[1846] | 1 | """This module defines the scantable class."""
|
---|
| 2 |
|
---|
[1697] | 3 | import os
|
---|
[2751] | 4 | import re
|
---|
[2315] | 5 | import tempfile
|
---|
[1948] | 6 | import numpy
|
---|
[1691] | 7 | try:
|
---|
| 8 | from functools import wraps as wraps_dec
|
---|
| 9 | except ImportError:
|
---|
| 10 | from asap.compatibility import wraps as wraps_dec
|
---|
| 11 |
|
---|
[1824] | 12 | from asap.env import is_casapy
|
---|
[876] | 13 | from asap._asap import Scantable
|
---|
[2004] | 14 | from asap._asap import filler, msfiller
|
---|
[1824] | 15 | from asap.parameters import rcParams
|
---|
[1862] | 16 | from asap.logging import asaplog, asaplog_post_dec
|
---|
[1824] | 17 | from asap.selector import selector
|
---|
| 18 | from asap.linecatalog import linecatalog
|
---|
[1600] | 19 | from asap.coordinate import coordinate
|
---|
[1859] | 20 | from asap.utils import _n_bools, mask_not, mask_and, mask_or, page
|
---|
[1907] | 21 | from asap.asapfitter import fitter
|
---|
[102] | 22 |
|
---|
[1689] | 23 | def preserve_selection(func):
|
---|
[1691] | 24 | @wraps_dec(func)
|
---|
[1689] | 25 | def wrap(obj, *args, **kw):
|
---|
| 26 | basesel = obj.get_selection()
|
---|
[1857] | 27 | try:
|
---|
| 28 | val = func(obj, *args, **kw)
|
---|
| 29 | finally:
|
---|
| 30 | obj.set_selection(basesel)
|
---|
[1689] | 31 | return val
|
---|
| 32 | return wrap
|
---|
| 33 |
|
---|
[1846] | 34 | def is_scantable(filename):
|
---|
| 35 | """Is the given file a scantable?
|
---|
[1689] | 36 |
|
---|
[1846] | 37 | Parameters:
|
---|
| 38 |
|
---|
| 39 | filename: the name of the file/directory to test
|
---|
| 40 |
|
---|
| 41 | """
|
---|
[1883] | 42 | if ( os.path.isdir(filename)
|
---|
| 43 | and os.path.exists(filename+'/table.info')
|
---|
| 44 | and os.path.exists(filename+'/table.dat') ):
|
---|
| 45 | f=open(filename+'/table.info')
|
---|
| 46 | l=f.readline()
|
---|
| 47 | f.close()
|
---|
[2753] | 48 | match_pattern = '^Type = (Scantable)? *$'
|
---|
[2751] | 49 | if re.match(match_pattern,l):
|
---|
[1883] | 50 | return True
|
---|
| 51 | else:
|
---|
| 52 | return False
|
---|
| 53 | else:
|
---|
| 54 | return False
|
---|
| 55 | ## return (os.path.isdir(filename)
|
---|
| 56 | ## and not os.path.exists(filename+'/table.f1')
|
---|
| 57 | ## and os.path.exists(filename+'/table.info'))
|
---|
[1697] | 58 |
|
---|
[1883] | 59 | def is_ms(filename):
|
---|
| 60 | """Is the given file a MeasurementSet?
|
---|
[1697] | 61 |
|
---|
[1883] | 62 | Parameters:
|
---|
| 63 |
|
---|
| 64 | filename: the name of the file/directory to test
|
---|
| 65 |
|
---|
| 66 | """
|
---|
| 67 | if ( os.path.isdir(filename)
|
---|
| 68 | and os.path.exists(filename+'/table.info')
|
---|
| 69 | and os.path.exists(filename+'/table.dat') ):
|
---|
| 70 | f=open(filename+'/table.info')
|
---|
| 71 | l=f.readline()
|
---|
| 72 | f.close()
|
---|
| 73 | if ( l.find('Measurement Set') != -1 ):
|
---|
| 74 | return True
|
---|
| 75 | else:
|
---|
| 76 | return False
|
---|
| 77 | else:
|
---|
| 78 | return False
|
---|
[2186] | 79 |
|
---|
| 80 | def normalise_edge_param(edge):
|
---|
| 81 | """\
|
---|
| 82 | Convert a given edge value to a one-dimensional array that can be
|
---|
| 83 | given to baseline-fitting/subtraction functions.
|
---|
| 84 | The length of the output value will be an even because values for
|
---|
| 85 | the both sides of spectra are to be contained for each IF. When
|
---|
| 86 | the length is 2, the values will be applied to all IFs. If the length
|
---|
| 87 | is larger than 2, it will be 2*ifnos().
|
---|
| 88 | Accepted format of edge include:
|
---|
| 89 | * an integer - will be used for both sides of spectra of all IFs.
|
---|
| 90 | e.g. 10 is converted to [10,10]
|
---|
[2277] | 91 | * an empty list/tuple [] - converted to [0, 0] and used for all IFs.
|
---|
[2186] | 92 | * a list/tuple containing an integer - same as the above case.
|
---|
| 93 | e.g. [10] is converted to [10,10]
|
---|
| 94 | * a list/tuple containing two integers - will be used for all IFs.
|
---|
| 95 | e.g. [5,10] is output as it is. no need to convert.
|
---|
| 96 | * a list/tuple of lists/tuples containing TWO integers -
|
---|
| 97 | each element of edge will be used for each IF.
|
---|
[2277] | 98 | e.g. [[5,10],[15,20]] - [5,10] for IF[0] and [15,20] for IF[1].
|
---|
| 99 |
|
---|
| 100 | If an element contains the same integer values, the input 'edge'
|
---|
| 101 | parameter can be given in a simpler shape in the following cases:
|
---|
[2186] | 102 | ** when len(edge)!=2
|
---|
[2277] | 103 | any elements containing the same values can be replaced
|
---|
| 104 | to single integers.
|
---|
| 105 | e.g. [[15,15]] can be simplified to [15] (or [15,15] or 15 also).
|
---|
| 106 | e.g. [[1,1],[2,2],[3,3]] can be simplified to [1,2,3].
|
---|
[2186] | 107 | ** when len(edge)=2
|
---|
| 108 | care is needed for this case: ONLY ONE of the
|
---|
| 109 | elements can be a single integer,
|
---|
| 110 | e.g. [[5,5],[10,10]] can be simplified to [5,[10,10]]
|
---|
[2277] | 111 | or [[5,5],10], but can NOT be simplified to [5,10].
|
---|
[2186] | 112 | when [5,10] given, it is interpreted as
|
---|
[2277] | 113 | [[5,10],[5,10],[5,10],...] instead, as shown before.
|
---|
[2186] | 114 | """
|
---|
| 115 | from asap import _is_sequence_or_number as _is_valid
|
---|
| 116 | if isinstance(edge, list) or isinstance(edge, tuple):
|
---|
| 117 | for edgepar in edge:
|
---|
| 118 | if not _is_valid(edgepar, int):
|
---|
| 119 | raise ValueError, "Each element of the 'edge' tuple has \
|
---|
| 120 | to be a pair of integers or an integer."
|
---|
| 121 | if isinstance(edgepar, list) or isinstance(edgepar, tuple):
|
---|
| 122 | if len(edgepar) != 2:
|
---|
| 123 | raise ValueError, "Each element of the 'edge' tuple has \
|
---|
| 124 | to be a pair of integers or an integer."
|
---|
| 125 | else:
|
---|
| 126 | if not _is_valid(edge, int):
|
---|
| 127 | raise ValueError, "Parameter 'edge' has to be an integer or a \
|
---|
| 128 | pair of integers specified as a tuple. \
|
---|
| 129 | Nested tuples are allowed \
|
---|
| 130 | to make individual selection for different IFs."
|
---|
| 131 |
|
---|
| 132 |
|
---|
| 133 | if isinstance(edge, int):
|
---|
| 134 | edge = [ edge, edge ] # e.g. 3 => [3,3]
|
---|
| 135 | elif isinstance(edge, list) or isinstance(edge, tuple):
|
---|
| 136 | if len(edge) == 0:
|
---|
| 137 | edge = [0, 0] # e.g. [] => [0,0]
|
---|
| 138 | elif len(edge) == 1:
|
---|
| 139 | if isinstance(edge[0], int):
|
---|
| 140 | edge = [ edge[0], edge[0] ] # e.g. [1] => [1,1]
|
---|
| 141 |
|
---|
| 142 | commonedge = True
|
---|
| 143 | if len(edge) > 2: commonedge = False
|
---|
| 144 | else:
|
---|
| 145 | for edgepar in edge:
|
---|
| 146 | if isinstance(edgepar, list) or isinstance(edgepar, tuple):
|
---|
| 147 | commonedge = False
|
---|
| 148 | break
|
---|
| 149 |
|
---|
| 150 | if commonedge:
|
---|
| 151 | if len(edge) > 1:
|
---|
| 152 | norm_edge = edge
|
---|
| 153 | else:
|
---|
| 154 | norm_edge = edge + edge
|
---|
| 155 | else:
|
---|
| 156 | norm_edge = []
|
---|
| 157 | for edgepar in edge:
|
---|
| 158 | if isinstance(edgepar, int):
|
---|
| 159 | norm_edge += [edgepar, edgepar]
|
---|
| 160 | else:
|
---|
| 161 | norm_edge += edgepar
|
---|
| 162 |
|
---|
| 163 | return norm_edge
|
---|
| 164 |
|
---|
| 165 | def raise_fitting_failure_exception(e):
|
---|
| 166 | msg = "The fit failed, possibly because it didn't converge."
|
---|
| 167 | if rcParams["verbose"]:
|
---|
| 168 | asaplog.push(str(e))
|
---|
| 169 | asaplog.push(str(msg))
|
---|
| 170 | else:
|
---|
| 171 | raise RuntimeError(str(e)+'\n'+msg)
|
---|
| 172 |
|
---|
[2189] | 173 | def pack_progress_params(showprogress, minnrow):
|
---|
| 174 | return str(showprogress).lower() + ',' + str(minnrow)
|
---|
| 175 |
|
---|
[2767] | 176 | def pack_blinfo(blinfo, maxirow):
|
---|
| 177 | """\
|
---|
| 178 | convert a dictionary or a list of dictionaries of baseline info
|
---|
| 179 | into a list of comma-separated strings.
|
---|
| 180 | """
|
---|
| 181 | if isinstance(blinfo, dict):
|
---|
| 182 | res = do_pack_blinfo(blinfo, maxirow)
|
---|
| 183 | return [res] if res != '' else []
|
---|
| 184 | elif isinstance(blinfo, list) or isinstance(blinfo, tuple):
|
---|
| 185 | res = []
|
---|
| 186 | for i in xrange(len(blinfo)):
|
---|
| 187 | resi = do_pack_blinfo(blinfo[i], maxirow)
|
---|
| 188 | if resi != '':
|
---|
| 189 | res.append(resi)
|
---|
| 190 | return res
|
---|
| 191 |
|
---|
| 192 | def do_pack_blinfo(blinfo, maxirow):
|
---|
| 193 | """\
|
---|
| 194 | convert a dictionary of baseline info for a spectrum into
|
---|
| 195 | a comma-separated string.
|
---|
| 196 | """
|
---|
| 197 | dinfo = {}
|
---|
| 198 | for key in ['row', 'blfunc', 'masklist']:
|
---|
| 199 | if blinfo.has_key(key):
|
---|
| 200 | val = blinfo[key]
|
---|
| 201 | if key == 'row':
|
---|
| 202 | irow = val
|
---|
| 203 | if isinstance(val, list) or isinstance(val, tuple):
|
---|
| 204 | slval = []
|
---|
| 205 | for i in xrange(len(val)):
|
---|
| 206 | if isinstance(val[i], list) or isinstance(val[i], tuple):
|
---|
| 207 | for j in xrange(len(val[i])):
|
---|
| 208 | slval.append(str(val[i][j]))
|
---|
| 209 | else:
|
---|
| 210 | slval.append(str(val[i]))
|
---|
| 211 | sval = ",".join(slval)
|
---|
| 212 | else:
|
---|
| 213 | sval = str(val)
|
---|
| 214 |
|
---|
| 215 | dinfo[key] = sval
|
---|
| 216 | else:
|
---|
| 217 | raise ValueError("'"+key+"' is missing in blinfo.")
|
---|
| 218 |
|
---|
| 219 | if irow >= maxirow: return ''
|
---|
| 220 |
|
---|
| 221 | for key in ['order', 'npiece', 'nwave']:
|
---|
| 222 | if blinfo.has_key(key):
|
---|
| 223 | val = blinfo[key]
|
---|
| 224 | if isinstance(val, list) or isinstance(val, tuple):
|
---|
| 225 | slval = []
|
---|
| 226 | for i in xrange(len(val)):
|
---|
| 227 | slval.append(str(val[i]))
|
---|
| 228 | sval = ",".join(slval)
|
---|
| 229 | else:
|
---|
| 230 | sval = str(val)
|
---|
| 231 | dinfo[key] = sval
|
---|
| 232 |
|
---|
| 233 | blfunc = dinfo['blfunc']
|
---|
| 234 | fspec_keys = {'poly': 'order', 'chebyshev': 'order', 'cspline': 'npiece', 'sinusoid': 'nwave'}
|
---|
| 235 |
|
---|
| 236 | fspec_key = fspec_keys[blfunc]
|
---|
| 237 | if not blinfo.has_key(fspec_key):
|
---|
| 238 | raise ValueError("'"+fspec_key+"' is missing in blinfo.")
|
---|
| 239 |
|
---|
| 240 | clip_params_n = 0
|
---|
| 241 | for key in ['clipthresh', 'clipniter']:
|
---|
| 242 | if blinfo.has_key(key):
|
---|
| 243 | clip_params_n += 1
|
---|
| 244 | dinfo[key] = str(blinfo[key])
|
---|
| 245 |
|
---|
| 246 | if clip_params_n == 0:
|
---|
| 247 | dinfo['clipthresh'] = '0.0'
|
---|
| 248 | dinfo['clipniter'] = '0'
|
---|
| 249 | elif clip_params_n != 2:
|
---|
| 250 | raise ValueError("both 'clipthresh' and 'clipniter' must be given for n-sigma clipping.")
|
---|
| 251 |
|
---|
| 252 | lf_params_n = 0
|
---|
| 253 | for key in ['thresh', 'edge', 'chan_avg_limit']:
|
---|
| 254 | if blinfo.has_key(key):
|
---|
| 255 | lf_params_n += 1
|
---|
| 256 | val = blinfo[key]
|
---|
| 257 | if isinstance(val, list) or isinstance(val, tuple):
|
---|
| 258 | slval = []
|
---|
| 259 | for i in xrange(len(val)):
|
---|
| 260 | slval.append(str(val[i]))
|
---|
| 261 | sval = ",".join(slval)
|
---|
| 262 | else:
|
---|
| 263 | sval = str(val)
|
---|
| 264 | dinfo[key] = sval
|
---|
| 265 |
|
---|
| 266 | if lf_params_n == 3:
|
---|
| 267 | dinfo['use_linefinder'] = 'true'
|
---|
| 268 | elif lf_params_n == 1:
|
---|
| 269 | dinfo['use_linefinder'] = 'false'
|
---|
| 270 | dinfo['thresh'] = ''
|
---|
| 271 | dinfo['edge'] = ''
|
---|
| 272 | dinfo['chan_avg_limit'] = ''
|
---|
| 273 | else:
|
---|
| 274 | raise ValueError("all of 'thresh', 'edge' and 'chan_avg_limit' must be given to use linefinder.")
|
---|
| 275 |
|
---|
| 276 | slblinfo = [dinfo['row'], blfunc, dinfo[fspec_key], dinfo['masklist'], \
|
---|
| 277 | dinfo['clipthresh'], dinfo['clipniter'], \
|
---|
| 278 | dinfo['use_linefinder'], dinfo['thresh'], dinfo['edge'], dinfo['chan_avg_limit']]
|
---|
| 279 |
|
---|
| 280 | return ":".join(slblinfo)
|
---|
| 281 |
|
---|
| 282 | def parse_fitresult(sres):
|
---|
| 283 | """\
|
---|
| 284 | Parse the returned value of apply_bltable() or sub_baseline() and
|
---|
| 285 | extract row number, the best-fit coefficients and rms, then pack
|
---|
| 286 | them into a dictionary.
|
---|
| 287 | The input value is generated by Scantable::packFittingResults() and
|
---|
| 288 | formatted as 'row:coeff[0],coeff[1],..,coeff[n-1]:rms'.
|
---|
| 289 | """
|
---|
| 290 | res = []
|
---|
| 291 | for i in xrange(len(sres)):
|
---|
| 292 | (srow, scoeff, srms) = sres[i].split(":")
|
---|
| 293 | row = int(srow)
|
---|
| 294 | rms = float(srms)
|
---|
| 295 | lscoeff = scoeff.split(",")
|
---|
| 296 | coeff = []
|
---|
| 297 | for j in xrange(len(lscoeff)):
|
---|
| 298 | coeff.append(float(lscoeff[j]))
|
---|
| 299 | res.append({'row': row, 'coeff': coeff, 'rms': rms})
|
---|
| 300 |
|
---|
| 301 | return res
|
---|
| 302 |
|
---|
[876] | 303 | class scantable(Scantable):
|
---|
[1846] | 304 | """\
|
---|
| 305 | The ASAP container for scans (single-dish data).
|
---|
[102] | 306 | """
|
---|
[1819] | 307 |
|
---|
[1862] | 308 | @asaplog_post_dec
|
---|
[2315] | 309 | def __init__(self, filename, average=None, unit=None, parallactify=None,
|
---|
| 310 | **args):
|
---|
[1846] | 311 | """\
|
---|
[102] | 312 | Create a scantable from a saved one or make a reference
|
---|
[1846] | 313 |
|
---|
[102] | 314 | Parameters:
|
---|
[1846] | 315 |
|
---|
| 316 | filename: the name of an asap table on disk
|
---|
| 317 | or
|
---|
| 318 | the name of a rpfits/sdfits/ms file
|
---|
| 319 | (integrations within scans are auto averaged
|
---|
| 320 | and the whole file is read) or
|
---|
| 321 | [advanced] a reference to an existing scantable
|
---|
| 322 |
|
---|
| 323 | average: average all integrations withinb a scan on read.
|
---|
| 324 | The default (True) is taken from .asaprc.
|
---|
| 325 |
|
---|
[484] | 326 | unit: brightness unit; must be consistent with K or Jy.
|
---|
[1846] | 327 | Over-rides the default selected by the filler
|
---|
| 328 | (input rpfits/sdfits/ms) or replaces the value
|
---|
| 329 | in existing scantables
|
---|
| 330 |
|
---|
[1920] | 331 | antenna: for MeasurementSet input data only:
|
---|
[2349] | 332 | Antenna selection. integer (id) or string
|
---|
| 333 | (name or id).
|
---|
[1846] | 334 |
|
---|
[2349] | 335 | parallactify: Indicate that the data had been parallactified.
|
---|
| 336 | Default (false) is taken from rc file.
|
---|
[1846] | 337 |
|
---|
[2754] | 338 | getpt: Whether to import direction from MS/POINTING
|
---|
| 339 | table properly or not.
|
---|
| 340 | This is effective only when filename is MS.
|
---|
| 341 | The default (True) is to import direction
|
---|
| 342 | from MS/POINTING.
|
---|
| 343 |
|
---|
| 344 | freq_tolsr: Whether to convert frequency frame information
|
---|
| 345 | to LSRK or not.
|
---|
| 346 | This is effective only when filename is MS.
|
---|
| 347 | The default (False) is to import frequency
|
---|
| 348 | as is.
|
---|
| 349 |
|
---|
[710] | 350 | """
|
---|
[976] | 351 | if average is None:
|
---|
[710] | 352 | average = rcParams['scantable.autoaverage']
|
---|
[1593] | 353 | parallactify = parallactify or rcParams['scantable.parallactify']
|
---|
[1259] | 354 | varlist = vars()
|
---|
[876] | 355 | from asap._asap import stmath
|
---|
[1819] | 356 | self._math = stmath( rcParams['insitu'] )
|
---|
[876] | 357 | if isinstance(filename, Scantable):
|
---|
| 358 | Scantable.__init__(self, filename)
|
---|
[181] | 359 | else:
|
---|
[1697] | 360 | if isinstance(filename, str):
|
---|
[976] | 361 | filename = os.path.expandvars(filename)
|
---|
| 362 | filename = os.path.expanduser(filename)
|
---|
| 363 | if not os.path.exists(filename):
|
---|
| 364 | s = "File '%s' not found." % (filename)
|
---|
| 365 | raise IOError(s)
|
---|
[1697] | 366 | if is_scantable(filename):
|
---|
| 367 | ondisk = rcParams['scantable.storage'] == 'disk'
|
---|
| 368 | Scantable.__init__(self, filename, ondisk)
|
---|
| 369 | if unit is not None:
|
---|
| 370 | self.set_fluxunit(unit)
|
---|
[2008] | 371 | if average:
|
---|
| 372 | self._assign( self.average_time( scanav=True ) )
|
---|
[1819] | 373 | # do not reset to the default freqframe
|
---|
| 374 | #self.set_freqframe(rcParams['scantable.freqframe'])
|
---|
[1883] | 375 | elif is_ms(filename):
|
---|
[1916] | 376 | # Measurement Set
|
---|
| 377 | opts={'ms': {}}
|
---|
[2753] | 378 | mskeys=['getpt','antenna','freq_tolsr']
|
---|
[1916] | 379 | for key in mskeys:
|
---|
| 380 | if key in args.keys():
|
---|
| 381 | opts['ms'][key] = args[key]
|
---|
| 382 | self._fill([filename], unit, average, opts)
|
---|
[1893] | 383 | elif os.path.isfile(filename):
|
---|
[2761] | 384 | opts={'nro': {}}
|
---|
| 385 | nrokeys=['freqref']
|
---|
| 386 | for key in nrokeys:
|
---|
| 387 | if key in args.keys():
|
---|
| 388 | opts['nro'][key] = args[key]
|
---|
| 389 | self._fill([filename], unit, average, opts)
|
---|
[2350] | 390 | # only apply to new data not "copy constructor"
|
---|
| 391 | self.parallactify(parallactify)
|
---|
[1883] | 392 | else:
|
---|
[1819] | 393 | msg = "The given file '%s'is not a valid " \
|
---|
| 394 | "asap table." % (filename)
|
---|
[1859] | 395 | raise IOError(msg)
|
---|
[1118] | 396 | elif (isinstance(filename, list) or isinstance(filename, tuple)) \
|
---|
[976] | 397 | and isinstance(filename[-1], str):
|
---|
[1916] | 398 | self._fill(filename, unit, average)
|
---|
[1586] | 399 | self.parallactify(parallactify)
|
---|
[1259] | 400 | self._add_history("scantable", varlist)
|
---|
[102] | 401 |
|
---|
[1862] | 402 | @asaplog_post_dec
|
---|
[876] | 403 | def save(self, name=None, format=None, overwrite=False):
|
---|
[1846] | 404 | """\
|
---|
[1280] | 405 | Store the scantable on disk. This can be an asap (aips++) Table,
|
---|
| 406 | SDFITS or MS2 format.
|
---|
[1846] | 407 |
|
---|
[116] | 408 | Parameters:
|
---|
[1846] | 409 |
|
---|
[2431] | 410 | name: the name of the outputfile. For format 'ASCII'
|
---|
[1093] | 411 | this is the root file name (data in 'name'.txt
|
---|
[497] | 412 | and header in 'name'_header.txt)
|
---|
[1855] | 413 |
|
---|
[116] | 414 | format: an optional file format. Default is ASAP.
|
---|
[1855] | 415 | Allowed are:
|
---|
| 416 |
|
---|
| 417 | * 'ASAP' (save as ASAP [aips++] Table),
|
---|
| 418 | * 'SDFITS' (save as SDFITS file)
|
---|
| 419 | * 'ASCII' (saves as ascii text file)
|
---|
| 420 | * 'MS2' (saves as an casacore MeasurementSet V2)
|
---|
[2315] | 421 | * 'FITS' (save as image FITS - not readable by
|
---|
| 422 | class)
|
---|
[1855] | 423 | * 'CLASS' (save as FITS readable by CLASS)
|
---|
| 424 |
|
---|
[411] | 425 | overwrite: If the file should be overwritten if it exists.
|
---|
[256] | 426 | The default False is to return with warning
|
---|
[411] | 427 | without writing the output. USE WITH CARE.
|
---|
[1855] | 428 |
|
---|
[1846] | 429 | Example::
|
---|
| 430 |
|
---|
[116] | 431 | scan.save('myscan.asap')
|
---|
[1118] | 432 | scan.save('myscan.sdfits', 'SDFITS')
|
---|
[1846] | 433 |
|
---|
[116] | 434 | """
|
---|
[411] | 435 | from os import path
|
---|
[1593] | 436 | format = format or rcParams['scantable.save']
|
---|
[256] | 437 | suffix = '.'+format.lower()
|
---|
[1118] | 438 | if name is None or name == "":
|
---|
[256] | 439 | name = 'scantable'+suffix
|
---|
[718] | 440 | msg = "No filename given. Using default name %s..." % name
|
---|
| 441 | asaplog.push(msg)
|
---|
[411] | 442 | name = path.expandvars(name)
|
---|
[256] | 443 | if path.isfile(name) or path.isdir(name):
|
---|
| 444 | if not overwrite:
|
---|
[718] | 445 | msg = "File %s exists." % name
|
---|
[1859] | 446 | raise IOError(msg)
|
---|
[451] | 447 | format2 = format.upper()
|
---|
| 448 | if format2 == 'ASAP':
|
---|
[116] | 449 | self._save(name)
|
---|
[2029] | 450 | elif format2 == 'MS2':
|
---|
| 451 | msopt = {'ms': {'overwrite': overwrite } }
|
---|
| 452 | from asap._asap import mswriter
|
---|
| 453 | writer = mswriter( self )
|
---|
| 454 | writer.write( name, msopt )
|
---|
[116] | 455 | else:
|
---|
[989] | 456 | from asap._asap import stwriter as stw
|
---|
[1118] | 457 | writer = stw(format2)
|
---|
| 458 | writer.write(self, name)
|
---|
[116] | 459 | return
|
---|
| 460 |
|
---|
[102] | 461 | def copy(self):
|
---|
[1846] | 462 | """Return a copy of this scantable.
|
---|
| 463 |
|
---|
| 464 | *Note*:
|
---|
| 465 |
|
---|
[1348] | 466 | This makes a full (deep) copy. scan2 = scan1 makes a reference.
|
---|
[1846] | 467 |
|
---|
| 468 | Example::
|
---|
| 469 |
|
---|
[102] | 470 | copiedscan = scan.copy()
|
---|
[1846] | 471 |
|
---|
[102] | 472 | """
|
---|
[876] | 473 | sd = scantable(Scantable._copy(self))
|
---|
[113] | 474 | return sd
|
---|
| 475 |
|
---|
[1093] | 476 | def drop_scan(self, scanid=None):
|
---|
[1846] | 477 | """\
|
---|
[1093] | 478 | Return a new scantable where the specified scan number(s) has(have)
|
---|
| 479 | been dropped.
|
---|
[1846] | 480 |
|
---|
[1093] | 481 | Parameters:
|
---|
[1846] | 482 |
|
---|
[1093] | 483 | scanid: a (list of) scan number(s)
|
---|
[1846] | 484 |
|
---|
[1093] | 485 | """
|
---|
| 486 | from asap import _is_sequence_or_number as _is_valid
|
---|
| 487 | from asap import _to_list
|
---|
| 488 | from asap import unique
|
---|
| 489 | if not _is_valid(scanid):
|
---|
[2315] | 490 | raise RuntimeError( 'Please specify a scanno to drop from the'
|
---|
| 491 | ' scantable' )
|
---|
[1859] | 492 | scanid = _to_list(scanid)
|
---|
| 493 | allscans = unique([ self.getscan(i) for i in range(self.nrow())])
|
---|
| 494 | for sid in scanid: allscans.remove(sid)
|
---|
| 495 | if len(allscans) == 0:
|
---|
| 496 | raise ValueError("Can't remove all scans")
|
---|
| 497 | sel = selector(scans=allscans)
|
---|
| 498 | return self._select_copy(sel)
|
---|
[1093] | 499 |
|
---|
[1594] | 500 | def _select_copy(self, selection):
|
---|
| 501 | orig = self.get_selection()
|
---|
| 502 | self.set_selection(orig+selection)
|
---|
| 503 | cp = self.copy()
|
---|
| 504 | self.set_selection(orig)
|
---|
| 505 | return cp
|
---|
| 506 |
|
---|
[102] | 507 | def get_scan(self, scanid=None):
|
---|
[1855] | 508 | """\
|
---|
[102] | 509 | Return a specific scan (by scanno) or collection of scans (by
|
---|
| 510 | source name) in a new scantable.
