source: trunk/src/SDMath.cc @ 780

Last change on this file since 780 was 780, checked in by mar637, 18 years ago

merge from Release12

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 63.2 KB
Line 
1//#---------------------------------------------------------------------------
2//# SDMath.cc: A collection of single dish mathematical operations
3//#---------------------------------------------------------------------------
4//# Copyright (C) 2004
5//# ATNF
6//#
7//# This program is free software; you can redistribute it and/or modify it
8//# under the terms of the GNU General Public License as published by the Free
9//# Software Foundation; either version 2 of the License, or (at your option)
10//# any later version.
11//#
12//# This program is distributed in the hope that it will be useful, but
13//# WITHOUT ANY WARRANTY; without even the implied warranty of
14//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
15//# Public License for more details.
16//#
17//# You should have received a copy of the GNU General Public License along
18//# with this program; if not, write to the Free Software Foundation, Inc.,
19//# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
20//#
21//# Correspondence concerning this software should be addressed as follows:
22//#        Internet email: Malte.Marquarding@csiro.au
23//#        Postal address: Malte Marquarding,
24//#                        Australia Telescope National Facility,
25//#                        P.O. Box 76,
26//#                        Epping, NSW, 2121,
27//#                        AUSTRALIA
28//#
29//# $Id:
30//#---------------------------------------------------------------------------
31#include <vector>
32
33
34#include <casa/aips.h>
35#include <casa/iostream.h>
36#include <casa/sstream.h>
37#include <casa/iomanip.h>
38#include <casa/BasicSL/String.h>
39#include <casa/Arrays/IPosition.h>
40#include <casa/Arrays/Array.h>
41#include <casa/Arrays/ArrayIter.h>
42#include <casa/Arrays/VectorIter.h>
43#include <casa/Arrays/ArrayMath.h>
44#include <casa/Arrays/ArrayLogical.h>
45#include <casa/Arrays/MaskedArray.h>
46#include <casa/Arrays/MaskArrMath.h>
47#include <casa/Arrays/MaskArrLogi.h>
48#include <casa/Arrays/Matrix.h>
49#include <casa/BasicMath/Math.h>
50#include <casa/Exceptions.h>
51#include <casa/Quanta/Quantum.h>
52#include <casa/Quanta/Unit.h>
53#include <casa/Quanta/MVEpoch.h>
54#include <casa/Quanta/MVTime.h>
55#include <casa/Utilities/Assert.h>
56
57#include <coordinates/Coordinates/SpectralCoordinate.h>
58#include <coordinates/Coordinates/CoordinateSystem.h>
59#include <coordinates/Coordinates/CoordinateUtil.h>
60#include <coordinates/Coordinates/FrequencyAligner.h>
61
62#include <lattices/Lattices/LatticeUtilities.h>
63#include <lattices/Lattices/RebinLattice.h>
64
65#include <measures/Measures/MEpoch.h>
66#include <measures/Measures/MDirection.h>
67#include <measures/Measures/MPosition.h>
68
69#include <scimath/Mathematics/VectorKernel.h>
70#include <scimath/Mathematics/Convolver.h>
71#include <scimath/Mathematics/InterpolateArray1D.h>
72#include <scimath/Functionals/Polynomial.h>
73
74#include <tables/Tables/Table.h>
75#include <tables/Tables/ScalarColumn.h>
76#include <tables/Tables/ArrayColumn.h>
77#include <tables/Tables/ReadAsciiTable.h>
78
79#include "MathUtils.h"
80#include "SDDefs.h"
81#include "SDAttr.h"
82#include "SDContainer.h"
83#include "SDMemTable.h"
84
85#include "SDMath.h"
86#include "SDPol.h"
87
88using namespace casa;
89using namespace asap;
90
91
92SDMath::SDMath()
93{
94}
95
96SDMath::SDMath(const SDMath& other)
97{
98
99// No state
100
101}
102
103SDMath& SDMath::operator=(const SDMath& other)
104{
105  if (this != &other) {
106// No state
107  }
108  return *this;
109}
110
111SDMath::~SDMath()
112{;}
113
114
115SDMemTable* SDMath::frequencyAlignment(const SDMemTable& in,
116                                       const String& refTime,
117                                       const String& method,
118                                       Bool perFreqID)
119{
120  // Get frame info from Table
121   std::vector<std::string> info = in.getCoordInfo();
122
123   // Parse frequency system
124   String systemStr(info[1]);
125   String baseSystemStr(info[3]);
126   if (baseSystemStr==systemStr) {
127     throw(AipsError("You have not set a frequency frame different from the initial - use function set_freqframe"));
128   }
129
130   MFrequency::Types freqSystem;
131   MFrequency::getType(freqSystem, systemStr);
132
133   return frequencyAlign(in, freqSystem, refTime, method, perFreqID);
134}
135
136
137
138CountedPtr<SDMemTable>
139SDMath::average(const std::vector<CountedPtr<SDMemTable> >& in,
140                const Vector<Bool>& mask, Bool scanAv,
141                const String& weightStr, Bool alignFreq)
142// Weighted averaging of spectra from one or more Tables.
143{
144  // Convert weight type
145  WeightType wtType = NONE;
146  convertWeightString(wtType, weightStr, True);
147
148  // Create output Table by cloning from the first table
149  SDMemTable* pTabOut = new SDMemTable(*in[0],True);
150  if (in.size() > 1) {
151    for (uInt i=1; i < in.size(); ++i) {
152      pTabOut->appendToHistoryTable(in[i]->getHistoryTable());
153    }
154  }
155  // Setup
156  IPosition shp = in[0]->rowAsMaskedArray(0).shape();      // Must not change
157  Array<Float> arr(shp);
158  Array<Bool> barr(shp);
159  const Bool useMask = (mask.nelements() == shp(asap::ChanAxis));
160
161  // Columns from Tables
162  ROArrayColumn<Float> tSysCol;
163  ROScalarColumn<Double> mjdCol;
164  ROScalarColumn<String> srcNameCol;
165  ROScalarColumn<Double> intCol;
166  ROArrayColumn<uInt> fqIDCol;
167  ROScalarColumn<Int> scanIDCol;
168
169  // Create accumulation MaskedArray. We accumulate for each
170  // channel,if,pol,beam Note that the mask of the accumulation array
171  // will ALWAYS remain ALL True.  The MA is only used so that when
172  // data which is masked Bad is added to it, that data does not
173  // contribute.
174
175  Array<Float> zero(shp);
176  zero=0.0;
177  Array<Bool> good(shp);
178  good = True;
179  MaskedArray<Float> sum(zero,good);
180
181  // Counter arrays
182  Array<Float> nPts(shp);             // Number of points
183  nPts = 0.0;
184  Array<Float> nInc(shp);             // Increment
185  nInc = 1.0;
186
187  // Create accumulation Array for variance. We accumulate for each
188  // if,pol,beam, but average over channel.  So we need a shape with
189  // one less axis dropping channels.
190  const uInt nAxesSub = shp.nelements() - 1;
191  IPosition shp2(nAxesSub);
192  for (uInt i=0,j=0; i<(nAxesSub+1); i++) {
193     if (i!=asap::ChanAxis) {
194       shp2(j) = shp(i);
195       j++;
196     }
197  }
198  Array<Float> sumSq(shp2);
199  sumSq = 0.0;
200  IPosition pos2(nAxesSub,0);                        // For indexing
201
202  // Time-related accumulators
203  Double time;
204  Double timeSum = 0.0;
205  Double intSum = 0.0;
206  Double interval = 0.0;
207
208  // To get the right shape for the Tsys accumulator we need to access
209  // a column from the first table.  The shape of this array must not
210  // change.  Note however that since the TSysSqSum array is used in a
211  // normalization process, and that I ignore the channel axis
212  // replication of values for now, it loses a dimension
213
214  Array<Float> tSysSum, tSysSqSum;
215  {
216    const Table& tabIn = in[0]->table();
217    tSysCol.attach(tabIn,"TSYS");
218    tSysSum.resize(tSysCol.shape(0));
219    tSysSqSum.resize(shp2);
220  }
221  tSysSum = 0.0;
222  tSysSqSum = 0.0;
223  Array<Float> tSys;
224
225  // Scan and row tracking
226  Int oldScanID = 0;
227  Int outScanID = 0;
228  Int scanID = 0;
229  Int rowStart = 0;
230  Int nAccum = 0;
231  Int tableStart = 0;
232
233  // Source and FreqID
234  String sourceName, oldSourceName, sourceNameStart;
235  Vector<uInt> freqID, freqIDStart, oldFreqID;
236
237  // Loop over tables
238  Float fac = 1.0;
239  const uInt nTables = in.size();
240  for (uInt iTab=0; iTab<nTables; iTab++) {
241
242    // Should check that the frequency tables don't change if doing
243    // FreqAlignment
244
245    // Attach columns to Table
246     const Table& tabIn = in[iTab]->table();
247     tSysCol.attach(tabIn, "TSYS");
248     mjdCol.attach(tabIn, "TIME");
249     srcNameCol.attach(tabIn, "SRCNAME");
250     intCol.attach(tabIn, "INTERVAL");
251     fqIDCol.attach(tabIn, "FREQID");
252     scanIDCol.attach(tabIn, "SCANID");
253
254     // Loop over rows in Table
255     const uInt nRows = in[iTab]->nRow();
256     for (uInt iRow=0; iRow<nRows; iRow++) {
257       // Check conformance
258        IPosition shp2 = in[iTab]->rowAsMaskedArray(iRow).shape();
259        if (!shp.isEqual(shp2)) {
260          delete pTabOut;
261           throw (AipsError("Shapes for all rows must be the same"));
262        }
263
264        // If we are not doing scan averages, make checks for source
265        // and frequency setup and warn if averaging across them
266        scanIDCol.getScalar(iRow, scanID);
267
268        // Get quantities from columns
269        srcNameCol.getScalar(iRow, sourceName);
270        mjdCol.get(iRow, time);
271        tSysCol.get(iRow, tSys);
272        intCol.get(iRow, interval);
273        fqIDCol.get(iRow, freqID);
274
275        // Initialize first source and freqID
276        if (iRow==0 && iTab==0) {
277          sourceNameStart = sourceName;
278          freqIDStart = freqID;
279        }
280
281        // If we are doing scan averages, see if we are at the end of
282        // an accumulation period (scan).  We must check soutce names
283        // too, since we might have two tables with one scan each but
284        // different source names; we shouldn't average different
285        // sources together
286        if (scanAv && ( (scanID != oldScanID)  ||
287                        (iRow==0 && iTab>0 && sourceName!=oldSourceName))) {
288
289          // Normalize data in 'sum' accumulation array according to
290          // weighting scheme
291           normalize(sum, sumSq, tSysSqSum, nPts, intSum, wtType,
292                     asap::ChanAxis, nAxesSub);
293
294           // Get ScanContainer for the first row of this averaged Scan
295           SDContainer scOut = in[iTab]->getSDContainer(rowStart);
296
297           // Fill scan container. The source and freqID come from the
298           // first row of the first table that went into this average
299           // ( should be the same for all rows in the scan average)
300
301           Float nR(nAccum);
302           fillSDC(scOut, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
303                   timeSum/nR, intSum, sourceNameStart, freqIDStart);
304
305           // Write container out to Table
306           pTabOut->putSDContainer(scOut);
307
308           // Reset accumulators
309           sum = 0.0;
310           sumSq = 0.0;
311           nAccum = 0;
312
313           tSysSum =0.0;
314           tSysSqSum =0.0;
315           timeSum = 0.0;
316           intSum = 0.0;
317           nPts = 0.0;
318
319           // Increment
320           rowStart = iRow;              // First row for next accumulation
321           tableStart = iTab;            // First table for next accumulation
322           sourceNameStart = sourceName; // First source name for next
323                                         // accumulation
324           freqIDStart = freqID;         // First FreqID for next accumulation
325
326           oldScanID = scanID;
327           outScanID += 1;               // Scan ID for next
328                                         // accumulation period
329        }
330
331        // Accumulate
332        accumulate(timeSum, intSum, nAccum, sum, sumSq, nPts,
333                   tSysSum, tSysSqSum, tSys,
334                   nInc, mask, time, interval, in, iTab, iRow, asap::ChanAxis,
335                   nAxesSub, useMask, wtType);
336        oldSourceName = sourceName;
337        oldFreqID = freqID;
338     }
339  }
340
341  // OK at this point we have accumulation data which is either
342  //   - accumulated from all tables into one row
343  // or
344  //   - accumulated from the last scan average
345  //
346  // Normalize data in 'sum' accumulation array according to weighting
347  // scheme
348
349  normalize(sum, sumSq, tSysSqSum, nPts, intSum, wtType,
350            asap::ChanAxis, nAxesSub);
351
352  // Create and fill container.  The container we clone will be from
353  // the last Table and the first row that went into the current
354  // accumulation.  It probably doesn't matter that much really...
