source: trunk/src/SDMath.cc @ 457

Last change on this file since 457 was 457, checked in by kil064, 19 years ago

move SDMemTable::rotateXYPhase to SDMath

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 53.3 KB
Line 
1//#---------------------------------------------------------------------------
2//# SDMath.cc: A collection of single dish mathematical operations
3//#---------------------------------------------------------------------------
4//# Copyright (C) 2004
5//# ATNF
6//#
7//# This program is free software; you can redistribute it and/or modify it
8//# under the terms of the GNU General Public License as published by the Free
9//# Software Foundation; either version 2 of the License, or (at your option)
10//# any later version.
11//#
12//# This program is distributed in the hope that it will be useful, but
13//# WITHOUT ANY WARRANTY; without even the implied warranty of
14//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
15//# Public License for more details.
16//#
17//# You should have received a copy of the GNU General Public License along
18//# with this program; if not, write to the Free Software Foundation, Inc.,
19//# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
20//#
21//# Correspondence concerning this software should be addressed as follows:
22//#        Internet email: Malte.Marquarding@csiro.au
23//#        Postal address: Malte Marquarding,
24//#                        Australia Telescope National Facility,
25//#                        P.O. Box 76,
26//#                        Epping, NSW, 2121,
27//#                        AUSTRALIA
28//#
29//# $Id:
30//#---------------------------------------------------------------------------
31#include <vector>
32
33#include <casa/aips.h>
34#include <casa/iostream.h>
35#include <casa/iomanip.h>
36#include <casa/BasicSL/String.h>
37#include <casa/Arrays/IPosition.h>
38#include <casa/Arrays/Array.h>
39#include <casa/Arrays/ArrayIter.h>
40#include <casa/Arrays/VectorIter.h>
41#include <casa/Arrays/ArrayMath.h>
42#include <casa/Arrays/ArrayLogical.h>
43#include <casa/Arrays/MaskedArray.h>
44#include <casa/Arrays/MaskArrMath.h>
45#include <casa/Arrays/MaskArrLogi.h>
46#include <casa/Arrays/Matrix.h>
47#include <casa/BasicMath/Math.h>
48#include <casa/Containers/Block.h>
49#include <casa/Exceptions.h>
50#include <casa/Quanta/Quantum.h>
51#include <casa/Quanta/Unit.h>
52#include <casa/Quanta/MVEpoch.h>
53#include <casa/Quanta/MVTime.h>
54#include <casa/Utilities/Assert.h>
55
56#include <coordinates/Coordinates/SpectralCoordinate.h>
57#include <coordinates/Coordinates/CoordinateSystem.h>
58#include <coordinates/Coordinates/CoordinateUtil.h>
59#include <coordinates/Coordinates/FrequencyAligner.h>
60
61#include <lattices/Lattices/LatticeUtilities.h>
62#include <lattices/Lattices/RebinLattice.h>
63
64#include <measures/Measures/MEpoch.h>
65#include <measures/Measures/MDirection.h>
66#include <measures/Measures/MPosition.h>
67
68#include <scimath/Mathematics/VectorKernel.h>
69#include <scimath/Mathematics/Convolver.h>
70#include <scimath/Mathematics/InterpolateArray1D.h>
71#include <scimath/Functionals/Polynomial.h>
72
73#include <tables/Tables/Table.h>
74#include <tables/Tables/ScalarColumn.h>
75#include <tables/Tables/ArrayColumn.h>
76#include <tables/Tables/ReadAsciiTable.h>
77
78#include "MathUtils.h"
79#include "SDDefs.h"
80#include "SDAttr.h"
81#include "SDContainer.h"
82#include "SDMemTable.h"
83
84#include "SDMath.h"
85#include "SDPol.h"
86
87using namespace casa;
88using namespace asap;
89
90
91SDMath::SDMath()
92{;}
93
94SDMath::SDMath(const SDMath& other)
95{
96
97// No state
98
99}
100
101SDMath& SDMath::operator=(const SDMath& other)
102{
103  if (this != &other) {
104// No state
105  }
106  return *this;
107}
108
109SDMath::~SDMath()
110{;}
111
112
113
114SDMemTable* SDMath::frequencyAlignment (const SDMemTable& in, const String& refTime,
115                                         const String& method, Bool perFreqID) const
116{
117// Get frame info from Table
118
119   std::vector<std::string> info = in.getCoordInfo();
120
121// Parse frequency system
122
123   String systemStr(info[1]);
124   String baseSystemStr(info[3]);
125   if (baseSystemStr==systemStr) {
126      throw(AipsError("You have not set a frequency frame different from the initial - use function set_freqframe"));
127   }
128//
129   MFrequency::Types freqSystem;
130   MFrequency::getType(freqSystem, systemStr);
131
132// Do it
133
134   return frequencyAlign (in, freqSystem, refTime, method, perFreqID);
135}
136
137
138
139CountedPtr<SDMemTable> SDMath::average(const Block<CountedPtr<SDMemTable> >& in,
140                                       const Vector<Bool>& mask, Bool scanAv,
141                                       const String& weightStr, Bool alignFreq) const
142//
143// Weighted averaging of spectra from one or more Tables.
144//
145{
146
147// Convert weight type
148 
149  WeightType wtType = NONE;
150  convertWeightString(wtType, weightStr);
151
152// Create output Table by cloning from the first table
153
154  SDMemTable* pTabOut = new SDMemTable(*in[0],True);
155
156// Setup
157
158  IPosition shp = in[0]->rowAsMaskedArray(0).shape();      // Must not change
159  Array<Float> arr(shp);
160  Array<Bool> barr(shp);
161  const Bool useMask = (mask.nelements() == shp(asap::ChanAxis));
162
163// Columns from Tables
164
165  ROArrayColumn<Float> tSysCol;
166  ROScalarColumn<Double> mjdCol;
167  ROScalarColumn<String> srcNameCol;
168  ROScalarColumn<Double> intCol;
169  ROArrayColumn<uInt> fqIDCol;
170  ROScalarColumn<Int> scanIDCol;
171
172// Create accumulation MaskedArray. We accumulate for each channel,if,pol,beam
173// Note that the mask of the accumulation array will ALWAYS remain ALL True.
174// The MA is only used so that when data which is masked Bad is added to it,
175// that data does not contribute.
176
177  Array<Float> zero(shp);
178  zero=0.0;
179  Array<Bool> good(shp);
180  good = True;
181  MaskedArray<Float> sum(zero,good);
182
183// Counter arrays
184
185  Array<Float> nPts(shp);             // Number of points
186  nPts = 0.0;
187  Array<Float> nInc(shp);             // Increment
188  nInc = 1.0;
189
190// Create accumulation Array for variance. We accumulate for
191// each if,pol,beam, but average over channel.  So we need
192// a shape with one less axis dropping channels.
