source: trunk/src/SDMath.cc @ 536

Last change on this file since 536 was 536, checked in by kil064, 19 years ago

add 'TINTSYS' weighting to averageTime

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 60.5 KB
Line 
1//#---------------------------------------------------------------------------
2//# SDMath.cc: A collection of single dish mathematical operations
3//#---------------------------------------------------------------------------
4//# Copyright (C) 2004
5//# ATNF
6//#
7//# This program is free software; you can redistribute it and/or modify it
8//# under the terms of the GNU General Public License as published by the Free
9//# Software Foundation; either version 2 of the License, or (at your option)
10//# any later version.
11//#
12//# This program is distributed in the hope that it will be useful, but
13//# WITHOUT ANY WARRANTY; without even the implied warranty of
14//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
15//# Public License for more details.
16//#
17//# You should have received a copy of the GNU General Public License along
18//# with this program; if not, write to the Free Software Foundation, Inc.,
19//# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
20//#
21//# Correspondence concerning this software should be addressed as follows:
22//#        Internet email: Malte.Marquarding@csiro.au
23//#        Postal address: Malte Marquarding,
24//#                        Australia Telescope National Facility,
25//#                        P.O. Box 76,
26//#                        Epping, NSW, 2121,
27//#                        AUSTRALIA
28//#
29//# $Id:
30//#---------------------------------------------------------------------------
31#include <vector>
32
33#include <casa/aips.h>
34#include <casa/iostream.h>
35#include <casa/iomanip.h>
36#include <casa/BasicSL/String.h>
37#include <casa/Arrays/IPosition.h>
38#include <casa/Arrays/Array.h>
39#include <casa/Arrays/ArrayIter.h>
40#include <casa/Arrays/VectorIter.h>
41#include <casa/Arrays/ArrayMath.h>
42#include <casa/Arrays/ArrayLogical.h>
43#include <casa/Arrays/MaskedArray.h>
44#include <casa/Arrays/MaskArrMath.h>
45#include <casa/Arrays/MaskArrLogi.h>
46#include <casa/Arrays/Matrix.h>
47#include <casa/BasicMath/Math.h>
48#include <casa/Containers/Block.h>
49#include <casa/Exceptions.h>
50#include <casa/Quanta/Quantum.h>
51#include <casa/Quanta/Unit.h>
52#include <casa/Quanta/MVEpoch.h>
53#include <casa/Quanta/MVTime.h>
54#include <casa/Utilities/Assert.h>
55
56#include <coordinates/Coordinates/SpectralCoordinate.h>
57#include <coordinates/Coordinates/CoordinateSystem.h>
58#include <coordinates/Coordinates/CoordinateUtil.h>
59#include <coordinates/Coordinates/FrequencyAligner.h>
60
61#include <lattices/Lattices/LatticeUtilities.h>
62#include <lattices/Lattices/RebinLattice.h>
63
64#include <measures/Measures/MEpoch.h>
65#include <measures/Measures/MDirection.h>
66#include <measures/Measures/MPosition.h>
67
68#include <scimath/Mathematics/VectorKernel.h>
69#include <scimath/Mathematics/Convolver.h>
70#include <scimath/Mathematics/InterpolateArray1D.h>
71#include <scimath/Functionals/Polynomial.h>
72
73#include <tables/Tables/Table.h>
74#include <tables/Tables/ScalarColumn.h>
75#include <tables/Tables/ArrayColumn.h>
76#include <tables/Tables/ReadAsciiTable.h>
77
78#include "MathUtils.h"
79#include "SDDefs.h"
80#include "SDAttr.h"
81#include "SDContainer.h"
82#include "SDMemTable.h"
83
84#include "SDMath.h"
85#include "SDPol.h"
86
87using namespace casa;
88using namespace asap;
89
90
91SDMath::SDMath()
92{;}
93
94SDMath::SDMath(const SDMath& other)
95{
96
97// No state
98
99}
100
101SDMath& SDMath::operator=(const SDMath& other)
102{
103  if (this != &other) {
104// No state
105  }
106  return *this;
107}
108
109SDMath::~SDMath()
110{;}
111
112
113
114SDMemTable* SDMath::frequencyAlignment(const SDMemTable& in,
115                                       const String& refTime,
116                                       const String& method,
117                                       Bool perFreqID) const
118{
119// Get frame info from Table
120
121   std::vector<std::string> info = in.getCoordInfo();
122
123// Parse frequency system
124
125   String systemStr(info[1]);
126   String baseSystemStr(info[3]);
127   if (baseSystemStr==systemStr) {
128      throw(AipsError("You have not set a frequency frame different from the initial - use function set_freqframe"));
129   }
130//
131   MFrequency::Types freqSystem;
132   MFrequency::getType(freqSystem, systemStr);
133
134// Do it
135
136   return frequencyAlign(in, freqSystem, refTime, method, perFreqID);
137}
138
139
140
141CountedPtr<SDMemTable> SDMath::average(const Block<CountedPtr<SDMemTable> >& in,
142                                       const Vector<Bool>& mask, Bool scanAv,
143                                       const String& weightStr, Bool alignFreq) const
144//
145// Weighted averaging of spectra from one or more Tables.
146//
147{
148
149// Convert weight type
150 
151  WeightType wtType = NONE;
152  convertWeightString(wtType, weightStr, True);
153
154// Create output Table by cloning from the first table
155
156  SDMemTable* pTabOut = new SDMemTable(*in[0],True);
157  if (in.nelements() > 1) {
158    for (uInt i=1; i < in.nelements(); ++i) {
159      pTabOut->appendToHistoryTable(in[i]->getHistoryTable());
160    }
161  }
162// Setup
163
164  IPosition shp = in[0]->rowAsMaskedArray(0).shape();      // Must not change
165  Array<Float> arr(shp);
166  Array<Bool> barr(shp);
167  const Bool useMask = (mask.nelements() == shp(asap::ChanAxis));
168
169// Columns from Tables
170
171  ROArrayColumn<Float> tSysCol;
172  ROScalarColumn<Double> mjdCol;
173  ROScalarColumn<String> srcNameCol;
174  ROScalarColumn<Double> intCol;
175  ROArrayColumn<uInt> fqIDCol;
176  ROScalarColumn<Int> scanIDCol;
177
178// Create accumulation MaskedArray. We accumulate for each channel,if,pol,beam
179// Note that the mask of the accumulation array will ALWAYS remain ALL True.
180// The MA is only used so that when data which is masked Bad is added to it,
181// that data does not contribute.
182
183  Array<Float> zero(shp);
184  zero=0.0;
185  Array<Bool> good(shp);
186  good = True;
187  MaskedArray<Float> sum(zero,good);
188
189// Counter arrays
190
191  Array<Float> nPts(shp);             // Number of points
192  nPts = 0.0;
193  Array<Float> nInc(shp);             // Increment
194  nInc = 1.0;
195
196// Create accumulation Array for variance. We accumulate for
197// each if,pol,beam, but average over channel.  So we need
198// a shape with one less axis dropping channels.
