChanAxis, width);
|
---|
624 | sc.putTsys(tSysOut.getArray());
|
---|
625 | //
|
---|
626 | pTabOut->putSDContainer(sc);
|
---|
627 | }
|
---|
628 | return pTabOut;
|
---|
629 | }
|
---|
630 |
|
---|
631 | SDMemTable* SDMath::resample (const SDMemTable& in, const String& methodStr,
|
---|
632 | Float width) const
|
---|
633 | //
|
---|
634 | // Should add the possibility of width being specified in km/s. This means
|
---|
635 | // that for each freqID (SpectralCoordinate) we will need to convert to an
|
---|
636 | // average channel width (say at the reference pixel). Then we would need
|
---|
637 | // to be careful to make sure each spectrum (of different freqID)
|
---|
638 | // is the same length.
|
---|
639 | //
|
---|
640 | {
|
---|
641 | Bool doVel = False;
|
---|
642 | if (doVel) {
|
---|
643 | for (uInt j=0; j<in.nCoordinates(); ++j) {
|
---|
644 | SpectralCoordinate sC = in.getSpectralCoordinate(j);
|
---|
645 | }
|
---|
646 | }
|
---|
647 |
|
---|
648 | // Interpolation method
|
---|
649 |
|
---|
650 | InterpolateArray1D<Double,Float>::InterpolationMethod interp;
|
---|
651 | convertInterpString(interp, methodStr);
|
---|
652 | Int interpMethod(interp);
|
---|
653 |
|
---|
654 | // Make output table
|
---|
655 |
|
---|
656 | SDMemTable* pTabOut = new SDMemTable(in, True);
|
---|
657 |
|
---|
658 | // Resample SpectralCoordinates (one per freqID)
|
---|
659 |
|
---|
660 | const uInt nCoord = in.nCoordinates();
|
---|
661 | Vector<Float> offset(1,0.0);
|
---|
662 | Vector<Float> factors(1,1.0/width);
|
---|
663 | Vector<Int> newShape;
|
---|
664 | for (uInt j=0; j<in.nCoordinates(); ++j) {
|
---|
665 | CoordinateSystem cSys;
|
---|
666 | cSys.addCoordinate(in.getSpectralCoordinate(j));
|
---|
667 | CoordinateSystem cSys2 = cSys.subImage(offset, factors, newShape);
|
---|
668 | SpectralCoordinate sC = cSys2.spectralCoordinate(0);
|
---|
669 | //
|
---|
670 | pTabOut->setCoordinate(sC, j);
|
---|
671 | }
|
---|
672 |
|
---|
673 | // Get header
|
---|
674 |
|
---|
675 | SDHeader sh = in.getSDHeader();
|
---|
676 |
|
---|
677 | // Generate resampling vectors
|
---|
678 |
|
---|
679 | const uInt nChanIn = sh.nchan;
|
---|
680 | Vector<Float> xIn(nChanIn);
|
---|
681 | indgen(xIn);
|
---|
682 | //
|
---|
683 | Int fac = Int(nChanIn/width);
|
---|
684 | Vector<Float> xOut(fac+10); // 10 to be safe - resize later
|
---|
685 | uInt i = 0;
|
---|
686 | Float x = 0.0;
|
---|
687 | Bool more = True;
|
---|
688 | while (more) {
|
---|
689 | xOut(i) = x;
|
---|
690 | //
|
---|
691 | i++;
|
---|
692 | x += width;
|
---|
693 | if (x>nChanIn-1) more = False;
|
---|
694 | }
|
---|
695 | const uInt nChanOut = i;
|
---|
696 | xOut.resize(nChanOut,True);
|
---|
697 | //
|
---|
698 | IPosition shapeIn(in.rowAsMaskedArray(0).shape());
|
---|
699 | sh.nchan = nChanOut;
|
---|
700 | pTabOut->putSDHeader(sh);
|
---|
701 |
|
---|
702 | // Loop over rows and resample along channel axis
|
---|
703 |
|
---|
704 | Array<Float> valuesOut;
|
---|
705 | Array<Bool> maskOut;
|
---|
706 | Array<Float> tSysOut;
|
---|
707 | Array<Bool> tSysMaskIn(shapeIn,True);
|
---|
708 | Array<Bool> tSysMaskOut;
|
---|
709 | for (uInt i=0; i < in.nRow(); ++i) {
|
---|
710 |
|
---|
711 | // Get container
|
---|
712 |
|
---|
713 | SDContainer sc = in.getSDContainer(i);
|
---|
714 |
|
---|
715 | // Get data and Tsys
|
---|
716 |
|
---|
717 | const Array<Float>& tSysIn = sc.getTsys();
|
---|
718 | const MaskedArray<Float>& dataIn(in.rowAsMaskedArray(i));
|
---|
719 | Array<Float> valuesIn = dataIn.getArray();
|
---|
720 | Array<Bool> maskIn = dataIn.getMask();
|
---|
721 |
|
---|
722 | // Interpolate data
|
---|
723 |
|
---|
724 | InterpolateArray1D<Float,Float>::interpolate(valuesOut, maskOut, xOut,
|
---|
725 | xIn, valuesIn, maskIn,
|
---|
726 | interpMethod, True, True);
|
---|
727 | sc.resize(valuesOut.shape());
|
---|
728 | putDataInSDC(sc, valuesOut, maskOut);
|
---|
729 |
|
---|
730 | // Interpolate TSys
|
---|
731 |
|
---|
732 | InterpolateArray1D<Float,Float>::interpolate(tSysOut, tSysMaskOut, xOut,
|
---|
733 | xIn, tSysIn, tSysMaskIn,
|
---|
734 | interpMethod, True, True);
|
---|
735 | sc.putTsys(tSysOut);
|
---|
736 |
|
---|
737 | // Put container in output
|
---|
738 |
|
---|
739 | pTabOut->putSDContainer(sc);
|
---|
740 | }
|
---|
741 | //
|
---|
742 | return pTabOut;
|
---|
743 | }
|
---|
744 |
|
---|
745 | SDMemTable* SDMath::unaryOperate(const SDMemTable& in, Float val, Bool doAll,
|
---|
746 | uInt what, Bool doTSys) const
|
---|
747 | //
|
---|
748 | // what = 0 Multiply
|
---|
749 | // 1 Add
|
---|
750 | {
|
---|
751 | SDMemTable* pOut = new SDMemTable(in,False);
|
---|
752 | const Table& tOut = pOut->table();
|
---|
753 | ArrayColumn<Float> specCol(tOut,"SPECTRA");
|
---|
754 | ArrayColumn<Float> tSysCol(tOut,"TSYS");
|
---|
755 | Array<Float> tSysArr;
|
---|
756 |
|
---|
757 | // Get data slice bounds
|
---|
758 |
|
---|
759 | IPosition start, end;
|
---|
760 | setCursorSlice (start, end, doAll, in);
|
---|
761 | //
|
---|
762 | for (uInt i=0; i<tOut.nrow(); i++) {
|
---|
763 |
|
---|
764 | // Modify data
|
---|
765 |
|
---|
766 | MaskedArray<Float> dataIn(pOut->rowAsMaskedArray(i));
|
---|
767 | MaskedArray<Float> dataIn2 = dataIn(start,end); // Reference
|
---|
768 | if (what==0) {
|
---|
769 | dataIn2 *= val;
|
---|
770 | } else if (what==1) {
|
---|
771 | dataIn2 += val;
|
---|
772 | }
|
---|
773 | specCol.put(i, dataIn.getArray());
|
---|
774 |
|
---|
775 | // Modify Tsys
|
---|
776 |
|
---|
777 | if (doTSys) {
|
---|
778 | tSysCol.get(i, tSysArr);
|
---|
779 | Array<Float> tSysArr2 = tSysArr(start,end); // Reference
|
---|
780 | if (what==0) {
|
---|
781 | tSysArr2 *= val;
|
---|
782 | } else if (what==1) {
|
---|