193
194  const uInt nAxesSub = shp.nelements() - 1;
195  IPosition shp2(nAxesSub);
196  for (uInt i=0,j=0; i<(nAxesSub+1); i++) {
197     if (i!=asap::ChanAxis) {
198       shp2(j) = shp(i);
199       j++;
200     }
201  }
202  Array<Float> sumSq(shp2);
203  sumSq = 0.0;
204  IPosition pos2(nAxesSub,0);                        // For indexing
205
206// Time-related accumulators
207
208  Double time;
209  Double timeSum = 0.0;
210  Double intSum = 0.0;
211  Double interval = 0.0;
212
213// To get the right shape for the Tsys accumulator we need to
214// access a column from the first table.  The shape of this
215// array must not change
216
217  Array<Float> tSysSum;
218  {
219    const Table& tabIn = in[0]->table();
220    tSysCol.attach(tabIn,"TSYS");
221    tSysSum.resize(tSysCol.shape(0));
222  }
223  tSysSum =0.0;
224  Array<Float> tSys;
225
226// Scan and row tracking
227
228  Int oldScanID = 0;
229  Int outScanID = 0;
230  Int scanID = 0;
231  Int rowStart = 0;
232  Int nAccum = 0;
233  Int tableStart = 0;
234
235// Source and FreqID
236
237  String sourceName, oldSourceName, sourceNameStart;
238  Vector<uInt> freqID, freqIDStart, oldFreqID;
239
240// Loop over tables
241
242  Float fac = 1.0;
243  const uInt nTables = in.nelements();
244  for (uInt iTab=0; iTab<nTables; iTab++) {
245
246// Should check that the frequency tables don't change if doing FreqAlignment
247
248// Attach columns to Table
249
250     const Table& tabIn = in[iTab]->table();
251     tSysCol.attach(tabIn, "TSYS");
252     mjdCol.attach(tabIn, "TIME");
253     srcNameCol.attach(tabIn, "SRCNAME");
254     intCol.attach(tabIn, "INTERVAL");
255     fqIDCol.attach(tabIn, "FREQID");
256     scanIDCol.attach(tabIn, "SCANID");
257
258// Find list of start/end rows for each scan
259
260// Loop over rows in Table
261
262     const uInt nRows = in[iTab]->nRow();
263     for (uInt iRow=0; iRow<nRows; iRow++) {
264
265// Check conformance
266
267        IPosition shp2 = in[iTab]->rowAsMaskedArray(iRow).shape();
268        if (!shp.isEqual(shp2)) {
269           throw (AipsError("Shapes for all rows must be the same"));
270        }
271
272// If we are not doing scan averages, make checks for source and
273// frequency setup and warn if averaging across them
274
275        scanIDCol.getScalar(iRow, scanID);
276
277// Get quantities from columns
278
279        srcNameCol.getScalar(iRow, sourceName);
280        mjdCol.get(iRow, time);
281        tSysCol.get(iRow, tSys);
282        intCol.get(iRow, interval);
283        fqIDCol.get(iRow, freqID);
284
285// Initialize first source and freqID
286
287        if (iRow==0 && iTab==0) {
288          sourceNameStart = sourceName;
289          freqIDStart = freqID;
290        }
291
292// If we are doing scan averages, see if we are at the end of an
293// accumulation period (scan).  We must check soutce names too,
294// since we might have two tables with one scan each but different
295// source names; we shouldn't average different sources together
296
297        if (scanAv && ( (scanID != oldScanID)  ||
298                        (iRow==0 && iTab>0 && sourceName!=oldSourceName))) {
299
300// Normalize data in 'sum' accumulation array according to weighting scheme
301
302           normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);
303
304// Get ScanContainer for the first row of this averaged Scan
305
306           SDContainer scOut = in[iTab]->getSDContainer(rowStart);
307
308// Fill scan container. The source and freqID come from the
309// first row of the first table that went into this average (
310// should be the same for all rows in the scan average)
311
312           Float nR(nAccum);
313           fillSDC(scOut, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
314                    timeSum/nR, intSum, sourceNameStart, freqIDStart);
315
316// Write container out to Table
317
318           pTabOut->putSDContainer(scOut);
319
320// Reset accumulators
321
322           sum = 0.0;
323           sumSq = 0.0;
324           nAccum = 0;
325//
326           tSysSum =0.0;
327           timeSum = 0.0;
328           intSum = 0.0;
329           nPts = 0.0;
330
331// Increment
332
333           rowStart = iRow;              // First row for next accumulation
334           tableStart = iTab;            // First table for next accumulation
335           sourceNameStart = sourceName; // First source name for next accumulation
336           freqIDStart = freqID;         // First FreqID for next accumulation
337//
338           oldScanID = scanID;
339           outScanID += 1;               // Scan ID for next accumulation period
340        }
341
342// Accumulate
343
344        accumulate(timeSum, intSum, nAccum, sum, sumSq, nPts, tSysSum,
345                    tSys, nInc, mask, time, interval, in, iTab, iRow, asap::ChanAxis,
346                    nAxesSub, useMask, wtType);
347//
348       oldSourceName = sourceName;
349       oldFreqID = freqID;
350     }
351  }
352
353// OK at this point we have accumulation data which is either
354//   - accumulated from all tables into one row
355// or
356//   - accumulated from the last scan average
357//
358// Normalize data in 'sum' accumulation array according to weighting scheme
359
360  normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);
361
362// Create and fill container.  The container we clone will be from
363// the last Table and the first row that went into the current
364// accumulation.  It probably doesn't matter that much really...
365
366  Float nR(nAccum);
367  SDContainer scOut = in[tableStart]->getSDContainer(rowStart);
368  fillSDC(scOut, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
369           timeSum/nR, intSum, sourceNameStart, freqIDStart);
370  pTabOut->putSDContainer(scOut);
371  pTabOut->resetCursor();
372//
373  return CountedPtr<SDMemTable>(pTabOut);
374}
375
376
377
378CountedPtr<SDMemTable> SDMath::binaryOperate (const CountedPtr<SDMemTable>& left,
379                                              const CountedPtr<SDMemTable>& right,
380                                              const String& op, Bool preserve,
381                                              Bool doTSys)  const
382{
383
384// Check operator
385
386  String op2(op);
387  op2.upcase();
388  uInt what = 0;
389  if (op2=="ADD") {
390     what = 0;
391  } else if (op2=="SUB") {
392     what = 1;
393  } else if (op2=="MUL") {
394     what = 2;
395  } else if (op2=="DIV") {
396     what = 3;
397  } else if (op2=="QUOTIENT") {
398     what = 4;
399     doTSys = True;
400  } else {
401    throw( AipsError("Unrecognized operation"));
402  }
403
404// Check rows
405
406  const uInt nRowLeft = left->nRow();
407  const uInt nRowRight = right->nRow();
408  Bool ok = (nRowRight==1&&nRowLeft>0) ||
409            (nRowRight>=1&&nRowLeft==nRowRight);
410  if (!ok) {
411     throw (AipsError("The right Scan Table can have one row or the same number of rows as the left Scan Table"));
412  }
413
414// Input Tables
415
416  const Table& tLeft = left->table();
417  const Table& tRight = right->table();
418
419// TSys columns
420
421  ROArrayColumn<Float> tSysLeftCol, tSysRightCol;
422  if (doTSys) {
423     tSysLeftCol.attach(tLeft, "TSYS");
424     tSysRightCol.attach(tRight, "TSYS");
425  }
426
427// First row for right
428
429  Array<Float> tSysLeftArr, tSysRightArr;
430  if (doTSys) tSysRightCol.get(0, tSysRightArr);
431  MaskedArray<Float>* pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(0));
432  IPosition shpRight = pMRight->shape();
433
434// Output Table cloned from left
435
436  SDMemTable* pTabOut = new SDMemTable(*left, True);
437
438// Loop over rows
439
440  for (uInt i=0; i<nRowLeft; i++) {
441
442// Get data
443
444     MaskedArray<Float> mLeft(left->rowAsMaskedArray(i));
445     IPosition shpLeft = mLeft.shape();
446     if (doTSys) tSysLeftCol.get(i, tSysLeftArr);
447//
448     if (nRowRight>1) {
449        delete pMRight;
450        pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(i));
451        shpRight = pMRight->shape();
452        if (doTSys) tSysRightCol.get(i, tSysRightArr);
453     }
454//
455     if (!shpRight.isEqual(shpLeft)) {
456        throw(AipsError("left and right scan tables are not conformant"));
457     }
458     if (doTSys) {
459        if (!tSysRightArr.shape().isEqual(tSysRightArr.shape())) {
460           throw(AipsError("left and right Tsys data are not conformant"));
461        }
462        if (!shpRight.isEqual(tSysRightArr.shape())) {
463           throw(AipsError("left and right scan tables are not conformant"));
464        }
465     }
466
467// Make container
468
469     SDContainer sc = left->getSDContainer(i);
470
471// Operate on data and TSys
472
473     if (what==0) {                               
474        MaskedArray<Float> tmp = mLeft + *pMRight;
475        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
476        if (doTSys) sc.putTsys(tSysLeftArr+tSysRightArr);
477     } else if (what==1) {
478        MaskedArray<Float> tmp = mLeft - *pMRight;
479        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
480        if (doTSys) sc.putTsys(tSysLeftArr-tSysRightArr);
481     } else if (what==2) {
482        MaskedArray<Float> tmp = mLeft * *pMRight;
483        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
484        if (doTSys) sc.putTsys(tSysLeftArr*tSysRightArr);
485     } else if (what==3) {
486        MaskedArray<Float> tmp = mLeft / *pMRight;
487        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
488        if (doTSys) sc.putTsys(tSysLeftArr/tSysRightArr);
489     } else if (what==4) {
490        if (preserve) {     
491           MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) - tSysRightArr;
492           putDataInSDC(sc, tmp.getArray(), tmp.getMask());
493        } else {
494           MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) - tSysLeftArr;
495           putDataInSDC(sc, tmp.getArray(), tmp.getMask());
496        }
497        sc.putTsys(tSysRightArr);
498     }
499
500// Put new row in output Table
501
502     pTabOut->putSDContainer(sc);
503  }
504  if (pMRight) delete pMRight;
505  pTabOut->resetCursor();
506//
507  return CountedPtr<SDMemTable>(pTabOut);
508}
509
510
511
512std::vector<float> SDMath::statistic(const CountedPtr<SDMemTable>& in,
513                                     const Vector<Bool>& mask,
514                                     const String& which, Int row) const
515//
516// Perhaps iteration over pol/beam/if should be in here
517// and inside the nrow iteration ?