355  Float nR(nAccum);
356  SDContainer scOut = in[tableStart]->getSDContainer(rowStart);
357  fillSDC(scOut, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
358          timeSum/nR, intSum, sourceNameStart, freqIDStart);
359  pTabOut->putSDContainer(scOut);
360  pTabOut->resetCursor();
361
362  return CountedPtr<SDMemTable>(pTabOut);
363}
364
365
366
367CountedPtr<SDMemTable>
368SDMath::binaryOperate(const CountedPtr<SDMemTable>& left,
369                      const CountedPtr<SDMemTable>& right,
370                      const String& op, Bool preserve, Bool doTSys)
371{
372
373  // Check operator
374  String op2(op);
375  op2.upcase();
376  uInt what = 0;
377  if (op2=="ADD") {
378     what = 0;
379  } else if (op2=="SUB") {
380     what = 1;
381  } else if (op2=="MUL") {
382     what = 2;
383  } else if (op2=="DIV") {
384     what = 3;
385  } else if (op2=="QUOTIENT") {
386     what = 4;
387     doTSys = True;
388  } else {
389    throw( AipsError("Unrecognized operation"));
390  }
391
392  // Check rows
393  const uInt nRowLeft = left->nRow();
394  const uInt nRowRight = right->nRow();
395  Bool ok = (nRowRight==1 && nRowLeft>0) ||
396            (nRowRight>=1 && nRowLeft==nRowRight);
397  if (!ok) {
398     throw (AipsError("The right Scan Table can have one row or the same number of rows as the left Scan Table"));
399  }
400
401  // Input Tables
402  const Table& tLeft = left->table();
403  const Table& tRight = right->table();
404
405  // TSys columns
406  ROArrayColumn<Float> tSysLeftCol, tSysRightCol;
407  if (doTSys) {
408    tSysLeftCol.attach(tLeft, "TSYS");
409    tSysRightCol.attach(tRight, "TSYS");
410  }
411
412  // First row for right
413  Array<Float> tSysLeftArr, tSysRightArr;
414  if (doTSys) tSysRightCol.get(0, tSysRightArr);
415  MaskedArray<Float>* pMRight =
416    new MaskedArray<Float>(right->rowAsMaskedArray(0));
417
418  IPosition shpRight = pMRight->shape();
419
420  // Output Table cloned from left
421  SDMemTable* pTabOut = new SDMemTable(*left, True);
422  pTabOut->appendToHistoryTable(right->getHistoryTable());
423
424  // Loop over rows
425  for (uInt i=0; i<nRowLeft; i++) {
426
427    // Get data
428    MaskedArray<Float> mLeft(left->rowAsMaskedArray(i));
429    IPosition shpLeft = mLeft.shape();
430    if (doTSys) tSysLeftCol.get(i, tSysLeftArr);
431
432    if (nRowRight>1) {
433      delete pMRight;
434      pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(i));
435      shpRight = pMRight->shape();
436      if (doTSys) tSysRightCol.get(i, tSysRightArr);
437    }
438
439    if (!shpRight.isEqual(shpLeft)) {
440      delete pTabOut;
441      delete pMRight;
442      throw(AipsError("left and right scan tables are not conformant"));
443    }
444    if (doTSys) {
445      if (!tSysRightArr.shape().isEqual(tSysRightArr.shape())) {
446        delete pTabOut;
447        delete pMRight;
448        throw(AipsError("left and right Tsys data are not conformant"));
449      }
450      if (!shpRight.isEqual(tSysRightArr.shape())) {
451        delete pTabOut;
452        delete pMRight;
453        throw(AipsError("left and right scan tables are not conformant"));
454      }
455    }
456
457    // Make container
458     SDContainer sc = left->getSDContainer(i);
459
460     // Operate on data and TSys
461     if (what==0) {
462        MaskedArray<Float> tmp = mLeft + *pMRight;
463        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
464        if (doTSys) sc.putTsys(tSysLeftArr+tSysRightArr);
465     } else if (what==1) {
466        MaskedArray<Float> tmp = mLeft - *pMRight;
467        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
468        if (doTSys) sc.putTsys(tSysLeftArr-tSysRightArr);
469     } else if (what==2) {
470        MaskedArray<Float> tmp = mLeft * *pMRight;
471        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
472        if (doTSys) sc.putTsys(tSysLeftArr*tSysRightArr);
473     } else if (what==3) {
474        MaskedArray<Float> tmp = mLeft / *pMRight;
475        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
476        if (doTSys) sc.putTsys(tSysLeftArr/tSysRightArr);
477     } else if (what==4) {
478       if (preserve) {
479         MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) -
480           tSysRightArr;
481         putDataInSDC(sc, tmp.getArray(), tmp.getMask());
482       } else {
483         MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) -
484           tSysLeftArr;
485         putDataInSDC(sc, tmp.getArray(), tmp.getMask());
486       }
487       sc.putTsys(tSysRightArr);
488     }
489
490     // Put new row in output Table
491     pTabOut->putSDContainer(sc);
492  }
493  if (pMRight) delete pMRight;
494  pTabOut->resetCursor();
495
496  return CountedPtr<SDMemTable>(pTabOut);
497}
498
499
500std::vector<float> SDMath::statistic(const CountedPtr<SDMemTable>& in,
501                                     const Vector<Bool>& mask,
502                                     const String& which, Int row) const
503//
504// Perhaps iteration over pol/beam/if should be in here
505// and inside the nrow iteration ?
506//
507{
508  const uInt nRow = in->nRow();
509
510// Specify cursor location
511
512  IPosition start, end;
513  Bool doAll = False;
514  setCursorSlice(start, end, doAll, *in);
515
516// Loop over rows
517
518  const uInt nEl = mask.nelements();
519  uInt iStart = 0;
520  uInt iEnd = in->nRow()-1;
521//
522  if (row>=0) {
523     iStart = row;
524     iEnd = row;
525  }
526//
527  std::vector<float> result(iEnd-iStart+1);
528  for (uInt ii=iStart; ii <= iEnd; ++ii) {
529
530// Get row and deconstruct
531
532     MaskedArray<Float> dataIn = (in->rowAsMaskedArray(ii))(start,end);
533     Array<Float> v = dataIn.getArray().nonDegenerate();
534     Array<Bool>  m = dataIn.getMask().nonDegenerate();
535
536// Access desired piece of data
537
538//     Array<Float> v((arr(start,end)).nonDegenerate());
539//     Array<Bool> m((barr(start,end)).nonDegenerate());
540
541// Apply OTF mask
542
543     MaskedArray<Float> tmp;
544     if (m.nelements()==nEl) {
545       tmp.setData(v,m&&mask);
546     } else {
547       tmp.setData(v,m);
548     }
549
550// Get statistic
551
552     result[ii-iStart] = mathutil::statistics(which, tmp);
553  }
554//
555  return result;
556}
557
558
559SDMemTable* SDMath::bin(const SDMemTable& in, Int width)
560{
561  SDHeader sh = in.getSDHeader();
562  SDMemTable* pTabOut = new SDMemTable(in, True);
563
564// Bin up SpectralCoordinates
565
566  IPosition factors(1);
567  factors(0) = width;
568  for (uInt j=0; j<in.nCoordinates(); ++j) {
569    CoordinateSystem cSys;
570    cSys.addCoordinate(in.getSpectralCoordinate(j));
571    CoordinateSystem cSysBin =
572      CoordinateUtil::makeBinnedCoordinateSystem(factors, cSys, False);
573//
574    SpectralCoordinate sCBin = cSysBin.spectralCoordinate(0);
575    pTabOut->setCoordinate(sCBin, j);
576  }
577
578// Use RebinLattice to find shape
579
580  IPosition shapeIn(1,sh.nchan);
581  IPosition shapeOut = RebinLattice<Float>::rebinShape(shapeIn, factors);
582  sh.nchan = shapeOut(0);
583  pTabOut->putSDHeader(sh);
584
585// Loop over rows and bin along channel axis
586
587  for (uInt i=0; i < in.nRow(); ++i) {
588    SDContainer sc = in.getSDContainer(i);
589//
590    Array<Float> tSys(sc.getTsys());                           // Get it out before sc changes shape
591
592// Bin up spectrum
593
594    MaskedArray<Float> marr(in.rowAsMaskedArray(i));
595    MaskedArray<Float> marrout;
596    LatticeUtilities::bin(marrout, marr, asap::ChanAxis, width);
597
598// Put back the binned data and flags
599
600    IPosition ip2 = marrout.shape();
601    sc.resize(ip2);
602//
603    putDataInSDC(sc, marrout.getArray(), marrout.getMask());
604
605// Bin up Tsys.
