source: trunk/src/SDMath.cc@ 747

Last change on this file since 747 was 716, checked in by mar637, 19 years ago

added frequency switching; implemented use of SDLog

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 61.7 KB
RevLine 
[2]1//#---------------------------------------------------------------------------
2//# SDMath.cc: A collection of single dish mathematical operations
3//#---------------------------------------------------------------------------
4//# Copyright (C) 2004
[125]5//# ATNF
[2]6//#
7//# This program is free software; you can redistribute it and/or modify it
8//# under the terms of the GNU General Public License as published by the Free
9//# Software Foundation; either version 2 of the License, or (at your option)
10//# any later version.
11//#
12//# This program is distributed in the hope that it will be useful, but
13//# WITHOUT ANY WARRANTY; without even the implied warranty of
14//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
15//# Public License for more details.
16//#
17//# You should have received a copy of the GNU General Public License along
18//# with this program; if not, write to the Free Software Foundation, Inc.,
19//# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
20//#
21//# Correspondence concerning this software should be addressed as follows:
22//# Internet email: Malte.Marquarding@csiro.au
23//# Postal address: Malte Marquarding,
24//# Australia Telescope National Facility,
25//# P.O. Box 76,
26//# Epping, NSW, 2121,
27//# AUSTRALIA
28//#
29//# $Id:
30//#---------------------------------------------------------------------------
[38]31#include <vector>
32
[716]33
[81]34#include <casa/aips.h>
[330]35#include <casa/iostream.h>
[716]36#include <casa/sstream.h>
[330]37#include <casa/iomanip.h>
[81]38#include <casa/BasicSL/String.h>
39#include <casa/Arrays/IPosition.h>
40#include <casa/Arrays/Array.h>
[130]41#include <casa/Arrays/ArrayIter.h>
42#include <casa/Arrays/VectorIter.h>
[81]43#include <casa/Arrays/ArrayMath.h>
44#include <casa/Arrays/ArrayLogical.h>
45#include <casa/Arrays/MaskedArray.h>
46#include <casa/Arrays/MaskArrMath.h>
47#include <casa/Arrays/MaskArrLogi.h>
[330]48#include <casa/Arrays/Matrix.h>
[234]49#include <casa/BasicMath/Math.h>
[262]50#include <casa/Exceptions.h>
51#include <casa/Quanta/Quantum.h>
52#include <casa/Quanta/Unit.h>
53#include <casa/Quanta/MVEpoch.h>
[272]54#include <casa/Quanta/MVTime.h>
[177]55#include <casa/Utilities/Assert.h>
[2]56
[262]57#include <coordinates/Coordinates/SpectralCoordinate.h>
58#include <coordinates/Coordinates/CoordinateSystem.h>
59#include <coordinates/Coordinates/CoordinateUtil.h>
[309]60#include <coordinates/Coordinates/FrequencyAligner.h>
[262]61
62#include <lattices/Lattices/LatticeUtilities.h>
63#include <lattices/Lattices/RebinLattice.h>
64
65#include <measures/Measures/MEpoch.h>
66#include <measures/Measures/MDirection.h>
67#include <measures/Measures/MPosition.h>
68
[177]69#include <scimath/Mathematics/VectorKernel.h>
70#include <scimath/Mathematics/Convolver.h>
[227]71#include <scimath/Mathematics/InterpolateArray1D.h>
[234]72#include <scimath/Functionals/Polynomial.h>
[177]73
[81]74#include <tables/Tables/Table.h>
75#include <tables/Tables/ScalarColumn.h>
76#include <tables/Tables/ArrayColumn.h>
[227]77#include <tables/Tables/ReadAsciiTable.h>
[2]78
[38]79#include "MathUtils.h"
[232]80#include "SDDefs.h"
[354]81#include "SDAttr.h"
[2]82#include "SDContainer.h"
83#include "SDMemTable.h"
84
85#include "SDMath.h"
[457]86#include "SDPol.h"
[2]87
[125]88using namespace casa;
[83]89using namespace asap;
[2]90
[170]91
92SDMath::SDMath()
[716]93{
94}
[170]95
[185]96SDMath::SDMath(const SDMath& other)
[170]97{
98
99// No state
100
101}
102
103SDMath& SDMath::operator=(const SDMath& other)
104{
105 if (this != &other) {
106// No state
107 }
108 return *this;
109}
110
[183]111SDMath::~SDMath()
112{;}
[170]113
[183]114
[488]115SDMemTable* SDMath::frequencyAlignment(const SDMemTable& in,
116 const String& refTime,
117 const String& method,
[716]118 Bool perFreqID)
[262]119{
[701]120 // Get frame info from Table
[262]121 std::vector<std::string> info = in.getCoordInfo();
[294]122
[701]123 // Parse frequency system
[309]124 String systemStr(info[1]);
125 String baseSystemStr(info[3]);
126 if (baseSystemStr==systemStr) {
[701]127 throw(AipsError("You have not set a frequency frame different from the initial - use function set_freqframe"));
[262]128 }
[701]129
[309]130 MFrequency::Types freqSystem;
131 MFrequency::getType(freqSystem, systemStr);
[294]132
[488]133 return frequencyAlign(in, freqSystem, refTime, method, perFreqID);
[267]134}
[262]135
136
137
[701]138CountedPtr<SDMemTable>
139SDMath::average(const std::vector<CountedPtr<SDMemTable> >& in,
140 const Vector<Bool>& mask, Bool scanAv,
[716]141 const String& weightStr, Bool alignFreq)
[144]142// Weighted averaging of spectra from one or more Tables.
[130]143{
[701]144 // Convert weight type
[163]145 WeightType wtType = NONE;
[518]146 convertWeightString(wtType, weightStr, True);
[163]147
[701]148 // Create output Table by cloning from the first table
[144]149 SDMemTable* pTabOut = new SDMemTable(*in[0],True);
[653]150 if (in.size() > 1) {
151 for (uInt i=1; i < in.size(); ++i) {
[488]152 pTabOut->appendToHistoryTable(in[i]->getHistoryTable());
153 }
154 }
[701]155 // Setup
[144]156 IPosition shp = in[0]->rowAsMaskedArray(0).shape(); // Must not change
157 Array<Float> arr(shp);
158 Array<Bool> barr(shp);
[221]159 const Bool useMask = (mask.nelements() == shp(asap::ChanAxis));
[130]160
[701]161 // Columns from Tables
[144]162 ROArrayColumn<Float> tSysCol;
163 ROScalarColumn<Double> mjdCol;
164 ROScalarColumn<String> srcNameCol;
165 ROScalarColumn<Double> intCol;
166 ROArrayColumn<uInt> fqIDCol;
[410]167 ROScalarColumn<Int> scanIDCol;
[130]168
[701]169 // Create accumulation MaskedArray. We accumulate for each
170 // channel,if,pol,beam Note that the mask of the accumulation array
171 // will ALWAYS remain ALL True. The MA is only used so that when
172 // data which is masked Bad is added to it, that data does not
173 // contribute.
[144]174
175 Array<Float> zero(shp);
176 zero=0.0;
177 Array<Bool> good(shp);
178 good = True;
179 MaskedArray<Float> sum(zero,good);
180
[701]181 // Counter arrays
[144]182 Array<Float> nPts(shp); // Number of points
183 nPts = 0.0;
184 Array<Float> nInc(shp); // Increment
185 nInc = 1.0;
186
[701]187 // Create accumulation Array for variance. We accumulate for each
188 // if,pol,beam, but average over channel. So we need a shape with
189 // one less axis dropping channels.