518//
519{
520  const uInt nRow = in->nRow();
521
522// Specify cursor location
523
524  IPosition start, end;
525  Bool doAll = False;
526  setCursorSlice (start, end, doAll, *in);
527
528// Loop over rows
529
530  const uInt nEl = mask.nelements();
531  uInt iStart = 0;
532  uInt iEnd = in->nRow()-1;
533// 
534  if (row>=0) {
535     iStart = row;
536     iEnd = row;
537  }
538//
539  std::vector<float> result(iEnd-iStart+1);
540  for (uInt ii=iStart; ii <= iEnd; ++ii) {
541
542// Get row and deconstruct
543
544     MaskedArray<Float> dataIn = (in->rowAsMaskedArray(ii))(start,end);
545     Array<Float> v = dataIn.getArray().nonDegenerate();
546     Array<Bool>  m = dataIn.getMask().nonDegenerate();
547
548// Access desired piece of data
549
550//     Array<Float> v((arr(start,end)).nonDegenerate());
551//     Array<Bool> m((barr(start,end)).nonDegenerate());
552
553// Apply OTF mask
554
555     MaskedArray<Float> tmp;
556     if (m.nelements()==nEl) {
557       tmp.setData(v,m&&mask);
558     } else {
559       tmp.setData(v,m);
560     }
561
562// Get statistic
563
564     result[ii-iStart] = mathutil::statistics(which, tmp);
565  }
566//
567  return result;
568}
569
570
571SDMemTable* SDMath::bin(const SDMemTable& in, Int width) const
572{
573  SDHeader sh = in.getSDHeader();
574  SDMemTable* pTabOut = new SDMemTable(in, True);
575
576// Bin up SpectralCoordinates
577
578  IPosition factors(1);
579  factors(0) = width;
580  for (uInt j=0; j<in.nCoordinates(); ++j) {
581    CoordinateSystem cSys;
582    cSys.addCoordinate(in.getSpectralCoordinate(j));
583    CoordinateSystem cSysBin =
584      CoordinateUtil::makeBinnedCoordinateSystem(factors, cSys, False);
585//
586    SpectralCoordinate sCBin = cSysBin.spectralCoordinate(0);
587    pTabOut->setCoordinate(sCBin, j);
588  }
589
590// Use RebinLattice to find shape
591
592  IPosition shapeIn(1,sh.nchan);
593  IPosition shapeOut = RebinLattice<Float>::rebinShape(shapeIn, factors);
594  sh.nchan = shapeOut(0);
595  pTabOut->putSDHeader(sh);
596
597// Loop over rows and bin along channel axis
598 
599  for (uInt i=0; i < in.nRow(); ++i) {
600    SDContainer sc = in.getSDContainer(i);
601//
602    Array<Float> tSys(sc.getTsys());                           // Get it out before sc changes shape
603
604// Bin up spectrum
605
606    MaskedArray<Float> marr(in.rowAsMaskedArray(i));
607    MaskedArray<Float> marrout;
608    LatticeUtilities::bin(marrout, marr, asap::ChanAxis, width);
609
610// Put back the binned data and flags
611
612    IPosition ip2 = marrout.shape();
613    sc.resize(ip2);
614//
615    putDataInSDC(sc, marrout.getArray(), marrout.getMask());
616
617// Bin up Tsys. 
618
619    Array<Bool> allGood(tSys.shape(),True);
620    MaskedArray<Float> tSysIn(tSys, allGood, True);
621//
622    MaskedArray<Float> tSysOut;   
623    LatticeUtilities::bin(tSysOut, tSysIn, asap::ChanAxis, width);
624    sc.putTsys(tSysOut.getArray());
625//
626    pTabOut->putSDContainer(sc);
627  }
628  return pTabOut;
629}
630
631SDMemTable* SDMath::resample (const SDMemTable& in, const String& methodStr,
632                              Float width) const
633//
634// Should add the possibility of width being specified in km/s. This means
635// that for each freqID (SpectralCoordinate) we will need to convert to an
636// average channel width (say at the reference pixel).  Then we would need 
637// to be careful to make sure each spectrum (of different freqID)
638// is the same length.
639//
640{
641   Bool doVel = False;
642   if (doVel) {
643      for (uInt j=0; j<in.nCoordinates(); ++j) {
644         SpectralCoordinate sC = in.getSpectralCoordinate(j);
645      }
646   }
647
648// Interpolation method
649
650  InterpolateArray1D<Double,Float>::InterpolationMethod interp;
651  convertInterpString(interp, methodStr);
652  Int interpMethod(interp);
653
654// Make output table
655
656  SDMemTable* pTabOut = new SDMemTable(in, True);
657
658// Resample SpectralCoordinates (one per freqID)
659
660  const uInt nCoord = in.nCoordinates();
661  Vector<Float> offset(1,0.0);
662  Vector<Float> factors(1,1.0/width);
663  Vector<Int> newShape;
664  for (uInt j=0; j<in.nCoordinates(); ++j) {
665    CoordinateSystem cSys;
666    cSys.addCoordinate(in.getSpectralCoordinate(j));
667    CoordinateSystem cSys2 = cSys.subImage(offset, factors, newShape);
668    SpectralCoordinate sC = cSys2.spectralCoordinate(0);
669//
670    pTabOut->setCoordinate(sC, j);
671  }
672
673// Get header
674
675  SDHeader sh = in.getSDHeader();
676
677// Generate resampling vectors
678
679  const uInt nChanIn = sh.nchan;
680  Vector<Float> xIn(nChanIn);
681  indgen(xIn);
682//
683  Int fac =  Int(nChanIn/width);
684  Vector<Float> xOut(fac+10);          // 10 to be safe - resize later
685  uInt i = 0;
686  Float x = 0.0;
687  Bool more = True;
688  while (more) {
689    xOut(i) = x;
690//
691    i++;
692    x += width;
693    if (x>nChanIn-1) more = False;
694  }
695  const uInt nChanOut = i;
696  xOut.resize(nChanOut,True);
697//
698  IPosition shapeIn(in.rowAsMaskedArray(0).shape());
699  sh.nchan = nChanOut;
700  pTabOut->putSDHeader(sh);
701
702// Loop over rows and resample along channel axis
703
704  Array<Float> valuesOut;
705  Array<Bool> maskOut; 
706  Array<Float> tSysOut;
707  Array<Bool> tSysMaskIn(shapeIn,True);
708  Array<Bool> tSysMaskOut;
709  for (uInt i=0; i < in.nRow(); ++i) {
710
711// Get container
712
713     SDContainer sc = in.getSDContainer(i);
714
715// Get data and Tsys
716   
717     const Array<Float>& tSysIn = sc.getTsys();
718     const MaskedArray<Float>& dataIn(in.rowAsMaskedArray(i));
719     Array<Float> valuesIn = dataIn.getArray();
720     Array<Bool> maskIn = dataIn.getMask();
721
722// Interpolate data
723
724     InterpolateArray1D<Float,Float>::interpolate(valuesOut, maskOut, xOut,
725                                                  xIn, valuesIn, maskIn,
726                                                  interpMethod, True, True);
727     sc.resize(valuesOut.shape());
728     putDataInSDC(sc, valuesOut, maskOut);
729
730// Interpolate TSys
731
732     InterpolateArray1D<Float,Float>::interpolate(tSysOut, tSysMaskOut, xOut,
733                                                  xIn, tSysIn, tSysMaskIn,
734                                                  interpMethod, True, True);
735    sc.putTsys(tSysOut);
736
737// Put container in output
738
739    pTabOut->putSDContainer(sc);
740  }
741//
742  return pTabOut;
743}
744
745SDMemTable* SDMath::unaryOperate(const SDMemTable& in, Float val, Bool doAll,
746                                 uInt what, Bool doTSys) const
747//
748// what = 0   Multiply
749//        1   Add
750{
751   SDMemTable* pOut = new SDMemTable(in,False);
752   const Table& tOut = pOut->table();
753   ArrayColumn<Float> specCol(tOut,"SPECTRA"); 
754   ArrayColumn<Float> tSysCol(tOut,"TSYS"); 
755   Array<Float> tSysArr;
756
757// Get data slice bounds
758
759   IPosition start, end;
760   setCursorSlice (start, end, doAll, in);
761//
762   for (uInt i=0; i<tOut.nrow(); i++) {
763
764// Modify data
765
766      MaskedArray<Float> dataIn(pOut->rowAsMaskedArray(i));
767      MaskedArray<Float> dataIn2 = dataIn(start,end);    // Reference
768      if (what==0) {
769         dataIn2 *= val;
770      } else if (what==1) {
771         dataIn2 += val;
772      }
773      specCol.put(i, dataIn.getArray());
774
775// Modify Tsys
776
777      if (doTSys) {
778         tSysCol.get(i, tSysArr);
779         Array<Float> tSysArr2 = tSysArr(start,end);     // Reference
780         if (what==0) {
781            tSysArr2 *= val;
782         } else if (what==1) {
783            tSysArr2 += val;
784         }
785         tSysCol.put(i, tSysArr);
786      }
787   }
788//
789   return pOut;
790}
791
792
793
794SDMemTable* SDMath::averagePol(const SDMemTable& in, const Vector<Bool>& mask,
795                               const String& weightStr) const
796//
797// Average all polarizations together, weighted by variance
798//
799{