606
607    Array<Bool> allGood(tSys.shape(),True);
608    MaskedArray<Float> tSysIn(tSys, allGood, True);
609//
610    MaskedArray<Float> tSysOut;
611    LatticeUtilities::bin(tSysOut, tSysIn, asap::ChanAxis, width);
612    sc.putTsys(tSysOut.getArray());
613//
614    pTabOut->putSDContainer(sc);
615  }
616  return pTabOut;
617}
618
619SDMemTable* SDMath::resample(const SDMemTable& in, const String& methodStr,
620                             Float width)
621//
622// Should add the possibility of width being specified in km/s. This means
623// that for each freqID (SpectralCoordinate) we will need to convert to an
624// average channel width (say at the reference pixel).  Then we would need
625// to be careful to make sure each spectrum (of different freqID)
626// is the same length.
627//
628{
629   Bool doVel = False;
630   if (doVel) {
631      for (uInt j=0; j<in.nCoordinates(); ++j) {
632         SpectralCoordinate sC = in.getSpectralCoordinate(j);
633      }
634   }
635
636// Interpolation method
637
638  InterpolateArray1D<Double,Float>::InterpolationMethod interp;
639  convertInterpString(interp, methodStr);
640  Int interpMethod(interp);
641
642// Make output table
643
644  SDMemTable* pTabOut = new SDMemTable(in, True);
645
646// Resample SpectralCoordinates (one per freqID)
647
648  const uInt nCoord = in.nCoordinates();
649  Vector<Float> offset(1,0.0);
650  Vector<Float> factors(1,1.0/width);
651  Vector<Int> newShape;
652  for (uInt j=0; j<in.nCoordinates(); ++j) {
653    CoordinateSystem cSys;
654    cSys.addCoordinate(in.getSpectralCoordinate(j));
655    CoordinateSystem cSys2 = cSys.subImage(offset, factors, newShape);
656    SpectralCoordinate sC = cSys2.spectralCoordinate(0);
657//
658    pTabOut->setCoordinate(sC, j);
659  }
660
661// Get header
662
663  SDHeader sh = in.getSDHeader();
664
665// Generate resampling vectors
666
667  const uInt nChanIn = sh.nchan;
668  Vector<Float> xIn(nChanIn);
669  indgen(xIn);
670//
671  Int fac =  Int(nChanIn/width);
672  Vector<Float> xOut(fac+10);          // 10 to be safe - resize later
673  uInt i = 0;
674  Float x = 0.0;
675  Bool more = True;
676  while (more) {
677    xOut(i) = x;
678//
679    i++;
680    x += width;
681    if (x>nChanIn-1) more = False;
682  }
683  const uInt nChanOut = i;
684  xOut.resize(nChanOut,True);
685//
686  IPosition shapeIn(in.rowAsMaskedArray(0).shape());
687  sh.nchan = nChanOut;
688  pTabOut->putSDHeader(sh);
689
690// Loop over rows and resample along channel axis
691
692  Array<Float> valuesOut;
693  Array<Bool> maskOut;
694  Array<Float> tSysOut;
695  Array<Bool> tSysMaskIn(shapeIn,True);
696  Array<Bool> tSysMaskOut;
697  for (uInt i=0; i < in.nRow(); ++i) {
698
699// Get container
700
701     SDContainer sc = in.getSDContainer(i);
702
703// Get data and Tsys
704
705     const Array<Float>& tSysIn = sc.getTsys();
706     const MaskedArray<Float>& dataIn(in.rowAsMaskedArray(i));
707     Array<Float> valuesIn = dataIn.getArray();
708     Array<Bool> maskIn = dataIn.getMask();
709
710// Interpolate data
711
712     InterpolateArray1D<Float,Float>::interpolate(valuesOut, maskOut, xOut,
713                                                  xIn, valuesIn, maskIn,
714                                                  interpMethod, True, True);
715     sc.resize(valuesOut.shape());
716     putDataInSDC(sc, valuesOut, maskOut);
717
718// Interpolate TSys
719
720     InterpolateArray1D<Float,Float>::interpolate(tSysOut, tSysMaskOut, xOut,
721                                                  xIn, tSysIn, tSysMaskIn,
722                                                  interpMethod, True, True);
723    sc.putTsys(tSysOut);
724
725// Put container in output
726
727    pTabOut->putSDContainer(sc);
728  }
729//
730  return pTabOut;
731}
732
733SDMemTable* SDMath::unaryOperate(const SDMemTable& in, Float val, Bool doAll,
734                                 uInt what, Bool doTSys)
735//
736// what = 0   Multiply
737//        1   Add
738{
739   SDMemTable* pOut = new SDMemTable(in,False);
740   const Table& tOut = pOut->table();
741   ArrayColumn<Float> specCol(tOut,"SPECTRA");
742   ArrayColumn<Float> tSysCol(tOut,"TSYS");
743   Array<Float> tSysArr;
744
745// Get data slice bounds
746
747   IPosition start, end;
748   setCursorSlice (start, end, doAll, in);
749//
750   for (uInt i=0; i<tOut.nrow(); i++) {
751
752// Modify data
753
754      MaskedArray<Float> dataIn(pOut->rowAsMaskedArray(i));
755      MaskedArray<Float> dataIn2 = dataIn(start,end);    // Reference
756      if (what==0) {
757         dataIn2 *= val;
758      } else if (what==1) {
759         dataIn2 += val;
760      }
761      specCol.put(i, dataIn.getArray());
762
763// Modify Tsys
764
765      if (doTSys) {
766         tSysCol.get(i, tSysArr);
767         Array<Float> tSysArr2 = tSysArr(start,end);     // Reference
768         if (what==0) {
769            tSysArr2 *= val;
770         } else if (what==1) {
771            tSysArr2 += val;
772         }
773         tSysCol.put(i, tSysArr);
774      }
775   }
776//
777   return pOut;
778}
779
780SDMemTable* SDMath::averagePol(const SDMemTable& in, const Vector<Bool>& mask,
781                               const String& weightStr)
782//
783// Average all polarizations together, weighted by variance
784//
785{
786   WeightType wtType = NONE;
787   convertWeightString(wtType, weightStr, True);
788
789// Create output Table and reshape number of polarizations
790
791  Bool clear=True;
792  SDMemTable* pTabOut = new SDMemTable(in, clear);
793  SDHeader header = pTabOut->getSDHeader();
794  header.npol = 1;
795  pTabOut->putSDHeader(header);
796//
797  const Table& tabIn = in.table();
798
799// Shape of input and output data
800
801  const IPosition& shapeIn = in.rowAsMaskedArray(0).shape();
802  IPosition shapeOut(shapeIn);
803  shapeOut(asap::PolAxis) = 1;                          // Average all polarizations
804  if (shapeIn(asap::PolAxis)==1) {
805    delete  pTabOut;
806    throw(AipsError("The input has only one polarisation"));
807  }
808//
809  const uInt nRows = in.nRow();
810  const uInt nChan = shapeIn(asap::ChanAxis);
811  AlwaysAssert(asap::nAxes==4,AipsError);
812  const IPosition vecShapeOut(4,1,1,1,nChan);     // A multi-dim form of a Vector shape
813  IPosition start(4), end(4);
814
815// Output arrays
816
817  Array<Float> outData(shapeOut, 0.0);
818  Array<Bool> outMask(shapeOut, True);
819  const IPosition axes(2, asap::PolAxis, asap::ChanAxis);              // pol-channel plane
820
821// Attach Tsys column if needed
822
823  ROArrayColumn<Float> tSysCol;
824  Array<Float> tSys;
825  if (wtType==TSYS) {
826     tSysCol.attach(tabIn,"TSYS");
827  }
828//
829  const Bool useMask = (mask.nelements() == shapeIn(asap::ChanAxis));
830
831// Loop over rows
832
833   for (uInt iRow=0; iRow<nRows; iRow++) {
834
835// Get data for this row
836
837      MaskedArray<Float> marr(in.rowAsMaskedArray(iRow));
838      Array<Float>& arr = marr.getRWArray();
839      const Array<Bool>& barr = marr.getMask();
840
841// Get Tsys
842
843      if (wtType==TSYS) {
844         tSysCol.get(iRow,tSys);
845      }
846
847// Make iterators to iterate by pol-channel planes
848// The tSys array is empty unless wtType=TSYS so only
849// access the iterator is that is the case
850
851      ReadOnlyArrayIterator<Float> itDataPlane(arr, axes);
852      ReadOnlyArrayIterator<Bool> itMaskPlane(barr, axes);
853      ReadOnlyArrayIterator<Float>* pItTsysPlane = 0;
854      if (wtType==TSYS)
855        pItTsysPlane = new ReadOnlyArrayIterator<Float>(tSys, axes);
856
857// Accumulations
858
859      Float fac = 1.0;
860      Vector<Float> vecSum(nChan,0.0);
861
862// Iterate through data by pol-channel planes
863
864      while (!itDataPlane.pastEnd()) {
865
866// Iterate through plane by polarization  and accumulate Vectors
867
868        Vector<Float> t1(nChan); t1 = 0.0;
869        Vector<Bool> t2(nChan); t2 = True;
870        Float tSys = 0.0;
871        MaskedArray<Float> vecSum(t1,t2);
872        Float norm = 0.0;
873        {
874           ReadOnlyVectorIterator<Float> itDataVec(itDataPlane.array(), 1);
875           ReadOnlyVectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
876//
877           ReadOnlyVectorIterator<Float>* pItTsysVec = 0;
878           if (wtType==TSYS) {
879              pItTsysVec =
880                new ReadOnlyVectorIterator<Float>(pItTsysPlane->array(), 1);
881           }
882//
883           while (!itDataVec.pastEnd()) {
884
885// Create MA of data & mask (optionally including OTF mask) and  get variance for this spectrum
886
887              if (useMask) {
888                 const MaskedArray<Float> spec(itDataVec.vector(),
889                                               mask&&itMaskVec.vector());
890                 if (wtType==VAR) {
891                    fac = 1.0 / variance(spec);
892                 } else if (wtType==TSYS) {
893                    tSys = pItTsysVec->vector()[0];      // Drop pseudo channel dependency
894                    fac = 1.0 / tSys / tSys;
895                 }
896              } else {
897                 const MaskedArray<Float> spec(itDataVec.vector(),
898                                               itMaskVec.vector());
899                 if (wtType==VAR) {
900                    fac = 1.0 / variance(spec);
901                 } else if (wtType==TSYS) {
902                    tSys = pItTsysVec->vector()[0];      // Drop pseudo channel dependency
903                    fac = 1.0 / tSys / tSys;
904                 }
905              }
906
907// Normalize spectrum (without OTF mask) and accumulate
908
909              const MaskedArray<Float> spec(fac*itDataVec.vector(),
910                                            itMaskVec.vector());
911              vecSum += spec;
912              norm += fac;
913
914// Next
915
916              itDataVec.next();
917              itMaskVec.next();
918              if (wtType==TSYS) pItTsysVec->next();
919           }
920
921// Clean up
922
923           if (pItTsysVec) {
924              delete pItTsysVec;
925              pItTsysVec = 0;
926           }
927        }
928
929// Normalize summed spectrum
930
931        vecSum /= norm;
932
933// FInd position in input data array.  We are iterating by pol-channel
934// plane so all that will change is beam and IF and that's what we want.
