source: trunk/src/SDMath.cc @ 448

Last change on this file since 448 was 448, checked in by kil064, 19 years ago

track change to SDmemTable::rowAsMaskedArray interface

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 52.1 KB
RevLine 
[2]1//#---------------------------------------------------------------------------
2//# SDMath.cc: A collection of single dish mathematical operations
3//#---------------------------------------------------------------------------
4//# Copyright (C) 2004
[125]5//# ATNF
[2]6//#
7//# This program is free software; you can redistribute it and/or modify it
8//# under the terms of the GNU General Public License as published by the Free
9//# Software Foundation; either version 2 of the License, or (at your option)
10//# any later version.
11//#
12//# This program is distributed in the hope that it will be useful, but
13//# WITHOUT ANY WARRANTY; without even the implied warranty of
14//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
15//# Public License for more details.
16//#
17//# You should have received a copy of the GNU General Public License along
18//# with this program; if not, write to the Free Software Foundation, Inc.,
19//# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
20//#
21//# Correspondence concerning this software should be addressed as follows:
22//#        Internet email: Malte.Marquarding@csiro.au
23//#        Postal address: Malte Marquarding,
24//#                        Australia Telescope National Facility,
25//#                        P.O. Box 76,
26//#                        Epping, NSW, 2121,
27//#                        AUSTRALIA
28//#
29//# $Id:
30//#---------------------------------------------------------------------------
[38]31#include <vector>
32
[81]33#include <casa/aips.h>
[330]34#include <casa/iostream.h>
35#include <casa/iomanip.h>
[81]36#include <casa/BasicSL/String.h>
37#include <casa/Arrays/IPosition.h>
38#include <casa/Arrays/Array.h>
[130]39#include <casa/Arrays/ArrayIter.h>
40#include <casa/Arrays/VectorIter.h>
[81]41#include <casa/Arrays/ArrayMath.h>
42#include <casa/Arrays/ArrayLogical.h>
43#include <casa/Arrays/MaskedArray.h>
44#include <casa/Arrays/MaskArrMath.h>
45#include <casa/Arrays/MaskArrLogi.h>
[330]46#include <casa/Arrays/Matrix.h>
[234]47#include <casa/BasicMath/Math.h>
[221]48#include <casa/Containers/Block.h>
[262]49#include <casa/Exceptions.h>
50#include <casa/Quanta/Quantum.h>
51#include <casa/Quanta/Unit.h>
52#include <casa/Quanta/MVEpoch.h>
[272]53#include <casa/Quanta/MVTime.h>
[177]54#include <casa/Utilities/Assert.h>
[2]55
[262]56#include <coordinates/Coordinates/SpectralCoordinate.h>
57#include <coordinates/Coordinates/CoordinateSystem.h>
58#include <coordinates/Coordinates/CoordinateUtil.h>
[309]59#include <coordinates/Coordinates/FrequencyAligner.h>
[262]60
61#include <lattices/Lattices/LatticeUtilities.h>
62#include <lattices/Lattices/RebinLattice.h>
63
64#include <measures/Measures/MEpoch.h>
65#include <measures/Measures/MDirection.h>
66#include <measures/Measures/MPosition.h>
67
[177]68#include <scimath/Mathematics/VectorKernel.h>
69#include <scimath/Mathematics/Convolver.h>
[227]70#include <scimath/Mathematics/InterpolateArray1D.h>
[234]71#include <scimath/Functionals/Polynomial.h>
[177]72
[81]73#include <tables/Tables/Table.h>
74#include <tables/Tables/ScalarColumn.h>
75#include <tables/Tables/ArrayColumn.h>
[227]76#include <tables/Tables/ReadAsciiTable.h>
[2]77
[38]78#include "MathUtils.h"
[232]79#include "SDDefs.h"
[354]80#include "SDAttr.h"
[2]81#include "SDContainer.h"
82#include "SDMemTable.h"
83
84#include "SDMath.h"
85
[125]86using namespace casa;
[83]87using namespace asap;
[2]88
[170]89
90SDMath::SDMath()
91{;}
92
[185]93SDMath::SDMath(const SDMath& other)
[170]94{
95
96// No state
97
98}
99
100SDMath& SDMath::operator=(const SDMath& other)
101{
102  if (this != &other) {
103// No state
104  }
105  return *this;
106}
107
[183]108SDMath::~SDMath()
109{;}
[170]110
[183]111
[262]112
[397]113SDMemTable* SDMath::frequencyAlignment (const SDMemTable& in, const String& refTime,
114                                         const String& method, Bool perFreqID) const
[262]115{
[309]116// Get frame info from Table
[262]117
118   std::vector<std::string> info = in.getCoordInfo();
[294]119
[309]120// Parse frequency system
[294]121
[309]122   String systemStr(info[1]);
123   String baseSystemStr(info[3]);
124   if (baseSystemStr==systemStr) {
125      throw(AipsError("You have not set a frequency frame different from the initial - use function set_freqframe"));
[262]126   }
[309]127//
128   MFrequency::Types freqSystem;
129   MFrequency::getType(freqSystem, systemStr);
[294]130
[267]131// Do it
[262]132
[397]133   return frequencyAlign (in, freqSystem, refTime, method, perFreqID);
[267]134}
[262]135
136
137
[185]138CountedPtr<SDMemTable> SDMath::average(const Block<CountedPtr<SDMemTable> >& in,
139                                       const Vector<Bool>& mask, Bool scanAv,
[309]140                                       const String& weightStr, Bool alignFreq) const
[130]141//
[144]142// Weighted averaging of spectra from one or more Tables.
[130]143//
144{
[2]145
[163]146// Convert weight type
147 
148  WeightType wtType = NONE;
[185]149  convertWeightString(wtType, weightStr);
[163]150
[144]151// Create output Table by cloning from the first table
[2]152
[144]153  SDMemTable* pTabOut = new SDMemTable(*in[0],True);
[130]154
[144]155// Setup
[130]156
[144]157  IPosition shp = in[0]->rowAsMaskedArray(0).shape();      // Must not change
158  Array<Float> arr(shp);
159  Array<Bool> barr(shp);
[221]160  const Bool useMask = (mask.nelements() == shp(asap::ChanAxis));
[130]161
[144]162// Columns from Tables
[130]163
[144]164  ROArrayColumn<Float> tSysCol;
165  ROScalarColumn<Double> mjdCol;
166  ROScalarColumn<String> srcNameCol;
167  ROScalarColumn<Double> intCol;
168  ROArrayColumn<uInt> fqIDCol;
[410]169  ROScalarColumn<Int> scanIDCol;
[130]170
[144]171// Create accumulation MaskedArray. We accumulate for each channel,if,pol,beam
172// Note that the mask of the accumulation array will ALWAYS remain ALL True.
173// The MA is only used so that when data which is masked Bad is added to it,
174// that data does not contribute.
175
176  Array<Float> zero(shp);
177  zero=0.0;
178  Array<Bool> good(shp);
179  good = True;
180  MaskedArray<Float> sum(zero,good);
181
182// Counter arrays
183
184  Array<Float> nPts(shp);             // Number of points
185  nPts = 0.0;
186  Array<Float> nInc(shp);             // Increment
187  nInc = 1.0;
188
189// Create accumulation Array for variance. We accumulate for
190// each if,pol,beam, but average over channel.  So we need
191// a shape with one less axis dropping channels.