[144]190 const uInt nAxesSub = shp.nelements() - 1;
191 IPosition shp2(nAxesSub);
192 for (uInt i=0,j=0; i<(nAxesSub+1); i++) {
[221]193 if (i!=asap::ChanAxis) {
[144]194 shp2(j) = shp(i);
195 j++;
196 }
[2]197 }
[144]198 Array<Float> sumSq(shp2);
199 sumSq = 0.0;
200 IPosition pos2(nAxesSub,0); // For indexing
[130]201
[701]202 // Time-related accumulators
[144]203 Double time;
204 Double timeSum = 0.0;
205 Double intSum = 0.0;
206 Double interval = 0.0;
[130]207
[701]208 // To get the right shape for the Tsys accumulator we need to access
209 // a column from the first table. The shape of this array must not
210 // change. Note however that since the TSysSqSum array is used in a
211 // normalization process, and that I ignore the channel axis
212 // replication of values for now, it loses a dimension
[130]213
[518]214 Array<Float> tSysSum, tSysSqSum;
[144]215 {
216 const Table& tabIn = in[0]->table();
217 tSysCol.attach(tabIn,"TSYS");
218 tSysSum.resize(tSysCol.shape(0));
[518]219 tSysSqSum.resize(shp2);
[144]220 }
[701]221 tSysSum = 0.0;
[518]222 tSysSqSum = 0.0;
[144]223 Array<Float> tSys;
224
[701]225 // Scan and row tracking
[144]226 Int oldScanID = 0;
227 Int outScanID = 0;
228 Int scanID = 0;
229 Int rowStart = 0;
230 Int nAccum = 0;
231 Int tableStart = 0;
232
[701]233 // Source and FreqID
[144]234 String sourceName, oldSourceName, sourceNameStart;
235 Vector<uInt> freqID, freqIDStart, oldFreqID;
236
[701]237 // Loop over tables
[144]238 Float fac = 1.0;
[653]239 const uInt nTables = in.size();
[144]240 for (uInt iTab=0; iTab<nTables; iTab++) {
241
[701]242 // Should check that the frequency tables don't change if doing
243 // FreqAlignment
244
245 // Attach columns to Table
[144]246 const Table& tabIn = in[iTab]->table();
247 tSysCol.attach(tabIn, "TSYS");
248 mjdCol.attach(tabIn, "TIME");
249 srcNameCol.attach(tabIn, "SRCNAME");
250 intCol.attach(tabIn, "INTERVAL");
251 fqIDCol.attach(tabIn, "FREQID");
[410]252 scanIDCol.attach(tabIn, "SCANID");
[144]253
[701]254 // Loop over rows in Table
[144]255 const uInt nRows = in[iTab]->nRow();
256 for (uInt iRow=0; iRow<nRows; iRow++) {
[701]257 // Check conformance
[144]258 IPosition shp2 = in[iTab]->rowAsMaskedArray(iRow).shape();
259 if (!shp.isEqual(shp2)) {
[701]260 delete pTabOut;
[144]261 throw (AipsError("Shapes for all rows must be the same"));
262 }
263
[701]264 // If we are not doing scan averages, make checks for source
265 // and frequency setup and warn if averaging across them
[410]266 scanIDCol.getScalar(iRow, scanID);
[144]267
[701]268 // Get quantities from columns
[144]269 srcNameCol.getScalar(iRow, sourceName);
270 mjdCol.get(iRow, time);
271 tSysCol.get(iRow, tSys);
272 intCol.get(iRow, interval);
273 fqIDCol.get(iRow, freqID);
274
[701]275 // Initialize first source and freqID
[144]276 if (iRow==0 && iTab==0) {
277 sourceNameStart = sourceName;
278 freqIDStart = freqID;
279 }
280
[701]281 // If we are doing scan averages, see if we are at the end of
282 // an accumulation period (scan). We must check soutce names
283 // too, since we might have two tables with one scan each but
284 // different source names; we shouldn't average different
285 // sources together
[144]286 if (scanAv && ( (scanID != oldScanID) ||
287 (iRow==0 && iTab>0 && sourceName!=oldSourceName))) {
288
[701]289 // Normalize data in 'sum' accumulation array according to
290 // weighting scheme
291 normalize(sum, sumSq, tSysSqSum, nPts, intSum, wtType,
292 asap::ChanAxis, nAxesSub);
[144]293
[701]294 // Get ScanContainer for the first row of this averaged Scan
[410]295 SDContainer scOut = in[iTab]->getSDContainer(rowStart);
296
[701]297 // Fill scan container. The source and freqID come from the
298 // first row of the first table that went into this average
299 // ( should be the same for all rows in the scan average)
[144]300
301 Float nR(nAccum);
[410]302 fillSDC(scOut, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
[701]303 timeSum/nR, intSum, sourceNameStart, freqIDStart);
304
305 // Write container out to Table
[410]306 pTabOut->putSDContainer(scOut);
[701]307
308 // Reset accumulators
[144]309 sum = 0.0;
310 sumSq = 0.0;
311 nAccum = 0;
[701]312
[144]313 tSysSum =0.0;
[518]314 tSysSqSum =0.0;
[144]315 timeSum = 0.0;
316 intSum = 0.0;
[221]317 nPts = 0.0;
[144]318
[701]319 // Increment
[144]320 rowStart = iRow; // First row for next accumulation
321 tableStart = iTab; // First table for next accumulation
[701]322 sourceNameStart = sourceName; // First source name for next
323 // accumulation
[144]324 freqIDStart = freqID; // First FreqID for next accumulation
[701]325
[144]326 oldScanID = scanID;
[701]327 outScanID += 1; // Scan ID for next
328 // accumulation period
[227]329 }
[144]330
[701]331 // Accumulate
332 accumulate(timeSum, intSum, nAccum, sum, sumSq, nPts,
333 tSysSum, tSysSqSum, tSys,
334 nInc, mask, time, interval, in, iTab, iRow, asap::ChanAxis,
[518]335 nAxesSub, useMask, wtType);
[701]336 oldSourceName = sourceName;
337 oldFreqID = freqID;
[184]338 }
[144]339 }
340
[701]341 // OK at this point we have accumulation data which is either
342 // - accumulated from all tables into one row
343 // or
344 // - accumulated from the last scan average
345 //
346 // Normalize data in 'sum' accumulation array according to weighting
347 // scheme
[410]348
[701]349 normalize(sum, sumSq, tSysSqSum, nPts, intSum, wtType,
350 asap::ChanAxis, nAxesSub);
[144]351
[701]352 // Create and fill container. The container we clone will be from
353 // the last Table and the first row that went into the current
354 // accumulation. It probably doesn't matter that much really...
[144]355 Float nR(nAccum);
[410]356 SDContainer scOut = in[tableStart]->getSDContainer(rowStart);
357 fillSDC(scOut, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
[701]358 timeSum/nR, intSum, sourceNameStart, freqIDStart);
[410]359 pTabOut->putSDContainer(scOut);
[304]360 pTabOut->resetCursor();
[701]361
[144]362 return CountedPtr<SDMemTable>(pTabOut);
[2]363}
[9]364
[144]365
366
[701]367CountedPtr<SDMemTable>
368SDMath::binaryOperate(const CountedPtr<SDMemTable>& left,
369 const CountedPtr<SDMemTable>& right,
[716]370 const String& op, Bool preserve, Bool doTSys)
[185]371{
[85]372
[701]373 // Check operator
[234]374 String op2(op);
375 op2.upcase();
376 uInt what = 0;
377 if (op2=="ADD") {
378 what = 0;
379 } else if (op2=="SUB") {
380 what = 1;
381 } else if (op2=="MUL") {
382 what = 2;
383 } else if (op2=="DIV") {
384 what = 3;
[248]385 } else if (op2=="QUOTIENT") {
386 what = 4;
[294]387 doTSys = True;
[234]388 } else {
[248]389 throw( AipsError("Unrecognized operation"));
[234]390 }
391
[701]392 // Check rows
[248]393 const uInt nRowLeft = left->nRow();
394 const uInt nRowRight = right->nRow();
[701]395 Bool ok = (nRowRight==1 && nRowLeft>0) ||
396 (nRowRight>=1 && nRowLeft==nRowRight);
[248]397 if (!ok) {
398 throw (AipsError("The right Scan Table can have one row or the same number of rows as the left Scan Table"));
[234]399 }
400
[701]401 // Input Tables
[234]402 const Table& tLeft = left->table();
403 const Table& tRight = right->table();
[248]404
[701]405 // TSys columns
[294]406 ROArrayColumn<Float> tSysLeftCol, tSysRightCol;
407 if (doTSys) {
[701]408 tSysLeftCol.attach(tLeft, "TSYS");
409 tSysRightCol.attach(tRight, "TSYS");
[294]410 }
[234]411
[701]412 // First row for right
[248]413 Array<Float> tSysLeftArr, tSysRightArr;
[294]414 if (doTSys) tSysRightCol.get(0, tSysRightArr);
[701]415 MaskedArray<Float>* pMRight =
416 new MaskedArray<Float>(right->rowAsMaskedArray(0));
417
[248]418 IPosition shpRight = pMRight->shape();
419
[701]420 // Output Table cloned from left
[234]421 SDMemTable* pTabOut = new SDMemTable(*left, True);
[488]422 pTabOut->appendToHistoryTable(right->getHistoryTable());
[234]423
[701]424 // Loop over rows
[248]425 for (uInt i=0; i<nRowLeft; i++) {
[701]426
427 // Get data
428 MaskedArray<Float> mLeft(left->rowAsMaskedArray(i));
429 IPosition shpLeft = mLeft.shape();
430 if (doTSys) tSysLeftCol.get(i, tSysLeftArr);
431
432 if (nRowRight>1) {
433 delete pMRight;
434 pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(i));
435 shpRight = pMRight->shape();
436 if (doTSys) tSysRightCol.get(i, tSysRightArr);
437 }
[234]438
[701]439 if (!shpRight.isEqual(shpLeft)) {
440 delete pTabOut;
441 delete pMRight;
442 throw(AipsError("left and right scan tables are not conformant"));
443 }
444 if (doTSys) {
445 if (!tSysRightArr.shape().isEqual(tSysRightArr.shape())) {
446 delete pTabOut;
447 delete pMRight;
448 throw(AipsError("left and right Tsys data are not conformant"));
449 }
450 if (!shpRight.isEqual(tSysRightArr.shape())) {
451 delete pTabOut;
452 delete pMRight;
453 throw(AipsError("left and right scan tables are not conformant"));
454 }
455 }
[248]456
[701]457 // Make container
[234]458 SDContainer sc = left->getSDContainer(i);
459
[701]460 // Operate on data and TSys
[234]461 if (what==0) {
[248]462 MaskedArray<Float> tmp = mLeft + *pMRight;
[234]463 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[294]464 if (doTSys) sc.putTsys(tSysLeftArr+tSysRightArr);
[234]465 } else if (what==1) {
[248]466 MaskedArray<Float> tmp = mLeft - *pMRight;
[234]467 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[294]468 if (doTSys) sc.putTsys(tSysLeftArr-tSysRightArr);
[234]469 } else if (what==2) {
[248]470 MaskedArray<Float> tmp = mLeft * *pMRight;
[234]471 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[294]472 if (doTSys) sc.putTsys(tSysLeftArr*tSysRightArr);
[234]473 } else if (what==3) {
[248]474 MaskedArray<Float> tmp = mLeft / *pMRight;
[234]475 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[294]476 if (doTSys) sc.putTsys(tSysLeftArr/tSysRightArr);
[248]477 } else if (what==4) {
[488]478 if (preserve) {
479 MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) -
480 tSysRightArr;
481 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
482 } else {
483 MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) -
484 tSysLeftArr;
485 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
486 }
487 sc.putTsys(tSysRightArr);
[234]488 }
489
[701]490 // Put new row in output Table
[171]491 pTabOut->putSDContainer(sc);
[130]492 }
[248]493 if (pMRight) delete pMRight;
[304]494 pTabOut->resetCursor();
[701]495
[171]496 return CountedPtr<SDMemTable>(pTabOut);
[9]497}
[48]498
[146]499
[185]500std::vector<float> SDMath::statistic(const CountedPtr<SDMemTable>& in,
[234]501 const Vector<Bool>& mask,
502 const String& which, Int row) const
[130]503//
504// Perhaps iteration over pol/beam/if should be in here
505// and inside the nrow iteration ?