783 | tSysArr2 += val;
|
---|
784 | }
|
---|
785 | tSysCol.put(i, tSysArr);
|
---|
786 | }
|
---|
787 | }
|
---|
788 | //
|
---|
789 | return pOut;
|
---|
790 | }
|
---|
791 |
|
---|
792 |
|
---|
793 |
|
---|
794 | SDMemTable* SDMath::averagePol(const SDMemTable& in, const Vector<Bool>& mask,
|
---|
795 | const String& weightStr) const
|
---|
796 | //
|
---|
797 | // Average all polarizations together, weighted by variance
|
---|
798 | //
|
---|
799 | {
|
---|
800 | WeightType wtType = NONE;
|
---|
801 | convertWeightString(wtType, weightStr);
|
---|
802 |
|
---|
803 | const uInt nRows = in.nRow();
|
---|
804 |
|
---|
805 | // Create output Table and reshape number of polarizations
|
---|
806 |
|
---|
807 | Bool clear=True;
|
---|
808 | SDMemTable* pTabOut = new SDMemTable(in, clear);
|
---|
809 | SDHeader header = pTabOut->getSDHeader();
|
---|
810 | header.npol = 1;
|
---|
811 | pTabOut->putSDHeader(header);
|
---|
812 |
|
---|
813 | // Shape of input and output data
|
---|
814 |
|
---|
815 | const IPosition& shapeIn = in.rowAsMaskedArray(0).shape();
|
---|
816 | IPosition shapeOut(shapeIn);
|
---|
817 | shapeOut(asap::PolAxis) = 1; // Average all polarizations
|
---|
818 | if (shapeIn(asap::PolAxis)==1) {
|
---|
819 | throw(AipsError("The input has only one polarisation"));
|
---|
820 | }
|
---|
821 | //
|
---|
822 | const uInt nChan = shapeIn(asap::ChanAxis);
|
---|
823 | const IPosition vecShapeOut(4,1,1,1,nChan); // A multi-dim form of a Vector shape
|
---|
824 | IPosition start(4), end(4);
|
---|
825 |
|
---|
826 | // Output arrays
|
---|
827 |
|
---|
828 | Array<Float> outData(shapeOut, 0.0);
|
---|
829 | Array<Bool> outMask(shapeOut, True);
|
---|
830 | const IPosition axes(2, asap::PolAxis, asap::ChanAxis); // pol-channel plane
|
---|
831 | //
|
---|
832 | const Bool useMask = (mask.nelements() == shapeIn(asap::ChanAxis));
|
---|
833 |
|
---|
834 | // Loop over rows
|
---|
835 |
|
---|
836 | for (uInt iRow=0; iRow<nRows; iRow++) {
|
---|
837 |
|
---|
838 | // Get data for this row
|
---|
839 |
|
---|
840 | MaskedArray<Float> marr(in.rowAsMaskedArray(iRow));
|
---|
841 | Array<Float>& arr = marr.getRWArray();
|
---|
842 | const Array<Bool>& barr = marr.getMask();
|
---|
843 |
|
---|
844 | // Make iterators to iterate by pol-channel planes
|
---|
845 |
|
---|
846 | ReadOnlyArrayIterator<Float> itDataPlane(arr, axes);
|
---|
847 | ReadOnlyArrayIterator<Bool> itMaskPlane(barr, axes);
|
---|
848 |
|
---|
849 | // Accumulations
|
---|
850 |
|
---|
851 | Float fac = 1.0;
|
---|
852 | Vector<Float> vecSum(nChan,0.0);
|
---|
853 |
|
---|
854 | // Iterate through data by pol-channel planes
|
---|
855 |
|
---|
856 | while (!itDataPlane.pastEnd()) {
|
---|
857 |
|
---|
858 | // Iterate through plane by polarization and accumulate Vectors
|
---|
859 |
|
---|
860 | Vector<Float> t1(nChan); t1 = 0.0;
|
---|
861 | Vector<Bool> t2(nChan); t2 = True;
|
---|
862 | MaskedArray<Float> vecSum(t1,t2);
|
---|
863 | Float norm = 0.0;
|
---|
864 | {
|
---|
865 | ReadOnlyVectorIterator<Float> itDataVec(itDataPlane.array(), 1);
|
---|
866 | ReadOnlyVectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
|
---|
867 | while (!itDataVec.pastEnd()) {
|
---|
868 |
|
---|
869 | // Create MA of data & mask (optionally including OTF mask) and get variance for this spectrum
|
---|
870 |
|
---|
871 | if (useMask) {
|
---|
872 | const MaskedArray<Float> spec(itDataVec.vector(),mask&&itMaskVec.vector());
|
---|
873 | if (wtType==VAR) fac = 1.0 / variance(spec);
|
---|
874 | } else {
|
---|
875 | const MaskedArray<Float> spec(itDataVec.vector(),itMaskVec.vector());
|
---|
876 | if (wtType==VAR) fac = 1.0 / variance(spec);
|
---|
877 | }
|
---|
878 |
|
---|
879 | // Normalize spectrum (without OTF mask) and accumulate
|
---|
880 |
|
---|
881 | const MaskedArray<Float> spec(fac*itDataVec.vector(), itMaskVec.vector());
|
---|
882 | vecSum += spec;
|
---|
883 | norm += fac;
|
---|
884 |
|
---|
885 | // Next
|
---|
886 |
|
---|
887 | itDataVec.next();
|
---|
888 | itMaskVec.next();
|
---|
889 | }
|
---|
890 | }
|
---|
891 |
|
---|
892 | // Normalize summed spectrum
|
---|
893 |
|
---|
894 | vecSum /= norm;
|
---|
895 |
|
---|
896 | // FInd position in input data array. We are iterating by pol-channel
|
---|
897 | // plane so all that will change is beam and IF and that's what we want.
|
---|
898 |
|
---|
899 | IPosition pos = itDataPlane.pos();
|
---|
900 |
|
---|
901 | // Write out data. This is a bit messy. We have to reform the Vector
|
---|
902 | // accumulator into an Array of shape (1,1,1,nChan)
|
---|
903 |
|
---|
904 | start = pos;
|
---|
905 | end = pos;
|
---|
906 | end(asap::ChanAxis) = nChan-1;
|
---|
907 | outData(start,end) = vecSum.getArray().reform(vecShapeOut);
|
---|
908 | outMask(start,end) = vecSum.getMask().reform(vecShapeOut);
|
---|
909 |
|
---|
910 | // Step to next beam/IF combination
|
---|
911 |
|
---|
912 | itDataPlane.next();
|
---|
913 | itMaskPlane.next();
|
---|
914 | }
|
---|
915 |
|
---|
916 | // Generate output container and write it to output table
|
---|
917 |
|
---|
918 | SDContainer sc = in.getSDContainer();
|
---|
919 | sc.resize(shapeOut);
|
---|
920 | //
|
---|
921 | putDataInSDC(sc, outData, outMask);
|
---|
922 | pTabOut->putSDContainer(sc);
|
---|
923 | }
|
---|
924 |
|
---|
925 | // Set polarization cursor to 0
|
---|
926 |
|
---|
927 | pTabOut->setPol(0);
|
---|
928 | //
|
---|
929 | return pTabOut;
|
---|
930 | }
|
---|
931 |
|
---|
932 |
|
---|
933 | SDMemTable* SDMath::smooth(const SDMemTable& in,
|
---|
934 | const casa::String& kernelType,
|
---|
935 | casa::Float width, Bool doAll) const
|
---|
936 | //
|
---|
937 | // Should smooth TSys as well
|
---|
938 | //
|
---|
939 | {
|
---|
940 |
|
---|