800   WeightType wtType = NONE;
801   convertWeightString(wtType, weightStr);
802
803   const uInt nRows = in.nRow();
804
805// Create output Table and reshape number of polarizations
806
807  Bool clear=True;
808  SDMemTable* pTabOut = new SDMemTable(in, clear);
809  SDHeader header = pTabOut->getSDHeader();
810  header.npol = 1;
811  pTabOut->putSDHeader(header);
812
813// Shape of input and output data
814
815  const IPosition& shapeIn = in.rowAsMaskedArray(0).shape();
816  IPosition shapeOut(shapeIn);
817  shapeOut(asap::PolAxis) = 1;                          // Average all polarizations
818  if (shapeIn(asap::PolAxis)==1) {
819     throw(AipsError("The input has only one polarisation"));
820  }
821//
822  const uInt nChan = shapeIn(asap::ChanAxis);
823  const IPosition vecShapeOut(4,1,1,1,nChan);     // A multi-dim form of a Vector shape
824  IPosition start(4), end(4);
825
826// Output arrays
827
828  Array<Float> outData(shapeOut, 0.0);
829  Array<Bool> outMask(shapeOut, True);
830  const IPosition axes(2, asap::PolAxis, asap::ChanAxis);              // pol-channel plane
831//
832  const Bool useMask = (mask.nelements() == shapeIn(asap::ChanAxis));
833
834// Loop over rows
835
836   for (uInt iRow=0; iRow<nRows; iRow++) {
837
838// Get data for this row
839
840      MaskedArray<Float> marr(in.rowAsMaskedArray(iRow));
841      Array<Float>& arr = marr.getRWArray();
842      const Array<Bool>& barr = marr.getMask();
843
844// Make iterators to iterate by pol-channel planes
845
846      ReadOnlyArrayIterator<Float> itDataPlane(arr, axes);
847      ReadOnlyArrayIterator<Bool> itMaskPlane(barr, axes);
848
849// Accumulations
850
851      Float fac = 1.0;
852      Vector<Float> vecSum(nChan,0.0);
853
854// Iterate through data by pol-channel planes
855
856      while (!itDataPlane.pastEnd()) {
857
858// Iterate through plane by polarization  and accumulate Vectors
859
860        Vector<Float> t1(nChan); t1 = 0.0;
861        Vector<Bool> t2(nChan); t2 = True;
862        MaskedArray<Float> vecSum(t1,t2);
863        Float norm = 0.0;
864        {
865           ReadOnlyVectorIterator<Float> itDataVec(itDataPlane.array(), 1);
866           ReadOnlyVectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
867           while (!itDataVec.pastEnd()) {     
868
869// Create MA of data & mask (optionally including OTF mask) and  get variance for this spectrum
870
871              if (useMask) {
872                 const MaskedArray<Float> spec(itDataVec.vector(),mask&&itMaskVec.vector());
873                 if (wtType==VAR) fac = 1.0 / variance(spec);
874              } else {
875                 const MaskedArray<Float> spec(itDataVec.vector(),itMaskVec.vector());
876                 if (wtType==VAR) fac = 1.0 / variance(spec);
877              }
878
879// Normalize spectrum (without OTF mask) and accumulate
880
881              const MaskedArray<Float> spec(fac*itDataVec.vector(), itMaskVec.vector());
882              vecSum += spec;
883              norm += fac;
884
885// Next
886
887              itDataVec.next();
888              itMaskVec.next();
889           }
890        }
891
892// Normalize summed spectrum
893
894        vecSum /= norm;
895
896// FInd position in input data array.  We are iterating by pol-channel
897// plane so all that will change is beam and IF and that's what we want.
898
899        IPosition pos = itDataPlane.pos();
900
901// Write out data. This is a bit messy. We have to reform the Vector
902// accumulator into an Array of shape (1,1,1,nChan)
903
904        start = pos;
905        end = pos;
906        end(asap::ChanAxis) = nChan-1;
907        outData(start,end) = vecSum.getArray().reform(vecShapeOut);
908        outMask(start,end) = vecSum.getMask().reform(vecShapeOut);
909
910// Step to next beam/IF combination
911
912        itDataPlane.next();
913        itMaskPlane.next();
914      }
915
916// Generate output container and write it to output table
917
918      SDContainer sc = in.getSDContainer();
919      sc.resize(shapeOut);
920//
921      putDataInSDC(sc, outData, outMask);
922      pTabOut->putSDContainer(sc);
923   }
924
925// Set polarization cursor to 0
926
927  pTabOut->setPol(0);
928//
929  return pTabOut;
930}
931
932
933SDMemTable* SDMath::smooth(const SDMemTable& in,
934                           const casa::String& kernelType,
935                           casa::Float width, Bool doAll) const
936//
937// Should smooth TSys as well
938//
939{
940
941// Number of channels
942
943   const uInt nChan = in.nChan();
944
945// Generate Kernel
946
947   VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernelType);
948   Vector<Float> kernel = VectorKernel::make(type, width, nChan, True, False);
949
950// Generate Convolver
951
952   IPosition shape(1,nChan);
953   Convolver<Float> conv(kernel, shape);
954
955// New Table
956
957   SDMemTable* pTabOut = new SDMemTable(in,True);
958
959// Output Vectors
960
961   Vector<Float> valuesOut(nChan);
962   Vector<Bool> maskOut(nChan);
963
964// Get data slice bounds
965
966   IPosition start, end;
967   setCursorSlice (start, end, doAll, in);
968
969// Loop over rows in Table
970
971   for (uInt ri=0; ri < in.nRow(); ++ri) {
972
973// Get slice of data
974
975      MaskedArray<Float> dataIn = in.rowAsMaskedArray(ri);
976
977// Deconstruct and get slices which reference these arrays
978
979      Array<Float> valuesIn = dataIn.getArray();
980      Array<Bool> maskIn = dataIn.getMask();
981//
982      Array<Float> valuesIn2 = valuesIn(start,end);       // ref to valuesIn
983      Array<Bool> maskIn2 = maskIn(start,end);
984
985// Iterate through by spectra
986
987      VectorIterator<Float> itValues(valuesIn2, asap::ChanAxis);
988      VectorIterator<Bool> itMask(maskIn2, asap::ChanAxis);
989      while (!itValues.pastEnd()) {
990       
991// Smooth
992
993         if (kernelType==VectorKernel::HANNING) {
994            mathutil::hanning(valuesOut, maskOut, itValues.vector(), itMask.vector());
995            itMask.vector() = maskOut;
996         } else {
997            mathutil::replaceMaskByZero(itValues.vector(), itMask.vector());
998            conv.linearConv(valuesOut, itValues.vector());
999         }
1000//   
1001         itValues.vector() = valuesOut;
1002//
1003         itValues.next();
1004         itMask.next();
1005      }
1006
1007// Create and put back
1008
1009      SDContainer sc = in.getSDContainer(ri);
1010      putDataInSDC(sc, valuesIn, maskIn);
1011//
1012      pTabOut->putSDContainer(sc);
1013   }
1014//
1015  return pTabOut;
1016}
1017
1018
1019
1020SDMemTable* SDMath::convertFlux (const SDMemTable& in, Float D, Float etaAp,
1021                                 Float JyPerK, Bool doAll) const
1022//
1023// etaAp = aperture efficiency
1024// D     = geometric diameter (m)
1025// JyPerK
1026//
1027{
1028  SDHeader sh = in.getSDHeader();
1029  SDMemTable* pTabOut = new SDMemTable(in, True);
1030
1031// Find out how to convert values into Jy and K (e.g. units might be mJy or mK)
1032// Also automatically find out what we are converting to according to the
1033// flux unit
1034
1035  Unit fluxUnit(sh.fluxunit);
1036  Unit K(String("K"));
1037  Unit JY(String("Jy"));
1038//
1039  Bool toKelvin = True;
1040  Double cFac = 1.0;   
1041  if (fluxUnit==JY) {
1042     cout << "Converting to K" << endl;
1043//
1044     Quantum<Double> t(1.0,fluxUnit);
1045     Quantum<Double> t2 = t.get(JY);
1046     cFac = (t2 / t).getValue();               // value to Jy
1047//
1048     toKelvin = True;
1049     sh.fluxunit = "K";
1050  } else if (fluxUnit==K) {
1051     cout << "Converting to Jy" << endl;
1052//
1053     Quantum<Double> t(1.0,fluxUnit);
1054     Quantum<Double> t2 = t.get(K);
1055     cFac = (t2 / t).getValue();              // value to K
1056//
1057     toKelvin = False;
1058     sh.fluxunit = "Jy";
1059  } else {
1060     throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
1061  }
1062  pTabOut->putSDHeader(sh);
1063
1064// Make sure input values are converted to either Jy or K first...