506//
507{
508 const uInt nRow = in->nRow();
509
510// Specify cursor location
511
[152]512 IPosition start, end;
[434]513 Bool doAll = False;
[716]514 setCursorSlice(start, end, doAll, *in);
[130]515
516// Loop over rows
517
[234]518 const uInt nEl = mask.nelements();
519 uInt iStart = 0;
520 uInt iEnd = in->nRow()-1;
521//
522 if (row>=0) {
523 iStart = row;
524 iEnd = row;
525 }
526//
527 std::vector<float> result(iEnd-iStart+1);
528 for (uInt ii=iStart; ii <= iEnd; ++ii) {
[130]529
530// Get row and deconstruct
531
[434]532 MaskedArray<Float> dataIn = (in->rowAsMaskedArray(ii))(start,end);
533 Array<Float> v = dataIn.getArray().nonDegenerate();
534 Array<Bool> m = dataIn.getMask().nonDegenerate();
[130]535
536// Access desired piece of data
537
[434]538// Array<Float> v((arr(start,end)).nonDegenerate());
539// Array<Bool> m((barr(start,end)).nonDegenerate());
[130]540
541// Apply OTF mask
542
543 MaskedArray<Float> tmp;
544 if (m.nelements()==nEl) {
[234]545 tmp.setData(v,m&&mask);
[130]546 } else {
547 tmp.setData(v,m);
548 }
549
550// Get statistic
551
[234]552 result[ii-iStart] = mathutil::statistics(which, tmp);
[130]553 }
554//
555 return result;
556}
557
[146]558
[716]559SDMemTable* SDMath::bin(const SDMemTable& in, Int width)
[144]560{
[169]561 SDHeader sh = in.getSDHeader();
562 SDMemTable* pTabOut = new SDMemTable(in, True);
[163]563
[169]564// Bin up SpectralCoordinates
[163]565
[169]566 IPosition factors(1);
567 factors(0) = width;
568 for (uInt j=0; j<in.nCoordinates(); ++j) {
569 CoordinateSystem cSys;
[288]570 cSys.addCoordinate(in.getSpectralCoordinate(j));
[169]571 CoordinateSystem cSysBin =
[185]572 CoordinateUtil::makeBinnedCoordinateSystem(factors, cSys, False);
[169]573//
574 SpectralCoordinate sCBin = cSysBin.spectralCoordinate(0);
575 pTabOut->setCoordinate(sCBin, j);
576 }
[163]577
[169]578// Use RebinLattice to find shape
[130]579
[169]580 IPosition shapeIn(1,sh.nchan);
[185]581 IPosition shapeOut = RebinLattice<Float>::rebinShape(shapeIn, factors);
[169]582 sh.nchan = shapeOut(0);
583 pTabOut->putSDHeader(sh);
[144]584
[169]585// Loop over rows and bin along channel axis
586
587 for (uInt i=0; i < in.nRow(); ++i) {
588 SDContainer sc = in.getSDContainer(i);
[144]589//
[169]590 Array<Float> tSys(sc.getTsys()); // Get it out before sc changes shape
[144]591
[169]592// Bin up spectrum
[144]593
[169]594 MaskedArray<Float> marr(in.rowAsMaskedArray(i));
595 MaskedArray<Float> marrout;
[221]596 LatticeUtilities::bin(marrout, marr, asap::ChanAxis, width);
[144]597
[169]598// Put back the binned data and flags
[144]599
[169]600 IPosition ip2 = marrout.shape();
601 sc.resize(ip2);
[146]602//
[185]603 putDataInSDC(sc, marrout.getArray(), marrout.getMask());
[146]604
[169]605// Bin up Tsys.
[146]606
[169]607 Array<Bool> allGood(tSys.shape(),True);
608 MaskedArray<Float> tSysIn(tSys, allGood, True);
[146]609//
[169]610 MaskedArray<Float> tSysOut;
[221]611 LatticeUtilities::bin(tSysOut, tSysIn, asap::ChanAxis, width);
[169]612 sc.putTsys(tSysOut.getArray());
[146]613//
[169]614 pTabOut->putSDContainer(sc);
615 }
616 return pTabOut;
[146]617}
618
[488]619SDMemTable* SDMath::resample(const SDMemTable& in, const String& methodStr,
[716]620 Float width)
[299]621//
622// Should add the possibility of width being specified in km/s. This means
623// that for each freqID (SpectralCoordinate) we will need to convert to an
624// average channel width (say at the reference pixel). Then we would need
625// to be careful to make sure each spectrum (of different freqID)
626// is the same length.
627//
628{
629 Bool doVel = False;
[309]630 if (doVel) {
631 for (uInt j=0; j<in.nCoordinates(); ++j) {
632 SpectralCoordinate sC = in.getSpectralCoordinate(j);
633 }
634 }
[299]635
636// Interpolation method
637
[317]638 InterpolateArray1D<Double,Float>::InterpolationMethod interp;
639 convertInterpString(interp, methodStr);
640 Int interpMethod(interp);
[299]641
642// Make output table
643
644 SDMemTable* pTabOut = new SDMemTable(in, True);
645
646// Resample SpectralCoordinates (one per freqID)
647
648 const uInt nCoord = in.nCoordinates();
649 Vector<Float> offset(1,0.0);
650 Vector<Float> factors(1,1.0/width);
651 Vector<Int> newShape;
652 for (uInt j=0; j<in.nCoordinates(); ++j) {
653 CoordinateSystem cSys;
654 cSys.addCoordinate(in.getSpectralCoordinate(j));
655 CoordinateSystem cSys2 = cSys.subImage(offset, factors, newShape);
656 SpectralCoordinate sC = cSys2.spectralCoordinate(0);
657//
658 pTabOut->setCoordinate(sC, j);
659 }
660
661// Get header
662
663 SDHeader sh = in.getSDHeader();
664
665// Generate resampling vectors
666
667 const uInt nChanIn = sh.nchan;
668 Vector<Float> xIn(nChanIn);
669 indgen(xIn);
670//
671 Int fac = Int(nChanIn/width);
672 Vector<Float> xOut(fac+10); // 10 to be safe - resize later
673 uInt i = 0;
674 Float x = 0.0;
675 Bool more = True;
676 while (more) {
677 xOut(i) = x;
678//
679 i++;
680 x += width;
681 if (x>nChanIn-1) more = False;
682 }
683 const uInt nChanOut = i;
684 xOut.resize(nChanOut,True);
685//
686 IPosition shapeIn(in.rowAsMaskedArray(0).shape());
687 sh.nchan = nChanOut;
688 pTabOut->putSDHeader(sh);
689
690// Loop over rows and resample along channel axis
691
692 Array<Float> valuesOut;
693 Array<Bool> maskOut;
694 Array<Float> tSysOut;
695 Array<Bool> tSysMaskIn(shapeIn,True);
696 Array<Bool> tSysMaskOut;
697 for (uInt i=0; i < in.nRow(); ++i) {
698
699// Get container
700
701 SDContainer sc = in.getSDContainer(i);
702
703// Get data and Tsys
704
705 const Array<Float>& tSysIn = sc.getTsys();
706 const MaskedArray<Float>& dataIn(in.rowAsMaskedArray(i));
707 Array<Float> valuesIn = dataIn.getArray();
708 Array<Bool> maskIn = dataIn.getMask();
709
710// Interpolate data
711
712 InterpolateArray1D<Float,Float>::interpolate(valuesOut, maskOut, xOut,
713 xIn, valuesIn, maskIn,
714 interpMethod, True, True);
715 sc.resize(valuesOut.shape());
716 putDataInSDC(sc, valuesOut, maskOut);
717
718// Interpolate TSys
719
720 InterpolateArray1D<Float,Float>::interpolate(tSysOut, tSysMaskOut, xOut,
721 xIn, tSysIn, tSysMaskIn,
722 interpMethod, True, True);
723 sc.putTsys(tSysOut);
724
725// Put container in output
726
727 pTabOut->putSDContainer(sc);
728 }
729//
730 return pTabOut;
731}
732
[248]733SDMemTable* SDMath::unaryOperate(const SDMemTable& in, Float val, Bool doAll,
[716]734 uInt what, Bool doTSys)
[152]735//
736// what = 0 Multiply
737// 1 Add
[146]738{
[152]739 SDMemTable* pOut = new SDMemTable(in,False);
740 const Table& tOut = pOut->table();
[294]741 ArrayColumn<Float> specCol(tOut,"SPECTRA");
742 ArrayColumn<Float> tSysCol(tOut,"TSYS");
743 Array<Float> tSysArr;
[434]744
745// Get data slice bounds
746
747 IPosition start, end;
748 setCursorSlice (start, end, doAll, in);
[146]749//
[434]750 for (uInt i=0; i<tOut.nrow(); i++) {
[294]751
752// Modify data
753
[434]754 MaskedArray<Float> dataIn(pOut->rowAsMaskedArray(i));
755 MaskedArray<Float> dataIn2 = dataIn(start,end); // Reference
756 if (what==0) {
757 dataIn2 *= val;
758 } else if (what==1) {
759 dataIn2 += val;
760 }
761 specCol.put(i, dataIn.getArray());
[294]762
763// Modify Tsys
764
[434]765 if (doTSys) {
766 tSysCol.get(i, tSysArr);
767 Array<Float> tSysArr2 = tSysArr(start,end); // Reference
[152]768 if (what==0) {
[434]769 tSysArr2 *= val;
[152]770 } else if (what==1) {
[434]771 tSysArr2 += val;
[152]772 }
[434]773 tSysCol.put(i, tSysArr);
[152]774 }
775 }
776//
[146]777 return pOut;
778}
779
[315]780SDMemTable* SDMath::averagePol(const SDMemTable& in, const Vector<Bool>& mask,
[716]781 const String& weightStr)
[152]782//
[165]783// Average all polarizations together, weighted by variance
784//
785{
[315]786 WeightType wtType = NONE;
[532]787 convertWeightString(wtType, weightStr, True);
[165]788
789// Create output Table and reshape number of polarizations
790
791 Bool clear=True;
792 SDMemTable* pTabOut = new SDMemTable(in, clear);
793 SDHeader header = pTabOut->getSDHeader();
794 header.npol = 1;
795 pTabOut->putSDHeader(header);
[532]796//
797 const Table& tabIn = in.table();
[165]798
799// Shape of input and output data
800
[448]801 const IPosition& shapeIn = in.rowAsMaskedArray(0).shape();
[165]802 IPosition shapeOut(shapeIn);
[262]803 shapeOut(asap::PolAxis) = 1; // Average all polarizations
[315]804 if (shapeIn(asap::PolAxis)==1) {
[701]805 delete pTabOut;
806 throw(AipsError("The input has only one polarisation"));
[315]807 }
[165]808//
[532]809 const uInt nRows = in.nRow();
[262]810 const uInt nChan = shapeIn(asap::ChanAxis);
[532]811 AlwaysAssert(asap::nAxes==4,AipsError);
[165]812 const IPosition vecShapeOut(4,1,1,1,nChan); // A multi-dim form of a Vector shape
813 IPosition start(4), end(4);
814
815// Output arrays
816
817 Array<Float> outData(shapeOut, 0.0);
818 Array<Bool> outMask(shapeOut, True);
[262]819 const IPosition axes(2, asap::PolAxis, asap::ChanAxis); // pol-channel plane
[532]820
821// Attach Tsys column if needed
822