199
200  const uInt nAxesSub = shp.nelements() - 1;
201  IPosition shp2(nAxesSub);
202  for (uInt i=0,j=0; i<(nAxesSub+1); i++) {
203     if (i!=asap::ChanAxis) {
204       shp2(j) = shp(i);
205       j++;
206     }
207  }
208  Array<Float> sumSq(shp2);
209  sumSq = 0.0;
210  IPosition pos2(nAxesSub,0);                        // For indexing
211
212// Time-related accumulators
213
214  Double time;
215  Double timeSum = 0.0;
216  Double intSum = 0.0;
217  Double interval = 0.0;
218
219// To get the right shape for the Tsys accumulator we need to
220// access a column from the first table.  The shape of this
221// array must not change.  Note however that since the TSysSqSum
222// array is used in a normalization process, and that I ignore the
223// channel axis replication of values for now, it loses a dimension
224
225  Array<Float> tSysSum, tSysSqSum;
226  {
227    const Table& tabIn = in[0]->table();
228    tSysCol.attach(tabIn,"TSYS");
229    tSysSum.resize(tSysCol.shape(0));
230//
231    tSysSqSum.resize(shp2);
232  }
233  tSysSum =0.0;
234  tSysSqSum = 0.0;
235  Array<Float> tSys;
236
237// Scan and row tracking
238
239  Int oldScanID = 0;
240  Int outScanID = 0;
241  Int scanID = 0;
242  Int rowStart = 0;
243  Int nAccum = 0;
244  Int tableStart = 0;
245
246// Source and FreqID
247
248  String sourceName, oldSourceName, sourceNameStart;
249  Vector<uInt> freqID, freqIDStart, oldFreqID;
250
251// Loop over tables
252
253  Float fac = 1.0;
254  const uInt nTables = in.nelements();
255  for (uInt iTab=0; iTab<nTables; iTab++) {
256
257// Should check that the frequency tables don't change if doing FreqAlignment
258
259// Attach columns to Table
260
261     const Table& tabIn = in[iTab]->table();
262     tSysCol.attach(tabIn, "TSYS");
263     mjdCol.attach(tabIn, "TIME");
264     srcNameCol.attach(tabIn, "SRCNAME");
265     intCol.attach(tabIn, "INTERVAL");
266     fqIDCol.attach(tabIn, "FREQID");
267     scanIDCol.attach(tabIn, "SCANID");
268
269// Loop over rows in Table
270
271     const uInt nRows = in[iTab]->nRow();
272     for (uInt iRow=0; iRow<nRows; iRow++) {
273
274// Check conformance
275
276        IPosition shp2 = in[iTab]->rowAsMaskedArray(iRow).shape();
277        if (!shp.isEqual(shp2)) {
278           throw (AipsError("Shapes for all rows must be the same"));
279        }
280
281// If we are not doing scan averages, make checks for source and
282// frequency setup and warn if averaging across them
283
284        scanIDCol.getScalar(iRow, scanID);
285
286// Get quantities from columns
287
288        srcNameCol.getScalar(iRow, sourceName);
289        mjdCol.get(iRow, time);
290        tSysCol.get(iRow, tSys);
291        intCol.get(iRow, interval);
292        fqIDCol.get(iRow, freqID);
293
294// Initialize first source and freqID
295
296        if (iRow==0 && iTab==0) {
297          sourceNameStart = sourceName;
298          freqIDStart = freqID;
299        }
300
301// If we are doing scan averages, see if we are at the end of an
302// accumulation period (scan).  We must check soutce names too,
303// since we might have two tables with one scan each but different
304// source names; we shouldn't average different sources together
305
306        if (scanAv && ( (scanID != oldScanID)  ||
307                        (iRow==0 && iTab>0 && sourceName!=oldSourceName))) {
308
309// Normalize data in 'sum' accumulation array according to weighting scheme
310
311           normalize(sum, sumSq, tSysSqSum, nPts, intSum, wtType, asap::ChanAxis, nAxesSub);
312
313// Get ScanContainer for the first row of this averaged Scan
314
315           SDContainer scOut = in[iTab]->getSDContainer(rowStart);
316
317// Fill scan container. The source and freqID come from the
318// first row of the first table that went into this average (
319// should be the same for all rows in the scan average)
320
321           Float nR(nAccum);
322           fillSDC(scOut, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
323                    timeSum/nR, intSum, sourceNameStart, freqIDStart);
324
325// Write container out to Table
326
327           pTabOut->putSDContainer(scOut);
328
329// Reset accumulators
330
331           sum = 0.0;
332           sumSq = 0.0;
333           nAccum = 0;
334//
335           tSysSum =0.0;
336           tSysSqSum =0.0;
337           timeSum = 0.0;
338           intSum = 0.0;
339           nPts = 0.0;
340
341// Increment
342
343           rowStart = iRow;              // First row for next accumulation
344           tableStart = iTab;            // First table for next accumulation
345           sourceNameStart = sourceName; // First source name for next accumulation
346           freqIDStart = freqID;         // First FreqID for next accumulation
347//
348           oldScanID = scanID;
349           outScanID += 1;               // Scan ID for next accumulation period
350        }
351
352// Accumulate
353
354        accumulate(timeSum, intSum, nAccum, sum, sumSq, nPts, tSysSum, tSysSqSum,
355                   tSys, nInc, mask, time, interval, in, iTab, iRow, asap::ChanAxis,
356                   nAxesSub, useMask, wtType);
357//
358       oldSourceName = sourceName;
359       oldFreqID = freqID;
360     }
361  }
362
363// OK at this point we have accumulation data which is either
364//   - accumulated from all tables into one row
365// or
366//   - accumulated from the last scan average
367//
368// Normalize data in 'sum' accumulation array according to weighting scheme
369
370  normalize(sum, sumSq, tSysSqSum, nPts, intSum, wtType, asap::ChanAxis, nAxesSub);
371
372// Create and fill container.  The container we clone will be from
373// the last Table and the first row that went into the current
374// accumulation.  It probably doesn't matter that much really...
375
376  Float nR(nAccum);
377  SDContainer scOut = in[tableStart]->getSDContainer(rowStart);
378  fillSDC(scOut, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
379           timeSum/nR, intSum, sourceNameStart, freqIDStart);
380  pTabOut->putSDContainer(scOut);
381  pTabOut->resetCursor();
382//
383  return CountedPtr<SDMemTable>(pTabOut);
384}
385
386
387
388CountedPtr<SDMemTable> SDMath::binaryOperate(const CountedPtr<SDMemTable>&
389                                             left,
390                                             const CountedPtr<SDMemTable>&
391                                             right,
392                                             const String& op, Bool preserve,
393                                             Bool doTSys) const
394{
395
396// Check operator
397
398  String op2(op);
399  op2.upcase();
400  uInt what = 0;
401  if (op2=="ADD") {
402     what = 0;
403  } else if (op2=="SUB") {
404     what = 1;
405  } else if (op2=="MUL") {
406     what = 2;
407  } else if (op2=="DIV") {
408     what = 3;
409  } else if (op2=="QUOTIENT") {
410     what = 4;
411     doTSys = True;
412  } else {
413    throw( AipsError("Unrecognized operation"));
414  }
415
416// Check rows
417
418  const uInt nRowLeft = left->nRow();
419  const uInt nRowRight = right->nRow();
420  Bool ok = (nRowRight==1&&nRowLeft>0) ||
421            (nRowRight>=1&&nRowLeft==nRowRight);
422  if (!ok) {
423     throw (AipsError("The right Scan Table can have one row or the same number of rows as the left Scan Table"));
424  }
425
426// Input Tables
427
428  const Table& tLeft = left->table();
429  const Table& tRight = right->table();
430
431// TSys columns
432
433  ROArrayColumn<Float> tSysLeftCol, tSysRightCol;
434  if (doTSys) {
435     tSysLeftCol.attach(tLeft, "TSYS");
436     tSysRightCol.attach(tRight, "TSYS");
437  }
438
439// First row for right
440
441  Array<Float> tSysLeftArr, tSysRightArr;
442  if (doTSys) tSysRightCol.get(0, tSysRightArr);
443  MaskedArray<Float>* pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(0));
444  IPosition shpRight = pMRight->shape();
445
446// Output Table cloned from left
447
448  SDMemTable* pTabOut = new SDMemTable(*left, True);
449  pTabOut->appendToHistoryTable(right->getHistoryTable());
450// Loop over rows
451
452  for (uInt i=0; i<nRowLeft; i++) {
453
454// Get data
455
456     MaskedArray<Float> mLeft(left->rowAsMaskedArray(i));
457     IPosition shpLeft = mLeft.shape();
458     if (doTSys) tSysLeftCol.get(i, tSysLeftArr);
459//
460     if (nRowRight>1) {
461        delete pMRight;
462        pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(i));
463        shpRight = pMRight->shape();
464        if (doTSys) tSysRightCol.get(i, tSysRightArr);
465     }
466//
467     if (!shpRight.isEqual(shpLeft)) {
468        throw(AipsError("left and right scan tables are not conformant"));
469     }
470     if (doTSys) {
471        if (!tSysRightArr.shape().isEqual(tSysRightArr.shape())) {
472           throw(AipsError("left and right Tsys data are not conformant"));
473        }
474        if (!shpRight.isEqual(tSysRightArr.shape())) {
475           throw(AipsError("left and right scan tables are not conformant"));
476        }
477     }
478
479// Make container
480
481     SDContainer sc = left->getSDContainer(i);
482
483// Operate on data and TSys
484
485     if (what==0) {                               
486        MaskedArray<Float> tmp = mLeft + *pMRight;
487        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
488        if (doTSys) sc.putTsys(tSysLeftArr+tSysRightArr);
489     } else if (what==1) {
490        MaskedArray<Float> tmp = mLeft - *pMRight;
491        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
492        if (doTSys) sc.putTsys(tSysLeftArr-tSysRightArr);
493     } else if (what==2) {
494        MaskedArray<Float> tmp = mLeft * *pMRight;
495        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
496        if (doTSys) sc.putTsys(tSysLeftArr*tSysRightArr);
497     } else if (what==3) {
498        MaskedArray<Float> tmp = mLeft / *pMRight;
499        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
500        if (doTSys) sc.putTsys(tSysLeftArr/tSysRightArr);
501     } else if (what==4) {
502       if (preserve) {     
503         MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) -
504           tSysRightArr;
505         putDataInSDC(sc, tmp.getArray(), tmp.getMask());
506       } else {
507         MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) -
508           tSysLeftArr;
509         putDataInSDC(sc, tmp.getArray(), tmp.getMask());
510       }
511       sc.putTsys(tSysRightArr);
512     }
513
514// Put new row in output Table
515
516     pTabOut->putSDContainer(sc);
517  }
518  if (pMRight) delete pMRight;
519  pTabOut->resetCursor();
520
521  return CountedPtr<SDMemTable>(pTabOut);
522}
523
524
525
526std::vector<float> SDMath::statistic(const CountedPtr<SDMemTable>& in,
527                                     const Vector<Bool>& mask,
528                                     const String& which, Int row) const
529//
530// Perhaps iteration over pol/beam/if should be in here
531// and inside the nrow iteration ?