192
193  const uInt nAxesSub = shp.nelements() - 1;
194  IPosition shp2(nAxesSub);
195  for (uInt i=0,j=0; i<(nAxesSub+1); i++) {
[221]196     if (i!=asap::ChanAxis) {
[144]197       shp2(j) = shp(i);
198       j++;
199     }
[2]200  }
[144]201  Array<Float> sumSq(shp2);
202  sumSq = 0.0;
203  IPosition pos2(nAxesSub,0);                        // For indexing
[130]204
[144]205// Time-related accumulators
[130]206
[144]207  Double time;
208  Double timeSum = 0.0;
209  Double intSum = 0.0;
210  Double interval = 0.0;
[130]211
[144]212// To get the right shape for the Tsys accumulator we need to
213// access a column from the first table.  The shape of this
214// array must not change
[130]215
[144]216  Array<Float> tSysSum;
217  {
218    const Table& tabIn = in[0]->table();
219    tSysCol.attach(tabIn,"TSYS");
220    tSysSum.resize(tSysCol.shape(0));
221  }
222  tSysSum =0.0;
223  Array<Float> tSys;
224
225// Scan and row tracking
226
227  Int oldScanID = 0;
228  Int outScanID = 0;
229  Int scanID = 0;
230  Int rowStart = 0;
231  Int nAccum = 0;
232  Int tableStart = 0;
233
234// Source and FreqID
235
236  String sourceName, oldSourceName, sourceNameStart;
237  Vector<uInt> freqID, freqIDStart, oldFreqID;
238
239// Loop over tables
240
241  Float fac = 1.0;
242  const uInt nTables = in.nelements();
243  for (uInt iTab=0; iTab<nTables; iTab++) {
244
[309]245// Should check that the frequency tables don't change if doing FreqAlignment
[221]246
[144]247// Attach columns to Table
248
249     const Table& tabIn = in[iTab]->table();
250     tSysCol.attach(tabIn, "TSYS");
251     mjdCol.attach(tabIn, "TIME");
252     srcNameCol.attach(tabIn, "SRCNAME");
253     intCol.attach(tabIn, "INTERVAL");
254     fqIDCol.attach(tabIn, "FREQID");
[410]255     scanIDCol.attach(tabIn, "SCANID");
[144]256
[410]257// Find list of start/end rows for each scan
258
[144]259// Loop over rows in Table
260
261     const uInt nRows = in[iTab]->nRow();
262     for (uInt iRow=0; iRow<nRows; iRow++) {
263
264// Check conformance
265
266        IPosition shp2 = in[iTab]->rowAsMaskedArray(iRow).shape();
267        if (!shp.isEqual(shp2)) {
268           throw (AipsError("Shapes for all rows must be the same"));
269        }
270
271// If we are not doing scan averages, make checks for source and
272// frequency setup and warn if averaging across them
273
[410]274        scanIDCol.getScalar(iRow, scanID);
[144]275
276// Get quantities from columns
277
278        srcNameCol.getScalar(iRow, sourceName);
279        mjdCol.get(iRow, time);
280        tSysCol.get(iRow, tSys);
281        intCol.get(iRow, interval);
282        fqIDCol.get(iRow, freqID);
283
284// Initialize first source and freqID
285
286        if (iRow==0 && iTab==0) {
287          sourceNameStart = sourceName;
288          freqIDStart = freqID;
289        }
290
291// If we are doing scan averages, see if we are at the end of an
292// accumulation period (scan).  We must check soutce names too,
293// since we might have two tables with one scan each but different
294// source names; we shouldn't average different sources together
295
296        if (scanAv && ( (scanID != oldScanID)  ||
297                        (iRow==0 && iTab>0 && sourceName!=oldSourceName))) {
298
299// Normalize data in 'sum' accumulation array according to weighting scheme
300
[221]301           normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);
[144]302
[410]303// Get ScanContainer for the first row of this averaged Scan
304
305           SDContainer scOut = in[iTab]->getSDContainer(rowStart);
306
[144]307// Fill scan container. The source and freqID come from the
308// first row of the first table that went into this average (
309// should be the same for all rows in the scan average)
310
311           Float nR(nAccum);
[410]312           fillSDC(scOut, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
[144]313                    timeSum/nR, intSum, sourceNameStart, freqIDStart);
314
315// Write container out to Table
316
[410]317           pTabOut->putSDContainer(scOut);
[144]318
319// Reset accumulators
320
321           sum = 0.0;
322           sumSq = 0.0;
323           nAccum = 0;
324//
325           tSysSum =0.0;
326           timeSum = 0.0;
327           intSum = 0.0;
[221]328           nPts = 0.0;
[144]329
330// Increment
331
332           rowStart = iRow;              // First row for next accumulation
333           tableStart = iTab;            // First table for next accumulation
334           sourceNameStart = sourceName; // First source name for next accumulation
335           freqIDStart = freqID;         // First FreqID for next accumulation
336//
337           oldScanID = scanID;
338           outScanID += 1;               // Scan ID for next accumulation period
[227]339        }
[144]340
[146]341// Accumulate
[144]342
[185]343        accumulate(timeSum, intSum, nAccum, sum, sumSq, nPts, tSysSum,
[221]344                    tSys, nInc, mask, time, interval, in, iTab, iRow, asap::ChanAxis,
[146]345                    nAxesSub, useMask, wtType);
[144]346//
347       oldSourceName = sourceName;
348       oldFreqID = freqID;
[184]349     }
[144]350  }
351
352// OK at this point we have accumulation data which is either
353//   - accumulated from all tables into one row
354// or
355//   - accumulated from the last scan average
356//
357// Normalize data in 'sum' accumulation array according to weighting scheme
[410]358
[221]359  normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);
[144]360
361// Create and fill container.  The container we clone will be from
362// the last Table and the first row that went into the current
363// accumulation.  It probably doesn't matter that much really...
364
365  Float nR(nAccum);
[410]366  SDContainer scOut = in[tableStart]->getSDContainer(rowStart);
367  fillSDC(scOut, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
[144]368           timeSum/nR, intSum, sourceNameStart, freqIDStart);
[410]369  pTabOut->putSDContainer(scOut);
[304]370  pTabOut->resetCursor();
[144]371//
372  return CountedPtr<SDMemTable>(pTabOut);
[2]373}
[9]374
[144]375
376
[248]377CountedPtr<SDMemTable> SDMath::binaryOperate (const CountedPtr<SDMemTable>& left,
378                                              const CountedPtr<SDMemTable>& right,
[294]379                                              const String& op, Bool preserve,
380                                              Bool doTSys)  const
[185]381{
[85]382
[248]383// Check operator
[130]384
[234]385  String op2(op);
386  op2.upcase();
387  uInt what = 0;
388  if (op2=="ADD") {
389     what = 0;
390  } else if (op2=="SUB") {
391     what = 1;
392  } else if (op2=="MUL") {
393     what = 2;
394  } else if (op2=="DIV") {
395     what = 3;
[248]396  } else if (op2=="QUOTIENT") {
397     what = 4;
[294]398     doTSys = True;
[234]399  } else {
[248]400    throw( AipsError("Unrecognized operation"));
[234]401  }
402
403// Check rows
404
[248]405  const uInt nRowLeft = left->nRow();
406  const uInt nRowRight = right->nRow();
407  Bool ok = (nRowRight==1&&nRowLeft>0) ||
408            (nRowRight>=1&&nRowLeft==nRowRight);
409  if (!ok) {
410     throw (AipsError("The right Scan Table can have one row or the same number of rows as the left Scan Table"));
[234]411  }
412
[248]413// Input Tables
[234]414
415  const Table& tLeft = left->table();
416  const Table& tRight = right->table();
[248]417
418// TSys columns
419
[294]420  ROArrayColumn<Float> tSysLeftCol, tSysRightCol;
421  if (doTSys) {
422     tSysLeftCol.attach(tLeft, "TSYS");
423     tSysRightCol.attach(tRight, "TSYS");
424  }
[234]425
[248]426// First row for right
[234]427
[248]428  Array<Float> tSysLeftArr, tSysRightArr;
[294]429  if (doTSys) tSysRightCol.get(0, tSysRightArr);
[248]430  MaskedArray<Float>* pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(0));
431  IPosition shpRight = pMRight->shape();
432
433// Output Table cloned from left
434
[234]435  SDMemTable* pTabOut = new SDMemTable(*left, True);
436
437// Loop over rows
438
[248]439  for (uInt i=0; i<nRowLeft; i++) {
[234]440
441// Get data
[248]442
[234]443     MaskedArray<Float> mLeft(left->rowAsMaskedArray(i));
[248]444     IPosition shpLeft = mLeft.shape();
[294]445     if (doTSys) tSysLeftCol.get(i, tSysLeftArr);
[234]446//
[248]447     if (nRowRight>1) {
448        delete pMRight;
449        pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(i));
450        shpRight = pMRight->shape();
[294]451        if (doTSys) tSysRightCol.get(i, tSysRightArr);
[234]452     }
[248]453//
454     if (!shpRight.isEqual(shpLeft)) {
455        throw(AipsError("left and right scan tables are not conformant"));
456     }
[294]457     if (doTSys) {
458        if (!tSysRightArr.shape().isEqual(tSysRightArr.shape())) {
459           throw(AipsError("left and right Tsys data are not conformant"));
460        }
461        if (!shpRight.isEqual(tSysRightArr.shape())) {
462           throw(AipsError("left and right scan tables are not conformant"));
463        }
[248]464     }
[234]465
466// Make container
467
468     SDContainer sc = left->getSDContainer(i);
469
470// Operate on data and TSys
471
472     if (what==0) {                               
[248]473        MaskedArray<Float> tmp = mLeft + *pMRight;
[234]474        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[294]475        if (doTSys) sc.putTsys(tSysLeftArr+tSysRightArr);
[234]476     } else if (what==1) {
[248]477        MaskedArray<Float> tmp = mLeft - *pMRight;
[234]478        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[294]479        if (doTSys) sc.putTsys(tSysLeftArr-tSysRightArr);
[234]480     } else if (what==2) {
[248]481        MaskedArray<Float> tmp = mLeft * *pMRight;
[234]482        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[294]483        if (doTSys) sc.putTsys(tSysLeftArr*tSysRightArr);
[234]484     } else if (what==3) {
[248]485        MaskedArray<Float> tmp = mLeft / *pMRight;
[234]486        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[294]487        if (doTSys) sc.putTsys(tSysLeftArr/tSysRightArr);
[248]488     } else if (what==4) {
489        if (preserve) {     
490           MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) - tSysRightArr;
491           putDataInSDC(sc, tmp.getArray(), tmp.getMask());
492        } else {
493           MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) - tSysLeftArr;
494           putDataInSDC(sc, tmp.getArray(), tmp.getMask());
495        }
496        sc.putTsys(tSysRightArr);
[234]497     }
498
499// Put new row in output Table
500
[171]501     pTabOut->putSDContainer(sc);
[130]502  }
[248]503  if (pMRight) delete pMRight;
[304]504  pTabOut->resetCursor();
[130]505//
[171]506  return CountedPtr<SDMemTable>(pTabOut);
[9]507}
[48]508
[146]509
510
[185]511std::vector<float> SDMath::statistic(const CountedPtr<SDMemTable>& in,
[234]512                                     const Vector<Bool>& mask,
513                                     const String& which, Int row) const
[130]514//
515// Perhaps iteration over pol/beam/if should be in here
516// and inside the nrow iteration ?