|
---|
[1846] | 511 |
|
---|
| 512 | *Note*:
|
---|
| 513 |
|
---|
[1348] | 514 | See scantable.drop_scan() for the inverse operation.
|
---|
[1846] | 515 |
|
---|
[102] | 516 | Parameters:
|
---|
[1846] | 517 |
|
---|
[513] | 518 | scanid: a (list of) scanno or a source name, unix-style
|
---|
| 519 | patterns are accepted for source name matching, e.g.
|
---|
| 520 | '*_R' gets all 'ref scans
|
---|
[1846] | 521 |
|
---|
| 522 | Example::
|
---|
| 523 |
|
---|
[513] | 524 | # get all scans containing the source '323p459'
|
---|
| 525 | newscan = scan.get_scan('323p459')
|
---|
| 526 | # get all 'off' scans
|
---|
| 527 | refscans = scan.get_scan('*_R')
|
---|
| 528 | # get a susbset of scans by scanno (as listed in scan.summary())
|
---|
[1118] | 529 | newscan = scan.get_scan([0, 2, 7, 10])
|
---|
[1846] | 530 |
|
---|
[102] | 531 | """
|
---|
| 532 | if scanid is None:
|
---|
[1859] | 533 | raise RuntimeError( 'Please specify a scan no or name to '
|
---|
| 534 | 'retrieve from the scantable' )
|
---|
[102] | 535 | try:
|
---|
[946] | 536 | bsel = self.get_selection()
|
---|
| 537 | sel = selector()
|
---|
[102] | 538 | if type(scanid) is str:
|
---|
[946] | 539 | sel.set_name(scanid)
|
---|
[1594] | 540 | return self._select_copy(sel)
|
---|
[102] | 541 | elif type(scanid) is int:
|
---|
[946] | 542 | sel.set_scans([scanid])
|
---|
[1594] | 543 | return self._select_copy(sel)
|
---|
[381] | 544 | elif type(scanid) is list:
|
---|
[946] | 545 | sel.set_scans(scanid)
|
---|
[1594] | 546 | return self._select_copy(sel)
|
---|
[381] | 547 | else:
|
---|
[718] | 548 | msg = "Illegal scanid type, use 'int' or 'list' if ints."
|
---|
[1859] | 549 | raise TypeError(msg)
|
---|
[102] | 550 | except RuntimeError:
|
---|
[1859] | 551 | raise
|
---|
[102] | 552 |
|
---|
| 553 | def __str__(self):
|
---|
[2315] | 554 | tempFile = tempfile.NamedTemporaryFile()
|
---|
| 555 | Scantable._summary(self, tempFile.name)
|
---|
| 556 | tempFile.seek(0)
|
---|
| 557 | asaplog.clear()
|
---|
| 558 | return tempFile.file.read()
|
---|
[102] | 559 |
|
---|
[2315] | 560 | @asaplog_post_dec
|
---|
[976] | 561 | def summary(self, filename=None):
|
---|
[1846] | 562 | """\
|
---|
[102] | 563 | Print a summary of the contents of this scantable.
|
---|
[1846] | 564 |
|
---|
[102] | 565 | Parameters:
|
---|
[1846] | 566 |
|
---|
[1931] | 567 | filename: the name of a file to write the putput to
|
---|
[102] | 568 | Default - no file output
|
---|
[1846] | 569 |
|
---|
[102] | 570 | """
|
---|
| 571 | if filename is not None:
|
---|
[256] | 572 | if filename is "":
|
---|
| 573 | filename = 'scantable_summary.txt'
|
---|
[415] | 574 | from os.path import expandvars, isdir
|
---|
[411] | 575 | filename = expandvars(filename)
|
---|
[2286] | 576 | if isdir(filename):
|
---|
[718] | 577 | msg = "Illegal file name '%s'." % (filename)
|
---|
[1859] | 578 | raise IOError(msg)
|
---|
[2286] | 579 | else:
|
---|
| 580 | filename = ""
|
---|
| 581 | Scantable._summary(self, filename)
|
---|
[710] | 582 |
|
---|
[1512] | 583 | def get_spectrum(self, rowno):
|
---|
[1471] | 584 | """Return the spectrum for the current row in the scantable as a list.
|
---|
[1846] | 585 |
|
---|
[1471] | 586 | Parameters:
|
---|
[1846] | 587 |
|
---|
[1573] | 588 | rowno: the row number to retrieve the spectrum from
|
---|
[1846] | 589 |
|
---|
[1471] | 590 | """
|
---|
| 591 | return self._getspectrum(rowno)
|
---|
[946] | 592 |
|
---|
[1471] | 593 | def get_mask(self, rowno):
|
---|
| 594 | """Return the mask for the current row in the scantable as a list.
|
---|
[1846] | 595 |
|
---|
[1471] | 596 | Parameters:
|
---|
[1846] | 597 |
|
---|
[1573] | 598 | rowno: the row number to retrieve the mask from
|
---|
[1846] | 599 |
|
---|
[1471] | 600 | """
|
---|
| 601 | return self._getmask(rowno)
|
---|
| 602 |
|
---|
| 603 | def set_spectrum(self, spec, rowno):
|
---|
[1938] | 604 | """Set the spectrum for the current row in the scantable.
|
---|
[1846] | 605 |
|
---|
[1471] | 606 | Parameters:
|
---|
[1846] | 607 |
|
---|
[1855] | 608 | spec: the new spectrum
|
---|
[1846] | 609 |
|
---|
[1855] | 610 | rowno: the row number to set the spectrum for
|
---|
| 611 |
|
---|
[1471] | 612 | """
|
---|
[2348] | 613 | assert(len(spec) == self.nchan(self.getif(rowno)))
|
---|
[1471] | 614 | return self._setspectrum(spec, rowno)
|
---|
| 615 |
|
---|
[1600] | 616 | def get_coordinate(self, rowno):
|
---|
| 617 | """Return the (spectral) coordinate for a a given 'rowno'.
|
---|
[1846] | 618 |
|
---|
| 619 | *Note*:
|
---|
| 620 |
|
---|
[1600] | 621 | * This coordinate is only valid until a scantable method modifies
|
---|
| 622 | the frequency axis.
|
---|
| 623 | * This coordinate does contain the original frequency set-up
|
---|
| 624 | NOT the new frame. The conversions however are done using the user
|
---|
| 625 | specified frame (e.g. LSRK/TOPO). To get the 'real' coordinate,
|
---|
| 626 | use scantable.freq_align first. Without it there is no closure,
|
---|
[1846] | 627 | i.e.::
|
---|
[1600] | 628 |
|
---|
[1846] | 629 | c = myscan.get_coordinate(0)
|
---|
| 630 | c.to_frequency(c.get_reference_pixel()) != c.get_reference_value()
|
---|
| 631 |
|
---|
[1600] | 632 | Parameters:
|
---|
[1846] | 633 |
|
---|
[1600] | 634 | rowno: the row number for the spectral coordinate
|
---|
| 635 |
|
---|
| 636 | """
|
---|
| 637 | return coordinate(Scantable.get_coordinate(self, rowno))
|
---|
| 638 |
|
---|
[946] | 639 | def get_selection(self):
|
---|
[1846] | 640 | """\
|
---|
[1005] | 641 | Get the selection object currently set on this scantable.
|
---|
[1846] | 642 |
|
---|
| 643 | Example::
|
---|
| 644 |
|
---|
[1005] | 645 | sel = scan.get_selection()
|
---|
| 646 | sel.set_ifs(0) # select IF 0
|
---|
| 647 | scan.set_selection(sel) # apply modified selection
|
---|
[1846] | 648 |
|
---|
[946] | 649 | """
|
---|
| 650 | return selector(self._getselection())
|
---|
| 651 |
|
---|
[1576] | 652 | def set_selection(self, selection=None, **kw):
|
---|
[1846] | 653 | """\
|
---|
[1005] | 654 | Select a subset of the data. All following operations on this scantable
|
---|
| 655 | are only applied to thi selection.
|
---|
[1846] | 656 |
|
---|
[1005] | 657 | Parameters:
|
---|
[1697] | 658 |
|
---|
[1846] | 659 | selection: a selector object (default unset the selection), or
|
---|
[2431] | 660 | any combination of 'pols', 'ifs', 'beams', 'scans',
|
---|
| 661 | 'cycles', 'name', 'query'
|
---|
[1697] | 662 |
|
---|
[1846] | 663 | Examples::
|
---|
[1697] | 664 |
|
---|
[1005] | 665 | sel = selector() # create a selection object
|
---|
[1118] | 666 | self.set_scans([0, 3]) # select SCANNO 0 and 3
|
---|
[1005] | 667 | scan.set_selection(sel) # set the selection
|
---|
| 668 | scan.summary() # will only print summary of scanno 0 an 3
|
---|
| 669 | scan.set_selection() # unset the selection
|
---|
[1697] | 670 | # or the equivalent
|
---|
| 671 | scan.set_selection(scans=[0,3])
|
---|
| 672 | scan.summary() # will only print summary of scanno 0 an 3
|
---|
| 673 | scan.set_selection() # unset the selection
|
---|
[1846] | 674 |
|
---|
[946] | 675 | """
|
---|
[1576] | 676 | if selection is None:
|
---|
| 677 | # reset
|
---|
| 678 | if len(kw) == 0:
|
---|
| 679 | selection = selector()
|
---|
| 680 | else:
|
---|
| 681 | # try keywords
|
---|
| 682 | for k in kw:
|
---|
| 683 | if k not in selector.fields:
|
---|
[2320] | 684 | raise KeyError("Invalid selection key '%s', "
|
---|
| 685 | "valid keys are %s" % (k,
|
---|
| 686 | selector.fields))
|
---|
[1576] | 687 | selection = selector(**kw)
|
---|
[946] | 688 | self._setselection(selection)
|
---|
| 689 |
|
---|
[1819] | 690 | def get_row(self, row=0, insitu=None):
|
---|
[1846] | 691 | """\
|
---|
[1819] | 692 | Select a row in the scantable.
|
---|
| 693 | Return a scantable with single row.
|
---|
[1846] | 694 |
|
---|
[1819] | 695 | Parameters:
|
---|
[1846] | 696 |
|
---|
| 697 | row: row no of integration, default is 0.
|
---|
| 698 | insitu: if False a new scantable is returned. Otherwise, the
|
---|
| 699 | scaling is done in-situ. The default is taken from .asaprc
|
---|
| 700 | (False)
|
---|
| 701 |
|
---|
[1819] | 702 | """
|
---|
[2349] | 703 | if insitu is None:
|
---|
| 704 | insitu = rcParams['insitu']
|
---|
[1819] | 705 | if not insitu:
|
---|
| 706 | workscan = self.copy()
|
---|
| 707 | else:
|
---|
| 708 | workscan = self
|
---|
| 709 | # Select a row
|
---|
[2349] | 710 | sel = selector()
|
---|
[1992] | 711 | sel.set_rows([row])
|
---|
[1819] | 712 | workscan.set_selection(sel)
|
---|
| 713 | if not workscan.nrow() == 1:
|
---|
[2349] | 714 | msg = "Could not identify single row. %d rows selected." \
|
---|
| 715 | % (workscan.nrow())
|
---|
[1819] | 716 | raise RuntimeError(msg)
|
---|
| 717 | if insitu:
|
---|
| 718 | self._assign(workscan)
|
---|
| 719 | else:
|
---|
| 720 | return workscan
|
---|
| 721 |
|
---|
[1862] | 722 | @asaplog_post_dec
|
---|
[1907] | 723 | def stats(self, stat='stddev', mask=None, form='3.3f', row=None):
|
---|
[1846] | 724 | """\
|
---|
[135] | 725 | Determine the specified statistic of the current beam/if/pol
|
---|
[102] | 726 | Takes a 'mask' as an optional parameter to specify which
|
---|
| 727 | channels should be excluded.
|
---|
[1846] | 728 |
|
---|
[102] | 729 | Parameters:
|
---|
[1846] | 730 |
|
---|
[1819] | 731 | stat: 'min', 'max', 'min_abc', 'max_abc', 'sumsq', 'sum',
|
---|
| 732 | 'mean', 'var', 'stddev', 'avdev', 'rms', 'median'
|
---|
[1855] | 733 |
|
---|
[135] | 734 | mask: an optional mask specifying where the statistic
|
---|
[102] | 735 | should be determined.
|
---|
[1855] | 736 |
|
---|
[1819] | 737 | form: format string to print statistic values
|
---|
[1846] | 738 |
|
---|
[1907] | 739 | row: row number of spectrum to process.
|
---|
| 740 | (default is None: for all rows)
|
---|
[1846] | 741 |
|
---|
[1907] | 742 | Example:
|
---|
[113] | 743 | scan.set_unit('channel')
|
---|
[1118] | 744 | msk = scan.create_mask([100, 200], [500, 600])
|
---|
[135] | 745 | scan.stats(stat='mean', mask=m)
|
---|
[1846] | 746 |
|
---|
[102] | 747 | """
|
---|
[1593] | 748 | mask = mask or []
|
---|
[876] | 749 | if not self._check_ifs():
|
---|
[1118] | 750 | raise ValueError("Cannot apply mask as the IFs have different "
|
---|
| 751 | "number of channels. Please use setselection() "
|
---|
| 752 | "to select individual IFs")
|
---|
[1819] | 753 | rtnabc = False
|
---|
| 754 | if stat.lower().endswith('_abc'): rtnabc = True
|
---|
| 755 | getchan = False
|
---|
| 756 | if stat.lower().startswith('min') or stat.lower().startswith('max'):
|
---|
| 757 | chan = self._math._minmaxchan(self, mask, stat)
|
---|
| 758 | getchan = True
|
---|
| 759 | statvals = []
|
---|
[1907] | 760 | if not rtnabc:
|
---|
| 761 | if row == None:
|
---|
| 762 | statvals = self._math._stats(self, mask, stat)
|
---|
| 763 | else:
|
---|
| 764 | statvals = self._math._statsrow(self, mask, stat, int(row))
|
---|
[256] | 765 |
|
---|
[1819] | 766 | #def cb(i):
|
---|
| 767 | # return statvals[i]
|
---|
[256] | 768 |
|
---|
[1819] | 769 | #return self._row_callback(cb, stat)
|
---|
[102] | 770 |
|
---|
[1819] | 771 | label=stat
|
---|
| 772 | #callback=cb
|
---|
| 773 | out = ""
|
---|
| 774 | #outvec = []
|
---|
| 775 | sep = '-'*50
|
---|
[1907] | 776 |
|
---|
| 777 | if row == None:
|
---|
| 778 | rows = xrange(self.nrow())
|
---|
| 779 | elif isinstance(row, int):
|
---|
| 780 | rows = [ row ]
|
---|
| 781 |
|
---|
| 782 | for i in rows:
|
---|
[1819] | 783 | refstr = ''
|
---|
| 784 | statunit= ''
|
---|
| 785 | if getchan:
|
---|
| 786 | qx, qy = self.chan2data(rowno=i, chan=chan[i])
|
---|
| 787 | if rtnabc:
|
---|
| 788 | statvals.append(qx['value'])
|
---|
| 789 | refstr = ('(value: %'+form) % (qy['value'])+' ['+qy['unit']+'])'
|
---|
| 790 | statunit= '['+qx['unit']+']'
|
---|
| 791 | else:
|
---|
| 792 | refstr = ('(@ %'+form) % (qx['value'])+' ['+qx['unit']+'])'
|
---|
| 793 |
|
---|
| 794 | tm = self._gettime(i)
|
---|
| 795 | src = self._getsourcename(i)
|
---|
| 796 | out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
|
---|
| 797 | out += 'Time[%s]:\n' % (tm)
|
---|
[1907] | 798 | if self.nbeam(-1) > 1: out += ' Beam[%d] ' % (self.getbeam(i))
|
---|
| 799 | if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
|
---|
| 800 | if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
|
---|
[1819] | 801 | #outvec.append(callback(i))
|
---|
[1907] | 802 | if len(rows) > 1:
|
---|
| 803 | # out += ('= %'+form) % (outvec[i]) +' '+refstr+'\n'
|
---|
| 804 | out += ('= %'+form) % (statvals[i]) +' '+refstr+'\n'
|
---|
| 805 | else:
|
---|
| 806 | # out += ('= %'+form) % (outvec[0]) +' '+refstr+'\n'
|
---|
| 807 | out += ('= %'+form) % (statvals[0]) +' '+refstr+'\n'
|
---|
[1819] | 808 | out += sep+"\n"
|
---|
| 809 |
|
---|
[1859] | 810 | import os
|
---|
| 811 | if os.environ.has_key( 'USER' ):
|
---|
| 812 | usr = os.environ['USER']
|
---|
| 813 | else:
|
---|
| 814 | import commands
|
---|
| 815 | usr = commands.getoutput( 'whoami' )
|
---|
| 816 | tmpfile = '/tmp/tmp_'+usr+'_casapy_asap_scantable_stats'
|
---|
| 817 | f = open(tmpfile,'w')
|
---|
| 818 | print >> f, sep
|
---|
| 819 | print >> f, ' %s %s' % (label, statunit)
|
---|
| 820 | print >> f, sep
|
---|
| 821 | print >> f, out
|
---|
| 822 | f.close()
|
---|
| 823 | f = open(tmpfile,'r')
|
---|
| 824 | x = f.readlines()
|
---|
| 825 | f.close()
|
---|
| 826 | asaplog.push(''.join(x), False)
|
---|
| 827 |
|
---|
[1819] | 828 | return statvals
|
---|
| 829 |
|
---|
| 830 | def chan2data(self, rowno=0, chan=0):
|
---|
[1846] | 831 | """\
|
---|
[1819] | 832 | Returns channel/frequency/velocity and spectral value
|
---|
| 833 | at an arbitrary row and channel in the scantable.
|
---|
[1846] | 834 |
|
---|
[1819] | 835 | Parameters:
|
---|
[1846] | 836 |
|
---|
[1819] | 837 | rowno: a row number in the scantable. Default is the
|
---|
| 838 | first row, i.e. rowno=0
|
---|
[1855] | 839 |
|
---|
[1819] | 840 | chan: a channel in the scantable. Default is the first
|
---|
| 841 | channel, i.e. pos=0
|
---|
[1846] | 842 |
|
---|
[1819] | 843 | """
|
---|
| 844 | if isinstance(rowno, int) and isinstance(chan, int):
|
---|
| 845 | qx = {'unit': self.get_unit(),
|
---|
| 846 | 'value': self._getabcissa(rowno)[chan]}
|
---|
| 847 | qy = {'unit': self.get_fluxunit(),
|
---|
| 848 | 'value': self._getspectrum(rowno)[chan]}
|
---|
| 849 | return qx, qy
|
---|
| 850 |
|
---|
[1118] | 851 | def stddev(self, mask=None):
|
---|
[1846] | 852 | """\
|
---|
[135] | 853 | Determine the standard deviation of the current beam/if/pol
|
---|
| 854 | Takes a 'mask' as an optional parameter to specify which
|
---|
| 855 | channels should be excluded.
|
---|
[1846] | 856 |
|
---|
[135] | 857 | Parameters:
|
---|
[1846] | 858 |
|
---|
[135] | 859 | mask: an optional mask specifying where the standard
|
---|
| 860 | deviation should be determined.
|
---|
| 861 |
|
---|
[1846] | 862 | Example::
|
---|
| 863 |
|
---|
[135] | 864 | scan.set_unit('channel')
|
---|
[1118] | 865 | msk = scan.create_mask([100, 200], [500, 600])
|
---|
[135] | 866 | scan.stddev(mask=m)
|
---|
[1846] | 867 |
|
---|
[135] | 868 | """
|
---|
[1118] | 869 | return self.stats(stat='stddev', mask=mask);
|
---|
[135] | 870 |
|
---|
[1003] | 871 |
|
---|
[1259] | 872 | def get_column_names(self):
|
---|
[1846] | 873 | """\
|
---|
[1003] | 874 | Return a list of column names, which can be used for selection.
|
---|
| 875 | """
|
---|
[1259] | 876 | return list(Scantable.get_column_names(self))
|
---|
[1003] | 877 |
|
---|
[1730] | 878 | def get_tsys(self, row=-1):
|
---|
[1846] | 879 | """\
|
---|
[113] | 880 | Return the System temperatures.
|
---|
[1846] | 881 |
|
---|
| 882 | Parameters:
|
---|
| 883 |
|
---|
| 884 | row: the rowno to get the information for. (default all rows)
|
---|
| 885 |
|
---|
[113] | 886 | Returns:
|
---|
[1846] | 887 |
|
---|
[876] | 888 | a list of Tsys values for the current selection
|
---|
[1846] | 889 |
|
---|
[113] | 890 | """
|
---|
[1730] | 891 | if row > -1:
|
---|
| 892 | return self._get_column(self._gettsys, row)
|
---|
[876] | 893 | return self._row_callback(self._gettsys, "Tsys")
|
---|
[256] | 894 |
|
---|
[2406] | 895 | def get_tsysspectrum(self, row=-1):
|
---|
| 896 | """\
|
---|
| 897 | Return the channel dependent system temperatures.
|
---|
[1730] | 898 |
|
---|
[2406] | 899 | Parameters:
|
---|
| 900 |
|
---|
| 901 | row: the rowno to get the information for. (default all rows)
|
---|
| 902 |
|
---|
| 903 | Returns:
|
---|
| 904 |
|
---|
| 905 | a list of Tsys values for the current selection
|
---|
| 906 |
|
---|
| 907 | """
|
---|
| 908 | return self._get_column( self._gettsysspectrum, row )
|
---|
| 909 |
|
---|
[1730] | 910 | def get_weather(self, row=-1):
|
---|
[1846] | 911 | """\
|
---|
| 912 | Return the weather informations.
|
---|
| 913 |
|
---|
| 914 | Parameters:
|
---|
| 915 |
|
---|
| 916 | row: the rowno to get the information for. (default all rows)
|
---|
| 917 |
|
---|
| 918 | Returns:
|
---|
| 919 |
|
---|
| 920 | a dict or list of of dicts of values for the current selection
|
---|
| 921 |
|
---|
| 922 | """
|
---|
| 923 |
|
---|
[1730] | 924 | values = self._get_column(self._get_weather, row)
|
---|
| 925 | if row > -1:
|
---|
| 926 | return {'temperature': values[0],
|
---|
| 927 | 'pressure': values[1], 'humidity' : values[2],
|
---|
| 928 | 'windspeed' : values[3], 'windaz' : values[4]
|
---|
| 929 | }
|
---|
| 930 | else:
|
---|
| 931 | out = []
|
---|
| 932 | for r in values:
|
---|
| 933 |
|
---|
| 934 | out.append({'temperature': r[0],
|
---|
| 935 | 'pressure': r[1], 'humidity' : r[2],
|
---|
| 936 | 'windspeed' : r[3], 'windaz' : r[4]
|
---|
| 937 | })
|
---|
| 938 | return out
|
---|
| 939 |
|
---|
[876] | 940 | def _row_callback(self, callback, label):
|
---|
| 941 | out = ""
|
---|
[1118] | 942 | outvec = []
|
---|
[1590] | 943 | sep = '-'*50
|
---|
[876] | 944 | for i in range(self.nrow()):
|
---|
| 945 | tm = self._gettime(i)
|
---|
| 946 | src = self._getsourcename(i)
|
---|
[1590] | 947 | out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
|
---|
[876] | 948 | out += 'Time[%s]:\n' % (tm)
|
---|
[1590] | 949 | if self.nbeam(-1) > 1:
|
---|
| 950 | out += ' Beam[%d] ' % (self.getbeam(i))
|
---|
| 951 | if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
|
---|
| 952 | if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
|
---|
[876] | 953 | outvec.append(callback(i))
|
---|
| 954 | out += '= %3.3f\n' % (outvec[i])
|
---|
[1590] | 955 | out += sep+'\n'
|
---|
[1859] | 956 |
|
---|
| 957 | asaplog.push(sep)
|
---|
| 958 | asaplog.push(" %s" % (label))
|
---|
| 959 | asaplog.push(sep)
|
---|
| 960 | asaplog.push(out)
|
---|
[1861] | 961 | asaplog.post()
|
---|
[1175] | 962 | return outvec
|
---|
[256] | 963 |
|
---|
[1947] | 964 | def _get_column(self, callback, row=-1, *args):
|
---|
[1070] | 965 | """
|
---|
| 966 | """
|
---|
| 967 | if row == -1:
|
---|
[1947] | 968 | return [callback(i, *args) for i in range(self.nrow())]
|
---|
[1070] | 969 | else:
|
---|
[1819] | 970 | if 0 <= row < self.nrow():
|
---|
[1947] | 971 | return callback(row, *args)
|
---|
[256] | 972 |
|
---|
[1070] | 973 |
|
---|
[1948] | 974 | def get_time(self, row=-1, asdatetime=False, prec=-1):
|
---|
[1846] | 975 | """\
|
---|
[113] | 976 | Get a list of time stamps for the observations.
|
---|
[1938] | 977 | Return a datetime object or a string (default) for each
|
---|
| 978 | integration time stamp in the scantable.
|
---|
[1846] | 979 |
|
---|
[113] | 980 | Parameters:
|
---|
[1846] | 981 |
|
---|
[1348] | 982 | row: row no of integration. Default -1 return all rows
|
---|
[1855] | 983 |
|
---|
[1348] | 984 | asdatetime: return values as datetime objects rather than strings
|
---|
[1846] | 985 |
|
---|
[2349] | 986 | prec: number of digits shown. Default -1 to automatic
|
---|
| 987 | calculation.
|
---|
[1948] | 988 | Note this number is equals to the digits of MVTime,
|
---|
| 989 | i.e., 0<prec<3: dates with hh:: only,
|
---|
| 990 | <5: with hh:mm:, <7 or 0: with hh:mm:ss,
|
---|
[1947] | 991 | and 6> : with hh:mm:ss.tt... (prec-6 t's added)
|
---|
| 992 |
|
---|
[113] | 993 | """
|
---|
[1175] | 994 | from datetime import datetime
|
---|
[1948] | 995 | if prec < 0:
|
---|
| 996 | # automagically set necessary precision +1
|
---|
[2349] | 997 | prec = 7 - \
|
---|
| 998 | numpy.floor(numpy.log10(numpy.min(self.get_inttime(row))))
|
---|
[1948] | 999 | prec = max(6, int(prec))
|
---|
| 1000 | else:
|
---|
| 1001 | prec = max(0, prec)
|
---|
| 1002 | if asdatetime:
|
---|
| 1003 | #precision can be 1 millisecond at max
|
---|
| 1004 | prec = min(12, prec)
|
---|
| 1005 |
|
---|
[1947] | 1006 | times = self._get_column(self._gettime, row, prec)
|
---|
[1348] | 1007 | if not asdatetime:
|
---|
[1392] | 1008 | return times
|
---|
[1947] | 1009 | format = "%Y/%m/%d/%H:%M:%S.%f"
|
---|
| 1010 | if prec < 7:
|
---|
| 1011 | nsub = 1 + (((6-prec)/2) % 3)
|
---|
| 1012 | substr = [".%f","%S","%M"]
|
---|
| 1013 | for i in range(nsub):
|
---|
| 1014 | format = format.replace(substr[i],"")
|
---|
[1175] | 1015 | if isinstance(times, list):
|
---|
[1947] | 1016 | return [datetime.strptime(i, format) for i in times]
|
---|
[1175] | 1017 | else:
|
---|
[1947] | 1018 | return datetime.strptime(times, format)
|
---|
[102] | 1019 |
|
---|
[1348] | 1020 |
|
---|
| 1021 | def get_inttime(self, row=-1):
|
---|
[1846] | 1022 | """\
|
---|
[1348] | 1023 | Get a list of integration times for the observations.
|
---|
| 1024 | Return a time in seconds for each integration in the scantable.
|
---|
[1846] | 1025 |
|
---|
[1348] | 1026 | Parameters:
|
---|
[1846] | 1027 |
|
---|
[1348] | 1028 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 1029 |
|
---|
[1348] | 1030 | """
|
---|
[1573] | 1031 | return self._get_column(self._getinttime, row)
|
---|
[1348] | 1032 |
|
---|
[1573] | 1033 |
|
---|
[714] | 1034 | def get_sourcename(self, row=-1):
|
---|
[1846] | 1035 | """\
|
---|
[794] | 1036 | Get a list source names for the observations.
|
---|
[714] | 1037 | Return a string for each integration in the scantable.
|
---|
| 1038 | Parameters:
|
---|
[1846] | 1039 |
|
---|
[1348] | 1040 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 1041 |
|
---|
[714] | 1042 | """
|
---|
[1070] | 1043 | return self._get_column(self._getsourcename, row)
|
---|
[714] | 1044 |
|
---|
[794] | 1045 | def get_elevation(self, row=-1):
|
---|
[1846] | 1046 | """\
|
---|
[794] | 1047 | Get a list of elevations for the observations.