532//
533{
534  const uInt nRow = in->nRow();
535
536// Specify cursor location
537
538  IPosition start, end;
539  Bool doAll = False;
540  setCursorSlice (start, end, doAll, *in);
541
542// Loop over rows
543
544  const uInt nEl = mask.nelements();
545  uInt iStart = 0;
546  uInt iEnd = in->nRow()-1;
547// 
548  if (row>=0) {
549     iStart = row;
550     iEnd = row;
551  }
552//
553  std::vector<float> result(iEnd-iStart+1);
554  for (uInt ii=iStart; ii <= iEnd; ++ii) {
555
556// Get row and deconstruct
557
558     MaskedArray<Float> dataIn = (in->rowAsMaskedArray(ii))(start,end);
559     Array<Float> v = dataIn.getArray().nonDegenerate();
560     Array<Bool>  m = dataIn.getMask().nonDegenerate();
561
562// Access desired piece of data
563
564//     Array<Float> v((arr(start,end)).nonDegenerate());
565//     Array<Bool> m((barr(start,end)).nonDegenerate());
566
567// Apply OTF mask
568
569     MaskedArray<Float> tmp;
570     if (m.nelements()==nEl) {
571       tmp.setData(v,m&&mask);
572     } else {
573       tmp.setData(v,m);
574     }
575
576// Get statistic
577
578     result[ii-iStart] = mathutil::statistics(which, tmp);
579  }
580//
581  return result;
582}
583
584
585SDMemTable* SDMath::bin(const SDMemTable& in, Int width) const
586{
587  SDHeader sh = in.getSDHeader();
588  SDMemTable* pTabOut = new SDMemTable(in, True);
589
590// Bin up SpectralCoordinates
591
592  IPosition factors(1);
593  factors(0) = width;
594  for (uInt j=0; j<in.nCoordinates(); ++j) {
595    CoordinateSystem cSys;
596    cSys.addCoordinate(in.getSpectralCoordinate(j));
597    CoordinateSystem cSysBin =
598      CoordinateUtil::makeBinnedCoordinateSystem(factors, cSys, False);
599//
600    SpectralCoordinate sCBin = cSysBin.spectralCoordinate(0);
601    pTabOut->setCoordinate(sCBin, j);
602  }
603
604// Use RebinLattice to find shape
605
606  IPosition shapeIn(1,sh.nchan);
607  IPosition shapeOut = RebinLattice<Float>::rebinShape(shapeIn, factors);
608  sh.nchan = shapeOut(0);
609  pTabOut->putSDHeader(sh);
610
611// Loop over rows and bin along channel axis
612 
613  for (uInt i=0; i < in.nRow(); ++i) {
614    SDContainer sc = in.getSDContainer(i);
615//
616    Array<Float> tSys(sc.getTsys());                           // Get it out before sc changes shape
617
618// Bin up spectrum
619
620    MaskedArray<Float> marr(in.rowAsMaskedArray(i));
621    MaskedArray<Float> marrout;
622    LatticeUtilities::bin(marrout, marr, asap::ChanAxis, width);
623
624// Put back the binned data and flags
625
626    IPosition ip2 = marrout.shape();
627    sc.resize(ip2);
628//
629    putDataInSDC(sc, marrout.getArray(), marrout.getMask());
630
631// Bin up Tsys. 
632
633    Array<Bool> allGood(tSys.shape(),True);
634    MaskedArray<Float> tSysIn(tSys, allGood, True);
635//
636    MaskedArray<Float> tSysOut;   
637    LatticeUtilities::bin(tSysOut, tSysIn, asap::ChanAxis, width);
638    sc.putTsys(tSysOut.getArray());
639//
640    pTabOut->putSDContainer(sc);
641  }
642  return pTabOut;
643}
644
645SDMemTable* SDMath::resample(const SDMemTable& in, const String& methodStr,
646                             Float width) const
647//
648// Should add the possibility of width being specified in km/s. This means
649// that for each freqID (SpectralCoordinate) we will need to convert to an
650// average channel width (say at the reference pixel).  Then we would need 
651// to be careful to make sure each spectrum (of different freqID)
652// is the same length.
653//
654{
655   Bool doVel = False;
656   if (doVel) {
657      for (uInt j=0; j<in.nCoordinates(); ++j) {
658         SpectralCoordinate sC = in.getSpectralCoordinate(j);
659      }
660   }
661
662// Interpolation method
663
664  InterpolateArray1D<Double,Float>::InterpolationMethod interp;
665  convertInterpString(interp, methodStr);
666  Int interpMethod(interp);
667
668// Make output table
669
670  SDMemTable* pTabOut = new SDMemTable(in, True);
671
672// Resample SpectralCoordinates (one per freqID)
673
674  const uInt nCoord = in.nCoordinates();
675  Vector<Float> offset(1,0.0);
676  Vector<Float> factors(1,1.0/width);
677  Vector<Int> newShape;
678  for (uInt j=0; j<in.nCoordinates(); ++j) {
679    CoordinateSystem cSys;
680    cSys.addCoordinate(in.getSpectralCoordinate(j));
681    CoordinateSystem cSys2 = cSys.subImage(offset, factors, newShape);
682    SpectralCoordinate sC = cSys2.spectralCoordinate(0);
683//
684    pTabOut->setCoordinate(sC, j);
685  }
686
687// Get header
688
689  SDHeader sh = in.getSDHeader();
690
691// Generate resampling vectors
692
693  const uInt nChanIn = sh.nchan;
694  Vector<Float> xIn(nChanIn);
695  indgen(xIn);
696//
697  Int fac =  Int(nChanIn/width);
698  Vector<Float> xOut(fac+10);          // 10 to be safe - resize later
699  uInt i = 0;
700  Float x = 0.0;
701  Bool more = True;
702  while (more) {
703    xOut(i) = x;
704//
705    i++;
706    x += width;
707    if (x>nChanIn-1) more = False;
708  }
709  const uInt nChanOut = i;
710  xOut.resize(nChanOut,True);
711//
712  IPosition shapeIn(in.rowAsMaskedArray(0).shape());
713  sh.nchan = nChanOut;
714  pTabOut->putSDHeader(sh);
715
716// Loop over rows and resample along channel axis
717
718  Array<Float> valuesOut;
719  Array<Bool> maskOut; 
720  Array<Float> tSysOut;
721  Array<Bool> tSysMaskIn(shapeIn,True);
722  Array<Bool> tSysMaskOut;
723  for (uInt i=0; i < in.nRow(); ++i) {
724
725// Get container
726
727     SDContainer sc = in.getSDContainer(i);
728
729// Get data and Tsys
730   
731     const Array<Float>& tSysIn = sc.getTsys();
732     const MaskedArray<Float>& dataIn(in.rowAsMaskedArray(i));
733     Array<Float> valuesIn = dataIn.getArray();
734     Array<Bool> maskIn = dataIn.getMask();
735
736// Interpolate data
737
738     InterpolateArray1D<Float,Float>::interpolate(valuesOut, maskOut, xOut,
739                                                  xIn, valuesIn, maskIn,
740                                                  interpMethod, True, True);
741     sc.resize(valuesOut.shape());
742     putDataInSDC(sc, valuesOut, maskOut);
743
744// Interpolate TSys
745
746     InterpolateArray1D<Float,Float>::interpolate(tSysOut, tSysMaskOut, xOut,
747                                                  xIn, tSysIn, tSysMaskIn,
748                                                  interpMethod, True, True);
749    sc.putTsys(tSysOut);
750
751// Put container in output
752
753    pTabOut->putSDContainer(sc);
754  }
755//
756  return pTabOut;
757}
758
759SDMemTable* SDMath::unaryOperate(const SDMemTable& in, Float val, Bool doAll,
760                                 uInt what, Bool doTSys) const
761//
762// what = 0   Multiply
763//        1   Add
764{
765   SDMemTable* pOut = new SDMemTable(in,False);
766   const Table& tOut = pOut->table();
767   ArrayColumn<Float> specCol(tOut,"SPECTRA"); 
768   ArrayColumn<Float> tSysCol(tOut,"TSYS"); 
769   Array<Float> tSysArr;
770
771// Get data slice bounds
772
773   IPosition start, end;
774   setCursorSlice (start, end, doAll, in);
775//
776   for (uInt i=0; i<tOut.nrow(); i++) {
777
778// Modify data
779
780      MaskedArray<Float> dataIn(pOut->rowAsMaskedArray(i));
781      MaskedArray<Float> dataIn2 = dataIn(start,end);    // Reference
782      if (what==0) {
783         dataIn2 *= val;
784      } else if (what==1) {
785         dataIn2 += val;
786      }
787      specCol.put(i, dataIn.getArray());
788
789// Modify Tsys
790
791      if (doTSys) {
792         tSysCol.get(i, tSysArr);
793         Array<Float> tSysArr2 = tSysArr(start,end);     // Reference
794         if (what==0) {
795            tSysArr2 *= val;
796         } else if (what==1) {
797            tSysArr2 += val;
798         }
799         tSysCol.put(i, tSysArr);
800      }
801   }
802//
803   return pOut;
804}
805
806SDMemTable* SDMath::averagePol(const SDMemTable& in, const Vector<Bool>& mask,
807                               const String& weightStr) const
808//
809// Average all polarizations together, weighted by variance
810//
811{
812   WeightType wtType = NONE;
813   convertWeightString(wtType, weightStr, True);
814
815// Create output Table and reshape number of polarizations
816
817  Bool clear=True;
818  SDMemTable* pTabOut = new SDMemTable(in, clear);
819  SDHeader header = pTabOut->getSDHeader();
820  header.npol = 1;
821  pTabOut->putSDHeader(header);
822//
823  const Table& tabIn = in.table();
824
825// Shape of input and output data
826
827  const IPosition& shapeIn = in.rowAsMaskedArray(0).shape();
828  IPosition shapeOut(shapeIn);
829  shapeOut(asap::PolAxis) = 1;                          // Average all polarizations
830  if (shapeIn(asap::PolAxis)==1) {
831     throw(AipsError("The input has only one polarisation"));
832  }
833//
834  const uInt nRows = in.nRow();
835  const uInt nChan = shapeIn(asap::ChanAxis);
836  AlwaysAssert(asap::nAxes==4,AipsError);
837  const IPosition vecShapeOut(4,1,1,1,nChan);     // A multi-dim form of a Vector shape
838  IPosition start(4), end(4);
839
840// Output arrays
841
842  Array<Float> outData(shapeOut, 0.0);
843  Array<Bool> outMask(shapeOut, True);
844  const IPosition axes(2, asap::PolAxis, asap::ChanAxis);              // pol-channel plane
845
846// Attach Tsys column if needed
847
848  ROArrayColumn<Float> tSysCol;
849  Array<Float> tSys;
850  if (wtType==TSYS) {
851     tSysCol.attach(tabIn,"TSYS");
852  }
853//
