source: trunk/src/SDMath.cc @ 693

Last change on this file since 693 was 653, checked in by mar637, 19 years ago

changed Blocks to vectors

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 60.5 KB
RevLine 
[2]1//#---------------------------------------------------------------------------
2//# SDMath.cc: A collection of single dish mathematical operations
3//#---------------------------------------------------------------------------
4//# Copyright (C) 2004
[125]5//# ATNF
[2]6//#
7//# This program is free software; you can redistribute it and/or modify it
8//# under the terms of the GNU General Public License as published by the Free
9//# Software Foundation; either version 2 of the License, or (at your option)
10//# any later version.
11//#
12//# This program is distributed in the hope that it will be useful, but
13//# WITHOUT ANY WARRANTY; without even the implied warranty of
14//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
15//# Public License for more details.
16//#
17//# You should have received a copy of the GNU General Public License along
18//# with this program; if not, write to the Free Software Foundation, Inc.,
19//# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
20//#
21//# Correspondence concerning this software should be addressed as follows:
22//#        Internet email: Malte.Marquarding@csiro.au
23//#        Postal address: Malte Marquarding,
24//#                        Australia Telescope National Facility,
25//#                        P.O. Box 76,
26//#                        Epping, NSW, 2121,
27//#                        AUSTRALIA
28//#
29//# $Id:
30//#---------------------------------------------------------------------------
[38]31#include <vector>
32
[81]33#include <casa/aips.h>
[330]34#include <casa/iostream.h>
35#include <casa/iomanip.h>
[81]36#include <casa/BasicSL/String.h>
37#include <casa/Arrays/IPosition.h>
38#include <casa/Arrays/Array.h>
[130]39#include <casa/Arrays/ArrayIter.h>
40#include <casa/Arrays/VectorIter.h>
[81]41#include <casa/Arrays/ArrayMath.h>
42#include <casa/Arrays/ArrayLogical.h>
43#include <casa/Arrays/MaskedArray.h>
44#include <casa/Arrays/MaskArrMath.h>
45#include <casa/Arrays/MaskArrLogi.h>
[330]46#include <casa/Arrays/Matrix.h>
[234]47#include <casa/BasicMath/Math.h>
[262]48#include <casa/Exceptions.h>
49#include <casa/Quanta/Quantum.h>
50#include <casa/Quanta/Unit.h>
51#include <casa/Quanta/MVEpoch.h>
[272]52#include <casa/Quanta/MVTime.h>
[177]53#include <casa/Utilities/Assert.h>
[2]54
[262]55#include <coordinates/Coordinates/SpectralCoordinate.h>
56#include <coordinates/Coordinates/CoordinateSystem.h>
57#include <coordinates/Coordinates/CoordinateUtil.h>
[309]58#include <coordinates/Coordinates/FrequencyAligner.h>
[262]59
60#include <lattices/Lattices/LatticeUtilities.h>
61#include <lattices/Lattices/RebinLattice.h>
62
63#include <measures/Measures/MEpoch.h>
64#include <measures/Measures/MDirection.h>
65#include <measures/Measures/MPosition.h>
66
[177]67#include <scimath/Mathematics/VectorKernel.h>
68#include <scimath/Mathematics/Convolver.h>
[227]69#include <scimath/Mathematics/InterpolateArray1D.h>
[234]70#include <scimath/Functionals/Polynomial.h>
[177]71
[81]72#include <tables/Tables/Table.h>
73#include <tables/Tables/ScalarColumn.h>
74#include <tables/Tables/ArrayColumn.h>
[227]75#include <tables/Tables/ReadAsciiTable.h>
[2]76
[38]77#include "MathUtils.h"
[232]78#include "SDDefs.h"
[354]79#include "SDAttr.h"
[2]80#include "SDContainer.h"
81#include "SDMemTable.h"
82
83#include "SDMath.h"
[457]84#include "SDPol.h"
[2]85
[125]86using namespace casa;
[83]87using namespace asap;
[2]88
[170]89
90SDMath::SDMath()
91{;}
92
[185]93SDMath::SDMath(const SDMath& other)
[170]94{
95
96// No state
97
98}
99
100SDMath& SDMath::operator=(const SDMath& other)
101{
102  if (this != &other) {
103// No state
104  }
105  return *this;
106}
107
[183]108SDMath::~SDMath()
109{;}
[170]110
[183]111
[262]112
[488]113SDMemTable* SDMath::frequencyAlignment(const SDMemTable& in,
114                                       const String& refTime,
115                                       const String& method,
116                                       Bool perFreqID) const
[262]117{
[309]118// Get frame info from Table
[262]119
120   std::vector<std::string> info = in.getCoordInfo();
[294]121
[309]122// Parse frequency system
[294]123
[309]124   String systemStr(info[1]);
125   String baseSystemStr(info[3]);
126   if (baseSystemStr==systemStr) {
127      throw(AipsError("You have not set a frequency frame different from the initial - use function set_freqframe"));
[262]128   }
[309]129//
130   MFrequency::Types freqSystem;
131   MFrequency::getType(freqSystem, systemStr);
[294]132
[267]133// Do it
[262]134
[488]135   return frequencyAlign(in, freqSystem, refTime, method, perFreqID);
[267]136}
[262]137
138
139
[653]140CountedPtr<SDMemTable> SDMath::average(const std::vector<CountedPtr<SDMemTable> >& in,
[185]141                                       const Vector<Bool>& mask, Bool scanAv,
[309]142                                       const String& weightStr, Bool alignFreq) const
[130]143//
[144]144// Weighted averaging of spectra from one or more Tables.
[130]145//
146{
[2]147
[163]148// Convert weight type
149 
150  WeightType wtType = NONE;
[518]151  convertWeightString(wtType, weightStr, True);
[163]152
[144]153// Create output Table by cloning from the first table
[2]154
[144]155  SDMemTable* pTabOut = new SDMemTable(*in[0],True);
[653]156  if (in.size() > 1) {
157    for (uInt i=1; i < in.size(); ++i) {
[488]158      pTabOut->appendToHistoryTable(in[i]->getHistoryTable());
159    }
160  }
[144]161// Setup
[130]162
[144]163  IPosition shp = in[0]->rowAsMaskedArray(0).shape();      // Must not change
164  Array<Float> arr(shp);
165  Array<Bool> barr(shp);
[221]166  const Bool useMask = (mask.nelements() == shp(asap::ChanAxis));
[130]167
[144]168// Columns from Tables
[130]169
[144]170  ROArrayColumn<Float> tSysCol;
171  ROScalarColumn<Double> mjdCol;
172  ROScalarColumn<String> srcNameCol;
173  ROScalarColumn<Double> intCol;
174  ROArrayColumn<uInt> fqIDCol;
[410]175  ROScalarColumn<Int> scanIDCol;
[130]176
[144]177// Create accumulation MaskedArray. We accumulate for each channel,if,pol,beam
178// Note that the mask of the accumulation array will ALWAYS remain ALL True.
179// The MA is only used so that when data which is masked Bad is added to it,
180// that data does not contribute.
181
182  Array<Float> zero(shp);
183  zero=0.0;
184  Array<Bool> good(shp);
185  good = True;
186  MaskedArray<Float> sum(zero,good);
187
188// Counter arrays
189
190  Array<Float> nPts(shp);             // Number of points
191  nPts = 0.0;
192  Array<Float> nInc(shp);             // Increment
193  nInc = 1.0;
194
195// Create accumulation Array for variance. We accumulate for
196// each if,pol,beam, but average over channel.  So we need
197// a shape with one less axis dropping channels.