941 | // Number of channels
|
---|
942 |
|
---|
943 | const uInt nChan = in.nChan();
|
---|
944 |
|
---|
945 | // Generate Kernel
|
---|
946 |
|
---|
947 | VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernelType);
|
---|
948 | Vector<Float> kernel = VectorKernel::make(type, width, nChan, True, False);
|
---|
949 |
|
---|
950 | // Generate Convolver
|
---|
951 |
|
---|
952 | IPosition shape(1,nChan);
|
---|
953 | Convolver<Float> conv(kernel, shape);
|
---|
954 |
|
---|
955 | // New Table
|
---|
956 |
|
---|
957 | SDMemTable* pTabOut = new SDMemTable(in,True);
|
---|
958 |
|
---|
959 | // Output Vectors
|
---|
960 |
|
---|
961 | Vector<Float> valuesOut(nChan);
|
---|
962 | Vector<Bool> maskOut(nChan);
|
---|
963 |
|
---|
964 | // Get data slice bounds
|
---|
965 |
|
---|
966 | IPosition start, end;
|
---|
967 | setCursorSlice (start, end, doAll, in);
|
---|
968 |
|
---|
969 | // Loop over rows in Table
|
---|
970 |
|
---|
971 | for (uInt ri=0; ri < in.nRow(); ++ri) {
|
---|
972 |
|
---|
973 | // Get slice of data
|
---|
974 |
|
---|
975 | MaskedArray<Float> dataIn = in.rowAsMaskedArray(ri);
|
---|
976 |
|
---|
977 | // Deconstruct and get slices which reference these arrays
|
---|
978 |
|
---|
979 | Array<Float> valuesIn = dataIn.getArray();
|
---|
980 | Array<Bool> maskIn = dataIn.getMask();
|
---|
981 | //
|
---|
982 | Array<Float> valuesIn2 = valuesIn(start,end); // ref to valuesIn
|
---|
983 | Array<Bool> maskIn2 = maskIn(start,end);
|
---|
984 |
|
---|
985 | // Iterate through by spectra
|
---|
986 |
|
---|
987 | VectorIterator<Float> itValues(valuesIn2, asap::ChanAxis);
|
---|
988 | VectorIterator<Bool> itMask(maskIn2, asap::ChanAxis);
|
---|
989 | while (!itValues.pastEnd()) {
|
---|
990 |
|
---|
991 | // Smooth
|
---|
992 |
|
---|
993 | if (kernelType==VectorKernel::HANNING) {
|
---|
994 | mathutil::hanning(valuesOut, maskOut, itValues.vector(), itMask.vector());
|
---|
995 | itMask.vector() = maskOut;
|
---|
996 | } else {
|
---|
997 | mathutil::replaceMaskByZero(itValues.vector(), itMask.vector());
|
---|
998 | conv.linearConv(valuesOut, itValues.vector());
|
---|
999 | }
|
---|
1000 | //
|
---|
1001 | itValues.vector() = valuesOut;
|
---|
1002 | //
|
---|
1003 | itValues.next();
|
---|
1004 | itMask.next();
|
---|
1005 | }
|
---|
1006 |
|
---|
1007 | // Create and put back
|
---|
1008 |
|
---|
1009 | SDContainer sc = in.getSDContainer(ri);
|
---|
1010 | putDataInSDC(sc, valuesIn, maskIn);
|
---|
1011 | //
|
---|
1012 | pTabOut->putSDContainer(sc);
|
---|
1013 | }
|
---|
1014 | //
|
---|
1015 | return pTabOut;
|
---|
1016 | }
|
---|
1017 |
|
---|
1018 |
|
---|
1019 |
|
---|
1020 | SDMemTable* SDMath::convertFlux (const SDMemTable& in, Float D, Float etaAp,
|
---|
1021 | Float JyPerK, Bool doAll) const
|
---|
1022 | //
|
---|
1023 | // etaAp = aperture efficiency (-1 means find)
|
---|
1024 | // D = geometric diameter (m) (-1 means find)
|
---|
1025 | // JyPerK
|
---|
1026 | //
|
---|
1027 | {
|
---|
1028 | SDHeader sh = in.getSDHeader();
|
---|
1029 | SDMemTable* pTabOut = new SDMemTable(in, True);
|
---|
1030 |
|
---|
1031 | // Find out how to convert values into Jy and K (e.g. units might be mJy or mK)
|
---|
1032 | // Also automatically find out what we are converting to according to the
|
---|
1033 | // flux unit
|
---|
1034 |
|
---|
1035 | Unit fluxUnit(sh.fluxunit);
|
---|
1036 | Unit K(String("K"));
|
---|
1037 | Unit JY(String("Jy"));
|
---|
1038 | //
|
---|
1039 | Bool toKelvin = True;
|
---|
1040 | Double cFac = 1.0;
|
---|
1041 | if (fluxUnit==JY) {
|
---|
1042 | cout << "Converting to K" << endl;
|
---|
1043 | //
|
---|
1044 | Quantum<Double> t(1.0,fluxUnit);
|
---|
1045 | Quantum<Double> t2 = t.get(JY);
|
---|
1046 | cFac = (t2 / t).getValue(); // value to Jy
|
---|
1047 | //
|
---|
1048 | toKelvin = True;
|
---|
1049 | sh.fluxunit = "K";
|
---|
1050 | } else if (fluxUnit==K) {
|
---|
1051 | cout << "Converting to Jy" << endl;
|
---|
1052 | //
|
---|
1053 | Quantum<Double> t(1.0,fluxUnit);
|
---|
1054 | Quantum<Double> t2 = t.get(K);
|
---|
1055 | cFac = (t2 / t).getValue(); // value to K
|
---|
1056 | //
|
---|
1057 | toKelvin = False;
|
---|
1058 | sh.fluxunit = "Jy";
|
---|
1059 | } else {
|
---|
1060 | throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
|
---|
1061 | }
|
---|
1062 | pTabOut->putSDHeader(sh);
|
---|
1063 |
|
---|
1064 | // Make sure input values are converted to either Jy or K first...
|
---|
1065 |
|
---|
1066 | Float factor = cFac;
|
---|
1067 |
|
---|
1068 | // Select method
|
---|
1069 |
|
---|
1070 | if (JyPerK>0.0) {
|
---|
1071 | factor *= JyPerK;
|
---|
1072 | if (toKelvin) factor = 1.0 / JyPerK;
|
---|
1073 | //
|
---|
1074 | cout << "Jy/K = " << JyPerK << endl;
|
---|
1075 | Vector<Float> factors(in.nRow(), factor);
|
---|
1076 | correctFromVector (pTabOut, in, doAll, factors);
|
---|
1077 | } else if (etaAp>0.0) {
|
---|
1078 | Bool throwIt = True;
|
---|
1079 | Instrument inst = SDAttr::convertInstrument (sh.antennaname, throwIt);
|
---|
1080 | SDAttr sda;
|
---|
1081 | if (D < 0) D = sda.diameter(inst);
|
---|
1082 | Float JyPerK = SDAttr::findJyPerK (etaAp,D);
|
---|
1083 | cout << "Jy/K = " << JyPerK << endl;
|
---|
1084 | factor *= JyPerK;
|
---|
1085 | if (toKelvin) {
|
---|
1086 | factor = 1.0 / factor;
|
---|
1087 | }
|
---|
1088 | //
|
---|
1089 | Vector<Float> factors(in.nRow(), factor);
|
---|
1090 | correctFromVector (pTabOut, in, doAll, factors);
|
---|
1091 | } else {
|
---|
1092 |
|
---|
1093 | // OK now we must deal with automatic look up of values.
|
---|
1094 | // We must also deal with the fact that the factors need
|
---|
1095 | // to be computed per IF and may be different and may
|
---|
1096 | // change per integration.