|
---|
| 1048 | Return a float for each integration in the scantable.
|
---|
[1846] | 1049 |
|
---|
[794] | 1050 | Parameters:
|
---|
[1846] | 1051 |
|
---|
[1348] | 1052 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 1053 |
|
---|
[794] | 1054 | """
|
---|
[1070] | 1055 | return self._get_column(self._getelevation, row)
|
---|
[794] | 1056 |
|
---|
| 1057 | def get_azimuth(self, row=-1):
|
---|
[1846] | 1058 | """\
|
---|
[794] | 1059 | Get a list of azimuths for the observations.
|
---|
| 1060 | Return a float for each integration in the scantable.
|
---|
[1846] | 1061 |
|
---|
[794] | 1062 | Parameters:
|
---|
[1348] | 1063 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 1064 |
|
---|
[794] | 1065 | """
|
---|
[1070] | 1066 | return self._get_column(self._getazimuth, row)
|
---|
[794] | 1067 |
|
---|
| 1068 | def get_parangle(self, row=-1):
|
---|
[1846] | 1069 | """\
|
---|
[794] | 1070 | Get a list of parallactic angles for the observations.
|
---|
| 1071 | Return a float for each integration in the scantable.
|
---|
[1846] | 1072 |
|
---|
[794] | 1073 | Parameters:
|
---|
[1846] | 1074 |
|
---|
[1348] | 1075 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 1076 |
|
---|
[794] | 1077 | """
|
---|
[1070] | 1078 | return self._get_column(self._getparangle, row)
|
---|
[794] | 1079 |
|
---|
[1070] | 1080 | def get_direction(self, row=-1):
|
---|
| 1081 | """
|
---|
| 1082 | Get a list of Positions on the sky (direction) for the observations.
|
---|
[1594] | 1083 | Return a string for each integration in the scantable.
|
---|
[1855] | 1084 |
|
---|
[1070] | 1085 | Parameters:
|
---|
[1855] | 1086 |
|
---|
[1070] | 1087 | row: row no of integration. Default -1 return all rows
|
---|
[1855] | 1088 |
|
---|
[1070] | 1089 | """
|
---|
| 1090 | return self._get_column(self._getdirection, row)
|
---|
| 1091 |
|
---|
[1391] | 1092 | def get_directionval(self, row=-1):
|
---|
[1846] | 1093 | """\
|
---|
[1391] | 1094 | Get a list of Positions on the sky (direction) for the observations.
|
---|
| 1095 | Return a float for each integration in the scantable.
|
---|
[1846] | 1096 |
|
---|
[1391] | 1097 | Parameters:
|
---|
[1846] | 1098 |
|
---|
[1391] | 1099 | row: row no of integration. Default -1 return all rows
|
---|
[1846] | 1100 |
|
---|
[1391] | 1101 | """
|
---|
| 1102 | return self._get_column(self._getdirectionvec, row)
|
---|
| 1103 |
|
---|
[1862] | 1104 | @asaplog_post_dec
|
---|
[102] | 1105 | def set_unit(self, unit='channel'):
|
---|
[1846] | 1106 | """\
|
---|
[102] | 1107 | Set the unit for all following operations on this scantable
|
---|
[1846] | 1108 |
|
---|
[102] | 1109 | Parameters:
|
---|
[1846] | 1110 |
|
---|
| 1111 | unit: optional unit, default is 'channel'. Use one of '*Hz',
|
---|
| 1112 | 'km/s', 'channel' or equivalent ''
|
---|
| 1113 |
|
---|
[102] | 1114 | """
|
---|
[484] | 1115 | varlist = vars()
|
---|
[1118] | 1116 | if unit in ['', 'pixel', 'channel']:
|
---|
[113] | 1117 | unit = ''
|
---|
| 1118 | inf = list(self._getcoordinfo())
|
---|
| 1119 | inf[0] = unit
|
---|
| 1120 | self._setcoordinfo(inf)
|
---|
[1118] | 1121 | self._add_history("set_unit", varlist)
|
---|
[113] | 1122 |
|
---|
[1862] | 1123 | @asaplog_post_dec
|
---|
[484] | 1124 | def set_instrument(self, instr):
|
---|
[1846] | 1125 | """\
|
---|
[1348] | 1126 | Set the instrument for subsequent processing.
|
---|
[1846] | 1127 |
|
---|
[358] | 1128 | Parameters:
|
---|
[1846] | 1129 |
|
---|
[710] | 1130 | instr: Select from 'ATPKSMB', 'ATPKSHOH', 'ATMOPRA',
|
---|
[407] | 1131 | 'DSS-43' (Tid), 'CEDUNA', and 'HOBART'
|
---|
[1846] | 1132 |
|
---|
[358] | 1133 | """
|
---|
| 1134 | self._setInstrument(instr)
|
---|
[1118] | 1135 | self._add_history("set_instument", vars())
|
---|
[358] | 1136 |
|
---|
[1862] | 1137 | @asaplog_post_dec
|
---|
[1190] | 1138 | def set_feedtype(self, feedtype):
|
---|
[1846] | 1139 | """\
|
---|
[1190] | 1140 | Overwrite the feed type, which might not be set correctly.
|
---|
[1846] | 1141 |
|
---|
[1190] | 1142 | Parameters:
|
---|
[1846] | 1143 |
|
---|
[1190] | 1144 | feedtype: 'linear' or 'circular'
|
---|
[1846] | 1145 |
|
---|
[1190] | 1146 | """
|
---|
| 1147 | self._setfeedtype(feedtype)
|
---|
| 1148 | self._add_history("set_feedtype", vars())
|
---|
| 1149 |
|
---|
[1862] | 1150 | @asaplog_post_dec
|
---|
[276] | 1151 | def set_doppler(self, doppler='RADIO'):
|
---|
[1846] | 1152 | """\
|
---|
[276] | 1153 | Set the doppler for all following operations on this scantable.
|
---|
[1846] | 1154 |
|
---|
[276] | 1155 | Parameters:
|
---|
[1846] | 1156 |
|
---|
[276] | 1157 | doppler: One of 'RADIO', 'OPTICAL', 'Z', 'BETA', 'GAMMA'
|
---|
[1846] | 1158 |
|
---|
[276] | 1159 | """
|
---|
[484] | 1160 | varlist = vars()
|
---|
[276] | 1161 | inf = list(self._getcoordinfo())
|
---|
| 1162 | inf[2] = doppler
|
---|
| 1163 | self._setcoordinfo(inf)
|
---|
[1118] | 1164 | self._add_history("set_doppler", vars())
|
---|
[710] | 1165 |
|
---|
[1862] | 1166 | @asaplog_post_dec
|
---|
[226] | 1167 | def set_freqframe(self, frame=None):
|
---|
[1846] | 1168 | """\
|
---|
[113] | 1169 | Set the frame type of the Spectral Axis.
|
---|
[1846] | 1170 |
|
---|
[113] | 1171 | Parameters:
|
---|
[1846] | 1172 |
|
---|
[591] | 1173 | frame: an optional frame type, default 'LSRK'. Valid frames are:
|
---|
[1819] | 1174 | 'TOPO', 'LSRD', 'LSRK', 'BARY',
|
---|
[1118] | 1175 | 'GEO', 'GALACTO', 'LGROUP', 'CMB'
|
---|
[1846] | 1176 |
|
---|
| 1177 | Example::
|
---|
| 1178 |
|
---|
[113] | 1179 | scan.set_freqframe('BARY')
|
---|
[1846] | 1180 |
|
---|
[113] | 1181 | """
|
---|
[1593] | 1182 | frame = frame or rcParams['scantable.freqframe']
|
---|
[484] | 1183 | varlist = vars()
|
---|
[1819] | 1184 | # "REST" is not implemented in casacore
|
---|
| 1185 | #valid = ['REST', 'TOPO', 'LSRD', 'LSRK', 'BARY', \
|
---|
| 1186 | # 'GEO', 'GALACTO', 'LGROUP', 'CMB']
|
---|
| 1187 | valid = ['TOPO', 'LSRD', 'LSRK', 'BARY', \
|
---|
[1118] | 1188 | 'GEO', 'GALACTO', 'LGROUP', 'CMB']
|
---|
[591] | 1189 |
|
---|
[989] | 1190 | if frame in valid:
|
---|
[113] | 1191 | inf = list(self._getcoordinfo())
|
---|
| 1192 | inf[1] = frame
|
---|
| 1193 | self._setcoordinfo(inf)
|
---|
[1118] | 1194 | self._add_history("set_freqframe", varlist)
|
---|
[102] | 1195 | else:
|
---|
[1118] | 1196 | msg = "Please specify a valid freq type. Valid types are:\n", valid
|
---|
[1859] | 1197 | raise TypeError(msg)
|
---|
[710] | 1198 |
|
---|
[1862] | 1199 | @asaplog_post_dec
|
---|
[989] | 1200 | def set_dirframe(self, frame=""):
|
---|
[1846] | 1201 | """\
|
---|
[989] | 1202 | Set the frame type of the Direction on the sky.
|
---|
[1846] | 1203 |
|
---|
[989] | 1204 | Parameters:
|
---|
[1846] | 1205 |
|
---|
[989] | 1206 | frame: an optional frame type, default ''. Valid frames are:
|
---|
| 1207 | 'J2000', 'B1950', 'GALACTIC'
|
---|
[1846] | 1208 |
|
---|
| 1209 | Example:
|
---|
| 1210 |
|
---|
[989] | 1211 | scan.set_dirframe('GALACTIC')
|
---|
[1846] | 1212 |
|
---|
[989] | 1213 | """
|
---|
| 1214 | varlist = vars()
|
---|
[1859] | 1215 | Scantable.set_dirframe(self, frame)
|
---|
[1118] | 1216 | self._add_history("set_dirframe", varlist)
|
---|
[989] | 1217 |
|
---|
[113] | 1218 | def get_unit(self):
|
---|
[1846] | 1219 | """\
|
---|
[113] | 1220 | Get the default unit set in this scantable
|
---|
[1846] | 1221 |
|
---|
[113] | 1222 | Returns:
|
---|
[1846] | 1223 |
|
---|
[113] | 1224 | A unit string
|
---|
[1846] | 1225 |
|
---|
[113] | 1226 | """
|
---|
| 1227 | inf = self._getcoordinfo()
|
---|
| 1228 | unit = inf[0]
|
---|
| 1229 | if unit == '': unit = 'channel'
|
---|
| 1230 | return unit
|
---|
[102] | 1231 |
|
---|
[1862] | 1232 | @asaplog_post_dec
|
---|
[158] | 1233 | def get_abcissa(self, rowno=0):
|
---|
[1846] | 1234 | """\
|
---|
[158] | 1235 | Get the abcissa in the current coordinate setup for the currently
|
---|
[113] | 1236 | selected Beam/IF/Pol
|
---|
[1846] | 1237 |
|
---|
[113] | 1238 | Parameters:
|
---|
[1846] | 1239 |
|
---|
[226] | 1240 | rowno: an optional row number in the scantable. Default is the
|
---|
| 1241 | first row, i.e. rowno=0
|
---|
[1846] | 1242 |
|
---|
[113] | 1243 | Returns:
|
---|
[1846] | 1244 |
|
---|
[1348] | 1245 | The abcissa values and the format string (as a dictionary)
|
---|
[1846] | 1246 |
|
---|
[113] | 1247 | """
|
---|
[256] | 1248 | abc = self._getabcissa(rowno)
|
---|
[710] | 1249 | lbl = self._getabcissalabel(rowno)
|
---|
[158] | 1250 | return abc, lbl
|
---|
[113] | 1251 |
|
---|
[1862] | 1252 | @asaplog_post_dec
|
---|
[2322] | 1253 | def flag(self, mask=None, unflag=False, row=-1):
|
---|
[1846] | 1254 | """\
|
---|
[1001] | 1255 | Flag the selected data using an optional channel mask.
|
---|
[1846] | 1256 |
|
---|
[1001] | 1257 | Parameters:
|
---|
[1846] | 1258 |
|
---|
[1001] | 1259 | mask: an optional channel mask, created with create_mask. Default
|
---|
| 1260 | (no mask) is all channels.
|
---|
[1855] | 1261 |
|
---|
[1819] | 1262 | unflag: if True, unflag the data
|
---|
[1846] | 1263 |
|
---|
[2322] | 1264 | row: an optional row number in the scantable.
|
---|
| 1265 | Default -1 flags all rows
|
---|
| 1266 |
|
---|
[1001] | 1267 | """
|
---|
| 1268 | varlist = vars()
|
---|
[1593] | 1269 | mask = mask or []
|
---|
[1994] | 1270 | self._flag(row, mask, unflag)
|
---|
[1001] | 1271 | self._add_history("flag", varlist)
|
---|
| 1272 |
|
---|
[1862] | 1273 | @asaplog_post_dec
|
---|
[2322] | 1274 | def flag_row(self, rows=None, unflag=False):
|
---|
[1846] | 1275 | """\
|
---|
[1819] | 1276 | Flag the selected data in row-based manner.
|
---|
[1846] | 1277 |
|
---|
[1819] | 1278 | Parameters:
|
---|
[1846] | 1279 |
|
---|
[1843] | 1280 | rows: list of row numbers to be flagged. Default is no row
|
---|
[2322] | 1281 | (must be explicitly specified to execute row-based
|
---|
| 1282 | flagging).
|
---|
[1855] | 1283 |
|
---|
[1819] | 1284 | unflag: if True, unflag the data.
|
---|
[1846] | 1285 |
|
---|
[1819] | 1286 | """
|
---|
| 1287 | varlist = vars()
|
---|
[2322] | 1288 | if rows is None:
|
---|
| 1289 | rows = []
|
---|
[1859] | 1290 | self._flag_row(rows, unflag)
|
---|
[1819] | 1291 | self._add_history("flag_row", varlist)
|
---|
| 1292 |
|
---|
[1862] | 1293 | @asaplog_post_dec
|
---|
[1819] | 1294 | def clip(self, uthres=None, dthres=None, clipoutside=True, unflag=False):
|
---|
[1846] | 1295 | """\
|
---|
[1819] | 1296 | Flag the selected data outside a specified range (in channel-base)
|
---|
[1846] | 1297 |
|
---|
[1819] | 1298 | Parameters:
|
---|
[1846] | 1299 |
|
---|
[1819] | 1300 | uthres: upper threshold.
|
---|
[1855] | 1301 |
|
---|
[1819] | 1302 | dthres: lower threshold
|
---|
[1846] | 1303 |
|
---|
[2322] | 1304 | clipoutside: True for flagging data outside the range
|
---|
| 1305 | [dthres:uthres].
|
---|
[1928] | 1306 | False for flagging data inside the range.
|
---|
[1855] | 1307 |
|
---|
[1846] | 1308 | unflag: if True, unflag the data.
|
---|
| 1309 |
|
---|
[1819] | 1310 | """
|
---|
| 1311 | varlist = vars()
|
---|
[1859] | 1312 | self._clip(uthres, dthres, clipoutside, unflag)
|
---|
[1819] | 1313 | self._add_history("clip", varlist)
|
---|
| 1314 |
|
---|
[1862] | 1315 | @asaplog_post_dec
|
---|
[1584] | 1316 | def lag_flag(self, start, end, unit="MHz", insitu=None):
|
---|
[1846] | 1317 | """\
|
---|
[1192] | 1318 | Flag the data in 'lag' space by providing a frequency to remove.
|
---|
[2177] | 1319 | Flagged data in the scantable get interpolated over the region.
|
---|
[1192] | 1320 | No taper is applied.
|
---|
[1846] | 1321 |
|
---|
[1192] | 1322 | Parameters:
|
---|
[1846] | 1323 |
|
---|
[1579] | 1324 | start: the start frequency (really a period within the
|
---|
| 1325 | bandwidth) or period to remove
|
---|
[1855] | 1326 |
|
---|
[1579] | 1327 | end: the end frequency or period to remove
|
---|
[1855] | 1328 |
|
---|
[2431] | 1329 | unit: the frequency unit (default 'MHz') or '' for
|
---|
[1579] | 1330 | explicit lag channels
|
---|
[1846] | 1331 |
|
---|
| 1332 | *Notes*:
|
---|
| 1333 |
|
---|
[1579] | 1334 | It is recommended to flag edges of the band or strong
|
---|
[1348] | 1335 | signals beforehand.
|
---|
[1846] | 1336 |
|
---|
[1192] | 1337 | """
|
---|
| 1338 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 1339 | self._math._setinsitu(insitu)
|
---|
| 1340 | varlist = vars()
|
---|
[1579] | 1341 | base = { "GHz": 1000000000., "MHz": 1000000., "kHz": 1000., "Hz": 1.}
|
---|
| 1342 | if not (unit == "" or base.has_key(unit)):
|
---|
[1192] | 1343 | raise ValueError("%s is not a valid unit." % unit)
|
---|
[1859] | 1344 | if unit == "":
|
---|
| 1345 | s = scantable(self._math._lag_flag(self, start, end, "lags"))
|
---|
| 1346 | else:
|
---|
| 1347 | s = scantable(self._math._lag_flag(self, start*base[unit],
|
---|
| 1348 | end*base[unit], "frequency"))
|
---|
[1192] | 1349 | s._add_history("lag_flag", varlist)
|
---|
| 1350 | if insitu:
|
---|
| 1351 | self._assign(s)
|
---|
| 1352 | else:
|
---|
| 1353 | return s
|
---|
[1001] | 1354 |
|
---|
[1862] | 1355 | @asaplog_post_dec
|
---|
[2349] | 1356 | def fft(self, rowno=None, mask=None, getrealimag=False):
|
---|
[2177] | 1357 | """\
|
---|
| 1358 | Apply FFT to the spectra.
|
---|
| 1359 | Flagged data in the scantable get interpolated over the region.
|
---|
| 1360 |
|
---|
| 1361 | Parameters:
|
---|
[2186] | 1362 |
|
---|
| 1363 | rowno: The row number(s) to be processed. int, list
|
---|
[2349] | 1364 | and tuple are accepted. By default (None), FFT
|
---|
[2186] | 1365 | is applied to the whole data.
|
---|
| 1366 |
|
---|
| 1367 | mask: Auxiliary channel mask(s). Given as a boolean
|
---|
| 1368 | list, it is applied to all specified rows.
|
---|
| 1369 | A list of boolean lists can also be used to
|
---|
| 1370 | apply different masks. In the latter case, the
|
---|
| 1371 | length of 'mask' must be the same as that of
|
---|
[2349] | 1372 | 'rowno'. The default is None.
|
---|
[2177] | 1373 |
|
---|
| 1374 | getrealimag: If True, returns the real and imaginary part
|
---|
| 1375 | values of the complex results.
|
---|
| 1376 | If False (the default), returns the amplitude
|
---|
| 1377 | (absolute value) normalised with Ndata/2 and
|
---|
| 1378 | phase (argument, in unit of radian).
|
---|
| 1379 |
|
---|
| 1380 | Returns:
|
---|
| 1381 |
|
---|
[2186] | 1382 | A list of dictionaries containing the results for each spectrum.
|
---|
| 1383 | Each dictionary contains two values, the real and the imaginary
|
---|
| 1384 | parts when getrealimag = True, or the amplitude(absolute value)
|
---|
| 1385 | and the phase(argument) when getrealimag = False. The key for
|
---|
| 1386 | these values are 'real' and 'imag', or 'ampl' and 'phase',
|
---|
[2177] | 1387 | respectively.
|
---|
| 1388 | """
|
---|
[2349] | 1389 | if rowno is None:
|
---|
| 1390 | rowno = []
|
---|
[2177] | 1391 | if isinstance(rowno, int):
|
---|
| 1392 | rowno = [rowno]
|
---|
| 1393 | elif not (isinstance(rowno, list) or isinstance(rowno, tuple)):
|
---|
[2186] | 1394 | raise TypeError("The row number(s) must be int, list or tuple.")
|
---|
| 1395 | if len(rowno) == 0: rowno = [i for i in xrange(self.nrow())]
|
---|
| 1396 |
|
---|
[2411] | 1397 | usecommonmask = True
|
---|
| 1398 |
|
---|
| 1399 | if mask is None:
|
---|
| 1400 | mask = []
|
---|
| 1401 | if isinstance(mask, list) or isinstance(mask, tuple):
|
---|
| 1402 | if len(mask) == 0:
|
---|
| 1403 | mask = [[]]
|
---|
| 1404 | else:
|
---|
| 1405 | if isinstance(mask[0], bool):
|
---|
| 1406 | if len(mask) != self.nchan(self.getif(rowno[0])):
|
---|
| 1407 | raise ValueError("The spectra and the mask have "
|
---|
| 1408 | "different length.")
|
---|
| 1409 | mask = [mask]
|
---|
| 1410 | elif isinstance(mask[0], list) or isinstance(mask[0], tuple):
|
---|
| 1411 | usecommonmask = False
|
---|
| 1412 | if len(mask) != len(rowno):
|
---|
| 1413 | raise ValueError("When specifying masks for each "
|
---|
| 1414 | "spectrum, the numbers of them "
|
---|
| 1415 | "must be identical.")
|
---|
| 1416 | for i in xrange(mask):
|
---|
| 1417 | if len(mask[i]) != self.nchan(self.getif(rowno[i])):
|
---|
| 1418 | raise ValueError("The spectra and the mask have "
|
---|
| 1419 | "different length.")
|
---|
| 1420 | else:
|
---|
| 1421 | raise TypeError("The mask must be a boolean list or "
|
---|
| 1422 | "a list of boolean list.")
|
---|
| 1423 | else:
|
---|
[2349] | 1424 | raise TypeError("The mask must be a boolean list or a list of "
|
---|
| 1425 | "boolean list.")
|
---|
[2186] | 1426 |
|
---|
| 1427 | res = []
|
---|
| 1428 |
|
---|
| 1429 | imask = 0
|
---|
| 1430 | for whichrow in rowno:
|
---|
| 1431 | fspec = self._fft(whichrow, mask[imask], getrealimag)
|
---|
| 1432 | nspec = len(fspec)
|
---|
[2177] | 1433 |
|
---|
[2349] | 1434 | i = 0
|
---|
| 1435 | v1 = []
|
---|
| 1436 | v2 = []
|
---|
| 1437 | reselem = {"real":[],"imag":[]} if getrealimag \
|
---|
| 1438 | else {"ampl":[],"phase":[]}
|
---|
[2177] | 1439 |
|
---|
[2186] | 1440 | while (i < nspec):
|
---|
| 1441 | v1.append(fspec[i])
|
---|
| 1442 | v2.append(fspec[i+1])
|
---|
[2349] | 1443 | i += 2
|
---|
[2186] | 1444 |
|
---|
[2177] | 1445 | if getrealimag:
|
---|
[2186] | 1446 | reselem["real"] += v1
|
---|
| 1447 | reselem["imag"] += v2
|
---|
[2177] | 1448 | else:
|
---|
[2186] | 1449 | reselem["ampl"] += v1
|
---|
| 1450 | reselem["phase"] += v2
|
---|
[2177] | 1451 |
|
---|
[2186] | 1452 | res.append(reselem)
|
---|
| 1453 |
|
---|
[2349] | 1454 | if not usecommonmask:
|
---|
| 1455 | imask += 1
|
---|
[2186] | 1456 |
|
---|
[2177] | 1457 | return res
|
---|
| 1458 |
|
---|
| 1459 | @asaplog_post_dec
|
---|
[113] | 1460 | def create_mask(self, *args, **kwargs):
|
---|
[1846] | 1461 | """\
|
---|
[1118] | 1462 | Compute and return a mask based on [min, max] windows.
|
---|
[189] | 1463 | The specified windows are to be INCLUDED, when the mask is
|
---|
[113] | 1464 | applied.
|
---|
[1846] | 1465 |
|
---|
[102] | 1466 | Parameters:
|
---|
[1846] | 1467 |
|
---|
[1118] | 1468 | [min, max], [min2, max2], ...
|
---|
[1024] | 1469 | Pairs of start/end points (inclusive)specifying the regions
|
---|
[102] | 1470 | to be masked
|
---|
[1855] | 1471 |
|
---|
[189] | 1472 | invert: optional argument. If specified as True,
|
---|
| 1473 | return an inverted mask, i.e. the regions
|
---|
| 1474 | specified are EXCLUDED
|
---|
[1855] | 1475 |
|
---|
[513] | 1476 | row: create the mask using the specified row for
|
---|
| 1477 | unit conversions, default is row=0
|
---|
| 1478 | only necessary if frequency varies over rows.
|
---|
[1846] | 1479 |
|
---|
| 1480 | Examples::
|
---|
| 1481 |
|
---|
[113] | 1482 | scan.set_unit('channel')
|
---|
[1846] | 1483 | # a)
|
---|
[1118] | 1484 | msk = scan.create_mask([400, 500], [800, 900])
|
---|
[189] | 1485 | # masks everything outside 400 and 500
|
---|
[113] | 1486 | # and 800 and 900 in the unit 'channel'
|
---|
| 1487 |
|
---|
[1846] | 1488 | # b)
|
---|
[1118] | 1489 | msk = scan.create_mask([400, 500], [800, 900], invert=True)
|
---|
[189] | 1490 | # masks the regions between 400 and 500
|
---|
[113] | 1491 | # and 800 and 900 in the unit 'channel'
|
---|
[1846] | 1492 |
|
---|
| 1493 | # c)
|
---|
| 1494 | #mask only channel 400
|
---|
[1554] | 1495 | msk = scan.create_mask([400])
|
---|
[1846] | 1496 |
|
---|
[102] | 1497 | """
|
---|
[1554] | 1498 | row = kwargs.get("row", 0)
|
---|
[513] | 1499 | data = self._getabcissa(row)
|
---|
[113] | 1500 | u = self._getcoordinfo()[0]
|
---|
[1859] | 1501 | if u == "":
|
---|
| 1502 | u = "channel"
|
---|
| 1503 | msg = "The current mask window unit is %s" % u
|
---|
| 1504 | i = self._check_ifs()
|
---|
| 1505 | if not i:
|
---|
| 1506 | msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
|
---|
| 1507 | asaplog.push(msg)
|
---|
[2348] | 1508 | n = len(data)
|
---|
[1295] | 1509 | msk = _n_bools(n, False)
|
---|
[710] | 1510 | # test if args is a 'list' or a 'normal *args - UGLY!!!
|
---|
| 1511 |
|
---|
[2349] | 1512 | ws = (isinstance(args[-1][-1], int)
|
---|
| 1513 | or isinstance(args[-1][-1], float)) and args or args[0]
|
---|
[710] | 1514 | for window in ws:
|
---|
[1554] | 1515 | if len(window) == 1:
|
---|
| 1516 | window = [window[0], window[0]]
|
---|
| 1517 | if len(window) == 0 or len(window) > 2:
|
---|
[2349] | 1518 | raise ValueError("A window needs to be defined as "
|
---|
| 1519 | "[start(, end)]")
|
---|
[1545] | 1520 | if window[0] > window[1]:
|
---|
| 1521 | tmp = window[0]
|
---|
| 1522 | window[0] = window[1]
|
---|
| 1523 | window[1] = tmp
|
---|
[102] | 1524 | for i in range(n):
|
---|
[1024] | 1525 | if data[i] >= window[0] and data[i] <= window[1]:
|
---|
[1295] | 1526 | msk[i] = True
|
---|
[113] | 1527 | if kwargs.has_key('invert'):
|
---|
| 1528 | if kwargs.get('invert'):
|
---|
[1295] | 1529 | msk = mask_not(msk)
|
---|
[102] | 1530 | return msk
|
---|
[710] | 1531 |
|
---|
[1931] | 1532 | def get_masklist(self, mask=None, row=0, silent=False):
|
---|
[1846] | 1533 | """\
|
---|
[1819] | 1534 | Compute and return a list of mask windows, [min, max].
|
---|
[1846] | 1535 |
|
---|
[1819] | 1536 | Parameters:
|
---|
[1846] | 1537 |
|
---|
[1819] | 1538 | mask: channel mask, created with create_mask.
|
---|
[1855] | 1539 |
|
---|
[1819] | 1540 | row: calcutate the masklist using the specified row
|
---|
| 1541 | for unit conversions, default is row=0
|
---|
| 1542 | only necessary if frequency varies over rows.
|
---|
[1846] | 1543 |
|
---|
[1819] | 1544 | Returns:
|
---|
[1846] | 1545 |
|
---|
[1819] | 1546 | [min, max], [min2, max2], ...
|
---|
| 1547 | Pairs of start/end points (inclusive)specifying
|
---|
| 1548 | the masked regions
|
---|
[1846] | 1549 |
|
---|
[1819] | 1550 | """
|
---|
| 1551 | if not (isinstance(mask,list) or isinstance(mask, tuple)):
|
---|
| 1552 | raise TypeError("The mask should be list or tuple.")