198
199  const uInt nAxesSub = shp.nelements() - 1;
200  IPosition shp2(nAxesSub);
201  for (uInt i=0,j=0; i<(nAxesSub+1); i++) {
[221]202     if (i!=asap::ChanAxis) {
[144]203       shp2(j) = shp(i);
204       j++;
205     }
[2]206  }
[144]207  Array<Float> sumSq(shp2);
208  sumSq = 0.0;
209  IPosition pos2(nAxesSub,0);                        // For indexing
[130]210
[144]211// Time-related accumulators
[130]212
[144]213  Double time;
214  Double timeSum = 0.0;
215  Double intSum = 0.0;
216  Double interval = 0.0;
[130]217
[144]218// To get the right shape for the Tsys accumulator we need to
219// access a column from the first table.  The shape of this
[518]220// array must not change.  Note however that since the TSysSqSum
221// array is used in a normalization process, and that I ignore the
222// channel axis replication of values for now, it loses a dimension
[130]223
[518]224  Array<Float> tSysSum, tSysSqSum;
[144]225  {
226    const Table& tabIn = in[0]->table();
227    tSysCol.attach(tabIn,"TSYS");
228    tSysSum.resize(tSysCol.shape(0));
[518]229//
230    tSysSqSum.resize(shp2);
[144]231  }
232  tSysSum =0.0;
[518]233  tSysSqSum = 0.0;
[144]234  Array<Float> tSys;
235
236// Scan and row tracking
237
238  Int oldScanID = 0;
239  Int outScanID = 0;
240  Int scanID = 0;
241  Int rowStart = 0;
242  Int nAccum = 0;
243  Int tableStart = 0;
244
245// Source and FreqID
246
247  String sourceName, oldSourceName, sourceNameStart;
248  Vector<uInt> freqID, freqIDStart, oldFreqID;
249
250// Loop over tables
251
252  Float fac = 1.0;
[653]253  const uInt nTables = in.size();
[144]254  for (uInt iTab=0; iTab<nTables; iTab++) {
255
[309]256// Should check that the frequency tables don't change if doing FreqAlignment
[221]257
[144]258// Attach columns to Table
259
260     const Table& tabIn = in[iTab]->table();
261     tSysCol.attach(tabIn, "TSYS");
262     mjdCol.attach(tabIn, "TIME");
263     srcNameCol.attach(tabIn, "SRCNAME");
264     intCol.attach(tabIn, "INTERVAL");
265     fqIDCol.attach(tabIn, "FREQID");
[410]266     scanIDCol.attach(tabIn, "SCANID");
[144]267
268// Loop over rows in Table
269
270     const uInt nRows = in[iTab]->nRow();
271     for (uInt iRow=0; iRow<nRows; iRow++) {
272
273// Check conformance
274
275        IPosition shp2 = in[iTab]->rowAsMaskedArray(iRow).shape();
276        if (!shp.isEqual(shp2)) {
277           throw (AipsError("Shapes for all rows must be the same"));
278        }
279
280// If we are not doing scan averages, make checks for source and
281// frequency setup and warn if averaging across them
282
[410]283        scanIDCol.getScalar(iRow, scanID);
[144]284
285// Get quantities from columns
286
287        srcNameCol.getScalar(iRow, sourceName);
288        mjdCol.get(iRow, time);
289        tSysCol.get(iRow, tSys);
290        intCol.get(iRow, interval);
291        fqIDCol.get(iRow, freqID);
292
293// Initialize first source and freqID
294
295        if (iRow==0 && iTab==0) {
296          sourceNameStart = sourceName;
297          freqIDStart = freqID;
298        }
299
300// If we are doing scan averages, see if we are at the end of an
301// accumulation period (scan).  We must check soutce names too,
302// since we might have two tables with one scan each but different
303// source names; we shouldn't average different sources together
304
305        if (scanAv && ( (scanID != oldScanID)  ||
306                        (iRow==0 && iTab>0 && sourceName!=oldSourceName))) {
307
308// Normalize data in 'sum' accumulation array according to weighting scheme
309
[518]310           normalize(sum, sumSq, tSysSqSum, nPts, intSum, wtType, asap::ChanAxis, nAxesSub);
[144]311
[410]312// Get ScanContainer for the first row of this averaged Scan
313
314           SDContainer scOut = in[iTab]->getSDContainer(rowStart);
315
[144]316// Fill scan container. The source and freqID come from the
317// first row of the first table that went into this average (
318// should be the same for all rows in the scan average)
319
320           Float nR(nAccum);
[410]321           fillSDC(scOut, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
[144]322                    timeSum/nR, intSum, sourceNameStart, freqIDStart);
323
324// Write container out to Table
325
[410]326           pTabOut->putSDContainer(scOut);
[144]327
328// Reset accumulators
329
330           sum = 0.0;
331           sumSq = 0.0;
332           nAccum = 0;
333//
334           tSysSum =0.0;
[518]335           tSysSqSum =0.0;
[144]336           timeSum = 0.0;
337           intSum = 0.0;
[221]338           nPts = 0.0;
[144]339
340// Increment
341
342           rowStart = iRow;              // First row for next accumulation
343           tableStart = iTab;            // First table for next accumulation
344           sourceNameStart = sourceName; // First source name for next accumulation
345           freqIDStart = freqID;         // First FreqID for next accumulation
346//
347           oldScanID = scanID;
348           outScanID += 1;               // Scan ID for next accumulation period
[227]349        }
[144]350
[146]351// Accumulate
[144]352
[518]353        accumulate(timeSum, intSum, nAccum, sum, sumSq, nPts, tSysSum, tSysSqSum,
354                   tSys, nInc, mask, time, interval, in, iTab, iRow, asap::ChanAxis,
355                   nAxesSub, useMask, wtType);
[144]356//
357       oldSourceName = sourceName;
358       oldFreqID = freqID;
[184]359     }
[144]360  }
361
362// OK at this point we have accumulation data which is either
363//   - accumulated from all tables into one row
364// or
365//   - accumulated from the last scan average
366//
367// Normalize data in 'sum' accumulation array according to weighting scheme
[410]368
[518]369  normalize(sum, sumSq, tSysSqSum, nPts, intSum, wtType, asap::ChanAxis, nAxesSub);
[144]370
371// Create and fill container.  The container we clone will be from
372// the last Table and the first row that went into the current
373// accumulation.  It probably doesn't matter that much really...
374
375  Float nR(nAccum);
[410]376  SDContainer scOut = in[tableStart]->getSDContainer(rowStart);
377  fillSDC(scOut, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
[144]378           timeSum/nR, intSum, sourceNameStart, freqIDStart);
[410]379  pTabOut->putSDContainer(scOut);
[304]380  pTabOut->resetCursor();
[144]381//
382  return CountedPtr<SDMemTable>(pTabOut);
[2]383}
[9]384
[144]385
386
[488]387CountedPtr<SDMemTable> SDMath::binaryOperate(const CountedPtr<SDMemTable>&
388                                             left,
389                                             const CountedPtr<SDMemTable>&
390                                             right,
391                                             const String& op, Bool preserve,
392                                             Bool doTSys) const
[185]393{
[85]394
[248]395// Check operator
[130]396
[234]397  String op2(op);
398  op2.upcase();
399  uInt what = 0;
400  if (op2=="ADD") {
401     what = 0;
402  } else if (op2=="SUB") {
403     what = 1;
404  } else if (op2=="MUL") {
405     what = 2;
406  } else if (op2=="DIV") {
407     what = 3;
[248]408  } else if (op2=="QUOTIENT") {
409     what = 4;
[294]410     doTSys = True;
[234]411  } else {
[248]412    throw( AipsError("Unrecognized operation"));
[234]413  }
414
415// Check rows
416
[248]417  const uInt nRowLeft = left->nRow();
418  const uInt nRowRight = right->nRow();
419  Bool ok = (nRowRight==1&&nRowLeft>0) ||
420            (nRowRight>=1&&nRowLeft==nRowRight);
421  if (!ok) {
422     throw (AipsError("The right Scan Table can have one row or the same number of rows as the left Scan Table"));
[234]423  }
424
[248]425// Input Tables
[234]426
427  const Table& tLeft = left->table();
428  const Table& tRight = right->table();
[248]429
430// TSys columns
431
[294]432  ROArrayColumn<Float> tSysLeftCol, tSysRightCol;
433  if (doTSys) {
434     tSysLeftCol.attach(tLeft, "TSYS");
435     tSysRightCol.attach(tRight, "TSYS");
436  }
[234]437
[248]438// First row for right
[234]439
[248]440  Array<Float> tSysLeftArr, tSysRightArr;
[294]441  if (doTSys) tSysRightCol.get(0, tSysRightArr);
[248]442  MaskedArray<Float>* pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(0));
443  IPosition shpRight = pMRight->shape();
444
445// Output Table cloned from left
446
[234]447  SDMemTable* pTabOut = new SDMemTable(*left, True);
[488]448  pTabOut->appendToHistoryTable(right->getHistoryTable());
[234]449// Loop over rows
450
[248]451  for (uInt i=0; i<nRowLeft; i++) {
[234]452
453// Get data
[248]454
[234]455     MaskedArray<Float> mLeft(left->rowAsMaskedArray(i));
[248]456     IPosition shpLeft = mLeft.shape();
[294]457     if (doTSys) tSysLeftCol.get(i, tSysLeftArr);
[234]458//
[248]459     if (nRowRight>1) {
460        delete pMRight;
461        pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(i));
462        shpRight = pMRight->shape();
[294]463        if (doTSys) tSysRightCol.get(i, tSysRightArr);
[234]464     }
[248]465//
466     if (!shpRight.isEqual(shpLeft)) {
467        throw(AipsError("left and right scan tables are not conformant"));
468     }
[294]469     if (doTSys) {
470        if (!tSysRightArr.shape().isEqual(tSysRightArr.shape())) {
471           throw(AipsError("left and right Tsys data are not conformant"));
472        }
473        if (!shpRight.isEqual(tSysRightArr.shape())) {
474           throw(AipsError("left and right scan tables are not conformant"));
475        }
[248]476     }
[234]477
478// Make container
479
480     SDContainer sc = left->getSDContainer(i);
481
482// Operate on data and TSys
483
484     if (what==0) {                               
[248]485        MaskedArray<Float> tmp = mLeft + *pMRight;
[234]486        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[294]487        if (doTSys) sc.putTsys(tSysLeftArr+tSysRightArr);
[234]488     } else if (what==1) {
[248]489        MaskedArray<Float> tmp = mLeft - *pMRight;
[234]490        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[294]491        if (doTSys) sc.putTsys(tSysLeftArr-tSysRightArr);
[234]492     } else if (what==2) {
[248]493        MaskedArray<Float> tmp = mLeft * *pMRight;
[234]494        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[294]495        if (doTSys) sc.putTsys(tSysLeftArr*tSysRightArr);
[234]496     } else if (what==3) {
[248]497        MaskedArray<Float> tmp = mLeft / *pMRight;
[234]498        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[294]499        if (doTSys) sc.putTsys(tSysLeftArr/tSysRightArr);
[248]500     } else if (what==4) {
[488]501       if (preserve) {     
502         MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) -
503           tSysRightArr;
504         putDataInSDC(sc, tmp.getArray(), tmp.getMask());
505       } else {
506         MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) -
507           tSysLeftArr;
508         putDataInSDC(sc, tmp.getArray(), tmp.getMask());
509       }
510       sc.putTsys(tSysRightArr);
[234]511     }
512
513// Put new row in output Table
514
[171]515     pTabOut->putSDContainer(sc);
[130]516  }
[248]517  if (pMRight) delete pMRight;
[304]518  pTabOut->resetCursor();
[488]519
[171]520  return CountedPtr<SDMemTable>(pTabOut);
[9]521}
[48]522
[146]523
524
[185]525std::vector<float> SDMath::statistic(const CountedPtr<SDMemTable>& in,
[234]526                                     const Vector<Bool>& mask,
527                                     const String& which, Int row) const
[130]528//
529// Perhaps iteration over pol/beam/if should be in here
530// and inside the nrow iteration ?