|
---|
1097 |
|
---|
1098 | cout << "Looking up conversion factors" << endl;
|
---|
1099 | convertBrightnessUnits (pTabOut, in, toKelvin, cFac, doAll);
|
---|
1100 | }
|
---|
1101 | //
|
---|
1102 | return pTabOut;
|
---|
1103 | }
|
---|
1104 |
|
---|
1105 |
|
---|
1106 |
|
---|
1107 |
|
---|
1108 |
|
---|
1109 | SDMemTable* SDMath::gainElevation (const SDMemTable& in, const Vector<Float>& coeffs,
|
---|
1110 | const String& fileName,
|
---|
1111 | const String& methodStr, Bool doAll) const
|
---|
1112 | {
|
---|
1113 |
|
---|
1114 | // Get header and clone output table
|
---|
1115 |
|
---|
1116 | SDHeader sh = in.getSDHeader();
|
---|
1117 | SDMemTable* pTabOut = new SDMemTable(in, True);
|
---|
1118 |
|
---|
1119 | // Get elevation data from SDMemTable and convert to degrees
|
---|
1120 |
|
---|
1121 | const Table& tab = in.table();
|
---|
1122 | ROScalarColumn<Float> elev(tab, "ELEVATION");
|
---|
1123 | Vector<Float> x = elev.getColumn();
|
---|
1124 | x *= Float(180 / C::pi); // Degrees
|
---|
1125 | //
|
---|
1126 | const uInt nC = coeffs.nelements();
|
---|
1127 | if (fileName.length()>0 && nC>0) {
|
---|
1128 | throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
|
---|
1129 | }
|
---|
1130 |
|
---|
1131 | // Correct
|
---|
1132 |
|
---|
1133 | if (nC>0 || fileName.length()==0) {
|
---|
1134 |
|
---|
1135 | // Find instrument
|
---|
1136 |
|
---|
1137 | Bool throwIt = True;
|
---|
1138 | Instrument inst = SDAttr::convertInstrument (sh.antennaname, throwIt);
|
---|
1139 |
|
---|
1140 | // Set polynomial
|
---|
1141 |
|
---|
1142 | Polynomial<Float>* pPoly = 0;
|
---|
1143 | Vector<Float> coeff;
|
---|
1144 | String msg;
|
---|
1145 | if (nC>0) {
|
---|
1146 | pPoly = new Polynomial<Float>(nC);
|
---|
1147 | coeff = coeffs;
|
---|
1148 | msg = String("user");
|
---|
1149 | } else {
|
---|
1150 | SDAttr sdAttr;
|
---|
1151 | coeff = sdAttr.gainElevationPoly(inst);
|
---|
1152 | pPoly = new Polynomial<Float>(3);
|
---|
1153 | msg = String("built in");
|
---|
1154 | }
|
---|
1155 | //
|
---|
1156 | if (coeff.nelements()>0) {
|
---|
1157 | pPoly->setCoefficients(coeff);
|
---|
1158 | } else {
|
---|
1159 | throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
|
---|
1160 | }
|
---|
1161 | //
|
---|
1162 | cout << "Making polynomial correction with " << msg << " coefficients" << endl;
|
---|
1163 | const uInt nRow = in.nRow();
|
---|
1164 | Vector<Float> factor(nRow);
|
---|
1165 | for (uInt i=0; i<nRow; i++) {
|
---|
1166 | factor[i] = (*pPoly)(x[i]);
|
---|
1167 | }
|
---|
1168 | delete pPoly;
|
---|
1169 | //
|
---|
1170 | correctFromVector (pTabOut, in, doAll, factor);
|
---|
1171 | } else {
|
---|
1172 |
|
---|
1173 | // Indicate which columns to read from ascii file
|
---|
1174 |
|
---|
1175 | String col0("ELEVATION");
|
---|
1176 | String col1("FACTOR");
|
---|
1177 |
|
---|
1178 | // Read and correct
|
---|
1179 |
|
---|
1180 | cout << "Making correction from ascii Table" << endl;
|
---|
1181 | correctFromAsciiTable (pTabOut, in, fileName, col0, col1,
|
---|
1182 | methodStr, doAll, x);
|
---|
1183 | }
|
---|
1184 | //
|
---|
1185 | return pTabOut;
|
---|
1186 | }
|
---|
1187 |
|
---|
1188 |
|
---|
1189 |
|
---|
1190 | SDMemTable* SDMath::opacity (const SDMemTable& in, Float tau, Bool doAll) const
|
---|
1191 | {
|
---|
1192 |
|
---|
1193 | // Get header and clone output table
|
---|
1194 |
|
---|
1195 | SDHeader sh = in.getSDHeader();
|
---|
1196 | SDMemTable* pTabOut = new SDMemTable(in, True);
|
---|
1197 |
|
---|
1198 | // Get elevation data from SDMemTable and convert to degrees
|
---|
1199 |
|
---|
1200 | const Table& tab = in.table();
|
---|
1201 | ROScalarColumn<Float> elev(tab, "ELEVATION");
|
---|
1202 | Vector<Float> zDist = elev.getColumn();
|
---|
1203 | zDist = Float(C::pi_2) - zDist;
|
---|
1204 |
|
---|
1205 | // Generate correction factor
|
---|
1206 |
|
---|
1207 | const uInt nRow = in.nRow();
|
---|
1208 | Vector<Float> factor(nRow);
|
---|
1209 | Vector<Float> factor2(nRow);
|
---|
1210 | for (uInt i=0; i<nRow; i++) {
|
---|
1211 | factor[i] = exp(tau)/cos(zDist[i]);
|
---|
1212 | }
|
---|
1213 |
|
---|
1214 | // Correct
|
---|
1215 |
|
---|
1216 | correctFromVector (pTabOut, in, doAll, factor);
|
---|
1217 | //
|
---|
1218 | return pTabOut;
|
---|
1219 | }
|
---|
1220 |
|
---|
1221 |
|
---|
1222 | void SDMath::rotateXYPhase (SDMemTable& in, Float value, Bool doAll)
|
---|
1223 | //
|
---|
1224 | // phase in degrees
|
---|
1225 | // Applies to all Beams and IFs
|
---|
1226 | // Might want to optionally select on Beam/IF
|
---|
1227 | //
|
---|
1228 | {
|
---|
1229 | if (in.nPol() != 4) {
|
---|
1230 | throw(AipsError("You must have 4 polarizations to run this function"));
|
---|
1231 | }
|
---|
1232 | //
|
---|
1233 | const Table& tabIn = in.table();
|
---|
1234 | ArrayColumn<Float> specCol(tabIn,"SPECTRA");
|
---|
1235 | IPosition start(asap::nAxes,0);
|
---|
1236 | IPosition end(asap::nAxes);
|
---|
1237 |
|
---|
1238 | // Set cursor slice. Assumes shape the same for all rows
|
---|
1239 |
|
---|
1240 | setCursorSlice (start, end, doAll, in);
|
---|
1241 | IPosition start3(start);
|
---|
1242 | start3(asap::PolAxis) = 2; // Real(XY)
|
---|
1243 | IPosition end3(end);
|
---|
1244 | end3(asap::PolAxis) = 2;
|
---|
1245 | //
|
---|
1246 | IPosition start4(start);
|
---|
1247 | start4(asap::PolAxis) = 3; // Imag (XY)
|
---|
1248 | IPosition end4(end);
|
---|
1249 | end4(asap::PolAxis) = 3;
|
---|
1250 | //
|
---|
1251 | uInt nRow = in.nRow();
|
---|
1252 | Array<Float> data;
|
---|
1253 | for (uInt i=0; i<nRow;++i) {
|
---|
1254 | specCol.get(i,data);
|
---|
1255 | IPosition shape = data.shape();
|
---|
1256 |
|
---|
1257 | // Get polarization slice references
|
---|
1258 |
|
---|
1259 | Array<Float> C3 = data(start3,end3);
|
---|
1260 | Array<Float> C4 = data(start4,end4);
|
---|
1261 |
|
---|
1262 | // Rotate
|
---|
1263 |
|
---|
1264 | SDPolUtil::rotateXYPhase(C3, C4, value);
|
---|
1265 |
|
---|
1266 | // Put
|
---|
1267 |
|
---|
1268 | specCol.put(i,data);
|
---|
1269 | }
|
---|
1270 | }
|
---|
1271 |
|
---|
1272 |
|
---|
1273 |
|
---|
1274 | // 'private' functions
|
---|
1275 |
|
---|
1276 | void SDMath::convertBrightnessUnits (SDMemTable* pTabOut, const SDMemTable& in,
|
---|
1277 | Bool toKelvin, Float cFac, Bool doAll) const
|
---|
1278 | {
|
---|
1279 |
|
---|
1280 | // Get header
|
---|
1281 |
|
---|
1282 | SDHeader sh = in.getSDHeader();
|
---|
1283 | const uInt nChan = sh.nchan;
|
---|
1284 |
|
---|
1285 | // Get instrument
|
---|
1286 |
|
---|
1287 | Bool throwIt = True;
|
---|
1288 | Instrument inst = SDAttr::convertInstrument (sh.antennaname, throwIt);
|
---|
1289 |
|
---|
1290 | // Get Diameter (m)
|
---|
1291 |
|
---|
1292 | SDAttr sdAtt;
|
---|
1293 |
|
---|
1294 | // Get epoch of first row
|
---|
1295 |
|
---|
1296 | MEpoch dateObs = in.getEpoch(0);
|
---|
1297 |
|
---|
1298 | // Generate a Vector of correction factors. One per FreqID
|
---|
1299 |
|
---|
1300 | SDFrequencyTable sdft = in.getSDFreqTable();
|
---|
1301 | Vector<uInt> freqIDs;
|
---|
1302 | //
|
---|
1303 | Vector<Float> freqs(sdft.length());
|
---|
1304 | for (uInt i=0; i<sdft.length(); i++) {
|
---|
1305 | freqs(i) = (nChan/2 - sdft.referencePixel(i))*sdft.increment(i) + sdft.referenceValue(i);
|
---|
1306 | }
|
---|
1307 | //