517//
518{
519  const uInt nRow = in->nRow();
520
521// Specify cursor location
522
[152]523  IPosition start, end;
[434]524  Bool doAll = False;
525  setCursorSlice (start, end, doAll, *in);
[130]526
527// Loop over rows
528
[234]529  const uInt nEl = mask.nelements();
530  uInt iStart = 0;
531  uInt iEnd = in->nRow()-1;
532// 
533  if (row>=0) {
534     iStart = row;
535     iEnd = row;
536  }
537//
538  std::vector<float> result(iEnd-iStart+1);
539  for (uInt ii=iStart; ii <= iEnd; ++ii) {
[130]540
541// Get row and deconstruct
542
[434]543     MaskedArray<Float> dataIn = (in->rowAsMaskedArray(ii))(start,end);
544     Array<Float> v = dataIn.getArray().nonDegenerate();
545     Array<Bool>  m = dataIn.getMask().nonDegenerate();
[130]546
547// Access desired piece of data
548
[434]549//     Array<Float> v((arr(start,end)).nonDegenerate());
550//     Array<Bool> m((barr(start,end)).nonDegenerate());
[130]551
552// Apply OTF mask
553
554     MaskedArray<Float> tmp;
555     if (m.nelements()==nEl) {
[234]556       tmp.setData(v,m&&mask);
[130]557     } else {
558       tmp.setData(v,m);
559     }
560
561// Get statistic
562
[234]563     result[ii-iStart] = mathutil::statistics(which, tmp);
[130]564  }
565//
566  return result;
567}
568
[146]569
[234]570SDMemTable* SDMath::bin(const SDMemTable& in, Int width) const
[144]571{
[169]572  SDHeader sh = in.getSDHeader();
573  SDMemTable* pTabOut = new SDMemTable(in, True);
[163]574
[169]575// Bin up SpectralCoordinates
[163]576
[169]577  IPosition factors(1);
578  factors(0) = width;
579  for (uInt j=0; j<in.nCoordinates(); ++j) {
580    CoordinateSystem cSys;
[288]581    cSys.addCoordinate(in.getSpectralCoordinate(j));
[169]582    CoordinateSystem cSysBin =
[185]583      CoordinateUtil::makeBinnedCoordinateSystem(factors, cSys, False);
[169]584//
585    SpectralCoordinate sCBin = cSysBin.spectralCoordinate(0);
586    pTabOut->setCoordinate(sCBin, j);
587  }
[163]588
[169]589// Use RebinLattice to find shape
[130]590
[169]591  IPosition shapeIn(1,sh.nchan);
[185]592  IPosition shapeOut = RebinLattice<Float>::rebinShape(shapeIn, factors);
[169]593  sh.nchan = shapeOut(0);
594  pTabOut->putSDHeader(sh);
[144]595
[169]596// Loop over rows and bin along channel axis
597 
598  for (uInt i=0; i < in.nRow(); ++i) {
599    SDContainer sc = in.getSDContainer(i);
[144]600//
[169]601    Array<Float> tSys(sc.getTsys());                           // Get it out before sc changes shape
[144]602
[169]603// Bin up spectrum
[144]604
[169]605    MaskedArray<Float> marr(in.rowAsMaskedArray(i));
606    MaskedArray<Float> marrout;
[221]607    LatticeUtilities::bin(marrout, marr, asap::ChanAxis, width);
[144]608
[169]609// Put back the binned data and flags
[144]610
[169]611    IPosition ip2 = marrout.shape();
612    sc.resize(ip2);
[146]613//
[185]614    putDataInSDC(sc, marrout.getArray(), marrout.getMask());
[146]615
[169]616// Bin up Tsys. 
[146]617
[169]618    Array<Bool> allGood(tSys.shape(),True);
619    MaskedArray<Float> tSysIn(tSys, allGood, True);
[146]620//
[169]621    MaskedArray<Float> tSysOut;   
[221]622    LatticeUtilities::bin(tSysOut, tSysIn, asap::ChanAxis, width);
[169]623    sc.putTsys(tSysOut.getArray());
[146]624//
[169]625    pTabOut->putSDContainer(sc);
626  }
627  return pTabOut;
[146]628}
629
[299]630SDMemTable* SDMath::resample (const SDMemTable& in, const String& methodStr,
631                              Float width) const
632//
633// Should add the possibility of width being specified in km/s. This means
634// that for each freqID (SpectralCoordinate) we will need to convert to an
635// average channel width (say at the reference pixel).  Then we would need 
636// to be careful to make sure each spectrum (of different freqID)
637// is the same length.
638//
639{
640   Bool doVel = False;
[309]641   if (doVel) {
642      for (uInt j=0; j<in.nCoordinates(); ++j) {
643         SpectralCoordinate sC = in.getSpectralCoordinate(j);
644      }
645   }
[299]646
647// Interpolation method
648
[317]649  InterpolateArray1D<Double,Float>::InterpolationMethod interp;
650  convertInterpString(interp, methodStr);
651  Int interpMethod(interp);
[299]652
653// Make output table
654
655  SDMemTable* pTabOut = new SDMemTable(in, True);
656
657// Resample SpectralCoordinates (one per freqID)
658
659  const uInt nCoord = in.nCoordinates();
660  Vector<Float> offset(1,0.0);
661  Vector<Float> factors(1,1.0/width);
662  Vector<Int> newShape;
663  for (uInt j=0; j<in.nCoordinates(); ++j) {
664    CoordinateSystem cSys;
665    cSys.addCoordinate(in.getSpectralCoordinate(j));
666    CoordinateSystem cSys2 = cSys.subImage(offset, factors, newShape);
667    SpectralCoordinate sC = cSys2.spectralCoordinate(0);
668//
669    pTabOut->setCoordinate(sC, j);
670  }
671
672// Get header
673
674  SDHeader sh = in.getSDHeader();
675
676// Generate resampling vectors
677
678  const uInt nChanIn = sh.nchan;
679  Vector<Float> xIn(nChanIn);
680  indgen(xIn);
681//
682  Int fac =  Int(nChanIn/width);
683  Vector<Float> xOut(fac+10);          // 10 to be safe - resize later
684  uInt i = 0;
685  Float x = 0.0;
686  Bool more = True;
687  while (more) {
688    xOut(i) = x;
689//
690    i++;
691    x += width;
692    if (x>nChanIn-1) more = False;
693  }
694  const uInt nChanOut = i;
695  xOut.resize(nChanOut,True);
696//
697  IPosition shapeIn(in.rowAsMaskedArray(0).shape());
698  sh.nchan = nChanOut;
699  pTabOut->putSDHeader(sh);
700
701// Loop over rows and resample along channel axis
702
703  Array<Float> valuesOut;
704  Array<Bool> maskOut; 
705  Array<Float> tSysOut;
706  Array<Bool> tSysMaskIn(shapeIn,True);
707  Array<Bool> tSysMaskOut;
708  for (uInt i=0; i < in.nRow(); ++i) {
709
710// Get container
711
712     SDContainer sc = in.getSDContainer(i);
713
714// Get data and Tsys
715   
716     const Array<Float>& tSysIn = sc.getTsys();
717     const MaskedArray<Float>& dataIn(in.rowAsMaskedArray(i));
718     Array<Float> valuesIn = dataIn.getArray();
719     Array<Bool> maskIn = dataIn.getMask();
720
721// Interpolate data
722
723     InterpolateArray1D<Float,Float>::interpolate(valuesOut, maskOut, xOut,
724                                                  xIn, valuesIn, maskIn,
725                                                  interpMethod, True, True);
726     sc.resize(valuesOut.shape());
727     putDataInSDC(sc, valuesOut, maskOut);
728
729// Interpolate TSys
730
731     InterpolateArray1D<Float,Float>::interpolate(tSysOut, tSysMaskOut, xOut,
732                                                  xIn, tSysIn, tSysMaskIn,
733                                                  interpMethod, True, True);
734    sc.putTsys(tSysOut);
735
736// Put container in output
737
738    pTabOut->putSDContainer(sc);
739  }
740//
741  return pTabOut;
742}
743
[248]744SDMemTable* SDMath::unaryOperate(const SDMemTable& in, Float val, Bool doAll,
[294]745                                 uInt what, Bool doTSys) const
[152]746//
747// what = 0   Multiply
748//        1   Add
[146]749{
[152]750   SDMemTable* pOut = new SDMemTable(in,False);
751   const Table& tOut = pOut->table();
[294]752   ArrayColumn<Float> specCol(tOut,"SPECTRA"); 
753   ArrayColumn<Float> tSysCol(tOut,"TSYS"); 
754   Array<Float> tSysArr;
[434]755
756// Get data slice bounds
757
758   IPosition start, end;
759   setCursorSlice (start, end, doAll, in);
[146]760//
[434]761   for (uInt i=0; i<tOut.nrow(); i++) {
