source: trunk/src/SDMath.cc @ 716

Last change on this file since 716 was 716, checked in by mar637, 19 years ago

added frequency switching; implemented use of SDLog

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 61.7 KB
RevLine 
[2]1//#---------------------------------------------------------------------------
2//# SDMath.cc: A collection of single dish mathematical operations
3//#---------------------------------------------------------------------------
4//# Copyright (C) 2004
[125]5//# ATNF
[2]6//#
7//# This program is free software; you can redistribute it and/or modify it
8//# under the terms of the GNU General Public License as published by the Free
9//# Software Foundation; either version 2 of the License, or (at your option)
10//# any later version.
11//#
12//# This program is distributed in the hope that it will be useful, but
13//# WITHOUT ANY WARRANTY; without even the implied warranty of
14//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
15//# Public License for more details.
16//#
17//# You should have received a copy of the GNU General Public License along
18//# with this program; if not, write to the Free Software Foundation, Inc.,
19//# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
20//#
21//# Correspondence concerning this software should be addressed as follows:
22//#        Internet email: Malte.Marquarding@csiro.au
23//#        Postal address: Malte Marquarding,
24//#                        Australia Telescope National Facility,
25//#                        P.O. Box 76,
26//#                        Epping, NSW, 2121,
27//#                        AUSTRALIA
28//#
29//# $Id:
30//#---------------------------------------------------------------------------
[38]31#include <vector>
32
[716]33
[81]34#include <casa/aips.h>
[330]35#include <casa/iostream.h>
[716]36#include <casa/sstream.h>
[330]37#include <casa/iomanip.h>
[81]38#include <casa/BasicSL/String.h>
39#include <casa/Arrays/IPosition.h>
40#include <casa/Arrays/Array.h>
[130]41#include <casa/Arrays/ArrayIter.h>
42#include <casa/Arrays/VectorIter.h>
[81]43#include <casa/Arrays/ArrayMath.h>
44#include <casa/Arrays/ArrayLogical.h>
45#include <casa/Arrays/MaskedArray.h>
46#include <casa/Arrays/MaskArrMath.h>
47#include <casa/Arrays/MaskArrLogi.h>
[330]48#include <casa/Arrays/Matrix.h>
[234]49#include <casa/BasicMath/Math.h>
[262]50#include <casa/Exceptions.h>
51#include <casa/Quanta/Quantum.h>
52#include <casa/Quanta/Unit.h>
53#include <casa/Quanta/MVEpoch.h>
[272]54#include <casa/Quanta/MVTime.h>
[177]55#include <casa/Utilities/Assert.h>
[2]56
[262]57#include <coordinates/Coordinates/SpectralCoordinate.h>
58#include <coordinates/Coordinates/CoordinateSystem.h>
59#include <coordinates/Coordinates/CoordinateUtil.h>
[309]60#include <coordinates/Coordinates/FrequencyAligner.h>
[262]61
62#include <lattices/Lattices/LatticeUtilities.h>
63#include <lattices/Lattices/RebinLattice.h>
64
65#include <measures/Measures/MEpoch.h>
66#include <measures/Measures/MDirection.h>
67#include <measures/Measures/MPosition.h>
68
[177]69#include <scimath/Mathematics/VectorKernel.h>
70#include <scimath/Mathematics/Convolver.h>
[227]71#include <scimath/Mathematics/InterpolateArray1D.h>
[234]72#include <scimath/Functionals/Polynomial.h>
[177]73
[81]74#include <tables/Tables/Table.h>
75#include <tables/Tables/ScalarColumn.h>
76#include <tables/Tables/ArrayColumn.h>
[227]77#include <tables/Tables/ReadAsciiTable.h>
[2]78
[38]79#include "MathUtils.h"
[232]80#include "SDDefs.h"
[354]81#include "SDAttr.h"
[2]82#include "SDContainer.h"
83#include "SDMemTable.h"
84
85#include "SDMath.h"
[457]86#include "SDPol.h"
[2]87
[125]88using namespace casa;
[83]89using namespace asap;
[2]90
[170]91
92SDMath::SDMath()
[716]93{
94}
[170]95
[185]96SDMath::SDMath(const SDMath& other)
[170]97{
98
99// No state
100
101}
102
103SDMath& SDMath::operator=(const SDMath& other)
104{
105  if (this != &other) {
106// No state
107  }
108  return *this;
109}
110
[183]111SDMath::~SDMath()
112{;}
[170]113
[183]114
[488]115SDMemTable* SDMath::frequencyAlignment(const SDMemTable& in,
116                                       const String& refTime,
117                                       const String& method,
[716]118                                       Bool perFreqID)
[262]119{
[701]120  // Get frame info from Table
[262]121   std::vector<std::string> info = in.getCoordInfo();
[294]122
[701]123   // Parse frequency system
[309]124   String systemStr(info[1]);
125   String baseSystemStr(info[3]);
126   if (baseSystemStr==systemStr) {
[701]127     throw(AipsError("You have not set a frequency frame different from the initial - use function set_freqframe"));
[262]128   }
[701]129
[309]130   MFrequency::Types freqSystem;
131   MFrequency::getType(freqSystem, systemStr);
[294]132
[488]133   return frequencyAlign(in, freqSystem, refTime, method, perFreqID);
[267]134}
[262]135
136
137
[701]138CountedPtr<SDMemTable>
139SDMath::average(const std::vector<CountedPtr<SDMemTable> >& in,
140                const Vector<Bool>& mask, Bool scanAv,
[716]141                const String& weightStr, Bool alignFreq)
[144]142// Weighted averaging of spectra from one or more Tables.
[130]143{
[701]144  // Convert weight type 
[163]145  WeightType wtType = NONE;
[518]146  convertWeightString(wtType, weightStr, True);
[163]147
[701]148  // Create output Table by cloning from the first table
[144]149  SDMemTable* pTabOut = new SDMemTable(*in[0],True);
[653]150  if (in.size() > 1) {
151    for (uInt i=1; i < in.size(); ++i) {
[488]152      pTabOut->appendToHistoryTable(in[i]->getHistoryTable());
153    }
154  }
[701]155  // Setup
[144]156  IPosition shp = in[0]->rowAsMaskedArray(0).shape();      // Must not change
157  Array<Float> arr(shp);
158  Array<Bool> barr(shp);
[221]159  const Bool useMask = (mask.nelements() == shp(asap::ChanAxis));
[130]160
[701]161  // Columns from Tables
[144]162  ROArrayColumn<Float> tSysCol;
163  ROScalarColumn<Double> mjdCol;
164  ROScalarColumn<String> srcNameCol;
165  ROScalarColumn<Double> intCol;
166  ROArrayColumn<uInt> fqIDCol;
[410]167  ROScalarColumn<Int> scanIDCol;
[130]168
[701]169  // Create accumulation MaskedArray. We accumulate for each
170  // channel,if,pol,beam Note that the mask of the accumulation array
171  // will ALWAYS remain ALL True.  The MA is only used so that when
172  // data which is masked Bad is added to it, that data does not
173  // contribute.
[144]174
175  Array<Float> zero(shp);
176  zero=0.0;
177  Array<Bool> good(shp);
178  good = True;
179  MaskedArray<Float> sum(zero,good);
180
[701]181  // Counter arrays
[144]182  Array<Float> nPts(shp);             // Number of points
183  nPts = 0.0;
184  Array<Float> nInc(shp);             // Increment
185  nInc = 1.0;
186
[701]187  // Create accumulation Array for variance. We accumulate for each
188  // if,pol,beam, but average over channel.  So we need a shape with
189  // one less axis dropping channels.
[144]190  const uInt nAxesSub = shp.nelements() - 1;
191  IPosition shp2(nAxesSub);
192  for (uInt i=0,j=0; i<(nAxesSub+1); i++) {
[221]193     if (i!=asap::ChanAxis) {
[144]194       shp2(j) = shp(i);
195       j++;
196     }
[2]197  }
[144]198  Array<Float> sumSq(shp2);
199  sumSq = 0.0;
200  IPosition pos2(nAxesSub,0);                        // For indexing
[130]201
[701]202  // Time-related accumulators
[144]203  Double time;
204  Double timeSum = 0.0;
205  Double intSum = 0.0;
206  Double interval = 0.0;
[130]207
[701]208  // To get the right shape for the Tsys accumulator we need to access
209  // a column from the first table.  The shape of this array must not
210  // change.  Note however that since the TSysSqSum array is used in a
211  // normalization process, and that I ignore the channel axis
212  // replication of values for now, it loses a dimension
[130]213
[518]214  Array<Float> tSysSum, tSysSqSum;
[144]215  {
216    const Table& tabIn = in[0]->table();
217    tSysCol.attach(tabIn,"TSYS");
218    tSysSum.resize(tSysCol.shape(0));
[518]219    tSysSqSum.resize(shp2);
[144]220  }
[701]221  tSysSum = 0.0;
[518]222  tSysSqSum = 0.0;
[144]223  Array<Float> tSys;
224
[701]225  // Scan and row tracking
[144]226  Int oldScanID = 0;
227  Int outScanID = 0;
228  Int scanID = 0;
229  Int rowStart = 0;
230  Int nAccum = 0;
231  Int tableStart = 0;
232
[701]233  // Source and FreqID
[144]234  String sourceName, oldSourceName, sourceNameStart;
235  Vector<uInt> freqID, freqIDStart, oldFreqID;
236
[701]237  // Loop over tables
[144]238  Float fac = 1.0;
[653]239  const uInt nTables = in.size();
[144]240  for (uInt iTab=0; iTab<nTables; iTab++) {
241
[701]242    // Should check that the frequency tables don't change if doing
243    // FreqAlignment
244   
245    // Attach columns to Table
[144]246     const Table& tabIn = in[iTab]->table();
247     tSysCol.attach(tabIn, "TSYS");
248     mjdCol.attach(tabIn, "TIME");
249     srcNameCol.attach(tabIn, "SRCNAME");
250     intCol.attach(tabIn, "INTERVAL");
251     fqIDCol.attach(tabIn, "FREQID");
[410]252     scanIDCol.attach(tabIn, "SCANID");
[144]253
[701]254     // Loop over rows in Table
[144]255     const uInt nRows = in[iTab]->nRow();
256     for (uInt iRow=0; iRow<nRows; iRow++) {
[701]257       // Check conformance
[144]258        IPosition shp2 = in[iTab]->rowAsMaskedArray(iRow).shape();
259        if (!shp.isEqual(shp2)) {
[701]260          delete pTabOut;
[144]261           throw (AipsError("Shapes for all rows must be the same"));
262        }
263
[701]264        // If we are not doing scan averages, make checks for source