823 ROArrayColumn<Float> tSysCol;
824 Array<Float> tSys;
825 if (wtType==TSYS) {
826 tSysCol.attach(tabIn,"TSYS");
827 }
[165]828//
[262]829 const Bool useMask = (mask.nelements() == shapeIn(asap::ChanAxis));
[165]830
831// Loop over rows
832
833 for (uInt iRow=0; iRow<nRows; iRow++) {
834
835// Get data for this row
836
837 MaskedArray<Float> marr(in.rowAsMaskedArray(iRow));
838 Array<Float>& arr = marr.getRWArray();
839 const Array<Bool>& barr = marr.getMask();
[532]840
841// Get Tsys
[165]842
[532]843 if (wtType==TSYS) {
844 tSysCol.get(iRow,tSys);
845 }
846
[165]847// Make iterators to iterate by pol-channel planes
[532]848// The tSys array is empty unless wtType=TSYS so only
849// access the iterator is that is the case
[165]850
851 ReadOnlyArrayIterator<Float> itDataPlane(arr, axes);
852 ReadOnlyArrayIterator<Bool> itMaskPlane(barr, axes);
[532]853 ReadOnlyArrayIterator<Float>* pItTsysPlane = 0;
[701]854 if (wtType==TSYS)
855 pItTsysPlane = new ReadOnlyArrayIterator<Float>(tSys, axes);
[165]856
857// Accumulations
858
859 Float fac = 1.0;
860 Vector<Float> vecSum(nChan,0.0);
861
862// Iterate through data by pol-channel planes
863
864 while (!itDataPlane.pastEnd()) {
865
866// Iterate through plane by polarization and accumulate Vectors
867
868 Vector<Float> t1(nChan); t1 = 0.0;
869 Vector<Bool> t2(nChan); t2 = True;
[532]870 Float tSys = 0.0;
[165]871 MaskedArray<Float> vecSum(t1,t2);
[315]872 Float norm = 0.0;
[165]873 {
874 ReadOnlyVectorIterator<Float> itDataVec(itDataPlane.array(), 1);
875 ReadOnlyVectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
[532]876//
877 ReadOnlyVectorIterator<Float>* pItTsysVec = 0;
878 if (wtType==TSYS) {
[701]879 pItTsysVec =
880 new ReadOnlyVectorIterator<Float>(pItTsysPlane->array(), 1);
[532]881 }
882//
[165]883 while (!itDataVec.pastEnd()) {
884
[315]885// Create MA of data & mask (optionally including OTF mask) and get variance for this spectrum
[165]886
887 if (useMask) {
[701]888 const MaskedArray<Float> spec(itDataVec.vector(),
889 mask&&itMaskVec.vector());
[532]890 if (wtType==VAR) {
891 fac = 1.0 / variance(spec);
892 } else if (wtType==TSYS) {
893 tSys = pItTsysVec->vector()[0]; // Drop pseudo channel dependency
894 fac = 1.0 / tSys / tSys;
895 }
[165]896 } else {
[701]897 const MaskedArray<Float> spec(itDataVec.vector(),
898 itMaskVec.vector());
[532]899 if (wtType==VAR) {
900 fac = 1.0 / variance(spec);
901 } else if (wtType==TSYS) {
902 tSys = pItTsysVec->vector()[0]; // Drop pseudo channel dependency
903 fac = 1.0 / tSys / tSys;
904 }
[165]905 }
906
907// Normalize spectrum (without OTF mask) and accumulate
908
[701]909 const MaskedArray<Float> spec(fac*itDataVec.vector(),
910 itMaskVec.vector());
[165]911 vecSum += spec;
[315]912 norm += fac;
[165]913
914// Next
915
916 itDataVec.next();
917 itMaskVec.next();
[532]918 if (wtType==TSYS) pItTsysVec->next();
[165]919 }
[532]920
921// Clean up
922
923 if (pItTsysVec) {
924 delete pItTsysVec;
925 pItTsysVec = 0;
926 }
[165]927 }
928
929// Normalize summed spectrum
930
[315]931 vecSum /= norm;
[165]932
933// FInd position in input data array. We are iterating by pol-channel
934// plane so all that will change is beam and IF and that's what we want.
935
936 IPosition pos = itDataPlane.pos();
937
938// Write out data. This is a bit messy. We have to reform the Vector
939// accumulator into an Array of shape (1,1,1,nChan)
940
941 start = pos;
942 end = pos;
[262]943 end(asap::ChanAxis) = nChan-1;
[165]944 outData(start,end) = vecSum.getArray().reform(vecShapeOut);
945 outMask(start,end) = vecSum.getMask().reform(vecShapeOut);
946
947// Step to next beam/IF combination
948
949 itDataPlane.next();
950 itMaskPlane.next();
[532]951 if (wtType==TSYS) pItTsysPlane->next();
[165]952 }
953
954// Generate output container and write it to output table
955
956 SDContainer sc = in.getSDContainer();
957 sc.resize(shapeOut);
958//
[185]959 putDataInSDC(sc, outData, outMask);
[165]960 pTabOut->putSDContainer(sc);
[532]961//
962 if (wtType==TSYS) {
963 delete pItTsysPlane;
964 pItTsysPlane = 0;
965 }
[165]966 }
[304]967
968// Set polarization cursor to 0
969
970 pTabOut->setPol(0);
[165]971//
972 return pTabOut;
973}
[167]974
[169]975
[185]976SDMemTable* SDMath::smooth(const SDMemTable& in,
977 const casa::String& kernelType,
[716]978 casa::Float width, Bool doAll)
[299]979//
980// Should smooth TSys as well
981//
[177]982{
[169]983
[701]984 // Number of channels
[434]985 const uInt nChan = in.nChan();
[177]986
[701]987 // Generate Kernel
[185]988 VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernelType);
[177]989 Vector<Float> kernel = VectorKernel::make(type, width, nChan, True, False);
990
[701]991 // Generate Convolver
[177]992 IPosition shape(1,nChan);
993 Convolver<Float> conv(kernel, shape);
994
[701]995 // New Table
[177]996 SDMemTable* pTabOut = new SDMemTable(in,True);
997
[701]998 // Output Vectors
[434]999 Vector<Float> valuesOut(nChan);
1000 Vector<Bool> maskOut(nChan);
[177]1001
[701]1002 // Get data slice bounds
[434]1003 IPosition start, end;
1004 setCursorSlice (start, end, doAll, in);
1005
[701]1006 // Loop over rows in Table
[434]1007 for (uInt ri=0; ri < in.nRow(); ++ri) {
[177]1008
[701]1009 // Get slice of data
[434]1010 MaskedArray<Float> dataIn = in.rowAsMaskedArray(ri);
[177]1011
[701]1012 // Deconstruct and get slices which reference these arrays
[434]1013 Array<Float> valuesIn = dataIn.getArray();
1014 Array<Bool> maskIn = dataIn.getMask();
[701]1015
[434]1016 Array<Float> valuesIn2 = valuesIn(start,end); // ref to valuesIn
1017 Array<Bool> maskIn2 = maskIn(start,end);
[177]1018
[701]1019 // Iterate through by spectra
[434]1020 VectorIterator<Float> itValues(valuesIn2, asap::ChanAxis);
1021 VectorIterator<Bool> itMask(maskIn2, asap::ChanAxis);
1022 while (!itValues.pastEnd()) {
[701]1023
1024 // Smooth
1025 if (kernelType==VectorKernel::HANNING) {
1026 mathutil::hanning(valuesOut, maskOut, itValues.vector(),
1027 itMask.vector());
1028 itMask.vector() = maskOut;
1029 } else {
1030 mathutil::replaceMaskByZero(itValues.vector(), itMask.vector());
1031 conv.linearConv(valuesOut, itValues.vector());
1032 }
[177]1033
[701]1034 itValues.vector() = valuesOut;
1035 itValues.next();
1036 itMask.next();
[434]1037 }
[701]1038
1039 // Create and put back
[434]1040 SDContainer sc = in.getSDContainer(ri);
1041 putDataInSDC(sc, valuesIn, maskIn);
[701]1042
[434]1043 pTabOut->putSDContainer(sc);
1044 }
[701]1045
[177]1046 return pTabOut;
1047}
1048
1049
[262]1050
[488]1051SDMemTable* SDMath::convertFlux(const SDMemTable& in, Float D, Float etaAp,
[716]1052 Float JyPerK, Bool doAll)
[221]1053//
[478]1054// etaAp = aperture efficiency (-1 means find)
1055// D = geometric diameter (m) (-1 means find)
[354]1056// JyPerK
[221]1057//
1058{
1059 SDHeader sh = in.getSDHeader();
1060 SDMemTable* pTabOut = new SDMemTable(in, True);
[177]1061
[701]1062 // Find out how to convert values into Jy and K (e.g. units might be
1063 // mJy or mK) Also automatically find out what we are converting to
1064 // according to the flux unit
[221]1065 Unit fluxUnit(sh.fluxunit);
1066 Unit K(String("K"));
1067 Unit JY(String("Jy"));
[701]1068
[221]1069 Bool toKelvin = True;
[354]1070 Double cFac = 1.0;
[716]1071
[221]1072 if (fluxUnit==JY) {
[716]1073 pushLog("Converting to K");
[701]1074 Quantum<Double> t(1.0,fluxUnit);
1075 Quantum<Double> t2 = t.get(JY);
1076 cFac = (t2 / t).getValue(); // value to Jy
1077
1078 toKelvin = True;
1079 sh.fluxunit = "K";
[221]1080 } else if (fluxUnit==K) {
[716]1081 pushLog("Converting to Jy");
[701]1082 Quantum<Double> t(1.0,fluxUnit);
1083 Quantum<Double> t2 = t.get(K);
1084 cFac = (t2 / t).getValue(); // value to K
1085
1086 toKelvin = False;
1087 sh.fluxunit = "Jy";
[221]1088 } else {
[701]1089 throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
[221]1090 }
[716]1091
[221]1092 pTabOut->putSDHeader(sh);
[701]1093
1094 // Make sure input values are converted to either Jy or K first...
[354]1095 Float factor = cFac;
[221]1096
[701]1097 // Select method
[354]1098 if (JyPerK>0.0) {
[701]1099 factor *= JyPerK;
1100 if (toKelvin) factor = 1.0 / JyPerK;
[716]1101 ostringstream oss;
1102 oss << "Jy/K = " << JyPerK;
1103 pushLog(String(oss));
[701]1104 Vector<Float> factors(in.nRow(), factor);
1105 scaleByVector(pTabOut, in, doAll, factors, False);
[354]1106 } else if (etaAp>0.0) {
[701]1107 Bool throwIt = True;
[716]1108 Instrument inst = SDAttr::convertInstrument(sh.antennaname, throwIt);
[701]1109 SDAttr sda;
1110 if (D < 0) D = sda.diameter(inst);
[716]1111 Float JyPerK = SDAttr::findJyPerK(etaAp,D);
1112 ostringstream oss;
1113 oss << "Jy/K = " << JyPerK;
1114 pushLog(String(oss));
[701]1115 factor *= JyPerK;
1116 if (toKelvin) {
1117 factor = 1.0 / factor;
1118 }
1119
1120 Vector<Float> factors(in.nRow(), factor);
1121 scaleByVector(pTabOut, in, doAll, factors, False);
[354]1122 } else {
[701]1123
1124 // OK now we must deal with automatic look up of values.