1065
1066  Float factor = cFac;
1067
1068// Select method
1069
1070  if (JyPerK>0.0) {
1071     factor *= JyPerK;
1072     if (toKelvin) factor = 1.0 / JyPerK;
1073//
1074     cout << "Applying supplied conversion factor = " << factor << endl;
1075     Vector<Float> factors(in.nRow(), factor);
1076     correctFromVector (pTabOut, in, doAll, factors);
1077  } else if (etaAp>0.0) {
1078     factor *= SDAttr::findJyPerKFac (etaAp, D);
1079     if (toKelvin) {
1080        factor = 1.0 / factor;
1081     }
1082//
1083     cout << "Applying supplied conversion factor = " << factor << endl;
1084     Vector<Float> factors(in.nRow(), factor);
1085     correctFromVector (pTabOut, in, doAll, factors);
1086  } else {
1087
1088// OK now we must deal with automatic look up of values.
1089// We must also deal with the fact that the factors need
1090// to be computed per IF and may be different and may
1091// change per integration.
1092
1093     cout << "Looking up conversion factors" << endl;
1094     convertBrightnessUnits (pTabOut, in, toKelvin, cFac, doAll);
1095  }
1096//
1097  return pTabOut;
1098}
1099
1100
1101
1102
1103
1104SDMemTable* SDMath::gainElevation (const SDMemTable& in, const Vector<Float>& coeffs,
1105                                   const String& fileName,
1106                                   const String& methodStr, Bool doAll) const
1107{
1108
1109// Get header and clone output table
1110
1111  SDHeader sh = in.getSDHeader();
1112  SDMemTable* pTabOut = new SDMemTable(in, True);
1113
1114// Get elevation data from SDMemTable and convert to degrees
1115
1116  const Table& tab = in.table();
1117  ROScalarColumn<Float> elev(tab, "ELEVATION");
1118  Vector<Float> x = elev.getColumn();
1119  x *= Float(180 / C::pi);                        // Degrees
1120//
1121  const uInt nC = coeffs.nelements();
1122  if (fileName.length()>0 && nC>0) {
1123     throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
1124  }
1125
1126// Correct
1127
1128  if (nC>0 || fileName.length()==0) {
1129
1130// Find instrument
1131
1132     Bool throwIt = True;
1133     Instrument inst = SDMemTable::convertInstrument (sh.antennaname, throwIt);
1134     
1135// Set polynomial
1136
1137     Polynomial<Float>* pPoly = 0;
1138     Vector<Float> coeff;
1139     String msg;
1140     if (nC>0) {
1141        pPoly = new Polynomial<Float>(nC);
1142        coeff = coeffs;
1143        msg = String("user");
1144     } else {
1145        SDAttr sdAttr;
1146        coeff = sdAttr.gainElevationPoly(inst);
1147        pPoly = new Polynomial<Float>(3);
1148        msg = String("built in");
1149     }
1150//
1151     if (coeff.nelements()>0) {
1152        pPoly->setCoefficients(coeff);
1153     } else {
1154        throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
1155     }
1156//
1157     cout << "Making polynomial correction with " << msg << " coefficients" << endl;
1158     const uInt nRow = in.nRow();
1159     Vector<Float> factor(nRow);
1160     for (uInt i=0; i<nRow; i++) {
1161        factor[i] = (*pPoly)(x[i]);
1162     }
1163     delete pPoly;
1164//
1165     correctFromVector (pTabOut, in, doAll, factor);
1166  } else {
1167
1168// Indicate which columns to read from ascii file
1169
1170     String col0("ELEVATION");
1171     String col1("FACTOR");
1172
1173// Read and correct
1174
1175     cout << "Making correction from ascii Table" << endl;
1176     correctFromAsciiTable (pTabOut, in, fileName, col0, col1,
1177                            methodStr, doAll, x);
1178   }
1179//
1180   return pTabOut;
1181}
1182
1183 
1184
1185SDMemTable* SDMath::opacity (const SDMemTable& in, Float tau, Bool doAll) const
1186{
1187
1188// Get header and clone output table
1189
1190  SDHeader sh = in.getSDHeader();
1191  SDMemTable* pTabOut = new SDMemTable(in, True);
1192
1193// Get elevation data from SDMemTable and convert to degrees
1194
1195  const Table& tab = in.table();
1196  ROScalarColumn<Float> elev(tab, "ELEVATION");
1197  Vector<Float> zDist = elev.getColumn();
1198  zDist = Float(C::pi_2) - zDist;
1199
1200// Generate correction factor
1201
1202  const uInt nRow = in.nRow();
1203  Vector<Float> factor(nRow);
1204  Vector<Float> factor2(nRow);
1205  for (uInt i=0; i<nRow; i++) {
1206     factor[i] = exp(tau)/cos(zDist[i]);
1207  }
1208
1209// Correct
1210
1211  correctFromVector (pTabOut, in, doAll, factor);
1212//
1213  return pTabOut;
1214}
1215
1216
1217void SDMath::rotateXYPhase (SDMemTable& in, Float value, Bool doAll)
1218//
1219// phase in degrees
1220// Applies to all Beams and IFs
1221// Might want to optionally select on Beam/IF
1222//
1223{
1224   if (in.nPol() != 4) {
1225      throw(AipsError("You must have 4 polarizations to run this function"));
1226   }
1227//   
1228   const Table& tabIn = in.table();
1229   ArrayColumn<Float> specCol(tabIn,"SPECTRA"); 
1230   IPosition start(asap::nAxes,0);
1231   IPosition end(asap::nAxes);
1232
1233// Set cursor slice. Assumes shape the same for all rows
1234 
1235   setCursorSlice (start, end, doAll, in);
1236   IPosition start3(start);
1237   start3(asap::PolAxis) = 2;                 // Real(XY)
1238   IPosition end3(end);
1239   end3(asap::PolAxis) = 2;   
1240//
1241   IPosition start4(start);
1242   start4(asap::PolAxis) = 3;                 // Imag (XY)
1243   IPosition end4(end);
1244   end4(asap::PolAxis) = 3;
1245// 
1246   uInt nRow = in.nRow();
1247   Array<Float> data;
1248   for (uInt i=0; i<nRow;++i) {
1249      specCol.get(i,data);
1250      IPosition shape = data.shape();
1251 
1252// Get polarization slice references
1253 
1254      Array<Float> C3 = data(start3,end3);
1255      Array<Float> C4 = data(start4,end4);
1256   
1257// Rotate
1258 
1259      SDPolUtil::rotateXYPhase(C3, C4, value);
1260   
1261// Put
1262   
1263      specCol.put(i,data);
1264   }
1265}     
1266
1267
1268
1269// 'private' functions
1270
1271void SDMath::convertBrightnessUnits (SDMemTable* pTabOut, const SDMemTable& in,
1272                                     Bool toKelvin, Float cFac, Bool doAll) const
1273{
1274
1275// Get header
1276
1277   SDHeader sh = in.getSDHeader();
1278   const uInt nChan = sh.nchan;
1279
1280// Get instrument
1281
1282   Bool throwIt = True;
1283   Instrument inst = SDMemTable::convertInstrument (sh.antennaname, throwIt);
1284
1285// Get Diameter (m)
1286
1287   SDAttr sdAtt;
1288
1289// Get epoch of first row
1290
1291   MEpoch dateObs = in.getEpoch(0);
1292
1293// Generate a Vector of correction factors. One per FreqID