531//
532{
533  const uInt nRow = in->nRow();
534
535// Specify cursor location
536
[152]537  IPosition start, end;
[434]538  Bool doAll = False;
539  setCursorSlice (start, end, doAll, *in);
[130]540
541// Loop over rows
542
[234]543  const uInt nEl = mask.nelements();
544  uInt iStart = 0;
545  uInt iEnd = in->nRow()-1;
546// 
547  if (row>=0) {
548     iStart = row;
549     iEnd = row;
550  }
551//
552  std::vector<float> result(iEnd-iStart+1);
553  for (uInt ii=iStart; ii <= iEnd; ++ii) {
[130]554
555// Get row and deconstruct
556
[434]557     MaskedArray<Float> dataIn = (in->rowAsMaskedArray(ii))(start,end);
558     Array<Float> v = dataIn.getArray().nonDegenerate();
559     Array<Bool>  m = dataIn.getMask().nonDegenerate();
[130]560
561// Access desired piece of data
562
[434]563//     Array<Float> v((arr(start,end)).nonDegenerate());
564//     Array<Bool> m((barr(start,end)).nonDegenerate());
[130]565
566// Apply OTF mask
567
568     MaskedArray<Float> tmp;
569     if (m.nelements()==nEl) {
[234]570       tmp.setData(v,m&&mask);
[130]571     } else {
572       tmp.setData(v,m);
573     }
574
575// Get statistic
576
[234]577     result[ii-iStart] = mathutil::statistics(which, tmp);
[130]578  }
579//
580  return result;
581}
582
[146]583
[234]584SDMemTable* SDMath::bin(const SDMemTable& in, Int width) const
[144]585{
[169]586  SDHeader sh = in.getSDHeader();
587  SDMemTable* pTabOut = new SDMemTable(in, True);
[163]588
[169]589// Bin up SpectralCoordinates
[163]590
[169]591  IPosition factors(1);
592  factors(0) = width;
593  for (uInt j=0; j<in.nCoordinates(); ++j) {
594    CoordinateSystem cSys;
[288]595    cSys.addCoordinate(in.getSpectralCoordinate(j));
[169]596    CoordinateSystem cSysBin =
[185]597      CoordinateUtil::makeBinnedCoordinateSystem(factors, cSys, False);
[169]598//
599    SpectralCoordinate sCBin = cSysBin.spectralCoordinate(0);
600    pTabOut->setCoordinate(sCBin, j);
601  }
[163]602
[169]603// Use RebinLattice to find shape
[130]604
[169]605  IPosition shapeIn(1,sh.nchan);
[185]606  IPosition shapeOut = RebinLattice<Float>::rebinShape(shapeIn, factors);
[169]607  sh.nchan = shapeOut(0);
608  pTabOut->putSDHeader(sh);
[144]609
[169]610// Loop over rows and bin along channel axis
611 
612  for (uInt i=0; i < in.nRow(); ++i) {
613    SDContainer sc = in.getSDContainer(i);
[144]614//
[169]615    Array<Float> tSys(sc.getTsys());                           // Get it out before sc changes shape
[144]616
[169]617// Bin up spectrum
[144]618
[169]619    MaskedArray<Float> marr(in.rowAsMaskedArray(i));
620    MaskedArray<Float> marrout;
[221]621    LatticeUtilities::bin(marrout, marr, asap::ChanAxis, width);
[144]622
[169]623// Put back the binned data and flags
[144]624
[169]625    IPosition ip2 = marrout.shape();
626    sc.resize(ip2);
[146]627//
[185]628    putDataInSDC(sc, marrout.getArray(), marrout.getMask());
[146]629
[169]630// Bin up Tsys. 
[146]631
[169]632    Array<Bool> allGood(tSys.shape(),True);
633    MaskedArray<Float> tSysIn(tSys, allGood, True);
[146]634//
[169]635    MaskedArray<Float> tSysOut;   
[221]636    LatticeUtilities::bin(tSysOut, tSysIn, asap::ChanAxis, width);
[169]637    sc.putTsys(tSysOut.getArray());
[146]638//
[169]639    pTabOut->putSDContainer(sc);
640  }
641  return pTabOut;
[146]642}
643
[488]644SDMemTable* SDMath::resample(const SDMemTable& in, const String& methodStr,
645                             Float width) const
[299]646//
647// Should add the possibility of width being specified in km/s. This means
648// that for each freqID (SpectralCoordinate) we will need to convert to an
649// average channel width (say at the reference pixel).  Then we would need 
650// to be careful to make sure each spectrum (of different freqID)
651// is the same length.
652//
653{
654   Bool doVel = False;
[309]655   if (doVel) {
656      for (uInt j=0; j<in.nCoordinates(); ++j) {
657         SpectralCoordinate sC = in.getSpectralCoordinate(j);
658      }
659   }
[299]660
661// Interpolation method
662
[317]663  InterpolateArray1D<Double,Float>::InterpolationMethod interp;
664  convertInterpString(interp, methodStr);
665  Int interpMethod(interp);
[299]666
667// Make output table
668
669  SDMemTable* pTabOut = new SDMemTable(in, True);
670
671// Resample SpectralCoordinates (one per freqID)
672
673  const uInt nCoord = in.nCoordinates();
674  Vector<Float> offset(1,0.0);
675  Vector<Float> factors(1,1.0/width);
676  Vector<Int> newShape;
677  for (uInt j=0; j<in.nCoordinates(); ++j) {
678    CoordinateSystem cSys;
679    cSys.addCoordinate(in.getSpectralCoordinate(j));
680    CoordinateSystem cSys2 = cSys.subImage(offset, factors, newShape);
681    SpectralCoordinate sC = cSys2.spectralCoordinate(0);
682//
683    pTabOut->setCoordinate(sC, j);
684  }
685
686// Get header
687
688  SDHeader sh = in.getSDHeader();
689
690// Generate resampling vectors
691
692  const uInt nChanIn = sh.nchan;
693  Vector<Float> xIn(nChanIn);
694  indgen(xIn);
695//
696  Int fac =  Int(nChanIn/width);
697  Vector<Float> xOut(fac+10);          // 10 to be safe - resize later
698  uInt i = 0;
699  Float x = 0.0;
700  Bool more = True;
701  while (more) {
702    xOut(i) = x;
703//
704    i++;
705    x += width;
706    if (x>nChanIn-1) more = False;
707  }
708  const uInt nChanOut = i;
709  xOut.resize(nChanOut,True);
710//
711  IPosition shapeIn(in.rowAsMaskedArray(0).shape());
712  sh.nchan = nChanOut;
713  pTabOut->putSDHeader(sh);
714
715// Loop over rows and resample along channel axis
716
717  Array<Float> valuesOut;
718  Array<Bool> maskOut; 
719  Array<Float> tSysOut;
720  Array<Bool> tSysMaskIn(shapeIn,True);
721  Array<Bool> tSysMaskOut;
722  for (uInt i=0; i < in.nRow(); ++i) {
723
724// Get container
725
726     SDContainer sc = in.getSDContainer(i);
727
728// Get data and Tsys
729   
730     const Array<Float>& tSysIn = sc.getTsys();
731     const MaskedArray<Float>& dataIn(in.rowAsMaskedArray(i));
732     Array<Float> valuesIn = dataIn.getArray();
733     Array<Bool> maskIn = dataIn.getMask();
734
735// Interpolate data
736
737     InterpolateArray1D<Float,Float>::interpolate(valuesOut, maskOut, xOut,
738                                                  xIn, valuesIn, maskIn,
739                                                  interpMethod, True, True);
740     sc.resize(valuesOut.shape());
741     putDataInSDC(sc, valuesOut, maskOut);
742
743// Interpolate TSys
744
745     InterpolateArray1D<Float,Float>::interpolate(tSysOut, tSysMaskOut, xOut,
746                                                  xIn, tSysIn, tSysMaskIn,
747                                                  interpMethod, True, True);
748    sc.putTsys(tSysOut);
749
750// Put container in output
751
752    pTabOut->putSDContainer(sc);
753  }
754//
755  return pTabOut;
756}
757
[248]758SDMemTable* SDMath::unaryOperate(const SDMemTable& in, Float val, Bool doAll,
[294]759                                 uInt what, Bool doTSys) const
[152]760//
761// what = 0   Multiply
762//        1   Add
[146]763{
[152]764   SDMemTable* pOut = new SDMemTable(in,False);
765   const Table& tOut = pOut->table();
[294]766   ArrayColumn<Float> specCol(tOut,"SPECTRA"); 
767   ArrayColumn<Float> tSysCol(tOut,"TSYS"); 
768   Array<Float> tSysArr;
[434]769
770// Get data slice bounds
771
772   IPosition start, end;
773   setCursorSlice (start, end, doAll, in);
[146]774//
[434]775   for (uInt i=0; i<tOut.nrow(); i++) {
[294]776
777// Modify data
778
[434]779      MaskedArray<Float> dataIn(pOut->rowAsMaskedArray(i));
780      MaskedArray<Float> dataIn2 = dataIn(start,end);    // Reference
781      if (what==0) {
782         dataIn2 *= val;
783      } else if (what==1) {
784         dataIn2 += val;
785      }
786      specCol.put(i, dataIn.getArray());
[294]787
788// Modify Tsys
789
[434]790      if (doTSys) {
791         tSysCol.get(i, tSysArr);
792         Array<Float> tSysArr2 = tSysArr(start,end);     // Reference
[152]793         if (what==0) {
[434]794            tSysArr2 *= val;
[152]795         } else if (what==1) {
[434]796            tSysArr2 += val;
[152]797         }
[434]798         tSysCol.put(i, tSysArr);
[152]799      }
800   }
801//
[146]802   return pOut;
803}
804
[315]805SDMemTable* SDMath::averagePol(const SDMemTable& in, const Vector<Bool>& mask,
806                               const String& weightStr) const
[152]807//
[165]808// Average all polarizations together, weighted by variance
809//
810{
[315]811   WeightType wtType = NONE;
[532]812   convertWeightString(wtType, weightStr, True);
[165]813
814// Create output Table and reshape number of polarizations
815
816  Bool clear=True;
817  SDMemTable* pTabOut = new SDMemTable(in, clear);
818  SDHeader header = pTabOut->getSDHeader();
819  header.npol = 1;
820  pTabOut->putSDHeader(header);
[532]821//
822  const Table& tabIn = in.table();
[165]823
824// Shape of input and output data
825
[448]826  const IPosition& shapeIn = in.rowAsMaskedArray(0).shape();
[165]827  IPosition shapeOut(shapeIn);
[262]828  shapeOut(asap::PolAxis) = 1;                          // Average all polarizations
[315]829  if (shapeIn(asap::PolAxis)==1) {
830     throw(AipsError("The input has only one polarisation"));
831  }
[165]832//
[532]833  const uInt nRows = in.nRow();
[262]834  const uInt nChan = shapeIn(asap::ChanAxis);
[532]835  AlwaysAssert(asap::nAxes==4,AipsError);
[165]836  const IPosition vecShapeOut(4,1,1,1,nChan);     // A multi-dim form of a Vector shape