|
---|
[2427] | 1553 | if len(mask) <= 0:
|
---|
| 1554 | raise TypeError("The mask elements should be > 0")
|
---|
[2348] | 1555 | data = self._getabcissa(row)
|
---|
| 1556 | if len(data) != len(mask):
|
---|
[1819] | 1557 | msg = "Number of channels in scantable != number of mask elements"
|
---|
| 1558 | raise TypeError(msg)
|
---|
| 1559 | u = self._getcoordinfo()[0]
|
---|
[1859] | 1560 | if u == "":
|
---|
| 1561 | u = "channel"
|
---|
| 1562 | msg = "The current mask window unit is %s" % u
|
---|
| 1563 | i = self._check_ifs()
|
---|
| 1564 | if not i:
|
---|
| 1565 | msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
|
---|
[1931] | 1566 | if not silent:
|
---|
| 1567 | asaplog.push(msg)
|
---|
[2349] | 1568 | masklist = []
|
---|
[1819] | 1569 | ist, ien = None, None
|
---|
| 1570 | ist, ien=self.get_mask_indices(mask)
|
---|
| 1571 | if ist is not None and ien is not None:
|
---|
| 1572 | for i in xrange(len(ist)):
|
---|
| 1573 | range=[data[ist[i]],data[ien[i]]]
|
---|
| 1574 | range.sort()
|
---|
| 1575 | masklist.append([range[0],range[1]])
|
---|
| 1576 | return masklist
|
---|
| 1577 |
|
---|
| 1578 | def get_mask_indices(self, mask=None):
|
---|
[1846] | 1579 | """\
|
---|
[1819] | 1580 | Compute and Return lists of mask start indices and mask end indices.
|
---|
[1855] | 1581 |
|
---|
| 1582 | Parameters:
|
---|
| 1583 |
|
---|
[1819] | 1584 | mask: channel mask, created with create_mask.
|
---|
[1846] | 1585 |
|
---|
[1819] | 1586 | Returns:
|
---|
[1846] | 1587 |
|
---|
[1819] | 1588 | List of mask start indices and that of mask end indices,
|
---|
| 1589 | i.e., [istart1,istart2,....], [iend1,iend2,....].
|
---|
[1846] | 1590 |
|
---|
[1819] | 1591 | """
|
---|
| 1592 | if not (isinstance(mask,list) or isinstance(mask, tuple)):
|
---|
| 1593 | raise TypeError("The mask should be list or tuple.")
|
---|
[2427] | 1594 | if len(mask) <= 0:
|
---|
| 1595 | raise TypeError("The mask elements should be > 0")
|
---|
[2349] | 1596 | istart = []
|
---|
| 1597 | iend = []
|
---|
| 1598 | if mask[0]:
|
---|
| 1599 | istart.append(0)
|
---|
[1819] | 1600 | for i in range(len(mask)-1):
|
---|
| 1601 | if not mask[i] and mask[i+1]:
|
---|
| 1602 | istart.append(i+1)
|
---|
| 1603 | elif mask[i] and not mask[i+1]:
|
---|
| 1604 | iend.append(i)
|
---|
[2349] | 1605 | if mask[len(mask)-1]:
|
---|
| 1606 | iend.append(len(mask)-1)
|
---|
[1819] | 1607 | if len(istart) != len(iend):
|
---|
| 1608 | raise RuntimeError("Numbers of mask start != mask end.")
|
---|
| 1609 | for i in range(len(istart)):
|
---|
| 1610 | if istart[i] > iend[i]:
|
---|
| 1611 | raise RuntimeError("Mask start index > mask end index")
|
---|
| 1612 | break
|
---|
| 1613 | return istart,iend
|
---|
| 1614 |
|
---|
[2013] | 1615 | @asaplog_post_dec
|
---|
[2349] | 1616 | def parse_maskexpr(self, maskstring):
|
---|
[2013] | 1617 | """
|
---|
| 1618 | Parse CASA type mask selection syntax (IF dependent).
|
---|
| 1619 |
|
---|
| 1620 | Parameters:
|
---|
| 1621 | maskstring : A string mask selection expression.
|
---|
| 1622 | A comma separated selections mean different IF -
|
---|
| 1623 | channel combinations. IFs and channel selections
|
---|
| 1624 | are partitioned by a colon, ':'.
|
---|
| 1625 | examples:
|
---|
[2015] | 1626 | '' = all IFs (all channels)
|
---|
[2013] | 1627 | '<2,4~6,9' = IFs 0,1,4,5,6,9 (all channels)
|
---|
| 1628 | '3:3~45;60' = channels 3 to 45 and 60 in IF 3
|
---|
| 1629 | '0~1:2~6,8' = channels 2 to 6 in IFs 0,1, and
|
---|
| 1630 | all channels in IF8
|
---|
| 1631 | Returns:
|
---|
| 1632 | A dictionary of selected (valid) IF and masklist pairs,
|
---|
| 1633 | e.g. {'0': [[50,250],[350,462]], '2': [[100,400],[550,974]]}
|
---|
| 1634 | """
|
---|
| 1635 | if not isinstance(maskstring,str):
|
---|
| 1636 | asaplog.post()
|
---|
[2611] | 1637 | asaplog.push("Mask expression should be a string.")
|
---|
[2013] | 1638 | asaplog.post("ERROR")
|
---|
| 1639 |
|
---|
| 1640 | valid_ifs = self.getifnos()
|
---|
| 1641 | frequnit = self.get_unit()
|
---|
| 1642 | seldict = {}
|
---|
[2015] | 1643 | if maskstring == "":
|
---|
| 1644 | maskstring = str(valid_ifs)[1:-1]
|
---|
[2611] | 1645 | ## split each selection "IF range[:CHAN range]"
|
---|
[2013] | 1646 | sellist = maskstring.split(',')
|
---|
| 1647 | for currselstr in sellist:
|
---|
| 1648 | selset = currselstr.split(':')
|
---|
| 1649 | # spw and mask string (may include ~, < or >)
|
---|
[2349] | 1650 | spwmasklist = self._parse_selection(selset[0], typestr='integer',
|
---|
[2611] | 1651 | minval=min(valid_ifs),
|
---|
[2349] | 1652 | maxval=max(valid_ifs))
|
---|
[2013] | 1653 | for spwlist in spwmasklist:
|
---|
| 1654 | selspws = []
|
---|
| 1655 | for ispw in range(spwlist[0],spwlist[1]+1):
|
---|
| 1656 | # Put into the list only if ispw exists
|
---|
| 1657 | if valid_ifs.count(ispw):
|
---|
| 1658 | selspws.append(ispw)
|
---|
| 1659 | del spwmasklist, spwlist
|
---|
| 1660 |
|
---|
| 1661 | # parse frequency mask list
|
---|
| 1662 | if len(selset) > 1:
|
---|
[2349] | 1663 | freqmasklist = self._parse_selection(selset[1], typestr='float',
|
---|
| 1664 | offset=0.)
|
---|
[2013] | 1665 | else:
|
---|
| 1666 | # want to select the whole spectrum
|
---|
| 1667 | freqmasklist = [None]
|
---|
| 1668 |
|
---|
| 1669 | ## define a dictionary of spw - masklist combination
|
---|
| 1670 | for ispw in selspws:
|
---|
| 1671 | #print "working on", ispw
|
---|
| 1672 | spwstr = str(ispw)
|
---|
| 1673 | if len(selspws) == 0:
|
---|
| 1674 | # empty spw
|
---|
| 1675 | continue
|
---|
| 1676 | else:
|
---|
| 1677 | ## want to get min and max of the spw and
|
---|
| 1678 | ## offset to set for '<' and '>'
|
---|
| 1679 | if frequnit == 'channel':
|
---|
| 1680 | minfreq = 0
|
---|
| 1681 | maxfreq = self.nchan(ifno=ispw)
|
---|
| 1682 | offset = 0.5
|
---|
| 1683 | else:
|
---|
| 1684 | ## This is ugly part. need improvement
|
---|
| 1685 | for ifrow in xrange(self.nrow()):
|
---|
| 1686 | if self.getif(ifrow) == ispw:
|
---|
| 1687 | #print "IF",ispw,"found in row =",ifrow
|
---|
| 1688 | break
|
---|
| 1689 | freqcoord = self.get_coordinate(ifrow)
|
---|
| 1690 | freqs = self._getabcissa(ifrow)
|
---|
| 1691 | minfreq = min(freqs)
|
---|
| 1692 | maxfreq = max(freqs)
|
---|
| 1693 | if len(freqs) == 1:
|
---|
| 1694 | offset = 0.5
|
---|
| 1695 | elif frequnit.find('Hz') > 0:
|
---|
[2349] | 1696 | offset = abs(freqcoord.to_frequency(1,
|
---|
| 1697 | unit=frequnit)
|
---|
| 1698 | -freqcoord.to_frequency(0,
|
---|
| 1699 | unit=frequnit)
|
---|
| 1700 | )*0.5
|
---|
[2013] | 1701 | elif frequnit.find('m/s') > 0:
|
---|
[2349] | 1702 | offset = abs(freqcoord.to_velocity(1,
|
---|
| 1703 | unit=frequnit)
|
---|
| 1704 | -freqcoord.to_velocity(0,
|
---|
| 1705 | unit=frequnit)
|
---|
| 1706 | )*0.5
|
---|
[2013] | 1707 | else:
|
---|
| 1708 | asaplog.post()
|
---|
| 1709 | asaplog.push("Invalid frequency unit")
|
---|
| 1710 | asaplog.post("ERROR")
|
---|
| 1711 | del freqs, freqcoord, ifrow
|
---|
| 1712 | for freq in freqmasklist:
|
---|
| 1713 | selmask = freq or [minfreq, maxfreq]
|
---|
| 1714 | if selmask[0] == None:
|
---|
| 1715 | ## selection was "<freq[1]".
|
---|
| 1716 | if selmask[1] < minfreq:
|
---|
| 1717 | ## avoid adding region selection
|
---|
| 1718 | selmask = None
|
---|
| 1719 | else:
|
---|
| 1720 | selmask = [minfreq,selmask[1]-offset]
|
---|
| 1721 | elif selmask[1] == None:
|
---|
| 1722 | ## selection was ">freq[0]"
|
---|
| 1723 | if selmask[0] > maxfreq:
|
---|
| 1724 | ## avoid adding region selection
|
---|
| 1725 | selmask = None
|
---|
| 1726 | else:
|
---|
| 1727 | selmask = [selmask[0]+offset,maxfreq]
|
---|
| 1728 | if selmask:
|
---|
| 1729 | if not seldict.has_key(spwstr):
|
---|
| 1730 | # new spw selection
|
---|
| 1731 | seldict[spwstr] = []
|
---|
| 1732 | seldict[spwstr] += [selmask]
|
---|
| 1733 | del minfreq,maxfreq,offset,freq,selmask
|
---|
| 1734 | del spwstr
|
---|
| 1735 | del freqmasklist
|
---|
| 1736 | del valid_ifs
|
---|
| 1737 | if len(seldict) == 0:
|
---|
| 1738 | asaplog.post()
|
---|
[2349] | 1739 | asaplog.push("No valid selection in the mask expression: "
|
---|
| 1740 | +maskstring)
|
---|
[2013] | 1741 | asaplog.post("WARN")
|
---|
| 1742 | return None
|
---|
| 1743 | msg = "Selected masklist:\n"
|
---|
| 1744 | for sif, lmask in seldict.iteritems():
|
---|
| 1745 | msg += " IF"+sif+" - "+str(lmask)+"\n"
|
---|
| 1746 | asaplog.push(msg)
|
---|
| 1747 | return seldict
|
---|
| 1748 |
|
---|
[2611] | 1749 | @asaplog_post_dec
|
---|
| 1750 | def parse_idx_selection(self, mode, selexpr):
|
---|
| 1751 | """
|
---|
| 1752 | Parse CASA type mask selection syntax of SCANNO, IFNO, POLNO,
|
---|
| 1753 | BEAMNO, and row number
|
---|
| 1754 |
|
---|
| 1755 | Parameters:
|
---|
| 1756 | mode : which column to select.
|
---|
| 1757 | ['scan',|'if'|'pol'|'beam'|'row']
|
---|
| 1758 | selexpr : A comma separated selection expression.
|
---|
| 1759 | examples:
|
---|
| 1760 | '' = all (returns [])
|
---|
| 1761 | '<2,4~6,9' = indices less than 2, 4 to 6 and 9
|
---|
| 1762 | (returns [0,1,4,5,6,9])
|
---|
| 1763 | Returns:
|
---|
| 1764 | A List of selected indices
|
---|
| 1765 | """
|
---|
| 1766 | if selexpr == "":
|
---|
| 1767 | return []
|
---|
| 1768 | valid_modes = {'s': 'scan', 'i': 'if', 'p': 'pol',
|
---|
| 1769 | 'b': 'beam', 'r': 'row'}
|
---|
| 1770 | smode = mode.lower()[0]
|
---|
| 1771 | if not (smode in valid_modes.keys()):
|
---|
| 1772 | msg = "Invalid mode '%s'. Valid modes are %s" %\
|
---|
| 1773 | (mode, str(valid_modes.values()))
|
---|
| 1774 | asaplog.post()
|
---|
| 1775 | asaplog.push(msg)
|
---|
| 1776 | asaplog.post("ERROR")
|
---|
| 1777 | mode = valid_modes[smode]
|
---|
| 1778 | minidx = None
|
---|
| 1779 | maxidx = None
|
---|
| 1780 | if smode == 'r':
|
---|
| 1781 | minidx = 0
|
---|
| 1782 | maxidx = self.nrow()
|
---|
| 1783 | else:
|
---|
| 1784 | idx = getattr(self,"get"+mode+"nos")()
|
---|
| 1785 | minidx = min(idx)
|
---|
| 1786 | maxidx = max(idx)
|
---|
| 1787 | del idx
|
---|
| 1788 | sellist = selexpr.split(',')
|
---|
| 1789 | idxlist = []
|
---|
| 1790 | for currselstr in sellist:
|
---|
| 1791 | # single range (may include ~, < or >)
|
---|
| 1792 | currlist = self._parse_selection(currselstr, typestr='integer',
|
---|
| 1793 | minval=minidx,maxval=maxidx)
|
---|
| 1794 | for thelist in currlist:
|
---|
| 1795 | idxlist += range(thelist[0],thelist[1]+1)
|
---|
| 1796 | msg = "Selected %s: %s" % (mode.upper()+"NO", str(idxlist))
|
---|
| 1797 | asaplog.push(msg)
|
---|
| 1798 | return idxlist
|
---|
| 1799 |
|
---|
[2349] | 1800 | def _parse_selection(self, selstr, typestr='float', offset=0.,
|
---|
[2351] | 1801 | minval=None, maxval=None):
|
---|
[2013] | 1802 | """
|
---|
| 1803 | Parameters:
|
---|
| 1804 | selstr : The Selection string, e.g., '<3;5~7;100~103;9'
|
---|
| 1805 | typestr : The type of the values in returned list
|
---|
| 1806 | ('integer' or 'float')
|
---|
| 1807 | offset : The offset value to subtract from or add to
|
---|
| 1808 | the boundary value if the selection string
|
---|
[2611] | 1809 | includes '<' or '>' [Valid only for typestr='float']
|
---|
[2013] | 1810 | minval, maxval : The minimum/maximum values to set if the
|
---|
| 1811 | selection string includes '<' or '>'.
|
---|
| 1812 | The list element is filled with None by default.
|
---|
| 1813 | Returns:
|
---|
| 1814 | A list of min/max pair of selections.
|
---|
| 1815 | Example:
|
---|
[2611] | 1816 | _parse_selection('<3;5~7;9',typestr='int',minval=0)
|
---|
| 1817 | --> returns [[0,2],[5,7],[9,9]]
|
---|
| 1818 | _parse_selection('<3;5~7;9',typestr='float',offset=0.5,minval=0)
|
---|
| 1819 | --> returns [[0.,2.5],[5.0,7.0],[9.,9.]]
|
---|
[2013] | 1820 | """
|
---|
| 1821 | selgroups = selstr.split(';')
|
---|
| 1822 | sellists = []
|
---|
| 1823 | if typestr.lower().startswith('int'):
|
---|
| 1824 | formatfunc = int
|
---|
[2611] | 1825 | offset = 1
|
---|
[2013] | 1826 | else:
|
---|
| 1827 | formatfunc = float
|
---|
| 1828 |
|
---|
| 1829 | for currsel in selgroups:
|
---|
| 1830 | if currsel.find('~') > 0:
|
---|
[2611] | 1831 | # val0 <= x <= val1
|
---|
[2013] | 1832 | minsel = formatfunc(currsel.split('~')[0].strip())
|
---|
| 1833 | maxsel = formatfunc(currsel.split('~')[1].strip())
|
---|
[2611] | 1834 | elif currsel.strip().find('<=') > -1:
|
---|
| 1835 | bound = currsel.split('<=')
|
---|
| 1836 | try: # try "x <= val"
|
---|
| 1837 | minsel = minval
|
---|
| 1838 | maxsel = formatfunc(bound[1].strip())
|
---|
| 1839 | except ValueError: # now "val <= x"
|
---|
| 1840 | minsel = formatfunc(bound[0].strip())
|
---|
| 1841 | maxsel = maxval
|
---|
| 1842 | elif currsel.strip().find('>=') > -1:
|
---|
| 1843 | bound = currsel.split('>=')
|
---|
| 1844 | try: # try "x >= val"
|
---|
| 1845 | minsel = formatfunc(bound[1].strip())
|
---|
| 1846 | maxsel = maxval
|
---|
| 1847 | except ValueError: # now "val >= x"
|
---|
| 1848 | minsel = minval
|
---|
| 1849 | maxsel = formatfunc(bound[0].strip())
|
---|
| 1850 | elif currsel.strip().find('<') > -1:
|
---|
| 1851 | bound = currsel.split('<')
|
---|
| 1852 | try: # try "x < val"
|
---|
| 1853 | minsel = minval
|
---|
| 1854 | maxsel = formatfunc(bound[1].strip()) \
|
---|
| 1855 | - formatfunc(offset)
|
---|
| 1856 | except ValueError: # now "val < x"
|
---|
| 1857 | minsel = formatfunc(bound[0].strip()) \
|
---|
[2013] | 1858 | + formatfunc(offset)
|
---|
[2611] | 1859 | maxsel = maxval
|
---|
| 1860 | elif currsel.strip().find('>') > -1:
|
---|
| 1861 | bound = currsel.split('>')
|
---|
| 1862 | try: # try "x > val"
|
---|
| 1863 | minsel = formatfunc(bound[1].strip()) \
|
---|
| 1864 | + formatfunc(offset)
|
---|
| 1865 | maxsel = maxval
|
---|
| 1866 | except ValueError: # now "val > x"
|
---|
| 1867 | minsel = minval
|
---|
| 1868 | maxsel = formatfunc(bound[0].strip()) \
|
---|
| 1869 | - formatfunc(offset)
|
---|
[2013] | 1870 | else:
|
---|
| 1871 | minsel = formatfunc(currsel)
|
---|
| 1872 | maxsel = formatfunc(currsel)
|
---|
| 1873 | sellists.append([minsel,maxsel])
|
---|
| 1874 | return sellists
|
---|
| 1875 |
|
---|
[1819] | 1876 | # def get_restfreqs(self):
|
---|
| 1877 | # """
|
---|
| 1878 | # Get the restfrequency(s) stored in this scantable.
|
---|
| 1879 | # The return value(s) are always of unit 'Hz'
|
---|
| 1880 | # Parameters:
|
---|
| 1881 | # none
|
---|
| 1882 | # Returns:
|
---|
| 1883 | # a list of doubles
|
---|
| 1884 | # """
|
---|
| 1885 | # return list(self._getrestfreqs())
|
---|
| 1886 |
|
---|
| 1887 | def get_restfreqs(self, ids=None):
|
---|
[1846] | 1888 | """\
|
---|
[256] | 1889 | Get the restfrequency(s) stored in this scantable.
|
---|
| 1890 | The return value(s) are always of unit 'Hz'
|
---|
[1846] | 1891 |
|
---|
[256] | 1892 | Parameters:
|
---|
[1846] | 1893 |
|
---|
[1819] | 1894 | ids: (optional) a list of MOLECULE_ID for that restfrequency(s) to
|
---|
| 1895 | be retrieved
|
---|
[1846] | 1896 |
|
---|
[256] | 1897 | Returns:
|
---|
[1846] | 1898 |
|
---|
[1819] | 1899 | dictionary containing ids and a list of doubles for each id
|
---|
[1846] | 1900 |
|
---|
[256] | 1901 | """
|
---|
[1819] | 1902 | if ids is None:
|
---|
[2349] | 1903 | rfreqs = {}
|
---|
[1819] | 1904 | idlist = self.getmolnos()
|
---|
| 1905 | for i in idlist:
|
---|
[2349] | 1906 | rfreqs[i] = list(self._getrestfreqs(i))
|
---|
[1819] | 1907 | return rfreqs
|
---|
| 1908 | else:
|
---|
[2349] | 1909 | if type(ids) == list or type(ids) == tuple:
|
---|
| 1910 | rfreqs = {}
|
---|
[1819] | 1911 | for i in ids:
|
---|
[2349] | 1912 | rfreqs[i] = list(self._getrestfreqs(i))
|
---|
[1819] | 1913 | return rfreqs
|
---|
| 1914 | else:
|
---|
| 1915 | return list(self._getrestfreqs(ids))
|
---|
[102] | 1916 |
|
---|
[2349] | 1917 | @asaplog_post_dec
|
---|
[931] | 1918 | def set_restfreqs(self, freqs=None, unit='Hz'):
|
---|
[1846] | 1919 | """\
|
---|
[931] | 1920 | Set or replace the restfrequency specified and
|
---|
[1938] | 1921 | if the 'freqs' argument holds a scalar,
|
---|
[931] | 1922 | then that rest frequency will be applied to all the selected
|
---|
| 1923 | data. If the 'freqs' argument holds
|
---|
| 1924 | a vector, then it MUST be of equal or smaller length than
|
---|
| 1925 | the number of IFs (and the available restfrequencies will be
|
---|
| 1926 | replaced by this vector). In this case, *all* data have
|
---|
| 1927 | the restfrequency set per IF according
|
---|
| 1928 | to the corresponding value you give in the 'freqs' vector.
|
---|
[1118] | 1929 | E.g. 'freqs=[1e9, 2e9]' would mean IF 0 gets restfreq 1e9 and
|
---|
[931] | 1930 | IF 1 gets restfreq 2e9.
|
---|
[1846] | 1931 |
|
---|
[1395] | 1932 | You can also specify the frequencies via a linecatalog.
|
---|
[1153] | 1933 |
|
---|
[931] | 1934 | Parameters:
|
---|
[1846] | 1935 |
|
---|
[931] | 1936 | freqs: list of rest frequency values or string idenitfiers
|
---|
[1855] | 1937 |
|
---|
[931] | 1938 | unit: unit for rest frequency (default 'Hz')
|
---|
[402] | 1939 |
|
---|
[1846] | 1940 |
|
---|
| 1941 | Example::
|
---|
| 1942 |
|
---|
[1819] | 1943 | # set the given restfrequency for the all currently selected IFs
|
---|
[931] | 1944 | scan.set_restfreqs(freqs=1.4e9)
|
---|
[1845] | 1945 | # set restfrequencies for the n IFs (n > 1) in the order of the
|
---|
| 1946 | # list, i.e
|
---|
| 1947 | # IF0 -> 1.4e9, IF1 -> 1.41e9, IF3 -> 1.42e9
|
---|
| 1948 | # len(list_of_restfreqs) == nIF
|
---|
| 1949 | # for nIF == 1 the following will set multiple restfrequency for
|
---|
| 1950 | # that IF
|
---|
[1819] | 1951 | scan.set_restfreqs(freqs=[1.4e9, 1.41e9, 1.42e9])
|
---|
[1845] | 1952 | # set multiple restfrequencies per IF. as a list of lists where
|
---|
| 1953 | # the outer list has nIF elements, the inner s arbitrary
|
---|
| 1954 | scan.set_restfreqs(freqs=[[1.4e9, 1.41e9], [1.67e9]])
|
---|
[391] | 1955 |
|
---|
[1846] | 1956 | *Note*:
|
---|
[1845] | 1957 |
|
---|
[931] | 1958 | To do more sophisticate Restfrequency setting, e.g. on a
|
---|
| 1959 | source and IF basis, use scantable.set_selection() before using
|
---|
[1846] | 1960 | this function::
|
---|
[931] | 1961 |
|
---|
[1846] | 1962 | # provided your scantable is called scan
|
---|
| 1963 | selection = selector()
|
---|
[2431] | 1964 | selection.set_name('ORION*')
|
---|
[1846] | 1965 | selection.set_ifs([1])
|
---|
| 1966 | scan.set_selection(selection)
|
---|
| 1967 | scan.set_restfreqs(freqs=86.6e9)
|
---|
| 1968 |
|
---|
[931] | 1969 | """
|
---|
| 1970 | varlist = vars()
|
---|
[1157] | 1971 | from asap import linecatalog
|
---|
| 1972 | # simple value
|
---|
[1118] | 1973 | if isinstance(freqs, int) or isinstance(freqs, float):
|
---|
[1845] | 1974 | self._setrestfreqs([freqs], [""], unit)
|
---|
[1157] | 1975 | # list of values
|
---|
[1118] | 1976 | elif isinstance(freqs, list) or isinstance(freqs, tuple):
|
---|
[1157] | 1977 | # list values are scalars
|
---|
[1118] | 1978 | if isinstance(freqs[-1], int) or isinstance(freqs[-1], float):
|
---|
[1845] | 1979 | if len(freqs) == 1:
|
---|
| 1980 | self._setrestfreqs(freqs, [""], unit)
|
---|
| 1981 | else:
|
---|
| 1982 | # allow the 'old' mode of setting mulitple IFs
|
---|
| 1983 | savesel = self._getselection()
|
---|
[2599] | 1984 | sel = self.get_selection()
|
---|
[1845] | 1985 | iflist = self.getifnos()
|
---|
| 1986 | if len(freqs)>len(iflist):
|
---|
| 1987 | raise ValueError("number of elements in list of list "
|
---|
| 1988 | "exeeds the current IF selections")
|
---|
| 1989 | iflist = self.getifnos()
|
---|
| 1990 | for i, fval in enumerate(freqs):
|
---|
| 1991 | sel.set_ifs(iflist[i])
|
---|
| 1992 | self._setselection(sel)
|
---|
| 1993 | self._setrestfreqs([fval], [""], unit)
|
---|
| 1994 | self._setselection(savesel)
|
---|
| 1995 |
|
---|
| 1996 | # list values are dict, {'value'=, 'name'=)
|
---|
[1157] | 1997 | elif isinstance(freqs[-1], dict):
|
---|
[1845] | 1998 | values = []
|
---|
| 1999 | names = []
|
---|
| 2000 | for d in freqs:
|
---|
| 2001 | values.append(d["value"])
|
---|
| 2002 | names.append(d["name"])
|
---|
| 2003 | self._setrestfreqs(values, names, unit)
|
---|
[1819] | 2004 | elif isinstance(freqs[-1], list) or isinstance(freqs[-1], tuple):
|
---|
[1157] | 2005 | savesel = self._getselection()
|
---|
[2599] | 2006 | sel = self.get_selection()
|
---|
[1322] | 2007 | iflist = self.getifnos()
|
---|
[1819] | 2008 | if len(freqs)>len(iflist):
|
---|
[1845] | 2009 | raise ValueError("number of elements in list of list exeeds"
|
---|
| 2010 | " the current IF selections")
|
---|
| 2011 | for i, fval in enumerate(freqs):
|
---|
[1322] | 2012 | sel.set_ifs(iflist[i])
|
---|
[1259] | 2013 | self._setselection(sel)
|
---|
[1845] | 2014 | self._setrestfreqs(fval, [""], unit)
|
---|
[1157] | 2015 | self._setselection(savesel)
|
---|
| 2016 | # freqs are to be taken from a linecatalog
|
---|
[1153] | 2017 | elif isinstance(freqs, linecatalog):
|
---|
| 2018 | savesel = self._getselection()
|
---|
[2599] | 2019 | sel = self.get_selection()
|
---|
[1153] | 2020 | for i in xrange(freqs.nrow()):
|
---|
[1322] | 2021 | sel.set_ifs(iflist[i])
|
---|
[1153] | 2022 | self._setselection(sel)
|
---|
[1845] | 2023 | self._setrestfreqs([freqs.get_frequency(i)],
|
---|
| 2024 | [freqs.get_name(i)], "MHz")
|
---|
[1153] | 2025 | # ensure that we are not iterating past nIF
|
---|
| 2026 | if i == self.nif()-1: break
|
---|
| 2027 | self._setselection(savesel)
|
---|
[931] | 2028 | else:
|
---|
| 2029 | return
|
---|
| 2030 | self._add_history("set_restfreqs", varlist)
|
---|
| 2031 |
|
---|
[2349] | 2032 | @asaplog_post_dec
|
---|
[1360] | 2033 | def shift_refpix(self, delta):
|
---|
[1846] | 2034 | """\
|
---|
[1589] | 2035 | Shift the reference pixel of the Spectra Coordinate by an
|
---|
| 2036 | integer amount.