1294
1295   SDFrequencyTable sdft = in.getSDFreqTable();
1296   Vector<uInt> freqIDs;
1297//
1298   Vector<Float> freqs(sdft.length());
1299   for (uInt i=0; i<sdft.length(); i++) {
1300      freqs(i) = (nChan/2 - sdft.referencePixel(i))*sdft.increment(i) + sdft.referenceValue(i);
1301   }
1302//
1303   Vector<Float> JyPerK = sdAtt.JyPerK(inst, dateObs, freqs);
1304   cout << "Jy/K = " << JyPerK << endl;
1305   Vector<Float> factors = cFac * JyPerK;
1306   if (toKelvin) factors = Float(1.0) / factors;
1307
1308// Get data slice bounds
1309
1310   IPosition start, end;
1311   setCursorSlice (start, end, doAll, in);
1312   const uInt ifAxis = in.getIF();
1313
1314// Iteration axes
1315
1316   IPosition axes(asap::nAxes-1,0);
1317   for (uInt i=0,j=0; i<asap::nAxes; i++) {
1318      if (i!=asap::IFAxis) {
1319         axes(j++) = i;
1320      }
1321   }
1322
1323// Loop over rows and apply correction factor
1324
1325   Float factor = 1.0; 
1326   const uInt axis = asap::ChanAxis;
1327   for (uInt i=0; i < in.nRow(); ++i) {
1328
1329// Get data
1330
1331      MaskedArray<Float> dataIn = in.rowAsMaskedArray(i);
1332      Array<Float>& values = dataIn.getRWArray();           // Ref to dataIn
1333      Array<Float> values2 = values(start,end);             // Ref to values to dataIn
1334
1335// Get SDCOntainer
1336
1337      SDContainer sc = in.getSDContainer(i);
1338
1339// Get FreqIDs
1340
1341      freqIDs = sc.getFreqMap();
1342
1343// Now the conversion factor depends only upon frequency
1344// So we need to iterate through by IF only giving
1345// us BEAM/POL/CHAN cubes
1346
1347      ArrayIterator<Float> itIn(values2, axes);
1348      uInt ax = 0;
1349      while (!itIn.pastEnd()) {
1350        itIn.array() *= factors(freqIDs(ax));         // Writes back to dataIn
1351        itIn.next();
1352      }
1353
1354// Write out
1355
1356      putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
1357//
1358      pTabOut->putSDContainer(sc);
1359   }
1360}
1361
1362
1363
1364SDMemTable* SDMath::frequencyAlign (const SDMemTable& in,
1365                                   MFrequency::Types freqSystem,
1366                                   const String& refTime,
1367                                   const String& methodStr,
1368                                   Bool perFreqID) const
1369{
1370// Get Header
1371
1372   SDHeader sh = in.getSDHeader();
1373   const uInt nChan = sh.nchan;
1374   const uInt nRows = in.nRow();
1375   const uInt nIF = sh.nif;
1376
1377// Get Table reference
1378
1379   const Table& tabIn = in.table();
1380
1381// Get Columns from Table
1382
1383   ROScalarColumn<Double> mjdCol(tabIn, "TIME");
1384   ROScalarColumn<String> srcCol(tabIn, "SRCNAME");
1385   ROArrayColumn<uInt> fqIDCol(tabIn, "FREQID");
1386   Vector<Double> times = mjdCol.getColumn();
1387
1388// Generate DataDesc table
1389 
1390   Matrix<uInt> ddIdx;
1391   SDDataDesc dDesc;
1392   generateDataDescTable (ddIdx, dDesc, nIF, in, tabIn, srcCol, fqIDCol, perFreqID);
1393
1394// Get reference Epoch to time of first row or given String
1395
1396   Unit DAY(String("d"));
1397   MEpoch::Ref epochRef(in.getTimeReference());
1398   MEpoch refEpoch;
1399   if (refTime.length()>0) {
1400      refEpoch = epochFromString(refTime, in.getTimeReference());
1401   } else {
1402      refEpoch = in.getEpoch(0);
1403   }
1404   cout << "Aligning at reference Epoch " << formatEpoch(refEpoch)
1405        << " in frame " << MFrequency::showType(freqSystem) << endl;
1406   
1407// Get Reference Position
1408
1409   MPosition refPos = in.getAntennaPosition();
1410
1411// Create FrequencyAligner Block. One FA for each possible
1412// source/freqID (perFreqID=True) or source/IF (perFreqID=False) combination
1413
1414   PtrBlock<FrequencyAligner<Float>* > a(dDesc.length());
1415   generateFrequencyAligners (a, dDesc, in, nChan, freqSystem, refPos,
1416                              refEpoch, perFreqID);
1417
1418// Generate and fill output Frequency Table.  WHen perFreqID=True, there is one output FreqID
1419// for each entry in the SDDataDesc table.  However, in perFreqID=False mode, there may be
1420// some degeneracy, so we need a little translation map
1421
1422   SDFrequencyTable freqTabOut = in.getSDFreqTable();
1423   freqTabOut.setLength(0);
1424   Vector<String> units(1);
1425   units = String("Hz");
1426   Bool linear=True;
1427//
1428   Vector<uInt> ddFQTrans(dDesc.length(),0);
1429   for (uInt i=0; i<dDesc.length(); i++) {
1430
1431// Get Aligned SC in Hz
1432
1433      SpectralCoordinate sC = a[i]->alignedSpectralCoordinate(linear);
1434      sC.setWorldAxisUnits(units);
1435
1436// Add FreqID
1437
1438      uInt idx = freqTabOut.addFrequency(sC.referencePixel()[0],
1439                                         sC.referenceValue()[0],
1440                                         sC.increment()[0]);
1441      ddFQTrans(i) = idx;                                       // output FreqID = ddFQTrans(ddIdx)
1442   }
1443
1444// Interpolation method
1445
1446   InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1447   convertInterpString(interp, methodStr);
1448
1449// New output Table
1450
1451   cout << "Create output table" << endl;
1452   SDMemTable* pTabOut = new SDMemTable(in,True);
1453   pTabOut->putSDFreqTable(freqTabOut);
1454
1455// Loop over rows in Table
1456
1457   Bool extrapolate=False;
1458   const IPosition polChanAxes(2, asap::PolAxis, asap::ChanAxis);
1459   Bool useCachedAbcissa = False;
1460   Bool first = True;
1461   Bool ok;
1462   Vector<Float> yOut;
1463   Vector<Bool> maskOut;
1464   Vector<uInt> freqID(nIF);
1465   uInt ifIdx, faIdx;
1466   Vector<Double> xIn;
1467//
1468   for (uInt iRow=0; iRow<nRows; ++iRow) {
1469      if (iRow%10==0) {
1470         cout << "Processing row " << iRow << endl;
1471      }
1472
1473// Get EPoch
1474
1475     Quantum<Double> tQ2(times[iRow],DAY);
1476     MVEpoch mv2(tQ2);
1477     MEpoch epoch(mv2, epochRef);
1478
1479// Get copy of data
1480   
1481     const MaskedArray<Float>& mArrIn(in.rowAsMaskedArray(iRow));
1482     Array<Float> values = mArrIn.getArray();
1483     Array<Bool> mask = mArrIn.getMask();
1484
1485// For each row, the Frequency abcissa will be the same regardless
1486// of polarization.  For all other axes (IF and BEAM) the abcissa
1487// will change.  So we iterate through the data by pol-chan planes
1488// to mimimize the work.  Probably won't work for multiple beams
1489// at this point.