854  const Bool useMask = (mask.nelements() == shapeIn(asap::ChanAxis));
855
856// Loop over rows
857
858   for (uInt iRow=0; iRow<nRows; iRow++) {
859
860// Get data for this row
861
862      MaskedArray<Float> marr(in.rowAsMaskedArray(iRow));
863      Array<Float>& arr = marr.getRWArray();
864      const Array<Bool>& barr = marr.getMask();
865     
866// Get Tsys
867
868      if (wtType==TSYS) {
869         tSysCol.get(iRow,tSys);
870      }
871
872// Make iterators to iterate by pol-channel planes
873// The tSys array is empty unless wtType=TSYS so only
874// access the iterator is that is the case
875
876      ReadOnlyArrayIterator<Float> itDataPlane(arr, axes);
877      ReadOnlyArrayIterator<Bool> itMaskPlane(barr, axes);
878      ReadOnlyArrayIterator<Float>* pItTsysPlane = 0;
879      if (wtType==TSYS) pItTsysPlane = new ReadOnlyArrayIterator<Float>(tSys, axes);
880
881// Accumulations
882
883      Float fac = 1.0;
884      Vector<Float> vecSum(nChan,0.0);
885
886// Iterate through data by pol-channel planes
887
888      while (!itDataPlane.pastEnd()) {
889
890// Iterate through plane by polarization  and accumulate Vectors
891
892        Vector<Float> t1(nChan); t1 = 0.0;
893        Vector<Bool> t2(nChan); t2 = True;
894        Float tSys = 0.0;
895        MaskedArray<Float> vecSum(t1,t2);
896        Float norm = 0.0;
897        {
898           ReadOnlyVectorIterator<Float> itDataVec(itDataPlane.array(), 1);
899           ReadOnlyVectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
900//
901           ReadOnlyVectorIterator<Float>* pItTsysVec = 0;
902           if (wtType==TSYS) {
903              pItTsysVec = new ReadOnlyVectorIterator<Float>(pItTsysPlane->array(), 1);
904           }             
905//
906           while (!itDataVec.pastEnd()) {     
907
908// Create MA of data & mask (optionally including OTF mask) and  get variance for this spectrum
909
910              if (useMask) {
911                 const MaskedArray<Float> spec(itDataVec.vector(),mask&&itMaskVec.vector());
912                 if (wtType==VAR) {
913                    fac = 1.0 / variance(spec);
914                 } else if (wtType==TSYS) {
915                    tSys = pItTsysVec->vector()[0];      // Drop pseudo channel dependency
916                    fac = 1.0 / tSys / tSys;
917                 }                   
918              } else {
919                 const MaskedArray<Float> spec(itDataVec.vector(),itMaskVec.vector());
920                 if (wtType==VAR) {
921                    fac = 1.0 / variance(spec);
922                 } else if (wtType==TSYS) {
923                    tSys = pItTsysVec->vector()[0];      // Drop pseudo channel dependency
924                    fac = 1.0 / tSys / tSys;
925                 }
926              }
927
928// Normalize spectrum (without OTF mask) and accumulate
929
930              const MaskedArray<Float> spec(fac*itDataVec.vector(), itMaskVec.vector());
931              vecSum += spec;
932              norm += fac;
933
934// Next
935
936              itDataVec.next();
937              itMaskVec.next();
938              if (wtType==TSYS) pItTsysVec->next();
939           }
940           
941// Clean up
942
943           if (pItTsysVec) {
944              delete pItTsysVec;
945              pItTsysVec = 0;
946           }           
947        }
948
949// Normalize summed spectrum
950
951        vecSum /= norm;
952
953// FInd position in input data array.  We are iterating by pol-channel
954// plane so all that will change is beam and IF and that's what we want.
955
956        IPosition pos = itDataPlane.pos();
957
958// Write out data. This is a bit messy. We have to reform the Vector
959// accumulator into an Array of shape (1,1,1,nChan)
960
961        start = pos;
962        end = pos;
963        end(asap::ChanAxis) = nChan-1;
964        outData(start,end) = vecSum.getArray().reform(vecShapeOut);
965        outMask(start,end) = vecSum.getMask().reform(vecShapeOut);
966
967// Step to next beam/IF combination
968
969        itDataPlane.next();
970        itMaskPlane.next();
971        if (wtType==TSYS) pItTsysPlane->next();
972      }
973
974// Generate output container and write it to output table
975
976      SDContainer sc = in.getSDContainer();
977      sc.resize(shapeOut);
978//
979      putDataInSDC(sc, outData, outMask);
980      pTabOut->putSDContainer(sc);
981//
982      if (wtType==TSYS) {
983         delete pItTsysPlane;
984         pItTsysPlane = 0;
985      }
986   }
987
988// Set polarization cursor to 0
989
990  pTabOut->setPol(0);
991//
992  return pTabOut;
993}
994
995
996SDMemTable* SDMath::smooth(const SDMemTable& in,
997                           const casa::String& kernelType,
998                           casa::Float width, Bool doAll) const
999//
1000// Should smooth TSys as well
1001//
1002{
1003
1004// Number of channels
1005
1006   const uInt nChan = in.nChan();
1007
1008// Generate Kernel
1009
1010   VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernelType);
1011   Vector<Float> kernel = VectorKernel::make(type, width, nChan, True, False);
1012
1013// Generate Convolver
1014
1015   IPosition shape(1,nChan);
1016   Convolver<Float> conv(kernel, shape);
1017
1018// New Table
1019
1020   SDMemTable* pTabOut = new SDMemTable(in,True);
1021
1022// Output Vectors
1023
1024   Vector<Float> valuesOut(nChan);
1025   Vector<Bool> maskOut(nChan);
1026
1027// Get data slice bounds
1028
1029   IPosition start, end;
1030   setCursorSlice (start, end, doAll, in);
1031
1032// Loop over rows in Table
1033
1034   for (uInt ri=0; ri < in.nRow(); ++ri) {
1035
1036// Get slice of data
1037
1038      MaskedArray<Float> dataIn = in.rowAsMaskedArray(ri);
1039
1040// Deconstruct and get slices which reference these arrays
1041
1042      Array<Float> valuesIn = dataIn.getArray();
1043      Array<Bool> maskIn = dataIn.getMask();
1044//
1045      Array<Float> valuesIn2 = valuesIn(start,end);       // ref to valuesIn
1046      Array<Bool> maskIn2 = maskIn(start,end);
1047
1048// Iterate through by spectra
1049
1050      VectorIterator<Float> itValues(valuesIn2, asap::ChanAxis);
1051      VectorIterator<Bool> itMask(maskIn2, asap::ChanAxis);
1052      while (!itValues.pastEnd()) {
1053       
1054// Smooth
1055
1056         if (kernelType==VectorKernel::HANNING) {
1057            mathutil::hanning(valuesOut, maskOut, itValues.vector(), itMask.vector());
1058            itMask.vector() = maskOut;
1059         } else {
1060            mathutil::replaceMaskByZero(itValues.vector(), itMask.vector());
1061            conv.linearConv(valuesOut, itValues.vector());
1062         }
1063//   
1064         itValues.vector() = valuesOut;
1065//
1066         itValues.next();
1067         itMask.next();
1068      }
1069
1070// Create and put back
1071
1072      SDContainer sc = in.getSDContainer(ri);
1073      putDataInSDC(sc, valuesIn, maskIn);
1074//
1075      pTabOut->putSDContainer(sc);
1076   }
1077//
1078  return pTabOut;
1079}
1080
1081
1082
1083SDMemTable* SDMath::convertFlux(const SDMemTable& in, Float D, Float etaAp,
1084                                Float JyPerK, Bool doAll) const
1085//
1086// etaAp = aperture efficiency (-1 means find)
1087// D     = geometric diameter (m)  (-1 means find)
1088// JyPerK
1089//
1090{
1091  SDHeader sh = in.getSDHeader();
1092  SDMemTable* pTabOut = new SDMemTable(in, True);
1093
1094// Find out how to convert values into Jy and K (e.g. units might be mJy or mK)
1095// Also automatically find out what we are converting to according to the
1096// flux unit
1097
1098  Unit fluxUnit(sh.fluxunit);
1099  Unit K(String("K"));
1100  Unit JY(String("Jy"));
1101//
1102  Bool toKelvin = True;
1103  Double cFac = 1.0;   
1104  if (fluxUnit==JY) {
1105     cout << "Converting to K" << endl;
1106//
1107     Quantum<Double> t(1.0,fluxUnit);
1108     Quantum<Double> t2 = t.get(JY);
1109     cFac = (t2 / t).getValue();               // value to Jy
1110//
1111     toKelvin = True;
1112     sh.fluxunit = "K";
1113  } else if (fluxUnit==K) {
1114     cout << "Converting to Jy" << endl;
1115//
1116     Quantum<Double> t(1.0,fluxUnit);
1117     Quantum<Double> t2 = t.get(K);
1118     cFac = (t2 / t).getValue();              // value to K
1119//
1120     toKelvin = False;
1121     sh.fluxunit = "Jy";
1122  } else {
1123     throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
1124  }
1125  pTabOut->putSDHeader(sh);
1126
1127// Make sure input values are converted to either Jy or K first...
1128
1129  Float factor = cFac;
1130
1131// Select method
1132
1133  if (JyPerK>0.0) {
1134     factor *= JyPerK;
1135     if (toKelvin) factor = 1.0 / JyPerK;
1136//
1137     cout << "Jy/K = " << JyPerK << endl;
1138     Vector<Float> factors(in.nRow(), factor);
1139     scaleByVector(pTabOut, in, doAll, factors, False);
1140  } else if (etaAp>0.0) {
1141     Bool throwIt = True;
1142     Instrument inst = SDAttr::convertInstrument (sh.antennaname, throwIt);
1143     SDAttr sda;
1144     if (D < 0) D = sda.diameter(inst);
1145     Float JyPerK = SDAttr::findJyPerK (etaAp,D);
1146     cout << "Jy/K = " << JyPerK << endl;
1147     factor *= JyPerK;
1148     if (toKelvin) {
1149        factor = 1.0 / factor;
1150     }
1151//
1152     Vector<Float> factors(in.nRow(), factor);
1153     scaleByVector(pTabOut, in, doAll, factors, False);
1154  } else {
1155
1156// OK now we must deal with automatic look up of values.