837  IPosition start(4), end(4);
838
839// Output arrays
840
841  Array<Float> outData(shapeOut, 0.0);
842  Array<Bool> outMask(shapeOut, True);
[262]843  const IPosition axes(2, asap::PolAxis, asap::ChanAxis);              // pol-channel plane
[532]844
845// Attach Tsys column if needed
846
847  ROArrayColumn<Float> tSysCol;
848  Array<Float> tSys;
849  if (wtType==TSYS) {
850     tSysCol.attach(tabIn,"TSYS");
851  }
[165]852//
[262]853  const Bool useMask = (mask.nelements() == shapeIn(asap::ChanAxis));
[165]854
855// Loop over rows
856
857   for (uInt iRow=0; iRow<nRows; iRow++) {
858
859// Get data for this row
860
861      MaskedArray<Float> marr(in.rowAsMaskedArray(iRow));
862      Array<Float>& arr = marr.getRWArray();
863      const Array<Bool>& barr = marr.getMask();
[532]864     
865// Get Tsys
[165]866
[532]867      if (wtType==TSYS) {
868         tSysCol.get(iRow,tSys);
869      }
870
[165]871// Make iterators to iterate by pol-channel planes
[532]872// The tSys array is empty unless wtType=TSYS so only
873// access the iterator is that is the case
[165]874
875      ReadOnlyArrayIterator<Float> itDataPlane(arr, axes);
876      ReadOnlyArrayIterator<Bool> itMaskPlane(barr, axes);
[532]877      ReadOnlyArrayIterator<Float>* pItTsysPlane = 0;
878      if (wtType==TSYS) pItTsysPlane = new ReadOnlyArrayIterator<Float>(tSys, axes);
[165]879
880// Accumulations
881
882      Float fac = 1.0;
883      Vector<Float> vecSum(nChan,0.0);
884
885// Iterate through data by pol-channel planes
886
887      while (!itDataPlane.pastEnd()) {
888
889// Iterate through plane by polarization  and accumulate Vectors
890
891        Vector<Float> t1(nChan); t1 = 0.0;
892        Vector<Bool> t2(nChan); t2 = True;
[532]893        Float tSys = 0.0;
[165]894        MaskedArray<Float> vecSum(t1,t2);
[315]895        Float norm = 0.0;
[165]896        {
897           ReadOnlyVectorIterator<Float> itDataVec(itDataPlane.array(), 1);
898           ReadOnlyVectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
[532]899//
900           ReadOnlyVectorIterator<Float>* pItTsysVec = 0;
901           if (wtType==TSYS) {
902              pItTsysVec = new ReadOnlyVectorIterator<Float>(pItTsysPlane->array(), 1);
903           }             
904//
[165]905           while (!itDataVec.pastEnd()) {     
906
[315]907// Create MA of data & mask (optionally including OTF mask) and  get variance for this spectrum
[165]908
909              if (useMask) {
910                 const MaskedArray<Float> spec(itDataVec.vector(),mask&&itMaskVec.vector());
[532]911                 if (wtType==VAR) {
912                    fac = 1.0 / variance(spec);
913                 } else if (wtType==TSYS) {
914                    tSys = pItTsysVec->vector()[0];      // Drop pseudo channel dependency
915                    fac = 1.0 / tSys / tSys;
916                 }                   
[165]917              } else {
918                 const MaskedArray<Float> spec(itDataVec.vector(),itMaskVec.vector());
[532]919                 if (wtType==VAR) {
920                    fac = 1.0 / variance(spec);
921                 } else if (wtType==TSYS) {
922                    tSys = pItTsysVec->vector()[0];      // Drop pseudo channel dependency
923                    fac = 1.0 / tSys / tSys;
924                 }
[165]925              }
926
927// Normalize spectrum (without OTF mask) and accumulate
928
929              const MaskedArray<Float> spec(fac*itDataVec.vector(), itMaskVec.vector());
930              vecSum += spec;
[315]931              norm += fac;
[165]932
933// Next
934
935              itDataVec.next();
936              itMaskVec.next();
[532]937              if (wtType==TSYS) pItTsysVec->next();
[165]938           }
[532]939           
940// Clean up
941
942           if (pItTsysVec) {
943              delete pItTsysVec;
944              pItTsysVec = 0;
945           }           
[165]946        }
947
948// Normalize summed spectrum
949
[315]950        vecSum /= norm;
[165]951
952// FInd position in input data array.  We are iterating by pol-channel
953// plane so all that will change is beam and IF and that's what we want.
954
955        IPosition pos = itDataPlane.pos();
956
957// Write out data. This is a bit messy. We have to reform the Vector
958// accumulator into an Array of shape (1,1,1,nChan)
959
960        start = pos;
961        end = pos;
[262]962        end(asap::ChanAxis) = nChan-1;
[165]963        outData(start,end) = vecSum.getArray().reform(vecShapeOut);
964        outMask(start,end) = vecSum.getMask().reform(vecShapeOut);
965
966// Step to next beam/IF combination
967
968        itDataPlane.next();
969        itMaskPlane.next();
[532]970        if (wtType==TSYS) pItTsysPlane->next();
[165]971      }
972
973// Generate output container and write it to output table
974
975      SDContainer sc = in.getSDContainer();
976      sc.resize(shapeOut);
977//
[185]978      putDataInSDC(sc, outData, outMask);
[165]979      pTabOut->putSDContainer(sc);
[532]980//
981      if (wtType==TSYS) {
982         delete pItTsysPlane;
983         pItTsysPlane = 0;
984      }
[165]985   }
[304]986
987// Set polarization cursor to 0
988
989  pTabOut->setPol(0);
[165]990//
991  return pTabOut;
992}
[167]993
[169]994
[185]995SDMemTable* SDMath::smooth(const SDMemTable& in,
996                           const casa::String& kernelType,
[234]997                           casa::Float width, Bool doAll) const
[299]998//
999// Should smooth TSys as well
1000//
[177]1001{
[169]1002
[177]1003// Number of channels
[169]1004
[434]1005   const uInt nChan = in.nChan();
[177]1006
1007// Generate Kernel
1008
[185]1009   VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernelType);
[177]1010   Vector<Float> kernel = VectorKernel::make(type, width, nChan, True, False);
1011
1012// Generate Convolver
1013
1014   IPosition shape(1,nChan);
1015   Convolver<Float> conv(kernel, shape);
1016
1017// New Table
1018
1019   SDMemTable* pTabOut = new SDMemTable(in,True);
1020
1021// Output Vectors
1022
[434]1023   Vector<Float> valuesOut(nChan);
1024   Vector<Bool> maskOut(nChan);
[177]1025
[434]1026// Get data slice bounds
1027
1028   IPosition start, end;
1029   setCursorSlice (start, end, doAll, in);
1030
[177]1031// Loop over rows in Table
1032
[434]1033   for (uInt ri=0; ri < in.nRow(); ++ri) {
[177]1034
[434]1035// Get slice of data
[177]1036
[434]1037      MaskedArray<Float> dataIn = in.rowAsMaskedArray(ri);
[177]1038
[434]1039// Deconstruct and get slices which reference these arrays
[177]1040
[434]1041      Array<Float> valuesIn = dataIn.getArray();
1042      Array<Bool> maskIn = dataIn.getMask();
[177]1043//
[434]1044      Array<Float> valuesIn2 = valuesIn(start,end);       // ref to valuesIn
1045      Array<Bool> maskIn2 = maskIn(start,end);
[177]1046
[434]1047// Iterate through by spectra
[177]1048
[434]1049      VectorIterator<Float> itValues(valuesIn2, asap::ChanAxis);
1050      VectorIterator<Bool> itMask(maskIn2, asap::ChanAxis);
1051      while (!itValues.pastEnd()) {
1052       
[177]1053// Smooth
1054
[434]1055         if (kernelType==VectorKernel::HANNING) {
1056            mathutil::hanning(valuesOut, maskOut, itValues.vector(), itMask.vector());
1057            itMask.vector() = maskOut;
1058         } else {
1059            mathutil::replaceMaskByZero(itValues.vector(), itMask.vector());
1060            conv.linearConv(valuesOut, itValues.vector());
1061         }
1062//   
1063         itValues.vector() = valuesOut;
1064//
1065         itValues.next();
1066         itMask.next();
1067      }
[177]1068
1069// Create and put back
1070
[434]1071      SDContainer sc = in.getSDContainer(ri);
1072      putDataInSDC(sc, valuesIn, maskIn);
[177]1073//
[434]1074      pTabOut->putSDContainer(sc);
1075   }
[177]1076//
1077  return pTabOut;
1078}
1079
1080
[262]1081
[488]1082SDMemTable* SDMath::convertFlux(const SDMemTable& in, Float D, Float etaAp,
1083                                Float JyPerK, Bool doAll) const
[221]1084//
[478]1085// etaAp = aperture efficiency (-1 means find)
1086// D     = geometric diameter (m)  (-1 means find)
[354]1087// JyPerK
[221]1088//
1089{
1090  SDHeader sh = in.getSDHeader();
1091  SDMemTable* pTabOut = new SDMemTable(in, True);
[177]1092
[354]1093// Find out how to convert values into Jy and K (e.g. units might be mJy or mK)
[221]1094// Also automatically find out what we are converting to according to the
1095// flux unit
[177]1096
[221]1097  Unit fluxUnit(sh.fluxunit);
1098  Unit K(String("K"));
1099  Unit JY(String("Jy"));
1100//
1101  Bool toKelvin = True;
[354]1102  Double cFac = 1.0;   
[221]1103  if (fluxUnit==JY) {
[414]1104     cout << "Converting to K" << endl;
[221]1105//
1106     Quantum<Double> t(1.0,fluxUnit);
1107     Quantum<Double> t2 = t.get(JY);
[354]1108     cFac = (t2 / t).getValue();               // value to Jy
[221]1109//
1110     toKelvin = True;
1111     sh.fluxunit = "K";
1112  } else if (fluxUnit==K) {
[414]1113     cout << "Converting to Jy" << endl;
[221]1114//
1115     Quantum<Double> t(1.0,fluxUnit);
1116     Quantum<Double> t2 = t.get(K);
[354]1117     cFac = (t2 / t).getValue();              // value to K
[221]1118//
1119     toKelvin = False;
1120     sh.fluxunit = "Jy";
1121  } else {
[248]1122     throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
[221]1123  }
1124  pTabOut->putSDHeader(sh);
[177]1125
[354]1126// Make sure input values are converted to either Jy or K first...