1490
1491     ArrayIterator<Float> itValuesPlane(values, polChanAxes);
1492     ArrayIterator<Bool> itMaskPlane(mask, polChanAxes);
1493     while (!itValuesPlane.pastEnd()) {
1494
1495// Find the IF index and then the FA PtrBlock index
1496
1497        const IPosition& pos = itValuesPlane.pos();
1498        ifIdx = pos(asap::IFAxis);
1499        faIdx = ddIdx(iRow,ifIdx);
1500
1501// Generate abcissa for perIF.  Could cache this in a Matrix
1502// on a per scan basis.   Pretty expensive doing it for every row.
1503
1504        if (!perFreqID) {
1505           xIn.resize(nChan);
1506           uInt fqID = dDesc.secID(ddIdx(iRow,ifIdx));
1507           SpectralCoordinate sC = in.getSpectralCoordinate(fqID);
1508           Double w;
1509           for (uInt i=0; i<nChan; i++) {
1510              sC.toWorld(w,Double(i));
1511              xIn[i] = w;
1512           }
1513        }
1514//
1515        VectorIterator<Float> itValuesVec(itValuesPlane.array(), 1);
1516        VectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
1517
1518// Iterate through the plane by vector and align
1519
1520        first = True;
1521        useCachedAbcissa=False;
1522        while (!itValuesVec.pastEnd()) {     
1523           if (perFreqID) {
1524              ok = a[faIdx]->align (yOut, maskOut, itValuesVec.vector(),
1525                                    itMaskVec.vector(), epoch, useCachedAbcissa,
1526                                    interp, extrapolate);
1527           } else {
1528              ok = a[faIdx]->align (yOut, maskOut, xIn, itValuesVec.vector(),
1529                                    itMaskVec.vector(), epoch, useCachedAbcissa,
1530                                    interp, extrapolate);
1531           }
1532//
1533           itValuesVec.vector() = yOut;
1534           itMaskVec.vector() = maskOut;
1535//
1536           itValuesVec.next();
1537           itMaskVec.next();
1538//
1539           if (first) {
1540              useCachedAbcissa = True;
1541              first = False;
1542           }
1543        }
1544//
1545       itValuesPlane.next();
1546       itMaskPlane.next();
1547     }
1548
1549// Create SDContainer and put back
1550
1551    SDContainer sc = in.getSDContainer(iRow);
1552    putDataInSDC(sc, values, mask);
1553
1554// Set output FreqIDs
1555
1556    for (uInt i=0; i<nIF; i++) {
1557       uInt idx = ddIdx(iRow,i);               // Index into SDDataDesc table
1558       freqID(i) = ddFQTrans(idx);             // FreqID in output FQ table
1559    }
1560    sc.putFreqMap(freqID);
1561//
1562    pTabOut->putSDContainer(sc);
1563   }
1564
1565// Now we must set the base and extra frames to the
1566// input frame
1567
1568   std::vector<string> info = pTabOut->getCoordInfo();
1569   info[1] = MFrequency::showType(freqSystem);   // Conversion frame
1570   info[3] = info[1];                            // Base frame
1571   pTabOut->setCoordInfo(info);
1572
1573// Clean up PointerBlock
1574
1575   for (uInt i=0; i<a.nelements(); i++) delete a[i];
1576//
1577   return pTabOut;
1578}
1579
1580
1581void SDMath::fillSDC(SDContainer& sc,
1582                     const Array<Bool>& mask,
1583                     const Array<Float>& data,
1584                     const Array<Float>& tSys,
1585                     Int scanID, Double timeStamp,
1586                     Double interval, const String& sourceName,
1587                     const Vector<uInt>& freqID) const
1588{
1589// Data and mask
1590
1591  putDataInSDC(sc, data, mask);
1592
1593// TSys
1594
1595  sc.putTsys(tSys);
1596
1597// Time things
1598
1599  sc.timestamp = timeStamp;
1600  sc.interval = interval;
1601  sc.scanid = scanID;
1602//
1603  sc.sourcename = sourceName;
1604  sc.putFreqMap(freqID);
1605}
1606
1607void SDMath::normalize(MaskedArray<Float>& sum,
1608                        const Array<Float>& sumSq,
1609                        const Array<Float>& nPts,
1610                        WeightType wtType, Int axis,
1611                        Int nAxesSub) const
1612{
1613   IPosition pos2(nAxesSub,0);
1614//
1615   if (wtType==NONE) {
1616
1617// We just average by the number of points accumulated.
1618// We need to make a MA out of nPts so that no divide by
1619// zeros occur
1620
1621      MaskedArray<Float> t(nPts, (nPts>Float(0.0)));
1622      sum /= t;
1623   } else if (wtType==VAR) {
1624
1625// Normalize each spectrum by sum(1/var) where the variance
1626// is worked out for each spectrum
1627
1628      Array<Float>& data = sum.getRWArray();
1629      VectorIterator<Float> itData(data, axis);
1630      while (!itData.pastEnd()) {
1631         pos2 = itData.pos().getFirst(nAxesSub);
1632         itData.vector() /= sumSq(pos2);
1633         itData.next();
1634      }
1635   } else if (wtType==TSYS) {
1636   }
1637}
1638
1639
1640void SDMath::accumulate(Double& timeSum, Double& intSum, Int& nAccum,
1641                        MaskedArray<Float>& sum, Array<Float>& sumSq,
1642                        Array<Float>& nPts, Array<Float>& tSysSum,
1643                        const Array<Float>& tSys, const Array<Float>& nInc,
1644                        const Vector<Bool>& mask, Double time, Double interval,
1645                        const Block<CountedPtr<SDMemTable> >& in,
1646                        uInt iTab, uInt iRow, uInt axis,
1647                        uInt nAxesSub, Bool useMask,
1648                        WeightType wtType) const
1649{
1650
1651// Get data
1652
1653   MaskedArray<Float> dataIn(in[iTab]->rowAsMaskedArray(iRow));
1654   Array<Float>& valuesIn = dataIn.getRWArray();           // writable reference
1655   const Array<Bool>& maskIn = dataIn.getMask();          // RO reference
1656//
1657   if (wtType==NONE) {
1658      const MaskedArray<Float> n(nInc,dataIn.getMask());
1659      nPts += n;                               // Only accumulates where mask==T
1660   } else if (wtType==VAR) {
1661
1662// We are going to average the data, weighted by the noise for each pol, beam and IF.