935
936        IPosition pos = itDataPlane.pos();
937
938// Write out data. This is a bit messy. We have to reform the Vector
939// accumulator into an Array of shape (1,1,1,nChan)
940
941        start = pos;
942        end = pos;
943        end(asap::ChanAxis) = nChan-1;
944        outData(start,end) = vecSum.getArray().reform(vecShapeOut);
945        outMask(start,end) = vecSum.getMask().reform(vecShapeOut);
946
947// Step to next beam/IF combination
948
949        itDataPlane.next();
950        itMaskPlane.next();
951        if (wtType==TSYS) pItTsysPlane->next();
952      }
953
954// Generate output container and write it to output table
955
956      SDContainer sc = in.getSDContainer();
957      sc.resize(shapeOut);
958//
959      putDataInSDC(sc, outData, outMask);
960      pTabOut->putSDContainer(sc);
961//
962      if (wtType==TSYS) {
963         delete pItTsysPlane;
964         pItTsysPlane = 0;
965      }
966   }
967
968// Set polarization cursor to 0
969
970  pTabOut->setPol(0);
971//
972  return pTabOut;
973}
974
975
976SDMemTable* SDMath::smooth(const SDMemTable& in,
977                           const casa::String& kernelType,
978                           casa::Float width, Bool doAll)
979//
980// Should smooth TSys as well
981//
982{
983
984  // Number of channels
985   const uInt nChan = in.nChan();
986
987   // Generate Kernel
988   VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernelType);
989   Vector<Float> kernel = VectorKernel::make(type, width, nChan, True, False);
990
991   // Generate Convolver
992   IPosition shape(1,nChan);
993   Convolver<Float> conv(kernel, shape);
994
995   // New Table
996   SDMemTable* pTabOut = new SDMemTable(in,True);
997
998   // Output Vectors
999   Vector<Float> valuesOut(nChan);
1000   Vector<Bool> maskOut(nChan);
1001
1002   // Get data slice bounds
1003   IPosition start, end;
1004   setCursorSlice (start, end, doAll, in);
1005
1006   // Loop over rows in Table
1007   for (uInt ri=0; ri < in.nRow(); ++ri) {
1008
1009     // Get slice of data
1010      MaskedArray<Float> dataIn = in.rowAsMaskedArray(ri);
1011
1012      // Deconstruct and get slices which reference these arrays
1013      Array<Float> valuesIn = dataIn.getArray();
1014      Array<Bool> maskIn = dataIn.getMask();
1015
1016      Array<Float> valuesIn2 = valuesIn(start,end);       // ref to valuesIn
1017      Array<Bool> maskIn2 = maskIn(start,end);
1018
1019      // Iterate through by spectra
1020      VectorIterator<Float> itValues(valuesIn2, asap::ChanAxis);
1021      VectorIterator<Bool> itMask(maskIn2, asap::ChanAxis);
1022      while (!itValues.pastEnd()) {
1023
1024        // Smooth
1025        if (kernelType==VectorKernel::HANNING) {
1026          mathutil::hanning(valuesOut, maskOut, itValues.vector(),
1027                            itMask.vector());
1028          itMask.vector() = maskOut;
1029        } else {
1030          mathutil::replaceMaskByZero(itValues.vector(), itMask.vector());
1031          conv.linearConv(valuesOut, itValues.vector());
1032        }
1033
1034        itValues.vector() = valuesOut;
1035        itValues.next();
1036        itMask.next();
1037      }
1038
1039      // Create and put back
1040      SDContainer sc = in.getSDContainer(ri);
1041      putDataInSDC(sc, valuesIn, maskIn);
1042
1043      pTabOut->putSDContainer(sc);
1044   }
1045
1046  return pTabOut;
1047}
1048
1049
1050
1051SDMemTable* SDMath::convertFlux(const SDMemTable& in, Float D, Float etaAp,
1052                                Float JyPerK, Bool doAll)
1053//
1054// etaAp = aperture efficiency (-1 means find)
1055// D     = geometric diameter (m)  (-1 means find)
1056// JyPerK
1057//
1058{
1059  SDHeader sh = in.getSDHeader();
1060  SDMemTable* pTabOut = new SDMemTable(in, True);
1061
1062  // Find out how to convert values into Jy and K (e.g. units might be
1063  // mJy or mK) Also automatically find out what we are converting to
1064  // according to the flux unit
1065  Unit fluxUnit(sh.fluxunit);
1066  Unit K(String("K"));
1067  Unit JY(String("Jy"));
1068
1069  Bool toKelvin = True;
1070  Double cFac = 1.0;
1071
1072  if (fluxUnit==JY) {
1073    pushLog("Converting to K");
1074    Quantum<Double> t(1.0,fluxUnit);
1075    Quantum<Double> t2 = t.get(JY);
1076    cFac = (t2 / t).getValue();               // value to Jy
1077
1078    toKelvin = True;
1079    sh.fluxunit = "K";
1080  } else if (fluxUnit==K) {
1081    pushLog("Converting to Jy");
1082    Quantum<Double> t(1.0,fluxUnit);
1083    Quantum<Double> t2 = t.get(K);
1084    cFac = (t2 / t).getValue();              // value to K
1085
1086    toKelvin = False;
1087    sh.fluxunit = "Jy";
1088  } else {
1089    throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
1090  }
1091
1092  pTabOut->putSDHeader(sh);
1093
1094  // Make sure input values are converted to either Jy or K first...
1095  Float factor = cFac;
1096
1097  // Select method
1098  if (JyPerK>0.0) {
1099    factor *= JyPerK;
1100    if (toKelvin) factor = 1.0 / JyPerK;
1101    ostringstream oss;
1102    oss << "Jy/K = " << JyPerK;
1103    pushLog(String(oss));
1104    Vector<Float> factors(in.nRow(), factor);
1105    scaleByVector(pTabOut, in, doAll, factors, False);
1106  } else if (etaAp>0.0) {
1107    Bool throwIt = True;
1108    Instrument inst = SDAttr::convertInstrument(sh.antennaname, throwIt);
1109    SDAttr sda;
1110    if (D < 0) D = sda.diameter(inst);
1111    Float JyPerK = SDAttr::findJyPerK(etaAp,D);
1112    ostringstream oss;
1113    oss << "Jy/K = " << JyPerK;
1114    pushLog(String(oss));
1115    factor *= JyPerK;
1116    if (toKelvin) {
1117      factor = 1.0 / factor;
1118    }
1119
1120    Vector<Float> factors(in.nRow(), factor);
1121    scaleByVector(pTabOut, in, doAll, factors, False);
1122  } else {
1123
1124    // OK now we must deal with automatic look up of values.
1125    // We must also deal with the fact that the factors need
1126    // to be computed per IF and may be different and may
1127    // change per integration.