265        // and frequency setup and warn if averaging across them
[410]266        scanIDCol.getScalar(iRow, scanID);
[144]267
[701]268        // Get quantities from columns
[144]269        srcNameCol.getScalar(iRow, sourceName);
270        mjdCol.get(iRow, time);
271        tSysCol.get(iRow, tSys);
272        intCol.get(iRow, interval);
273        fqIDCol.get(iRow, freqID);
274
[701]275        // Initialize first source and freqID
[144]276        if (iRow==0 && iTab==0) {
277          sourceNameStart = sourceName;
278          freqIDStart = freqID;
279        }
280
[701]281        // If we are doing scan averages, see if we are at the end of
282        // an accumulation period (scan).  We must check soutce names
283        // too, since we might have two tables with one scan each but
284        // different source names; we shouldn't average different
285        // sources together
[144]286        if (scanAv && ( (scanID != oldScanID)  ||
287                        (iRow==0 && iTab>0 && sourceName!=oldSourceName))) {
288
[701]289          // Normalize data in 'sum' accumulation array according to
290          // weighting scheme
291           normalize(sum, sumSq, tSysSqSum, nPts, intSum, wtType,
292                     asap::ChanAxis, nAxesSub);
[144]293
[701]294           // Get ScanContainer for the first row of this averaged Scan
[410]295           SDContainer scOut = in[iTab]->getSDContainer(rowStart);
296
[701]297           // Fill scan container. The source and freqID come from the
298           // first row of the first table that went into this average
299           // ( should be the same for all rows in the scan average)
[144]300
301           Float nR(nAccum);
[410]302           fillSDC(scOut, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
[701]303                   timeSum/nR, intSum, sourceNameStart, freqIDStart);
304           
305           // Write container out to Table
[410]306           pTabOut->putSDContainer(scOut);
[701]307           
308           // Reset accumulators           
[144]309           sum = 0.0;
310           sumSq = 0.0;
311           nAccum = 0;
[701]312
[144]313           tSysSum =0.0;
[518]314           tSysSqSum =0.0;
[144]315           timeSum = 0.0;
316           intSum = 0.0;
[221]317           nPts = 0.0;
[144]318
[701]319           // Increment
[144]320           rowStart = iRow;              // First row for next accumulation
321           tableStart = iTab;            // First table for next accumulation
[701]322           sourceNameStart = sourceName; // First source name for next
323                                         // accumulation
[144]324           freqIDStart = freqID;         // First FreqID for next accumulation
[701]325
[144]326           oldScanID = scanID;
[701]327           outScanID += 1;               // Scan ID for next
328                                         // accumulation period
[227]329        }
[144]330
[701]331        // Accumulate
332        accumulate(timeSum, intSum, nAccum, sum, sumSq, nPts,
333                   tSysSum, tSysSqSum, tSys,
334                   nInc, mask, time, interval, in, iTab, iRow, asap::ChanAxis,
[518]335                   nAxesSub, useMask, wtType);
[701]336        oldSourceName = sourceName;
337        oldFreqID = freqID;
[184]338     }
[144]339  }
340
[701]341  // OK at this point we have accumulation data which is either
342  //   - accumulated from all tables into one row
343  // or
344  //   - accumulated from the last scan average
345  //
346  // Normalize data in 'sum' accumulation array according to weighting
347  // scheme
[410]348
[701]349  normalize(sum, sumSq, tSysSqSum, nPts, intSum, wtType,
350            asap::ChanAxis, nAxesSub);
[144]351
[701]352  // Create and fill container.  The container we clone will be from
353  // the last Table and the first row that went into the current
354  // accumulation.  It probably doesn't matter that much really...
[144]355  Float nR(nAccum);
[410]356  SDContainer scOut = in[tableStart]->getSDContainer(rowStart);
357  fillSDC(scOut, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
[701]358          timeSum/nR, intSum, sourceNameStart, freqIDStart);
[410]359  pTabOut->putSDContainer(scOut);
[304]360  pTabOut->resetCursor();
[701]361
[144]362  return CountedPtr<SDMemTable>(pTabOut);
[2]363}
[9]364
[144]365
366
[701]367CountedPtr<SDMemTable>
368SDMath::binaryOperate(const CountedPtr<SDMemTable>& left,
369                      const CountedPtr<SDMemTable>& right,
[716]370                      const String& op, Bool preserve, Bool doTSys)
[185]371{
[85]372
[701]373  // Check operator
[234]374  String op2(op);
375  op2.upcase();
376  uInt what = 0;
377  if (op2=="ADD") {
378     what = 0;
379  } else if (op2=="SUB") {
380     what = 1;
381  } else if (op2=="MUL") {
382     what = 2;
383  } else if (op2=="DIV") {
384     what = 3;
[248]385  } else if (op2=="QUOTIENT") {
386     what = 4;
[294]387     doTSys = True;
[234]388  } else {
[248]389    throw( AipsError("Unrecognized operation"));
[234]390  }
391
[701]392  // Check rows
[248]393  const uInt nRowLeft = left->nRow();
394  const uInt nRowRight = right->nRow();
[701]395  Bool ok = (nRowRight==1 && nRowLeft>0) ||
396            (nRowRight>=1 && nRowLeft==nRowRight);
[248]397  if (!ok) {
398     throw (AipsError("The right Scan Table can have one row or the same number of rows as the left Scan Table"));
[234]399  }
400
[701]401  // Input Tables
[234]402  const Table& tLeft = left->table();
403  const Table& tRight = right->table();
[248]404
[701]405  // TSys columns
[294]406  ROArrayColumn<Float> tSysLeftCol, tSysRightCol;
407  if (doTSys) {
[701]408    tSysLeftCol.attach(tLeft, "TSYS");
409    tSysRightCol.attach(tRight, "TSYS");
[294]410  }
[234]411
[701]412  // First row for right
[248]413  Array<Float> tSysLeftArr, tSysRightArr;
[294]414  if (doTSys) tSysRightCol.get(0, tSysRightArr);
[701]415  MaskedArray<Float>* pMRight =
416    new MaskedArray<Float>(right->rowAsMaskedArray(0));
417
[248]418  IPosition shpRight = pMRight->shape();
419
[701]420  // Output Table cloned from left
[234]421  SDMemTable* pTabOut = new SDMemTable(*left, True);
[488]422  pTabOut->appendToHistoryTable(right->getHistoryTable());
[234]423
[701]424  // Loop over rows
[248]425  for (uInt i=0; i<nRowLeft; i++) {
[701]426   
427    // Get data
428    MaskedArray<Float> mLeft(left->rowAsMaskedArray(i));
429    IPosition shpLeft = mLeft.shape();
430    if (doTSys) tSysLeftCol.get(i, tSysLeftArr);
431   
432    if (nRowRight>1) {
433      delete pMRight;
434      pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(i));
435      shpRight = pMRight->shape();
436      if (doTSys) tSysRightCol.get(i, tSysRightArr);
437    }
[234]438
[701]439    if (!shpRight.isEqual(shpLeft)) {
440      delete pTabOut;
441      delete pMRight;
442      throw(AipsError("left and right scan tables are not conformant"));
443    }
444    if (doTSys) {
445      if (!tSysRightArr.shape().isEqual(tSysRightArr.shape())) {
446        delete pTabOut;
447        delete pMRight;
448        throw(AipsError("left and right Tsys data are not conformant"));
449      }
450      if (!shpRight.isEqual(tSysRightArr.shape())) {
451        delete pTabOut;
452        delete pMRight;
453        throw(AipsError("left and right scan tables are not conformant"));
454      }
455    }
[248]456
[701]457    // Make container
[234]458     SDContainer sc = left->getSDContainer(i);
459
[701]460     // Operate on data and TSys
[234]461     if (what==0) {                               
[248]462        MaskedArray<Float> tmp = mLeft + *pMRight;
[234]463        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[294]464        if (doTSys) sc.putTsys(tSysLeftArr+tSysRightArr);
[234]465     } else if (what==1) {
[248]466        MaskedArray<Float> tmp = mLeft - *pMRight;
[234]467        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[294]468        if (doTSys) sc.putTsys(tSysLeftArr-tSysRightArr);
[234]469     } else if (what==2) {
[248]470        MaskedArray<Float> tmp = mLeft * *pMRight;
[234]471        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[294]472        if (doTSys) sc.putTsys(tSysLeftArr*tSysRightArr);
[234]473     } else if (what==3) {
[248]474        MaskedArray<Float> tmp = mLeft / *pMRight;
[234]475        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[294]476        if (doTSys) sc.putTsys(tSysLeftArr/tSysRightArr);
[248]477     } else if (what==4) {
[488]478       if (preserve) {     
479         MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) -
480           tSysRightArr;
481         putDataInSDC(sc, tmp.getArray(), tmp.getMask());
482       } else {
483         MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) -
484           tSysLeftArr;
485         putDataInSDC(sc, tmp.getArray(), tmp.getMask());
486       }
487       sc.putTsys(tSysRightArr);
[234]488     }
489
[701]490     // Put new row in output Table
[171]491     pTabOut->putSDContainer(sc);
[130]492  }
[248]493  if (pMRight) delete pMRight;
[304]494  pTabOut->resetCursor();
[701]495 
[171]496  return CountedPtr<SDMemTable>(pTabOut);
[9]497}
[48]498
[146]499
[185]500std::vector<float> SDMath::statistic(const CountedPtr<SDMemTable>& in,
[234]501                                     const Vector<Bool>& mask,
502                                     const String& which, Int row) const
[130]503//
504// Perhaps iteration over pol/beam/if should be in here
505// and inside the nrow iteration ?