[221]1127
[354]1128  Float factor = cFac;
[221]1129
[354]1130// Select method
[221]1131
[354]1132  if (JyPerK>0.0) {
1133     factor *= JyPerK;
1134     if (toKelvin) factor = 1.0 / JyPerK;
1135//
[478]1136     cout << "Jy/K = " << JyPerK << endl;
[354]1137     Vector<Float> factors(in.nRow(), factor);
[480]1138     scaleByVector(pTabOut, in, doAll, factors, False);
[354]1139  } else if (etaAp>0.0) {
[478]1140     Bool throwIt = True;
1141     Instrument inst = SDAttr::convertInstrument (sh.antennaname, throwIt);
1142     SDAttr sda;
1143     if (D < 0) D = sda.diameter(inst);
1144     Float JyPerK = SDAttr::findJyPerK (etaAp,D);
1145     cout << "Jy/K = " << JyPerK << endl;
1146     factor *= JyPerK;
[354]1147     if (toKelvin) {
1148        factor = 1.0 / factor;
1149     }
1150//
1151     Vector<Float> factors(in.nRow(), factor);
[480]1152     scaleByVector(pTabOut, in, doAll, factors, False);
[354]1153  } else {
[221]1154
[354]1155// OK now we must deal with automatic look up of values.
1156// We must also deal with the fact that the factors need
1157// to be computed per IF and may be different and may
1158// change per integration.
[221]1159
[414]1160     cout << "Looking up conversion factors" << endl;
[354]1161     convertBrightnessUnits (pTabOut, in, toKelvin, cFac, doAll);
1162  }
[221]1163//
1164  return pTabOut;
1165}
1166
1167
[354]1168
1169
1170
[488]1171SDMemTable* SDMath::gainElevation(const SDMemTable& in,
1172                                  const Vector<Float>& coeffs,
1173                                  const String& fileName,
1174                                  const String& methodStr, Bool doAll) const
[227]1175{
[234]1176
1177// Get header and clone output table
1178
[227]1179  SDHeader sh = in.getSDHeader();
1180  SDMemTable* pTabOut = new SDMemTable(in, True);
1181
[234]1182// Get elevation data from SDMemTable and convert to degrees
[227]1183
1184  const Table& tab = in.table();
1185  ROScalarColumn<Float> elev(tab, "ELEVATION");
[234]1186  Vector<Float> x = elev.getColumn();
[363]1187  x *= Float(180 / C::pi);                        // Degrees
[227]1188//
[234]1189  const uInt nC = coeffs.nelements();
1190  if (fileName.length()>0 && nC>0) {
[248]1191     throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
[234]1192  }
1193
1194// Correct
1195
1196  if (nC>0 || fileName.length()==0) {
1197
1198// Find instrument
1199
1200     Bool throwIt = True;
[478]1201     Instrument inst = SDAttr::convertInstrument (sh.antennaname, throwIt);
[234]1202     
1203// Set polynomial
1204
1205     Polynomial<Float>* pPoly = 0;
1206     Vector<Float> coeff;
1207     String msg;
1208     if (nC>0) {
1209        pPoly = new Polynomial<Float>(nC);
1210        coeff = coeffs;
1211        msg = String("user");
1212     } else {
[363]1213        SDAttr sdAttr;
1214        coeff = sdAttr.gainElevationPoly(inst);
1215        pPoly = new Polynomial<Float>(3);
[234]1216        msg = String("built in");
1217     }
[227]1218//
[234]1219     if (coeff.nelements()>0) {
1220        pPoly->setCoefficients(coeff);
1221     } else {
[363]1222        throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
[234]1223     }
1224//
[414]1225     cout << "Making polynomial correction with " << msg << " coefficients" << endl;
[234]1226     const uInt nRow = in.nRow();
1227     Vector<Float> factor(nRow);
1228     for (uInt i=0; i<nRow; i++) {
[480]1229        factor[i] = 1.0 / (*pPoly)(x[i]);
[234]1230     }
1231     delete pPoly;
1232//
[480]1233     scaleByVector (pTabOut, in, doAll, factor, True);
[234]1234  } else {
1235
1236// Indicate which columns to read from ascii file
1237
1238     String col0("ELEVATION");
1239     String col1("FACTOR");
1240
1241// Read and correct
1242
[414]1243     cout << "Making correction from ascii Table" << endl;
[480]1244     scaleFromAsciiTable (pTabOut, in, fileName, col0, col1,
1245                          methodStr, doAll, x, True);
[234]1246   }
1247//
1248   return pTabOut;
[230]1249}
[227]1250
[230]1251 
[227]1252
[488]1253SDMemTable* SDMath::opacity(const SDMemTable& in, Float tau, Bool doAll) const
[234]1254{
[227]1255
[234]1256// Get header and clone output table
[227]1257
[234]1258  SDHeader sh = in.getSDHeader();
1259  SDMemTable* pTabOut = new SDMemTable(in, True);
1260
1261// Get elevation data from SDMemTable and convert to degrees
1262
1263  const Table& tab = in.table();
1264  ROScalarColumn<Float> elev(tab, "ELEVATION");
1265  Vector<Float> zDist = elev.getColumn();
1266  zDist = Float(C::pi_2) - zDist;
1267
1268// Generate correction factor
1269
1270  const uInt nRow = in.nRow();
1271  Vector<Float> factor(nRow);
1272  Vector<Float> factor2(nRow);
1273  for (uInt i=0; i<nRow; i++) {
1274     factor[i] = exp(tau)/cos(zDist[i]);
1275  }
1276
1277// Correct
1278
[480]1279  scaleByVector (pTabOut, in, doAll, factor, True);
[234]1280//
1281  return pTabOut;
1282}
1283
1284
[488]1285void SDMath::rotateXYPhase(SDMemTable& in, Float value, Bool doAll)
[457]1286//
1287// phase in degrees
[518]1288// assumes linear correlations
[457]1289//
1290{
1291   if (in.nPol() != 4) {
1292      throw(AipsError("You must have 4 polarizations to run this function"));
1293   }
[518]1294//
1295   SDHeader sh = in.getSDHeader();
1296   Instrument inst = SDAttr::convertInstrument (sh.antennaname, False);
1297   SDAttr sdAtt;
1298   if (sdAtt.feedPolType(inst) != LINEAR) {
1299      throw(AipsError("Only linear polarizations are supported"));
1300   }
[457]1301//   
1302   const Table& tabIn = in.table();
1303   ArrayColumn<Float> specCol(tabIn,"SPECTRA"); 
1304   IPosition start(asap::nAxes,0);
1305   IPosition end(asap::nAxes);
[234]1306
[457]1307// Set cursor slice. Assumes shape the same for all rows
1308 
1309   setCursorSlice (start, end, doAll, in);
1310   IPosition start3(start);
1311   start3(asap::PolAxis) = 2;                 // Real(XY)
1312   IPosition end3(end);
1313   end3(asap::PolAxis) = 2;   
1314//
1315   IPosition start4(start);
1316   start4(asap::PolAxis) = 3;                 // Imag (XY)
1317   IPosition end4(end);
1318   end4(asap::PolAxis) = 3;
1319// 
1320   uInt nRow = in.nRow();
1321   Array<Float> data;
1322   for (uInt i=0; i<nRow;++i) {
1323      specCol.get(i,data);
1324      IPosition shape = data.shape();
1325 
1326// Get polarization slice references
1327 
1328      Array<Float> C3 = data(start3,end3);
1329      Array<Float> C4 = data(start4,end4);
1330   
1331// Rotate
1332 
[502]1333      SDPolUtil::rotatePhase(C3, C4, value);
[457]1334   
1335// Put
1336   
1337      specCol.put(i,data);
1338   }
1339}     
[234]1340
[502]1341
1342
1343void SDMath::rotateLinPolPhase(SDMemTable& in, Float value, Bool doAll)
1344//
1345// phase in degrees
[518]1346// assumes linear correlations
[502]1347//
1348{
1349   if (in.nPol() != 4) {
1350      throw(AipsError("You must have 4 polarizations to run this function"));
1351   }
[518]1352//
1353   SDHeader sh = in.getSDHeader();
1354   Instrument inst = SDAttr::convertInstrument (sh.antennaname, False);
1355   SDAttr sdAtt;
1356   if (sdAtt.feedPolType(inst) != LINEAR) {
1357      throw(AipsError("Only linear polarizations are supported"));
1358   }
[502]1359//   
1360   const Table& tabIn = in.table();
1361   ArrayColumn<Float> specCol(tabIn,"SPECTRA"); 
1362   ROArrayColumn<Float> stokesCol(tabIn,"STOKES"); 
1363   IPosition start(asap::nAxes,0);
1364   IPosition end(asap::nAxes);
1365
1366// Set cursor slice. Assumes shape the same for all rows
1367 
1368   setCursorSlice (start, end, doAll, in);
1369//
1370   IPosition start1(start);
1371   start1(asap::PolAxis) = 0;                // C1 (XX)
1372   IPosition end1(end);
1373   end1(asap::PolAxis) = 0;   
1374//
1375   IPosition start2(start);
1376   start2(asap::PolAxis) = 1;                 // C2 (YY)
1377   IPosition end2(end);
1378   end2(asap::PolAxis) = 1;   
1379//
1380   IPosition start3(start);
1381   start3(asap::PolAxis) = 2;                 // C3 ( Real(XY) )
1382   IPosition end3(end);
1383   end3(asap::PolAxis) = 2;   
1384//
1385   IPosition startI(start);
1386   startI(asap::PolAxis) = 0;                 // I
1387   IPosition endI(end);
1388   endI(asap::PolAxis) = 0;   
1389//
1390   IPosition startQ(start);
1391   startQ(asap::PolAxis) = 1;                 // Q
1392   IPosition endQ(end);
1393   endQ(asap::PolAxis) = 1;   
1394//
1395   IPosition startU(start);
1396   startU(asap::PolAxis) = 2;                 // U
1397   IPosition endU(end);
1398   endU(asap::PolAxis) = 2;   
1399
1400//
1401   uInt nRow = in.nRow();
1402   Array<Float> data, stokes;
1403   for (uInt i=0; i<nRow;++i) {
1404      specCol.get(i,data);