1128
1129    pushLog("Looking up conversion factors");
1130    convertBrightnessUnits (pTabOut, in, toKelvin, cFac, doAll);
1131  }
1132  return pTabOut;
1133}
1134
1135
1136SDMemTable* SDMath::gainElevation(const SDMemTable& in,
1137                                  const Vector<Float>& coeffs,
1138                                  const String& fileName,
1139                                  const String& methodStr, Bool doAll)
1140{
1141
1142  // Get header and clone output table
1143  SDHeader sh = in.getSDHeader();
1144  SDMemTable* pTabOut = new SDMemTable(in, True);
1145
1146  // Get elevation data from SDMemTable and convert to degrees
1147  const Table& tab = in.table();
1148  ROScalarColumn<Float> elev(tab, "ELEVATION");
1149  Vector<Float> x = elev.getColumn();
1150  x *= Float(180 / C::pi);                        // Degrees
1151
1152  const uInt nC = coeffs.nelements();
1153  if (fileName.length()>0 && nC>0) {
1154    throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
1155  }
1156
1157  // Correct
1158  if (nC>0 || fileName.length()==0) {
1159    // Find instrument
1160     Bool throwIt = True;
1161     Instrument inst = SDAttr::convertInstrument (sh.antennaname, throwIt);
1162
1163     // Set polynomial
1164     Polynomial<Float>* pPoly = 0;
1165     Vector<Float> coeff;
1166     String msg;
1167     if (nC>0) {
1168       pPoly = new Polynomial<Float>(nC);
1169       coeff = coeffs;
1170       msg = String("user");
1171     } else {
1172       SDAttr sdAttr;
1173       coeff = sdAttr.gainElevationPoly(inst);
1174       pPoly = new Polynomial<Float>(3);
1175       msg = String("built in");
1176     }
1177
1178     if (coeff.nelements()>0) {
1179       pPoly->setCoefficients(coeff);
1180     } else {
1181       delete pPoly;
1182       throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
1183     }
1184     ostringstream oss;
1185     oss << "Making polynomial correction with " << msg << " coefficients:" << endl;
1186     oss << "   " <<  coeff;
1187     pushLog(String(oss));
1188     const uInt nRow = in.nRow();
1189     Vector<Float> factor(nRow);
1190     for (uInt i=0; i<nRow; i++) {
1191       factor[i] = 1.0 / (*pPoly)(x[i]);
1192     }
1193     delete pPoly;
1194     scaleByVector (pTabOut, in, doAll, factor, True);
1195
1196  } else {
1197
1198    // Indicate which columns to read from ascii file
1199    String col0("ELEVATION");
1200    String col1("FACTOR");
1201
1202    // Read and correct
1203
1204    pushLog("Making correction from ascii Table");
1205    scaleFromAsciiTable (pTabOut, in, fileName, col0, col1,
1206                         methodStr, doAll, x, True);
1207  }
1208
1209  return pTabOut;
1210}
1211
1212
1213SDMemTable* SDMath::opacity(const SDMemTable& in, Float tau, Bool doAll)
1214{
1215
1216  // Get header and clone output table
1217
1218  SDHeader sh = in.getSDHeader();
1219  SDMemTable* pTabOut = new SDMemTable(in, True);
1220
1221// Get elevation data from SDMemTable and convert to degrees
1222
1223  const Table& tab = in.table();
1224  ROScalarColumn<Float> elev(tab, "ELEVATION");
1225  Vector<Float> zDist = elev.getColumn();
1226  zDist = Float(C::pi_2) - zDist;
1227
1228// Generate correction factor
1229
1230  const uInt nRow = in.nRow();
1231  Vector<Float> factor(nRow);
1232  Vector<Float> factor2(nRow);
1233  for (uInt i=0; i<nRow; i++) {
1234     factor[i] = exp(tau)/cos(zDist[i]);
1235  }
1236
1237// Correct
1238
1239  scaleByVector (pTabOut, in, doAll, factor, True);
1240
1241  return pTabOut;
1242}
1243
1244
1245void SDMath::rotateXYPhase(SDMemTable& in, Float value, Bool doAll)
1246//
1247// phase in degrees
1248// assumes linear correlations
1249//
1250{
1251  if (in.nPol() != 4) {
1252    throw(AipsError("You must have 4 polarizations to run this function"));
1253  }
1254
1255   SDHeader sh = in.getSDHeader();
1256   Instrument inst = SDAttr::convertInstrument(sh.antennaname, False);
1257   SDAttr sdAtt;
1258   if (sdAtt.feedPolType(inst) != LINEAR) {
1259      throw(AipsError("Only linear polarizations are supported"));
1260   }
1261//
1262   const Table& tabIn = in.table();
1263   ArrayColumn<Float> specCol(tabIn,"SPECTRA");
1264   IPosition start(asap::nAxes,0);
1265   IPosition end(asap::nAxes);
1266
1267// Set cursor slice. Assumes shape the same for all rows
1268
1269   setCursorSlice (start, end, doAll, in);
1270   IPosition start3(start);
1271   start3(asap::PolAxis) = 2;                 // Real(XY)
1272   IPosition end3(end);
1273   end3(asap::PolAxis) = 2;
1274//
1275   IPosition start4(start);
1276   start4(asap::PolAxis) = 3;                 // Imag (XY)
1277   IPosition end4(end);
1278   end4(asap::PolAxis) = 3;
1279//
1280   uInt nRow = in.nRow();
1281   Array<Float> data;
1282   for (uInt i=0; i<nRow;++i) {
1283      specCol.get(i,data);
1284      IPosition shape = data.shape();
1285
1286      // Get polarization slice references
1287      Array<Float> C3 = data(start3,end3);
1288      Array<Float> C4 = data(start4,end4);
1289
1290      // Rotate
1291      SDPolUtil::rotatePhase(C3, C4, value);
1292
1293      // Put
1294      specCol.put(i,data);
1295   }
1296}
1297
1298
1299void SDMath::rotateLinPolPhase(SDMemTable& in, Float value, Bool doAll)
1300//
1301// phase in degrees
1302// assumes linear correlations
1303//
1304{
1305   if (in.nPol() != 4) {
1306      throw(AipsError("You must have 4 polarizations to run this function"));
1307   }
1308//
1309   SDHeader sh = in.getSDHeader();
1310   Instrument inst = SDAttr::convertInstrument(sh.antennaname, False);
1311   SDAttr sdAtt;
1312   if (sdAtt.feedPolType(inst) != LINEAR) {
1313      throw(AipsError("Only linear polarizations are supported"));
1314   }
1315//
1316   const Table& tabIn = in.table();
1317   ArrayColumn<Float> specCol(tabIn,"SPECTRA");
1318   ROArrayColumn<Float> stokesCol(tabIn,"STOKES");
1319   IPosition start(asap::nAxes,0);
1320   IPosition end(asap::nAxes);
1321
1322// Set cursor slice. Assumes shape the same for all rows
1323
1324   setCursorSlice (start, end, doAll, in);
1325//
1326   IPosition start1(start);
1327   start1(asap::PolAxis) = 0;                // C1 (XX)
1328   IPosition end1(end);
1329   end1(asap::PolAxis) = 0;
1330//
1331   IPosition start2(start);
1332   start2(asap::PolAxis) = 1;                 // C2 (YY)
1333   IPosition end2(end);
1334   end2(asap::PolAxis) = 1;
1335//
1336   IPosition start3(start);
1337   start3(asap::PolAxis) = 2;                 // C3 ( Real(XY) )
1338   IPosition end3(end);
1339   end3(asap::PolAxis) = 2;
1340//
1341   IPosition startI(start);
1342   startI(asap::PolAxis) = 0;                 // I
1343   IPosition endI(end);
1344   endI(asap::PolAxis) = 0;
1345//
1346   IPosition startQ(start);
1347   startQ(asap::PolAxis) = 1;                 // Q
1348   IPosition endQ(end);
1349   endQ(asap::PolAxis) = 1;
1350//
1351   IPosition startU(start);
1352   startU(asap::PolAxis) = 2;                 // U
1353   IPosition endU(end);
1354   endU(asap::PolAxis) = 2;
1355
1356//
1357   uInt nRow = in.nRow();
1358   Array<Float> data, stokes;
1359   for (uInt i=0; i<nRow;++i) {
1360      specCol.get(i,data);
1361      stokesCol.get(i,stokes);
1362      IPosition shape = data.shape();
1363
1364// Get linear polarization slice references
1365
1366      Array<Float> C1 = data(start1,end1);
1367      Array<Float> C2 = data(start2,end2);
1368      Array<Float> C3 = data(start3,end3);
1369
1370// Get STokes slice references
1371
1372      Array<Float> I = stokes(startI,endI);
1373      Array<Float> Q = stokes(startQ,endQ);
1374      Array<Float> U = stokes(startU,endU);
1375
1376// Rotate
1377
1378      SDPolUtil::rotateLinPolPhase(C1, C2, C3, I, Q, U, value);
1379
1380// Put
1381
1382      specCol.put(i,data);
1383   }
1384}
1385
1386// 'private' functions
1387
1388void SDMath::convertBrightnessUnits (SDMemTable* pTabOut, const SDMemTable& in,
1389                                     Bool toKelvin, Float cFac, Bool doAll)
1390{
1391
1392// Get header
1393
1394   SDHeader sh = in.getSDHeader();
1395   const uInt nChan = sh.nchan;
1396
1397// Get instrument
1398
1399   Bool throwIt = True;
1400   Instrument inst = SDAttr::convertInstrument(sh.antennaname, throwIt);
1401
1402// Get Diameter (m)
1403
1404   SDAttr sdAtt;
1405// Get epoch of first row
1406
1407   MEpoch dateObs = in.getEpoch(0);
1408
1409// Generate a Vector of correction factors. One per FreqID
1410
1411   SDFrequencyTable sdft = in.getSDFreqTable();
1412   Vector<uInt> freqIDs;
1413//
1414   Vector<Float> freqs(sdft.length());
1415   for (uInt i=0; i<sdft.length(); i++) {
1416      freqs(i) = (nChan/2 - sdft.referencePixel(i))*sdft.increment(i) + sdft.referenceValue(i);
1417   }
1418//
1419   Vector<Float> JyPerK = sdAtt.JyPerK(inst, dateObs, freqs);
1420   ostringstream oss;
1421   oss << "Jy/K = " << JyPerK;
1422   pushLog(String(oss));
1423   Vector<Float> factors = cFac * JyPerK;
1424   if (toKelvin) factors = Float(1.0) / factors;
1425
1426// Get data slice bounds
1427
1428   IPosition start, end;
1429   setCursorSlice (start, end, doAll, in);
1430   const uInt ifAxis = in.getIF();
1431
1432// Iteration axes
1433
1434   IPosition axes(asap::nAxes-1,0);
1435   for (uInt i=0,j=0; i<asap::nAxes; i++) {
1436      if (i!=asap::IFAxis) {
1437         axes(j++) = i;
1438      }
1439   }
1440
1441// Loop over rows and apply correction factor
1442
1443   Float factor = 1.0;
1444   const uInt axis = asap::ChanAxis;
1445   for (uInt i=0; i < in.nRow(); ++i) {
1446
1447// Get data
1448
1449      MaskedArray<Float> dataIn = in.rowAsMaskedArray(i);