506//
507{
508  const uInt nRow = in->nRow();
509
510// Specify cursor location
511
[152]512  IPosition start, end;
[434]513  Bool doAll = False;
[716]514  setCursorSlice(start, end, doAll, *in);
[130]515
516// Loop over rows
517
[234]518  const uInt nEl = mask.nelements();
519  uInt iStart = 0;
520  uInt iEnd = in->nRow()-1;
521// 
522  if (row>=0) {
523     iStart = row;
524     iEnd = row;
525  }
526//
527  std::vector<float> result(iEnd-iStart+1);
528  for (uInt ii=iStart; ii <= iEnd; ++ii) {
[130]529
530// Get row and deconstruct
531
[434]532     MaskedArray<Float> dataIn = (in->rowAsMaskedArray(ii))(start,end);
533     Array<Float> v = dataIn.getArray().nonDegenerate();
534     Array<Bool>  m = dataIn.getMask().nonDegenerate();
[130]535
536// Access desired piece of data
537
[434]538//     Array<Float> v((arr(start,end)).nonDegenerate());
539//     Array<Bool> m((barr(start,end)).nonDegenerate());
[130]540
541// Apply OTF mask
542
543     MaskedArray<Float> tmp;
544     if (m.nelements()==nEl) {
[234]545       tmp.setData(v,m&&mask);
[130]546     } else {
547       tmp.setData(v,m);
548     }
549
550// Get statistic
551
[234]552     result[ii-iStart] = mathutil::statistics(which, tmp);
[130]553  }
554//
555  return result;
556}
557
[146]558
[716]559SDMemTable* SDMath::bin(const SDMemTable& in, Int width)
[144]560{
[169]561  SDHeader sh = in.getSDHeader();
562  SDMemTable* pTabOut = new SDMemTable(in, True);
[163]563
[169]564// Bin up SpectralCoordinates
[163]565
[169]566  IPosition factors(1);
567  factors(0) = width;
568  for (uInt j=0; j<in.nCoordinates(); ++j) {
569    CoordinateSystem cSys;
[288]570    cSys.addCoordinate(in.getSpectralCoordinate(j));
[169]571    CoordinateSystem cSysBin =
[185]572      CoordinateUtil::makeBinnedCoordinateSystem(factors, cSys, False);
[169]573//
574    SpectralCoordinate sCBin = cSysBin.spectralCoordinate(0);
575    pTabOut->setCoordinate(sCBin, j);
576  }
[163]577
[169]578// Use RebinLattice to find shape
[130]579
[169]580  IPosition shapeIn(1,sh.nchan);
[185]581  IPosition shapeOut = RebinLattice<Float>::rebinShape(shapeIn, factors);
[169]582  sh.nchan = shapeOut(0);
583  pTabOut->putSDHeader(sh);
[144]584
[169]585// Loop over rows and bin along channel axis
586 
587  for (uInt i=0; i < in.nRow(); ++i) {
588    SDContainer sc = in.getSDContainer(i);
[144]589//
[169]590    Array<Float> tSys(sc.getTsys());                           // Get it out before sc changes shape
[144]591
[169]592// Bin up spectrum
[144]593
[169]594    MaskedArray<Float> marr(in.rowAsMaskedArray(i));
595    MaskedArray<Float> marrout;
[221]596    LatticeUtilities::bin(marrout, marr, asap::ChanAxis, width);
[144]597
[169]598// Put back the binned data and flags
[144]599
[169]600    IPosition ip2 = marrout.shape();
601    sc.resize(ip2);
[146]602//
[185]603    putDataInSDC(sc, marrout.getArray(), marrout.getMask());
[146]604
[169]605// Bin up Tsys. 
[146]606
[169]607    Array<Bool> allGood(tSys.shape(),True);
608    MaskedArray<Float> tSysIn(tSys, allGood, True);
[146]609//
[169]610    MaskedArray<Float> tSysOut;   
[221]611    LatticeUtilities::bin(tSysOut, tSysIn, asap::ChanAxis, width);
[169]612    sc.putTsys(tSysOut.getArray());
[146]613//
[169]614    pTabOut->putSDContainer(sc);
615  }
616  return pTabOut;
[146]617}
618
[488]619SDMemTable* SDMath::resample(const SDMemTable& in, const String& methodStr,
[716]620                             Float width)
[299]621//
622// Should add the possibility of width being specified in km/s. This means
623// that for each freqID (SpectralCoordinate) we will need to convert to an
624// average channel width (say at the reference pixel).  Then we would need 
625// to be careful to make sure each spectrum (of different freqID)
626// is the same length.
627//
628{
629   Bool doVel = False;
[309]630   if (doVel) {
631      for (uInt j=0; j<in.nCoordinates(); ++j) {
632         SpectralCoordinate sC = in.getSpectralCoordinate(j);
633      }
634   }
[299]635
636// Interpolation method
637
[317]638  InterpolateArray1D<Double,Float>::InterpolationMethod interp;
639  convertInterpString(interp, methodStr);
640  Int interpMethod(interp);
[299]641
642// Make output table
643
644  SDMemTable* pTabOut = new SDMemTable(in, True);
645
646// Resample SpectralCoordinates (one per freqID)
647
648  const uInt nCoord = in.nCoordinates();
649  Vector<Float> offset(1,0.0);
650  Vector<Float> factors(1,1.0/width);
651  Vector<Int> newShape;
652  for (uInt j=0; j<in.nCoordinates(); ++j) {
653    CoordinateSystem cSys;
654    cSys.addCoordinate(in.getSpectralCoordinate(j));
655    CoordinateSystem cSys2 = cSys.subImage(offset, factors, newShape);
656    SpectralCoordinate sC = cSys2.spectralCoordinate(0);
657//
658    pTabOut->setCoordinate(sC, j);
659  }
660
661// Get header
662
663  SDHeader sh = in.getSDHeader();
664
665// Generate resampling vectors
666
667  const uInt nChanIn = sh.nchan;
668  Vector<Float> xIn(nChanIn);
669  indgen(xIn);
670//
671  Int fac =  Int(nChanIn/width);
672  Vector<Float> xOut(fac+10);          // 10 to be safe - resize later
673  uInt i = 0;
674  Float x = 0.0;
675  Bool more = True;
676  while (more) {
677    xOut(i) = x;
678//
679    i++;
680    x += width;
681    if (x>nChanIn-1) more = False;
682  }
683  const uInt nChanOut = i;
684  xOut.resize(nChanOut,True);
685//
686  IPosition shapeIn(in.rowAsMaskedArray(0).shape());
687  sh.nchan = nChanOut;
688  pTabOut->putSDHeader(sh);
689
690// Loop over rows and resample along channel axis
691
692  Array<Float> valuesOut;
693  Array<Bool> maskOut; 
694  Array<Float> tSysOut;
695  Array<Bool> tSysMaskIn(shapeIn,True);
696  Array<Bool> tSysMaskOut;
697  for (uInt i=0; i < in.nRow(); ++i) {
698
699// Get container
700
701     SDContainer sc = in.getSDContainer(i);
702
703// Get data and Tsys
704   
705     const Array<Float>& tSysIn = sc.getTsys();
706     const MaskedArray<Float>& dataIn(in.rowAsMaskedArray(i));
707     Array<Float> valuesIn = dataIn.getArray();
708     Array<Bool> maskIn = dataIn.getMask();
709
710// Interpolate data
711
712     InterpolateArray1D<Float,Float>::interpolate(valuesOut, maskOut, xOut,
713                                                  xIn, valuesIn, maskIn,
714                                                  interpMethod, True, True);
715     sc.resize(valuesOut.shape());
716     putDataInSDC(sc, valuesOut, maskOut);
717
718// Interpolate TSys
719
720     InterpolateArray1D<Float,Float>::interpolate(tSysOut, tSysMaskOut, xOut,
721                                                  xIn, tSysIn, tSysMaskIn,
722                                                  interpMethod, True, True);
723    sc.putTsys(tSysOut);
724
725// Put container in output
726
727    pTabOut->putSDContainer(sc);
728  }
729//
730  return pTabOut;
731}
732
[248]733SDMemTable* SDMath::unaryOperate(const SDMemTable& in, Float val, Bool doAll,
[716]734                                 uInt what, Bool doTSys)
[152]735//
736// what = 0   Multiply
737//        1   Add
[146]738{
[152]739   SDMemTable* pOut = new SDMemTable(in,False);
740   const Table& tOut = pOut->table();
[294]741   ArrayColumn<Float> specCol(tOut,"SPECTRA"); 
742   ArrayColumn<Float> tSysCol(tOut,"TSYS"); 
743   Array<Float> tSysArr;
[434]744
745// Get data slice bounds
746
747   IPosition start, end;
748   setCursorSlice (start, end, doAll, in);
[146]749//
[434]750   for (uInt i=0; i<tOut.nrow(); i++) {
[294]751
752// Modify data
753
[434]754      MaskedArray<Float> dataIn(pOut->rowAsMaskedArray(i));
755      MaskedArray<Float> dataIn2 = dataIn(start,end);    // Reference
756      if (what==0) {
757         dataIn2 *= val;
758      } else if (what==1) {
759         dataIn2 += val;
760      }
761      specCol.put(i, dataIn.getArray());
[294]762
763// Modify Tsys
764
[434]765      if (doTSys) {
766         tSysCol.get(i, tSysArr);
767         Array<Float> tSysArr2 = tSysArr(start,end);     // Reference
[152]768         if (what==0) {
[434]769            tSysArr2 *= val;
[152]770         } else if (what==1) {
[434]771            tSysArr2 += val;
[152]772         }
[434]773         tSysCol.put(i, tSysArr);
[152]774      }
775   }
776//
[146]777   return pOut;
778}
779
[315]780SDMemTable* SDMath::averagePol(const SDMemTable& in, const Vector<Bool>& mask,
[716]781                               const String& weightStr)
[152]782//
[165]783// Average all polarizations together, weighted by variance
784//
785{
[315]786   WeightType wtType = NONE;
[532]787   convertWeightString(wtType, weightStr, True);
[165]788
789// Create output Table and reshape number of polarizations
790
791  Bool clear=True;
792  SDMemTable* pTabOut = new SDMemTable(in, clear);
793  SDHeader header = pTabOut->getSDHeader();
794  header.npol = 1;
795  pTabOut->putSDHeader(header);
[532]796//
797  const Table& tabIn = in.table();
[165]798
799// Shape of input and output data
800
[448]801  const IPosition& shapeIn = in.rowAsMaskedArray(0).shape();
[165]802  IPosition shapeOut(shapeIn);
[262]803  shapeOut(asap::PolAxis) = 1;                          // Average all polarizations
[315]804  if (shapeIn(asap::PolAxis)==1) {
[701]805    delete  pTabOut;
806    throw(AipsError("The input has only one polarisation"));
[315]807  }
[165]808//
[532]809  const uInt nRows = in.nRow();
[262]810  const uInt nChan = shapeIn(asap::ChanAxis);
[532]811  AlwaysAssert(asap::nAxes==4,AipsError);
[165]812  const IPosition vecShapeOut(4,1,1,1,nChan);     // A multi-dim form of a Vector shape
813  IPosition start(4), end(4);
814
815// Output arrays
816
817  Array<Float> outData(shapeOut, 0.0);
818  Array<Bool> outMask(shapeOut, True);
[262]819  const IPosition axes(2, asap::PolAxis, asap::ChanAxis);              // pol-channel plane
[532]820
821// Attach Tsys column if needed
822
823  ROArrayColumn<Float> tSysCol;
824  Array<Float> tSys;
825  if (wtType==TSYS) {
826     tSysCol.attach(tabIn,"TSYS");
827  }
[165]828//
[262]829  const Bool useMask = (mask.nelements() == shapeIn(asap::ChanAxis));
[165]830
831// Loop over rows
832
833   for (uInt iRow=0; iRow<nRows; iRow++) {
834
835// Get data for this row