1125 // We must also deal with the fact that the factors need
1126 // to be computed per IF and may be different and may
1127 // change per integration.
1128
[716]1129 pushLog("Looking up conversion factors");
[701]1130 convertBrightnessUnits (pTabOut, in, toKelvin, cFac, doAll);
1131 }
[221]1132 return pTabOut;
1133}
1134
1135
[488]1136SDMemTable* SDMath::gainElevation(const SDMemTable& in,
1137 const Vector<Float>& coeffs,
1138 const String& fileName,
[716]1139 const String& methodStr, Bool doAll)
[227]1140{
[234]1141
[701]1142 // Get header and clone output table
[227]1143 SDHeader sh = in.getSDHeader();
1144 SDMemTable* pTabOut = new SDMemTable(in, True);
1145
[701]1146 // Get elevation data from SDMemTable and convert to degrees
[227]1147 const Table& tab = in.table();
1148 ROScalarColumn<Float> elev(tab, "ELEVATION");
[234]1149 Vector<Float> x = elev.getColumn();
[363]1150 x *= Float(180 / C::pi); // Degrees
[701]1151
[234]1152 const uInt nC = coeffs.nelements();
1153 if (fileName.length()>0 && nC>0) {
[701]1154 throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
[234]1155 }
[701]1156
1157 // Correct
[234]1158 if (nC>0 || fileName.length()==0) {
[701]1159 // Find instrument
[234]1160 Bool throwIt = True;
[478]1161 Instrument inst = SDAttr::convertInstrument (sh.antennaname, throwIt);
[234]1162
[701]1163 // Set polynomial
[234]1164 Polynomial<Float>* pPoly = 0;
1165 Vector<Float> coeff;
1166 String msg;
1167 if (nC>0) {
[701]1168 pPoly = new Polynomial<Float>(nC);
1169 coeff = coeffs;
1170 msg = String("user");
[234]1171 } else {
[701]1172 SDAttr sdAttr;
1173 coeff = sdAttr.gainElevationPoly(inst);
1174 pPoly = new Polynomial<Float>(3);
1175 msg = String("built in");
[234]1176 }
[701]1177
[234]1178 if (coeff.nelements()>0) {
[701]1179 pPoly->setCoefficients(coeff);
[234]1180 } else {
[701]1181 delete pPoly;
1182 throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
[234]1183 }
[716]1184 pushLog("Making polynomial correction with "+msg+" coefficients");
[234]1185 const uInt nRow = in.nRow();
1186 Vector<Float> factor(nRow);
1187 for (uInt i=0; i<nRow; i++) {
[701]1188 factor[i] = 1.0 / (*pPoly)(x[i]);
[234]1189 }
1190 delete pPoly;
[480]1191 scaleByVector (pTabOut, in, doAll, factor, True);
[701]1192
[234]1193 } else {
[701]1194
1195 // Indicate which columns to read from ascii file
1196 String col0("ELEVATION");
1197 String col1("FACTOR");
1198
1199 // Read and correct
1200
[716]1201 pushLog("Making correction from ascii Table");
[701]1202 scaleFromAsciiTable (pTabOut, in, fileName, col0, col1,
1203 methodStr, doAll, x, True);
1204 }
[234]1205
[701]1206 return pTabOut;
[230]1207}
1208
[227]1209
[716]1210SDMemTable* SDMath::opacity(const SDMemTable& in, Float tau, Bool doAll)
[234]1211{
[227]1212
[701]1213 // Get header and clone output table
[227]1214
[234]1215 SDHeader sh = in.getSDHeader();
1216 SDMemTable* pTabOut = new SDMemTable(in, True);
1217
1218// Get elevation data from SDMemTable and convert to degrees
1219
1220 const Table& tab = in.table();
1221 ROScalarColumn<Float> elev(tab, "ELEVATION");
1222 Vector<Float> zDist = elev.getColumn();
1223 zDist = Float(C::pi_2) - zDist;
1224
1225// Generate correction factor
1226
1227 const uInt nRow = in.nRow();
1228 Vector<Float> factor(nRow);
1229 Vector<Float> factor2(nRow);
1230 for (uInt i=0; i<nRow; i++) {
1231 factor[i] = exp(tau)/cos(zDist[i]);
1232 }
1233
1234// Correct
1235
[480]1236 scaleByVector (pTabOut, in, doAll, factor, True);
[701]1237
[234]1238 return pTabOut;
1239}
1240
1241
[488]1242void SDMath::rotateXYPhase(SDMemTable& in, Float value, Bool doAll)
[457]1243//
1244// phase in degrees
[518]1245// assumes linear correlations
[457]1246//
1247{
[701]1248 if (in.nPol() != 4) {
1249 throw(AipsError("You must have 4 polarizations to run this function"));
1250 }
1251
[518]1252 SDHeader sh = in.getSDHeader();
[716]1253 Instrument inst = SDAttr::convertInstrument(sh.antennaname, False);
[518]1254 SDAttr sdAtt;
1255 if (sdAtt.feedPolType(inst) != LINEAR) {
1256 throw(AipsError("Only linear polarizations are supported"));
1257 }
[457]1258//
1259 const Table& tabIn = in.table();
1260 ArrayColumn<Float> specCol(tabIn,"SPECTRA");
1261 IPosition start(asap::nAxes,0);
1262 IPosition end(asap::nAxes);
[234]1263
[457]1264// Set cursor slice. Assumes shape the same for all rows
1265
1266 setCursorSlice (start, end, doAll, in);
1267 IPosition start3(start);
1268 start3(asap::PolAxis) = 2; // Real(XY)
1269 IPosition end3(end);
1270 end3(asap::PolAxis) = 2;
1271//
1272 IPosition start4(start);
1273 start4(asap::PolAxis) = 3; // Imag (XY)
1274 IPosition end4(end);
1275 end4(asap::PolAxis) = 3;
1276//
1277 uInt nRow = in.nRow();
1278 Array<Float> data;
1279 for (uInt i=0; i<nRow;++i) {
1280 specCol.get(i,data);
1281 IPosition shape = data.shape();
1282
[701]1283 // Get polarization slice references
[457]1284 Array<Float> C3 = data(start3,end3);
1285 Array<Float> C4 = data(start4,end4);
1286
[701]1287 // Rotate
[502]1288 SDPolUtil::rotatePhase(C3, C4, value);
[457]1289
[701]1290 // Put
[457]1291 specCol.put(i,data);
1292 }
1293}
[234]1294
[502]1295
1296void SDMath::rotateLinPolPhase(SDMemTable& in, Float value, Bool doAll)
1297//
1298// phase in degrees
[518]1299// assumes linear correlations
[502]1300//
1301{
1302 if (in.nPol() != 4) {
1303 throw(AipsError("You must have 4 polarizations to run this function"));
1304 }
[518]1305//
1306 SDHeader sh = in.getSDHeader();
[716]1307 Instrument inst = SDAttr::convertInstrument(sh.antennaname, False);
[518]1308 SDAttr sdAtt;
1309 if (sdAtt.feedPolType(inst) != LINEAR) {
1310 throw(AipsError("Only linear polarizations are supported"));
1311 }
[502]1312//
1313 const Table& tabIn = in.table();
1314 ArrayColumn<Float> specCol(tabIn,"SPECTRA");
1315 ROArrayColumn<Float> stokesCol(tabIn,"STOKES");
1316 IPosition start(asap::nAxes,0);
1317 IPosition end(asap::nAxes);
1318
1319// Set cursor slice. Assumes shape the same for all rows
1320
1321 setCursorSlice (start, end, doAll, in);
1322//
1323 IPosition start1(start);
1324 start1(asap::PolAxis) = 0; // C1 (XX)
1325 IPosition end1(end);
1326 end1(asap::PolAxis) = 0;
1327//
1328 IPosition start2(start);
1329 start2(asap::PolAxis) = 1; // C2 (YY)
1330 IPosition end2(end);
1331 end2(asap::PolAxis) = 1;
1332//
1333 IPosition start3(start);
1334 start3(asap::PolAxis) = 2; // C3 ( Real(XY) )
1335 IPosition end3(end);
1336 end3(asap::PolAxis) = 2;
1337//
1338 IPosition startI(start);
1339 startI(asap::PolAxis) = 0; // I
1340 IPosition endI(end);
1341 endI(asap::PolAxis) = 0;
1342//
1343 IPosition startQ(start);
1344 startQ(asap::PolAxis) = 1; // Q
1345 IPosition endQ(end);
1346 endQ(asap::PolAxis) = 1;
1347//
1348 IPosition startU(start);
1349 startU(asap::PolAxis) = 2; // U
1350 IPosition endU(end);
1351 endU(asap::PolAxis) = 2;
1352
1353//
1354 uInt nRow = in.nRow();
1355 Array<Float> data, stokes;
1356 for (uInt i=0; i<nRow;++i) {
1357 specCol.get(i,data);
1358 stokesCol.get(i,stokes);
1359 IPosition shape = data.shape();
1360
1361// Get linear polarization slice references
1362
1363 Array<Float> C1 = data(start1,end1);
1364 Array<Float> C2 = data(start2,end2);
1365 Array<Float> C3 = data(start3,end3);
1366
1367// Get STokes slice references
1368
1369 Array<Float> I = stokes(startI,endI);
1370 Array<Float> Q = stokes(startQ,endQ);
1371 Array<Float> U = stokes(startU,endU);
1372
1373// Rotate
1374
1375 SDPolUtil::rotateLinPolPhase(C1, C2, C3, I, Q, U, value);
1376
1377// Put
1378
1379 specCol.put(i,data);
1380 }
1381}
1382
[169]1383// 'private' functions
1384
[354]1385void SDMath::convertBrightnessUnits (SDMemTable* pTabOut, const SDMemTable& in,
[716]1386 Bool toKelvin, Float cFac, Bool doAll)
[354]1387{
[309]1388
[354]1389// Get header
1390
1391 SDHeader sh = in.getSDHeader();
1392 const uInt nChan = sh.nchan;
1393
1394// Get instrument
1395
1396 Bool throwIt = True;
[716]1397 Instrument inst = SDAttr::convertInstrument(sh.antennaname, throwIt);
[354]1398
1399// Get Diameter (m)
1400
1401 SDAttr sdAtt;
1402// Get epoch of first row
1403
1404 MEpoch dateObs = in.getEpoch(0);
1405
1406// Generate a Vector of correction factors. One per FreqID
1407
1408 SDFrequencyTable sdft = in.getSDFreqTable();
1409 Vector<uInt> freqIDs;
1410//
1411 Vector<Float> freqs(sdft.length());
1412 for (uInt i=0; i<sdft.length(); i++) {
1413 freqs(i) = (nChan/2 - sdft.referencePixel(i))*sdft.increment(i) + sdft.referenceValue(i);
1414 }
1415//
1416 Vector<Float> JyPerK = sdAtt.JyPerK(inst, dateObs, freqs);
[716]1417 ostringstream oss;
1418 oss << "Jy/K = " << JyPerK;
1419 pushLog(String(oss));
[354]1420 Vector<Float> factors = cFac * JyPerK;
1421 if (toKelvin) factors = Float(1.0) / factors;
1422
[434]1423// Get data slice bounds
[354]1424
1425 IPosition start, end;
[434]1426 setCursorSlice (start, end, doAll, in);
[354]1427 const uInt ifAxis = in.getIF();
1428
1429// Iteration axes
1430
1431 IPosition axes(asap::nAxes-1,0);
1432 for (uInt i=0,j=0; i<asap::nAxes; i++) {
1433 if (i!=asap::IFAxis) {