[294]762
763// Modify data
764
[434]765      MaskedArray<Float> dataIn(pOut->rowAsMaskedArray(i));
766      MaskedArray<Float> dataIn2 = dataIn(start,end);    // Reference
767      if (what==0) {
768         dataIn2 *= val;
769      } else if (what==1) {
770         dataIn2 += val;
771      }
772      specCol.put(i, dataIn.getArray());
[294]773
774// Modify Tsys
775
[434]776      if (doTSys) {
777         tSysCol.get(i, tSysArr);
778         Array<Float> tSysArr2 = tSysArr(start,end);     // Reference
[152]779         if (what==0) {
[434]780            tSysArr2 *= val;
[152]781         } else if (what==1) {
[434]782            tSysArr2 += val;
[152]783         }
[434]784         tSysCol.put(i, tSysArr);
[152]785      }
786   }
787//
[146]788   return pOut;
789}
790
791
[152]792
[315]793SDMemTable* SDMath::averagePol(const SDMemTable& in, const Vector<Bool>& mask,
794                               const String& weightStr) const
[152]795//
[165]796// Average all polarizations together, weighted by variance
797//
798{
[315]799   WeightType wtType = NONE;
800   convertWeightString(wtType, weightStr);
[165]801
802   const uInt nRows = in.nRow();
803
804// Create output Table and reshape number of polarizations
805
806  Bool clear=True;
807  SDMemTable* pTabOut = new SDMemTable(in, clear);
808  SDHeader header = pTabOut->getSDHeader();
809  header.npol = 1;
810  pTabOut->putSDHeader(header);
811
812// Shape of input and output data
813
[448]814  const IPosition& shapeIn = in.rowAsMaskedArray(0).shape();
[165]815  IPosition shapeOut(shapeIn);
[262]816  shapeOut(asap::PolAxis) = 1;                          // Average all polarizations
[315]817  if (shapeIn(asap::PolAxis)==1) {
818     throw(AipsError("The input has only one polarisation"));
819  }
[165]820//
[262]821  const uInt nChan = shapeIn(asap::ChanAxis);
[165]822  const IPosition vecShapeOut(4,1,1,1,nChan);     // A multi-dim form of a Vector shape
823  IPosition start(4), end(4);
824
825// Output arrays
826
827  Array<Float> outData(shapeOut, 0.0);
828  Array<Bool> outMask(shapeOut, True);
[262]829  const IPosition axes(2, asap::PolAxis, asap::ChanAxis);              // pol-channel plane
[165]830//
[262]831  const Bool useMask = (mask.nelements() == shapeIn(asap::ChanAxis));
[165]832
833// Loop over rows
834
835   for (uInt iRow=0; iRow<nRows; iRow++) {
836
837// Get data for this row
838
839      MaskedArray<Float> marr(in.rowAsMaskedArray(iRow));
840      Array<Float>& arr = marr.getRWArray();
841      const Array<Bool>& barr = marr.getMask();
842
843// Make iterators to iterate by pol-channel planes
844
845      ReadOnlyArrayIterator<Float> itDataPlane(arr, axes);
846      ReadOnlyArrayIterator<Bool> itMaskPlane(barr, axes);
847
848// Accumulations
849
850      Float fac = 1.0;
851      Vector<Float> vecSum(nChan,0.0);
852
853// Iterate through data by pol-channel planes
854
855      while (!itDataPlane.pastEnd()) {
856
857// Iterate through plane by polarization  and accumulate Vectors
858
859        Vector<Float> t1(nChan); t1 = 0.0;
860        Vector<Bool> t2(nChan); t2 = True;
861        MaskedArray<Float> vecSum(t1,t2);
[315]862        Float norm = 0.0;
[165]863        {
864           ReadOnlyVectorIterator<Float> itDataVec(itDataPlane.array(), 1);
865           ReadOnlyVectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
866           while (!itDataVec.pastEnd()) {     
867
[315]868// Create MA of data & mask (optionally including OTF mask) and  get variance for this spectrum
[165]869
870              if (useMask) {
871                 const MaskedArray<Float> spec(itDataVec.vector(),mask&&itMaskVec.vector());
[315]872                 if (wtType==VAR) fac = 1.0 / variance(spec);
[165]873              } else {
874                 const MaskedArray<Float> spec(itDataVec.vector(),itMaskVec.vector());
[315]875                 if (wtType==VAR) fac = 1.0 / variance(spec);
[165]876              }
877
878// Normalize spectrum (without OTF mask) and accumulate
879
880              const MaskedArray<Float> spec(fac*itDataVec.vector(), itMaskVec.vector());
881              vecSum += spec;
[315]882              norm += fac;
[165]883
884// Next
885
886              itDataVec.next();
887              itMaskVec.next();
888           }
889        }
890
891// Normalize summed spectrum
892
[315]893        vecSum /= norm;
[165]894
895// FInd position in input data array.  We are iterating by pol-channel
896// plane so all that will change is beam and IF and that's what we want.
897
898        IPosition pos = itDataPlane.pos();
899
900// Write out data. This is a bit messy. We have to reform the Vector
901// accumulator into an Array of shape (1,1,1,nChan)
902
903        start = pos;
904        end = pos;
[262]905        end(asap::ChanAxis) = nChan-1;
[165]906        outData(start,end) = vecSum.getArray().reform(vecShapeOut);
907        outMask(start,end) = vecSum.getMask().reform(vecShapeOut);
908
909// Step to next beam/IF combination
910
911        itDataPlane.next();
912        itMaskPlane.next();
913      }
914
915// Generate output container and write it to output table
916
917      SDContainer sc = in.getSDContainer();
918      sc.resize(shapeOut);
919//
[185]920      putDataInSDC(sc, outData, outMask);
[165]921      pTabOut->putSDContainer(sc);
922   }
[304]923
924// Set polarization cursor to 0
925
926  pTabOut->setPol(0);
[165]927//
928  return pTabOut;
929}
[167]930
[169]931
[185]932SDMemTable* SDMath::smooth(const SDMemTable& in,
933                           const casa::String& kernelType,
[234]934                           casa::Float width, Bool doAll) const
[299]935//
936// Should smooth TSys as well
937//
[177]938{
[169]939
[177]940// Number of channels
[169]941
[434]942   const uInt nChan = in.nChan();
[177]943
944// Generate Kernel
945
[185]946   VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernelType);
[177]947   Vector<Float> kernel = VectorKernel::make(type, width, nChan, True, False);
948
949// Generate Convolver
950
951   IPosition shape(1,nChan);
952   Convolver<Float> conv(kernel, shape);
953
954// New Table
955
956   SDMemTable* pTabOut = new SDMemTable(in,True);
957
958// Output Vectors
959
[434]960   Vector<Float> valuesOut(nChan);
961   Vector<Bool> maskOut(nChan);
[177]962
[434]963// Get data slice bounds
964
965   IPosition start, end;
966   setCursorSlice (start, end, doAll, in);
967
[177]968// Loop over rows in Table
969
[434]970   for (uInt ri=0; ri < in.nRow(); ++ri) {
[177]971
[434]972// Get slice of data
[177]973
[434]974      MaskedArray<Float> dataIn = in.rowAsMaskedArray(ri);
[177]975
[434]976// Deconstruct and get slices which reference these arrays
[177]977
[434]978      Array<Float> valuesIn = dataIn.getArray();
979      Array<Bool> maskIn = dataIn.getMask();
[177]980//
[434]981      Array<Float> valuesIn2 = valuesIn(start,end);       // ref to valuesIn
982      Array<Bool> maskIn2 = maskIn(start,end);
[177]983
[434]984// Iterate through by spectra
[177]985
[434]986      VectorIterator<Float> itValues(valuesIn2, asap::ChanAxis);
987      VectorIterator<Bool> itMask(maskIn2, asap::ChanAxis);
988      while (!itValues.pastEnd()) {
989       
[177]990// Smooth
991
[434]992         if (kernelType==VectorKernel::HANNING) {
993            mathutil::hanning(valuesOut, maskOut, itValues.vector(), itMask.vector());
994            itMask.vector() = maskOut;
995         } else {