|
---|
[1846] | 2037 |
|
---|
[1589] | 2038 | Parameters:
|
---|
[1846] | 2039 |
|
---|
[1589] | 2040 | delta: the amount to shift by
|
---|
[1846] | 2041 |
|
---|
| 2042 | *Note*:
|
---|
| 2043 |
|
---|
[1589] | 2044 | Be careful using this with broadband data.
|
---|
[1846] | 2045 |
|
---|
[1360] | 2046 | """
|
---|
[2349] | 2047 | varlist = vars()
|
---|
[1731] | 2048 | Scantable.shift_refpix(self, delta)
|
---|
[2349] | 2049 | s._add_history("shift_refpix", varlist)
|
---|
[931] | 2050 |
|
---|
[1862] | 2051 | @asaplog_post_dec
|
---|
[1259] | 2052 | def history(self, filename=None):
|
---|
[1846] | 2053 | """\
|
---|
[1259] | 2054 | Print the history. Optionally to a file.
|
---|
[1846] | 2055 |
|
---|
[1348] | 2056 | Parameters:
|
---|
[1846] | 2057 |
|
---|
[1928] | 2058 | filename: The name of the file to save the history to.
|
---|
[1846] | 2059 |
|
---|
[1259] | 2060 | """
|
---|
[484] | 2061 | hist = list(self._gethistory())
|
---|
[794] | 2062 | out = "-"*80
|
---|
[484] | 2063 | for h in hist:
|
---|
[489] | 2064 | if h.startswith("---"):
|
---|
[1857] | 2065 | out = "\n".join([out, h])
|
---|
[489] | 2066 | else:
|
---|
| 2067 | items = h.split("##")
|
---|
| 2068 | date = items[0]
|
---|
| 2069 | func = items[1]
|
---|
| 2070 | items = items[2:]
|
---|
[794] | 2071 | out += "\n"+date+"\n"
|
---|
| 2072 | out += "Function: %s\n Parameters:" % (func)
|
---|
[489] | 2073 | for i in items:
|
---|
[1938] | 2074 | if i == '':
|
---|
| 2075 | continue
|
---|
[489] | 2076 | s = i.split("=")
|
---|
[1118] | 2077 | out += "\n %s = %s" % (s[0], s[1])
|
---|
[1857] | 2078 | out = "\n".join([out, "-"*80])
|
---|
[1259] | 2079 | if filename is not None:
|
---|
| 2080 | if filename is "":
|
---|
| 2081 | filename = 'scantable_history.txt'
|
---|
| 2082 | import os
|
---|
| 2083 | filename = os.path.expandvars(os.path.expanduser(filename))
|
---|
| 2084 | if not os.path.isdir(filename):
|
---|
| 2085 | data = open(filename, 'w')
|
---|
| 2086 | data.write(out)
|
---|
| 2087 | data.close()
|
---|
| 2088 | else:
|
---|
| 2089 | msg = "Illegal file name '%s'." % (filename)
|
---|
[1859] | 2090 | raise IOError(msg)
|
---|
| 2091 | return page(out)
|
---|
[2349] | 2092 |
|
---|
[513] | 2093 | #
|
---|
| 2094 | # Maths business
|
---|
| 2095 | #
|
---|
[1862] | 2096 | @asaplog_post_dec
|
---|
[931] | 2097 | def average_time(self, mask=None, scanav=False, weight='tint', align=False):
|
---|
[1846] | 2098 | """\
|
---|
[2349] | 2099 | Return the (time) weighted average of a scan. Scans will be averaged
|
---|
| 2100 | only if the source direction (RA/DEC) is within 1' otherwise
|
---|
[1846] | 2101 |
|
---|
| 2102 | *Note*:
|
---|
| 2103 |
|
---|
[1070] | 2104 | in channels only - align if necessary
|
---|
[1846] | 2105 |
|
---|
[513] | 2106 | Parameters:
|
---|
[1846] | 2107 |
|
---|
[513] | 2108 | mask: an optional mask (only used for 'var' and 'tsys'
|
---|
| 2109 | weighting)
|
---|
[1855] | 2110 |
|
---|
[558] | 2111 | scanav: True averages each scan separately
|
---|
| 2112 | False (default) averages all scans together,
|
---|
[1855] | 2113 |
|
---|
[1099] | 2114 | weight: Weighting scheme.
|
---|
| 2115 | 'none' (mean no weight)
|
---|
| 2116 | 'var' (1/var(spec) weighted)
|
---|
| 2117 | 'tsys' (1/Tsys**2 weighted)
|
---|
| 2118 | 'tint' (integration time weighted)
|
---|
| 2119 | 'tintsys' (Tint/Tsys**2)
|
---|
| 2120 | 'median' ( median averaging)
|
---|
[535] | 2121 | The default is 'tint'
|
---|
[1855] | 2122 |
|
---|
[931] | 2123 | align: align the spectra in velocity before averaging. It takes
|
---|
| 2124 | the time of the first spectrum as reference time.
|
---|
[1846] | 2125 |
|
---|
| 2126 | Example::
|
---|
| 2127 |
|
---|
[513] | 2128 | # time average the scantable without using a mask
|
---|
[710] | 2129 | newscan = scan.average_time()
|
---|
[1846] | 2130 |
|
---|
[513] | 2131 | """
|
---|
| 2132 | varlist = vars()
|
---|
[1593] | 2133 | weight = weight or 'TINT'
|
---|
| 2134 | mask = mask or ()
|
---|
| 2135 | scanav = (scanav and 'SCAN') or 'NONE'
|
---|
[1118] | 2136 | scan = (self, )
|
---|
[1859] | 2137 |
|
---|
| 2138 | if align:
|
---|
| 2139 | scan = (self.freq_align(insitu=False), )
|
---|
| 2140 | s = None
|
---|
| 2141 | if weight.upper() == 'MEDIAN':
|
---|
| 2142 | s = scantable(self._math._averagechannel(scan[0], 'MEDIAN',
|
---|
| 2143 | scanav))
|
---|
| 2144 | else:
|
---|
| 2145 | s = scantable(self._math._average(scan, mask, weight.upper(),
|
---|
| 2146 | scanav))
|
---|
[1099] | 2147 | s._add_history("average_time", varlist)
|
---|
[513] | 2148 | return s
|
---|
[710] | 2149 |
|
---|
[1862] | 2150 | @asaplog_post_dec
|
---|
[876] | 2151 | def convert_flux(self, jyperk=None, eta=None, d=None, insitu=None):
|
---|
[1846] | 2152 | """\
|
---|
[513] | 2153 | Return a scan where all spectra are converted to either
|
---|
| 2154 | Jansky or Kelvin depending upon the flux units of the scan table.
|
---|
| 2155 | By default the function tries to look the values up internally.
|
---|
| 2156 | If it can't find them (or if you want to over-ride), you must
|
---|
| 2157 | specify EITHER jyperk OR eta (and D which it will try to look up
|
---|
| 2158 | also if you don't set it). jyperk takes precedence if you set both.
|
---|
[1846] | 2159 |
|
---|
[513] | 2160 | Parameters:
|
---|
[1846] | 2161 |
|
---|
[513] | 2162 | jyperk: the Jy / K conversion factor
|
---|
[1855] | 2163 |
|
---|
[513] | 2164 | eta: the aperture efficiency
|
---|
[1855] | 2165 |
|
---|
[1928] | 2166 | d: the geometric diameter (metres)
|
---|
[1855] | 2167 |
|
---|
[513] | 2168 | insitu: if False a new scantable is returned.
|
---|
| 2169 | Otherwise, the scaling is done in-situ
|
---|
| 2170 | The default is taken from .asaprc (False)
|
---|
[1846] | 2171 |
|
---|
[513] | 2172 | """
|
---|
| 2173 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 2174 | self._math._setinsitu(insitu)
|
---|
[513] | 2175 | varlist = vars()
|
---|
[1593] | 2176 | jyperk = jyperk or -1.0
|
---|
| 2177 | d = d or -1.0
|
---|
| 2178 | eta = eta or -1.0
|
---|
[876] | 2179 | s = scantable(self._math._convertflux(self, d, eta, jyperk))
|
---|
| 2180 | s._add_history("convert_flux", varlist)
|
---|
| 2181 | if insitu: self._assign(s)
|
---|
| 2182 | else: return s
|
---|
[513] | 2183 |
|
---|
[1862] | 2184 | @asaplog_post_dec
|
---|
[876] | 2185 | def gain_el(self, poly=None, filename="", method="linear", insitu=None):
|
---|
[1846] | 2186 | """\
|
---|
[513] | 2187 | Return a scan after applying a gain-elevation correction.
|
---|
| 2188 | The correction can be made via either a polynomial or a
|
---|
| 2189 | table-based interpolation (and extrapolation if necessary).
|
---|
| 2190 | You specify polynomial coefficients, an ascii table or neither.
|
---|
| 2191 | If you specify neither, then a polynomial correction will be made
|
---|
| 2192 | with built in coefficients known for certain telescopes (an error
|
---|
| 2193 | will occur if the instrument is not known).
|
---|
| 2194 | The data and Tsys are *divided* by the scaling factors.
|
---|
[1846] | 2195 |
|
---|
[513] | 2196 | Parameters:
|
---|
[1846] | 2197 |
|
---|
[513] | 2198 | poly: Polynomial coefficients (default None) to compute a
|
---|
| 2199 | gain-elevation correction as a function of
|
---|
| 2200 | elevation (in degrees).
|
---|
[1855] | 2201 |
|
---|
[513] | 2202 | filename: The name of an ascii file holding correction factors.
|
---|
| 2203 | The first row of the ascii file must give the column
|
---|
| 2204 | names and these MUST include columns
|
---|
[2431] | 2205 | 'ELEVATION' (degrees) and 'FACTOR' (multiply data
|
---|
[513] | 2206 | by this) somewhere.
|
---|
| 2207 | The second row must give the data type of the
|
---|
| 2208 | column. Use 'R' for Real and 'I' for Integer.
|
---|
| 2209 | An example file would be
|
---|
| 2210 | (actual factors are arbitrary) :
|
---|
| 2211 |
|
---|
| 2212 | TIME ELEVATION FACTOR
|
---|
| 2213 | R R R
|
---|
| 2214 | 0.1 0 0.8
|
---|
| 2215 | 0.2 20 0.85
|
---|
| 2216 | 0.3 40 0.9
|
---|
| 2217 | 0.4 60 0.85
|
---|
| 2218 | 0.5 80 0.8
|
---|
| 2219 | 0.6 90 0.75
|
---|
[1855] | 2220 |
|
---|
[513] | 2221 | method: Interpolation method when correcting from a table.
|
---|
[2431] | 2222 | Values are 'nearest', 'linear' (default), 'cubic'
|
---|
| 2223 | and 'spline'
|
---|
[1855] | 2224 |
|
---|
[513] | 2225 | insitu: if False a new scantable is returned.
|
---|
| 2226 | Otherwise, the scaling is done in-situ
|
---|
| 2227 | The default is taken from .asaprc (False)
|
---|
[1846] | 2228 |
|
---|
[513] | 2229 | """
|
---|
| 2230 |
|
---|
| 2231 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 2232 | self._math._setinsitu(insitu)
|
---|
[513] | 2233 | varlist = vars()
|
---|
[1593] | 2234 | poly = poly or ()
|
---|
[513] | 2235 | from os.path import expandvars
|
---|
| 2236 | filename = expandvars(filename)
|
---|
[876] | 2237 | s = scantable(self._math._gainel(self, poly, filename, method))
|
---|
| 2238 | s._add_history("gain_el", varlist)
|
---|
[1593] | 2239 | if insitu:
|
---|
| 2240 | self._assign(s)
|
---|
| 2241 | else:
|
---|
| 2242 | return s
|
---|
[710] | 2243 |
|
---|
[1862] | 2244 | @asaplog_post_dec
|
---|
[931] | 2245 | def freq_align(self, reftime=None, method='cubic', insitu=None):
|
---|
[1846] | 2246 | """\
|
---|
[513] | 2247 | Return a scan where all rows have been aligned in frequency/velocity.
|
---|
| 2248 | The alignment frequency frame (e.g. LSRK) is that set by function
|
---|
| 2249 | set_freqframe.
|
---|
[1846] | 2250 |
|
---|
[513] | 2251 | Parameters:
|
---|
[1855] | 2252 |
|
---|
[513] | 2253 | reftime: reference time to align at. By default, the time of
|
---|
| 2254 | the first row of data is used.
|
---|
[1855] | 2255 |
|
---|
[513] | 2256 | method: Interpolation method for regridding the spectra.
|
---|
[2431] | 2257 | Choose from 'nearest', 'linear', 'cubic' (default)
|
---|
| 2258 | and 'spline'
|
---|
[1855] | 2259 |
|
---|
[513] | 2260 | insitu: if False a new scantable is returned.
|
---|
| 2261 | Otherwise, the scaling is done in-situ
|
---|
| 2262 | The default is taken from .asaprc (False)
|
---|
[1846] | 2263 |
|
---|
[513] | 2264 | """
|
---|
[931] | 2265 | if insitu is None: insitu = rcParams["insitu"]
|
---|
[2429] | 2266 | oldInsitu = self._math._insitu()
|
---|
[876] | 2267 | self._math._setinsitu(insitu)
|
---|
[513] | 2268 | varlist = vars()
|
---|
[1593] | 2269 | reftime = reftime or ""
|
---|
[931] | 2270 | s = scantable(self._math._freq_align(self, reftime, method))
|
---|
[876] | 2271 | s._add_history("freq_align", varlist)
|
---|
[2429] | 2272 | self._math._setinsitu(oldInsitu)
|
---|
[2349] | 2273 | if insitu:
|
---|
| 2274 | self._assign(s)
|
---|
| 2275 | else:
|
---|
| 2276 | return s
|
---|
[513] | 2277 |
|
---|
[1862] | 2278 | @asaplog_post_dec
|
---|
[1725] | 2279 | def opacity(self, tau=None, insitu=None):
|
---|
[1846] | 2280 | """\
|
---|
[513] | 2281 | Apply an opacity correction. The data
|
---|
| 2282 | and Tsys are multiplied by the correction factor.
|
---|
[1846] | 2283 |
|
---|
[513] | 2284 | Parameters:
|
---|
[1855] | 2285 |
|
---|
[1689] | 2286 | tau: (list of) opacity from which the correction factor is
|
---|
[513] | 2287 | exp(tau*ZD)
|
---|
[1689] | 2288 | where ZD is the zenith-distance.
|
---|
| 2289 | If a list is provided, it has to be of length nIF,
|
---|
| 2290 | nIF*nPol or 1 and in order of IF/POL, e.g.
|
---|
| 2291 | [opif0pol0, opif0pol1, opif1pol0 ...]
|
---|
[1725] | 2292 | if tau is `None` the opacities are determined from a
|
---|
| 2293 | model.
|
---|
[1855] | 2294 |
|
---|
[513] | 2295 | insitu: if False a new scantable is returned.
|
---|
| 2296 | Otherwise, the scaling is done in-situ
|
---|
| 2297 | The default is taken from .asaprc (False)
|
---|
[1846] | 2298 |
|
---|
[513] | 2299 | """
|
---|
[2349] | 2300 | if insitu is None:
|
---|
| 2301 | insitu = rcParams['insitu']
|
---|
[876] | 2302 | self._math._setinsitu(insitu)
|
---|
[513] | 2303 | varlist = vars()
|
---|
[1689] | 2304 | if not hasattr(tau, "__len__"):
|
---|
| 2305 | tau = [tau]
|
---|
[876] | 2306 | s = scantable(self._math._opacity(self, tau))
|
---|
| 2307 | s._add_history("opacity", varlist)
|
---|
[2349] | 2308 | if insitu:
|
---|
| 2309 | self._assign(s)
|
---|
| 2310 | else:
|
---|
| 2311 | return s
|
---|
[513] | 2312 |
|
---|
[1862] | 2313 | @asaplog_post_dec
|
---|
[513] | 2314 | def bin(self, width=5, insitu=None):
|
---|
[1846] | 2315 | """\
|
---|
[513] | 2316 | Return a scan where all spectra have been binned up.
|
---|
[1846] | 2317 |
|
---|
[1348] | 2318 | Parameters:
|
---|
[1846] | 2319 |
|
---|
[513] | 2320 | width: The bin width (default=5) in pixels
|
---|
[1855] | 2321 |
|
---|
[513] | 2322 | insitu: if False a new scantable is returned.
|
---|
| 2323 | Otherwise, the scaling is done in-situ
|
---|
| 2324 | The default is taken from .asaprc (False)
|
---|
[1846] | 2325 |
|
---|
[513] | 2326 | """
|
---|
[2349] | 2327 | if insitu is None:
|
---|
| 2328 | insitu = rcParams['insitu']
|
---|
[876] | 2329 | self._math._setinsitu(insitu)
|
---|
[513] | 2330 | varlist = vars()
|
---|
[876] | 2331 | s = scantable(self._math._bin(self, width))
|
---|
[1118] | 2332 | s._add_history("bin", varlist)
|
---|
[1589] | 2333 | if insitu:
|
---|
| 2334 | self._assign(s)
|
---|
| 2335 | else:
|
---|
| 2336 | return s
|
---|
[513] | 2337 |
|
---|
[1862] | 2338 | @asaplog_post_dec
|
---|
[2672] | 2339 | def reshape(self, first, last, insitu=None):
|
---|
| 2340 | """Resize the band by providing first and last channel.
|
---|
| 2341 | This will cut off all channels outside [first, last].
|
---|
| 2342 | """
|
---|
| 2343 | if insitu is None:
|
---|
| 2344 | insitu = rcParams['insitu']
|
---|
| 2345 | varlist = vars()
|
---|
| 2346 | if last < 0:
|
---|
| 2347 | last = self.nchan()-1 + last
|
---|
| 2348 | s = None
|
---|
| 2349 | if insitu:
|
---|
| 2350 | s = self
|
---|
| 2351 | else:
|
---|
| 2352 | s = self.copy()
|
---|
| 2353 | s._reshape(first,last)
|
---|
| 2354 | s._add_history("reshape", varlist)
|
---|
| 2355 | if not insitu:
|
---|
| 2356 | return s
|
---|
| 2357 |
|
---|
| 2358 | @asaplog_post_dec
|
---|
[513] | 2359 | def resample(self, width=5, method='cubic', insitu=None):
|
---|
[1846] | 2360 | """\
|
---|
[1348] | 2361 | Return a scan where all spectra have been binned up.
|
---|
[1573] | 2362 |
|
---|
[1348] | 2363 | Parameters:
|
---|
[1846] | 2364 |
|
---|
[513] | 2365 | width: The bin width (default=5) in pixels
|
---|
[1855] | 2366 |
|
---|
[513] | 2367 | method: Interpolation method when correcting from a table.
|
---|
[2431] | 2368 | Values are 'nearest', 'linear', 'cubic' (default)
|
---|
| 2369 | and 'spline'
|
---|
[1855] | 2370 |
|
---|
[513] | 2371 | insitu: if False a new scantable is returned.
|
---|
| 2372 | Otherwise, the scaling is done in-situ
|
---|
| 2373 | The default is taken from .asaprc (False)
|
---|
[1846] | 2374 |
|
---|
[513] | 2375 | """
|
---|
[2349] | 2376 | if insitu is None:
|
---|
| 2377 | insitu = rcParams['insitu']
|
---|
[876] | 2378 | self._math._setinsitu(insitu)
|
---|
[513] | 2379 | varlist = vars()
|
---|
[876] | 2380 | s = scantable(self._math._resample(self, method, width))
|
---|
[1118] | 2381 | s._add_history("resample", varlist)
|
---|
[2349] | 2382 | if insitu:
|
---|
| 2383 | self._assign(s)
|
---|
| 2384 | else:
|
---|
| 2385 | return s
|
---|
[513] | 2386 |
|
---|
[1862] | 2387 | @asaplog_post_dec
|
---|
[946] | 2388 | def average_pol(self, mask=None, weight='none'):
|
---|
[1846] | 2389 | """\
|
---|
[946] | 2390 | Average the Polarisations together.
|
---|
[1846] | 2391 |
|
---|
[946] | 2392 | Parameters:
|
---|
[1846] | 2393 |
|
---|
[946] | 2394 | mask: An optional mask defining the region, where the
|
---|
| 2395 | averaging will be applied. The output will have all
|
---|
| 2396 | specified points masked.
|
---|
[1855] | 2397 |
|
---|
[946] | 2398 | weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
|
---|
| 2399 | weighted), or 'tsys' (1/Tsys**2 weighted)
|
---|
[1846] | 2400 |
|
---|
[946] | 2401 | """
|
---|
| 2402 | varlist = vars()
|
---|
[1593] | 2403 | mask = mask or ()
|
---|
[1010] | 2404 | s = scantable(self._math._averagepol(self, mask, weight.upper()))
|
---|
[1118] | 2405 | s._add_history("average_pol", varlist)
|
---|
[992] | 2406 | return s
|
---|
[513] | 2407 |
|
---|
[1862] | 2408 | @asaplog_post_dec
|
---|
[1145] | 2409 | def average_beam(self, mask=None, weight='none'):
|
---|
[1846] | 2410 | """\
|
---|
[1145] | 2411 | Average the Beams together.
|
---|
[1846] | 2412 |
|
---|
[1145] | 2413 | Parameters:
|
---|
| 2414 | mask: An optional mask defining the region, where the
|
---|
| 2415 | averaging will be applied. The output will have all
|
---|
| 2416 | specified points masked.
|
---|
[1855] | 2417 |
|
---|
[1145] | 2418 | weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
|
---|
| 2419 | weighted), or 'tsys' (1/Tsys**2 weighted)
|
---|
[1846] | 2420 |
|
---|
[1145] | 2421 | """
|
---|
| 2422 | varlist = vars()
|
---|
[1593] | 2423 | mask = mask or ()
|
---|
[1145] | 2424 | s = scantable(self._math._averagebeams(self, mask, weight.upper()))
|
---|
| 2425 | s._add_history("average_beam", varlist)
|
---|
| 2426 | return s
|
---|
| 2427 |
|
---|
[1586] | 2428 | def parallactify(self, pflag):
|
---|
[1846] | 2429 | """\
|
---|
[1843] | 2430 | Set a flag to indicate whether this data should be treated as having
|
---|
[1617] | 2431 | been 'parallactified' (total phase == 0.0)
|
---|
[1846] | 2432 |
|
---|
[1617] | 2433 | Parameters:
|
---|
[1855] | 2434 |
|
---|
[1843] | 2435 | pflag: Bool indicating whether to turn this on (True) or
|
---|
[1617] | 2436 | off (False)
|
---|
[1846] | 2437 |
|
---|
[1617] | 2438 | """
|
---|
[1586] | 2439 | varlist = vars()
|
---|
| 2440 | self._parallactify(pflag)
|
---|
| 2441 | self._add_history("parallactify", varlist)
|
---|
| 2442 |
|
---|
[1862] | 2443 | @asaplog_post_dec
|
---|
[992] | 2444 | def convert_pol(self, poltype=None):
|
---|
[1846] | 2445 | """\
|
---|
[992] | 2446 | Convert the data to a different polarisation type.
|
---|
[1565] | 2447 | Note that you will need cross-polarisation terms for most conversions.
|
---|
[1846] | 2448 |
|
---|
[992] | 2449 | Parameters:
|
---|
[1855] | 2450 |
|
---|
[992] | 2451 | poltype: The new polarisation type. Valid types are:
|
---|
[2431] | 2452 | 'linear', 'circular', 'stokes' and 'linpol'
|
---|
[1846] | 2453 |
|
---|
[992] | 2454 | """
|
---|
| 2455 | varlist = vars()
|
---|
[1859] | 2456 | s = scantable(self._math._convertpol(self, poltype))
|
---|
[1118] | 2457 | s._add_history("convert_pol", varlist)
|
---|
[992] | 2458 | return s
|
---|
| 2459 |
|
---|
[1862] | 2460 | @asaplog_post_dec
|
---|
[2269] | 2461 | def smooth(self, kernel="hanning", width=5.0, order=2, plot=False,
|
---|
| 2462 | insitu=None):
|
---|
[1846] | 2463 | """\
|
---|
[513] | 2464 | Smooth the spectrum by the specified kernel (conserving flux).
|
---|
[1846] | 2465 |
|
---|
[513] | 2466 | Parameters:
|
---|
[1846] | 2467 |
|
---|
[513] | 2468 | kernel: The type of smoothing kernel. Select from
|
---|
[1574] | 2469 | 'hanning' (default), 'gaussian', 'boxcar', 'rmedian'
|
---|
| 2470 | or 'poly'
|
---|
[1855] | 2471 |
|
---|
[513] | 2472 | width: The width of the kernel in pixels. For hanning this is
|
---|
| 2473 | ignored otherwise it defauls to 5 pixels.
|
---|
| 2474 | For 'gaussian' it is the Full Width Half
|
---|
| 2475 | Maximum. For 'boxcar' it is the full width.
|
---|
[1574] | 2476 | For 'rmedian' and 'poly' it is the half width.
|
---|
[1855] | 2477 |
|
---|
[1574] | 2478 | order: Optional parameter for 'poly' kernel (default is 2), to
|
---|
| 2479 | specify the order of the polnomial. Ignored by all other
|
---|
| 2480 | kernels.
|
---|
[1855] | 2481 |
|
---|
[1819] | 2482 | plot: plot the original and the smoothed spectra.
|
---|
| 2483 | In this each indivual fit has to be approved, by
|
---|
| 2484 | typing 'y' or 'n'
|
---|
[1855] | 2485 |
|
---|
[513] | 2486 | insitu: if False a new scantable is returned.
|
---|
| 2487 | Otherwise, the scaling is done in-situ
|
---|
| 2488 | The default is taken from .asaprc (False)
|
---|
[1846] | 2489 |
|
---|
[513] | 2490 | """
|
---|
| 2491 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 2492 | self._math._setinsitu(insitu)
|
---|
[513] | 2493 | varlist = vars()
|
---|
[1819] | 2494 |
|
---|
| 2495 | if plot: orgscan = self.copy()
|
---|
| 2496 |
|
---|
[1574] | 2497 | s = scantable(self._math._smooth(self, kernel.lower(), width, order))
|
---|
[876] | 2498 | s._add_history("smooth", varlist)
|
---|
[1819] | 2499 |
|
---|
[2610] | 2500 | action = 'H'
|
---|
[1819] | 2501 | if plot:
|
---|
[2150] | 2502 | from asap.asapplotter import new_asaplot
|
---|
| 2503 | theplot = new_asaplot(rcParams['plotter.gui'])
|
---|
[2535] | 2504 | from matplotlib import rc as rcp
|
---|
| 2505 | rcp('lines', linewidth=1)
|
---|
[2150] | 2506 | theplot.set_panels()
|
---|
[1819] | 2507 | ylab=s._get_ordinate_label()
|
---|
[2150] | 2508 | #theplot.palette(0,["#777777","red"])
|
---|
[1819] | 2509 | for r in xrange(s.nrow()):
|
---|
| 2510 | xsm=s._getabcissa(r)
|
---|
| 2511 | ysm=s._getspectrum(r)
|
---|
| 2512 | xorg=orgscan._getabcissa(r)
|
---|
| 2513 | yorg=orgscan._getspectrum(r)
|
---|
[2610] | 2514 | if action != "N": #skip plotting if rejecting all
|
---|
| 2515 | theplot.clear()
|
---|
| 2516 | theplot.hold()
|
---|
| 2517 | theplot.set_axes('ylabel',ylab)
|
---|
| 2518 | theplot.set_axes('xlabel',s._getabcissalabel(r))
|
---|
| 2519 | theplot.set_axes('title',s._getsourcename(r))
|
---|
| 2520 | theplot.set_line(label='Original',color="#777777")
|
---|
| 2521 | theplot.plot(xorg,yorg)
|
---|
| 2522 | theplot.set_line(label='Smoothed',color="red")
|
---|
| 2523 | theplot.plot(xsm,ysm)
|
---|
| 2524 | ### Ugly part for legend
|
---|
| 2525 | for i in [0,1]:
|
---|
| 2526 | theplot.subplots[0]['lines'].append(
|
---|
| 2527 | [theplot.subplots[0]['axes'].lines[i]]
|
---|
| 2528 | )
|
---|
| 2529 | theplot.release()
|
---|
| 2530 | ### Ugly part for legend
|
---|
| 2531 | theplot.subplots[0]['lines']=[]
|
---|
| 2532 | res = self._get_verify_action("Accept smoothing?",action)
|
---|
| 2533 | #print "IF%d, POL%d: got result = %s" %(s.getif(r),s.getpol(r),res)
|
---|
| 2534 | if r == 0: action = None
|
---|
| 2535 | #res = raw_input("Accept smoothing ([y]/n): ")
|
---|
[1819] | 2536 | if res.upper() == 'N':
|
---|
[2610] | 2537 | # reject for the current rows
|
---|
[1819] | 2538 | s._setspectrum(yorg, r)
|
---|
[2610] | 2539 | elif res.upper() == 'R':
|
---|
| 2540 | # reject all the following rows
|
---|
| 2541 | action = "N"
|
---|
| 2542 | s._setspectrum(yorg, r)
|
---|
| 2543 | elif res.upper() == 'A':
|
---|
| 2544 | # accept all the following rows
|
---|
| 2545 | break
|
---|
[2150] | 2546 | theplot.quit()
|
---|
| 2547 | del theplot
|
---|
[1819] | 2548 | del orgscan
|
---|
| 2549 |
|
---|
[876] | 2550 | if insitu: self._assign(s)
|
---|
| 2551 | else: return s
|
---|
[513] | 2552 |
|
---|
[2186] | 2553 | @asaplog_post_dec
|
---|
[2435] | 2554 | def regrid_channel(self, width=5, plot=False, insitu=None):
|
---|
| 2555 | """\
|
---|
| 2556 | Regrid the spectra by the specified channel width
|
---|
| 2557 |
|
---|
| 2558 | Parameters:
|
---|
| 2559 |
|
---|
| 2560 | width: The channel width (float) of regridded spectra
|
---|
| 2561 | in the current spectral unit.