1434 axes(j++) = i;
1435 }
1436 }
1437
1438// Loop over rows and apply correction factor
1439
1440 Float factor = 1.0;
1441 const uInt axis = asap::ChanAxis;
1442 for (uInt i=0; i < in.nRow(); ++i) {
1443
1444// Get data
1445
[434]1446 MaskedArray<Float> dataIn = in.rowAsMaskedArray(i);
1447 Array<Float>& values = dataIn.getRWArray(); // Ref to dataIn
1448 Array<Float> values2 = values(start,end); // Ref to values to dataIn
[354]1449
1450// Get SDCOntainer
1451
1452 SDContainer sc = in.getSDContainer(i);
1453
1454// Get FreqIDs
1455
1456 freqIDs = sc.getFreqMap();
1457
1458// Now the conversion factor depends only upon frequency
1459// So we need to iterate through by IF only giving
1460// us BEAM/POL/CHAN cubes
1461
[434]1462 ArrayIterator<Float> itIn(values2, axes);
1463 uInt ax = 0;
1464 while (!itIn.pastEnd()) {
1465 itIn.array() *= factors(freqIDs(ax)); // Writes back to dataIn
1466 itIn.next();
[354]1467 }
1468
1469// Write out
1470
1471 putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
1472//
1473 pTabOut->putSDContainer(sc);
1474 }
1475}
1476
1477
1478
[701]1479SDMemTable* SDMath::frequencyAlign(const SDMemTable& in,
[309]1480 MFrequency::Types freqSystem,
[397]1481 const String& refTime,
1482 const String& methodStr,
[716]1483 Bool perFreqID)
[267]1484{
1485// Get Header
1486
1487 SDHeader sh = in.getSDHeader();
1488 const uInt nChan = sh.nchan;
1489 const uInt nRows = in.nRow();
[330]1490 const uInt nIF = sh.nif;
[267]1491
1492// Get Table reference
1493
1494 const Table& tabIn = in.table();
1495
1496// Get Columns from Table
1497
[294]1498 ROScalarColumn<Double> mjdCol(tabIn, "TIME");
1499 ROScalarColumn<String> srcCol(tabIn, "SRCNAME");
1500 ROArrayColumn<uInt> fqIDCol(tabIn, "FREQID");
1501 Vector<Double> times = mjdCol.getColumn();
[267]1502
[397]1503// Generate DataDesc table
[330]1504
1505 Matrix<uInt> ddIdx;
1506 SDDataDesc dDesc;
[701]1507 generateDataDescTable(ddIdx, dDesc, nIF, in, tabIn, srcCol,
1508 fqIDCol, perFreqID);
[267]1509
[294]1510// Get reference Epoch to time of first row or given String
[701]1511
[267]1512 Unit DAY(String("d"));
[272]1513 MEpoch::Ref epochRef(in.getTimeReference());
1514 MEpoch refEpoch;
1515 if (refTime.length()>0) {
[701]1516 refEpoch = epochFromString(refTime, in.getTimeReference());
[272]1517 } else {
[701]1518 refEpoch = in.getEpoch(0);
[272]1519 }
[716]1520 pushLog("Aligning at reference Epoch "+formatEpoch(refEpoch)
1521 +" in frame "+MFrequency::showType(freqSystem));
[414]1522
[701]1523 // Get Reference Position
1524
[288]1525 MPosition refPos = in.getAntennaPosition();
[701]1526
1527 // Create FrequencyAligner Block. One FA for each possible
1528 // source/freqID (perFreqID=True) or source/IF (perFreqID=False)
1529 // combination
1530
[330]1531 PtrBlock<FrequencyAligner<Float>* > a(dDesc.length());
[397]1532 generateFrequencyAligners (a, dDesc, in, nChan, freqSystem, refPos,
1533 refEpoch, perFreqID);
[701]1534
1535 // Generate and fill output Frequency Table. WHen perFreqID=True,
1536 // there is one output FreqID for each entry in the SDDataDesc
1537 // table. However, in perFreqID=False mode, there may be some
1538 // degeneracy, so we need a little translation map
1539
[330]1540 SDFrequencyTable freqTabOut = in.getSDFreqTable();
1541 freqTabOut.setLength(0);
1542 Vector<String> units(1);
1543 units = String("Hz");
1544 Bool linear=True;
[701]1545 //
[397]1546 Vector<uInt> ddFQTrans(dDesc.length(),0);
[330]1547 for (uInt i=0; i<dDesc.length(); i++) {
1548
[701]1549 // Get Aligned SC in Hz
1550
1551 SpectralCoordinate sC = a[i]->alignedSpectralCoordinate(linear);
1552 sC.setWorldAxisUnits(units);
1553
1554 // Add FreqID
1555
1556 uInt idx = freqTabOut.addFrequency(sC.referencePixel()[0],
1557 sC.referenceValue()[0],
1558 sC.increment()[0]);
1559 // output FreqID = ddFQTrans(ddIdx)
1560 ddFQTrans(i) = idx;
[330]1561 }
[701]1562
1563 // Interpolation method
1564
[317]1565 InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1566 convertInterpString(interp, methodStr);
[701]1567
1568 // New output Table
1569
[716]1570 pushLog("Create output table");
[267]1571 SDMemTable* pTabOut = new SDMemTable(in,True);
[330]1572 pTabOut->putSDFreqTable(freqTabOut);
[701]1573
1574 // Loop over rows in Table
1575
[330]1576 Bool extrapolate=False;
[294]1577 const IPosition polChanAxes(2, asap::PolAxis, asap::ChanAxis);
1578 Bool useCachedAbcissa = False;
1579 Bool first = True;
1580 Bool ok;
1581 Vector<Float> yOut;
1582 Vector<Bool> maskOut;
[330]1583 Vector<uInt> freqID(nIF);
[309]1584 uInt ifIdx, faIdx;
[397]1585 Vector<Double> xIn;
[701]1586 //
[294]1587 for (uInt iRow=0; iRow<nRows; ++iRow) {
[701]1588 if (iRow%10==0) {
[716]1589 pushLog("Processing row "+iRow);
[701]1590 }
1591
1592 // Get EPoch
1593
[294]1594 Quantum<Double> tQ2(times[iRow],DAY);
1595 MVEpoch mv2(tQ2);
1596 MEpoch epoch(mv2, epochRef);
[701]1597
1598 // Get copy of data
1599
[294]1600 const MaskedArray<Float>& mArrIn(in.rowAsMaskedArray(iRow));
1601 Array<Float> values = mArrIn.getArray();
1602 Array<Bool> mask = mArrIn.getMask();
[701]1603
1604 // For each row, the Frequency abcissa will be the same
1605 // regardless of polarization. For all other axes (IF and BEAM)
1606 // the abcissa will change. So we iterate through the data by
1607 // pol-chan planes to mimimize the work. Probably won't work for
1608 // multiple beams at this point.
1609
[294]1610 ArrayIterator<Float> itValuesPlane(values, polChanAxes);
1611 ArrayIterator<Bool> itMaskPlane(mask, polChanAxes);
1612 while (!itValuesPlane.pastEnd()) {
[267]1613
[701]1614 // Find the IF index and then the FA PtrBlock index
1615
1616 const IPosition& pos = itValuesPlane.pos();
1617 ifIdx = pos(asap::IFAxis);
1618 faIdx = ddIdx(iRow,ifIdx);
1619
1620 // Generate abcissa for perIF. Could cache this in a Matrix on
1621 // a per scan basis. Pretty expensive doing it for every row.
1622
1623 if (!perFreqID) {
1624 xIn.resize(nChan);
1625 uInt fqID = dDesc.secID(ddIdx(iRow,ifIdx));
1626 SpectralCoordinate sC = in.getSpectralCoordinate(fqID);
[397]1627 Double w;
1628 for (uInt i=0; i<nChan; i++) {
[701]1629 sC.toWorld(w,Double(i));
[397]1630 xIn[i] = w;
1631 }
[701]1632 }
1633
1634 VectorIterator<Float> itValuesVec(itValuesPlane.array(), 1);
1635 VectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
[330]1636
[701]1637 // Iterate through the plane by vector and align
1638
[294]1639 first = True;
1640 useCachedAbcissa=False;
1641 while (!itValuesVec.pastEnd()) {
[701]1642 if (perFreqID) {
1643 ok = a[faIdx]->align (yOut, maskOut, itValuesVec.vector(),
1644 itMaskVec.vector(), epoch, useCachedAbcissa,
1645 interp, extrapolate);
1646 } else {
1647 ok = a[faIdx]->align (yOut, maskOut, xIn, itValuesVec.vector(),
1648 itMaskVec.vector(), epoch, useCachedAbcissa,
1649 interp, extrapolate);
1650 }
1651 //
1652 itValuesVec.vector() = yOut;
1653 itMaskVec.vector() = maskOut;
1654 //
1655 itValuesVec.next();
1656 itMaskVec.next();
1657 //
1658 if (first) {
1659 useCachedAbcissa = True;
1660 first = False;
1661 }
[294]1662 }
[701]1663 //
1664 itValuesPlane.next();
1665 itMaskPlane.next();
[294]1666 }
[701]1667
1668 // Create SDContainer and put back
1669
1670 SDContainer sc = in.getSDContainer(iRow);
1671 putDataInSDC(sc, values, mask);
1672
1673 // Set output FreqIDs
1674
1675 for (uInt i=0; i<nIF; i++) {
[397]1676 uInt idx = ddIdx(iRow,i); // Index into SDDataDesc table
1677 freqID(i) = ddFQTrans(idx); // FreqID in output FQ table
[701]1678 }
1679 sc.putFreqMap(freqID);
1680 //
1681 pTabOut->putSDContainer(sc);
[294]1682 }
[701]1683
1684 // Now we must set the base and extra frames to the input frame
[309]1685 std::vector<string> info = pTabOut->getCoordInfo();
1686 info[1] = MFrequency::showType(freqSystem); // Conversion frame
1687 info[3] = info[1]; // Base frame
1688 pTabOut->setCoordInfo(info);
1689
[701]1690 // Clean up PointerBlock
1691 for (uInt i=0; i<a.nelements(); i++) delete a[i];
[267]1692
[309]1693 return pTabOut;
[267]1694}
1695
1696
[716]1697SDMemTable* SDMath::frequencySwitch(const SDMemTable& in)
[701]1698{
1699 if (in.nIF() != 2) {
1700 throw(AipsError("nIF != 2 "));
1701 }
1702 Bool clear = True;
1703 SDMemTable* pTabOut = new SDMemTable(in, clear);
1704 const Table& tabIn = in.table();
1705
1706 // Shape of input and output data
1707 const IPosition& shapeIn = in.rowAsMaskedArray(0).shape();
1708
1709 const uInt nRows = in.nRow();
1710 AlwaysAssert(asap::nAxes==4,AipsError);
1711
1712 ROArrayColumn<Float> tSysCol;
1713 Array<Float> tsys;
1714 tSysCol.attach(tabIn,"TSYS");
1715
1716 for (uInt iRow=0; iRow<nRows; iRow++) {
1717 // Get data for this row
1718 MaskedArray<Float> marr(in.rowAsMaskedArray(iRow));
1719 tSysCol.get(iRow, tsys);
1720
1721 // whole Array for IF 0
1722 IPosition start(asap::nAxes,0);
1723 IPosition end = shapeIn-1;
1724 end(asap::IFAxis) = 0;
1725
1726 MaskedArray<Float> on = marr(start,end);
1727 Array<Float> ton = tsys(start,end);
1728 // Make a copy as "src" is a refrence which is manipulated.