996            mathutil::replaceMaskByZero(itValues.vector(), itMask.vector());
997            conv.linearConv(valuesOut, itValues.vector());
998         }
999//   
1000         itValues.vector() = valuesOut;
1001//
1002         itValues.next();
1003         itMask.next();
1004      }
[177]1005
1006// Create and put back
1007
[434]1008      SDContainer sc = in.getSDContainer(ri);
1009      putDataInSDC(sc, valuesIn, maskIn);
[177]1010//
[434]1011      pTabOut->putSDContainer(sc);
1012   }
[177]1013//
1014  return pTabOut;
1015}
1016
1017
[262]1018
[354]1019SDMemTable* SDMath::convertFlux (const SDMemTable& in, Float D, Float etaAp,
1020                                 Float JyPerK, Bool doAll) const
[221]1021//
[354]1022// etaAp = aperture efficiency
1023// D     = geometric diameter (m)
1024// JyPerK
[221]1025//
1026{
1027  SDHeader sh = in.getSDHeader();
1028  SDMemTable* pTabOut = new SDMemTable(in, True);
[177]1029
[354]1030// Find out how to convert values into Jy and K (e.g. units might be mJy or mK)
[221]1031// Also automatically find out what we are converting to according to the
1032// flux unit
[177]1033
[221]1034  Unit fluxUnit(sh.fluxunit);
1035  Unit K(String("K"));
1036  Unit JY(String("Jy"));
1037//
1038  Bool toKelvin = True;
[354]1039  Double cFac = 1.0;   
[221]1040  if (fluxUnit==JY) {
[414]1041     cout << "Converting to K" << endl;
[221]1042//
1043     Quantum<Double> t(1.0,fluxUnit);
1044     Quantum<Double> t2 = t.get(JY);
[354]1045     cFac = (t2 / t).getValue();               // value to Jy
[221]1046//
1047     toKelvin = True;
1048     sh.fluxunit = "K";
1049  } else if (fluxUnit==K) {
[414]1050     cout << "Converting to Jy" << endl;
[221]1051//
1052     Quantum<Double> t(1.0,fluxUnit);
1053     Quantum<Double> t2 = t.get(K);
[354]1054     cFac = (t2 / t).getValue();              // value to K
[221]1055//
1056     toKelvin = False;
1057     sh.fluxunit = "Jy";
1058  } else {
[248]1059     throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
[221]1060  }
1061  pTabOut->putSDHeader(sh);
[177]1062
[354]1063// Make sure input values are converted to either Jy or K first...
[221]1064
[354]1065  Float factor = cFac;
[221]1066
[354]1067// Select method
[221]1068
[354]1069  if (JyPerK>0.0) {
1070     factor *= JyPerK;
1071     if (toKelvin) factor = 1.0 / JyPerK;
1072//
[414]1073     cout << "Applying supplied conversion factor = " << factor << endl;
[354]1074     Vector<Float> factors(in.nRow(), factor);
1075     correctFromVector (pTabOut, in, doAll, factors);
1076  } else if (etaAp>0.0) {
1077     factor *= SDAttr::findJyPerKFac (etaAp, D);
1078     if (toKelvin) {
1079        factor = 1.0 / factor;
1080     }
1081//
[414]1082     cout << "Applying supplied conversion factor = " << factor << endl;
[354]1083     Vector<Float> factors(in.nRow(), factor);
1084     correctFromVector (pTabOut, in, doAll, factors);
1085  } else {
[221]1086
[354]1087// OK now we must deal with automatic look up of values.
1088// We must also deal with the fact that the factors need
1089// to be computed per IF and may be different and may
1090// change per integration.
[221]1091
[414]1092     cout << "Looking up conversion factors" << endl;
[354]1093     convertBrightnessUnits (pTabOut, in, toKelvin, cFac, doAll);
1094  }
[221]1095//
1096  return pTabOut;
1097}
1098
1099
[354]1100
1101
1102
[234]1103SDMemTable* SDMath::gainElevation (const SDMemTable& in, const Vector<Float>& coeffs,
1104                                   const String& fileName,
1105                                   const String& methodStr, Bool doAll) const
[227]1106{
[234]1107
1108// Get header and clone output table
1109
[227]1110  SDHeader sh = in.getSDHeader();
1111  SDMemTable* pTabOut = new SDMemTable(in, True);
1112
[234]1113// Get elevation data from SDMemTable and convert to degrees
[227]1114
1115  const Table& tab = in.table();
1116  ROScalarColumn<Float> elev(tab, "ELEVATION");
[234]1117  Vector<Float> x = elev.getColumn();
[363]1118  x *= Float(180 / C::pi);                        // Degrees
[227]1119//
[234]1120  const uInt nC = coeffs.nelements();
1121  if (fileName.length()>0 && nC>0) {
[248]1122     throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
[234]1123  }
1124
1125// Correct
1126
1127  if (nC>0 || fileName.length()==0) {
1128
1129// Find instrument
1130
1131     Bool throwIt = True;
1132     Instrument inst = SDMemTable::convertInstrument (sh.antennaname, throwIt);
1133     
1134// Set polynomial
1135
1136     Polynomial<Float>* pPoly = 0;
1137     Vector<Float> coeff;
1138     String msg;
1139     if (nC>0) {
1140        pPoly = new Polynomial<Float>(nC);
1141        coeff = coeffs;
1142        msg = String("user");
1143     } else {
[363]1144        SDAttr sdAttr;
1145        coeff = sdAttr.gainElevationPoly(inst);
1146        pPoly = new Polynomial<Float>(3);
[234]1147        msg = String("built in");
1148     }
[227]1149//
[234]1150     if (coeff.nelements()>0) {
1151        pPoly->setCoefficients(coeff);
1152     } else {
[363]1153        throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
[234]1154     }
1155//
[414]1156     cout << "Making polynomial correction with " << msg << " coefficients" << endl;
[234]1157     const uInt nRow = in.nRow();
1158     Vector<Float> factor(nRow);
1159     for (uInt i=0; i<nRow; i++) {
1160        factor[i] = (*pPoly)(x[i]);
1161     }
1162     delete pPoly;
1163//
1164     correctFromVector (pTabOut, in, doAll, factor);
1165  } else {
1166
1167// Indicate which columns to read from ascii file
1168
1169     String col0("ELEVATION");
1170     String col1("FACTOR");
1171
1172// Read and correct
1173
[414]1174     cout << "Making correction from ascii Table" << endl;
[234]1175     correctFromAsciiTable (pTabOut, in, fileName, col0, col1,
1176                            methodStr, doAll, x);
1177   }
1178//
1179   return pTabOut;
[230]1180}
[227]1181
[230]1182 
[227]1183
[234]1184SDMemTable* SDMath::opacity (const SDMemTable& in, Float tau, Bool doAll) const
1185{
[227]1186
[234]1187// Get header and clone output table
[227]1188
[234]1189  SDHeader sh = in.getSDHeader();
1190  SDMemTable* pTabOut = new SDMemTable(in, True);
1191
1192// Get elevation data from SDMemTable and convert to degrees
1193
1194  const Table& tab = in.table();
1195  ROScalarColumn<Float> elev(tab, "ELEVATION");
1196  Vector<Float> zDist = elev.getColumn();
1197  zDist = Float(C::pi_2) - zDist;
1198
1199// Generate correction factor
1200
1201  const uInt nRow = in.nRow();
1202  Vector<Float> factor(nRow);
1203  Vector<Float> factor2(nRow);
1204  for (uInt i=0; i<nRow; i++) {
1205     factor[i] = exp(tau)/cos(zDist[i]);
1206  }
1207
1208// Correct
1209
1210  correctFromVector (pTabOut, in, doAll, factor);
1211//
1212  return pTabOut;
1213}
1214
1215
1216
1217
[169]1218// 'private' functions
1219
[354]1220void SDMath::convertBrightnessUnits (SDMemTable* pTabOut, const SDMemTable& in,
1221                                     Bool toKelvin, Float cFac, Bool doAll) const
1222{
[309]1223
[354]1224// Get header
1225
1226   SDHeader sh = in.getSDHeader();
1227   const uInt nChan = sh.nchan;
1228
1229// Get instrument
1230
1231   Bool throwIt = True;
1232   Instrument inst = SDMemTable::convertInstrument (sh.antennaname, throwIt);
1233
1234// Get Diameter (m)
1235
1236   SDAttr sdAtt;
1237
1238// Get epoch of first row
1239
1240   MEpoch dateObs = in.getEpoch(0);