|
---|
| 2562 |
|
---|
| 2563 | plot: [NOT IMPLEMENTED YET]
|
---|
| 2564 | plot the original and the regridded spectra.
|
---|
| 2565 | In this each indivual fit has to be approved, by
|
---|
| 2566 | typing 'y' or 'n'
|
---|
| 2567 |
|
---|
| 2568 | insitu: if False a new scantable is returned.
|
---|
| 2569 | Otherwise, the scaling is done in-situ
|
---|
| 2570 | The default is taken from .asaprc (False)
|
---|
| 2571 |
|
---|
| 2572 | """
|
---|
| 2573 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2574 | varlist = vars()
|
---|
| 2575 |
|
---|
| 2576 | if plot:
|
---|
| 2577 | asaplog.post()
|
---|
| 2578 | asaplog.push("Verification plot is not implemtnetd yet.")
|
---|
| 2579 | asaplog.post("WARN")
|
---|
| 2580 |
|
---|
| 2581 | s = self.copy()
|
---|
| 2582 | s._regrid_specchan(width)
|
---|
| 2583 |
|
---|
| 2584 | s._add_history("regrid_channel", varlist)
|
---|
| 2585 |
|
---|
| 2586 | # if plot:
|
---|
| 2587 | # from asap.asapplotter import new_asaplot
|
---|
| 2588 | # theplot = new_asaplot(rcParams['plotter.gui'])
|
---|
[2535] | 2589 | # from matplotlib import rc as rcp
|
---|
| 2590 | # rcp('lines', linewidth=1)
|
---|
[2435] | 2591 | # theplot.set_panels()
|
---|
| 2592 | # ylab=s._get_ordinate_label()
|
---|
| 2593 | # #theplot.palette(0,["#777777","red"])
|
---|
| 2594 | # for r in xrange(s.nrow()):
|
---|
| 2595 | # xsm=s._getabcissa(r)
|
---|
| 2596 | # ysm=s._getspectrum(r)
|
---|
| 2597 | # xorg=orgscan._getabcissa(r)
|
---|
| 2598 | # yorg=orgscan._getspectrum(r)
|
---|
| 2599 | # theplot.clear()
|
---|
| 2600 | # theplot.hold()
|
---|
| 2601 | # theplot.set_axes('ylabel',ylab)
|
---|
| 2602 | # theplot.set_axes('xlabel',s._getabcissalabel(r))
|
---|
| 2603 | # theplot.set_axes('title',s._getsourcename(r))
|
---|
| 2604 | # theplot.set_line(label='Original',color="#777777")
|
---|
| 2605 | # theplot.plot(xorg,yorg)
|
---|
| 2606 | # theplot.set_line(label='Smoothed',color="red")
|
---|
| 2607 | # theplot.plot(xsm,ysm)
|
---|
| 2608 | # ### Ugly part for legend
|
---|
| 2609 | # for i in [0,1]:
|
---|
| 2610 | # theplot.subplots[0]['lines'].append(
|
---|
| 2611 | # [theplot.subplots[0]['axes'].lines[i]]
|
---|
| 2612 | # )
|
---|
| 2613 | # theplot.release()
|
---|
| 2614 | # ### Ugly part for legend
|
---|
| 2615 | # theplot.subplots[0]['lines']=[]
|
---|
| 2616 | # res = raw_input("Accept smoothing ([y]/n): ")
|
---|
| 2617 | # if res.upper() == 'N':
|
---|
| 2618 | # s._setspectrum(yorg, r)
|
---|
| 2619 | # theplot.quit()
|
---|
| 2620 | # del theplot
|
---|
| 2621 | # del orgscan
|
---|
| 2622 |
|
---|
| 2623 | if insitu: self._assign(s)
|
---|
| 2624 | else: return s
|
---|
| 2625 |
|
---|
| 2626 | @asaplog_post_dec
|
---|
[2186] | 2627 | def _parse_wn(self, wn):
|
---|
| 2628 | if isinstance(wn, list) or isinstance(wn, tuple):
|
---|
| 2629 | return wn
|
---|
| 2630 | elif isinstance(wn, int):
|
---|
| 2631 | return [ wn ]
|
---|
| 2632 | elif isinstance(wn, str):
|
---|
[2277] | 2633 | if '-' in wn: # case 'a-b' : return [a,a+1,...,b-1,b]
|
---|
[2186] | 2634 | val = wn.split('-')
|
---|
| 2635 | val = [int(val[0]), int(val[1])]
|
---|
| 2636 | val.sort()
|
---|
| 2637 | res = [i for i in xrange(val[0], val[1]+1)]
|
---|
[2277] | 2638 | elif wn[:2] == '<=' or wn[:2] == '=<': # cases '<=a','=<a' : return [0,1,...,a-1,a]
|
---|
[2186] | 2639 | val = int(wn[2:])+1
|
---|
| 2640 | res = [i for i in xrange(val)]
|
---|
[2277] | 2641 | elif wn[-2:] == '>=' or wn[-2:] == '=>': # cases 'a>=','a=>' : return [0,1,...,a-1,a]
|
---|
[2186] | 2642 | val = int(wn[:-2])+1
|
---|
| 2643 | res = [i for i in xrange(val)]
|
---|
[2277] | 2644 | elif wn[0] == '<': # case '<a' : return [0,1,...,a-2,a-1]
|
---|
[2186] | 2645 | val = int(wn[1:])
|
---|
| 2646 | res = [i for i in xrange(val)]
|
---|
[2277] | 2647 | elif wn[-1] == '>': # case 'a>' : return [0,1,...,a-2,a-1]
|
---|
[2186] | 2648 | val = int(wn[:-1])
|
---|
| 2649 | res = [i for i in xrange(val)]
|
---|
[2411] | 2650 | elif wn[:2] == '>=' or wn[:2] == '=>': # cases '>=a','=>a' : return [a,-999], which is
|
---|
| 2651 | # then interpreted in C++
|
---|
| 2652 | # side as [a,a+1,...,a_nyq]
|
---|
| 2653 | # (CAS-3759)
|
---|
[2186] | 2654 | val = int(wn[2:])
|
---|
[2411] | 2655 | res = [val, -999]
|
---|
| 2656 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
| 2657 | elif wn[-2:] == '<=' or wn[-2:] == '=<': # cases 'a<=','a=<' : return [a,-999], which is
|
---|
| 2658 | # then interpreted in C++
|
---|
| 2659 | # side as [a,a+1,...,a_nyq]
|
---|
| 2660 | # (CAS-3759)
|
---|
[2186] | 2661 | val = int(wn[:-2])
|
---|
[2411] | 2662 | res = [val, -999]
|
---|
| 2663 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
| 2664 | elif wn[0] == '>': # case '>a' : return [a+1,-999], which is
|
---|
| 2665 | # then interpreted in C++
|
---|
| 2666 | # side as [a+1,a+2,...,a_nyq]
|
---|
| 2667 | # (CAS-3759)
|
---|
[2186] | 2668 | val = int(wn[1:])+1
|
---|
[2411] | 2669 | res = [val, -999]
|
---|
| 2670 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
| 2671 | elif wn[-1] == '<': # case 'a<' : return [a+1,-999], which is
|
---|
| 2672 | # then interpreted in C++
|
---|
| 2673 | # side as [a+1,a+2,...,a_nyq]
|
---|
| 2674 | # (CAS-3759)
|
---|
[2186] | 2675 | val = int(wn[:-1])+1
|
---|
[2411] | 2676 | res = [val, -999]
|
---|
| 2677 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
[2012] | 2678 |
|
---|
[2186] | 2679 | return res
|
---|
| 2680 | else:
|
---|
| 2681 | msg = 'wrong value given for addwn/rejwn'
|
---|
| 2682 | raise RuntimeError(msg)
|
---|
| 2683 |
|
---|
[2713] | 2684 | @asaplog_post_dec
|
---|
[2767] | 2685 | def apply_bltable(self, insitu=None, inbltable=None, outbltable=None, overwrite=None):
|
---|
| 2686 | """\
|
---|
| 2687 | Subtract baseline based on parameters written in Baseline Table.
|
---|
| 2688 |
|
---|
| 2689 | Parameters:
|
---|
| 2690 | insitu: if False a new scantable is returned.
|
---|
| 2691 | Otherwise, the scaling is done in-situ
|
---|
| 2692 | The default is taken from .asaprc (False)
|
---|
| 2693 | inbltable: name of input baseline table. The row number of
|
---|
| 2694 | scantable and that of inbltable must be
|
---|
| 2695 | identical.
|
---|
| 2696 | outbltable: name of output baseline table where baseline
|
---|
| 2697 | parameters and fitting results recorded.
|
---|
| 2698 | default is ''(no output).
|
---|
| 2699 | overwrite: if True, overwrites the existing baseline table
|
---|
| 2700 | specified in outbltable.
|
---|
| 2701 | default is False.
|
---|
| 2702 | """
|
---|
| 2703 |
|
---|
| 2704 | try:
|
---|
| 2705 | varlist = vars()
|
---|
| 2706 | if inbltable is None: raise ValueError("bltable missing.")
|
---|
| 2707 | if outbltable is None: outbltable = ''
|
---|
| 2708 | if overwrite is None: overwrite = False
|
---|
| 2709 |
|
---|
| 2710 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2711 | if insitu:
|
---|
| 2712 | workscan = self
|
---|
| 2713 | else:
|
---|
| 2714 | workscan = self.copy()
|
---|
| 2715 |
|
---|
| 2716 | sres = workscan._apply_bltable(inbltable,
|
---|
| 2717 | outbltable,
|
---|
| 2718 | os.path.exists(outbltable),
|
---|
| 2719 | overwrite)
|
---|
| 2720 | res = parse_fitresult(sres)
|
---|
| 2721 |
|
---|
| 2722 | workscan._add_history('apply_bltable', varlist)
|
---|
| 2723 |
|
---|
| 2724 | if insitu:
|
---|
| 2725 | self._assign(workscan)
|
---|
| 2726 | return res
|
---|
| 2727 | else:
|
---|
| 2728 | return {'scantable': workscan, 'fitresults': res}
|
---|
| 2729 |
|
---|
| 2730 | except RuntimeError, e:
|
---|
| 2731 | raise_fitting_failure_exception(e)
|
---|
| 2732 |
|
---|
| 2733 | @asaplog_post_dec
|
---|
| 2734 | def sub_baseline(self, insitu=None, blinfo=None, bltable=None, overwrite=None):
|
---|
| 2735 | """\
|
---|
| 2736 | Subtract baseline based on parameters written in the input list.
|
---|
| 2737 |
|
---|
| 2738 | Parameters:
|
---|
| 2739 | insitu: if False a new scantable is returned.
|
---|
| 2740 | Otherwise, the scaling is done in-situ
|
---|
| 2741 | The default is taken from .asaprc (False)
|
---|
| 2742 | blinfo: baseline parameter set stored in a dictionary
|
---|
| 2743 | or a list of dictionary. Each dictionary
|
---|
| 2744 | corresponds to each spectrum and must contain
|
---|
| 2745 | the following keys and values:
|
---|
| 2746 | 'row': row number,
|
---|
| 2747 | 'blfunc': function name. available ones include
|
---|
| 2748 | 'poly', 'chebyshev', 'cspline' and
|
---|
| 2749 | 'sinusoid',
|
---|
| 2750 | 'order': maximum order of polynomial. needed
|
---|
| 2751 | if blfunc='poly' or 'chebyshev',
|
---|
| 2752 | 'npiece': number or piecewise polynomial.
|
---|
| 2753 | needed if blfunc='cspline',
|
---|
| 2754 | 'nwave': a list of sinusoidal wave numbers.
|
---|
| 2755 | needed if blfunc='sinusoid', and
|
---|
| 2756 | 'masklist': min-max windows for channel mask.
|
---|
| 2757 | the specified ranges will be used
|
---|
| 2758 | for fitting.
|
---|
| 2759 | bltable: name of output baseline table where baseline
|
---|
| 2760 | parameters and fitting results recorded.
|
---|
| 2761 | default is ''(no output).
|
---|
| 2762 | overwrite: if True, overwrites the existing baseline table
|
---|
| 2763 | specified in bltable.
|
---|
| 2764 | default is False.
|
---|
| 2765 |
|
---|
| 2766 | Example:
|
---|
| 2767 | sub_baseline(blinfo=[{'row':0, 'blfunc':'poly', 'order':5,
|
---|
| 2768 | 'masklist':[[10,350],[352,510]]},
|
---|
| 2769 | {'row':1, 'blfunc':'cspline', 'npiece':3,
|
---|
| 2770 | 'masklist':[[3,16],[19,404],[407,511]]}
|
---|
| 2771 | ])
|
---|
| 2772 |
|
---|
| 2773 | the first spectrum (row=0) will be fitted with polynomial
|
---|
| 2774 | of order=5 and the next one (row=1) will be fitted with cubic
|
---|
| 2775 | spline consisting of 3 pieces.
|
---|
| 2776 | """
|
---|
| 2777 |
|
---|
| 2778 | try:
|
---|
| 2779 | varlist = vars()
|
---|
| 2780 | if blinfo is None: blinfo = []
|
---|
| 2781 | if bltable is None: bltable = ''
|
---|
| 2782 | if overwrite is None: overwrite = False
|
---|
| 2783 |
|
---|
| 2784 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2785 | if insitu:
|
---|
| 2786 | workscan = self
|
---|
| 2787 | else:
|
---|
| 2788 | workscan = self.copy()
|
---|
| 2789 |
|
---|
| 2790 | nrow = workscan.nrow()
|
---|
| 2791 |
|
---|
| 2792 | in_blinfo = pack_blinfo(blinfo=blinfo, maxirow=nrow)
|
---|
| 2793 |
|
---|
| 2794 | print "in_blinfo=< "+ str(in_blinfo)+" >"
|
---|
| 2795 |
|
---|
| 2796 | sres = workscan._sub_baseline(in_blinfo,
|
---|
| 2797 | bltable,
|
---|
| 2798 | os.path.exists(bltable),
|
---|
| 2799 | overwrite)
|
---|
| 2800 | res = parse_fitresult(sres)
|
---|
| 2801 |
|
---|
| 2802 | workscan._add_history('sub_baseline', varlist)
|
---|
| 2803 |
|
---|
| 2804 | if insitu:
|
---|
| 2805 | self._assign(workscan)
|
---|
| 2806 | return res
|
---|
| 2807 | else:
|
---|
| 2808 | return {'scantable': workscan, 'fitresults': res}
|
---|
| 2809 |
|
---|
| 2810 | except RuntimeError, e:
|
---|
| 2811 | raise_fitting_failure_exception(e)
|
---|
| 2812 |
|
---|
| 2813 | @asaplog_post_dec
|
---|
[2713] | 2814 | def calc_aic(self, value=None, blfunc=None, order=None, mask=None,
|
---|
| 2815 | whichrow=None, uselinefinder=None, edge=None,
|
---|
| 2816 | threshold=None, chan_avg_limit=None):
|
---|
| 2817 | """\
|
---|
| 2818 | Calculates and returns model selection criteria for a specified
|
---|
| 2819 | baseline model and a given spectrum data.
|
---|
| 2820 | Available values include Akaike Information Criterion (AIC), the
|
---|
| 2821 | corrected Akaike Information Criterion (AICc) by Sugiura(1978),
|
---|
| 2822 | Bayesian Information Criterion (BIC) and the Generalised Cross
|
---|
| 2823 | Validation (GCV).
|
---|
[2186] | 2824 |
|
---|
[2713] | 2825 | Parameters:
|
---|
| 2826 | value: name of model selection criteria to calculate.
|
---|
| 2827 | available ones include 'aic', 'aicc', 'bic' and
|
---|
| 2828 | 'gcv'. default is 'aicc'.
|
---|
| 2829 | blfunc: baseline function name. available ones include
|
---|
| 2830 | 'chebyshev', 'cspline' and 'sinusoid'.
|
---|
| 2831 | default is 'chebyshev'.
|
---|
| 2832 | order: parameter for basline function. actually stands for
|
---|
| 2833 | order of polynomial (order) for 'chebyshev',
|
---|
| 2834 | number of spline pieces (npiece) for 'cspline' and
|
---|
| 2835 | maximum wave number for 'sinusoid', respectively.
|
---|
| 2836 | default is 5 (which is also the default order value
|
---|
| 2837 | for [auto_]chebyshev_baseline()).
|
---|
| 2838 | mask: an optional mask. default is [].
|
---|
| 2839 | whichrow: row number. default is 0 (the first row)
|
---|
| 2840 | uselinefinder: use sd.linefinder() to flag out line regions
|
---|
| 2841 | default is True.
|
---|
| 2842 | edge: an optional number of channel to drop at
|
---|
| 2843 | the edge of spectrum. If only one value is
|
---|
| 2844 | specified, the same number will be dropped
|
---|
| 2845 | from both sides of the spectrum. Default
|
---|
| 2846 | is to keep all channels. Nested tuples
|
---|
| 2847 | represent individual edge selection for
|
---|
| 2848 | different IFs (a number of spectral channels
|
---|
| 2849 | can be different)
|
---|
| 2850 | default is (0, 0).
|
---|
| 2851 | threshold: the threshold used by line finder. It is
|
---|
| 2852 | better to keep it large as only strong lines
|
---|
| 2853 | affect the baseline solution.
|
---|
| 2854 | default is 3.
|
---|
| 2855 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 2856 | channels to average during the search of
|
---|
| 2857 | weak and broad lines. The default is no
|
---|
| 2858 | averaging (and no search for weak lines).
|
---|
| 2859 | If such lines can affect the fitted baseline
|
---|
| 2860 | (e.g. a high order polynomial is fitted),
|
---|
| 2861 | increase this parameter (usually values up
|
---|
| 2862 | to 8 are reasonable). Most users of this
|
---|
| 2863 | method should find the default value sufficient.
|
---|
| 2864 | default is 1.
|
---|
| 2865 |
|
---|
| 2866 | Example:
|
---|
| 2867 | aic = scan.calc_aic(blfunc='chebyshev', order=5, whichrow=0)
|
---|
| 2868 | """
|
---|
| 2869 |
|
---|
| 2870 | try:
|
---|
| 2871 | varlist = vars()
|
---|
| 2872 |
|
---|
| 2873 | if value is None: value = 'aicc'
|
---|
| 2874 | if blfunc is None: blfunc = 'chebyshev'
|
---|
| 2875 | if order is None: order = 5
|
---|
| 2876 | if mask is None: mask = []
|
---|
| 2877 | if whichrow is None: whichrow = 0
|
---|
| 2878 | if uselinefinder is None: uselinefinder = True
|
---|
| 2879 | if edge is None: edge = (0, 0)
|
---|
| 2880 | if threshold is None: threshold = 3
|
---|
| 2881 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 2882 |
|
---|
| 2883 | return self._calc_aic(value, blfunc, order, mask,
|
---|
| 2884 | whichrow, uselinefinder, edge,
|
---|
| 2885 | threshold, chan_avg_limit)
|
---|
| 2886 |
|
---|
| 2887 | except RuntimeError, e:
|
---|
| 2888 | raise_fitting_failure_exception(e)
|
---|
| 2889 |
|
---|
[1862] | 2890 | @asaplog_post_dec
|
---|
[2771] | 2891 | def sinusoid_baseline(self, mask=None, applyfft=None,
|
---|
[2269] | 2892 | fftmethod=None, fftthresh=None,
|
---|
[2771] | 2893 | addwn=None, rejwn=None,
|
---|
| 2894 | insitu=None,
|
---|
| 2895 | clipthresh=None, clipniter=None,
|
---|
| 2896 | plot=None,
|
---|
| 2897 | getresidual=None,
|
---|
| 2898 | showprogress=None, minnrow=None,
|
---|
| 2899 | outlog=None,
|
---|
[2767] | 2900 | blfile=None, csvformat=None,
|
---|
| 2901 | bltable=None):
|
---|
[2047] | 2902 | """\
|
---|
[2349] | 2903 | Return a scan which has been baselined (all rows) with sinusoidal
|
---|
| 2904 | functions.
|
---|
| 2905 |
|
---|
[2047] | 2906 | Parameters:
|
---|
[2186] | 2907 | mask: an optional mask
|
---|
| 2908 | applyfft: if True use some method, such as FFT, to find
|
---|
| 2909 | strongest sinusoidal components in the wavenumber
|
---|
| 2910 | domain to be used for baseline fitting.
|
---|
| 2911 | default is True.
|
---|
| 2912 | fftmethod: method to find the strong sinusoidal components.
|
---|
| 2913 | now only 'fft' is available and it is the default.
|
---|
| 2914 | fftthresh: the threshold to select wave numbers to be used for
|
---|
| 2915 | fitting from the distribution of amplitudes in the
|
---|
| 2916 | wavenumber domain.
|
---|
| 2917 | both float and string values accepted.
|
---|
| 2918 | given a float value, the unit is set to sigma.
|
---|
| 2919 | for string values, allowed formats include:
|
---|
[2349] | 2920 | 'xsigma' or 'x' (= x-sigma level. e.g.,
|
---|
| 2921 | '3sigma'), or
|
---|
[2186] | 2922 | 'topx' (= the x strongest ones, e.g. 'top5').
|
---|
| 2923 | default is 3.0 (unit: sigma).
|
---|
| 2924 | addwn: the additional wave numbers to be used for fitting.
|
---|
| 2925 | list or integer value is accepted to specify every
|
---|
| 2926 | wave numbers. also string value can be used in case
|
---|
| 2927 | you need to specify wave numbers in a certain range,
|
---|
| 2928 | e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b),
|
---|
| 2929 | '<a' (= 0,1,...,a-2,a-1),
|
---|
| 2930 | '>=a' (= a, a+1, ... up to the maximum wave
|
---|
| 2931 | number corresponding to the Nyquist
|
---|
| 2932 | frequency for the case of FFT).
|
---|
[2411] | 2933 | default is [0].
|
---|
[2186] | 2934 | rejwn: the wave numbers NOT to be used for fitting.
|
---|
| 2935 | can be set just as addwn but has higher priority:
|
---|
| 2936 | wave numbers which are specified both in addwn
|
---|
| 2937 | and rejwn will NOT be used. default is [].
|
---|
[2771] | 2938 | insitu: if False a new scantable is returned.
|
---|
| 2939 | Otherwise, the scaling is done in-situ
|
---|
| 2940 | The default is taken from .asaprc (False)
|
---|
[2081] | 2941 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
[2349] | 2942 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 2943 | clipping (default is 0)
|
---|
[2081] | 2944 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 2945 | plot the fit and the residual. In this each
|
---|
| 2946 | indivual fit has to be approved, by typing 'y'
|
---|
| 2947 | or 'n'
|
---|
| 2948 | getresidual: if False, returns best-fit values instead of
|
---|
| 2949 | residual. (default is True)
|
---|
[2189] | 2950 | showprogress: show progress status for large data.
|
---|
| 2951 | default is True.
|
---|
| 2952 | minnrow: minimum number of input spectra to show.
|
---|
| 2953 | default is 1000.
|
---|
[2081] | 2954 | outlog: Output the coefficients of the best-fit
|
---|
| 2955 | function to logger (default is False)
|
---|
| 2956 | blfile: Name of a text file in which the best-fit
|
---|
| 2957 | parameter values to be written
|
---|
[2186] | 2958 | (default is '': no file/logger output)
|
---|
[2641] | 2959 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[2767] | 2960 | bltable: name of a baseline table where fitting results
|
---|
| 2961 | (coefficients, rms, etc.) are to be written.
|
---|
| 2962 | if given, fitting results will NOT be output to
|
---|
| 2963 | scantable (insitu=True) or None will be
|
---|
| 2964 | returned (insitu=False).
|
---|
| 2965 | (default is "": no table output)
|
---|
[2047] | 2966 |
|
---|
| 2967 | Example:
|
---|
[2349] | 2968 | # return a scan baselined by a combination of sinusoidal curves
|
---|
| 2969 | # having wave numbers in spectral window up to 10,
|
---|
[2047] | 2970 | # also with 3-sigma clipping, iteration up to 4 times
|
---|
[2186] | 2971 | bscan = scan.sinusoid_baseline(addwn='<=10',clipthresh=3.0,clipniter=4)
|
---|
[2081] | 2972 |
|
---|
| 2973 | Note:
|
---|
| 2974 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 2975 | based on specunit of 'channel'.
|
---|
[2047] | 2976 | """
|
---|
| 2977 |
|
---|
[2186] | 2978 | try:
|
---|
| 2979 | varlist = vars()
|
---|
[2047] | 2980 |
|
---|
[2186] | 2981 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2982 | if insitu:
|
---|
| 2983 | workscan = self
|
---|
| 2984 | else:
|
---|
| 2985 | workscan = self.copy()
|
---|
| 2986 |
|
---|
[2410] | 2987 | if mask is None: mask = []
|
---|
[2186] | 2988 | if applyfft is None: applyfft = True
|
---|
| 2989 | if fftmethod is None: fftmethod = 'fft'
|
---|
| 2990 | if fftthresh is None: fftthresh = 3.0
|
---|
[2411] | 2991 | if addwn is None: addwn = [0]
|
---|
[2186] | 2992 | if rejwn is None: rejwn = []
|
---|
| 2993 | if clipthresh is None: clipthresh = 3.0
|
---|
| 2994 | if clipniter is None: clipniter = 0
|
---|
| 2995 | if plot is None: plot = False
|
---|
| 2996 | if getresidual is None: getresidual = True
|
---|
[2189] | 2997 | if showprogress is None: showprogress = True
|
---|
| 2998 | if minnrow is None: minnrow = 1000
|
---|
[2186] | 2999 | if outlog is None: outlog = False
|
---|
| 3000 | if blfile is None: blfile = ''
|
---|
[2641] | 3001 | if csvformat is None: csvformat = False
|
---|
[2767] | 3002 | if bltable is None: bltable = ''
|
---|
[2047] | 3003 |
|
---|
[2767] | 3004 | sapplyfft = 'true' if applyfft else 'false'
|
---|
| 3005 | fftinfo = ','.join([sapplyfft, fftmethod.lower(), str(fftthresh).lower()])
|
---|
[2641] | 3006 |
|
---|
[2767] | 3007 | scsvformat = 'T' if csvformat else 'F'
|
---|
| 3008 |
|
---|
[2081] | 3009 | #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method.