|
---|
1308 | Vector<Float> JyPerK = sdAtt.JyPerK(inst, dateObs, freqs);
|
---|
1309 | cout << "Jy/K = " << JyPerK << endl;
|
---|
1310 | Vector<Float> factors = cFac * JyPerK;
|
---|
1311 | if (toKelvin) factors = Float(1.0) / factors;
|
---|
1312 |
|
---|
1313 | // Get data slice bounds
|
---|
1314 |
|
---|
1315 | IPosition start, end;
|
---|
1316 | setCursorSlice (start, end, doAll, in);
|
---|
1317 | const uInt ifAxis = in.getIF();
|
---|
1318 |
|
---|
1319 | // Iteration axes
|
---|
1320 |
|
---|
1321 | IPosition axes(asap::nAxes-1,0);
|
---|
1322 | for (uInt i=0,j=0; i<asap::nAxes; i++) {
|
---|
1323 | if (i!=asap::IFAxis) {
|
---|
1324 | axes(j++) = i;
|
---|
1325 | }
|
---|
1326 | }
|
---|
1327 |
|
---|
1328 | // Loop over rows and apply correction factor
|
---|
1329 |
|
---|
1330 | Float factor = 1.0;
|
---|
1331 | const uInt axis = asap::ChanAxis;
|
---|
1332 | for (uInt i=0; i < in.nRow(); ++i) {
|
---|
1333 |
|
---|
1334 | // Get data
|
---|
1335 |
|
---|
1336 | MaskedArray<Float> dataIn = in.rowAsMaskedArray(i);
|
---|
1337 | Array<Float>& values = dataIn.getRWArray(); // Ref to dataIn
|
---|
1338 | Array<Float> values2 = values(start,end); // Ref to values to dataIn
|
---|
1339 |
|
---|
1340 | // Get SDCOntainer
|
---|
1341 |
|
---|
1342 | SDContainer sc = in.getSDContainer(i);
|
---|
1343 |
|
---|
1344 | // Get FreqIDs
|
---|
1345 |
|
---|
1346 | freqIDs = sc.getFreqMap();
|
---|
1347 |
|
---|
1348 | // Now the conversion factor depends only upon frequency
|
---|
1349 | // So we need to iterate through by IF only giving
|
---|
1350 | // us BEAM/POL/CHAN cubes
|
---|
1351 |
|
---|
1352 | ArrayIterator<Float> itIn(values2, axes);
|
---|
1353 | uInt ax = 0;
|
---|
1354 | while (!itIn.pastEnd()) {
|
---|
1355 | itIn.array() *= factors(freqIDs(ax)); // Writes back to dataIn
|
---|
1356 | itIn.next();
|
---|
1357 | }
|
---|
1358 |
|
---|
1359 | // Write out
|
---|
1360 |
|
---|
1361 | putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
|
---|
1362 | //
|
---|
1363 | pTabOut->putSDContainer(sc);
|
---|
1364 | }
|
---|
1365 | }
|
---|
1366 |
|
---|
1367 |
|
---|
1368 |
|
---|
1369 | SDMemTable* SDMath::frequencyAlign (const SDMemTable& in,
|
---|
1370 | MFrequency::Types freqSystem,
|
---|
1371 | const String& refTime,
|
---|
1372 | const String& methodStr,
|
---|
1373 | Bool perFreqID) const
|
---|
1374 | {
|
---|
1375 | // Get Header
|
---|
1376 |
|
---|
1377 | SDHeader sh = in.getSDHeader();
|
---|
1378 | const uInt nChan = sh.nchan;
|
---|
1379 | const uInt nRows = in.nRow();
|
---|
1380 | const uInt nIF = sh.nif;
|
---|
1381 |
|
---|
1382 | // Get Table reference
|
---|
1383 |
|
---|
1384 | const Table& tabIn = in.table();
|
---|
1385 |
|
---|
1386 | // Get Columns from Table
|
---|
1387 |
|
---|
1388 | ROScalarColumn<Double> mjdCol(tabIn, "TIME");
|
---|
1389 | ROScalarColumn<String> srcCol(tabIn, "SRCNAME");
|
---|
1390 | ROArrayColumn<uInt> fqIDCol(tabIn, "FREQID");
|
---|
1391 | Vector<Double> times = mjdCol.getColumn();
|
---|
1392 |
|
---|
1393 | // Generate DataDesc table
|
---|
1394 |
|
---|
1395 | Matrix<uInt> ddIdx;
|
---|
1396 | SDDataDesc dDesc;
|
---|
1397 | generateDataDescTable (ddIdx, dDesc, nIF, in, tabIn, srcCol, fqIDCol, perFreqID);
|
---|
1398 |
|
---|
1399 | // Get reference Epoch to time of first row or given String
|
---|
1400 |
|
---|
1401 | Unit DAY(String("d"));
|
---|
1402 | MEpoch::Ref epochRef(in.getTimeReference());
|
---|
1403 | MEpoch refEpoch;
|
---|
1404 | if (refTime.length()>0) {
|
---|
1405 | refEpoch = epochFromString(refTime, in.getTimeReference());
|
---|
1406 | } else {
|
---|
1407 | refEpoch = in.getEpoch(0);
|
---|
1408 | }
|
---|
1409 | cout << "Aligning at reference Epoch " << formatEpoch(refEpoch)
|
---|
1410 | << " in frame " << MFrequency::showType(freqSystem) << endl;
|
---|
1411 |
|
---|
1412 | // Get Reference Position
|
---|
1413 |
|
---|
1414 | MPosition refPos = in.getAntennaPosition();
|
---|
1415 |
|
---|
1416 | // Create FrequencyAligner Block. One FA for each possible
|
---|
1417 | // source/freqID (perFreqID=True) or source/IF (perFreqID=False) combination
|
---|
1418 |
|
---|
1419 | PtrBlock<FrequencyAligner<Float>* > a(dDesc.length());
|
---|
1420 | generateFrequencyAligners (a, dDesc, in, nChan, freqSystem, refPos,
|
---|
1421 | refEpoch, perFreqID);
|
---|
1422 |
|
---|
1423 | // Generate and fill output Frequency Table. WHen perFreqID=True, there is one output FreqID
|
---|
1424 | // for each entry in the SDDataDesc table. However, in perFreqID=False mode, there may be
|
---|
1425 | // some degeneracy, so we need a little translation map
|
---|
1426 |
|
---|
1427 | SDFrequencyTable freqTabOut = in.getSDFreqTable();
|
---|
1428 | freqTabOut.setLength(0);
|
---|
1429 | Vector<String> units(1);
|
---|
1430 | units = String("Hz");
|
---|
1431 | Bool linear=True;
|
---|
1432 | //
|
---|
1433 | Vector<uInt> ddFQTrans(dDesc.length(),0);
|
---|
1434 | for (uInt i=0; i<dDesc.length(); i++) {
|
---|
1435 |
|
---|
1436 | // Get Aligned SC in Hz
|
---|
1437 |
|
---|
1438 | SpectralCoordinate sC = a[i]->alignedSpectralCoordinate(linear);
|
---|
1439 | sC.setWorldAxisUnits(units);
|
---|
1440 |
|
---|
1441 | // Add FreqID
|
---|
1442 |
|
---|
1443 | uInt idx = freqTabOut.addFrequency(sC.referencePixel()[0],
|
---|
1444 | sC.referenceValue()[0],
|
---|
1445 | sC.increment()[0]);
|
---|
1446 | ddFQTrans(i) = idx; // output FreqID = ddFQTrans(ddIdx)
|
---|
1447 | }
|
---|
1448 |
|
---|
1449 | // Interpolation method
|
---|
1450 |
|
---|
1451 | InterpolateArray1D<Double,Float>::InterpolationMethod interp;
|
---|
1452 | convertInterpString(interp, methodStr);
|
---|
1453 |
|
---|
1454 | // New output Table
|
---|
1455 |
|
---|
1456 | cout << "Create output table" << endl;
|
---|
1457 | SDMemTable* pTabOut = new SDMemTable(in,True);
|
---|
1458 | pTabOut->putSDFreqTable(freqTabOut);
|
---|
1459 |
|
---|
1460 | // Loop over rows in Table
|
---|
1461 |
|
---|
1462 | Bool extrapolate=False;
|
---|
1463 | const IPosition polChanAxes(2, asap::PolAxis, asap::ChanAxis);
|
---|
1464 | Bool useCachedAbcissa = False;
|
---|
1465 | Bool first = True;
|
---|
1466 | Bool ok;
|
---|
1467 | Vector<Float> yOut;
|
---|
1468 | Vector<Bool> maskOut;
|
---|
1469 | Vector<uInt> freqID(nIF);
|
---|
1470 | uInt ifIdx, faIdx;
|
---|
1471 | Vector<Double> xIn;
|
---|
1472 | //
|
---|
1473 | for (uInt iRow=0; iRow<nRows; ++iRow) {
|
---|
1474 | if (iRow%10==0) {
|
---|
1475 | cout << "Processing row " << iRow << endl;
|
---|
1476 | }
|
---|
1477 |
|
---|
1478 | // Get EPoch
|
---|
1479 |
|
---|
1480 | Quantum<Double> tQ2(times[iRow],DAY);
|
---|
1481 | MVEpoch mv2(tQ2);
|
---|
1482 | MEpoch epoch(mv2, epochRef);
|
---|
1483 |
|
---|
1484 | // Get copy of data
|
---|
1485 |
|
---|
1486 | const MaskedArray<Float>& mArrIn(in.rowAsMaskedArray(iRow));
|
---|
1487 | Array<Float> values = mArrIn.getArray();
|
---|
1488 | Array<Bool> mask = mArrIn.getMask();
|
---|
1489 |
|
---|
1490 | // For each row, the Frequency abcissa will be the same regardless
|
---|
1491 | // of polarization. For all other axes (IF and BEAM) the abcissa
|
---|
1492 | // will change. So we iterate through the data by pol-chan planes
|
---|
1493 | // to mimimize the work. Probably won't work for multiple beams
|
---|
1494 | // at this point.