1241
1242// Generate a Vector of correction factors. One per FreqID
1243
1244   SDFrequencyTable sdft = in.getSDFreqTable();
1245   Vector<uInt> freqIDs;
1246//
1247   Vector<Float> freqs(sdft.length());
1248   for (uInt i=0; i<sdft.length(); i++) {
1249      freqs(i) = (nChan/2 - sdft.referencePixel(i))*sdft.increment(i) + sdft.referenceValue(i);
1250   }
1251//
1252   Vector<Float> JyPerK = sdAtt.JyPerK(inst, dateObs, freqs);
[414]1253   cout << "Jy/K = " << JyPerK << endl;
[354]1254   Vector<Float> factors = cFac * JyPerK;
1255   if (toKelvin) factors = Float(1.0) / factors;
1256
[434]1257// Get data slice bounds
[354]1258
1259   IPosition start, end;
[434]1260   setCursorSlice (start, end, doAll, in);
[354]1261   const uInt ifAxis = in.getIF();
1262
1263// Iteration axes
1264
1265   IPosition axes(asap::nAxes-1,0);
1266   for (uInt i=0,j=0; i<asap::nAxes; i++) {
1267      if (i!=asap::IFAxis) {
1268         axes(j++) = i;
1269      }
1270   }
1271
1272// Loop over rows and apply correction factor
1273
1274   Float factor = 1.0; 
1275   const uInt axis = asap::ChanAxis;
1276   for (uInt i=0; i < in.nRow(); ++i) {
1277
1278// Get data
1279
[434]1280      MaskedArray<Float> dataIn = in.rowAsMaskedArray(i);
1281      Array<Float>& values = dataIn.getRWArray();           // Ref to dataIn
1282      Array<Float> values2 = values(start,end);             // Ref to values to dataIn
[354]1283
1284// Get SDCOntainer
1285
1286      SDContainer sc = in.getSDContainer(i);
1287
1288// Get FreqIDs
1289
1290      freqIDs = sc.getFreqMap();
1291
1292// Now the conversion factor depends only upon frequency
1293// So we need to iterate through by IF only giving
1294// us BEAM/POL/CHAN cubes
1295
[434]1296      ArrayIterator<Float> itIn(values2, axes);
1297      uInt ax = 0;
1298      while (!itIn.pastEnd()) {
1299        itIn.array() *= factors(freqIDs(ax));         // Writes back to dataIn
1300        itIn.next();
[354]1301      }
1302
1303// Write out
1304
1305      putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
1306//
1307      pTabOut->putSDContainer(sc);
1308   }
1309}
1310
1311
1312
[309]1313SDMemTable* SDMath::frequencyAlign (const SDMemTable& in,
1314                                   MFrequency::Types freqSystem,
[397]1315                                   const String& refTime,
1316                                   const String& methodStr,
1317                                   Bool perFreqID) const
[267]1318{
1319// Get Header
1320
1321   SDHeader sh = in.getSDHeader();
1322   const uInt nChan = sh.nchan;
1323   const uInt nRows = in.nRow();
[330]1324   const uInt nIF = sh.nif;
[267]1325
1326// Get Table reference
1327
1328   const Table& tabIn = in.table();
1329
1330// Get Columns from Table
1331
[294]1332   ROScalarColumn<Double> mjdCol(tabIn, "TIME");
1333   ROScalarColumn<String> srcCol(tabIn, "SRCNAME");
1334   ROArrayColumn<uInt> fqIDCol(tabIn, "FREQID");
1335   Vector<Double> times = mjdCol.getColumn();
[267]1336
[397]1337// Generate DataDesc table
[330]1338 
1339   Matrix<uInt> ddIdx;
1340   SDDataDesc dDesc;
[397]1341   generateDataDescTable (ddIdx, dDesc, nIF, in, tabIn, srcCol, fqIDCol, perFreqID);
[267]1342
[294]1343// Get reference Epoch to time of first row or given String
[267]1344
1345   Unit DAY(String("d"));
[272]1346   MEpoch::Ref epochRef(in.getTimeReference());
1347   MEpoch refEpoch;
1348   if (refTime.length()>0) {
1349      refEpoch = epochFromString(refTime, in.getTimeReference());
1350   } else {
[288]1351      refEpoch = in.getEpoch(0);
[272]1352   }
[414]1353   cout << "Aligning at reference Epoch " << formatEpoch(refEpoch)
1354        << " in frame " << MFrequency::showType(freqSystem) << endl;
1355   
[294]1356// Get Reference Position
[267]1357
[288]1358   MPosition refPos = in.getAntennaPosition();
[267]1359
[397]1360// Create FrequencyAligner Block. One FA for each possible
1361// source/freqID (perFreqID=True) or source/IF (perFreqID=False) combination
[267]1362
[330]1363   PtrBlock<FrequencyAligner<Float>* > a(dDesc.length());
[397]1364   generateFrequencyAligners (a, dDesc, in, nChan, freqSystem, refPos,
1365                              refEpoch, perFreqID);
[267]1366
[397]1367// Generate and fill output Frequency Table.  WHen perFreqID=True, there is one output FreqID
1368// for each entry in the SDDataDesc table.  However, in perFreqID=False mode, there may be
1369// some degeneracy, so we need a little translation map
[330]1370
1371   SDFrequencyTable freqTabOut = in.getSDFreqTable();
1372   freqTabOut.setLength(0);
1373   Vector<String> units(1);
1374   units = String("Hz");
1375   Bool linear=True;
1376//
[397]1377   Vector<uInt> ddFQTrans(dDesc.length(),0);
[330]1378   for (uInt i=0; i<dDesc.length(); i++) {
1379
1380// Get Aligned SC in Hz
1381
1382      SpectralCoordinate sC = a[i]->alignedSpectralCoordinate(linear);
1383      sC.setWorldAxisUnits(units);
1384
1385// Add FreqID
1386
[397]1387      uInt idx = freqTabOut.addFrequency(sC.referencePixel()[0],
1388                                         sC.referenceValue()[0],
1389                                         sC.increment()[0]);
1390      ddFQTrans(i) = idx;                                       // output FreqID = ddFQTrans(ddIdx)
[330]1391   }
1392
[317]1393// Interpolation method
1394
1395   InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1396   convertInterpString(interp, methodStr);
1397
[267]1398// New output Table
1399
[414]1400   cout << "Create output table" << endl;
[267]1401   SDMemTable* pTabOut = new SDMemTable(in,True);
[330]1402   pTabOut->putSDFreqTable(freqTabOut);
[267]1403
1404// Loop over rows in Table
1405
[330]1406   Bool extrapolate=False;
[294]1407   const IPosition polChanAxes(2, asap::PolAxis, asap::ChanAxis);
1408   Bool useCachedAbcissa = False;
1409   Bool first = True;
1410   Bool ok;
1411   Vector<Float> yOut;
1412   Vector<Bool> maskOut;
[330]1413   Vector<uInt> freqID(nIF);
[309]1414   uInt ifIdx, faIdx;
[397]1415   Vector<Double> xIn;
[267]1416//
[294]1417   for (uInt iRow=0; iRow<nRows; ++iRow) {
1418      if (iRow%10==0) {
[414]1419         cout << "Processing row " << iRow << endl;
[294]1420      }
[267]1421
1422// Get EPoch
1423
[294]1424     Quantum<Double> tQ2(times[iRow],DAY);
1425     MVEpoch mv2(tQ2);
1426     MEpoch epoch(mv2, epochRef);
[267]1427
1428// Get copy of data
1429   
[294]1430     const MaskedArray<Float>& mArrIn(in.rowAsMaskedArray(iRow));
1431     Array<Float> values = mArrIn.getArray();
1432     Array<Bool> mask = mArrIn.getMask();
[267]1433
[309]1434// For each row, the Frequency abcissa will be the same regardless
[267]1435// of polarization.  For all other axes (IF and BEAM) the abcissa
1436// will change.  So we iterate through the data by pol-chan planes
[330]1437// to mimimize the work.  Probably won't work for multiple beams
1438// at this point.
[267]1439
[294]1440     ArrayIterator<Float> itValuesPlane(values, polChanAxes);
1441     ArrayIterator<Bool> itMaskPlane(mask, polChanAxes);
1442     while (!itValuesPlane.pastEnd()) {
[267]1443
[309]1444// Find the IF index and then the FA PtrBlock index
[267]1445
[294]1446        const IPosition& pos = itValuesPlane.pos();
1447        ifIdx = pos(asap::IFAxis);
[330]1448        faIdx = ddIdx(iRow,ifIdx);
[397]1449
1450// Generate abcissa for perIF.  Could cache this in a Matrix
1451// on a per scan basis.   Pretty expensive doing it for every row.