836
837      MaskedArray<Float> marr(in.rowAsMaskedArray(iRow));
838      Array<Float>& arr = marr.getRWArray();
839      const Array<Bool>& barr = marr.getMask();
[532]840     
841// Get Tsys
[165]842
[532]843      if (wtType==TSYS) {
844         tSysCol.get(iRow,tSys);
845      }
846
[165]847// Make iterators to iterate by pol-channel planes
[532]848// The tSys array is empty unless wtType=TSYS so only
849// access the iterator is that is the case
[165]850
851      ReadOnlyArrayIterator<Float> itDataPlane(arr, axes);
852      ReadOnlyArrayIterator<Bool> itMaskPlane(barr, axes);
[532]853      ReadOnlyArrayIterator<Float>* pItTsysPlane = 0;
[701]854      if (wtType==TSYS)
855        pItTsysPlane = new ReadOnlyArrayIterator<Float>(tSys, axes);
[165]856
857// Accumulations
858
859      Float fac = 1.0;
860      Vector<Float> vecSum(nChan,0.0);
861
862// Iterate through data by pol-channel planes
863
864      while (!itDataPlane.pastEnd()) {
865
866// Iterate through plane by polarization  and accumulate Vectors
867
868        Vector<Float> t1(nChan); t1 = 0.0;
869        Vector<Bool> t2(nChan); t2 = True;
[532]870        Float tSys = 0.0;
[165]871        MaskedArray<Float> vecSum(t1,t2);
[315]872        Float norm = 0.0;
[165]873        {
874           ReadOnlyVectorIterator<Float> itDataVec(itDataPlane.array(), 1);
875           ReadOnlyVectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
[532]876//
877           ReadOnlyVectorIterator<Float>* pItTsysVec = 0;
878           if (wtType==TSYS) {
[701]879              pItTsysVec =
880                new ReadOnlyVectorIterator<Float>(pItTsysPlane->array(), 1);
[532]881           }             
882//
[165]883           while (!itDataVec.pastEnd()) {     
884
[315]885// Create MA of data & mask (optionally including OTF mask) and  get variance for this spectrum
[165]886
887              if (useMask) {
[701]888                 const MaskedArray<Float> spec(itDataVec.vector(),
889                                               mask&&itMaskVec.vector());
[532]890                 if (wtType==VAR) {
891                    fac = 1.0 / variance(spec);
892                 } else if (wtType==TSYS) {
893                    tSys = pItTsysVec->vector()[0];      // Drop pseudo channel dependency
894                    fac = 1.0 / tSys / tSys;
895                 }                   
[165]896              } else {
[701]897                 const MaskedArray<Float> spec(itDataVec.vector(),
898                                               itMaskVec.vector());
[532]899                 if (wtType==VAR) {
900                    fac = 1.0 / variance(spec);
901                 } else if (wtType==TSYS) {
902                    tSys = pItTsysVec->vector()[0];      // Drop pseudo channel dependency
903                    fac = 1.0 / tSys / tSys;
904                 }
[165]905              }
906
907// Normalize spectrum (without OTF mask) and accumulate
908
[701]909              const MaskedArray<Float> spec(fac*itDataVec.vector(),
910                                            itMaskVec.vector());
[165]911              vecSum += spec;
[315]912              norm += fac;
[165]913
914// Next
915
916              itDataVec.next();
917              itMaskVec.next();
[532]918              if (wtType==TSYS) pItTsysVec->next();
[165]919           }
[532]920           
921// Clean up
922
923           if (pItTsysVec) {
924              delete pItTsysVec;
925              pItTsysVec = 0;
926           }           
[165]927        }
928
929// Normalize summed spectrum
930
[315]931        vecSum /= norm;
[165]932
933// FInd position in input data array.  We are iterating by pol-channel
934// plane so all that will change is beam and IF and that's what we want.
935
936        IPosition pos = itDataPlane.pos();
937
938// Write out data. This is a bit messy. We have to reform the Vector
939// accumulator into an Array of shape (1,1,1,nChan)
940
941        start = pos;
942        end = pos;
[262]943        end(asap::ChanAxis) = nChan-1;
[165]944        outData(start,end) = vecSum.getArray().reform(vecShapeOut);
945        outMask(start,end) = vecSum.getMask().reform(vecShapeOut);
946
947// Step to next beam/IF combination
948
949        itDataPlane.next();
950        itMaskPlane.next();
[532]951        if (wtType==TSYS) pItTsysPlane->next();
[165]952      }
953
954// Generate output container and write it to output table
955
956      SDContainer sc = in.getSDContainer();
957      sc.resize(shapeOut);
958//
[185]959      putDataInSDC(sc, outData, outMask);
[165]960      pTabOut->putSDContainer(sc);
[532]961//
962      if (wtType==TSYS) {
963         delete pItTsysPlane;
964         pItTsysPlane = 0;
965      }
[165]966   }
[304]967
968// Set polarization cursor to 0
969
970  pTabOut->setPol(0);
[165]971//
972  return pTabOut;
973}
[167]974
[169]975
[185]976SDMemTable* SDMath::smooth(const SDMemTable& in,
977                           const casa::String& kernelType,
[716]978                           casa::Float width, Bool doAll)
[299]979//
980// Should smooth TSys as well
981//
[177]982{
[169]983
[701]984  // Number of channels
[434]985   const uInt nChan = in.nChan();
[177]986
[701]987   // Generate Kernel
[185]988   VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernelType);
[177]989   Vector<Float> kernel = VectorKernel::make(type, width, nChan, True, False);
990
[701]991   // Generate Convolver
[177]992   IPosition shape(1,nChan);
993   Convolver<Float> conv(kernel, shape);
994
[701]995   // New Table
[177]996   SDMemTable* pTabOut = new SDMemTable(in,True);
997
[701]998   // Output Vectors
[434]999   Vector<Float> valuesOut(nChan);
1000   Vector<Bool> maskOut(nChan);
[177]1001
[701]1002   // Get data slice bounds
[434]1003   IPosition start, end;
1004   setCursorSlice (start, end, doAll, in);
1005
[701]1006   // Loop over rows in Table
[434]1007   for (uInt ri=0; ri < in.nRow(); ++ri) {
[177]1008
[701]1009     // Get slice of data
[434]1010      MaskedArray<Float> dataIn = in.rowAsMaskedArray(ri);
[177]1011
[701]1012      // Deconstruct and get slices which reference these arrays
[434]1013      Array<Float> valuesIn = dataIn.getArray();
1014      Array<Bool> maskIn = dataIn.getMask();
[701]1015
[434]1016      Array<Float> valuesIn2 = valuesIn(start,end);       // ref to valuesIn
1017      Array<Bool> maskIn2 = maskIn(start,end);
[177]1018
[701]1019      // Iterate through by spectra
[434]1020      VectorIterator<Float> itValues(valuesIn2, asap::ChanAxis);
1021      VectorIterator<Bool> itMask(maskIn2, asap::ChanAxis);
1022      while (!itValues.pastEnd()) {
[701]1023       
1024        // Smooth
1025        if (kernelType==VectorKernel::HANNING) {
1026          mathutil::hanning(valuesOut, maskOut, itValues.vector(),
1027                            itMask.vector());
1028          itMask.vector() = maskOut;
1029        } else {
1030          mathutil::replaceMaskByZero(itValues.vector(), itMask.vector());
1031          conv.linearConv(valuesOut, itValues.vector());
1032        }
[177]1033
[701]1034        itValues.vector() = valuesOut;
1035        itValues.next();
1036        itMask.next();
[434]1037      }
[701]1038     
1039      // Create and put back
[434]1040      SDContainer sc = in.getSDContainer(ri);
1041      putDataInSDC(sc, valuesIn, maskIn);
[701]1042
[434]1043      pTabOut->putSDContainer(sc);
1044   }
[701]1045
[177]1046  return pTabOut;
1047}
1048
1049
[262]1050
[488]1051SDMemTable* SDMath::convertFlux(const SDMemTable& in, Float D, Float etaAp,
[716]1052                                Float JyPerK, Bool doAll)
[221]1053//
[478]1054// etaAp = aperture efficiency (-1 means find)
1055// D     = geometric diameter (m)  (-1 means find)
[354]1056// JyPerK
[221]1057//
1058{
1059  SDHeader sh = in.getSDHeader();
1060  SDMemTable* pTabOut = new SDMemTable(in, True);
[177]1061
[701]1062  // Find out how to convert values into Jy and K (e.g. units might be
1063  // mJy or mK) Also automatically find out what we are converting to
1064  // according to the flux unit
[221]1065  Unit fluxUnit(sh.fluxunit);
1066  Unit K(String("K"));
1067  Unit JY(String("Jy"));
[701]1068
[221]1069  Bool toKelvin = True;
[354]1070  Double cFac = 1.0;   
[716]1071
[221]1072  if (fluxUnit==JY) {
[716]1073    pushLog("Converting to K");
[701]1074    Quantum<Double> t(1.0,fluxUnit);
1075    Quantum<Double> t2 = t.get(JY);
1076    cFac = (t2 / t).getValue();               // value to Jy
1077   
1078    toKelvin = True;
1079    sh.fluxunit = "K";
[221]1080  } else if (fluxUnit==K) {
[716]1081    pushLog("Converting to Jy");
[701]1082    Quantum<Double> t(1.0,fluxUnit);
1083    Quantum<Double> t2 = t.get(K);
1084    cFac = (t2 / t).getValue();              // value to K
1085   
1086    toKelvin = False;
1087    sh.fluxunit = "Jy";
[221]1088  } else {
[701]1089    throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
[221]1090  }
[716]1091
[221]1092  pTabOut->putSDHeader(sh);
[701]1093 
1094  // Make sure input values are converted to either Jy or K first...
[354]1095  Float factor = cFac;
[221]1096
[701]1097  // Select method
[354]1098  if (JyPerK>0.0) {
[701]1099    factor *= JyPerK;
1100    if (toKelvin) factor = 1.0 / JyPerK;
[716]1101    ostringstream oss;
1102    oss << "Jy/K = " << JyPerK;
1103    pushLog(String(oss));
[701]1104    Vector<Float> factors(in.nRow(), factor);
1105    scaleByVector(pTabOut, in, doAll, factors, False);
[354]1106  } else if (etaAp>0.0) {
[701]1107    Bool throwIt = True;
[716]1108    Instrument inst = SDAttr::convertInstrument(sh.antennaname, throwIt);
[701]1109    SDAttr sda;
1110    if (D < 0) D = sda.diameter(inst);
[716]1111    Float JyPerK = SDAttr::findJyPerK(etaAp,D);
1112    ostringstream oss;
1113    oss << "Jy/K = " << JyPerK;
1114    pushLog(String(oss));
[701]1115    factor *= JyPerK;
1116    if (toKelvin) {
1117      factor = 1.0 / factor;
1118    }
1119
1120    Vector<Float> factors(in.nRow(), factor);
1121    scaleByVector(pTabOut, in, doAll, factors, False);
[354]1122  } else {
[701]1123   
1124    // OK now we must deal with automatic look up of values.