1729 // oncopy is needed for the inverse quotient
1730 MaskedArray<Float> oncopy = on.copy();
1731
1732 // whole Array for IF 1
1733 start(asap::IFAxis) = 1;
1734 end(asap::IFAxis) = 1;
1735
1736 MaskedArray<Float> off = marr(start,end);
1737 Array<Float> toff = tsys(start,end);
1738
1739 on /= off; on -= 1.0f;
1740 on *= ton;
1741 off /= oncopy; off -= 1.0f;
1742 off *= toff;
1743
1744 SDContainer sc = in.getSDContainer(iRow);
1745 putDataInSDC(sc, marr.getArray(), marr.getMask());
1746 pTabOut->putSDContainer(sc);
1747 }
1748 return pTabOut;
1749}
1750
[185]1751void SDMath::fillSDC(SDContainer& sc,
1752 const Array<Bool>& mask,
1753 const Array<Float>& data,
1754 const Array<Float>& tSys,
1755 Int scanID, Double timeStamp,
1756 Double interval, const String& sourceName,
[716]1757 const Vector<uInt>& freqID)
[167]1758{
[169]1759// Data and mask
[167]1760
[185]1761 putDataInSDC(sc, data, mask);
[167]1762
[169]1763// TSys
1764
1765 sc.putTsys(tSys);
1766
1767// Time things
1768
1769 sc.timestamp = timeStamp;
1770 sc.interval = interval;
1771 sc.scanid = scanID;
[167]1772//
[169]1773 sc.sourcename = sourceName;
1774 sc.putFreqMap(freqID);
1775}
[167]1776
[185]1777void SDMath::accumulate(Double& timeSum, Double& intSum, Int& nAccum,
1778 MaskedArray<Float>& sum, Array<Float>& sumSq,
1779 Array<Float>& nPts, Array<Float>& tSysSum,
[518]1780 Array<Float>& tSysSqSum,
[185]1781 const Array<Float>& tSys, const Array<Float>& nInc,
1782 const Vector<Bool>& mask, Double time, Double interval,
[653]1783 const std::vector<CountedPtr<SDMemTable> >& in,
[185]1784 uInt iTab, uInt iRow, uInt axis,
1785 uInt nAxesSub, Bool useMask,
[716]1786 WeightType wtType)
[169]1787{
1788
1789// Get data
1790
1791 MaskedArray<Float> dataIn(in[iTab]->rowAsMaskedArray(iRow));
1792 Array<Float>& valuesIn = dataIn.getRWArray(); // writable reference
1793 const Array<Bool>& maskIn = dataIn.getMask(); // RO reference
[167]1794//
[169]1795 if (wtType==NONE) {
1796 const MaskedArray<Float> n(nInc,dataIn.getMask());
1797 nPts += n; // Only accumulates where mask==T
[518]1798 } else if (wtType==TINT) {
1799
1800// We are weighting the data by integration time.
1801
1802 valuesIn *= Float(interval);
1803
[169]1804 } else if (wtType==VAR) {
[167]1805
[169]1806// We are going to average the data, weighted by the noise for each pol, beam and IF.
1807// So therefore we need to iterate through by spectrum (axis 3)
[167]1808
[169]1809 VectorIterator<Float> itData(valuesIn, axis);
1810 ReadOnlyVectorIterator<Bool> itMask(maskIn, axis);
1811 Float fac = 1.0;
1812 IPosition pos(nAxesSub,0);
1813//
1814 while (!itData.pastEnd()) {
[167]1815
[169]1816// Make MaskedArray of Vector, optionally apply OTF mask, and find scaling factor
[167]1817
[518]1818 if (useMask) {
1819 MaskedArray<Float> tmp(itData.vector(),mask&&itMask.vector());
1820 fac = 1.0/variance(tmp);
1821 } else {
1822 MaskedArray<Float> tmp(itData.vector(),itMask.vector());
1823 fac = 1.0/variance(tmp);
1824 }
[169]1825
1826// Scale data
1827
[518]1828 itData.vector() *= fac; // Writes back into 'dataIn'
[167]1829//
[169]1830// Accumulate variance per if/pol/beam averaged over spectrum
1831// This method to get pos2 from itData.pos() is only valid
1832// because the spectral axis is the last one (so we can just
1833// copy the first nAXesSub positions out)
[167]1834
[518]1835 pos = itData.pos().getFirst(nAxesSub);
1836 sumSq(pos) += fac;
[169]1837//
[518]1838 itData.next();
1839 itMask.next();
[169]1840 }
[536]1841 } else if (wtType==TSYS || wtType==TINTSYS) {
[518]1842
1843// We are going to average the data, weighted by 1/Tsys**2 for each pol, beam and IF.
1844// So therefore we need to iterate through by spectrum (axis 3). Although
1845// Tsys is stored as a vector of length nChan, the values are replicated.
1846// We will take a short cut and just use the value from the first channel
1847// for now.
1848//
1849 VectorIterator<Float> itData(valuesIn, axis);
1850 ReadOnlyVectorIterator<Float> itTSys(tSys, axis);
1851 IPosition pos(nAxesSub,0);
1852//
[536]1853 Float fac = 1.0;
1854 if (wtType==TINTSYS) fac *= interval;
[518]1855 while (!itData.pastEnd()) {
1856 Float t = itTSys.vector()[0];
[536]1857 fac *= 1.0/t/t;
[518]1858
1859// Scale data
1860
1861 itData.vector() *= fac; // Writes back into 'dataIn'
1862//
1863// Accumulate Tsys per if/pol/beam averaged over spectrum
1864// This method to get pos2 from itData.pos() is only valid
1865// because the spectral axis is the last one (so we can just
1866// copy the first nAXesSub positions out)
1867
1868 pos = itData.pos().getFirst(nAxesSub);
1869 tSysSqSum(pos) += fac;
1870//
1871 itData.next();
1872 itTSys.next();
1873 }
[169]1874 }
[167]1875
[169]1876// Accumulate sum of (possibly scaled) data
1877
1878 sum += dataIn;
1879
1880// Accumulate Tsys, time, and interval
1881
1882 tSysSum += tSys;
1883 timeSum += time;
1884 intSum += interval;
1885 nAccum += 1;
1886}
1887
1888
[518]1889void SDMath::normalize(MaskedArray<Float>& sum,
1890 const Array<Float>& sumSq,
1891 const Array<Float>& tSysSqSum,
1892 const Array<Float>& nPts,
1893 Double intSum,
1894 WeightType wtType, Int axis,
[716]1895 Int nAxesSub)
[518]1896{
1897 IPosition pos2(nAxesSub,0);
1898//
1899 if (wtType==NONE) {
1900
1901// We just average by the number of points accumulated.
1902// We need to make a MA out of nPts so that no divide by
1903// zeros occur
1904
1905 MaskedArray<Float> t(nPts, (nPts>Float(0.0)));
1906 sum /= t;
1907 } else if (wtType==TINT) {
1908
1909// Average by sum of Tint
1910
1911 sum /= Float(intSum);
1912 } else if (wtType==VAR) {
1913
1914// Normalize each spectrum by sum(1/var) where the variance
1915// is worked out for each spectrum
1916
1917 Array<Float>& data = sum.getRWArray();
1918 VectorIterator<Float> itData(data, axis);
1919 while (!itData.pastEnd()) {
1920 pos2 = itData.pos().getFirst(nAxesSub);
1921 itData.vector() /= sumSq(pos2);
1922 itData.next();
1923 }
[536]1924 } else if (wtType==TSYS || wtType==TINTSYS) {
[518]1925
[536]1926// Normalize each spectrum by sum(1/Tsys**2) (TSYS) or
1927// sum(Tint/Tsys**2) (TINTSYS) where the pseudo
[518]1928// replication over channel for Tsys has been dropped.