1405      stokesCol.get(i,stokes);
1406      IPosition shape = data.shape();
1407 
1408// Get linear polarization slice references
1409 
1410      Array<Float> C1 = data(start1,end1);
1411      Array<Float> C2 = data(start2,end2);
1412      Array<Float> C3 = data(start3,end3);
1413
1414// Get STokes slice references
1415
1416      Array<Float> I = stokes(startI,endI);
1417      Array<Float> Q = stokes(startQ,endQ);
1418      Array<Float> U = stokes(startU,endU);
1419   
1420// Rotate
1421 
1422      SDPolUtil::rotateLinPolPhase(C1, C2, C3, I, Q, U, value);
1423   
1424// Put
1425   
1426      specCol.put(i,data);
1427   }
1428}     
1429
[169]1430// 'private' functions
1431
[354]1432void SDMath::convertBrightnessUnits (SDMemTable* pTabOut, const SDMemTable& in,
1433                                     Bool toKelvin, Float cFac, Bool doAll) const
1434{
[309]1435
[354]1436// Get header
1437
1438   SDHeader sh = in.getSDHeader();
1439   const uInt nChan = sh.nchan;
1440
1441// Get instrument
1442
1443   Bool throwIt = True;
[478]1444   Instrument inst = SDAttr::convertInstrument (sh.antennaname, throwIt);
[354]1445
1446// Get Diameter (m)
1447
1448   SDAttr sdAtt;
1449
1450// Get epoch of first row
1451
1452   MEpoch dateObs = in.getEpoch(0);
1453
1454// Generate a Vector of correction factors. One per FreqID
1455
1456   SDFrequencyTable sdft = in.getSDFreqTable();
1457   Vector<uInt> freqIDs;
1458//
1459   Vector<Float> freqs(sdft.length());
1460   for (uInt i=0; i<sdft.length(); i++) {
1461      freqs(i) = (nChan/2 - sdft.referencePixel(i))*sdft.increment(i) + sdft.referenceValue(i);
1462   }
1463//
1464   Vector<Float> JyPerK = sdAtt.JyPerK(inst, dateObs, freqs);
[414]1465   cout << "Jy/K = " << JyPerK << endl;
[354]1466   Vector<Float> factors = cFac * JyPerK;
1467   if (toKelvin) factors = Float(1.0) / factors;
1468
[434]1469// Get data slice bounds
[354]1470
1471   IPosition start, end;
[434]1472   setCursorSlice (start, end, doAll, in);
[354]1473   const uInt ifAxis = in.getIF();
1474
1475// Iteration axes
1476
1477   IPosition axes(asap::nAxes-1,0);
1478   for (uInt i=0,j=0; i<asap::nAxes; i++) {
1479      if (i!=asap::IFAxis) {
1480         axes(j++) = i;
1481      }
1482   }
1483
1484// Loop over rows and apply correction factor
1485
1486   Float factor = 1.0; 
1487   const uInt axis = asap::ChanAxis;
1488   for (uInt i=0; i < in.nRow(); ++i) {
1489
1490// Get data
1491
[434]1492      MaskedArray<Float> dataIn = in.rowAsMaskedArray(i);
1493      Array<Float>& values = dataIn.getRWArray();           // Ref to dataIn
1494      Array<Float> values2 = values(start,end);             // Ref to values to dataIn
[354]1495
1496// Get SDCOntainer
1497
1498      SDContainer sc = in.getSDContainer(i);
1499
1500// Get FreqIDs
1501
1502      freqIDs = sc.getFreqMap();
1503
1504// Now the conversion factor depends only upon frequency
1505// So we need to iterate through by IF only giving
1506// us BEAM/POL/CHAN cubes
1507
[434]1508      ArrayIterator<Float> itIn(values2, axes);
1509      uInt ax = 0;
1510      while (!itIn.pastEnd()) {
1511        itIn.array() *= factors(freqIDs(ax));         // Writes back to dataIn
1512        itIn.next();
[354]1513      }
1514
1515// Write out
1516
1517      putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
1518//
1519      pTabOut->putSDContainer(sc);
1520   }
1521}
1522
1523
1524
[309]1525SDMemTable* SDMath::frequencyAlign (const SDMemTable& in,
1526                                   MFrequency::Types freqSystem,
[397]1527                                   const String& refTime,
1528                                   const String& methodStr,
1529                                   Bool perFreqID) const
[267]1530{
1531// Get Header
1532
1533   SDHeader sh = in.getSDHeader();
1534   const uInt nChan = sh.nchan;
1535   const uInt nRows = in.nRow();
[330]1536   const uInt nIF = sh.nif;
[267]1537
1538// Get Table reference
1539
1540   const Table& tabIn = in.table();
1541
1542// Get Columns from Table
1543
[294]1544   ROScalarColumn<Double> mjdCol(tabIn, "TIME");
1545   ROScalarColumn<String> srcCol(tabIn, "SRCNAME");
1546   ROArrayColumn<uInt> fqIDCol(tabIn, "FREQID");
1547   Vector<Double> times = mjdCol.getColumn();
[267]1548
[397]1549// Generate DataDesc table
[330]1550 
1551   Matrix<uInt> ddIdx;
1552   SDDataDesc dDesc;
[397]1553   generateDataDescTable (ddIdx, dDesc, nIF, in, tabIn, srcCol, fqIDCol, perFreqID);
[267]1554
[294]1555// Get reference Epoch to time of first row or given String
[267]1556
1557   Unit DAY(String("d"));
[272]1558   MEpoch::Ref epochRef(in.getTimeReference());
1559   MEpoch refEpoch;
1560   if (refTime.length()>0) {
1561      refEpoch = epochFromString(refTime, in.getTimeReference());
1562   } else {
[288]1563      refEpoch = in.getEpoch(0);
[272]1564   }
[414]1565   cout << "Aligning at reference Epoch " << formatEpoch(refEpoch)
1566        << " in frame " << MFrequency::showType(freqSystem) << endl;
1567   
[294]1568// Get Reference Position
[267]1569
[288]1570   MPosition refPos = in.getAntennaPosition();
[267]1571
[397]1572// Create FrequencyAligner Block. One FA for each possible
1573// source/freqID (perFreqID=True) or source/IF (perFreqID=False) combination
[267]1574
[330]1575   PtrBlock<FrequencyAligner<Float>* > a(dDesc.length());
[397]1576   generateFrequencyAligners (a, dDesc, in, nChan, freqSystem, refPos,
1577                              refEpoch, perFreqID);
[267]1578
[397]1579// Generate and fill output Frequency Table.  WHen perFreqID=True, there is one output FreqID
1580// for each entry in the SDDataDesc table.  However, in perFreqID=False mode, there may be
1581// some degeneracy, so we need a little translation map
[330]1582
1583   SDFrequencyTable freqTabOut = in.getSDFreqTable();
1584   freqTabOut.setLength(0);
1585   Vector<String> units(1);
1586   units = String("Hz");
1587   Bool linear=True;
1588//
[397]1589   Vector<uInt> ddFQTrans(dDesc.length(),0);
[330]1590   for (uInt i=0; i<dDesc.length(); i++) {
1591
1592// Get Aligned SC in Hz
1593
1594      SpectralCoordinate sC = a[i]->alignedSpectralCoordinate(linear);
1595      sC.setWorldAxisUnits(units);
1596
1597// Add FreqID
1598
[397]1599      uInt idx = freqTabOut.addFrequency(sC.referencePixel()[0],
1600                                         sC.referenceValue()[0],
1601                                         sC.increment()[0]);
1602      ddFQTrans(i) = idx;                                       // output FreqID = ddFQTrans(ddIdx)
[330]1603   }
1604
[317]1605// Interpolation method
1606
1607   InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1608   convertInterpString(interp, methodStr);
1609
[267]1610// New output Table
1611
[414]1612   cout << "Create output table" << endl;
[267]1613   SDMemTable* pTabOut = new SDMemTable(in,True);
[330]1614   pTabOut->putSDFreqTable(freqTabOut);
[267]1615
1616// Loop over rows in Table
1617
[330]1618   Bool extrapolate=False;
[294]1619   const IPosition polChanAxes(2, asap::PolAxis, asap::ChanAxis);
1620   Bool useCachedAbcissa = False;
1621   Bool first = True;
1622   Bool ok;
1623   Vector<Float> yOut;
1624   Vector<Bool> maskOut;
[330]1625   Vector<uInt> freqID(nIF);
[309]1626   uInt ifIdx, faIdx;
[397]1627   Vector<Double> xIn;
[267]1628//
[294]1629   for (uInt iRow=0; iRow<nRows; ++iRow) {
1630      if (iRow%10==0) {
[414]1631         cout << "Processing row " << iRow << endl;
[294]1632      }
[267]1633
1634// Get EPoch
1635
[294]1636     Quantum<Double> tQ2(times[iRow],DAY);
1637     MVEpoch mv2(tQ2);
1638     MEpoch epoch(mv2, epochRef);
[267]1639
1640// Get copy of data
1641   
[294]1642     const MaskedArray<Float>& mArrIn(in.rowAsMaskedArray(iRow));
1643     Array<Float> values = mArrIn.getArray();
1644     Array<Bool> mask = mArrIn.getMask();
[267]1645
[309]1646// For each row, the Frequency abcissa will be the same regardless
[267]1647// of polarization.  For all other axes (IF and BEAM) the abcissa
1648// will change.  So we iterate through the data by pol-chan planes
[330]1649// to mimimize the work.  Probably won't work for multiple beams
1650// at this point.
[267]1651
[294]1652     ArrayIterator<Float> itValuesPlane(values, polChanAxes);
1653     ArrayIterator<Bool> itMaskPlane(mask, polChanAxes);
1654     while (!itValuesPlane.pastEnd()) {
[267]1655
[309]1656// Find the IF index and then the FA PtrBlock index
[267]1657
[294]1658        const IPosition& pos = itValuesPlane.pos();
1659        ifIdx = pos(asap::IFAxis);
[330]1660        faIdx = ddIdx(iRow,ifIdx);
[397]1661
1662// Generate abcissa for perIF.  Could cache this in a Matrix
1663// on a per scan basis.   Pretty expensive doing it for every row.