1125    // We must also deal with the fact that the factors need
1126    // to be computed per IF and may be different and may
1127    // change per integration.
1128   
[716]1129    pushLog("Looking up conversion factors");
[701]1130    convertBrightnessUnits (pTabOut, in, toKelvin, cFac, doAll);
1131  }
[221]1132  return pTabOut;
1133}
1134
1135
[488]1136SDMemTable* SDMath::gainElevation(const SDMemTable& in,
1137                                  const Vector<Float>& coeffs,
1138                                  const String& fileName,
[716]1139                                  const String& methodStr, Bool doAll)
[227]1140{
[234]1141
[701]1142  // Get header and clone output table
[227]1143  SDHeader sh = in.getSDHeader();
1144  SDMemTable* pTabOut = new SDMemTable(in, True);
1145
[701]1146  // Get elevation data from SDMemTable and convert to degrees
[227]1147  const Table& tab = in.table();
1148  ROScalarColumn<Float> elev(tab, "ELEVATION");
[234]1149  Vector<Float> x = elev.getColumn();
[363]1150  x *= Float(180 / C::pi);                        // Degrees
[701]1151 
[234]1152  const uInt nC = coeffs.nelements();
1153  if (fileName.length()>0 && nC>0) {
[701]1154    throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
[234]1155  }
[701]1156 
1157  // Correct
[234]1158  if (nC>0 || fileName.length()==0) {
[701]1159    // Find instrument
[234]1160     Bool throwIt = True;
[478]1161     Instrument inst = SDAttr::convertInstrument (sh.antennaname, throwIt);
[234]1162     
[701]1163     // Set polynomial
[234]1164     Polynomial<Float>* pPoly = 0;
1165     Vector<Float> coeff;
1166     String msg;
1167     if (nC>0) {
[701]1168       pPoly = new Polynomial<Float>(nC);
1169       coeff = coeffs;
1170       msg = String("user");
[234]1171     } else {
[701]1172       SDAttr sdAttr;
1173       coeff = sdAttr.gainElevationPoly(inst);
1174       pPoly = new Polynomial<Float>(3);
1175       msg = String("built in");
[234]1176     }
[701]1177     
[234]1178     if (coeff.nelements()>0) {
[701]1179       pPoly->setCoefficients(coeff);
[234]1180     } else {
[701]1181       delete pPoly;
1182       throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
[234]1183     }
[716]1184     pushLog("Making polynomial correction with "+msg+" coefficients");
[234]1185     const uInt nRow = in.nRow();
1186     Vector<Float> factor(nRow);
1187     for (uInt i=0; i<nRow; i++) {
[701]1188       factor[i] = 1.0 / (*pPoly)(x[i]);
[234]1189     }
1190     delete pPoly;
[480]1191     scaleByVector (pTabOut, in, doAll, factor, True);
[701]1192
[234]1193  } else {
[701]1194   
1195    // Indicate which columns to read from ascii file
1196    String col0("ELEVATION");
1197    String col1("FACTOR");
1198   
1199    // Read and correct
1200   
[716]1201    pushLog("Making correction from ascii Table");
[701]1202    scaleFromAsciiTable (pTabOut, in, fileName, col0, col1,
1203                         methodStr, doAll, x, True);
1204  }
[234]1205
[701]1206  return pTabOut;
[230]1207}
1208 
[227]1209
[716]1210SDMemTable* SDMath::opacity(const SDMemTable& in, Float tau, Bool doAll)
[234]1211{
[227]1212
[701]1213  // Get header and clone output table
[227]1214
[234]1215  SDHeader sh = in.getSDHeader();
1216  SDMemTable* pTabOut = new SDMemTable(in, True);
1217
1218// Get elevation data from SDMemTable and convert to degrees
1219
1220  const Table& tab = in.table();
1221  ROScalarColumn<Float> elev(tab, "ELEVATION");
1222  Vector<Float> zDist = elev.getColumn();
1223  zDist = Float(C::pi_2) - zDist;
1224
1225// Generate correction factor
1226
1227  const uInt nRow = in.nRow();
1228  Vector<Float> factor(nRow);
1229  Vector<Float> factor2(nRow);
1230  for (uInt i=0; i<nRow; i++) {
1231     factor[i] = exp(tau)/cos(zDist[i]);
1232  }
1233
1234// Correct
1235
[480]1236  scaleByVector (pTabOut, in, doAll, factor, True);
[701]1237
[234]1238  return pTabOut;
1239}
1240
1241
[488]1242void SDMath::rotateXYPhase(SDMemTable& in, Float value, Bool doAll)
[457]1243//
1244// phase in degrees
[518]1245// assumes linear correlations
[457]1246//
1247{
[701]1248  if (in.nPol() != 4) {
1249    throw(AipsError("You must have 4 polarizations to run this function"));
1250  }
1251
[518]1252   SDHeader sh = in.getSDHeader();
[716]1253   Instrument inst = SDAttr::convertInstrument(sh.antennaname, False);
[518]1254   SDAttr sdAtt;
1255   if (sdAtt.feedPolType(inst) != LINEAR) {
1256      throw(AipsError("Only linear polarizations are supported"));
1257   }
[457]1258//   
1259   const Table& tabIn = in.table();
1260   ArrayColumn<Float> specCol(tabIn,"SPECTRA"); 
1261   IPosition start(asap::nAxes,0);
1262   IPosition end(asap::nAxes);
[234]1263
[457]1264// Set cursor slice. Assumes shape the same for all rows
1265 
1266   setCursorSlice (start, end, doAll, in);
1267   IPosition start3(start);
1268   start3(asap::PolAxis) = 2;                 // Real(XY)
1269   IPosition end3(end);
1270   end3(asap::PolAxis) = 2;   
1271//
1272   IPosition start4(start);
1273   start4(asap::PolAxis) = 3;                 // Imag (XY)
1274   IPosition end4(end);
1275   end4(asap::PolAxis) = 3;
1276// 
1277   uInt nRow = in.nRow();
1278   Array<Float> data;
1279   for (uInt i=0; i<nRow;++i) {
1280      specCol.get(i,data);
1281      IPosition shape = data.shape();
1282 
[701]1283      // Get polarization slice references
[457]1284      Array<Float> C3 = data(start3,end3);
1285      Array<Float> C4 = data(start4,end4);
1286   
[701]1287      // Rotate
[502]1288      SDPolUtil::rotatePhase(C3, C4, value);
[457]1289   
[701]1290      // Put
[457]1291      specCol.put(i,data);
1292   }
1293}     
[234]1294
[502]1295
1296void SDMath::rotateLinPolPhase(SDMemTable& in, Float value, Bool doAll)
1297//
1298// phase in degrees
[518]1299// assumes linear correlations
[502]1300//
1301{
1302   if (in.nPol() != 4) {
1303      throw(AipsError("You must have 4 polarizations to run this function"));
1304   }
[518]1305//
1306   SDHeader sh = in.getSDHeader();
[716]1307   Instrument inst = SDAttr::convertInstrument(sh.antennaname, False);
[518]1308   SDAttr sdAtt;
1309   if (sdAtt.feedPolType(inst) != LINEAR) {
1310      throw(AipsError("Only linear polarizations are supported"));
1311   }
[502]1312//   
1313   const Table& tabIn = in.table();
1314   ArrayColumn<Float> specCol(tabIn,"SPECTRA"); 
1315   ROArrayColumn<Float> stokesCol(tabIn,"STOKES"); 
1316   IPosition start(asap::nAxes,0);
1317   IPosition end(asap::nAxes);
1318
1319// Set cursor slice. Assumes shape the same for all rows
1320 
1321   setCursorSlice (start, end, doAll, in);
1322//
1323   IPosition start1(start);
1324   start1(asap::PolAxis) = 0;                // C1 (XX)
1325   IPosition end1(end);
1326   end1(asap::PolAxis) = 0;   
1327//
1328   IPosition start2(start);
1329   start2(asap::PolAxis) = 1;                 // C2 (YY)
1330   IPosition end2(end);
1331   end2(asap::PolAxis) = 1;   
1332//
1333   IPosition start3(start);
1334   start3(asap::PolAxis) = 2;                 // C3 ( Real(XY) )
1335   IPosition end3(end);
1336   end3(asap::PolAxis) = 2;   
1337//
1338   IPosition startI(start);
1339   startI(asap::PolAxis) = 0;                 // I
1340   IPosition endI(end);
1341   endI(asap::PolAxis) = 0;   
1342//
1343   IPosition startQ(start);
1344   startQ(asap::PolAxis) = 1;                 // Q
1345   IPosition endQ(end);
1346   endQ(asap::PolAxis) = 1;   
1347//
1348   IPosition startU(start);
1349   startU(asap::PolAxis) = 2;                 // U
1350   IPosition endU(end);
1351   endU(asap::PolAxis) = 2;   
1352
1353//
1354   uInt nRow = in.nRow();
1355   Array<Float> data, stokes;
1356   for (uInt i=0; i<nRow;++i) {
1357      specCol.get(i,data);
1358      stokesCol.get(i,stokes);
1359      IPosition shape = data.shape();
1360 
1361// Get linear polarization slice references
1362 
1363      Array<Float> C1 = data(start1,end1);
1364      Array<Float> C2 = data(start2,end2);
1365      Array<Float> C3 = data(start3,end3);
1366
1367// Get STokes slice references
1368
1369      Array<Float> I = stokes(startI,endI);
1370      Array<Float> Q = stokes(startQ,endQ);
1371      Array<Float> U = stokes(startU,endU);
1372   
1373// Rotate
1374 
1375      SDPolUtil::rotateLinPolPhase(C1, C2, C3, I, Q, U, value);
1376   
1377// Put
1378   
1379      specCol.put(i,data);
1380   }
1381}     
1382
[169]1383// 'private' functions
1384
[354]1385void SDMath::convertBrightnessUnits (SDMemTable* pTabOut, const SDMemTable& in,
[716]1386                                     Bool toKelvin, Float cFac, Bool doAll)
[354]1387{
[309]1388
[354]1389// Get header
1390
1391   SDHeader sh = in.getSDHeader();
1392   const uInt nChan = sh.nchan;
1393
1394// Get instrument
1395
1396   Bool throwIt = True;
[716]1397   Instrument inst = SDAttr::convertInstrument(sh.antennaname, throwIt);
[354]1398
1399// Get Diameter (m)
1400
1401   SDAttr sdAtt;
1402// Get epoch of first row
1403
1404   MEpoch dateObs = in.getEpoch(0);
1405
1406// Generate a Vector of correction factors. One per FreqID
1407
1408   SDFrequencyTable sdft = in.getSDFreqTable();
1409   Vector<uInt> freqIDs;
1410//
1411   Vector<Float> freqs(sdft.length());
1412   for (uInt i=0; i<sdft.length(); i++) {
1413      freqs(i) = (nChan/2 - sdft.referencePixel(i))*sdft.increment(i) + sdft.referenceValue(i);
1414   }
1415//
1416   Vector<Float> JyPerK = sdAtt.JyPerK(inst, dateObs, freqs);
[716]1417   ostringstream oss;
1418   oss << "Jy/K = " << JyPerK;
1419   pushLog(String(oss));
[354]1420   Vector<Float> factors = cFac * JyPerK;
1421   if (toKelvin) factors = Float(1.0) / factors;
1422
[434]1423// Get data slice bounds
[354]1424
1425   IPosition start, end;
[434]1426   setCursorSlice (start, end, doAll, in);
[354]1427   const uInt ifAxis = in.getIF();
1428
1429// Iteration axes
1430
1431   IPosition axes(asap::nAxes-1,0);
1432   for (uInt i=0,j=0; i<asap::nAxes; i++) {
1433      if (i!=asap::IFAxis) {
1434         axes(j++) = i;
1435      }
1436   }
1437
1438// Loop over rows and apply correction factor
1439
1440   Float factor = 1.0; 
1441   const uInt axis = asap::ChanAxis;
1442   for (uInt i=0; i < in.nRow(); ++i) {
1443
1444// Get data
1445