1157// We must also deal with the fact that the factors need
1158// to be computed per IF and may be different and may
1159// change per integration.
1160
1161     cout << "Looking up conversion factors" << endl;
1162     convertBrightnessUnits (pTabOut, in, toKelvin, cFac, doAll);
1163  }
1164//
1165  return pTabOut;
1166}
1167
1168
1169
1170
1171
1172SDMemTable* SDMath::gainElevation(const SDMemTable& in,
1173                                  const Vector<Float>& coeffs,
1174                                  const String& fileName,
1175                                  const String& methodStr, Bool doAll) const
1176{
1177
1178// Get header and clone output table
1179
1180  SDHeader sh = in.getSDHeader();
1181  SDMemTable* pTabOut = new SDMemTable(in, True);
1182
1183// Get elevation data from SDMemTable and convert to degrees
1184
1185  const Table& tab = in.table();
1186  ROScalarColumn<Float> elev(tab, "ELEVATION");
1187  Vector<Float> x = elev.getColumn();
1188  x *= Float(180 / C::pi);                        // Degrees
1189//
1190  const uInt nC = coeffs.nelements();
1191  if (fileName.length()>0 && nC>0) {
1192     throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
1193  }
1194
1195// Correct
1196
1197  if (nC>0 || fileName.length()==0) {
1198
1199// Find instrument
1200
1201     Bool throwIt = True;
1202     Instrument inst = SDAttr::convertInstrument (sh.antennaname, throwIt);
1203     
1204// Set polynomial
1205
1206     Polynomial<Float>* pPoly = 0;
1207     Vector<Float> coeff;
1208     String msg;
1209     if (nC>0) {
1210        pPoly = new Polynomial<Float>(nC);
1211        coeff = coeffs;
1212        msg = String("user");
1213     } else {
1214        SDAttr sdAttr;
1215        coeff = sdAttr.gainElevationPoly(inst);
1216        pPoly = new Polynomial<Float>(3);
1217        msg = String("built in");
1218     }
1219//
1220     if (coeff.nelements()>0) {
1221        pPoly->setCoefficients(coeff);
1222     } else {
1223        throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
1224     }
1225//
1226     cout << "Making polynomial correction with " << msg << " coefficients" << endl;
1227     const uInt nRow = in.nRow();
1228     Vector<Float> factor(nRow);
1229     for (uInt i=0; i<nRow; i++) {
1230        factor[i] = 1.0 / (*pPoly)(x[i]);
1231     }
1232     delete pPoly;
1233//
1234     scaleByVector (pTabOut, in, doAll, factor, True);
1235  } else {
1236
1237// Indicate which columns to read from ascii file
1238
1239     String col0("ELEVATION");
1240     String col1("FACTOR");
1241
1242// Read and correct
1243
1244     cout << "Making correction from ascii Table" << endl;
1245     scaleFromAsciiTable (pTabOut, in, fileName, col0, col1,
1246                          methodStr, doAll, x, True);
1247   }
1248//
1249   return pTabOut;
1250}
1251
1252 
1253
1254SDMemTable* SDMath::opacity(const SDMemTable& in, Float tau, Bool doAll) const
1255{
1256
1257// Get header and clone output table
1258
1259  SDHeader sh = in.getSDHeader();
1260  SDMemTable* pTabOut = new SDMemTable(in, True);
1261
1262// Get elevation data from SDMemTable and convert to degrees
1263
1264  const Table& tab = in.table();
1265  ROScalarColumn<Float> elev(tab, "ELEVATION");
1266  Vector<Float> zDist = elev.getColumn();
1267  zDist = Float(C::pi_2) - zDist;
1268
1269// Generate correction factor
1270
1271  const uInt nRow = in.nRow();
1272  Vector<Float> factor(nRow);
1273  Vector<Float> factor2(nRow);
1274  for (uInt i=0; i<nRow; i++) {
1275     factor[i] = exp(tau)/cos(zDist[i]);
1276  }
1277
1278// Correct
1279
1280  scaleByVector (pTabOut, in, doAll, factor, True);
1281//
1282  return pTabOut;
1283}
1284
1285
1286void SDMath::rotateXYPhase(SDMemTable& in, Float value, Bool doAll)
1287//
1288// phase in degrees
1289// assumes linear correlations
1290//
1291{
1292   if (in.nPol() != 4) {
1293      throw(AipsError("You must have 4 polarizations to run this function"));
1294   }
1295//
1296   SDHeader sh = in.getSDHeader();
1297   Instrument inst = SDAttr::convertInstrument (sh.antennaname, False);
1298   SDAttr sdAtt;
1299   if (sdAtt.feedPolType(inst) != LINEAR) {
1300      throw(AipsError("Only linear polarizations are supported"));
1301   }
1302//   
1303   const Table& tabIn = in.table();
1304   ArrayColumn<Float> specCol(tabIn,"SPECTRA"); 
1305   IPosition start(asap::nAxes,0);
1306   IPosition end(asap::nAxes);
1307
1308// Set cursor slice. Assumes shape the same for all rows
1309 
1310   setCursorSlice (start, end, doAll, in);
1311   IPosition start3(start);
1312   start3(asap::PolAxis) = 2;                 // Real(XY)
1313   IPosition end3(end);
1314   end3(asap::PolAxis) = 2;   
1315//
1316   IPosition start4(start);
1317   start4(asap::PolAxis) = 3;                 // Imag (XY)
1318   IPosition end4(end);
1319   end4(asap::PolAxis) = 3;
1320// 
1321   uInt nRow = in.nRow();
1322   Array<Float> data;
1323   for (uInt i=0; i<nRow;++i) {
1324      specCol.get(i,data);
1325      IPosition shape = data.shape();
1326 
1327// Get polarization slice references
1328 
1329      Array<Float> C3 = data(start3,end3);
1330      Array<Float> C4 = data(start4,end4);
1331   
1332// Rotate
1333 
1334      SDPolUtil::rotatePhase(C3, C4, value);
1335   
1336// Put
1337   
1338      specCol.put(i,data);
1339   }
1340}     
1341
1342
1343
1344void SDMath::rotateLinPolPhase(SDMemTable& in, Float value, Bool doAll)
1345//
1346// phase in degrees
1347// assumes linear correlations
1348//
1349{
1350   if (in.nPol() != 4) {
1351      throw(AipsError("You must have 4 polarizations to run this function"));
1352   }
1353//
1354   SDHeader sh = in.getSDHeader();
1355   Instrument inst = SDAttr::convertInstrument (sh.antennaname, False);
1356   SDAttr sdAtt;
1357   if (sdAtt.feedPolType(inst) != LINEAR) {
1358      throw(AipsError("Only linear polarizations are supported"));
1359   }
1360//   
1361   const Table& tabIn = in.table();
1362   ArrayColumn<Float> specCol(tabIn,"SPECTRA"); 
1363   ROArrayColumn<Float> stokesCol(tabIn,"STOKES"); 
1364   IPosition start(asap::nAxes,0);
1365   IPosition end(asap::nAxes);
1366
1367// Set cursor slice. Assumes shape the same for all rows
1368 
1369   setCursorSlice (start, end, doAll, in);
1370//
1371   IPosition start1(start);
1372   start1(asap::PolAxis) = 0;                // C1 (XX)
1373   IPosition end1(end);
1374   end1(asap::PolAxis) = 0;   
1375//
1376   IPosition start2(start);
1377   start2(asap::PolAxis) = 1;                 // C2 (YY)
1378   IPosition end2(end);
1379   end2(asap::PolAxis) = 1;   
1380//
1381   IPosition start3(start);
1382   start3(asap::PolAxis) = 2;                 // C3 ( Real(XY) )
1383   IPosition end3(end);
1384   end3(asap::PolAxis) = 2;   
1385//
1386   IPosition startI(start);
1387   startI(asap::PolAxis) = 0;                 // I
1388   IPosition endI(end);
1389   endI(asap::PolAxis) = 0;   
1390//
1391   IPosition startQ(start);
1392   startQ(asap::PolAxis) = 1;                 // Q
1393   IPosition endQ(end);
1394   endQ(asap::PolAxis) = 1;   
1395//
1396   IPosition startU(start);
1397   startU(asap::PolAxis) = 2;                 // U
1398   IPosition endU(end);
1399   endU(asap::PolAxis) = 2;   
1400
1401//
1402   uInt nRow = in.nRow();
1403   Array<Float> data, stokes;
1404   for (uInt i=0; i<nRow;++i) {
1405      specCol.get(i,data);
1406      stokesCol.get(i,stokes);
1407      IPosition shape = data.shape();
1408 
1409// Get linear polarization slice references
1410 
1411      Array<Float> C1 = data(start1,end1);
1412      Array<Float> C2 = data(start2,end2);
1413      Array<Float> C3 = data(start3,end3);
1414
1415// Get STokes slice references
1416
1417      Array<Float> I = stokes(startI,endI);
1418      Array<Float> Q = stokes(startQ,endQ);
1419      Array<Float> U = stokes(startU,endU);
1420   