|
---|
1495 |
|
---|
1496 | ArrayIterator<Float> itValuesPlane(values, polChanAxes);
|
---|
1497 | ArrayIterator<Bool> itMaskPlane(mask, polChanAxes);
|
---|
1498 | while (!itValuesPlane.pastEnd()) {
|
---|
1499 |
|
---|
1500 | // Find the IF index and then the FA PtrBlock index
|
---|
1501 |
|
---|
1502 | const IPosition& pos = itValuesPlane.pos();
|
---|
1503 | ifIdx = pos(asap::IFAxis);
|
---|
1504 | faIdx = ddIdx(iRow,ifIdx);
|
---|
1505 |
|
---|
1506 | // Generate abcissa for perIF. Could cache this in a Matrix
|
---|
1507 | // on a per scan basis. Pretty expensive doing it for every row.
|
---|
1508 |
|
---|
1509 | if (!perFreqID) {
|
---|
1510 | xIn.resize(nChan);
|
---|
1511 | uInt fqID = dDesc.secID(ddIdx(iRow,ifIdx));
|
---|
1512 | SpectralCoordinate sC = in.getSpectralCoordinate(fqID);
|
---|
1513 | Double w;
|
---|
1514 | for (uInt i=0; i<nChan; i++) {
|
---|
1515 | sC.toWorld(w,Double(i));
|
---|
1516 | xIn[i] = w;
|
---|
1517 | }
|
---|
1518 | }
|
---|
1519 | //
|
---|
1520 | VectorIterator<Float> itValuesVec(itValuesPlane.array(), 1);
|
---|
1521 | VectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
|
---|
1522 |
|
---|
1523 | // Iterate through the plane by vector and align
|
---|
1524 |
|
---|
1525 | first = True;
|
---|
1526 | useCachedAbcissa=False;
|
---|
1527 | while (!itValuesVec.pastEnd()) {
|
---|
1528 | if (perFreqID) {
|
---|
1529 | ok = a[faIdx]->align (yOut, maskOut, itValuesVec.vector(),
|
---|
1530 | itMaskVec.vector(), epoch, useCachedAbcissa,
|
---|
1531 | interp, extrapolate);
|
---|
1532 | } else {
|
---|
1533 | ok = a[faIdx]->align (yOut, maskOut, xIn, itValuesVec.vector(),
|
---|
1534 | itMaskVec.vector(), epoch, useCachedAbcissa,
|
---|
1535 | interp, extrapolate);
|
---|
1536 | }
|
---|
1537 | //
|
---|
1538 | itValuesVec.vector() = yOut;
|
---|
1539 | itMaskVec.vector() = maskOut;
|
---|
1540 | //
|
---|
1541 | itValuesVec.next();
|
---|
1542 | itMaskVec.next();
|
---|
1543 | //
|
---|
1544 | if (first) {
|
---|
1545 | useCachedAbcissa = True;
|
---|
1546 | first = False;
|
---|
1547 | }
|
---|
1548 | }
|
---|
1549 | //
|
---|
1550 | itValuesPlane.next();
|
---|
1551 | itMaskPlane.next();
|
---|
1552 | }
|
---|
1553 |
|
---|
1554 | // Create SDContainer and put back
|
---|
1555 |
|
---|
1556 | SDContainer sc = in.getSDContainer(iRow);
|
---|
1557 | putDataInSDC(sc, values, mask);
|
---|
1558 |
|
---|
1559 | // Set output FreqIDs
|
---|
1560 |
|
---|
1561 | for (uInt i=0; i<nIF; i++) {
|
---|
1562 | uInt idx = ddIdx(iRow,i); // Index into SDDataDesc table
|
---|
1563 | freqID(i) = ddFQTrans(idx); // FreqID in output FQ table
|
---|
1564 | }
|
---|
1565 | sc.putFreqMap(freqID);
|
---|
1566 | //
|
---|
1567 | pTabOut->putSDContainer(sc);
|
---|
1568 | }
|
---|
1569 |
|
---|
1570 | // Now we must set the base and extra frames to the
|
---|
1571 | // input frame
|
---|
1572 |
|
---|
1573 | std::vector<string> info = pTabOut->getCoordInfo();
|
---|
1574 | info[1] = MFrequency::showType(freqSystem); // Conversion frame
|
---|
1575 | info[3] = info[1]; // Base frame
|
---|
1576 | pTabOut->setCoordInfo(info);
|
---|
1577 |
|
---|
1578 | // Clean up PointerBlock
|
---|
1579 |
|
---|
1580 | for (uInt i=0; i<a.nelements(); i++) delete a[i];
|
---|
1581 | //
|
---|
1582 | return pTabOut;
|
---|
1583 | }
|
---|
1584 |
|
---|
1585 |
|
---|
1586 | void SDMath::fillSDC(SDContainer& sc,
|
---|
1587 | const Array<Bool>& mask,
|
---|
1588 | const Array<Float>& data,
|
---|
1589 | const Array<Float>& tSys,
|
---|
1590 | Int scanID, Double timeStamp,
|
---|
1591 | Double interval, const String& sourceName,
|
---|
1592 | const Vector<uInt>& freqID) const
|
---|
1593 | {
|
---|
1594 | // Data and mask
|
---|
1595 |
|
---|
1596 | putDataInSDC(sc, data, mask);
|
---|
1597 |
|
---|
1598 | // TSys
|
---|
1599 |
|
---|
1600 | sc.putTsys(tSys);
|
---|
1601 |
|
---|
1602 | // Time things
|
---|
1603 |
|
---|
1604 | sc.timestamp = timeStamp;
|
---|
1605 | sc.interval = interval;
|
---|
1606 | sc.scanid = scanID;
|
---|
1607 | //
|
---|
1608 | sc.sourcename = sourceName;
|
---|
1609 | sc.putFreqMap(freqID);
|
---|
1610 | }
|
---|
1611 |
|
---|
1612 | void SDMath::normalize(MaskedArray<Float>& sum,
|
---|
1613 | const Array<Float>& sumSq,
|
---|
1614 | const Array<Float>& nPts,
|
---|
1615 | WeightType wtType, Int axis,
|
---|
1616 | Int nAxesSub) const
|
---|
1617 | {
|
---|
1618 | IPosition pos2(nAxesSub,0);
|
---|
1619 | //
|
---|
1620 | if (wtType==NONE) {
|
---|
1621 |
|
---|
1622 | // We just average by the number of points accumulated.