1450      Array<Float>& values = dataIn.getRWArray();           // Ref to dataIn
1451      Array<Float> values2 = values(start,end);             // Ref to values to dataIn
1452
1453// Get SDCOntainer
1454
1455      SDContainer sc = in.getSDContainer(i);
1456
1457// Get FreqIDs
1458
1459      freqIDs = sc.getFreqMap();
1460
1461// Now the conversion factor depends only upon frequency
1462// So we need to iterate through by IF only giving
1463// us BEAM/POL/CHAN cubes
1464
1465      ArrayIterator<Float> itIn(values2, axes);
1466      uInt ax = 0;
1467      while (!itIn.pastEnd()) {
1468        itIn.array() *= factors(freqIDs(ax));         // Writes back to dataIn
1469        itIn.next();
1470      }
1471
1472// Write out
1473
1474      putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
1475//
1476      pTabOut->putSDContainer(sc);
1477   }
1478}
1479
1480
1481
1482SDMemTable* SDMath::frequencyAlign(const SDMemTable& in,
1483                                   MFrequency::Types freqSystem,
1484                                   const String& refTime,
1485                                   const String& methodStr,
1486                                   Bool perFreqID)
1487{
1488// Get Header
1489
1490   SDHeader sh = in.getSDHeader();
1491   const uInt nChan = sh.nchan;
1492   const uInt nRows = in.nRow();
1493   const uInt nIF = sh.nif;
1494
1495// Get Table reference
1496
1497   const Table& tabIn = in.table();
1498
1499// Get Columns from Table
1500
1501   ROScalarColumn<Double> mjdCol(tabIn, "TIME");
1502   ROScalarColumn<String> srcCol(tabIn, "SRCNAME");
1503   ROArrayColumn<uInt> fqIDCol(tabIn, "FREQID");
1504   Vector<Double> times = mjdCol.getColumn();
1505
1506// Generate DataDesc table
1507
1508   Matrix<uInt> ddIdx;
1509   SDDataDesc dDesc;
1510   generateDataDescTable(ddIdx, dDesc, nIF, in, tabIn, srcCol,
1511                          fqIDCol, perFreqID);
1512
1513// Get reference Epoch to time of first row or given String
1514
1515   Unit DAY(String("d"));
1516   MEpoch::Ref epochRef(in.getTimeReference());
1517   MEpoch refEpoch;
1518   if (refTime.length()>0) {
1519     refEpoch = epochFromString(refTime, in.getTimeReference());
1520   } else {
1521     refEpoch = in.getEpoch(0);
1522   }
1523   ostringstream oss;
1524   oss << "Aligned at reference Epoch " << formatEpoch(refEpoch) << " in frame " << MFrequency::showType(freqSystem);
1525   pushLog(String(oss));
1526
1527   // Get Reference Position
1528
1529   MPosition refPos = in.getAntennaPosition();
1530
1531   // Create FrequencyAligner Block. One FA for each possible
1532   // source/freqID (perFreqID=True) or source/IF (perFreqID=False)
1533   // combination
1534
1535   PtrBlock<FrequencyAligner<Float>* > a(dDesc.length());
1536   generateFrequencyAligners(a, dDesc, in, nChan, freqSystem, refPos,
1537                              refEpoch, perFreqID);
1538
1539   // Generate and fill output Frequency Table.  WHen perFreqID=True,
1540   // there is one output FreqID for each entry in the SDDataDesc
1541   // table.  However, in perFreqID=False mode, there may be some
1542   // degeneracy, so we need a little translation map
1543
1544   SDFrequencyTable freqTabOut = in.getSDFreqTable();
1545   freqTabOut.setLength(0);
1546   Vector<String> units(1);
1547   units = String("Hz");
1548   Bool linear=True;
1549   //
1550   Vector<uInt> ddFQTrans(dDesc.length(),0);
1551   for (uInt i=0; i<dDesc.length(); i++) {
1552
1553     // Get Aligned SC in Hz
1554
1555     SpectralCoordinate sC = a[i]->alignedSpectralCoordinate(linear);
1556     sC.setWorldAxisUnits(units);
1557
1558     // Add FreqID
1559
1560     uInt idx = freqTabOut.addFrequency(sC.referencePixel()[0],
1561                                        sC.referenceValue()[0],
1562                                        sC.increment()[0]);
1563     // output FreqID = ddFQTrans(ddIdx)
1564     ddFQTrans(i) = idx;
1565   }
1566
1567   // Interpolation method
1568
1569   InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1570   convertInterpString(interp, methodStr);
1571
1572   // New output Table
1573
1574   //pushLog("Create output table");
1575   SDMemTable* pTabOut = new SDMemTable(in,True);
1576   pTabOut->putSDFreqTable(freqTabOut);
1577
1578   // Loop over rows in Table
1579
1580   Bool extrapolate=False;
1581   const IPosition polChanAxes(2, asap::PolAxis, asap::ChanAxis);
1582   Bool useCachedAbcissa = False;
1583   Bool first = True;
1584   Bool ok;
1585   Vector<Float> yOut;
1586   Vector<Bool> maskOut;
1587   Vector<uInt> freqID(nIF);
1588   uInt ifIdx, faIdx;
1589   Vector<Double> xIn;
1590   //
1591   for (uInt iRow=0; iRow<nRows; ++iRow) {
1592//      if (iRow%10==0) {
1593//        ostringstream oss;
1594//        oss << "Processing row " << iRow;
1595//        pushLog(String(oss));
1596//      }
1597
1598     // Get EPoch
1599
1600     Quantum<Double> tQ2(times[iRow],DAY);
1601     MVEpoch mv2(tQ2);
1602     MEpoch epoch(mv2, epochRef);
1603
1604     // Get copy of data
1605
1606     const MaskedArray<Float>& mArrIn(in.rowAsMaskedArray(iRow));
1607     Array<Float> values = mArrIn.getArray();
1608     Array<Bool> mask = mArrIn.getMask();
1609
1610     // For each row, the Frequency abcissa will be the same
1611     // regardless of polarization.  For all other axes (IF and BEAM)
1612     // the abcissa will change.  So we iterate through the data by
1613     // pol-chan planes to mimimize the work.  Probably won't work for
1614     // multiple beams at this point.
1615
1616     ArrayIterator<Float> itValuesPlane(values, polChanAxes);
1617     ArrayIterator<Bool> itMaskPlane(mask, polChanAxes);
1618     while (!itValuesPlane.pastEnd()) {
1619
1620       // Find the IF index and then the FA PtrBlock index
1621
1622       const IPosition& pos = itValuesPlane.pos();
1623       ifIdx = pos(asap::IFAxis);
1624       faIdx = ddIdx(iRow,ifIdx);
1625
1626       // Generate abcissa for perIF.  Could cache this in a Matrix on
1627       // a per scan basis.  Pretty expensive doing it for every row.
1628
1629       if (!perFreqID) {
1630         xIn.resize(nChan);
1631         uInt fqID = dDesc.secID(ddIdx(iRow,ifIdx));
1632         SpectralCoordinate sC = in.getSpectralCoordinate(fqID);
1633           Double w;
1634           for (uInt i=0; i<nChan; i++) {
1635             sC.toWorld(w,Double(i));
1636              xIn[i] = w;
1637           }
1638       }
1639
1640       VectorIterator<Float> itValuesVec(itValuesPlane.array(), 1);
1641       VectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
1642
1643       // Iterate through the plane by vector and align
1644
1645        first = True;
1646        useCachedAbcissa=False;
1647        while (!itValuesVec.pastEnd()) {
1648          if (perFreqID) {
1649            ok = a[faIdx]->align (yOut, maskOut, itValuesVec.vector(),
1650                                  itMaskVec.vector(), epoch, useCachedAbcissa,
1651                                  interp, extrapolate);
1652          } else {
1653            ok = a[faIdx]->align (yOut, maskOut, xIn, itValuesVec.vector(),
1654                                  itMaskVec.vector(), epoch, useCachedAbcissa,
1655                                  interp, extrapolate);
1656          }
1657          //
1658          itValuesVec.vector() = yOut;
1659          itMaskVec.vector() = maskOut;
1660          //
1661          itValuesVec.next();
1662          itMaskVec.next();
1663          //
1664          if (first) {
1665            useCachedAbcissa = True;
1666            first = False;
1667          }
1668        }
1669        //
1670        itValuesPlane.next();
1671        itMaskPlane.next();
1672     }
1673
1674     // Create SDContainer and put back
1675
1676     SDContainer sc = in.getSDContainer(iRow);
1677     putDataInSDC(sc, values, mask);
1678
1679     // Set output FreqIDs
1680
1681     for (uInt i=0; i<nIF; i++) {
1682       uInt idx = ddIdx(iRow,i);               // Index into SDDataDesc table
1683       freqID(i) = ddFQTrans(idx);             // FreqID in output FQ table
1684     }
1685     sc.putFreqMap(freqID);
1686     //
1687     pTabOut->putSDContainer(sc);
1688   }
1689
1690   // Now we must set the base and extra frames to the input frame
1691   std::vector<string> info = pTabOut->getCoordInfo();
1692   info[1] = MFrequency::showType(freqSystem);   // Conversion frame
1693   info[3] = info[1];                            // Base frame
1694   pTabOut->setCoordInfo(info);
1695
1696   // Clean up PointerBlock
1697   for (uInt i=0; i<a.nelements(); i++) delete a[i];
1698
1699   return pTabOut;
1700}
1701
1702
1703SDMemTable* SDMath::frequencySwitch(const SDMemTable& in)
1704{
1705  if (in.nIF() != 2) {
1706    throw(AipsError("nIF != 2 "));
1707  }
1708  Bool clear = True;
1709  SDMemTable* pTabOut = new SDMemTable(in, clear);
1710  const Table& tabIn = in.table();
1711
1712  // Shape of input and output data
1713  const IPosition& shapeIn = in.rowAsMaskedArray(0).shape();
1714
1715  const uInt nRows = in.nRow();
1716  AlwaysAssert(asap::nAxes==4,AipsError);
1717
1718  ROArrayColumn<Float> tSysCol;
1719  Array<Float> tsys;
1720  tSysCol.attach(tabIn,"TSYS");
1721
1722  for (uInt iRow=0; iRow<nRows; iRow++) {
1723    // Get data for this row
1724    MaskedArray<Float> marr(in.rowAsMaskedArray(iRow));
1725    tSysCol.get(iRow, tsys);
1726
1727    // whole Array for IF 0
1728    IPosition start(asap::nAxes,0);
1729    IPosition end = shapeIn-1;
1730    end(asap::IFAxis) = 0;
1731
1732    MaskedArray<Float> on = marr(start,end);
1733    Array<Float> ton = tsys(start,end);
1734    // Make a copy as "src" is a refrence which is manipulated.