[434]1446      MaskedArray<Float> dataIn = in.rowAsMaskedArray(i);
1447      Array<Float>& values = dataIn.getRWArray();           // Ref to dataIn
1448      Array<Float> values2 = values(start,end);             // Ref to values to dataIn
[354]1449
1450// Get SDCOntainer
1451
1452      SDContainer sc = in.getSDContainer(i);
1453
1454// Get FreqIDs
1455
1456      freqIDs = sc.getFreqMap();
1457
1458// Now the conversion factor depends only upon frequency
1459// So we need to iterate through by IF only giving
1460// us BEAM/POL/CHAN cubes
1461
[434]1462      ArrayIterator<Float> itIn(values2, axes);
1463      uInt ax = 0;
1464      while (!itIn.pastEnd()) {
1465        itIn.array() *= factors(freqIDs(ax));         // Writes back to dataIn
1466        itIn.next();
[354]1467      }
1468
1469// Write out
1470
1471      putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
1472//
1473      pTabOut->putSDContainer(sc);
1474   }
1475}
1476
1477
1478
[701]1479SDMemTable* SDMath::frequencyAlign(const SDMemTable& in,
[309]1480                                   MFrequency::Types freqSystem,
[397]1481                                   const String& refTime,
1482                                   const String& methodStr,
[716]1483                                   Bool perFreqID)
[267]1484{
1485// Get Header
1486
1487   SDHeader sh = in.getSDHeader();
1488   const uInt nChan = sh.nchan;
1489   const uInt nRows = in.nRow();
[330]1490   const uInt nIF = sh.nif;
[267]1491
1492// Get Table reference
1493
1494   const Table& tabIn = in.table();
1495
1496// Get Columns from Table
1497
[294]1498   ROScalarColumn<Double> mjdCol(tabIn, "TIME");
1499   ROScalarColumn<String> srcCol(tabIn, "SRCNAME");
1500   ROArrayColumn<uInt> fqIDCol(tabIn, "FREQID");
1501   Vector<Double> times = mjdCol.getColumn();
[267]1502
[397]1503// Generate DataDesc table
[330]1504 
1505   Matrix<uInt> ddIdx;
1506   SDDataDesc dDesc;
[701]1507   generateDataDescTable(ddIdx, dDesc, nIF, in, tabIn, srcCol,
1508                          fqIDCol, perFreqID);
[267]1509
[294]1510// Get reference Epoch to time of first row or given String
[701]1511   
[267]1512   Unit DAY(String("d"));
[272]1513   MEpoch::Ref epochRef(in.getTimeReference());
1514   MEpoch refEpoch;
1515   if (refTime.length()>0) {
[701]1516     refEpoch = epochFromString(refTime, in.getTimeReference());
[272]1517   } else {
[701]1518     refEpoch = in.getEpoch(0);
[272]1519   }
[716]1520   pushLog("Aligning at reference Epoch "+formatEpoch(refEpoch)
1521                  +" in frame "+MFrequency::showType(freqSystem));
[414]1522   
[701]1523   // Get Reference Position
1524   
[288]1525   MPosition refPos = in.getAntennaPosition();
[701]1526   
1527   // Create FrequencyAligner Block. One FA for each possible
1528   // source/freqID (perFreqID=True) or source/IF (perFreqID=False)
1529   // combination
1530   
[330]1531   PtrBlock<FrequencyAligner<Float>* > a(dDesc.length());
[397]1532   generateFrequencyAligners (a, dDesc, in, nChan, freqSystem, refPos,
1533                              refEpoch, perFreqID);
[701]1534   
1535   // Generate and fill output Frequency Table.  WHen perFreqID=True,
1536   // there is one output FreqID for each entry in the SDDataDesc
1537   // table.  However, in perFreqID=False mode, there may be some
1538   // degeneracy, so we need a little translation map
1539   
[330]1540   SDFrequencyTable freqTabOut = in.getSDFreqTable();
1541   freqTabOut.setLength(0);
1542   Vector<String> units(1);
1543   units = String("Hz");
1544   Bool linear=True;
[701]1545   //
[397]1546   Vector<uInt> ddFQTrans(dDesc.length(),0);
[330]1547   for (uInt i=0; i<dDesc.length(); i++) {
1548
[701]1549     // Get Aligned SC in Hz
1550     
1551     SpectralCoordinate sC = a[i]->alignedSpectralCoordinate(linear);
1552     sC.setWorldAxisUnits(units);
1553     
1554     // Add FreqID
1555     
1556     uInt idx = freqTabOut.addFrequency(sC.referencePixel()[0],
1557                                        sC.referenceValue()[0],
1558                                        sC.increment()[0]);
1559     // output FreqID = ddFQTrans(ddIdx)
1560     ddFQTrans(i) = idx;
[330]1561   }
[701]1562   
1563   // Interpolation method
1564   
[317]1565   InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1566   convertInterpString(interp, methodStr);
[701]1567   
1568   // New output Table
1569   
[716]1570   pushLog("Create output table");
[267]1571   SDMemTable* pTabOut = new SDMemTable(in,True);
[330]1572   pTabOut->putSDFreqTable(freqTabOut);
[701]1573   
1574   // Loop over rows in Table
1575   
[330]1576   Bool extrapolate=False;
[294]1577   const IPosition polChanAxes(2, asap::PolAxis, asap::ChanAxis);
1578   Bool useCachedAbcissa = False;
1579   Bool first = True;
1580   Bool ok;
1581   Vector<Float> yOut;
1582   Vector<Bool> maskOut;
[330]1583   Vector<uInt> freqID(nIF);
[309]1584   uInt ifIdx, faIdx;
[397]1585   Vector<Double> xIn;
[701]1586   //
[294]1587   for (uInt iRow=0; iRow<nRows; ++iRow) {
[701]1588     if (iRow%10==0) {
[716]1589       pushLog("Processing row "+iRow);
[701]1590     }
1591     
1592     // Get EPoch
1593     
[294]1594     Quantum<Double> tQ2(times[iRow],DAY);
1595     MVEpoch mv2(tQ2);
1596     MEpoch epoch(mv2, epochRef);
[701]1597     
1598     // Get copy of data
1599     
[294]1600     const MaskedArray<Float>& mArrIn(in.rowAsMaskedArray(iRow));
1601     Array<Float> values = mArrIn.getArray();
1602     Array<Bool> mask = mArrIn.getMask();
[701]1603     
1604     // For each row, the Frequency abcissa will be the same
1605     // regardless of polarization.  For all other axes (IF and BEAM)
1606     // the abcissa will change.  So we iterate through the data by
1607     // pol-chan planes to mimimize the work.  Probably won't work for
1608     // multiple beams at this point.
1609     
[294]1610     ArrayIterator<Float> itValuesPlane(values, polChanAxes);
1611     ArrayIterator<Bool> itMaskPlane(mask, polChanAxes);
1612     while (!itValuesPlane.pastEnd()) {
[267]1613
[701]1614       // Find the IF index and then the FA PtrBlock index
1615       
1616       const IPosition& pos = itValuesPlane.pos();
1617       ifIdx = pos(asap::IFAxis);
1618       faIdx = ddIdx(iRow,ifIdx);
1619       
1620       // Generate abcissa for perIF.  Could cache this in a Matrix on
1621       // a per scan basis.  Pretty expensive doing it for every row.
1622       
1623       if (!perFreqID) {
1624         xIn.resize(nChan);
1625         uInt fqID = dDesc.secID(ddIdx(iRow,ifIdx));
1626         SpectralCoordinate sC = in.getSpectralCoordinate(fqID);
[397]1627           Double w;
1628           for (uInt i=0; i<nChan; i++) {
[701]1629             sC.toWorld(w,Double(i));
[397]1630              xIn[i] = w;
1631           }
[701]1632       }
1633       
1634       VectorIterator<Float> itValuesVec(itValuesPlane.array(), 1);
1635       VectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
[330]1636
[701]1637       // Iterate through the plane by vector and align
1638       
[294]1639        first = True;
1640        useCachedAbcissa=False;
1641        while (!itValuesVec.pastEnd()) {     
[701]1642          if (perFreqID) {
1643            ok = a[faIdx]->align (yOut, maskOut, itValuesVec.vector(),
1644                                  itMaskVec.vector(), epoch, useCachedAbcissa,
1645                                  interp, extrapolate);
1646          } else {
1647            ok = a[faIdx]->align (yOut, maskOut, xIn, itValuesVec.vector(),
1648                                  itMaskVec.vector(), epoch, useCachedAbcissa,
1649                                  interp, extrapolate);
1650          }
1651          //
1652          itValuesVec.vector() = yOut;
1653          itMaskVec.vector() = maskOut;
1654          //
1655          itValuesVec.next();
1656          itMaskVec.next();
1657          //
1658          if (first) {
1659            useCachedAbcissa = True;
1660            first = False;
1661          }
[294]1662        }
[701]1663        //
1664        itValuesPlane.next();
1665        itMaskPlane.next();
[294]1666     }
[701]1667     
1668     // Create SDContainer and put back
1669     
1670     SDContainer sc = in.getSDContainer(iRow);
1671     putDataInSDC(sc, values, mask);
1672     
1673     // Set output FreqIDs
1674     
1675     for (uInt i=0; i<nIF; i++) {
[397]1676       uInt idx = ddIdx(iRow,i);               // Index into SDDataDesc table
1677       freqID(i) = ddFQTrans(idx);             // FreqID in output FQ table
[701]1678     }
1679     sc.putFreqMap(freqID);
1680     //
1681     pTabOut->putSDContainer(sc);
[294]1682   }
[701]1683   
1684   // Now we must set the base and extra frames to the input frame
[309]1685   std::vector<string> info = pTabOut->getCoordInfo();
1686   info[1] = MFrequency::showType(freqSystem);   // Conversion frame
1687   info[3] = info[1];                            // Base frame
1688   pTabOut->setCoordInfo(info);
1689
[701]1690   // Clean up PointerBlock   
1691   for (uInt i=0; i<a.nelements(); i++) delete a[i];
[267]1692
[309]1693   return pTabOut;
[267]1694}
1695
1696
[716]1697SDMemTable* SDMath::frequencySwitch(const SDMemTable& in)
[701]1698{
1699  if (in.nIF() != 2) {
1700    throw(AipsError("nIF != 2 "));
1701  }
1702  Bool clear = True;
1703  SDMemTable* pTabOut = new SDMemTable(in, clear);
1704  const Table& tabIn = in.table();
1705
1706  // Shape of input and output data
1707  const IPosition& shapeIn = in.rowAsMaskedArray(0).shape();
1708
1709  const uInt nRows = in.nRow();
1710  AlwaysAssert(asap::nAxes==4,AipsError);
1711
1712  ROArrayColumn<Float> tSysCol;
1713  Array<Float> tsys;
1714  tSysCol.attach(tabIn,"TSYS");
1715
1716  for (uInt iRow=0; iRow<nRows; iRow++) {
1717    // Get data for this row
1718    MaskedArray<Float> marr(in.rowAsMaskedArray(iRow));
1719    tSysCol.get(iRow, tsys);
1720
1721    // whole Array for IF 0
1722    IPosition start(asap::nAxes,0);
1723    IPosition end = shapeIn-1;
1724    end(asap::IFAxis) = 0;
1725
1726    MaskedArray<Float> on = marr(start,end);
1727    Array<Float> ton = tsys(start,end);
1728    // Make a copy as "src" is a refrence which is manipulated.