1452
1453        if (!perFreqID) {
1454           xIn.resize(nChan);
1455           uInt fqID = dDesc.secID(ddIdx(iRow,ifIdx));
1456           SpectralCoordinate sC = in.getSpectralCoordinate(fqID);
1457           Double w;
1458           for (uInt i=0; i<nChan; i++) {
1459              sC.toWorld(w,Double(i));
1460              xIn[i] = w;
1461           }
1462        }
[267]1463//
[294]1464        VectorIterator<Float> itValuesVec(itValuesPlane.array(), 1);
1465        VectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
[330]1466
1467// Iterate through the plane by vector and align
1468
[294]1469        first = True;
1470        useCachedAbcissa=False;
1471        while (!itValuesVec.pastEnd()) {     
[397]1472           if (perFreqID) {
1473              ok = a[faIdx]->align (yOut, maskOut, itValuesVec.vector(),
1474                                    itMaskVec.vector(), epoch, useCachedAbcissa,
1475                                    interp, extrapolate);
1476           } else {
1477              ok = a[faIdx]->align (yOut, maskOut, xIn, itValuesVec.vector(),
1478                                    itMaskVec.vector(), epoch, useCachedAbcissa,
1479                                    interp, extrapolate);
1480           }
[330]1481//
[294]1482           itValuesVec.vector() = yOut;
1483           itMaskVec.vector() = maskOut;
[267]1484//
[294]1485           itValuesVec.next();
1486           itMaskVec.next();
[267]1487//
[294]1488           if (first) {
1489              useCachedAbcissa = True;
1490              first = False;
1491           }
1492        }
[267]1493//
1494       itValuesPlane.next();
1495       itMaskPlane.next();
[294]1496     }
[267]1497
[330]1498// Create SDContainer and put back
[267]1499
1500    SDContainer sc = in.getSDContainer(iRow);
1501    putDataInSDC(sc, values, mask);
[397]1502
1503// Set output FreqIDs
1504
[330]1505    for (uInt i=0; i<nIF; i++) {
[397]1506       uInt idx = ddIdx(iRow,i);               // Index into SDDataDesc table
1507       freqID(i) = ddFQTrans(idx);             // FreqID in output FQ table
[330]1508    }
1509    sc.putFreqMap(freqID);
[267]1510//
1511    pTabOut->putSDContainer(sc);
[294]1512   }
[267]1513
[309]1514// Now we must set the base and extra frames to the
1515// input frame
1516
1517   std::vector<string> info = pTabOut->getCoordInfo();
1518   info[1] = MFrequency::showType(freqSystem);   // Conversion frame
1519   info[3] = info[1];                            // Base frame
1520   pTabOut->setCoordInfo(info);
1521
[267]1522// Clean up PointerBlock
1523
[309]1524   for (uInt i=0; i<a.nelements(); i++) delete a[i];
[267]1525//
[309]1526   return pTabOut;
[267]1527}
1528
1529
[185]1530void SDMath::fillSDC(SDContainer& sc,
1531                     const Array<Bool>& mask,
1532                     const Array<Float>& data,
1533                     const Array<Float>& tSys,
1534                     Int scanID, Double timeStamp,
1535                     Double interval, const String& sourceName,
[227]1536                     const Vector<uInt>& freqID) const
[167]1537{
[169]1538// Data and mask
[167]1539
[185]1540  putDataInSDC(sc, data, mask);
[167]1541
[169]1542// TSys
1543
1544  sc.putTsys(tSys);
1545
1546// Time things
1547
1548  sc.timestamp = timeStamp;
1549  sc.interval = interval;
1550  sc.scanid = scanID;
[167]1551//
[169]1552  sc.sourcename = sourceName;
1553  sc.putFreqMap(freqID);
1554}
[167]1555
[185]1556void SDMath::normalize(MaskedArray<Float>& sum,
[169]1557                        const Array<Float>& sumSq,
1558                        const Array<Float>& nPts,
1559                        WeightType wtType, Int axis,
[227]1560                        Int nAxesSub) const
[169]1561{
1562   IPosition pos2(nAxesSub,0);
1563//
1564   if (wtType==NONE) {
[167]1565
[169]1566// We just average by the number of points accumulated.
1567// We need to make a MA out of nPts so that no divide by
1568// zeros occur
[167]1569
[169]1570      MaskedArray<Float> t(nPts, (nPts>Float(0.0)));
1571      sum /= t;
1572   } else if (wtType==VAR) {
[167]1573
[169]1574// Normalize each spectrum by sum(1/var) where the variance
1575// is worked out for each spectrum
1576
1577      Array<Float>& data = sum.getRWArray();
1578      VectorIterator<Float> itData(data, axis);
1579      while (!itData.pastEnd()) {
1580         pos2 = itData.pos().getFirst(nAxesSub);
1581         itData.vector() /= sumSq(pos2);
1582         itData.next();
1583      }
1584   } else if (wtType==TSYS) {
1585   }
1586}
1587
1588
[185]1589void SDMath::accumulate(Double& timeSum, Double& intSum, Int& nAccum,
1590                        MaskedArray<Float>& sum, Array<Float>& sumSq,
1591                        Array<Float>& nPts, Array<Float>& tSysSum,
1592                        const Array<Float>& tSys, const Array<Float>& nInc,
1593                        const Vector<Bool>& mask, Double time, Double interval,
1594                        const Block<CountedPtr<SDMemTable> >& in,
1595                        uInt iTab, uInt iRow, uInt axis,
1596                        uInt nAxesSub, Bool useMask,
[227]1597                        WeightType wtType) const
[169]1598{
1599
1600// Get data
1601
1602   MaskedArray<Float> dataIn(in[iTab]->rowAsMaskedArray(iRow));
1603   Array<Float>& valuesIn = dataIn.getRWArray();           // writable reference
1604   const Array<Bool>& maskIn = dataIn.getMask();          // RO reference
[167]1605//
[169]1606   if (wtType==NONE) {
1607      const MaskedArray<Float> n(nInc,dataIn.getMask());
1608      nPts += n;                               // Only accumulates where mask==T
1609   } else if (wtType==VAR) {
[167]1610
[169]1611// We are going to average the data, weighted by the noise for each pol, beam and IF.
1612// So therefore we need to iterate through by spectrum (axis 3)
[167]1613
[169]1614      VectorIterator<Float> itData(valuesIn, axis);
1615      ReadOnlyVectorIterator<Bool> itMask(maskIn, axis);
1616      Float fac = 1.0;
1617      IPosition pos(nAxesSub,0); 
1618//
1619      while (!itData.pastEnd()) {
[167]1620
[169]1621// Make MaskedArray of Vector, optionally apply OTF mask, and find scaling factor
[167]1622
[169]1623        if (useMask) {
1624           MaskedArray<Float> tmp(itData.vector(),mask&&itMask.vector());
1625           fac = 1.0/variance(tmp);
1626        } else {
1627           MaskedArray<Float> tmp(itData.vector(),itMask.vector());
1628           fac = 1.0/variance(tmp);
1629        }
1630
1631// Scale data
1632
1633        itData.vector() *= fac;     // Writes back into 'dataIn'
[167]1634//
[169]1635// Accumulate variance per if/pol/beam averaged over spectrum
1636// This method to get pos2 from itData.pos() is only valid
1637// because the spectral axis is the last one (so we can just
1638// copy the first nAXesSub positions out)
[167]1639
[169]1640        pos = itData.pos().getFirst(nAxesSub);
1641        sumSq(pos) += fac;
1642//
1643        itData.next();
1644        itMask.next();
1645      }
1646   } else if (wtType==TSYS) {
1647   }
[167]1648
[169]1649// Accumulate sum of (possibly scaled) data
1650
1651   sum += dataIn;
1652
1653// Accumulate Tsys, time, and interval
1654
1655   tSysSum += tSys;
1656   timeSum += time;
1657   intSum += interval;
1658   nAccum += 1;
1659}
1660
1661
[434]1662void SDMath::setCursorSlice (IPosition& start, IPosition& end, Bool doAll, const SDMemTable& in) const
[169]1663{
[434]1664  const uInt nDim = asap::nAxes;
1665  DebugAssert(nDim==4,AipsError);
[167]1666//
[169]1667  start.resize(nDim);
[434]1668  end.resize(nDim);
1669  if (doAll) {
1670     start = 0;
1671     end(0) = in.nBeam()-1;
1672     end(1) = in.nIF()-1;
1673     end(2) = in.nPol()-1;
1674     end(3) = in.nChan()-1;
1675  } else {
1676     start(0) = in.getBeam();
1677     end(0) = start(0);
[167]1678//
[434]1679     start(1) = in.getIF();
1680     end(1) = start(1);
1681//
1682     start(2) = in.getPol();
1683     end(2) = start(2);
1684//
1685     start(3) = 0;
1686     end(3) = in.nChan()-1;
1687   }
[169]1688}
1689
1690