|
---|
[2767] | 3010 | workscan._sinusoid_baseline(mask,
|
---|
| 3011 | fftinfo,
|
---|
| 3012 | #applyfft, fftmethod.lower(),
|
---|
| 3013 | #str(fftthresh).lower(),
|
---|
[2349] | 3014 | workscan._parse_wn(addwn),
|
---|
[2643] | 3015 | workscan._parse_wn(rejwn),
|
---|
| 3016 | clipthresh, clipniter,
|
---|
| 3017 | getresidual,
|
---|
[2349] | 3018 | pack_progress_params(showprogress,
|
---|
[2641] | 3019 | minnrow),
|
---|
[2767] | 3020 | outlog, scsvformat+blfile,
|
---|
| 3021 | bltable)
|
---|
[2186] | 3022 | workscan._add_history('sinusoid_baseline', varlist)
|
---|
[2767] | 3023 |
|
---|
| 3024 | if bltable == '':
|
---|
| 3025 | if insitu:
|
---|
| 3026 | self._assign(workscan)
|
---|
| 3027 | else:
|
---|
| 3028 | return workscan
|
---|
[2047] | 3029 | else:
|
---|
[2767] | 3030 | if not insitu:
|
---|
| 3031 | return None
|
---|
[2047] | 3032 |
|
---|
| 3033 | except RuntimeError, e:
|
---|
[2186] | 3034 | raise_fitting_failure_exception(e)
|
---|
[2047] | 3035 |
|
---|
| 3036 |
|
---|
[2186] | 3037 | @asaplog_post_dec
|
---|
[2771] | 3038 | def auto_sinusoid_baseline(self, mask=None, applyfft=None,
|
---|
[2349] | 3039 | fftmethod=None, fftthresh=None,
|
---|
[2771] | 3040 | addwn=None, rejwn=None,
|
---|
| 3041 | insitu=None,
|
---|
| 3042 | clipthresh=None, clipniter=None,
|
---|
| 3043 | edge=None, threshold=None, chan_avg_limit=None,
|
---|
| 3044 | plot=None,
|
---|
| 3045 | getresidual=None,
|
---|
| 3046 | showprogress=None, minnrow=None,
|
---|
| 3047 | outlog=None,
|
---|
[2767] | 3048 | blfile=None, csvformat=None,
|
---|
| 3049 | bltable=None):
|
---|
[2047] | 3050 | """\
|
---|
[2349] | 3051 | Return a scan which has been baselined (all rows) with sinusoidal
|
---|
| 3052 | functions.
|
---|
[2047] | 3053 | Spectral lines are detected first using linefinder and masked out
|
---|
| 3054 | to avoid them affecting the baseline solution.
|
---|
| 3055 |
|
---|
| 3056 | Parameters:
|
---|
[2189] | 3057 | mask: an optional mask retreived from scantable
|
---|
| 3058 | applyfft: if True use some method, such as FFT, to find
|
---|
| 3059 | strongest sinusoidal components in the wavenumber
|
---|
| 3060 | domain to be used for baseline fitting.
|
---|
| 3061 | default is True.
|
---|
| 3062 | fftmethod: method to find the strong sinusoidal components.
|
---|
| 3063 | now only 'fft' is available and it is the default.
|
---|
| 3064 | fftthresh: the threshold to select wave numbers to be used for
|
---|
| 3065 | fitting from the distribution of amplitudes in the
|
---|
| 3066 | wavenumber domain.
|
---|
| 3067 | both float and string values accepted.
|
---|
| 3068 | given a float value, the unit is set to sigma.
|
---|
| 3069 | for string values, allowed formats include:
|
---|
[2349] | 3070 | 'xsigma' or 'x' (= x-sigma level. e.g.,
|
---|
| 3071 | '3sigma'), or
|
---|
[2189] | 3072 | 'topx' (= the x strongest ones, e.g. 'top5').
|
---|
| 3073 | default is 3.0 (unit: sigma).
|
---|
| 3074 | addwn: the additional wave numbers to be used for fitting.
|
---|
| 3075 | list or integer value is accepted to specify every
|
---|
| 3076 | wave numbers. also string value can be used in case
|
---|
| 3077 | you need to specify wave numbers in a certain range,
|
---|
| 3078 | e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b),
|
---|
| 3079 | '<a' (= 0,1,...,a-2,a-1),
|
---|
| 3080 | '>=a' (= a, a+1, ... up to the maximum wave
|
---|
| 3081 | number corresponding to the Nyquist
|
---|
| 3082 | frequency for the case of FFT).
|
---|
[2411] | 3083 | default is [0].
|
---|
[2189] | 3084 | rejwn: the wave numbers NOT to be used for fitting.
|
---|
| 3085 | can be set just as addwn but has higher priority:
|
---|
| 3086 | wave numbers which are specified both in addwn
|
---|
| 3087 | and rejwn will NOT be used. default is [].
|
---|
[2771] | 3088 | insitu: if False a new scantable is returned.
|
---|
| 3089 | Otherwise, the scaling is done in-situ
|
---|
| 3090 | The default is taken from .asaprc (False)
|
---|
[2189] | 3091 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
[2349] | 3092 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 3093 | clipping (default is 0)
|
---|
[2189] | 3094 | edge: an optional number of channel to drop at
|
---|
| 3095 | the edge of spectrum. If only one value is
|
---|
| 3096 | specified, the same number will be dropped
|
---|
| 3097 | from both sides of the spectrum. Default
|
---|
| 3098 | is to keep all channels. Nested tuples
|
---|
| 3099 | represent individual edge selection for
|
---|
| 3100 | different IFs (a number of spectral channels
|
---|
| 3101 | can be different)
|
---|
| 3102 | threshold: the threshold used by line finder. It is
|
---|
| 3103 | better to keep it large as only strong lines
|
---|
| 3104 | affect the baseline solution.
|
---|
| 3105 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 3106 | channels to average during the search of
|
---|
| 3107 | weak and broad lines. The default is no
|
---|
| 3108 | averaging (and no search for weak lines).
|
---|
| 3109 | If such lines can affect the fitted baseline
|
---|
| 3110 | (e.g. a high order polynomial is fitted),
|
---|
| 3111 | increase this parameter (usually values up
|
---|
| 3112 | to 8 are reasonable). Most users of this
|
---|
| 3113 | method should find the default value sufficient.
|
---|
| 3114 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 3115 | plot the fit and the residual. In this each
|
---|
| 3116 | indivual fit has to be approved, by typing 'y'
|
---|
| 3117 | or 'n'
|
---|
| 3118 | getresidual: if False, returns best-fit values instead of
|
---|
| 3119 | residual. (default is True)
|
---|
| 3120 | showprogress: show progress status for large data.
|
---|
| 3121 | default is True.
|
---|
| 3122 | minnrow: minimum number of input spectra to show.
|
---|
| 3123 | default is 1000.
|
---|
| 3124 | outlog: Output the coefficients of the best-fit
|
---|
| 3125 | function to logger (default is False)
|
---|
| 3126 | blfile: Name of a text file in which the best-fit
|
---|
| 3127 | parameter values to be written
|
---|
| 3128 | (default is "": no file/logger output)
|
---|
[2641] | 3129 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[2767] | 3130 | bltable: name of a baseline table where fitting results
|
---|
| 3131 | (coefficients, rms, etc.) are to be written.
|
---|
| 3132 | if given, fitting results will NOT be output to
|
---|
| 3133 | scantable (insitu=True) or None will be
|
---|
| 3134 | returned (insitu=False).
|
---|
| 3135 | (default is "": no table output)
|
---|
[2047] | 3136 |
|
---|
| 3137 | Example:
|
---|
[2186] | 3138 | bscan = scan.auto_sinusoid_baseline(addwn='<=10', insitu=False)
|
---|
[2081] | 3139 |
|
---|
| 3140 | Note:
|
---|
| 3141 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 3142 | based on specunit of 'channel'.
|
---|
[2047] | 3143 | """
|
---|
| 3144 |
|
---|
[2186] | 3145 | try:
|
---|
| 3146 | varlist = vars()
|
---|
[2047] | 3147 |
|
---|
[2186] | 3148 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 3149 | if insitu:
|
---|
| 3150 | workscan = self
|
---|
[2047] | 3151 | else:
|
---|
[2186] | 3152 | workscan = self.copy()
|
---|
| 3153 |
|
---|
[2410] | 3154 | if mask is None: mask = []
|
---|
[2186] | 3155 | if applyfft is None: applyfft = True
|
---|
| 3156 | if fftmethod is None: fftmethod = 'fft'
|
---|
| 3157 | if fftthresh is None: fftthresh = 3.0
|
---|
[2411] | 3158 | if addwn is None: addwn = [0]
|
---|
[2186] | 3159 | if rejwn is None: rejwn = []
|
---|
| 3160 | if clipthresh is None: clipthresh = 3.0
|
---|
| 3161 | if clipniter is None: clipniter = 0
|
---|
| 3162 | if edge is None: edge = (0,0)
|
---|
| 3163 | if threshold is None: threshold = 3
|
---|
| 3164 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 3165 | if plot is None: plot = False
|
---|
| 3166 | if getresidual is None: getresidual = True
|
---|
[2189] | 3167 | if showprogress is None: showprogress = True
|
---|
| 3168 | if minnrow is None: minnrow = 1000
|
---|
[2186] | 3169 | if outlog is None: outlog = False
|
---|
| 3170 | if blfile is None: blfile = ''
|
---|
[2641] | 3171 | if csvformat is None: csvformat = False
|
---|
[2767] | 3172 | if bltable is None: bltable = ''
|
---|
[2047] | 3173 |
|
---|
[2767] | 3174 | sapplyfft = 'true' if applyfft else 'false'
|
---|
| 3175 | fftinfo = ','.join([sapplyfft, fftmethod.lower(), str(fftthresh).lower()])
|
---|
[2641] | 3176 |
|
---|
[2767] | 3177 | scsvformat = 'T' if csvformat else 'F'
|
---|
| 3178 |
|
---|
[2277] | 3179 | #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method.
|
---|
[2767] | 3180 | workscan._auto_sinusoid_baseline(mask,
|
---|
| 3181 | fftinfo,
|
---|
[2349] | 3182 | workscan._parse_wn(addwn),
|
---|
| 3183 | workscan._parse_wn(rejwn),
|
---|
| 3184 | clipthresh, clipniter,
|
---|
| 3185 | normalise_edge_param(edge),
|
---|
| 3186 | threshold, chan_avg_limit,
|
---|
| 3187 | getresidual,
|
---|
| 3188 | pack_progress_params(showprogress,
|
---|
| 3189 | minnrow),
|
---|
[2767] | 3190 | outlog, scsvformat+blfile, bltable)
|
---|
[2047] | 3191 | workscan._add_history("auto_sinusoid_baseline", varlist)
|
---|
[2767] | 3192 |
|
---|
| 3193 | if bltable == '':
|
---|
| 3194 | if insitu:
|
---|
| 3195 | self._assign(workscan)
|
---|
| 3196 | else:
|
---|
| 3197 | return workscan
|
---|
[2047] | 3198 | else:
|
---|
[2767] | 3199 | if not insitu:
|
---|
| 3200 | return None
|
---|
[2047] | 3201 |
|
---|
| 3202 | except RuntimeError, e:
|
---|
[2186] | 3203 | raise_fitting_failure_exception(e)
|
---|
[2047] | 3204 |
|
---|
| 3205 | @asaplog_post_dec
|
---|
[2771] | 3206 | def cspline_baseline(self, mask=None, npiece=None, insitu=None,
|
---|
[2349] | 3207 | clipthresh=None, clipniter=None, plot=None,
|
---|
| 3208 | getresidual=None, showprogress=None, minnrow=None,
|
---|
[2767] | 3209 | outlog=None, blfile=None, csvformat=None,
|
---|
| 3210 | bltable=None):
|
---|
[1846] | 3211 | """\
|
---|
[2349] | 3212 | Return a scan which has been baselined (all rows) by cubic spline
|
---|
| 3213 | function (piecewise cubic polynomial).
|
---|
| 3214 |
|
---|
[513] | 3215 | Parameters:
|
---|
[2771] | 3216 | mask: An optional mask
|
---|
| 3217 | npiece: Number of pieces. (default is 2)
|
---|
[2189] | 3218 | insitu: If False a new scantable is returned.
|
---|
| 3219 | Otherwise, the scaling is done in-situ
|
---|
| 3220 | The default is taken from .asaprc (False)
|
---|
| 3221 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
[2349] | 3222 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 3223 | clipping (default is 0)
|
---|
[2189] | 3224 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 3225 | plot the fit and the residual. In this each
|
---|
| 3226 | indivual fit has to be approved, by typing 'y'
|
---|
| 3227 | or 'n'
|
---|
| 3228 | getresidual: if False, returns best-fit values instead of
|
---|
| 3229 | residual. (default is True)
|
---|
| 3230 | showprogress: show progress status for large data.
|
---|
| 3231 | default is True.
|
---|
| 3232 | minnrow: minimum number of input spectra to show.
|
---|
| 3233 | default is 1000.
|
---|
| 3234 | outlog: Output the coefficients of the best-fit
|
---|
| 3235 | function to logger (default is False)
|
---|
| 3236 | blfile: Name of a text file in which the best-fit
|
---|
| 3237 | parameter values to be written
|
---|
| 3238 | (default is "": no file/logger output)
|
---|
[2641] | 3239 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[2767] | 3240 | bltable: name of a baseline table where fitting results
|
---|
| 3241 | (coefficients, rms, etc.) are to be written.
|
---|
| 3242 | if given, fitting results will NOT be output to
|
---|
| 3243 | scantable (insitu=True) or None will be
|
---|
| 3244 | returned (insitu=False).
|
---|
| 3245 | (default is "": no table output)
|
---|
[1846] | 3246 |
|
---|
[2012] | 3247 | Example:
|
---|
[2349] | 3248 | # return a scan baselined by a cubic spline consisting of 2 pieces
|
---|
| 3249 | # (i.e., 1 internal knot),
|
---|
[2012] | 3250 | # also with 3-sigma clipping, iteration up to 4 times
|
---|
| 3251 | bscan = scan.cspline_baseline(npiece=2,clipthresh=3.0,clipniter=4)
|
---|
[2081] | 3252 |
|
---|
| 3253 | Note:
|
---|
| 3254 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 3255 | based on specunit of 'channel'.
|
---|
[2012] | 3256 | """
|
---|
| 3257 |
|
---|
[2186] | 3258 | try:
|
---|
| 3259 | varlist = vars()
|
---|
| 3260 |
|
---|
| 3261 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 3262 | if insitu:
|
---|
| 3263 | workscan = self
|
---|
| 3264 | else:
|
---|
| 3265 | workscan = self.copy()
|
---|
[1855] | 3266 |
|
---|
[2410] | 3267 | if mask is None: mask = []
|
---|
[2189] | 3268 | if npiece is None: npiece = 2
|
---|
| 3269 | if clipthresh is None: clipthresh = 3.0
|
---|
| 3270 | if clipniter is None: clipniter = 0
|
---|
| 3271 | if plot is None: plot = False
|
---|
| 3272 | if getresidual is None: getresidual = True
|
---|
| 3273 | if showprogress is None: showprogress = True
|
---|
| 3274 | if minnrow is None: minnrow = 1000
|
---|
| 3275 | if outlog is None: outlog = False
|
---|
| 3276 | if blfile is None: blfile = ''
|
---|
[2767] | 3277 | if csvformat is None: csvformat = False
|
---|
| 3278 | if bltable is None: bltable = ''
|
---|
[1855] | 3279 |
|
---|
[2767] | 3280 | scsvformat = 'T' if csvformat else 'F'
|
---|
[2641] | 3281 |
|
---|
[2012] | 3282 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
[2767] | 3283 | workscan._cspline_baseline(mask, npiece,
|
---|
| 3284 | clipthresh, clipniter,
|
---|
[2349] | 3285 | getresidual,
|
---|
| 3286 | pack_progress_params(showprogress,
|
---|
[2641] | 3287 | minnrow),
|
---|
[2767] | 3288 | outlog, scsvformat+blfile,
|
---|
| 3289 | bltable)
|
---|
[2012] | 3290 | workscan._add_history("cspline_baseline", varlist)
|
---|
[2767] | 3291 |
|
---|
| 3292 | if bltable == '':
|
---|
| 3293 | if insitu:
|
---|
| 3294 | self._assign(workscan)
|
---|
| 3295 | else:
|
---|
| 3296 | return workscan
|
---|
[2012] | 3297 | else:
|
---|
[2767] | 3298 | if not insitu:
|
---|
| 3299 | return None
|
---|
[2012] | 3300 |
|
---|
| 3301 | except RuntimeError, e:
|
---|
[2186] | 3302 | raise_fitting_failure_exception(e)
|
---|
[1855] | 3303 |
|
---|
[2186] | 3304 | @asaplog_post_dec
|
---|
[2771] | 3305 | def auto_cspline_baseline(self, mask=None, npiece=None, insitu=None,
|
---|
[2349] | 3306 | clipthresh=None, clipniter=None,
|
---|
| 3307 | edge=None, threshold=None, chan_avg_limit=None,
|
---|
| 3308 | getresidual=None, plot=None,
|
---|
| 3309 | showprogress=None, minnrow=None, outlog=None,
|
---|
[2767] | 3310 | blfile=None, csvformat=None, bltable=None):
|
---|
[2012] | 3311 | """\
|
---|
| 3312 | Return a scan which has been baselined (all rows) by cubic spline
|
---|
| 3313 | function (piecewise cubic polynomial).
|
---|
| 3314 | Spectral lines are detected first using linefinder and masked out
|
---|
| 3315 | to avoid them affecting the baseline solution.
|
---|
| 3316 |
|
---|
| 3317 | Parameters:
|
---|
[2771] | 3318 | mask: an optional mask retreived from scantable
|
---|
| 3319 | npiece: Number of pieces. (default is 2)
|
---|
[2189] | 3320 | insitu: if False a new scantable is returned.
|
---|
| 3321 | Otherwise, the scaling is done in-situ
|
---|
| 3322 | The default is taken from .asaprc (False)
|
---|
| 3323 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
[2349] | 3324 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 3325 | clipping (default is 0)
|
---|
[2189] | 3326 | edge: an optional number of channel to drop at
|
---|
| 3327 | the edge of spectrum. If only one value is
|
---|
| 3328 | specified, the same number will be dropped
|
---|
| 3329 | from both sides of the spectrum. Default
|
---|
| 3330 | is to keep all channels. Nested tuples
|
---|
| 3331 | represent individual edge selection for
|
---|
| 3332 | different IFs (a number of spectral channels
|
---|
| 3333 | can be different)
|
---|
| 3334 | threshold: the threshold used by line finder. It is
|
---|
| 3335 | better to keep it large as only strong lines
|
---|
| 3336 | affect the baseline solution.
|
---|
| 3337 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 3338 | channels to average during the search of
|
---|
| 3339 | weak and broad lines. The default is no
|
---|
| 3340 | averaging (and no search for weak lines).
|
---|
| 3341 | If such lines can affect the fitted baseline
|
---|
| 3342 | (e.g. a high order polynomial is fitted),
|
---|
| 3343 | increase this parameter (usually values up
|
---|
| 3344 | to 8 are reasonable). Most users of this
|
---|
| 3345 | method should find the default value sufficient.
|
---|
| 3346 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 3347 | plot the fit and the residual. In this each
|
---|
| 3348 | indivual fit has to be approved, by typing 'y'
|
---|
| 3349 | or 'n'
|
---|
| 3350 | getresidual: if False, returns best-fit values instead of
|
---|
| 3351 | residual. (default is True)
|
---|
| 3352 | showprogress: show progress status for large data.
|
---|
| 3353 | default is True.
|
---|
| 3354 | minnrow: minimum number of input spectra to show.
|
---|
| 3355 | default is 1000.
|
---|
| 3356 | outlog: Output the coefficients of the best-fit
|
---|
| 3357 | function to logger (default is False)
|
---|
| 3358 | blfile: Name of a text file in which the best-fit
|
---|
| 3359 | parameter values to be written
|
---|
| 3360 | (default is "": no file/logger output)
|
---|
[2641] | 3361 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[2767] | 3362 | bltable: name of a baseline table where fitting results
|
---|
| 3363 | (coefficients, rms, etc.) are to be written.
|
---|
| 3364 | if given, fitting results will NOT be output to
|
---|
| 3365 | scantable (insitu=True) or None will be
|
---|
| 3366 | returned (insitu=False).
|
---|
| 3367 | (default is "": no table output)
|
---|
[1846] | 3368 |
|
---|
[1907] | 3369 | Example:
|
---|
[2012] | 3370 | bscan = scan.auto_cspline_baseline(npiece=3, insitu=False)
|
---|
[2081] | 3371 |
|
---|
| 3372 | Note:
|
---|
| 3373 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 3374 | based on specunit of 'channel'.
|
---|
[2012] | 3375 | """
|
---|
[1846] | 3376 |
|
---|
[2186] | 3377 | try:
|
---|
| 3378 | varlist = vars()
|
---|
[2012] | 3379 |
|
---|
[2186] | 3380 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 3381 | if insitu:
|
---|
| 3382 | workscan = self
|
---|
[1391] | 3383 | else:
|
---|
[2186] | 3384 | workscan = self.copy()
|
---|
| 3385 |
|
---|
[2410] | 3386 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
| 3387 | if mask is None: mask = []
|
---|
[2186] | 3388 | if npiece is None: npiece = 2
|
---|
| 3389 | if clipthresh is None: clipthresh = 3.0
|
---|
| 3390 | if clipniter is None: clipniter = 0
|
---|
| 3391 | if edge is None: edge = (0, 0)
|
---|
| 3392 | if threshold is None: threshold = 3
|
---|
| 3393 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 3394 | if plot is None: plot = False
|
---|
| 3395 | if getresidual is None: getresidual = True
|
---|
[2189] | 3396 | if showprogress is None: showprogress = True
|
---|
| 3397 | if minnrow is None: minnrow = 1000
|
---|
[2186] | 3398 | if outlog is None: outlog = False
|
---|
| 3399 | if blfile is None: blfile = ''
|
---|
[2641] | 3400 | if csvformat is None: csvformat = False
|
---|
[2767] | 3401 | if bltable is None: bltable = ''
|
---|
[1819] | 3402 |
|
---|
[2767] | 3403 | scsvformat = 'T' if csvformat else 'F'
|
---|
[2641] | 3404 |
|
---|
[2277] | 3405 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
[2767] | 3406 | workscan._auto_cspline_baseline(mask, npiece,
|
---|
| 3407 | clipthresh, clipniter,
|
---|
[2269] | 3408 | normalise_edge_param(edge),
|
---|
| 3409 | threshold,
|
---|
| 3410 | chan_avg_limit, getresidual,
|
---|
| 3411 | pack_progress_params(showprogress,
|
---|
| 3412 | minnrow),
|
---|
[2767] | 3413 | outlog,
|
---|
| 3414 | scsvformat+blfile,
|
---|
| 3415 | bltable)
|
---|
[2012] | 3416 | workscan._add_history("auto_cspline_baseline", varlist)
|
---|
[2767] | 3417 |
|
---|
| 3418 | if bltable == '':
|
---|
| 3419 | if insitu:
|
---|
| 3420 | self._assign(workscan)
|
---|
| 3421 | else:
|
---|
| 3422 | return workscan
|
---|
[1856] | 3423 | else:
|
---|
[2767] | 3424 | if not insitu:
|
---|
| 3425 | return None
|
---|
[2012] | 3426 |
|
---|
| 3427 | except RuntimeError, e:
|
---|
[2186] | 3428 | raise_fitting_failure_exception(e)
|
---|
[513] | 3429 |
|
---|
[1931] | 3430 | @asaplog_post_dec
|
---|
[2771] | 3431 | def chebyshev_baseline(self, mask=None, order=None, insitu=None,
|
---|
[2645] | 3432 | clipthresh=None, clipniter=None, plot=None,
|
---|
| 3433 | getresidual=None, showprogress=None, minnrow=None,
|
---|
[2767] | 3434 | outlog=None, blfile=None, csvformat=None,
|
---|
| 3435 | bltable=None):
|
---|
[2645] | 3436 | """\
|
---|
| 3437 | Return a scan which has been baselined (all rows) by Chebyshev polynomials.
|
---|
| 3438 |
|
---|
| 3439 | Parameters:
|
---|
[2771] | 3440 | mask: An optional mask
|
---|
| 3441 | order: the maximum order of Chebyshev polynomial (default is 5)
|
---|
[2645] | 3442 | insitu: If False a new scantable is returned.
|
---|
| 3443 | Otherwise, the scaling is done in-situ
|
---|
| 3444 | The default is taken from .asaprc (False)
|
---|
| 3445 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
| 3446 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 3447 | clipping (default is 0)
|
---|
| 3448 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 3449 | plot the fit and the residual. In this each
|
---|
| 3450 | indivual fit has to be approved, by typing 'y'
|
---|
| 3451 | or 'n'
|
---|
| 3452 | getresidual: if False, returns best-fit values instead of
|
---|
| 3453 | residual. (default is True)
|
---|
| 3454 | showprogress: show progress status for large data.
|
---|
| 3455 | default is True.
|
---|
| 3456 | minnrow: minimum number of input spectra to show.
|
---|
| 3457 | default is 1000.
|
---|
| 3458 | outlog: Output the coefficients of the best-fit
|
---|
| 3459 | function to logger (default is False)
|
---|
| 3460 | blfile: Name of a text file in which the best-fit
|
---|
| 3461 | parameter values to be written
|
---|
| 3462 | (default is "": no file/logger output)
|
---|
| 3463 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[2767] | 3464 | bltable: name of a baseline table where fitting results
|
---|
| 3465 | (coefficients, rms, etc.) are to be written.
|
---|
| 3466 | if given, fitting results will NOT be output to
|
---|
| 3467 | scantable (insitu=True) or None will be
|
---|
| 3468 | returned (insitu=False).
|
---|
| 3469 | (default is "": no table output)
|
---|
[2645] | 3470 |
|
---|
| 3471 | Example:
|
---|
| 3472 | # return a scan baselined by a cubic spline consisting of 2 pieces
|
---|
| 3473 | # (i.e., 1 internal knot),
|
---|
| 3474 | # also with 3-sigma clipping, iteration up to 4 times
|
---|
| 3475 | bscan = scan.cspline_baseline(npiece=2,clipthresh=3.0,clipniter=4)
|
---|
| 3476 |
|
---|
| 3477 | Note:
|
---|
| 3478 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 3479 | based on specunit of 'channel'.
|
---|
| 3480 | """
|
---|
| 3481 |
|
---|
| 3482 | try:
|
---|
| 3483 | varlist = vars()
|
---|
| 3484 |
|
---|
| 3485 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 3486 | if insitu:
|
---|
| 3487 | workscan = self
|
---|
| 3488 | else:
|
---|
| 3489 | workscan = self.copy()
|
---|
| 3490 |
|
---|
| 3491 | if mask is None: mask = []
|
---|
| 3492 | if order is None: order = 5
|
---|
| 3493 | if clipthresh is None: clipthresh = 3.0
|
---|
| 3494 | if clipniter is None: clipniter = 0
|
---|
| 3495 | if plot is None: plot = False
|
---|
| 3496 | if getresidual is None: getresidual = True
|
---|
| 3497 | if showprogress is None: showprogress = True
|
---|
| 3498 | if minnrow is None: minnrow = 1000
|
---|
| 3499 | if outlog is None: outlog = False
|
---|
| 3500 | if blfile is None: blfile = ''
|
---|
[2767] | 3501 | if csvformat is None: csvformat = False
|
---|
| 3502 | if bltable is None: bltable = ''
|
---|
[2645] | 3503 |
|
---|
[2767] | 3504 | scsvformat = 'T' if csvformat else 'F'
|
---|
[2645] | 3505 |
|
---|
| 3506 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
[2767] | 3507 | workscan._chebyshev_baseline(mask, order,
|
---|
| 3508 | clipthresh, clipniter,
|
---|
[2645] | 3509 | getresidual,
|
---|
| 3510 | pack_progress_params(showprogress,
|
---|
| 3511 | minnrow),
|
---|
[2767] | 3512 | outlog, scsvformat+blfile,
|
---|
| 3513 | bltable)
|
---|
[2645] | 3514 | workscan._add_history("chebyshev_baseline", varlist)
|
---|
[2767] | 3515 |
|
---|
| 3516 | if bltable == '':
|
---|
| 3517 | if insitu:
|
---|
| 3518 | self._assign(workscan)
|
---|
| 3519 | else:
|
---|
| 3520 | return workscan
|
---|
[2645] | 3521 | else:
|
---|
[2767] | 3522 | if not insitu:
|
---|
| 3523 | return None
|
---|
[2645] | 3524 |
|
---|
| 3525 | except RuntimeError, e:
|
---|
| 3526 | raise_fitting_failure_exception(e)
|
---|
| 3527 |
|
---|
| 3528 | @asaplog_post_dec
|
---|
[2771] | 3529 | def auto_chebyshev_baseline(self, mask=None, order=None, insitu=None,
|
---|
[2645] | 3530 | clipthresh=None, clipniter=None,
|
---|
| 3531 | edge=None, threshold=None, chan_avg_limit=None,
|
---|
| 3532 | getresidual=None, plot=None,
|
---|
| 3533 | showprogress=None, minnrow=None, outlog=None,
|
---|
[2767] | 3534 | blfile=None, csvformat=None, bltable=None):
|
---|
[2645] | 3535 | """\
|
---|
| 3536 | Return a scan which has been baselined (all rows) by Chebyshev polynomials.