1421// Rotate
1422 
1423      SDPolUtil::rotateLinPolPhase(C1, C2, C3, I, Q, U, value);
1424   
1425// Put
1426   
1427      specCol.put(i,data);
1428   }
1429}     
1430
1431// 'private' functions
1432
1433void SDMath::convertBrightnessUnits (SDMemTable* pTabOut, const SDMemTable& in,
1434                                     Bool toKelvin, Float cFac, Bool doAll) const
1435{
1436
1437// Get header
1438
1439   SDHeader sh = in.getSDHeader();
1440   const uInt nChan = sh.nchan;
1441
1442// Get instrument
1443
1444   Bool throwIt = True;
1445   Instrument inst = SDAttr::convertInstrument (sh.antennaname, throwIt);
1446
1447// Get Diameter (m)
1448
1449   SDAttr sdAtt;
1450
1451// Get epoch of first row
1452
1453   MEpoch dateObs = in.getEpoch(0);
1454
1455// Generate a Vector of correction factors. One per FreqID
1456
1457   SDFrequencyTable sdft = in.getSDFreqTable();
1458   Vector<uInt> freqIDs;
1459//
1460   Vector<Float> freqs(sdft.length());
1461   for (uInt i=0; i<sdft.length(); i++) {
1462      freqs(i) = (nChan/2 - sdft.referencePixel(i))*sdft.increment(i) + sdft.referenceValue(i);
1463   }
1464//
1465   Vector<Float> JyPerK = sdAtt.JyPerK(inst, dateObs, freqs);
1466   cout << "Jy/K = " << JyPerK << endl;
1467   Vector<Float> factors = cFac * JyPerK;
1468   if (toKelvin) factors = Float(1.0) / factors;
1469
1470// Get data slice bounds
1471
1472   IPosition start, end;
1473   setCursorSlice (start, end, doAll, in);
1474   const uInt ifAxis = in.getIF();
1475
1476// Iteration axes
1477
1478   IPosition axes(asap::nAxes-1,0);
1479   for (uInt i=0,j=0; i<asap::nAxes; i++) {
1480      if (i!=asap::IFAxis) {
1481         axes(j++) = i;
1482      }
1483   }
1484
1485// Loop over rows and apply correction factor
1486
1487   Float factor = 1.0; 
1488   const uInt axis = asap::ChanAxis;
1489   for (uInt i=0; i < in.nRow(); ++i) {
1490
1491// Get data
1492
1493      MaskedArray<Float> dataIn = in.rowAsMaskedArray(i);
1494      Array<Float>& values = dataIn.getRWArray();           // Ref to dataIn
1495      Array<Float> values2 = values(start,end);             // Ref to values to dataIn
1496
1497// Get SDCOntainer
1498
1499      SDContainer sc = in.getSDContainer(i);
1500
1501// Get FreqIDs
1502
1503      freqIDs = sc.getFreqMap();
1504
1505// Now the conversion factor depends only upon frequency
1506// So we need to iterate through by IF only giving
1507// us BEAM/POL/CHAN cubes
1508
1509      ArrayIterator<Float> itIn(values2, axes);
1510      uInt ax = 0;
1511      while (!itIn.pastEnd()) {
1512        itIn.array() *= factors(freqIDs(ax));         // Writes back to dataIn
1513        itIn.next();
1514      }
1515
1516// Write out
1517
1518      putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
1519//
1520      pTabOut->putSDContainer(sc);
1521   }
1522}
1523
1524
1525
1526SDMemTable* SDMath::frequencyAlign (const SDMemTable& in,
1527                                   MFrequency::Types freqSystem,
1528                                   const String& refTime,
1529                                   const String& methodStr,
1530                                   Bool perFreqID) const
1531{
1532// Get Header
1533
1534   SDHeader sh = in.getSDHeader();
1535   const uInt nChan = sh.nchan;
1536   const uInt nRows = in.nRow();
1537   const uInt nIF = sh.nif;
1538
1539// Get Table reference
1540
1541   const Table& tabIn = in.table();
1542
1543// Get Columns from Table
1544
1545   ROScalarColumn<Double> mjdCol(tabIn, "TIME");
1546   ROScalarColumn<String> srcCol(tabIn, "SRCNAME");
1547   ROArrayColumn<uInt> fqIDCol(tabIn, "FREQID");
1548   Vector<Double> times = mjdCol.getColumn();
1549
1550// Generate DataDesc table
1551 
1552   Matrix<uInt> ddIdx;
1553   SDDataDesc dDesc;
1554   generateDataDescTable (ddIdx, dDesc, nIF, in, tabIn, srcCol, fqIDCol, perFreqID);
1555
1556// Get reference Epoch to time of first row or given String
1557
1558   Unit DAY(String("d"));
1559   MEpoch::Ref epochRef(in.getTimeReference());
1560   MEpoch refEpoch;
1561   if (refTime.length()>0) {
1562      refEpoch = epochFromString(refTime, in.getTimeReference());
1563   } else {
1564      refEpoch = in.getEpoch(0);
1565   }
1566   cout << "Aligning at reference Epoch " << formatEpoch(refEpoch)
1567        << " in frame " << MFrequency::showType(freqSystem) << endl;
1568   
1569// Get Reference Position
1570
1571   MPosition refPos = in.getAntennaPosition();
1572
1573// Create FrequencyAligner Block. One FA for each possible
1574// source/freqID (perFreqID=True) or source/IF (perFreqID=False) combination
1575
1576   PtrBlock<FrequencyAligner<Float>* > a(dDesc.length());
1577   generateFrequencyAligners (a, dDesc, in, nChan, freqSystem, refPos,
1578                              refEpoch, perFreqID);
1579
1580// Generate and fill output Frequency Table.  WHen perFreqID=True, there is one output FreqID
1581// for each entry in the SDDataDesc table.  However, in perFreqID=False mode, there may be
1582// some degeneracy, so we need a little translation map
1583
1584   SDFrequencyTable freqTabOut = in.getSDFreqTable();
1585   freqTabOut.setLength(0);
1586   Vector<String> units(1);
1587   units = String("Hz");
1588   Bool linear=True;
1589//
1590   Vector<uInt> ddFQTrans(dDesc.length(),0);
1591   for (uInt i=0; i<dDesc.length(); i++) {
1592
1593// Get Aligned SC in Hz
1594
1595      SpectralCoordinate sC = a[i]->alignedSpectralCoordinate(linear);
1596      sC.setWorldAxisUnits(units);
1597
1598// Add FreqID
1599
1600      uInt idx = freqTabOut.addFrequency(sC.referencePixel()[0],
1601                                         sC.referenceValue()[0],
1602                                         sC.increment()[0]);
1603      ddFQTrans(i) = idx;                                       // output FreqID = ddFQTrans(ddIdx)
1604   }
1605
1606// Interpolation method
1607
1608   InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1609   convertInterpString(interp, methodStr);
1610
1611// New output Table
1612
1613   cout << "Create output table" << endl;
1614   SDMemTable* pTabOut = new SDMemTable(in,True);
1615   pTabOut->putSDFreqTable(freqTabOut);
1616
1617// Loop over rows in Table
1618
1619   Bool extrapolate=False;
1620   const IPosition polChanAxes(2, asap::PolAxis, asap::ChanAxis);
1621   Bool useCachedAbcissa = False;
1622   Bool first = True;
1623   Bool ok;
1624   Vector<Float> yOut;
1625   Vector<Bool> maskOut;
1626   Vector<uInt> freqID(nIF);
1627   uInt ifIdx, faIdx;
1628   Vector<Double> xIn;
1629//
1630   for (uInt iRow=0; iRow<nRows; ++iRow) {
1631      if (iRow%10==0) {
1632         cout << "Processing row " << iRow << endl;
1633      }
1634
1635// Get EPoch
1636
1637     Quantum<Double> tQ2(times[iRow],DAY);
1638     MVEpoch mv2(tQ2);
1639     MEpoch epoch(mv2, epochRef);
1640
1641// Get copy of data
1642   
1643     const MaskedArray<Float>& mArrIn(in.rowAsMaskedArray(iRow));
1644     Array<Float> values = mArrIn.getArray();
1645     Array<Bool> mask = mArrIn.getMask();
1646
1647// For each row, the Frequency abcissa will be the same regardless
1648// of polarization.  For all other axes (IF and BEAM) the abcissa
1649// will change.  So we iterate through the data by pol-chan planes
1650// to mimimize the work.  Probably won't work for multiple beams
1651// at this point.
1652
1653     ArrayIterator<Float> itValuesPlane(values, polChanAxes);
1654     ArrayIterator<Bool> itMaskPlane(mask, polChanAxes);
1655     while (!itValuesPlane.pastEnd()) {
1656
1657// Find the IF index and then the FA PtrBlock index
1658
1659        const IPosition& pos = itValuesPlane.pos();
1660        ifIdx = pos(asap::IFAxis);
1661        faIdx = ddIdx(iRow,ifIdx);
1662
1663// Generate abcissa for perIF.  Could cache this in a Matrix
1664// on a per scan basis.   Pretty expensive doing it for every row.