1663// So therefore we need to iterate through by spectrum (axis 3)
1664
1665      VectorIterator<Float> itData(valuesIn, axis);
1666      ReadOnlyVectorIterator<Bool> itMask(maskIn, axis);
1667      Float fac = 1.0;
1668      IPosition pos(nAxesSub,0); 
1669//
1670      while (!itData.pastEnd()) {
1671
1672// Make MaskedArray of Vector, optionally apply OTF mask, and find scaling factor
1673
1674        if (useMask) {
1675           MaskedArray<Float> tmp(itData.vector(),mask&&itMask.vector());
1676           fac = 1.0/variance(tmp);
1677        } else {
1678           MaskedArray<Float> tmp(itData.vector(),itMask.vector());
1679           fac = 1.0/variance(tmp);
1680        }
1681
1682// Scale data
1683
1684        itData.vector() *= fac;     // Writes back into 'dataIn'
1685//
1686// Accumulate variance per if/pol/beam averaged over spectrum
1687// This method to get pos2 from itData.pos() is only valid
1688// because the spectral axis is the last one (so we can just
1689// copy the first nAXesSub positions out)
1690
1691        pos = itData.pos().getFirst(nAxesSub);
1692        sumSq(pos) += fac;
1693//
1694        itData.next();
1695        itMask.next();
1696      }
1697   } else if (wtType==TSYS) {
1698   }
1699
1700// Accumulate sum of (possibly scaled) data
1701
1702   sum += dataIn;
1703
1704// Accumulate Tsys, time, and interval
1705
1706   tSysSum += tSys;
1707   timeSum += time;
1708   intSum += interval;
1709   nAccum += 1;
1710}
1711
1712
1713void SDMath::setCursorSlice (IPosition& start, IPosition& end, Bool doAll, const SDMemTable& in) const
1714{
1715  const uInt nDim = asap::nAxes;
1716  DebugAssert(nDim==4,AipsError);
1717//
1718  start.resize(nDim);
1719  end.resize(nDim);
1720  if (doAll) {
1721     start = 0;
1722     end(0) = in.nBeam()-1;
1723     end(1) = in.nIF()-1;
1724     end(2) = in.nPol()-1;
1725     end(3) = in.nChan()-1;
1726  } else {
1727     start(0) = in.getBeam();
1728     end(0) = start(0);
1729//
1730     start(1) = in.getIF();
1731     end(1) = start(1);
1732//
1733     start(2) = in.getPol();
1734     end(2) = start(2);
1735//
1736     start(3) = 0;
1737     end(3) = in.nChan()-1;
1738   }
1739}
1740
1741
1742void SDMath::convertWeightString(WeightType& wtType, const String& weightStr) const
1743{
1744  String tStr(weightStr);
1745  tStr.upcase();
1746  if (tStr.contains(String("NONE"))) {
1747     wtType = NONE;
1748  } else if (tStr.contains(String("VAR"))) {
1749     wtType = VAR;
1750  } else if (tStr.contains(String("TSYS"))) {
1751     wtType = TSYS;
1752     throw(AipsError("T_sys weighting not yet implemented"));
1753  } else {
1754    throw(AipsError("Unrecognized weighting type"));
1755  }
1756}
1757
1758
1759void SDMath::convertInterpString(casa::InterpolateArray1D<Double,Float>::InterpolationMethod& type, 
1760                                 const casa::String& interp) const
1761{
1762  String tStr(interp);
1763  tStr.upcase();
1764  if (tStr.contains(String("NEAR"))) {
1765     type = InterpolateArray1D<Double,Float>::nearestNeighbour;
1766  } else if (tStr.contains(String("LIN"))) {
1767     type = InterpolateArray1D<Double,Float>::linear;
1768  } else if (tStr.contains(String("CUB"))) {
1769     type = InterpolateArray1D<Double,Float>::cubic;
1770  } else if (tStr.contains(String("SPL"))) {
1771     type = InterpolateArray1D<Double,Float>::spline;
1772  } else {
1773    throw(AipsError("Unrecognized interpolation type"));
1774  }
1775}
1776
1777void SDMath::putDataInSDC(SDContainer& sc, const Array<Float>& data,
1778                          const Array<Bool>& mask) const
1779{
1780    sc.putSpectrum(data);
1781//
1782    Array<uChar> outflags(data.shape());
1783    convertArray(outflags,!mask);
1784    sc.putFlags(outflags);
1785}
1786
1787Table SDMath::readAsciiFile (const String& fileName) const
1788{
1789   String formatString;
1790   Table tbl = readAsciiTable (formatString, Table::Memory, fileName, "", "", False);
1791   return tbl;
1792}
1793
1794
1795
1796void SDMath::correctFromAsciiTable(SDMemTable* pTabOut,
1797                                   const SDMemTable& in, const String& fileName,
1798                                   const String& col0, const String& col1,
1799                                   const String& methodStr, Bool doAll,
1800                                   const Vector<Float>& xOut) const
1801{
1802
1803// Read gain-elevation ascii file data into a Table.
1804
1805  Table geTable = readAsciiFile (fileName);
1806//
1807  correctFromTable (pTabOut, in, geTable, col0, col1, methodStr, doAll, xOut);
1808}
1809
1810void SDMath::correctFromTable(SDMemTable* pTabOut, const SDMemTable& in,
1811                              const Table& tTable, const String& col0,
1812                              const String& col1,
1813                              const String& methodStr, Bool doAll,
1814                              const Vector<Float>& xOut) const
1815{
1816
1817// Get data from Table
1818
1819  ROScalarColumn<Float> geElCol(tTable, col0);
1820  ROScalarColumn<Float> geFacCol(tTable, col1);
1821  Vector<Float> xIn = geElCol.getColumn();
1822  Vector<Float> yIn = geFacCol.getColumn();
1823  Vector<Bool> maskIn(xIn.nelements(),True);
1824
1825// Interpolate (and extrapolate) with desired method
1826
1827   InterpolateArray1D<Double,Float>::InterpolationMethod method;
1828   convertInterpString(method, methodStr);
1829   Int intMethod(method);
1830//
1831   Vector<Float> yOut;
1832   Vector<Bool> maskOut;
1833   InterpolateArray1D<Float,Float>::interpolate(yOut, maskOut, xOut,
1834                                                xIn, yIn, maskIn, intMethod,
1835                                                True, True);
1836// Apply
1837
1838   correctFromVector (pTabOut, in, doAll, yOut);
1839}
1840
1841
1842void SDMath::correctFromVector (SDMemTable* pTabOut, const SDMemTable& in,
1843                                Bool doAll, const Vector<Float>& factor) const
1844{
1845
1846// Set up data slice
1847
1848  IPosition start, end;
1849  setCursorSlice (start, end, doAll, in);
1850
1851// Loop over rows and apply correction factor
1852 
1853  const uInt axis = asap::ChanAxis;
1854  for (uInt i=0; i < in.nRow(); ++i) {
1855
1856// Get data
1857
1858     MaskedArray<Float> dataIn(in.rowAsMaskedArray(i));
1859     MaskedArray<Float> dataIn2 = dataIn(start,end);  // reference to dataIn
1860
1861// Apply factor
1862
1863     dataIn2 *= factor[i];
1864
1865// Write out
1866
1867     SDContainer sc = in.getSDContainer(i);
1868     putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
1869//
1870     pTabOut->putSDContainer(sc);
1871  }
1872}
1873
1874
1875
1876
1877void SDMath::generateDataDescTable (Matrix<uInt>& ddIdx,
1878                                    SDDataDesc& dDesc,
1879                                    uInt nIF,
1880                                    const SDMemTable& in,
1881                                    const Table& tabIn,
1882                                    const ROScalarColumn<String>& srcCol,
1883                                    const ROArrayColumn<uInt>& fqIDCol,
1884                                    Bool perFreqID) const
1885{
1886   const uInt nRows = tabIn.nrow();
1887   ddIdx.resize(nRows,nIF);
1888//
1889   String srcName;
1890   Vector<uInt> freqIDs;
1891   for (uInt iRow=0; iRow<nRows; iRow++) {
1892      srcCol.get(iRow, srcName);
1893      fqIDCol.get(iRow, freqIDs);
1894      const MDirection& dir = in.getDirection(iRow);
1895//
1896      if (perFreqID) {
1897
1898// One entry per source/freqID pair
1899
1900         for (uInt iIF=0; iIF<nIF; iIF++) {
1901            ddIdx(iRow,iIF) = dDesc.addEntry(srcName, freqIDs[iIF], dir, 0);
1902         }
1903      } else {
1904
1905// One entry per source/IF pair.  Hang onto the FreqID as well
1906
1907         for (uInt iIF=0; iIF<nIF; iIF++) {
1908            ddIdx(iRow,iIF) = dDesc.addEntry(srcName, iIF, dir, freqIDs[iIF]);
1909         }
1910      }
1911   }
1912}
1913
1914
1915
1916
1917
1918MEpoch SDMath::epochFromString (const String& str, MEpoch::Types timeRef) const
1919{
1920   Quantum<Double> qt;
1921   if (MVTime::read(qt,str)) {
1922      MVEpoch mv(qt);
1923      MEpoch me(mv, timeRef);
1924      return me;
1925   } else {
1926      throw(AipsError("Invalid format for Epoch string"));
1927   }
1928}
1929
1930
1931String SDMath::formatEpoch(const MEpoch& epoch)  const
1932{
1933   MVTime mvt(epoch.getValue());
1934   return mvt.string(MVTime::YMD) + String(" (") + epoch.getRefString() + String(")");
1935}
1936
1937
1938
1939void SDMath::generateFrequencyAligners (PtrBlock<FrequencyAligner<Float>* >& a,
1940                                        const SDDataDesc& dDesc,
1941                                        const SDMemTable& in, uInt nChan,
1942                                        MFrequency::Types system,
1943                                        const MPosition& refPos,
1944                                        const MEpoch& refEpoch,
1945                                        Bool perFreqID) const
1946{
1947   for (uInt i=0; i<dDesc.length(); i++) {
1948      uInt ID = dDesc.ID(i);
1949      uInt secID = dDesc.secID(i);
1950      const MDirection& refDir = dDesc.secDir(i);
1951//
1952      if (perFreqID) {
1953
1954// One aligner per source/FreqID pair. 
1955
1956         SpectralCoordinate sC = in.getSpectralCoordinate(ID);
1957         a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
1958      } else {
1959
1960// One aligner per source/IF pair.  But we still need the FreqID to
1961// get the right SC.  Hence the messing about with the secondary ID
1962
1963         SpectralCoordinate sC = in.getSpectralCoordinate(secID);
1964         a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
1965      }
1966   }
1967}
Note: See TracBrowser for help on using the repository browser.