1735    // oncopy is needed for the inverse quotient
1736    MaskedArray<Float> oncopy = on.copy();
1737
1738    // whole Array for IF 1
1739    start(asap::IFAxis) = 1;
1740    end(asap::IFAxis) = 1;
1741
1742    MaskedArray<Float> off = marr(start,end);
1743    Array<Float> toff = tsys(start,end);
1744
1745    on /= off; on -= 1.0f;
1746    on *= ton;
1747    off /= oncopy; off -= 1.0f;
1748    off *= toff;
1749
1750    SDContainer sc = in.getSDContainer(iRow);
1751    putDataInSDC(sc, marr.getArray(), marr.getMask());
1752    pTabOut->putSDContainer(sc);
1753  }
1754  return pTabOut;
1755}
1756
1757void SDMath::fillSDC(SDContainer& sc,
1758                     const Array<Bool>& mask,
1759                     const Array<Float>& data,
1760                     const Array<Float>& tSys,
1761                     Int scanID, Double timeStamp,
1762                     Double interval, const String& sourceName,
1763                     const Vector<uInt>& freqID)
1764{
1765// Data and mask
1766
1767  putDataInSDC(sc, data, mask);
1768
1769// TSys
1770
1771  sc.putTsys(tSys);
1772
1773// Time things
1774
1775  sc.timestamp = timeStamp;
1776  sc.interval = interval;
1777  sc.scanid = scanID;
1778//
1779  sc.sourcename = sourceName;
1780  sc.putFreqMap(freqID);
1781}
1782
1783void SDMath::accumulate(Double& timeSum, Double& intSum, Int& nAccum,
1784                        MaskedArray<Float>& sum, Array<Float>& sumSq,
1785                        Array<Float>& nPts, Array<Float>& tSysSum,
1786                        Array<Float>& tSysSqSum,
1787                        const Array<Float>& tSys, const Array<Float>& nInc,
1788                        const Vector<Bool>& mask, Double time, Double interval,
1789                        const std::vector<CountedPtr<SDMemTable> >& in,
1790                        uInt iTab, uInt iRow, uInt axis,
1791                        uInt nAxesSub, Bool useMask,
1792                        WeightType wtType)
1793{
1794
1795// Get data
1796
1797   MaskedArray<Float> dataIn(in[iTab]->rowAsMaskedArray(iRow));
1798   Array<Float>& valuesIn = dataIn.getRWArray();           // writable reference
1799   const Array<Bool>& maskIn = dataIn.getMask();          // RO reference
1800//
1801   if (wtType==NONE) {
1802      const MaskedArray<Float> n(nInc,dataIn.getMask());
1803      nPts += n;                               // Only accumulates where mask==T
1804   } else if (wtType==TINT) {
1805
1806// We are weighting the data by integration time.
1807
1808     valuesIn *= Float(interval);
1809
1810   } else if (wtType==VAR) {
1811
1812// We are going to average the data, weighted by the noise for each pol, beam and IF.
1813// So therefore we need to iterate through by spectrum (axis 3)
1814
1815      VectorIterator<Float> itData(valuesIn, axis);
1816      ReadOnlyVectorIterator<Bool> itMask(maskIn, axis);
1817      Float fac = 1.0;
1818      IPosition pos(nAxesSub,0);
1819//
1820      while (!itData.pastEnd()) {
1821
1822// Make MaskedArray of Vector, optionally apply OTF mask, and find scaling factor
1823
1824         if (useMask) {
1825            MaskedArray<Float> tmp(itData.vector(),mask&&itMask.vector());
1826            fac = 1.0/variance(tmp);
1827         } else {
1828            MaskedArray<Float> tmp(itData.vector(),itMask.vector());
1829            fac = 1.0/variance(tmp);
1830         }
1831
1832// Scale data
1833
1834         itData.vector() *= fac;     // Writes back into 'dataIn'
1835//
1836// Accumulate variance per if/pol/beam averaged over spectrum
1837// This method to get pos2 from itData.pos() is only valid
1838// because the spectral axis is the last one (so we can just
1839// copy the first nAXesSub positions out)
1840
1841         pos = itData.pos().getFirst(nAxesSub);
1842         sumSq(pos) += fac;
1843//
1844         itData.next();
1845         itMask.next();
1846      }
1847   } else if (wtType==TSYS || wtType==TINTSYS) {
1848
1849// We are going to average the data, weighted by 1/Tsys**2 for each pol, beam and IF.
1850// So therefore we need to iterate through by spectrum (axis 3).  Although
1851// Tsys is stored as a vector of length nChan, the values are replicated.
1852// We will take a short cut and just use the value from the first channel
1853// for now.
1854//
1855      VectorIterator<Float> itData(valuesIn, axis);
1856      ReadOnlyVectorIterator<Float> itTSys(tSys, axis);
1857      IPosition pos(nAxesSub,0);
1858//
1859      Float fac = 1.0;
1860      if (wtType==TINTSYS) fac *= interval;
1861      while (!itData.pastEnd()) {
1862         Float t = itTSys.vector()[0];
1863         fac *= 1.0/t/t;
1864
1865// Scale data
1866
1867         itData.vector() *= fac;     // Writes back into 'dataIn'
1868//
1869// Accumulate Tsys  per if/pol/beam averaged over spectrum
1870// This method to get pos2 from itData.pos() is only valid
1871// because the spectral axis is the last one (so we can just
1872// copy the first nAXesSub positions out)
1873
1874         pos = itData.pos().getFirst(nAxesSub);
1875         tSysSqSum(pos) += fac;
1876//
1877         itData.next();
1878         itTSys.next();
1879      }
1880   }
1881
1882// Accumulate sum of (possibly scaled) data
1883
1884   sum += dataIn;
1885
1886// Accumulate Tsys, time, and interval
1887
1888   tSysSum += tSys;
1889   timeSum += time;
1890   intSum += interval;
1891   nAccum += 1;
1892}
1893
1894
1895void SDMath::normalize(MaskedArray<Float>& sum,
1896                       const Array<Float>& sumSq,
1897                       const Array<Float>& tSysSqSum,
1898                       const Array<Float>& nPts,
1899                       Double intSum,
1900                       WeightType wtType, Int axis,
1901                       Int nAxesSub)
1902{
1903   IPosition pos2(nAxesSub,0);
1904//
1905   if (wtType==NONE) {
1906
1907// We just average by the number of points accumulated.
1908// We need to make a MA out of nPts so that no divide by
1909// zeros occur
1910
1911      MaskedArray<Float> t(nPts, (nPts>Float(0.0)));
1912      sum /= t;
1913   } else if (wtType==TINT) {
1914
1915// Average by sum of Tint
1916
1917      sum /= Float(intSum);
1918   } else if (wtType==VAR) {
1919
1920// Normalize each spectrum by sum(1/var) where the variance
1921// is worked out for each spectrum
1922
1923      Array<Float>& data = sum.getRWArray();
1924      VectorIterator<Float> itData(data, axis);
1925      while (!itData.pastEnd()) {
1926         pos2 = itData.pos().getFirst(nAxesSub);
1927         itData.vector() /= sumSq(pos2);
1928         itData.next();
1929      }
1930   } else if (wtType==TSYS || wtType==TINTSYS) {
1931
1932// Normalize each spectrum by sum(1/Tsys**2) (TSYS) or
1933// sum(Tint/Tsys**2) (TINTSYS) where the pseudo
1934// replication over channel for Tsys has been dropped.