1729    // oncopy is needed for the inverse quotient
1730    MaskedArray<Float> oncopy = on.copy();
1731
1732    // whole Array for IF 1
1733    start(asap::IFAxis) = 1;
1734    end(asap::IFAxis) = 1;
1735
1736    MaskedArray<Float> off = marr(start,end);
1737    Array<Float> toff = tsys(start,end);
1738
1739    on /= off; on -= 1.0f;
1740    on *= ton;
1741    off /= oncopy; off -= 1.0f;
1742    off *= toff;
1743
1744    SDContainer sc = in.getSDContainer(iRow);
1745    putDataInSDC(sc, marr.getArray(), marr.getMask());
1746    pTabOut->putSDContainer(sc);
1747  }
1748  return pTabOut;
1749}
1750
[185]1751void SDMath::fillSDC(SDContainer& sc,
1752                     const Array<Bool>& mask,
1753                     const Array<Float>& data,
1754                     const Array<Float>& tSys,
1755                     Int scanID, Double timeStamp,
1756                     Double interval, const String& sourceName,
[716]1757                     const Vector<uInt>& freqID)
[167]1758{
[169]1759// Data and mask
[167]1760
[185]1761  putDataInSDC(sc, data, mask);
[167]1762
[169]1763// TSys
1764
1765  sc.putTsys(tSys);
1766
1767// Time things
1768
1769  sc.timestamp = timeStamp;
1770  sc.interval = interval;
1771  sc.scanid = scanID;
[167]1772//
[169]1773  sc.sourcename = sourceName;
1774  sc.putFreqMap(freqID);
1775}
[167]1776
[185]1777void SDMath::accumulate(Double& timeSum, Double& intSum, Int& nAccum,
1778                        MaskedArray<Float>& sum, Array<Float>& sumSq,
1779                        Array<Float>& nPts, Array<Float>& tSysSum,
[518]1780                        Array<Float>& tSysSqSum,
[185]1781                        const Array<Float>& tSys, const Array<Float>& nInc,
1782                        const Vector<Bool>& mask, Double time, Double interval,
[653]1783                        const std::vector<CountedPtr<SDMemTable> >& in,
[185]1784                        uInt iTab, uInt iRow, uInt axis,
1785                        uInt nAxesSub, Bool useMask,
[716]1786                        WeightType wtType)
[169]1787{
1788
1789// Get data
1790
1791   MaskedArray<Float> dataIn(in[iTab]->rowAsMaskedArray(iRow));
1792   Array<Float>& valuesIn = dataIn.getRWArray();           // writable reference
1793   const Array<Bool>& maskIn = dataIn.getMask();          // RO reference
[167]1794//
[169]1795   if (wtType==NONE) {
1796      const MaskedArray<Float> n(nInc,dataIn.getMask());
1797      nPts += n;                               // Only accumulates where mask==T
[518]1798   } else if (wtType==TINT) {
1799
1800// We are weighting the data by integration time.
1801
1802     valuesIn *= Float(interval);
1803
[169]1804   } else if (wtType==VAR) {
[167]1805
[169]1806// We are going to average the data, weighted by the noise for each pol, beam and IF.
1807// So therefore we need to iterate through by spectrum (axis 3)
[167]1808
[169]1809      VectorIterator<Float> itData(valuesIn, axis);
1810      ReadOnlyVectorIterator<Bool> itMask(maskIn, axis);
1811      Float fac = 1.0;
1812      IPosition pos(nAxesSub,0); 
1813//
1814      while (!itData.pastEnd()) {
[167]1815
[169]1816// Make MaskedArray of Vector, optionally apply OTF mask, and find scaling factor
[167]1817
[518]1818         if (useMask) {
1819            MaskedArray<Float> tmp(itData.vector(),mask&&itMask.vector());
1820            fac = 1.0/variance(tmp);
1821         } else {
1822            MaskedArray<Float> tmp(itData.vector(),itMask.vector());
1823            fac = 1.0/variance(tmp);
1824         }
[169]1825
1826// Scale data
1827
[518]1828         itData.vector() *= fac;     // Writes back into 'dataIn'
[167]1829//
[169]1830// Accumulate variance per if/pol/beam averaged over spectrum
1831// This method to get pos2 from itData.pos() is only valid
1832// because the spectral axis is the last one (so we can just
1833// copy the first nAXesSub positions out)
[167]1834
[518]1835         pos = itData.pos().getFirst(nAxesSub);
1836         sumSq(pos) += fac;
[169]1837//
[518]1838         itData.next();
1839         itMask.next();
[169]1840      }
[536]1841   } else if (wtType==TSYS || wtType==TINTSYS) {
[518]1842
1843// We are going to average the data, weighted by 1/Tsys**2 for each pol, beam and IF.
1844// So therefore we need to iterate through by spectrum (axis 3).  Although
1845// Tsys is stored as a vector of length nChan, the values are replicated.
1846// We will take a short cut and just use the value from the first channel
1847// for now.
1848//
1849      VectorIterator<Float> itData(valuesIn, axis);
1850      ReadOnlyVectorIterator<Float> itTSys(tSys, axis);
1851      IPosition pos(nAxesSub,0); 
1852//
[536]1853      Float fac = 1.0;
1854      if (wtType==TINTSYS) fac *= interval;
[518]1855      while (!itData.pastEnd()) {
1856         Float t = itTSys.vector()[0];
[536]1857         fac *= 1.0/t/t;
[518]1858
1859// Scale data
1860
1861         itData.vector() *= fac;     // Writes back into 'dataIn'
1862//
1863// Accumulate Tsys  per if/pol/beam averaged over spectrum
1864// This method to get pos2 from itData.pos() is only valid
1865// because the spectral axis is the last one (so we can just
1866// copy the first nAXesSub positions out)
1867
1868         pos = itData.pos().getFirst(nAxesSub);
1869         tSysSqSum(pos) += fac;
1870//
1871         itData.next();
1872         itTSys.next();
1873      }
[169]1874   }
[167]1875
[169]1876// Accumulate sum of (possibly scaled) data
1877
1878   sum += dataIn;
1879
1880// Accumulate Tsys, time, and interval
1881
1882   tSysSum += tSys;
1883   timeSum += time;
1884   intSum += interval;
1885   nAccum += 1;
1886}
1887
1888
[518]1889void SDMath::normalize(MaskedArray<Float>& sum,
1890                       const Array<Float>& sumSq,
1891                       const Array<Float>& tSysSqSum,
1892                       const Array<Float>& nPts,
1893                       Double intSum,
1894                       WeightType wtType, Int axis,
[716]1895                       Int nAxesSub)
[518]1896{
1897   IPosition pos2(nAxesSub,0);
1898//
1899   if (wtType==NONE) {
1900
1901// We just average by the number of points accumulated.
1902// We need to make a MA out of nPts so that no divide by
1903// zeros occur
1904
1905      MaskedArray<Float> t(nPts, (nPts>Float(0.0)));
1906      sum /= t;
1907   } else if (wtType==TINT) {
1908
1909// Average by sum of Tint
1910
1911      sum /= Float(intSum);
1912   } else if (wtType==VAR) {
1913
1914// Normalize each spectrum by sum(1/var) where the variance
1915// is worked out for each spectrum
1916
1917      Array<Float>& data = sum.getRWArray();
1918      VectorIterator<Float> itData(data, axis);
1919      while (!itData.pastEnd()) {
1920         pos2 = itData.pos().getFirst(nAxesSub);
1921         itData.vector() /= sumSq(pos2);
1922         itData.next();
1923      }
[536]1924   } else if (wtType==TSYS || wtType==TINTSYS) {
[518]1925   
[536]1926// Normalize each spectrum by sum(1/Tsys**2) (TSYS) or
1927// sum(Tint/Tsys**2) (TINTSYS) where the pseudo
[518]1928// replication over channel for Tsys has been dropped.