1665
1666        if (!perFreqID) {
1667           xIn.resize(nChan);
1668           uInt fqID = dDesc.secID(ddIdx(iRow,ifIdx));
1669           SpectralCoordinate sC = in.getSpectralCoordinate(fqID);
1670           Double w;
1671           for (uInt i=0; i<nChan; i++) {
1672              sC.toWorld(w,Double(i));
1673              xIn[i] = w;
1674           }
1675        }
1676//
1677        VectorIterator<Float> itValuesVec(itValuesPlane.array(), 1);
1678        VectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
1679
1680// Iterate through the plane by vector and align
1681
1682        first = True;
1683        useCachedAbcissa=False;
1684        while (!itValuesVec.pastEnd()) {     
1685           if (perFreqID) {
1686              ok = a[faIdx]->align (yOut, maskOut, itValuesVec.vector(),
1687                                    itMaskVec.vector(), epoch, useCachedAbcissa,
1688                                    interp, extrapolate);
1689           } else {
1690              ok = a[faIdx]->align (yOut, maskOut, xIn, itValuesVec.vector(),
1691                                    itMaskVec.vector(), epoch, useCachedAbcissa,
1692                                    interp, extrapolate);
1693           }
1694//
1695           itValuesVec.vector() = yOut;
1696           itMaskVec.vector() = maskOut;
1697//
1698           itValuesVec.next();
1699           itMaskVec.next();
1700//
1701           if (first) {
1702              useCachedAbcissa = True;
1703              first = False;
1704           }
1705        }
1706//
1707       itValuesPlane.next();
1708       itMaskPlane.next();
1709     }
1710
1711// Create SDContainer and put back
1712
1713    SDContainer sc = in.getSDContainer(iRow);
1714    putDataInSDC(sc, values, mask);
1715
1716// Set output FreqIDs
1717
1718    for (uInt i=0; i<nIF; i++) {
1719       uInt idx = ddIdx(iRow,i);               // Index into SDDataDesc table
1720       freqID(i) = ddFQTrans(idx);             // FreqID in output FQ table
1721    }
1722    sc.putFreqMap(freqID);
1723//
1724    pTabOut->putSDContainer(sc);
1725   }
1726
1727// Now we must set the base and extra frames to the
1728// input frame
1729
1730   std::vector<string> info = pTabOut->getCoordInfo();
1731   info[1] = MFrequency::showType(freqSystem);   // Conversion frame
1732   info[3] = info[1];                            // Base frame
1733   pTabOut->setCoordInfo(info);
1734
1735// Clean up PointerBlock
1736
1737   for (uInt i=0; i<a.nelements(); i++) delete a[i];
1738//
1739   return pTabOut;
1740}
1741
1742
1743void SDMath::fillSDC(SDContainer& sc,
1744                     const Array<Bool>& mask,
1745                     const Array<Float>& data,
1746                     const Array<Float>& tSys,
1747                     Int scanID, Double timeStamp,
1748                     Double interval, const String& sourceName,
1749                     const Vector<uInt>& freqID) const
1750{
1751// Data and mask
1752
1753  putDataInSDC(sc, data, mask);
1754
1755// TSys
1756
1757  sc.putTsys(tSys);
1758
1759// Time things
1760
1761  sc.timestamp = timeStamp;
1762  sc.interval = interval;
1763  sc.scanid = scanID;
1764//
1765  sc.sourcename = sourceName;
1766  sc.putFreqMap(freqID);
1767}
1768
1769void SDMath::accumulate(Double& timeSum, Double& intSum, Int& nAccum,
1770                        MaskedArray<Float>& sum, Array<Float>& sumSq,
1771                        Array<Float>& nPts, Array<Float>& tSysSum,
1772                        Array<Float>& tSysSqSum,
1773                        const Array<Float>& tSys, const Array<Float>& nInc,
1774                        const Vector<Bool>& mask, Double time, Double interval,
1775                        const Block<CountedPtr<SDMemTable> >& in,
1776                        uInt iTab, uInt iRow, uInt axis,
1777                        uInt nAxesSub, Bool useMask,
1778                        WeightType wtType) const
1779{
1780
1781// Get data
1782
1783   MaskedArray<Float> dataIn(in[iTab]->rowAsMaskedArray(iRow));
1784   Array<Float>& valuesIn = dataIn.getRWArray();           // writable reference
1785   const Array<Bool>& maskIn = dataIn.getMask();          // RO reference
1786//
1787   if (wtType==NONE) {
1788      const MaskedArray<Float> n(nInc,dataIn.getMask());
1789      nPts += n;                               // Only accumulates where mask==T
1790   } else if (wtType==TINT) {
1791
1792// We are weighting the data by integration time.
1793
1794     valuesIn *= Float(interval);
1795
1796   } else if (wtType==VAR) {
1797
1798// We are going to average the data, weighted by the noise for each pol, beam and IF.
1799// So therefore we need to iterate through by spectrum (axis 3)
1800
1801      VectorIterator<Float> itData(valuesIn, axis);
1802      ReadOnlyVectorIterator<Bool> itMask(maskIn, axis);
1803      Float fac = 1.0;
1804      IPosition pos(nAxesSub,0); 
1805//
1806      while (!itData.pastEnd()) {
1807
1808// Make MaskedArray of Vector, optionally apply OTF mask, and find scaling factor
1809
1810         if (useMask) {
1811            MaskedArray<Float> tmp(itData.vector(),mask&&itMask.vector());
1812            fac = 1.0/variance(tmp);
1813         } else {
1814            MaskedArray<Float> tmp(itData.vector(),itMask.vector());
1815            fac = 1.0/variance(tmp);
1816         }
1817
1818// Scale data
1819
1820         itData.vector() *= fac;     // Writes back into 'dataIn'
1821//
1822// Accumulate variance per if/pol/beam averaged over spectrum
1823// This method to get pos2 from itData.pos() is only valid
1824// because the spectral axis is the last one (so we can just
1825// copy the first nAXesSub positions out)
1826
1827         pos = itData.pos().getFirst(nAxesSub);
1828         sumSq(pos) += fac;
1829//
1830         itData.next();
1831         itMask.next();
1832      }
1833   } else if (wtType==TSYS || wtType==TINTSYS) {
1834
1835// We are going to average the data, weighted by 1/Tsys**2 for each pol, beam and IF.
1836// So therefore we need to iterate through by spectrum (axis 3).  Although
1837// Tsys is stored as a vector of length nChan, the values are replicated.
1838// We will take a short cut and just use the value from the first channel
1839// for now.
1840//
1841      VectorIterator<Float> itData(valuesIn, axis);
1842      ReadOnlyVectorIterator<Float> itTSys(tSys, axis);
1843      IPosition pos(nAxesSub,0); 
1844//
1845      Float fac = 1.0;
1846      if (wtType==TINTSYS) fac *= interval;
1847      while (!itData.pastEnd()) {
1848         Float t = itTSys.vector()[0];
1849         fac *= 1.0/t/t;
1850
1851// Scale data
1852
1853         itData.vector() *= fac;     // Writes back into 'dataIn'
1854//
1855// Accumulate Tsys  per if/pol/beam averaged over spectrum
1856// This method to get pos2 from itData.pos() is only valid
1857// because the spectral axis is the last one (so we can just
1858// copy the first nAXesSub positions out)
1859
1860         pos = itData.pos().getFirst(nAxesSub);
1861         tSysSqSum(pos) += fac;
1862//
1863         itData.next();
1864         itTSys.next();
1865      }
1866   }
1867
1868// Accumulate sum of (possibly scaled) data
1869
1870   sum += dataIn;
1871
1872// Accumulate Tsys, time, and interval
1873
1874   tSysSum += tSys;
1875   timeSum += time;
1876   intSum += interval;
1877   nAccum += 1;
1878}
1879
1880
1881void SDMath::normalize(MaskedArray<Float>& sum,
1882                       const Array<Float>& sumSq,
1883                       const Array<Float>& tSysSqSum,
1884                       const Array<Float>& nPts,
1885                       Double intSum,
1886                       WeightType wtType, Int axis,
1887                       Int nAxesSub) const
1888{
1889   IPosition pos2(nAxesSub,0);
1890//
1891   if (wtType==NONE) {
1892
1893// We just average by the number of points accumulated.
1894// We need to make a MA out of nPts so that no divide by
1895// zeros occur
1896
1897      MaskedArray<Float> t(nPts, (nPts>Float(0.0)));
1898      sum /= t;
1899   } else if (wtType==TINT) {
1900
1901// Average by sum of Tint
1902
1903      sum /= Float(intSum);
1904   } else if (wtType==VAR) {
1905
1906// Normalize each spectrum by sum(1/var) where the variance
1907// is worked out for each spectrum
1908
1909      Array<Float>& data = sum.getRWArray();
1910      VectorIterator<Float> itData(data, axis);
1911      while (!itData.pastEnd()) {
1912         pos2 = itData.pos().getFirst(nAxesSub);
1913         itData.vector() /= sumSq(pos2);
1914         itData.next();
1915      }
1916   } else if (wtType==TSYS || wtType==TINTSYS) {
1917   
1918// Normalize each spectrum by sum(1/Tsys**2) (TSYS) or
1919// sum(Tint/Tsys**2) (TINTSYS) where the pseudo
1920// replication over channel for Tsys has been dropped.