[227]1691void SDMath::convertWeightString(WeightType& wtType, const String& weightStr) const
[169]1692{
1693  String tStr(weightStr);
1694  tStr.upcase();
1695  if (tStr.contains(String("NONE"))) {
1696     wtType = NONE;
1697  } else if (tStr.contains(String("VAR"))) {
1698     wtType = VAR;
1699  } else if (tStr.contains(String("TSYS"))) {
1700     wtType = TSYS;
[185]1701     throw(AipsError("T_sys weighting not yet implemented"));
[169]1702  } else {
[185]1703    throw(AipsError("Unrecognized weighting type"));
[167]1704  }
1705}
1706
[317]1707
1708void SDMath::convertInterpString(casa::InterpolateArray1D<Double,Float>::InterpolationMethod& type, 
1709                                 const casa::String& interp) const
[227]1710{
1711  String tStr(interp);
1712  tStr.upcase();
1713  if (tStr.contains(String("NEAR"))) {
[317]1714     type = InterpolateArray1D<Double,Float>::nearestNeighbour;
[227]1715  } else if (tStr.contains(String("LIN"))) {
[317]1716     type = InterpolateArray1D<Double,Float>::linear;
[227]1717  } else if (tStr.contains(String("CUB"))) {
[317]1718     type = InterpolateArray1D<Double,Float>::cubic;
[227]1719  } else if (tStr.contains(String("SPL"))) {
[317]1720     type = InterpolateArray1D<Double,Float>::spline;
[227]1721  } else {
1722    throw(AipsError("Unrecognized interpolation type"));
1723  }
1724}
1725
[185]1726void SDMath::putDataInSDC(SDContainer& sc, const Array<Float>& data,
[227]1727                          const Array<Bool>& mask) const
[169]1728{
1729    sc.putSpectrum(data);
1730//
1731    Array<uChar> outflags(data.shape());
1732    convertArray(outflags,!mask);
1733    sc.putFlags(outflags);
1734}
[227]1735
1736Table SDMath::readAsciiFile (const String& fileName) const
1737{
[230]1738   String formatString;
1739   Table tbl = readAsciiTable (formatString, Table::Memory, fileName, "", "", False);
[227]1740   return tbl;
1741}
[230]1742
1743
[234]1744
1745void SDMath::correctFromAsciiTable(SDMemTable* pTabOut,
1746                                   const SDMemTable& in, const String& fileName,
1747                                   const String& col0, const String& col1,
1748                                   const String& methodStr, Bool doAll,
1749                                   const Vector<Float>& xOut) const
[230]1750{
1751
1752// Read gain-elevation ascii file data into a Table.
1753
[234]1754  Table geTable = readAsciiFile (fileName);
[230]1755//
[234]1756  correctFromTable (pTabOut, in, geTable, col0, col1, methodStr, doAll, xOut);
[230]1757}
1758
[234]1759void SDMath::correctFromTable(SDMemTable* pTabOut, const SDMemTable& in,
1760                              const Table& tTable, const String& col0,
1761                              const String& col1,
1762                              const String& methodStr, Bool doAll,
1763                              const Vector<Float>& xOut) const
[230]1764{
1765
1766// Get data from Table
1767
1768  ROScalarColumn<Float> geElCol(tTable, col0);
1769  ROScalarColumn<Float> geFacCol(tTable, col1);
1770  Vector<Float> xIn = geElCol.getColumn();
1771  Vector<Float> yIn = geFacCol.getColumn();
1772  Vector<Bool> maskIn(xIn.nelements(),True);
1773
1774// Interpolate (and extrapolate) with desired method
1775
[317]1776   InterpolateArray1D<Double,Float>::InterpolationMethod method;
[230]1777   convertInterpString(method, methodStr);
[317]1778   Int intMethod(method);
[230]1779//
1780   Vector<Float> yOut;
1781   Vector<Bool> maskOut;
1782   InterpolateArray1D<Float,Float>::interpolate(yOut, maskOut, xOut,
[317]1783                                                xIn, yIn, maskIn, intMethod,
[230]1784                                                True, True);
[234]1785// Apply
[230]1786
[234]1787   correctFromVector (pTabOut, in, doAll, yOut);
1788}
1789
1790
1791void SDMath::correctFromVector (SDMemTable* pTabOut, const SDMemTable& in,
1792                                Bool doAll, const Vector<Float>& factor) const
1793{
[270]1794
[434]1795// Set up data slice
[230]1796
1797  IPosition start, end;
[434]1798  setCursorSlice (start, end, doAll, in);
[230]1799
[270]1800// Loop over rows and apply correction factor
[230]1801 
1802  const uInt axis = asap::ChanAxis;
1803  for (uInt i=0; i < in.nRow(); ++i) {
1804
1805// Get data
1806
[434]1807     MaskedArray<Float> dataIn(in.rowAsMaskedArray(i));
1808     MaskedArray<Float> dataIn2 = dataIn(start,end);  // reference to dataIn
[230]1809
1810// Apply factor
1811
[434]1812     dataIn2 *= factor[i];
[230]1813
1814// Write out
1815
[434]1816     SDContainer sc = in.getSDContainer(i);
1817     putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
[230]1818//
[434]1819     pTabOut->putSDContainer(sc);
[230]1820  }
1821}
1822
[234]1823
[262]1824
1825
[330]1826void SDMath::generateDataDescTable (Matrix<uInt>& ddIdx,
1827                                    SDDataDesc& dDesc,
1828                                    uInt nIF,
1829                                    const SDMemTable& in,
1830                                    const Table& tabIn,
1831                                    const ROScalarColumn<String>& srcCol,
[397]1832                                    const ROArrayColumn<uInt>& fqIDCol,
1833                                    Bool perFreqID) const
[330]1834{
1835   const uInt nRows = tabIn.nrow();
1836   ddIdx.resize(nRows,nIF);
[262]1837//
[330]1838   String srcName;
1839   Vector<uInt> freqIDs;
1840   for (uInt iRow=0; iRow<nRows; iRow++) {
1841      srcCol.get(iRow, srcName);
1842      fqIDCol.get(iRow, freqIDs);
1843      const MDirection& dir = in.getDirection(iRow);
1844//
[397]1845      if (perFreqID) {
1846
1847// One entry per source/freqID pair
1848
1849         for (uInt iIF=0; iIF<nIF; iIF++) {
1850            ddIdx(iRow,iIF) = dDesc.addEntry(srcName, freqIDs[iIF], dir, 0);
1851         }
1852      } else {
1853
1854// One entry per source/IF pair.  Hang onto the FreqID as well
1855
1856         for (uInt iIF=0; iIF<nIF; iIF++) {
1857            ddIdx(iRow,iIF) = dDesc.addEntry(srcName, iIF, dir, freqIDs[iIF]);
1858         }
[262]1859      }
1860   }
1861}
[272]1862
[397]1863
1864
1865
1866
[272]1867MEpoch SDMath::epochFromString (const String& str, MEpoch::Types timeRef) const
1868{
1869   Quantum<Double> qt;
1870   if (MVTime::read(qt,str)) {
1871      MVEpoch mv(qt);
1872      MEpoch me(mv, timeRef);
1873      return me;
1874   } else {
1875      throw(AipsError("Invalid format for Epoch string"));
1876   }
1877}
1878
1879
1880String SDMath::formatEpoch(const MEpoch& epoch)  const
1881{
1882   MVTime mvt(epoch.getValue());
1883   return mvt.string(MVTime::YMD) + String(" (") + epoch.getRefString() + String(")");
1884}
1885
[294]1886
[309]1887
1888void SDMath::generateFrequencyAligners (PtrBlock<FrequencyAligner<Float>* >& a,
[330]1889                                        const SDDataDesc& dDesc,
1890                                        const SDMemTable& in, uInt nChan,
1891                                        MFrequency::Types system,
1892                                        const MPosition& refPos,
[397]1893                                        const MEpoch& refEpoch,
1894                                        Bool perFreqID) const
[294]1895{
[330]1896   for (uInt i=0; i<dDesc.length(); i++) {
[397]1897      uInt ID = dDesc.ID(i);
1898      uInt secID = dDesc.secID(i);
1899      const MDirection& refDir = dDesc.secDir(i);
[330]1900//
[397]1901      if (perFreqID) {
1902
1903// One aligner per source/FreqID pair. 
1904
1905         SpectralCoordinate sC = in.getSpectralCoordinate(ID);
1906         a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
1907      } else {
1908
1909// One aligner per source/IF pair.  But we still need the FreqID to
1910// get the right SC.  Hence the messing about with the secondary ID
1911
1912         SpectralCoordinate sC = in.getSpectralCoordinate(secID);
1913         a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
1914      }
[294]1915   }
1916}
Note: See TracBrowser for help on using the repository browser.