|
---|
1623 | // We need to make a MA out of nPts so that no divide by
|
---|
1624 | // zeros occur
|
---|
1625 |
|
---|
1626 | MaskedArray<Float> t(nPts, (nPts>Float(0.0)));
|
---|
1627 | sum /= t;
|
---|
1628 | } else if (wtType==VAR) {
|
---|
1629 |
|
---|
1630 | // Normalize each spectrum by sum(1/var) where the variance
|
---|
1631 | // is worked out for each spectrum
|
---|
1632 |
|
---|
1633 | Array<Float>& data = sum.getRWArray();
|
---|
1634 | VectorIterator<Float> itData(data, axis);
|
---|
1635 | while (!itData.pastEnd()) {
|
---|
1636 | pos2 = itData.pos().getFirst(nAxesSub);
|
---|
1637 | itData.vector() /= sumSq(pos2);
|
---|
1638 | itData.next();
|
---|
1639 | }
|
---|
1640 | } else if (wtType==TSYS) {
|
---|
1641 | }
|
---|
1642 | }
|
---|
1643 |
|
---|
1644 |
|
---|
1645 | void SDMath::accumulate(Double& timeSum, Double& intSum, Int& nAccum,
|
---|
1646 | MaskedArray<Float>& sum, Array<Float>& sumSq,
|
---|
1647 | Array<Float>& nPts, Array<Float>& tSysSum,
|
---|
1648 | const Array<Float>& tSys, const Array<Float>& nInc,
|
---|
1649 | const Vector<Bool>& mask, Double time, Double interval,
|
---|
1650 | const Block<CountedPtr<SDMemTable> >& in,
|
---|
1651 | uInt iTab, uInt iRow, uInt axis,
|
---|
1652 | uInt nAxesSub, Bool useMask,
|
---|
1653 | WeightType wtType) const
|
---|
1654 | {
|
---|
1655 |
|
---|
1656 | // Get data
|
---|
1657 |
|
---|
1658 | MaskedArray<Float> dataIn(in[iTab]->rowAsMaskedArray(iRow));
|
---|
1659 | Array<Float>& valuesIn = dataIn.getRWArray(); // writable reference
|
---|
1660 | const Array<Bool>& maskIn = dataIn.getMask(); // RO reference
|
---|
1661 | //
|
---|
1662 | if (wtType==NONE) {
|
---|
1663 | const MaskedArray<Float> n(nInc,dataIn.getMask());
|
---|
1664 | nPts += n; // Only accumulates where mask==T
|
---|
1665 | } else if (wtType==VAR) {
|
---|
1666 |
|
---|
1667 | // We are going to average the data, weighted by the noise for each pol, beam and IF.
|
---|
1668 | // So therefore we need to iterate through by spectrum (axis 3)
|
---|
1669 |
|
---|
1670 | VectorIterator<Float> itData(valuesIn, axis);
|
---|
1671 | ReadOnlyVectorIterator<Bool> itMask(maskIn, axis);
|
---|
1672 | Float fac = 1.0;
|
---|
1673 | IPosition pos(nAxesSub,0);
|
---|
1674 | //
|
---|
1675 | while (!itData.pastEnd()) {
|
---|
1676 |
|
---|
1677 | // Make MaskedArray of Vector, optionally apply OTF mask, and find scaling factor
|
---|
1678 |
|
---|
1679 | if (useMask) {
|
---|
1680 | MaskedArray<Float> tmp(itData.vector(),mask&&itMask.vector());
|
---|
1681 | fac = 1.0/variance(tmp);
|
---|
1682 | } else {
|
---|
1683 | MaskedArray<Float> tmp(itData.vector(),itMask.vector());
|
---|
1684 | fac = 1.0/variance(tmp);
|
---|
1685 | }
|
---|
1686 |
|
---|
1687 | // Scale data
|
---|
1688 |
|
---|
1689 | itData.vector() *= fac; // Writes back into 'dataIn'
|
---|
1690 | //
|
---|
1691 | // Accumulate variance per if/pol/beam averaged over spectrum
|
---|
1692 | // This method to get pos2 from itData.pos() is only valid
|
---|
1693 | // because the spectral axis is the last one (so we can just
|
---|
1694 | // copy the first nAXesSub positions out)
|
---|
1695 |
|
---|
1696 | pos = itData.pos().getFirst(nAxesSub);
|
---|
1697 | sumSq(pos) += fac;
|
---|
1698 | //
|
---|
1699 | itData.next();
|
---|
1700 | itMask.next();
|
---|
1701 | }
|
---|
1702 | } else if (wtType==TSYS) {
|
---|
1703 | }
|
---|
1704 |
|
---|
1705 | // Accumulate sum of (possibly scaled) data
|
---|
1706 |
|
---|
1707 | sum += dataIn;
|
---|
1708 |
|
---|
1709 | // Accumulate Tsys, time, and interval
|
---|
1710 |
|
---|
1711 | tSysSum += tSys;
|
---|
1712 | timeSum += time;
|
---|
1713 | intSum += interval;
|
---|
1714 | nAccum += 1;
|
---|
1715 | }
|
---|
1716 |
|
---|
1717 |
|
---|
1718 | void SDMath::setCursorSlice (IPosition& start, IPosition& end, Bool doAll, const SDMemTable& in) const
|
---|
1719 | {
|
---|
1720 | const uInt nDim = asap::nAxes;
|
---|
1721 | DebugAssert(nDim==4,AipsError);
|
---|
1722 | //
|
---|
1723 | start.resize(nDim);
|
---|
1724 | end.resize(nDim);
|
---|
1725 | if (doAll) {
|
---|
1726 | start = 0;
|
---|
1727 | end(0) = in.nBeam()-1;
|
---|
1728 | end(1) = in.nIF()-1;
|
---|
1729 | end(2) = in.nPol()-1;
|
---|
1730 | end(3) = in.nChan()-1;
|
---|
1731 | } else {
|
---|
1732 | start(0) = in.getBeam();
|
---|
1733 | end(0) = start(0);
|
---|
1734 | //
|
---|
1735 | start(1) = in.getIF();
|
---|
1736 | end(1) = start(1);
|
---|
1737 | //
|
---|
1738 | start(2) = in.getPol();
|
---|
1739 | end(2) = start(2);
|
---|
1740 | //
|
---|
1741 | start(3) = 0;
|
---|
1742 | end(3) = in.nChan()-1;
|
---|
1743 | }
|
---|
1744 | }
|
---|
1745 |
|
---|
1746 |
|
---|
1747 | void SDMath::convertWeightString(WeightType& wtType, const String& weightStr) const
|
---|
1748 | {
|
---|
1749 | String tStr(weightStr);
|
---|
1750 | tStr.upcase();
|
---|
1751 | if (tStr.contains(String("NONE"))) {
|
---|
1752 | wtType = NONE;
|
---|
1753 | } else if (tStr.contains(String("VAR"))) {
|
---|
1754 | wtType = VAR;
|
---|
1755 | } else if (tStr.contains(String("TSYS"))) {
|
---|
1756 | wtType = TSYS;
|
---|
1757 | throw(AipsError("T_sys weighting not yet implemented"));
|
---|
1758 | } else {
|
---|
1759 | throw(AipsError("Unrecognized weighting type"));
|
---|
1760 | }
|
---|
1761 | }
|
---|
1762 |
|
---|
1763 |
|
---|
1764 | void SDMath::convertInterpString(casa::InterpolateArray1D<Double,Float>::InterpolationMethod& type,
|
---|
1765 | const casa::String& interp) const
|
---|
1766 | {
|
---|
1767 | String tStr(interp);
|
---|
1768 | tStr.upcase();
|
---|
1769 | if (tStr.contains(String("NEAR"))) {
|
---|
1770 | type = InterpolateArray1D<Double,Float>::nearestNeighbour;
|
---|
1771 | } else if (tStr.contains(String("LIN"))) {
|
---|
1772 | type = InterpolateArray1D<Double,Float>::linear;
|
---|
1773 | } else if (tStr.contains(String("CUB"))) {
|
---|
1774 | type = InterpolateArray1D<Double,Float>::cubic;
|
---|
1775 | } else if (tStr.contains(String("SPL"))) {
|
---|
1776 | type = InterpolateArray1D<Double,Float>::spline;
|
---|
1777 | } else {
|
---|
1778 | throw(AipsError("Unrecognized interpolation type"));
|
---|
1779 | }
|
---|
1780 | }
|
---|
1781 |
|
---|
1782 | void SDMath::putDataInSDC(SDContainer& sc, const Array<Float>& data,
|
---|
1783 | const Array<Bool>& mask) const
|
---|
1784 | {
|
---|
1785 | sc.putSpectrum(data);
|
---|
1786 | //
|
---|
1787 | Array<uChar> outflags(data.shape());
|
---|
1788 | convertArray(outflags,!mask);
|
---|
1789 | sc.putFlags(outflags);
|
---|
1790 | }
|
---|
1791 |
|
---|
1792 | Table SDMath::readAsciiFile (const String& fileName) const
|
---|
1793 | {
|
---|
1794 | String formatString;
|
---|
1795 | Table tbl = readAsciiTable (formatString, Table::Memory, fileName, "", "", False);
|
---|
1796 | return tbl;
|
---|
1797 | }
|
---|
1798 |
|
---|
1799 |
|
---|
1800 |
|
---|
1801 | void SDMath::correctFromAsciiTable(SDMemTable* pTabOut,
|
---|
1802 | const SDMemTable& in, const String& fileName,
|
---|
1803 | const String& col0, const String& col1,
|
---|
1804 | const String& methodStr, Bool doAll,
|
---|
1805 | const Vector<Float>& xOut) const
|
---|
1806 | {
|
---|
1807 |
|
---|
1808 | // Read gain-elevation ascii file data into a Table.