1929
1930 Array<Float>& data = sum.getRWArray();
1931 VectorIterator<Float> itData(data, axis);
1932 while (!itData.pastEnd()) {
1933 pos2 = itData.pos().getFirst(nAxesSub);
1934 itData.vector() /= tSysSqSum(pos2);
1935 itData.next();
1936 }
1937 }
1938}
1939
1940
1941
1942
[434]1943void SDMath::setCursorSlice (IPosition& start, IPosition& end, Bool doAll, const SDMemTable& in) const
[169]1944{
[434]1945 const uInt nDim = asap::nAxes;
1946 DebugAssert(nDim==4,AipsError);
[167]1947//
[169]1948 start.resize(nDim);
[434]1949 end.resize(nDim);
1950 if (doAll) {
1951 start = 0;
1952 end(0) = in.nBeam()-1;
1953 end(1) = in.nIF()-1;
1954 end(2) = in.nPol()-1;
1955 end(3) = in.nChan()-1;
1956 } else {
1957 start(0) = in.getBeam();
1958 end(0) = start(0);
[167]1959//
[434]1960 start(1) = in.getIF();
1961 end(1) = start(1);
1962//
1963 start(2) = in.getPol();
1964 end(2) = start(2);
1965//
1966 start(3) = 0;
1967 end(3) = in.nChan()-1;
1968 }
[169]1969}
1970
1971
[518]1972void SDMath::convertWeightString(WeightType& wtType, const String& weightStr,
[716]1973 Bool listType)
[169]1974{
1975 String tStr(weightStr);
1976 tStr.upcase();
[518]1977 String msg;
[169]1978 if (tStr.contains(String("NONE"))) {
1979 wtType = NONE;
[518]1980 msg = String("Weighting type selected : None");
[169]1981 } else if (tStr.contains(String("VAR"))) {
1982 wtType = VAR;
[518]1983 msg = String("Weighting type selected : Variance");
[536]1984 } else if (tStr.contains(String("TINTSYS"))) {
1985 wtType = TINTSYS;
1986 msg = String("Weighting type selected : Tint&Tsys");
[518]1987 } else if (tStr.contains(String("TINT"))) {
1988 wtType = TINT;
[519]1989 msg = String("Weighting type selected : Tint");
[169]1990 } else if (tStr.contains(String("TSYS"))) {
1991 wtType = TSYS;
[518]1992 msg = String("Weighting type selected : Tsys");
[169]1993 } else {
[518]1994 msg = String("Weighting type selected : None");
1995 throw(AipsError("Unrecognized weighting type"));
[167]1996 }
[518]1997//
[716]1998 if (listType) pushLog(msg);
[167]1999}
2000
[317]2001
2002void SDMath::convertInterpString(casa::InterpolateArray1D<Double,Float>::InterpolationMethod& type,
[716]2003 const casa::String& interp)
[227]2004{
2005 String tStr(interp);
2006 tStr.upcase();
2007 if (tStr.contains(String("NEAR"))) {
[317]2008 type = InterpolateArray1D<Double,Float>::nearestNeighbour;
[227]2009 } else if (tStr.contains(String("LIN"))) {
[317]2010 type = InterpolateArray1D<Double,Float>::linear;
[227]2011 } else if (tStr.contains(String("CUB"))) {
[317]2012 type = InterpolateArray1D<Double,Float>::cubic;
[227]2013 } else if (tStr.contains(String("SPL"))) {
[317]2014 type = InterpolateArray1D<Double,Float>::spline;
[227]2015 } else {
2016 throw(AipsError("Unrecognized interpolation type"));
2017 }
2018}
2019
[185]2020void SDMath::putDataInSDC(SDContainer& sc, const Array<Float>& data,
[716]2021 const Array<Bool>& mask)
[169]2022{
2023 sc.putSpectrum(data);
2024//
2025 Array<uChar> outflags(data.shape());
2026 convertArray(outflags,!mask);
2027 sc.putFlags(outflags);
2028}
[227]2029
[716]2030Table SDMath::readAsciiFile(const String& fileName) const
[227]2031{
[230]2032 String formatString;
2033 Table tbl = readAsciiTable (formatString, Table::Memory, fileName, "", "", False);
[227]2034 return tbl;
2035}
[230]2036
2037
[234]2038
[480]2039void SDMath::scaleFromAsciiTable(SDMemTable* pTabOut,
2040 const SDMemTable& in, const String& fileName,
2041 const String& col0, const String& col1,
2042 const String& methodStr, Bool doAll,
[716]2043 const Vector<Float>& xOut, Bool doTSys)
[230]2044{
2045
2046// Read gain-elevation ascii file data into a Table.
2047
[234]2048 Table geTable = readAsciiFile (fileName);
[230]2049//
[480]2050 scaleFromTable (pTabOut, in, geTable, col0, col1, methodStr, doAll, xOut, doTSys);
[230]2051}
2052
[480]2053void SDMath::scaleFromTable(SDMemTable* pTabOut, const SDMemTable& in,
2054 const Table& tTable, const String& col0,
2055 const String& col1,
2056 const String& methodStr, Bool doAll,
[716]2057 const Vector<Float>& xOut, Bool doTsys)
[230]2058{
2059
2060// Get data from Table
2061
2062 ROScalarColumn<Float> geElCol(tTable, col0);
2063 ROScalarColumn<Float> geFacCol(tTable, col1);
2064 Vector<Float> xIn = geElCol.getColumn();
2065 Vector<Float> yIn = geFacCol.getColumn();
2066 Vector<Bool> maskIn(xIn.nelements(),True);
2067
2068// Interpolate (and extrapolate) with desired method
2069
[317]2070 InterpolateArray1D<Double,Float>::InterpolationMethod method;
[230]2071 convertInterpString(method, methodStr);
[317]2072 Int intMethod(method);
[230]2073//
2074 Vector<Float> yOut;
2075 Vector<Bool> maskOut;
2076 InterpolateArray1D<Float,Float>::interpolate(yOut, maskOut, xOut,
[317]2077 xIn, yIn, maskIn, intMethod,
[230]2078 True, True);
[234]2079// Apply
[230]2080
[480]2081 scaleByVector(pTabOut, in, doAll, Float(1.0)/yOut, doTsys);
[234]2082}
2083
2084
[480]2085void SDMath::scaleByVector(SDMemTable* pTabOut, const SDMemTable& in,
2086 Bool doAll, const Vector<Float>& factor,
[716]2087 Bool doTSys)
[234]2088{
[270]2089
[434]2090// Set up data slice
[230]2091
2092 IPosition start, end;
[434]2093 setCursorSlice (start, end, doAll, in);
[230]2094
[480]2095// Get Tsys column
2096
2097 const Table& tIn = in.table();
2098 ArrayColumn<Float> tSysCol(tIn, "TSYS");
2099 Array<Float> tSys;
2100
[270]2101// Loop over rows and apply correction factor
[230]2102
2103 const uInt axis = asap::ChanAxis;
2104 for (uInt i=0; i < in.nRow(); ++i) {
2105
2106// Get data
2107
[434]2108 MaskedArray<Float> dataIn(in.rowAsMaskedArray(i));
2109 MaskedArray<Float> dataIn2 = dataIn(start,end); // reference to dataIn
[480]2110//
2111 if (doTSys) {
2112 tSysCol.get(i, tSys);
2113 Array<Float> tSys2 = tSys(start,end) * factor[i];
2114 tSysCol.put(i, tSys);
2115 }
[230]2116
2117// Apply factor
2118
[434]2119 dataIn2 *= factor[i];
[230]2120
2121// Write out
2122
[434]2123 SDContainer sc = in.getSDContainer(i);
2124 putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
[230]2125//
[434]2126 pTabOut->putSDContainer(sc);
[230]2127 }
2128}
2129
[234]2130
[262]2131
2132
[330]2133void SDMath::generateDataDescTable (Matrix<uInt>& ddIdx,
2134 SDDataDesc& dDesc,
2135 uInt nIF,
2136 const SDMemTable& in,
2137 const Table& tabIn,
2138 const ROScalarColumn<String>& srcCol,
[397]2139 const ROArrayColumn<uInt>& fqIDCol,
[716]2140 Bool perFreqID)
[330]2141{
2142 const uInt nRows = tabIn.nrow();
2143 ddIdx.resize(nRows,nIF);
[262]2144//
[330]2145 String srcName;
2146 Vector<uInt> freqIDs;
2147 for (uInt iRow=0; iRow<nRows; iRow++) {
2148 srcCol.get(iRow, srcName);
2149 fqIDCol.get(iRow, freqIDs);
2150 const MDirection& dir = in.getDirection(iRow);
2151//
[397]2152 if (perFreqID) {
2153
2154// One entry per source/freqID pair
2155
2156 for (uInt iIF=0; iIF<nIF; iIF++) {
2157 ddIdx(iRow,iIF) = dDesc.addEntry(srcName, freqIDs[iIF], dir, 0);
2158 }
2159 } else {
2160
2161// One entry per source/IF pair. Hang onto the FreqID as well
2162
2163 for (uInt iIF=0; iIF<nIF; iIF++) {
2164 ddIdx(iRow,iIF) = dDesc.addEntry(srcName, iIF, dir, freqIDs[iIF]);
2165 }
[262]2166 }
2167 }
2168}
[272]2169
[397]2170
2171
2172
2173
[716]2174MEpoch SDMath::epochFromString(const String& str, MEpoch::Types timeRef)
[272]2175{
2176 Quantum<Double> qt;
2177 if (MVTime::read(qt,str)) {
2178 MVEpoch mv(qt);
2179 MEpoch me(mv, timeRef);
2180 return me;
2181 } else {
2182 throw(AipsError("Invalid format for Epoch string"));
2183 }
2184}
2185
2186
2187String SDMath::formatEpoch(const MEpoch& epoch) const
2188{
2189 MVTime mvt(epoch.getValue());
2190 return mvt.string(MVTime::YMD) + String(" (") + epoch.getRefString() + String(")");
2191}
2192
[294]2193
[309]2194
[701]2195void SDMath::generateFrequencyAligners(PtrBlock<FrequencyAligner<Float>* >& a,
2196 const SDDataDesc& dDesc,
2197 const SDMemTable& in, uInt nChan,
2198 MFrequency::Types system,
2199 const MPosition& refPos,
2200 const MEpoch& refEpoch,
[716]2201 Bool perFreqID)
[294]2202{
[330]2203 for (uInt i=0; i<dDesc.length(); i++) {
[397]2204 uInt ID = dDesc.ID(i);
2205 uInt secID = dDesc.secID(i);
2206 const MDirection& refDir = dDesc.secDir(i);
[330]2207//
[397]2208 if (perFreqID) {
2209
2210// One aligner per source/FreqID pair.
2211
2212 SpectralCoordinate sC = in.getSpectralCoordinate(ID);
2213 a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
2214 } else {
2215
2216// One aligner per source/IF pair. But we still need the FreqID to
2217// get the right SC. Hence the messing about with the secondary ID
2218
2219 SpectralCoordinate sC = in.getSpectralCoordinate(secID);
2220 a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
2221 }
[294]2222 }
2223}
[480]2224
[701]2225Vector<uInt> SDMath::getRowRange(const SDMemTable& in) const
[480]2226{
2227 Vector<uInt> range(2);
2228 range[0] = 0;
2229 range[1] = in.nRow()-1;
2230 return range;
2231}
2232
2233
[701]2234Bool SDMath::rowInRange(uInt i, const Vector<uInt>& range) const
[480]2235{
2236 return (i>=range[0] && i<=range[1]);
2237}
[701]2238
Note: See TracBrowser for help on using the repository browser.