1935
1936      Array<Float>& data = sum.getRWArray();
1937      VectorIterator<Float> itData(data, axis);
1938      while (!itData.pastEnd()) {
1939         pos2 = itData.pos().getFirst(nAxesSub);
1940         itData.vector() /= tSysSqSum(pos2);
1941         itData.next();
1942      }
1943   }
1944}
1945
1946
1947
1948
1949void SDMath::setCursorSlice (IPosition& start, IPosition& end, Bool doAll, const SDMemTable& in) const
1950{
1951  const uInt nDim = asap::nAxes;
1952  DebugAssert(nDim==4,AipsError);
1953//
1954  start.resize(nDim);
1955  end.resize(nDim);
1956  if (doAll) {
1957     start = 0;
1958     end(0) = in.nBeam()-1;
1959     end(1) = in.nIF()-1;
1960     end(2) = in.nPol()-1;
1961     end(3) = in.nChan()-1;
1962  } else {
1963     start(0) = in.getBeam();
1964     end(0) = start(0);
1965//
1966     start(1) = in.getIF();
1967     end(1) = start(1);
1968//
1969     start(2) = in.getPol();
1970     end(2) = start(2);
1971//
1972     start(3) = 0;
1973     end(3) = in.nChan()-1;
1974   }
1975}
1976
1977
1978void SDMath::convertWeightString(WeightType& wtType, const String& weightStr,
1979                                 Bool listType)
1980{
1981  String tStr(weightStr);
1982  tStr.upcase();
1983  String msg;
1984  if (tStr.contains(String("NONE"))) {
1985     wtType = NONE;
1986     msg = String("Weighting type selected : None");
1987  } else if (tStr.contains(String("VAR"))) {
1988     wtType = VAR;
1989     msg = String("Weighting type selected : Variance");
1990  } else if (tStr.contains(String("TINTSYS"))) {
1991       wtType = TINTSYS;
1992       msg = String("Weighting type selected : Tint&Tsys");
1993  } else if (tStr.contains(String("TINT"))) {
1994     wtType = TINT;
1995     msg = String("Weighting type selected : Tint");
1996  } else if (tStr.contains(String("TSYS"))) {
1997     wtType = TSYS;
1998     msg = String("Weighting type selected : Tsys");
1999  } else {
2000     msg = String("Weighting type selected : None");
2001     throw(AipsError("Unrecognized weighting type"));
2002  }
2003//
2004  if (listType) pushLog(msg);
2005}
2006
2007
2008void SDMath::convertInterpString(casa::InterpolateArray1D<Double,Float>::InterpolationMethod& type,
2009                                 const casa::String& interp)
2010{
2011  String tStr(interp);
2012  tStr.upcase();
2013  if (tStr.contains(String("NEAR"))) {
2014     type = InterpolateArray1D<Double,Float>::nearestNeighbour;
2015  } else if (tStr.contains(String("LIN"))) {
2016     type = InterpolateArray1D<Double,Float>::linear;
2017  } else if (tStr.contains(String("CUB"))) {
2018     type = InterpolateArray1D<Double,Float>::cubic;
2019  } else if (tStr.contains(String("SPL"))) {
2020     type = InterpolateArray1D<Double,Float>::spline;
2021  } else {
2022    throw(AipsError("Unrecognized interpolation type"));
2023  }
2024}
2025
2026void SDMath::putDataInSDC(SDContainer& sc, const Array<Float>& data,
2027                          const Array<Bool>& mask)
2028{
2029    sc.putSpectrum(data);
2030//
2031    Array<uChar> outflags(data.shape());
2032    convertArray(outflags,!mask);
2033    sc.putFlags(outflags);
2034}
2035
2036Table SDMath::readAsciiFile(const String& fileName) const
2037{
2038   String formatString;
2039   Table tbl = readAsciiTable (formatString, Table::Memory, fileName, "", "", False);
2040   return tbl;
2041}
2042
2043
2044
2045void SDMath::scaleFromAsciiTable(SDMemTable* pTabOut,
2046                                 const SDMemTable& in, const String& fileName,
2047                                 const String& col0, const String& col1,
2048                                 const String& methodStr, Bool doAll,
2049                                 const Vector<Float>& xOut, Bool doTSys)
2050{
2051
2052// Read gain-elevation ascii file data into a Table.
2053
2054  Table geTable = readAsciiFile (fileName);
2055//
2056  scaleFromTable (pTabOut, in, geTable, col0, col1, methodStr, doAll, xOut, doTSys);
2057}
2058
2059void SDMath::scaleFromTable(SDMemTable* pTabOut, const SDMemTable& in,
2060                            const Table& tTable, const String& col0,
2061                            const String& col1,
2062                            const String& methodStr, Bool doAll,
2063                            const Vector<Float>& xOut, Bool doTsys)
2064{
2065
2066// Get data from Table
2067
2068  ROScalarColumn<Float> geElCol(tTable, col0);
2069  ROScalarColumn<Float> geFacCol(tTable, col1);
2070  Vector<Float> xIn = geElCol.getColumn();
2071  Vector<Float> yIn = geFacCol.getColumn();
2072  Vector<Bool> maskIn(xIn.nelements(),True);
2073
2074// Interpolate (and extrapolate) with desired method
2075
2076   InterpolateArray1D<Double,Float>::InterpolationMethod method;
2077   convertInterpString(method, methodStr);
2078   Int intMethod(method);
2079//
2080   Vector<Float> yOut;
2081   Vector<Bool> maskOut;
2082   InterpolateArray1D<Float,Float>::interpolate(yOut, maskOut, xOut,
2083                                                xIn, yIn, maskIn, intMethod,
2084                                                True, True);
2085// Apply
2086
2087   scaleByVector(pTabOut, in, doAll, Float(1.0)/yOut, doTsys);
2088}
2089
2090
2091void SDMath::scaleByVector(SDMemTable* pTabOut, const SDMemTable& in,
2092                           Bool doAll, const Vector<Float>& factor,
2093                           Bool doTSys)
2094{
2095
2096// Set up data slice
2097
2098  IPosition start, end;
2099  setCursorSlice (start, end, doAll, in);
2100
2101// Get Tsys column
2102
2103  const Table& tIn = in.table();
2104  ArrayColumn<Float> tSysCol(tIn, "TSYS");
2105  Array<Float> tSys;
2106
2107// Loop over rows and apply correction factor
2108
2109  const uInt axis = asap::ChanAxis;
2110  for (uInt i=0; i < in.nRow(); ++i) {
2111
2112// Get data
2113
2114     MaskedArray<Float> dataIn(in.rowAsMaskedArray(i));
2115     MaskedArray<Float> dataIn2 = dataIn(start,end);  // reference to dataIn
2116//
2117     if (doTSys) {
2118        tSysCol.get(i, tSys);
2119        Array<Float> tSys2 = tSys(start,end) * factor[i];
2120        tSysCol.put(i, tSys);
2121     }
2122
2123// Apply factor
2124
2125     dataIn2 *= factor[i];
2126
2127// Write out
2128
2129     SDContainer sc = in.getSDContainer(i);
2130     putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
2131//
2132     pTabOut->putSDContainer(sc);
2133  }
2134}
2135
2136
2137
2138
2139void SDMath::generateDataDescTable (Matrix<uInt>& ddIdx,
2140                                    SDDataDesc& dDesc,
2141                                    uInt nIF,
2142                                    const SDMemTable& in,
2143                                    const Table& tabIn,
2144                                    const ROScalarColumn<String>& srcCol,
2145                                    const ROArrayColumn<uInt>& fqIDCol,
2146                                    Bool perFreqID)
2147{
2148   const uInt nRows = tabIn.nrow();
2149   ddIdx.resize(nRows,nIF);
2150//
2151   String srcName;
2152   Vector<uInt> freqIDs;
2153   for (uInt iRow=0; iRow<nRows; iRow++) {
2154      srcCol.get(iRow, srcName);
2155      fqIDCol.get(iRow, freqIDs);
2156      const MDirection& dir = in.getDirection(iRow);
2157//
2158      if (perFreqID) {
2159
2160// One entry per source/freqID pair
2161
2162         for (uInt iIF=0; iIF<nIF; iIF++) {
2163            ddIdx(iRow,iIF) = dDesc.addEntry(srcName, freqIDs[iIF], dir, 0);
2164         }
2165      } else {
2166
2167// One entry per source/IF pair.  Hang onto the FreqID as well
2168
2169         for (uInt iIF=0; iIF<nIF; iIF++) {
2170            ddIdx(iRow,iIF) = dDesc.addEntry(srcName, iIF, dir, freqIDs[iIF]);
2171         }
2172      }
2173   }
2174}
2175
2176
2177
2178
2179
2180MEpoch SDMath::epochFromString(const String& str, MEpoch::Types timeRef)
2181{
2182   Quantum<Double> qt;
2183   if (MVTime::read(qt,str)) {
2184      MVEpoch mv(qt);
2185      MEpoch me(mv, timeRef);
2186      return me;
2187   } else {
2188      throw(AipsError("Invalid format for Epoch string"));
2189   }
2190}
2191
2192
2193String SDMath::formatEpoch(const MEpoch& epoch)  const
2194{
2195   MVTime mvt(epoch.getValue());
2196   return mvt.string(MVTime::YMD) + String(" (") + epoch.getRefString() + String(")");
2197}
2198
2199
2200
2201void SDMath::generateFrequencyAligners(PtrBlock<FrequencyAligner<Float>* >& a,
2202                                       const SDDataDesc& dDesc,
2203                                       const SDMemTable& in, uInt nChan,
2204                                       MFrequency::Types system,
2205                                       const MPosition& refPos,
2206                                       const MEpoch& refEpoch,
2207                                       Bool perFreqID)
2208{
2209   for (uInt i=0; i<dDesc.length(); i++) {
2210      uInt ID = dDesc.ID(i);
2211      uInt secID = dDesc.secID(i);
2212      const MDirection& refDir = dDesc.secDir(i);
2213//
2214      if (perFreqID) {
2215
2216// One aligner per source/FreqID pair.
2217
2218         SpectralCoordinate sC = in.getSpectralCoordinate(ID);
2219         a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
2220      } else {
2221
2222// One aligner per source/IF pair.  But we still need the FreqID to
2223// get the right SC.  Hence the messing about with the secondary ID
2224
2225         SpectralCoordinate sC = in.getSpectralCoordinate(secID);
2226         a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
2227      }
2228   }
2229}
2230
2231Vector<uInt> SDMath::getRowRange(const SDMemTable& in) const
2232{
2233   Vector<uInt> range(2);
2234   range[0] = 0;
2235   range[1] = in.nRow()-1;
2236   return range;
2237}
2238
2239
2240Bool SDMath::rowInRange(uInt i, const Vector<uInt>& range) const
2241{
2242   return (i>=range[0] && i<=range[1]);
2243}
2244
Note: See TracBrowser for help on using the repository browser.