1929
1930      Array<Float>& data = sum.getRWArray();
1931      VectorIterator<Float> itData(data, axis);
1932      while (!itData.pastEnd()) {
1933         pos2 = itData.pos().getFirst(nAxesSub);
1934         itData.vector() /= tSysSqSum(pos2);
1935         itData.next();
1936      }
1937   }
1938}
1939
1940
1941
1942
[434]1943void SDMath::setCursorSlice (IPosition& start, IPosition& end, Bool doAll, const SDMemTable& in) const
[169]1944{
[434]1945  const uInt nDim = asap::nAxes;
1946  DebugAssert(nDim==4,AipsError);
[167]1947//
[169]1948  start.resize(nDim);
[434]1949  end.resize(nDim);
1950  if (doAll) {
1951     start = 0;
1952     end(0) = in.nBeam()-1;
1953     end(1) = in.nIF()-1;
1954     end(2) = in.nPol()-1;
1955     end(3) = in.nChan()-1;
1956  } else {
1957     start(0) = in.getBeam();
1958     end(0) = start(0);
[167]1959//
[434]1960     start(1) = in.getIF();
1961     end(1) = start(1);
1962//
1963     start(2) = in.getPol();
1964     end(2) = start(2);
1965//
1966     start(3) = 0;
1967     end(3) = in.nChan()-1;
1968   }
[169]1969}
1970
1971
[518]1972void SDMath::convertWeightString(WeightType& wtType, const String& weightStr,
[716]1973                                 Bool listType)
[169]1974{
1975  String tStr(weightStr);
1976  tStr.upcase();
[518]1977  String msg;
[169]1978  if (tStr.contains(String("NONE"))) {
1979     wtType = NONE;
[518]1980     msg = String("Weighting type selected : None");
[169]1981  } else if (tStr.contains(String("VAR"))) {
1982     wtType = VAR;
[518]1983     msg = String("Weighting type selected : Variance");
[536]1984  } else if (tStr.contains(String("TINTSYS"))) {
1985       wtType = TINTSYS;
1986       msg = String("Weighting type selected : Tint&Tsys");
[518]1987  } else if (tStr.contains(String("TINT"))) {
1988     wtType = TINT;
[519]1989     msg = String("Weighting type selected : Tint");
[169]1990  } else if (tStr.contains(String("TSYS"))) {
1991     wtType = TSYS;
[518]1992     msg = String("Weighting type selected : Tsys");
[169]1993  } else {
[518]1994     msg = String("Weighting type selected : None");
1995     throw(AipsError("Unrecognized weighting type"));
[167]1996  }
[518]1997//
[716]1998  if (listType) pushLog(msg);
[167]1999}
2000
[317]2001
2002void SDMath::convertInterpString(casa::InterpolateArray1D<Double,Float>::InterpolationMethod& type, 
[716]2003                                 const casa::String& interp)
[227]2004{
2005  String tStr(interp);
2006  tStr.upcase();
2007  if (tStr.contains(String("NEAR"))) {
[317]2008     type = InterpolateArray1D<Double,Float>::nearestNeighbour;
[227]2009  } else if (tStr.contains(String("LIN"))) {
[317]2010     type = InterpolateArray1D<Double,Float>::linear;
[227]2011  } else if (tStr.contains(String("CUB"))) {
[317]2012     type = InterpolateArray1D<Double,Float>::cubic;
[227]2013  } else if (tStr.contains(String("SPL"))) {
[317]2014     type = InterpolateArray1D<Double,Float>::spline;
[227]2015  } else {
2016    throw(AipsError("Unrecognized interpolation type"));
2017  }
2018}
2019
[185]2020void SDMath::putDataInSDC(SDContainer& sc, const Array<Float>& data,
[716]2021                          const Array<Bool>& mask)
[169]2022{
2023    sc.putSpectrum(data);
2024//
2025    Array<uChar> outflags(data.shape());
2026    convertArray(outflags,!mask);
2027    sc.putFlags(outflags);
2028}
[227]2029
[716]2030Table SDMath::readAsciiFile(const String& fileName) const
[227]2031{
[230]2032   String formatString;
2033   Table tbl = readAsciiTable (formatString, Table::Memory, fileName, "", "", False);
[227]2034   return tbl;
2035}
[230]2036
2037
[234]2038
[480]2039void SDMath::scaleFromAsciiTable(SDMemTable* pTabOut,
2040                                 const SDMemTable& in, const String& fileName,
2041                                 const String& col0, const String& col1,
2042                                 const String& methodStr, Bool doAll,
[716]2043                                 const Vector<Float>& xOut, Bool doTSys)
[230]2044{
2045
2046// Read gain-elevation ascii file data into a Table.
2047
[234]2048  Table geTable = readAsciiFile (fileName);
[230]2049//
[480]2050  scaleFromTable (pTabOut, in, geTable, col0, col1, methodStr, doAll, xOut, doTSys);
[230]2051}
2052
[480]2053void SDMath::scaleFromTable(SDMemTable* pTabOut, const SDMemTable& in,
2054                            const Table& tTable, const String& col0,
2055                            const String& col1,
2056                            const String& methodStr, Bool doAll,
[716]2057                            const Vector<Float>& xOut, Bool doTsys)
[230]2058{
2059
2060// Get data from Table
2061
2062  ROScalarColumn<Float> geElCol(tTable, col0);
2063  ROScalarColumn<Float> geFacCol(tTable, col1);
2064  Vector<Float> xIn = geElCol.getColumn();
2065  Vector<Float> yIn = geFacCol.getColumn();
2066  Vector<Bool> maskIn(xIn.nelements(),True);
2067
2068// Interpolate (and extrapolate) with desired method
2069
[317]2070   InterpolateArray1D<Double,Float>::InterpolationMethod method;
[230]2071   convertInterpString(method, methodStr);
[317]2072   Int intMethod(method);
[230]2073//
2074   Vector<Float> yOut;
2075   Vector<Bool> maskOut;
2076   InterpolateArray1D<Float,Float>::interpolate(yOut, maskOut, xOut,
[317]2077                                                xIn, yIn, maskIn, intMethod,
[230]2078                                                True, True);
[234]2079// Apply
[230]2080
[480]2081   scaleByVector(pTabOut, in, doAll, Float(1.0)/yOut, doTsys);
[234]2082}
2083
2084
[480]2085void SDMath::scaleByVector(SDMemTable* pTabOut, const SDMemTable& in,
2086                           Bool doAll, const Vector<Float>& factor,
[716]2087                           Bool doTSys)
[234]2088{
[270]2089
[434]2090// Set up data slice
[230]2091
2092  IPosition start, end;
[434]2093  setCursorSlice (start, end, doAll, in);
[230]2094
[480]2095// Get Tsys column
2096
2097  const Table& tIn = in.table();
2098  ArrayColumn<Float> tSysCol(tIn, "TSYS");
2099  Array<Float> tSys;
2100
[270]2101// Loop over rows and apply correction factor
[230]2102 
2103  const uInt axis = asap::ChanAxis;
2104  for (uInt i=0; i < in.nRow(); ++i) {
2105
2106// Get data
2107
[434]2108     MaskedArray<Float> dataIn(in.rowAsMaskedArray(i));
2109     MaskedArray<Float> dataIn2 = dataIn(start,end);  // reference to dataIn
[480]2110//
2111     if (doTSys) {
2112        tSysCol.get(i, tSys);
2113        Array<Float> tSys2 = tSys(start,end) * factor[i];
2114        tSysCol.put(i, tSys);
2115     }
[230]2116
2117// Apply factor
2118
[434]2119     dataIn2 *= factor[i];
[230]2120
2121// Write out
2122
[434]2123     SDContainer sc = in.getSDContainer(i);
2124     putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
[230]2125//
[434]2126     pTabOut->putSDContainer(sc);
[230]2127  }
2128}
2129
[234]2130
[262]2131
2132
[330]2133void SDMath::generateDataDescTable (Matrix<uInt>& ddIdx,
2134                                    SDDataDesc& dDesc,
2135                                    uInt nIF,
2136                                    const SDMemTable& in,
2137                                    const Table& tabIn,
2138                                    const ROScalarColumn<String>& srcCol,
[397]2139                                    const ROArrayColumn<uInt>& fqIDCol,
[716]2140                                    Bool perFreqID)
[330]2141{
2142   const uInt nRows = tabIn.nrow();
2143   ddIdx.resize(nRows,nIF);
[262]2144//
[330]2145   String srcName;
2146   Vector<uInt> freqIDs;
2147   for (uInt iRow=0; iRow<nRows; iRow++) {
2148      srcCol.get(iRow, srcName);
2149      fqIDCol.get(iRow, freqIDs);
2150      const MDirection& dir = in.getDirection(iRow);
2151//
[397]2152      if (perFreqID) {
2153
2154// One entry per source/freqID pair
2155
2156         for (uInt iIF=0; iIF<nIF; iIF++) {
2157            ddIdx(iRow,iIF) = dDesc.addEntry(srcName, freqIDs[iIF], dir, 0);
2158         }
2159      } else {
2160
2161// One entry per source/IF pair.  Hang onto the FreqID as well
2162
2163         for (uInt iIF=0; iIF<nIF; iIF++) {
2164            ddIdx(iRow,iIF) = dDesc.addEntry(srcName, iIF, dir, freqIDs[iIF]);
2165         }
[262]2166      }
2167   }
2168}
[272]2169
[397]2170
2171
2172
2173
[716]2174MEpoch SDMath::epochFromString(const String& str, MEpoch::Types timeRef)
[272]2175{
2176   Quantum<Double> qt;
2177   if (MVTime::read(qt,str)) {
2178      MVEpoch mv(qt);
2179      MEpoch me(mv, timeRef);
2180      return me;
2181   } else {
2182      throw(AipsError("Invalid format for Epoch string"));
2183   }
2184}
2185
2186
2187String SDMath::formatEpoch(const MEpoch& epoch)  const
2188{
2189   MVTime mvt(epoch.getValue());
2190   return mvt.string(MVTime::YMD) + String(" (") + epoch.getRefString() + String(")");
2191}
2192
[294]2193
[309]2194
[701]2195void SDMath::generateFrequencyAligners(PtrBlock<FrequencyAligner<Float>* >& a,
2196                                       const SDDataDesc& dDesc,
2197                                       const SDMemTable& in, uInt nChan,
2198                                       MFrequency::Types system,
2199                                       const MPosition& refPos,
2200                                       const MEpoch& refEpoch,
[716]2201                                       Bool perFreqID)
[294]2202{
[330]2203   for (uInt i=0; i<dDesc.length(); i++) {
[397]2204      uInt ID = dDesc.ID(i);
2205      uInt secID = dDesc.secID(i);
2206      const MDirection& refDir = dDesc.secDir(i);
[330]2207//
[397]2208      if (perFreqID) {
2209
2210// One aligner per source/FreqID pair. 
2211
2212         SpectralCoordinate sC = in.getSpectralCoordinate(ID);
2213         a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
2214      } else {
2215
2216// One aligner per source/IF pair.  But we still need the FreqID to
2217// get the right SC.  Hence the messing about with the secondary ID
2218
2219         SpectralCoordinate sC = in.getSpectralCoordinate(secID);
2220         a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
2221      }
[294]2222   }
2223}
[480]2224
[701]2225Vector<uInt> SDMath::getRowRange(const SDMemTable& in) const
[480]2226{
2227   Vector<uInt> range(2);
2228   range[0] = 0;
2229   range[1] = in.nRow()-1;
2230   return range;
2231}
2232   
2233
[701]2234Bool SDMath::rowInRange(uInt i, const Vector<uInt>& range) const
[480]2235{
2236   return (i>=range[0] && i<=range[1]);
2237}
[701]2238
Note: See TracBrowser for help on using the repository browser.