|
---|
1809 |
|
---|
1810 | Table geTable = readAsciiFile (fileName);
|
---|
1811 | //
|
---|
1812 | correctFromTable (pTabOut, in, geTable, col0, col1, methodStr, doAll, xOut);
|
---|
1813 | }
|
---|
1814 |
|
---|
1815 | void SDMath::correctFromTable(SDMemTable* pTabOut, const SDMemTable& in,
|
---|
1816 | const Table& tTable, const String& col0,
|
---|
1817 | const String& col1,
|
---|
1818 | const String& methodStr, Bool doAll,
|
---|
1819 | const Vector<Float>& xOut) const
|
---|
1820 | {
|
---|
1821 |
|
---|
1822 | // Get data from Table
|
---|
1823 |
|
---|
1824 | ROScalarColumn<Float> geElCol(tTable, col0);
|
---|
1825 | ROScalarColumn<Float> geFacCol(tTable, col1);
|
---|
1826 | Vector<Float> xIn = geElCol.getColumn();
|
---|
1827 | Vector<Float> yIn = geFacCol.getColumn();
|
---|
1828 | Vector<Bool> maskIn(xIn.nelements(),True);
|
---|
1829 |
|
---|
1830 | // Interpolate (and extrapolate) with desired method
|
---|
1831 |
|
---|
1832 | InterpolateArray1D<Double,Float>::InterpolationMethod method;
|
---|
1833 | convertInterpString(method, methodStr);
|
---|
1834 | Int intMethod(method);
|
---|
1835 | //
|
---|
1836 | Vector<Float> yOut;
|
---|
1837 | Vector<Bool> maskOut;
|
---|
1838 | InterpolateArray1D<Float,Float>::interpolate(yOut, maskOut, xOut,
|
---|
1839 | xIn, yIn, maskIn, intMethod,
|
---|
1840 | True, True);
|
---|
1841 | // Apply
|
---|
1842 |
|
---|
1843 | correctFromVector (pTabOut, in, doAll, yOut);
|
---|
1844 | }
|
---|
1845 |
|
---|
1846 |
|
---|
1847 | void SDMath::correctFromVector (SDMemTable* pTabOut, const SDMemTable& in,
|
---|
1848 | Bool doAll, const Vector<Float>& factor) const
|
---|
1849 | {
|
---|
1850 |
|
---|
1851 | // Set up data slice
|
---|
1852 |
|
---|
1853 | IPosition start, end;
|
---|
1854 | setCursorSlice (start, end, doAll, in);
|
---|
1855 |
|
---|
1856 | // Loop over rows and apply correction factor
|
---|
1857 |
|
---|
1858 | const uInt axis = asap::ChanAxis;
|
---|
1859 | for (uInt i=0; i < in.nRow(); ++i) {
|
---|
1860 |
|
---|
1861 | // Get data
|
---|
1862 |
|
---|
1863 | MaskedArray<Float> dataIn(in.rowAsMaskedArray(i));
|
---|
1864 | MaskedArray<Float> dataIn2 = dataIn(start,end); // reference to dataIn
|
---|
1865 |
|
---|
1866 | // Apply factor
|
---|
1867 |
|
---|
1868 | dataIn2 *= factor[i];
|
---|
1869 |
|
---|
1870 | // Write out
|
---|
1871 |
|
---|
1872 | SDContainer sc = in.getSDContainer(i);
|
---|
1873 | putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
|
---|
1874 | //
|
---|
1875 | pTabOut->putSDContainer(sc);
|
---|
1876 | }
|
---|
1877 | }
|
---|
1878 |
|
---|
1879 |
|
---|
1880 |
|
---|
1881 |
|
---|
1882 | void SDMath::generateDataDescTable (Matrix<uInt>& ddIdx,
|
---|
1883 | SDDataDesc& dDesc,
|
---|
1884 | uInt nIF,
|
---|
1885 | const SDMemTable& in,
|
---|
1886 | const Table& tabIn,
|
---|
1887 | const ROScalarColumn<String>& srcCol,
|
---|
1888 | const ROArrayColumn<uInt>& fqIDCol,
|
---|
1889 | Bool perFreqID) const
|
---|
1890 | {
|
---|
1891 | const uInt nRows = tabIn.nrow();
|
---|
1892 | ddIdx.resize(nRows,nIF);
|
---|
1893 | //
|
---|
1894 | String srcName;
|
---|
1895 | Vector<uInt> freqIDs;
|
---|
1896 | for (uInt iRow=0; iRow<nRows; iRow++) {
|
---|
1897 | srcCol.get(iRow, srcName);
|
---|
1898 | fqIDCol.get(iRow, freqIDs);
|
---|
1899 | const MDirection& dir = in.getDirection(iRow);
|
---|
1900 | //
|
---|
1901 | if (perFreqID) {
|
---|
1902 |
|
---|
1903 | // One entry per source/freqID pair
|
---|
1904 |
|
---|
1905 | for (uInt iIF=0; iIF<nIF; iIF++) {
|
---|
1906 | ddIdx(iRow,iIF) = dDesc.addEntry(srcName, freqIDs[iIF], dir, 0);
|
---|
1907 | }
|
---|
1908 | } else {
|
---|
1909 |
|
---|
1910 | // One entry per source/IF pair. Hang onto the FreqID as well
|
---|
1911 |
|
---|
1912 | for (uInt iIF=0; iIF<nIF; iIF++) {
|
---|
1913 | ddIdx(iRow,iIF) = dDesc.addEntry(srcName, iIF, dir, freqIDs[iIF]);
|
---|
1914 | }
|
---|
1915 | }
|
---|
1916 | }
|
---|
1917 | }
|
---|
1918 |
|
---|
1919 |
|
---|
1920 |
|
---|
1921 |
|
---|
1922 |
|
---|
1923 | MEpoch SDMath::epochFromString (const String& str, MEpoch::Types timeRef) const
|
---|
1924 | {
|
---|
1925 | Quantum<Double> qt;
|
---|
1926 | if (MVTime::read(qt,str)) {
|
---|
1927 | MVEpoch mv(qt);
|
---|
1928 | MEpoch me(mv, timeRef);
|
---|
1929 | return me;
|
---|
1930 | } else {
|
---|
1931 | throw(AipsError("Invalid format for Epoch string"));
|
---|
1932 | }
|
---|
1933 | }
|
---|
1934 |
|
---|
1935 |
|
---|
1936 | String SDMath::formatEpoch(const MEpoch& epoch) const
|
---|
1937 | {
|
---|
1938 | MVTime mvt(epoch.getValue());
|
---|
1939 | return mvt.string(MVTime::YMD) + String(" (") + epoch.getRefString() + String(")");
|
---|
1940 | }
|
---|
1941 |
|
---|
1942 |
|
---|
1943 |
|
---|
1944 | void SDMath::generateFrequencyAligners (PtrBlock<FrequencyAligner<Float>* >& a,
|
---|
1945 | const SDDataDesc& dDesc,
|
---|
1946 | const SDMemTable& in, uInt nChan,
|
---|
1947 | MFrequency::Types system,
|
---|
1948 | const MPosition& refPos,
|
---|
1949 | const MEpoch& refEpoch,
|
---|
1950 | Bool perFreqID) const
|
---|
1951 | {
|
---|
1952 | for (uInt i=0; i<dDesc.length(); i++) {
|
---|
1953 | uInt ID = dDesc.ID(i);
|
---|
1954 | uInt secID = dDesc.secID(i);
|
---|
1955 | const MDirection& refDir = dDesc.secDir(i);
|
---|
1956 | //
|
---|
1957 | if (perFreqID) {
|
---|
1958 |
|
---|
1959 | // One aligner per source/FreqID pair.
|
---|
1960 |
|
---|
1961 | SpectralCoordinate sC = in.getSpectralCoordinate(ID);
|
---|
1962 | a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
|
---|
1963 | } else {
|
---|
1964 |
|
---|
1965 | // One aligner per source/IF pair. But we still need the FreqID to
|
---|
1966 | // get the right SC. Hence the messing about with the secondary ID
|
---|
1967 |
|
---|
1968 | SpectralCoordinate sC = in.getSpectralCoordinate(secID);
|
---|
1969 | a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
|
---|
1970 | }
|
---|
1971 | }
|
---|
1972 | }
|
---|