1921
1922      Array<Float>& data = sum.getRWArray();
1923      VectorIterator<Float> itData(data, axis);
1924      while (!itData.pastEnd()) {
1925         pos2 = itData.pos().getFirst(nAxesSub);
1926         itData.vector() /= tSysSqSum(pos2);
1927         itData.next();
1928      }
1929   }
1930}
1931
1932
1933
1934
1935void SDMath::setCursorSlice (IPosition& start, IPosition& end, Bool doAll, const SDMemTable& in) const
1936{
1937  const uInt nDim = asap::nAxes;
1938  DebugAssert(nDim==4,AipsError);
1939//
1940  start.resize(nDim);
1941  end.resize(nDim);
1942  if (doAll) {
1943     start = 0;
1944     end(0) = in.nBeam()-1;
1945     end(1) = in.nIF()-1;
1946     end(2) = in.nPol()-1;
1947     end(3) = in.nChan()-1;
1948  } else {
1949     start(0) = in.getBeam();
1950     end(0) = start(0);
1951//
1952     start(1) = in.getIF();
1953     end(1) = start(1);
1954//
1955     start(2) = in.getPol();
1956     end(2) = start(2);
1957//
1958     start(3) = 0;
1959     end(3) = in.nChan()-1;
1960   }
1961}
1962
1963
1964void SDMath::convertWeightString(WeightType& wtType, const String& weightStr,
1965                                 Bool listType) const
1966{
1967  String tStr(weightStr);
1968  tStr.upcase();
1969  String msg;
1970  if (tStr.contains(String("NONE"))) {
1971     wtType = NONE;
1972     msg = String("Weighting type selected : None");
1973  } else if (tStr.contains(String("VAR"))) {
1974     wtType = VAR;
1975     msg = String("Weighting type selected : Variance");
1976  } else if (tStr.contains(String("TINTSYS"))) {
1977       wtType = TINTSYS;
1978       msg = String("Weighting type selected : Tint&Tsys");
1979  } else if (tStr.contains(String("TINT"))) {
1980     wtType = TINT;
1981     msg = String("Weighting type selected : Tint");
1982  } else if (tStr.contains(String("TSYS"))) {
1983     wtType = TSYS;
1984     msg = String("Weighting type selected : Tsys");
1985  } else {
1986     msg = String("Weighting type selected : None");
1987     throw(AipsError("Unrecognized weighting type"));
1988  }
1989//
1990  if (listType) cout << msg << endl;
1991}
1992
1993
1994void SDMath::convertInterpString(casa::InterpolateArray1D<Double,Float>::InterpolationMethod& type, 
1995                                 const casa::String& interp) const
1996{
1997  String tStr(interp);
1998  tStr.upcase();
1999  if (tStr.contains(String("NEAR"))) {
2000     type = InterpolateArray1D<Double,Float>::nearestNeighbour;
2001  } else if (tStr.contains(String("LIN"))) {
2002     type = InterpolateArray1D<Double,Float>::linear;
2003  } else if (tStr.contains(String("CUB"))) {
2004     type = InterpolateArray1D<Double,Float>::cubic;
2005  } else if (tStr.contains(String("SPL"))) {
2006     type = InterpolateArray1D<Double,Float>::spline;
2007  } else {
2008    throw(AipsError("Unrecognized interpolation type"));
2009  }
2010}
2011
2012void SDMath::putDataInSDC(SDContainer& sc, const Array<Float>& data,
2013                          const Array<Bool>& mask) const
2014{
2015    sc.putSpectrum(data);
2016//
2017    Array<uChar> outflags(data.shape());
2018    convertArray(outflags,!mask);
2019    sc.putFlags(outflags);
2020}
2021
2022Table SDMath::readAsciiFile (const String& fileName) const
2023{
2024   String formatString;
2025   Table tbl = readAsciiTable (formatString, Table::Memory, fileName, "", "", False);
2026   return tbl;
2027}
2028
2029
2030
2031void SDMath::scaleFromAsciiTable(SDMemTable* pTabOut,
2032                                 const SDMemTable& in, const String& fileName,
2033                                 const String& col0, const String& col1,
2034                                 const String& methodStr, Bool doAll,
2035                                 const Vector<Float>& xOut, Bool doTSys) const
2036{
2037
2038// Read gain-elevation ascii file data into a Table.
2039
2040  Table geTable = readAsciiFile (fileName);
2041//
2042  scaleFromTable (pTabOut, in, geTable, col0, col1, methodStr, doAll, xOut, doTSys);
2043}
2044
2045void SDMath::scaleFromTable(SDMemTable* pTabOut, const SDMemTable& in,
2046                            const Table& tTable, const String& col0,
2047                            const String& col1,
2048                            const String& methodStr, Bool doAll,
2049                            const Vector<Float>& xOut, Bool doTsys) const
2050{
2051
2052// Get data from Table
2053
2054  ROScalarColumn<Float> geElCol(tTable, col0);
2055  ROScalarColumn<Float> geFacCol(tTable, col1);
2056  Vector<Float> xIn = geElCol.getColumn();
2057  Vector<Float> yIn = geFacCol.getColumn();
2058  Vector<Bool> maskIn(xIn.nelements(),True);
2059
2060// Interpolate (and extrapolate) with desired method
2061
2062   InterpolateArray1D<Double,Float>::InterpolationMethod method;
2063   convertInterpString(method, methodStr);
2064   Int intMethod(method);
2065//
2066   Vector<Float> yOut;
2067   Vector<Bool> maskOut;
2068   InterpolateArray1D<Float,Float>::interpolate(yOut, maskOut, xOut,
2069                                                xIn, yIn, maskIn, intMethod,
2070                                                True, True);
2071// Apply
2072
2073   scaleByVector(pTabOut, in, doAll, Float(1.0)/yOut, doTsys);
2074}
2075
2076
2077void SDMath::scaleByVector(SDMemTable* pTabOut, const SDMemTable& in,
2078                           Bool doAll, const Vector<Float>& factor,
2079                           Bool doTSys) const
2080{
2081
2082// Set up data slice
2083
2084  IPosition start, end;
2085  setCursorSlice (start, end, doAll, in);
2086
2087// Get Tsys column
2088
2089  const Table& tIn = in.table();
2090  ArrayColumn<Float> tSysCol(tIn, "TSYS");
2091  Array<Float> tSys;
2092
2093// Loop over rows and apply correction factor
2094 
2095  const uInt axis = asap::ChanAxis;
2096  for (uInt i=0; i < in.nRow(); ++i) {
2097
2098// Get data
2099
2100     MaskedArray<Float> dataIn(in.rowAsMaskedArray(i));
2101     MaskedArray<Float> dataIn2 = dataIn(start,end);  // reference to dataIn
2102//
2103     if (doTSys) {
2104        tSysCol.get(i, tSys);
2105        Array<Float> tSys2 = tSys(start,end) * factor[i];
2106        tSysCol.put(i, tSys);
2107     }
2108
2109// Apply factor
2110
2111     dataIn2 *= factor[i];
2112
2113// Write out
2114
2115     SDContainer sc = in.getSDContainer(i);
2116     putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
2117//
2118     pTabOut->putSDContainer(sc);
2119  }
2120}
2121
2122
2123
2124
2125void SDMath::generateDataDescTable (Matrix<uInt>& ddIdx,
2126                                    SDDataDesc& dDesc,
2127                                    uInt nIF,
2128                                    const SDMemTable& in,
2129                                    const Table& tabIn,
2130                                    const ROScalarColumn<String>& srcCol,
2131                                    const ROArrayColumn<uInt>& fqIDCol,
2132                                    Bool perFreqID) const
2133{
2134   const uInt nRows = tabIn.nrow();
2135   ddIdx.resize(nRows,nIF);
2136//
2137   String srcName;
2138   Vector<uInt> freqIDs;
2139   for (uInt iRow=0; iRow<nRows; iRow++) {
2140      srcCol.get(iRow, srcName);
2141      fqIDCol.get(iRow, freqIDs);
2142      const MDirection& dir = in.getDirection(iRow);
2143//
2144      if (perFreqID) {
2145
2146// One entry per source/freqID pair
2147
2148         for (uInt iIF=0; iIF<nIF; iIF++) {
2149            ddIdx(iRow,iIF) = dDesc.addEntry(srcName, freqIDs[iIF], dir, 0);
2150         }
2151      } else {
2152
2153// One entry per source/IF pair.  Hang onto the FreqID as well
2154
2155         for (uInt iIF=0; iIF<nIF; iIF++) {
2156            ddIdx(iRow,iIF) = dDesc.addEntry(srcName, iIF, dir, freqIDs[iIF]);
2157         }
2158      }
2159   }
2160}
2161
2162
2163
2164
2165
2166MEpoch SDMath::epochFromString (const String& str, MEpoch::Types timeRef) const
2167{
2168   Quantum<Double> qt;
2169   if (MVTime::read(qt,str)) {
2170      MVEpoch mv(qt);
2171      MEpoch me(mv, timeRef);
2172      return me;
2173   } else {
2174      throw(AipsError("Invalid format for Epoch string"));
2175   }
2176}
2177
2178
2179String SDMath::formatEpoch(const MEpoch& epoch)  const
2180{
2181   MVTime mvt(epoch.getValue());
2182   return mvt.string(MVTime::YMD) + String(" (") + epoch.getRefString() + String(")");
2183}
2184
2185
2186
2187void SDMath::generateFrequencyAligners (PtrBlock<FrequencyAligner<Float>* >& a,
2188                                        const SDDataDesc& dDesc,
2189                                        const SDMemTable& in, uInt nChan,
2190                                        MFrequency::Types system,
2191                                        const MPosition& refPos,
2192                                        const MEpoch& refEpoch,
2193                                        Bool perFreqID) const
2194{
2195   for (uInt i=0; i<dDesc.length(); i++) {
2196      uInt ID = dDesc.ID(i);
2197      uInt secID = dDesc.secID(i);
2198      const MDirection& refDir = dDesc.secDir(i);
2199//
2200      if (perFreqID) {
2201
2202// One aligner per source/FreqID pair. 
2203
2204         SpectralCoordinate sC = in.getSpectralCoordinate(ID);
2205         a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
2206      } else {
2207
2208// One aligner per source/IF pair.  But we still need the FreqID to
2209// get the right SC.  Hence the messing about with the secondary ID
2210
2211         SpectralCoordinate sC = in.getSpectralCoordinate(secID);
2212         a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
2213      }
2214   }
2215}
2216
2217Vector<uInt> SDMath::getRowRange (const SDMemTable& in) const
2218{
2219   Vector<uInt> range(2);
2220   range[0] = 0;
2221   range[1] = in.nRow()-1;
2222   return range;
2223}
2224   
2225
2226Bool SDMath::rowInRange (uInt i, const Vector<uInt>& range) const
2227{
2228   return (i>=range[0] && i<=range[1]);
2229}
Note: See TracBrowser for help on using the repository browser.