1664
1665        if (!perFreqID) {
1666           xIn.resize(nChan);
1667           uInt fqID = dDesc.secID(ddIdx(iRow,ifIdx));
1668           SpectralCoordinate sC = in.getSpectralCoordinate(fqID);
1669           Double w;
1670           for (uInt i=0; i<nChan; i++) {
1671              sC.toWorld(w,Double(i));
1672              xIn[i] = w;
1673           }
1674        }
[267]1675//
[294]1676        VectorIterator<Float> itValuesVec(itValuesPlane.array(), 1);
1677        VectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
[330]1678
1679// Iterate through the plane by vector and align
1680
[294]1681        first = True;
1682        useCachedAbcissa=False;
1683        while (!itValuesVec.pastEnd()) {     
[397]1684           if (perFreqID) {
1685              ok = a[faIdx]->align (yOut, maskOut, itValuesVec.vector(),
1686                                    itMaskVec.vector(), epoch, useCachedAbcissa,
1687                                    interp, extrapolate);
1688           } else {
1689              ok = a[faIdx]->align (yOut, maskOut, xIn, itValuesVec.vector(),
1690                                    itMaskVec.vector(), epoch, useCachedAbcissa,
1691                                    interp, extrapolate);
1692           }
[330]1693//
[294]1694           itValuesVec.vector() = yOut;
1695           itMaskVec.vector() = maskOut;
[267]1696//
[294]1697           itValuesVec.next();
1698           itMaskVec.next();
[267]1699//
[294]1700           if (first) {
1701              useCachedAbcissa = True;
1702              first = False;
1703           }
1704        }
[267]1705//
1706       itValuesPlane.next();
1707       itMaskPlane.next();
[294]1708     }
[267]1709
[330]1710// Create SDContainer and put back
[267]1711
1712    SDContainer sc = in.getSDContainer(iRow);
1713    putDataInSDC(sc, values, mask);
[397]1714
1715// Set output FreqIDs
1716
[330]1717    for (uInt i=0; i<nIF; i++) {
[397]1718       uInt idx = ddIdx(iRow,i);               // Index into SDDataDesc table
1719       freqID(i) = ddFQTrans(idx);             // FreqID in output FQ table
[330]1720    }
1721    sc.putFreqMap(freqID);
[267]1722//
1723    pTabOut->putSDContainer(sc);
[294]1724   }
[267]1725
[309]1726// Now we must set the base and extra frames to the
1727// input frame
1728
1729   std::vector<string> info = pTabOut->getCoordInfo();
1730   info[1] = MFrequency::showType(freqSystem);   // Conversion frame
1731   info[3] = info[1];                            // Base frame
1732   pTabOut->setCoordInfo(info);
1733
[267]1734// Clean up PointerBlock
1735
[309]1736   for (uInt i=0; i<a.nelements(); i++) delete a[i];
[267]1737//
[309]1738   return pTabOut;
[267]1739}
1740
1741
[185]1742void SDMath::fillSDC(SDContainer& sc,
1743                     const Array<Bool>& mask,
1744                     const Array<Float>& data,
1745                     const Array<Float>& tSys,
1746                     Int scanID, Double timeStamp,
1747                     Double interval, const String& sourceName,
[227]1748                     const Vector<uInt>& freqID) const
[167]1749{
[169]1750// Data and mask
[167]1751
[185]1752  putDataInSDC(sc, data, mask);
[167]1753
[169]1754// TSys
1755
1756  sc.putTsys(tSys);
1757
1758// Time things
1759
1760  sc.timestamp = timeStamp;
1761  sc.interval = interval;
1762  sc.scanid = scanID;
[167]1763//
[169]1764  sc.sourcename = sourceName;
1765  sc.putFreqMap(freqID);
1766}
[167]1767
[185]1768void SDMath::accumulate(Double& timeSum, Double& intSum, Int& nAccum,
1769                        MaskedArray<Float>& sum, Array<Float>& sumSq,
1770                        Array<Float>& nPts, Array<Float>& tSysSum,
[518]1771                        Array<Float>& tSysSqSum,
[185]1772                        const Array<Float>& tSys, const Array<Float>& nInc,
1773                        const Vector<Bool>& mask, Double time, Double interval,
[653]1774                        const std::vector<CountedPtr<SDMemTable> >& in,
[185]1775                        uInt iTab, uInt iRow, uInt axis,
1776                        uInt nAxesSub, Bool useMask,
[227]1777                        WeightType wtType) const
[169]1778{
1779
1780// Get data
1781
1782   MaskedArray<Float> dataIn(in[iTab]->rowAsMaskedArray(iRow));
1783   Array<Float>& valuesIn = dataIn.getRWArray();           // writable reference
1784   const Array<Bool>& maskIn = dataIn.getMask();          // RO reference
[167]1785//
[169]1786   if (wtType==NONE) {
1787      const MaskedArray<Float> n(nInc,dataIn.getMask());
1788      nPts += n;                               // Only accumulates where mask==T
[518]1789   } else if (wtType==TINT) {
1790
1791// We are weighting the data by integration time.
1792
1793     valuesIn *= Float(interval);
1794
[169]1795   } else if (wtType==VAR) {
[167]1796
[169]1797// We are going to average the data, weighted by the noise for each pol, beam and IF.
1798// So therefore we need to iterate through by spectrum (axis 3)
[167]1799
[169]1800      VectorIterator<Float> itData(valuesIn, axis);
1801      ReadOnlyVectorIterator<Bool> itMask(maskIn, axis);
1802      Float fac = 1.0;
1803      IPosition pos(nAxesSub,0); 
1804//
1805      while (!itData.pastEnd()) {
[167]1806
[169]1807// Make MaskedArray of Vector, optionally apply OTF mask, and find scaling factor
[167]1808
[518]1809         if (useMask) {
1810            MaskedArray<Float> tmp(itData.vector(),mask&&itMask.vector());
1811            fac = 1.0/variance(tmp);
1812         } else {
1813            MaskedArray<Float> tmp(itData.vector(),itMask.vector());
1814            fac = 1.0/variance(tmp);
1815         }
[169]1816
1817// Scale data
1818
[518]1819         itData.vector() *= fac;     // Writes back into 'dataIn'
[167]1820//
[169]1821// Accumulate variance per if/pol/beam averaged over spectrum
1822// This method to get pos2 from itData.pos() is only valid
1823// because the spectral axis is the last one (so we can just
1824// copy the first nAXesSub positions out)
[167]1825
[518]1826         pos = itData.pos().getFirst(nAxesSub);
1827         sumSq(pos) += fac;
[169]1828//
[518]1829         itData.next();
1830         itMask.next();
[169]1831      }
[536]1832   } else if (wtType==TSYS || wtType==TINTSYS) {
[518]1833
1834// We are going to average the data, weighted by 1/Tsys**2 for each pol, beam and IF.
1835// So therefore we need to iterate through by spectrum (axis 3).  Although
1836// Tsys is stored as a vector of length nChan, the values are replicated.
1837// We will take a short cut and just use the value from the first channel
1838// for now.
1839//
1840      VectorIterator<Float> itData(valuesIn, axis);
1841      ReadOnlyVectorIterator<Float> itTSys(tSys, axis);
1842      IPosition pos(nAxesSub,0); 
1843//
[536]1844      Float fac = 1.0;
1845      if (wtType==TINTSYS) fac *= interval;
[518]1846      while (!itData.pastEnd()) {
1847         Float t = itTSys.vector()[0];
[536]1848         fac *= 1.0/t/t;
[518]1849
1850// Scale data
1851
1852         itData.vector() *= fac;     // Writes back into 'dataIn'
1853//
1854// Accumulate Tsys  per if/pol/beam averaged over spectrum
1855// This method to get pos2 from itData.pos() is only valid
1856// because the spectral axis is the last one (so we can just
1857// copy the first nAXesSub positions out)
1858
1859         pos = itData.pos().getFirst(nAxesSub);
1860         tSysSqSum(pos) += fac;
1861//
1862         itData.next();
1863         itTSys.next();
1864      }
[169]1865   }
[167]1866
[169]1867// Accumulate sum of (possibly scaled) data
1868
1869   sum += dataIn;
1870
1871// Accumulate Tsys, time, and interval
1872
1873   tSysSum += tSys;
1874   timeSum += time;
1875   intSum += interval;
1876   nAccum += 1;
1877}
1878
1879
[518]1880void SDMath::normalize(MaskedArray<Float>& sum,
1881                       const Array<Float>& sumSq,
1882                       const Array<Float>& tSysSqSum,
1883                       const Array<Float>& nPts,
1884                       Double intSum,
1885                       WeightType wtType, Int axis,
1886                       Int nAxesSub) const
1887{
1888   IPosition pos2(nAxesSub,0);
1889//
1890   if (wtType==NONE) {
1891
1892// We just average by the number of points accumulated.
1893// We need to make a MA out of nPts so that no divide by
1894// zeros occur
1895
1896      MaskedArray<Float> t(nPts, (nPts>Float(0.0)));
1897      sum /= t;
1898   } else if (wtType==TINT) {
1899
1900// Average by sum of Tint
1901
1902      sum /= Float(intSum);
1903   } else if (wtType==VAR) {
1904
1905// Normalize each spectrum by sum(1/var) where the variance
1906// is worked out for each spectrum
1907
1908      Array<Float>& data = sum.getRWArray();
1909      VectorIterator<Float> itData(data, axis);
1910      while (!itData.pastEnd()) {
1911         pos2 = itData.pos().getFirst(nAxesSub);
1912         itData.vector() /= sumSq(pos2);
1913         itData.next();
1914      }
[536]1915   } else if (wtType==TSYS || wtType==TINTSYS) {
[518]1916   
[536]1917// Normalize each spectrum by sum(1/Tsys**2) (TSYS) or
1918// sum(Tint/Tsys**2) (TINTSYS) where the pseudo
[518]1919// replication over channel for Tsys has been dropped.
1920
1921      Array<Float>& data = sum.getRWArray();
1922      VectorIterator<Float> itData(data, axis);
1923      while (!itData.pastEnd()) {
1924         pos2 = itData.pos().getFirst(nAxesSub);
1925         itData.vector() /= tSysSqSum(pos2);
1926         itData.next();
1927      }
1928   }
1929}
1930
1931
1932
1933
[434]1934void SDMath::setCursorSlice (IPosition& start, IPosition& end, Bool doAll, const SDMemTable& in) const
[169]1935{
[434]1936  const uInt nDim = asap::nAxes;
1937  DebugAssert(nDim==4,AipsError);
[167]1938//
[169]1939  start.resize(nDim);
[434]1940  end.resize(nDim);
1941  if (doAll) {
1942     start = 0;
1943     end(0) = in.nBeam()-1;
1944     end(1) = in.nIF()-1;
1945     end(2) = in.nPol()-1;
1946     end(3) = in.nChan()-1;
1947  } else {
1948     start(0) = in.getBeam();
1949     end(0) = start(0);
[167]1950//
[434]1951     start(1) = in.getIF();
1952     end(1) = start(1);
1953//
1954     start(2) = in.getPol();
1955     end(2) = start(2);
1956//
1957     start(3) = 0;
1958     end(3) = in.nChan()-1;
1959   }
[169]1960}
1961
1962
[518]1963void SDMath::convertWeightString(WeightType& wtType, const String& weightStr,
1964                                 Bool listType) const
[169]1965{
1966  String tStr(weightStr);
1967  tStr.upcase();
[518]1968  String msg;
[169]1969  if (tStr.contains(String("NONE"))) {
1970     wtType = NONE;
[518]1971     msg = String("Weighting type selected : None");
[169]1972  } else if (tStr.contains(String("VAR"))) {
1973     wtType = VAR;
[518]1974     msg = String("Weighting type selected : Variance");
[536]1975  } else if (tStr.contains(String("TINTSYS"))) {
1976       wtType = TINTSYS;
1977       msg = String("Weighting type selected : Tint&Tsys");
[518]1978  } else if (tStr.contains(String("TINT"))) {
1979     wtType = TINT;
[519]1980     msg = String("Weighting type selected : Tint");
[169]1981  } else if (tStr.contains(String("TSYS"))) {
1982     wtType = TSYS;
[518]1983     msg = String("Weighting type selected : Tsys");
[169]1984  } else {
[518]1985     msg = String("Weighting type selected : None");
1986     throw(AipsError("Unrecognized weighting type"));
[167]1987  }
[518]1988//
1989  if (listType) cout << msg << endl;
[167]1990}
1991
[317]1992
1993void SDMath::convertInterpString(casa::InterpolateArray1D<Double,Float>::InterpolationMethod& type, 
1994                                 const casa::String& interp) const
[227]1995{
1996  String tStr(interp);
1997  tStr.upcase();
1998  if (tStr.contains(String("NEAR"))) {
[317]1999     type = InterpolateArray1D<Double,Float>::nearestNeighbour;
[227]2000  } else if (tStr.contains(String("LIN"))) {
[317]2001     type = InterpolateArray1D<Double,Float>::linear;
[227]2002  } else if (tStr.contains(String("CUB"))) {
[317]2003     type = InterpolateArray1D<Double,Float>::cubic;
[227]2004  } else if (tStr.contains(String("SPL"))) {
[317]2005     type = InterpolateArray1D<Double,Float>::spline;
[227]2006  } else {
2007    throw(AipsError("Unrecognized interpolation type"));
2008  }
2009}
2010
[185]2011void SDMath::putDataInSDC(SDContainer& sc, const Array<Float>& data,
[227]2012                          const Array<Bool>& mask) const
[169]2013{
2014    sc.putSpectrum(data);
2015//
2016    Array<uChar> outflags(data.shape());
2017    convertArray(outflags,!mask);
2018    sc.putFlags(outflags);
2019}
[227]2020
2021Table SDMath::readAsciiFile (const String& fileName) const
2022{
[230]2023   String formatString;
2024   Table tbl = readAsciiTable (formatString, Table::Memory, fileName, "", "", False);
[227]2025   return tbl;
2026}
[230]2027
2028
[234]2029
[480]2030void SDMath::scaleFromAsciiTable(SDMemTable* pTabOut,
2031                                 const SDMemTable& in, const String& fileName,
2032                                 const String& col0, const String& col1,
2033                                 const String& methodStr, Bool doAll,
2034                                 const Vector<Float>& xOut, Bool doTSys) const
[230]2035{
2036
2037// Read gain-elevation ascii file data into a Table.
2038
[234]2039  Table geTable = readAsciiFile (fileName);
[230]2040//
[480]2041  scaleFromTable (pTabOut, in, geTable, col0, col1, methodStr, doAll, xOut, doTSys);
[230]2042}
2043
[480]2044void SDMath::scaleFromTable(SDMemTable* pTabOut, const SDMemTable& in,
2045                            const Table& tTable, const String& col0,
2046                            const String& col1,
2047                            const String& methodStr, Bool doAll,
2048                            const Vector<Float>& xOut, Bool doTsys) const
[230]2049{
2050
2051// Get data from Table
2052
2053  ROScalarColumn<Float> geElCol(tTable, col0);
2054  ROScalarColumn<Float> geFacCol(tTable, col1);
2055  Vector<Float> xIn = geElCol.getColumn();
2056  Vector<Float> yIn = geFacCol.getColumn();
2057  Vector<Bool> maskIn(xIn.nelements(),True);
2058
2059// Interpolate (and extrapolate) with desired method
2060
[317]2061   InterpolateArray1D<Double,Float>::InterpolationMethod method;
[230]2062   convertInterpString(method, methodStr);
[317]2063   Int intMethod(method);
[230]2064//
2065   Vector<Float> yOut;
2066   Vector<Bool> maskOut;
2067   InterpolateArray1D<Float,Float>::interpolate(yOut, maskOut, xOut,
[317]2068                                                xIn, yIn, maskIn, intMethod,
[230]2069                                                True, True);
[234]2070// Apply
[230]2071
[480]2072   scaleByVector(pTabOut, in, doAll, Float(1.0)/yOut, doTsys);
[234]2073}
2074
2075
[480]2076void SDMath::scaleByVector(SDMemTable* pTabOut, const SDMemTable& in,
2077                           Bool doAll, const Vector<Float>& factor,
2078                           Bool doTSys) const
[234]2079{
[270]2080
[434]2081// Set up data slice
[230]2082
2083  IPosition start, end;
[434]2084  setCursorSlice (start, end, doAll, in);
[230]2085
[480]2086// Get Tsys column
2087
2088  const Table& tIn = in.table();
2089  ArrayColumn<Float> tSysCol(tIn, "TSYS");
2090  Array<Float> tSys;
2091
[270]2092// Loop over rows and apply correction factor
[230]2093 
2094  const uInt axis = asap::ChanAxis;
2095  for (uInt i=0; i < in.nRow(); ++i) {
2096
2097// Get data
2098
[434]2099     MaskedArray<Float> dataIn(in.rowAsMaskedArray(i));
2100     MaskedArray<Float> dataIn2 = dataIn(start,end);  // reference to dataIn
[480]2101//
2102     if (doTSys) {
2103        tSysCol.get(i, tSys);
2104        Array<Float> tSys2 = tSys(start,end) * factor[i];
2105        tSysCol.put(i, tSys);
2106     }
[230]2107
2108// Apply factor
2109
[434]2110     dataIn2 *= factor[i];
[230]2111
2112// Write out
2113
[434]2114     SDContainer sc = in.getSDContainer(i);
2115     putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
[230]2116//
[434]2117     pTabOut->putSDContainer(sc);
[230]2118  }
2119}
2120
[234]2121
[262]2122
2123
[330]2124void SDMath::generateDataDescTable (Matrix<uInt>& ddIdx,
2125                                    SDDataDesc& dDesc,
2126                                    uInt nIF,
2127                                    const SDMemTable& in,
2128                                    const Table& tabIn,
2129                                    const ROScalarColumn<String>& srcCol,
[397]2130                                    const ROArrayColumn<uInt>& fqIDCol,
2131                                    Bool perFreqID) const
[330]2132{
2133   const uInt nRows = tabIn.nrow();
2134   ddIdx.resize(nRows,nIF);
[262]2135//
[330]2136   String srcName;
2137   Vector<uInt> freqIDs;
2138   for (uInt iRow=0; iRow<nRows; iRow++) {
2139      srcCol.get(iRow, srcName);
2140      fqIDCol.get(iRow, freqIDs);
2141      const MDirection& dir = in.getDirection(iRow);
2142//
[397]2143      if (perFreqID) {
2144
2145// One entry per source/freqID pair
2146
2147         for (uInt iIF=0; iIF<nIF; iIF++) {
2148            ddIdx(iRow,iIF) = dDesc.addEntry(srcName, freqIDs[iIF], dir, 0);
2149         }
2150      } else {
2151
2152// One entry per source/IF pair.  Hang onto the FreqID as well
2153
2154         for (uInt iIF=0; iIF<nIF; iIF++) {
2155            ddIdx(iRow,iIF) = dDesc.addEntry(srcName, iIF, dir, freqIDs[iIF]);
2156         }
[262]2157      }
2158   }
2159}
[272]2160
[397]2161
2162
2163
2164
[272]2165MEpoch SDMath::epochFromString (const String& str, MEpoch::Types timeRef) const
2166{
2167   Quantum<Double> qt;
2168   if (MVTime::read(qt,str)) {
2169      MVEpoch mv(qt);
2170      MEpoch me(mv, timeRef);
2171      return me;
2172   } else {
2173      throw(AipsError("Invalid format for Epoch string"));
2174   }
2175}
2176
2177
2178String SDMath::formatEpoch(const MEpoch& epoch)  const
2179{
2180   MVTime mvt(epoch.getValue());
2181   return mvt.string(MVTime::YMD) + String(" (") + epoch.getRefString() + String(")");
2182}
2183
[294]2184
[309]2185
2186void SDMath::generateFrequencyAligners (PtrBlock<FrequencyAligner<Float>* >& a,
[330]2187                                        const SDDataDesc& dDesc,
2188                                        const SDMemTable& in, uInt nChan,
2189                                        MFrequency::Types system,
2190                                        const MPosition& refPos,
[397]2191                                        const MEpoch& refEpoch,
2192                                        Bool perFreqID) const
[294]2193{
[330]2194   for (uInt i=0; i<dDesc.length(); i++) {
[397]2195      uInt ID = dDesc.ID(i);
2196      uInt secID = dDesc.secID(i);
2197      const MDirection& refDir = dDesc.secDir(i);
[330]2198//
[397]2199      if (perFreqID) {
2200
2201// One aligner per source/FreqID pair. 
2202
2203         SpectralCoordinate sC = in.getSpectralCoordinate(ID);
2204         a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
2205      } else {
2206
2207// One aligner per source/IF pair.  But we still need the FreqID to
2208// get the right SC.  Hence the messing about with the secondary ID
2209
2210         SpectralCoordinate sC = in.getSpectralCoordinate(secID);
2211         a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
2212      }
[294]2213   }
2214}
[480]2215
2216Vector<uInt> SDMath::getRowRange (const SDMemTable& in) const
2217{
2218   Vector<uInt> range(2);
2219   range[0] = 0;
2220   range[1] = in.nRow()-1;
2221   return range;
2222}
2223   
2224
2225Bool SDMath::rowInRange (uInt i, const Vector<uInt>& range) const
2226{
2227   return (i>=range[0] && i<=range[1]);
2228}
Note: See TracBrowser for help on using the repository browser.