|
---|
| 3537 | Spectral lines are detected first using linefinder and masked out
|
---|
| 3538 | to avoid them affecting the baseline solution.
|
---|
| 3539 |
|
---|
| 3540 | Parameters:
|
---|
[2771] | 3541 | mask: an optional mask retreived from scantable
|
---|
| 3542 | order: the maximum order of Chebyshev polynomial (default is 5)
|
---|
[2645] | 3543 | insitu: if False a new scantable is returned.
|
---|
| 3544 | Otherwise, the scaling is done in-situ
|
---|
| 3545 | The default is taken from .asaprc (False)
|
---|
| 3546 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
| 3547 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 3548 | clipping (default is 0)
|
---|
| 3549 | edge: an optional number of channel to drop at
|
---|
| 3550 | the edge of spectrum. If only one value is
|
---|
| 3551 | specified, the same number will be dropped
|
---|
| 3552 | from both sides of the spectrum. Default
|
---|
| 3553 | is to keep all channels. Nested tuples
|
---|
| 3554 | represent individual edge selection for
|
---|
| 3555 | different IFs (a number of spectral channels
|
---|
| 3556 | can be different)
|
---|
| 3557 | threshold: the threshold used by line finder. It is
|
---|
| 3558 | better to keep it large as only strong lines
|
---|
| 3559 | affect the baseline solution.
|
---|
| 3560 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 3561 | channels to average during the search of
|
---|
| 3562 | weak and broad lines. The default is no
|
---|
| 3563 | averaging (and no search for weak lines).
|
---|
| 3564 | If such lines can affect the fitted baseline
|
---|
| 3565 | (e.g. a high order polynomial is fitted),
|
---|
| 3566 | increase this parameter (usually values up
|
---|
| 3567 | to 8 are reasonable). Most users of this
|
---|
| 3568 | method should find the default value sufficient.
|
---|
| 3569 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 3570 | plot the fit and the residual. In this each
|
---|
| 3571 | indivual fit has to be approved, by typing 'y'
|
---|
| 3572 | or 'n'
|
---|
| 3573 | getresidual: if False, returns best-fit values instead of
|
---|
| 3574 | residual. (default is True)
|
---|
| 3575 | showprogress: show progress status for large data.
|
---|
| 3576 | default is True.
|
---|
| 3577 | minnrow: minimum number of input spectra to show.
|
---|
| 3578 | default is 1000.
|
---|
| 3579 | outlog: Output the coefficients of the best-fit
|
---|
| 3580 | function to logger (default is False)
|
---|
| 3581 | blfile: Name of a text file in which the best-fit
|
---|
| 3582 | parameter values to be written
|
---|
| 3583 | (default is "": no file/logger output)
|
---|
| 3584 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[2767] | 3585 | bltable: name of a baseline table where fitting results
|
---|
| 3586 | (coefficients, rms, etc.) are to be written.
|
---|
| 3587 | if given, fitting results will NOT be output to
|
---|
| 3588 | scantable (insitu=True) or None will be
|
---|
| 3589 | returned (insitu=False).
|
---|
| 3590 | (default is "": no table output)
|
---|
[2645] | 3591 |
|
---|
| 3592 | Example:
|
---|
| 3593 | bscan = scan.auto_cspline_baseline(npiece=3, insitu=False)
|
---|
| 3594 |
|
---|
| 3595 | Note:
|
---|
| 3596 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 3597 | based on specunit of 'channel'.
|
---|
| 3598 | """
|
---|
| 3599 |
|
---|
| 3600 | try:
|
---|
| 3601 | varlist = vars()
|
---|
| 3602 |
|
---|
| 3603 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 3604 | if insitu:
|
---|
| 3605 | workscan = self
|
---|
| 3606 | else:
|
---|
| 3607 | workscan = self.copy()
|
---|
| 3608 |
|
---|
| 3609 | if mask is None: mask = []
|
---|
| 3610 | if order is None: order = 5
|
---|
| 3611 | if clipthresh is None: clipthresh = 3.0
|
---|
| 3612 | if clipniter is None: clipniter = 0
|
---|
| 3613 | if edge is None: edge = (0, 0)
|
---|
| 3614 | if threshold is None: threshold = 3
|
---|
| 3615 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 3616 | if plot is None: plot = False
|
---|
| 3617 | if getresidual is None: getresidual = True
|
---|
| 3618 | if showprogress is None: showprogress = True
|
---|
| 3619 | if minnrow is None: minnrow = 1000
|
---|
| 3620 | if outlog is None: outlog = False
|
---|
| 3621 | if blfile is None: blfile = ''
|
---|
| 3622 | if csvformat is None: csvformat = False
|
---|
[2767] | 3623 | if bltable is None: bltable = ''
|
---|
[2645] | 3624 |
|
---|
[2767] | 3625 | scsvformat = 'T' if csvformat else 'F'
|
---|
[2645] | 3626 |
|
---|
| 3627 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
[2767] | 3628 | workscan._auto_chebyshev_baseline(mask, order,
|
---|
| 3629 | clipthresh, clipniter,
|
---|
[2645] | 3630 | normalise_edge_param(edge),
|
---|
| 3631 | threshold,
|
---|
| 3632 | chan_avg_limit, getresidual,
|
---|
| 3633 | pack_progress_params(showprogress,
|
---|
| 3634 | minnrow),
|
---|
[2767] | 3635 | outlog, scsvformat+blfile,
|
---|
| 3636 | bltable)
|
---|
[2645] | 3637 | workscan._add_history("auto_chebyshev_baseline", varlist)
|
---|
[2767] | 3638 |
|
---|
| 3639 | if bltable == '':
|
---|
| 3640 | if insitu:
|
---|
| 3641 | self._assign(workscan)
|
---|
| 3642 | else:
|
---|
| 3643 | return workscan
|
---|
[2645] | 3644 | else:
|
---|
[2767] | 3645 | if not insitu:
|
---|
| 3646 | return None
|
---|
[2645] | 3647 |
|
---|
| 3648 | except RuntimeError, e:
|
---|
| 3649 | raise_fitting_failure_exception(e)
|
---|
| 3650 |
|
---|
| 3651 | @asaplog_post_dec
|
---|
[2771] | 3652 | def poly_baseline(self, mask=None, order=None, insitu=None,
|
---|
[2767] | 3653 | clipthresh=None, clipniter=None, plot=None,
|
---|
[2269] | 3654 | getresidual=None, showprogress=None, minnrow=None,
|
---|
[2767] | 3655 | outlog=None, blfile=None, csvformat=None,
|
---|
| 3656 | bltable=None):
|
---|
[1907] | 3657 | """\
|
---|
| 3658 | Return a scan which has been baselined (all rows) by a polynomial.
|
---|
| 3659 | Parameters:
|
---|
[2771] | 3660 | mask: an optional mask
|
---|
| 3661 | order: the order of the polynomial (default is 0)
|
---|
[2189] | 3662 | insitu: if False a new scantable is returned.
|
---|
| 3663 | Otherwise, the scaling is done in-situ
|
---|
| 3664 | The default is taken from .asaprc (False)
|
---|
[2767] | 3665 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
| 3666 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 3667 | clipping (default is 0)
|
---|
[2189] | 3668 | plot: plot the fit and the residual. In this each
|
---|
| 3669 | indivual fit has to be approved, by typing 'y'
|
---|
| 3670 | or 'n'
|
---|
| 3671 | getresidual: if False, returns best-fit values instead of
|
---|
| 3672 | residual. (default is True)
|
---|
| 3673 | showprogress: show progress status for large data.
|
---|
| 3674 | default is True.
|
---|
| 3675 | minnrow: minimum number of input spectra to show.
|
---|
| 3676 | default is 1000.
|
---|
| 3677 | outlog: Output the coefficients of the best-fit
|
---|
| 3678 | function to logger (default is False)
|
---|
| 3679 | blfile: Name of a text file in which the best-fit
|
---|
| 3680 | parameter values to be written
|
---|
| 3681 | (default is "": no file/logger output)
|
---|
[2641] | 3682 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[2767] | 3683 | bltable: name of a baseline table where fitting results
|
---|
| 3684 | (coefficients, rms, etc.) are to be written.
|
---|
| 3685 | if given, fitting results will NOT be output to
|
---|
| 3686 | scantable (insitu=True) or None will be
|
---|
| 3687 | returned (insitu=False).
|
---|
| 3688 | (default is "": no table output)
|
---|
[2012] | 3689 |
|
---|
[1907] | 3690 | Example:
|
---|
| 3691 | # return a scan baselined by a third order polynomial,
|
---|
| 3692 | # not using a mask
|
---|
| 3693 | bscan = scan.poly_baseline(order=3)
|
---|
| 3694 | """
|
---|
[1931] | 3695 |
|
---|
[2186] | 3696 | try:
|
---|
| 3697 | varlist = vars()
|
---|
[1931] | 3698 |
|
---|
[2269] | 3699 | if insitu is None:
|
---|
| 3700 | insitu = rcParams["insitu"]
|
---|
[2186] | 3701 | if insitu:
|
---|
| 3702 | workscan = self
|
---|
| 3703 | else:
|
---|
| 3704 | workscan = self.copy()
|
---|
[1907] | 3705 |
|
---|
[2410] | 3706 | if mask is None: mask = []
|
---|
[2189] | 3707 | if order is None: order = 0
|
---|
[2767] | 3708 | if clipthresh is None: clipthresh = 3.0
|
---|
| 3709 | if clipniter is None: clipniter = 0
|
---|
[2189] | 3710 | if plot is None: plot = False
|
---|
| 3711 | if getresidual is None: getresidual = True
|
---|
| 3712 | if showprogress is None: showprogress = True
|
---|
| 3713 | if minnrow is None: minnrow = 1000
|
---|
| 3714 | if outlog is None: outlog = False
|
---|
[2767] | 3715 | if blfile is None: blfile = ''
|
---|
[2641] | 3716 | if csvformat is None: csvformat = False
|
---|
[2767] | 3717 | if bltable is None: bltable = ''
|
---|
[1907] | 3718 |
|
---|
[2767] | 3719 | scsvformat = 'T' if csvformat else 'F'
|
---|
[2641] | 3720 |
|
---|
[2012] | 3721 | if plot:
|
---|
[2269] | 3722 | outblfile = (blfile != "") and \
|
---|
[2349] | 3723 | os.path.exists(os.path.expanduser(
|
---|
| 3724 | os.path.expandvars(blfile))
|
---|
| 3725 | )
|
---|
[2269] | 3726 | if outblfile:
|
---|
| 3727 | blf = open(blfile, "a")
|
---|
[2012] | 3728 |
|
---|
[1907] | 3729 | f = fitter()
|
---|
| 3730 | f.set_function(lpoly=order)
|
---|
[2186] | 3731 |
|
---|
| 3732 | rows = xrange(workscan.nrow())
|
---|
| 3733 | #if len(rows) > 0: workscan._init_blinfo()
|
---|
[2610] | 3734 |
|
---|
| 3735 | action = "H"
|
---|
[1907] | 3736 | for r in rows:
|
---|
| 3737 | f.x = workscan._getabcissa(r)
|
---|
| 3738 | f.y = workscan._getspectrum(r)
|
---|
[2541] | 3739 | if mask:
|
---|
| 3740 | f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
|
---|
| 3741 | else: # mask=None
|
---|
| 3742 | f.mask = workscan._getmask(r)
|
---|
| 3743 |
|
---|
[1907] | 3744 | f.data = None
|
---|
| 3745 | f.fit()
|
---|
[2541] | 3746 |
|
---|
[2610] | 3747 | if action != "Y": # skip plotting when accepting all
|
---|
| 3748 | f.plot(residual=True)
|
---|
| 3749 | #accept_fit = raw_input("Accept fit ( [y]/n ): ")
|
---|
| 3750 | #if accept_fit.upper() == "N":
|
---|
| 3751 | # #workscan._append_blinfo(None, None, None)
|
---|
| 3752 | # continue
|
---|
| 3753 | accept_fit = self._get_verify_action("Accept fit?",action)
|
---|
| 3754 | if r == 0: action = None
|
---|
[1907] | 3755 | if accept_fit.upper() == "N":
|
---|
| 3756 | continue
|
---|
[2610] | 3757 | elif accept_fit.upper() == "R":
|
---|
| 3758 | break
|
---|
| 3759 | elif accept_fit.upper() == "A":
|
---|
| 3760 | action = "Y"
|
---|
[2012] | 3761 |
|
---|
| 3762 | blpars = f.get_parameters()
|
---|
| 3763 | masklist = workscan.get_masklist(f.mask, row=r, silent=True)
|
---|
| 3764 | #workscan._append_blinfo(blpars, masklist, f.mask)
|
---|
[2269] | 3765 | workscan._setspectrum((f.fitter.getresidual()
|
---|
| 3766 | if getresidual else f.fitter.getfit()), r)
|
---|
[1907] | 3767 |
|
---|
[2012] | 3768 | if outblfile:
|
---|
| 3769 | rms = workscan.get_rms(f.mask, r)
|
---|
[2269] | 3770 | dataout = \
|
---|
| 3771 | workscan.format_blparams_row(blpars["params"],
|
---|
| 3772 | blpars["fixed"],
|
---|
| 3773 | rms, str(masklist),
|
---|
[2641] | 3774 | r, True, csvformat)
|
---|
[2012] | 3775 | blf.write(dataout)
|
---|
| 3776 |
|
---|
[1907] | 3777 | f._p.unmap()
|
---|
| 3778 | f._p = None
|
---|
[2012] | 3779 |
|
---|
[2349] | 3780 | if outblfile:
|
---|
| 3781 | blf.close()
|
---|
[1907] | 3782 | else:
|
---|
[2767] | 3783 | workscan._poly_baseline(mask, order,
|
---|
| 3784 | clipthresh, clipniter, #
|
---|
| 3785 | getresidual,
|
---|
[2269] | 3786 | pack_progress_params(showprogress,
|
---|
| 3787 | minnrow),
|
---|
[2767] | 3788 | outlog, scsvformat+blfile,
|
---|
| 3789 | bltable) #
|
---|
[1907] | 3790 |
|
---|
| 3791 | workscan._add_history("poly_baseline", varlist)
|
---|
| 3792 |
|
---|
| 3793 | if insitu:
|
---|
| 3794 | self._assign(workscan)
|
---|
| 3795 | else:
|
---|
| 3796 | return workscan
|
---|
| 3797 |
|
---|
[1919] | 3798 | except RuntimeError, e:
|
---|
[2186] | 3799 | raise_fitting_failure_exception(e)
|
---|
[1907] | 3800 |
|
---|
[2186] | 3801 | @asaplog_post_dec
|
---|
[2771] | 3802 | def auto_poly_baseline(self, mask=None, order=None, insitu=None,
|
---|
[2767] | 3803 | clipthresh=None, clipniter=None,
|
---|
| 3804 | edge=None, threshold=None, chan_avg_limit=None,
|
---|
| 3805 | getresidual=None, plot=None,
|
---|
| 3806 | showprogress=None, minnrow=None, outlog=None,
|
---|
| 3807 | blfile=None, csvformat=None, bltable=None):
|
---|
[1846] | 3808 | """\
|
---|
[1931] | 3809 | Return a scan which has been baselined (all rows) by a polynomial.
|
---|
[880] | 3810 | Spectral lines are detected first using linefinder and masked out
|
---|
| 3811 | to avoid them affecting the baseline solution.
|
---|
| 3812 |
|
---|
| 3813 | Parameters:
|
---|
[2771] | 3814 | mask: an optional mask retreived from scantable
|
---|
| 3815 | order: the order of the polynomial (default is 0)
|
---|
[2189] | 3816 | insitu: if False a new scantable is returned.
|
---|
| 3817 | Otherwise, the scaling is done in-situ
|
---|
| 3818 | The default is taken from .asaprc (False)
|
---|
[2767] | 3819 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
| 3820 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 3821 | clipping (default is 0)
|
---|
[2189] | 3822 | edge: an optional number of channel to drop at
|
---|
| 3823 | the edge of spectrum. If only one value is
|
---|
| 3824 | specified, the same number will be dropped
|
---|
| 3825 | from both sides of the spectrum. Default
|
---|
| 3826 | is to keep all channels. Nested tuples
|
---|
| 3827 | represent individual edge selection for
|
---|
| 3828 | different IFs (a number of spectral channels
|
---|
| 3829 | can be different)
|
---|
| 3830 | threshold: the threshold used by line finder. It is
|
---|
| 3831 | better to keep it large as only strong lines
|
---|
| 3832 | affect the baseline solution.
|
---|
| 3833 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 3834 | channels to average during the search of
|
---|
| 3835 | weak and broad lines. The default is no
|
---|
| 3836 | averaging (and no search for weak lines).
|
---|
| 3837 | If such lines can affect the fitted baseline
|
---|
| 3838 | (e.g. a high order polynomial is fitted),
|
---|
| 3839 | increase this parameter (usually values up
|
---|
| 3840 | to 8 are reasonable). Most users of this
|
---|
| 3841 | method should find the default value sufficient.
|
---|
| 3842 | plot: plot the fit and the residual. In this each
|
---|
| 3843 | indivual fit has to be approved, by typing 'y'
|
---|
| 3844 | or 'n'
|
---|
| 3845 | getresidual: if False, returns best-fit values instead of
|
---|
| 3846 | residual. (default is True)
|
---|
| 3847 | showprogress: show progress status for large data.
|
---|
| 3848 | default is True.
|
---|
| 3849 | minnrow: minimum number of input spectra to show.
|
---|
| 3850 | default is 1000.
|
---|
| 3851 | outlog: Output the coefficients of the best-fit
|
---|
| 3852 | function to logger (default is False)
|
---|
| 3853 | blfile: Name of a text file in which the best-fit
|
---|
| 3854 | parameter values to be written
|
---|
| 3855 | (default is "": no file/logger output)
|
---|
[2641] | 3856 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[2767] | 3857 | bltable: name of a baseline table where fitting results
|
---|
| 3858 | (coefficients, rms, etc.) are to be written.
|
---|
| 3859 | if given, fitting results will NOT be output to
|
---|
| 3860 | scantable (insitu=True) or None will be
|
---|
| 3861 | returned (insitu=False).
|
---|
| 3862 | (default is "": no table output)
|
---|
[1846] | 3863 |
|
---|
[2012] | 3864 | Example:
|
---|
| 3865 | bscan = scan.auto_poly_baseline(order=7, insitu=False)
|
---|
| 3866 | """
|
---|
[880] | 3867 |
|
---|
[2186] | 3868 | try:
|
---|
| 3869 | varlist = vars()
|
---|
[1846] | 3870 |
|
---|
[2269] | 3871 | if insitu is None:
|
---|
| 3872 | insitu = rcParams['insitu']
|
---|
[2186] | 3873 | if insitu:
|
---|
| 3874 | workscan = self
|
---|
| 3875 | else:
|
---|
| 3876 | workscan = self.copy()
|
---|
[1846] | 3877 |
|
---|
[2410] | 3878 | if mask is None: mask = []
|
---|
[2186] | 3879 | if order is None: order = 0
|
---|
[2767] | 3880 | if clipthresh is None: clipthresh = 3.0
|
---|
| 3881 | if clipniter is None: clipniter = 0
|
---|
[2186] | 3882 | if edge is None: edge = (0, 0)
|
---|
| 3883 | if threshold is None: threshold = 3
|
---|
| 3884 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 3885 | if plot is None: plot = False
|
---|
| 3886 | if getresidual is None: getresidual = True
|
---|
[2189] | 3887 | if showprogress is None: showprogress = True
|
---|
| 3888 | if minnrow is None: minnrow = 1000
|
---|
[2186] | 3889 | if outlog is None: outlog = False
|
---|
| 3890 | if blfile is None: blfile = ''
|
---|
[2641] | 3891 | if csvformat is None: csvformat = False
|
---|
[2767] | 3892 | if bltable is None: bltable = ''
|
---|
[1846] | 3893 |
|
---|
[2767] | 3894 | scsvformat = 'T' if csvformat else 'F'
|
---|
[2641] | 3895 |
|
---|
[2186] | 3896 | edge = normalise_edge_param(edge)
|
---|
[880] | 3897 |
|
---|
[2012] | 3898 | if plot:
|
---|
[2269] | 3899 | outblfile = (blfile != "") and \
|
---|
| 3900 | os.path.exists(os.path.expanduser(os.path.expandvars(blfile)))
|
---|
[2012] | 3901 | if outblfile: blf = open(blfile, "a")
|
---|
| 3902 |
|
---|
[2186] | 3903 | from asap.asaplinefind import linefinder
|
---|
[2012] | 3904 | fl = linefinder()
|
---|
[2269] | 3905 | fl.set_options(threshold=threshold, avg_limit=chan_avg_limit)
|
---|
[2012] | 3906 | fl.set_scan(workscan)
|
---|
[2186] | 3907 |
|
---|
[2012] | 3908 | f = fitter()
|
---|
| 3909 | f.set_function(lpoly=order)
|
---|
[880] | 3910 |
|
---|
[2186] | 3911 | rows = xrange(workscan.nrow())
|
---|
| 3912 | #if len(rows) > 0: workscan._init_blinfo()
|
---|
[2610] | 3913 |
|
---|
| 3914 | action = "H"
|
---|
[2012] | 3915 | for r in rows:
|
---|
[2186] | 3916 | idx = 2*workscan.getif(r)
|
---|
[2541] | 3917 | if mask:
|
---|
| 3918 | msk = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
|
---|
| 3919 | else: # mask=None
|
---|
| 3920 | msk = workscan._getmask(r)
|
---|
| 3921 | fl.find_lines(r, msk, edge[idx:idx+2])
|
---|
[907] | 3922 |
|
---|
[2012] | 3923 | f.x = workscan._getabcissa(r)
|
---|
| 3924 | f.y = workscan._getspectrum(r)
|
---|
| 3925 | f.mask = fl.get_mask()
|
---|
| 3926 | f.data = None
|
---|
| 3927 | f.fit()
|
---|
| 3928 |
|
---|
[2610] | 3929 | if action != "Y": # skip plotting when accepting all
|
---|
| 3930 | f.plot(residual=True)
|
---|
| 3931 | #accept_fit = raw_input("Accept fit ( [y]/n ): ")
|
---|
| 3932 | accept_fit = self._get_verify_action("Accept fit?",action)
|
---|
| 3933 | if r == 0: action = None
|
---|
[2012] | 3934 | if accept_fit.upper() == "N":
|
---|
| 3935 | #workscan._append_blinfo(None, None, None)
|
---|
| 3936 | continue
|
---|
[2610] | 3937 | elif accept_fit.upper() == "R":
|
---|
| 3938 | break
|
---|
| 3939 | elif accept_fit.upper() == "A":
|
---|
| 3940 | action = "Y"
|
---|
[2012] | 3941 |
|
---|
| 3942 | blpars = f.get_parameters()
|
---|
| 3943 | masklist = workscan.get_masklist(f.mask, row=r, silent=True)
|
---|
| 3944 | #workscan._append_blinfo(blpars, masklist, f.mask)
|
---|
[2349] | 3945 | workscan._setspectrum(
|
---|
| 3946 | (f.fitter.getresidual() if getresidual
|
---|
| 3947 | else f.fitter.getfit()), r
|
---|
| 3948 | )
|
---|
[2012] | 3949 |
|
---|
| 3950 | if outblfile:
|
---|
| 3951 | rms = workscan.get_rms(f.mask, r)
|
---|
[2269] | 3952 | dataout = \
|
---|
| 3953 | workscan.format_blparams_row(blpars["params"],
|
---|
| 3954 | blpars["fixed"],
|
---|
| 3955 | rms, str(masklist),
|
---|
[2641] | 3956 | r, True, csvformat)
|
---|
[2012] | 3957 | blf.write(dataout)
|
---|
| 3958 |
|
---|
| 3959 | f._p.unmap()
|
---|
| 3960 | f._p = None
|
---|
| 3961 |
|
---|
| 3962 | if outblfile: blf.close()
|
---|
| 3963 | else:
|
---|
[2767] | 3964 | workscan._auto_poly_baseline(mask, order,
|
---|
| 3965 | clipthresh, clipniter,
|
---|
| 3966 | edge, threshold,
|
---|
[2269] | 3967 | chan_avg_limit, getresidual,
|
---|
| 3968 | pack_progress_params(showprogress,
|
---|
| 3969 | minnrow),
|
---|
[2767] | 3970 | outlog, scsvformat+blfile,
|
---|
| 3971 | bltable)
|
---|
| 3972 | workscan._add_history("auto_poly_baseline", varlist)
|
---|
[2012] | 3973 |
|
---|
[2767] | 3974 | if bltable == '':
|
---|
| 3975 | if insitu:
|
---|
| 3976 | self._assign(workscan)
|
---|
| 3977 | else:
|
---|
| 3978 | return workscan
|
---|
[2012] | 3979 | else:
|
---|
[2767] | 3980 | if not insitu:
|
---|
| 3981 | return None
|
---|
[2012] | 3982 |
|
---|
| 3983 | except RuntimeError, e:
|
---|
[2186] | 3984 | raise_fitting_failure_exception(e)
|
---|
[2012] | 3985 |
|
---|
| 3986 | def _init_blinfo(self):
|
---|
| 3987 | """\
|
---|
| 3988 | Initialise the following three auxiliary members:
|
---|
| 3989 | blpars : parameters of the best-fit baseline,
|
---|
| 3990 | masklists : mask data (edge positions of masked channels) and
|
---|
| 3991 | actualmask : mask data (in boolean list),
|
---|
| 3992 | to keep for use later (including output to logger/text files).
|
---|
| 3993 | Used by poly_baseline() and auto_poly_baseline() in case of
|
---|
| 3994 | 'plot=True'.
|
---|
| 3995 | """
|
---|
| 3996 | self.blpars = []
|
---|
| 3997 | self.masklists = []
|
---|
| 3998 | self.actualmask = []
|
---|
| 3999 | return
|
---|
[880] | 4000 |
|
---|
[2012] | 4001 | def _append_blinfo(self, data_blpars, data_masklists, data_actualmask):
|
---|
| 4002 | """\
|
---|
| 4003 | Append baseline-fitting related info to blpars, masklist and
|
---|
| 4004 | actualmask.
|
---|
| 4005 | """
|
---|
| 4006 | self.blpars.append(data_blpars)
|
---|
| 4007 | self.masklists.append(data_masklists)
|
---|
| 4008 | self.actualmask.append(data_actualmask)
|
---|
| 4009 | return
|
---|
| 4010 |
|
---|
[1862] | 4011 | @asaplog_post_dec
|
---|
[914] | 4012 | def rotate_linpolphase(self, angle):
|
---|
[1846] | 4013 | """\
|
---|
[914] | 4014 | Rotate the phase of the complex polarization O=Q+iU correlation.
|
---|
| 4015 | This is always done in situ in the raw data. So if you call this
|
---|
| 4016 | function more than once then each call rotates the phase further.
|
---|
[1846] | 4017 |
|
---|
[914] | 4018 | Parameters:
|
---|
[1846] | 4019 |
|
---|
[914] | 4020 | angle: The angle (degrees) to rotate (add) by.
|
---|
[1846] | 4021 |
|
---|
| 4022 | Example::
|
---|
| 4023 |
|
---|
[914] | 4024 | scan.rotate_linpolphase(2.3)
|
---|
[1846] | 4025 |
|
---|
[914] | 4026 | """
|
---|
| 4027 | varlist = vars()
|
---|
[936] | 4028 | self._math._rotate_linpolphase(self, angle)
|
---|
[914] | 4029 | self._add_history("rotate_linpolphase", varlist)
|
---|
| 4030 | return
|
---|
[710] | 4031 |
|
---|
[1862] | 4032 | @asaplog_post_dec
|
---|
[914] | 4033 | def rotate_xyphase(self, angle):
|
---|
[1846] | 4034 | """\
|
---|
[914] | 4035 | Rotate the phase of the XY correlation. This is always done in situ
|
---|
| 4036 | in the data. So if you call this function more than once
|
---|
| 4037 | then each call rotates the phase further.
|
---|
[1846] | 4038 |
|
---|
[914] | 4039 | Parameters:
|
---|
[1846] | 4040 |
|
---|
[914] | 4041 | angle: The angle (degrees) to rotate (add) by.
|
---|
[1846] | 4042 |
|
---|
| 4043 | Example::
|
---|
| 4044 |
|
---|
[914] | 4045 | scan.rotate_xyphase(2.3)
|
---|
[1846] | 4046 |
|
---|
[914] | 4047 | """
|
---|
| 4048 | varlist = vars()
|
---|
[936] | 4049 | self._math._rotate_xyphase(self, angle)
|
---|
[914] | 4050 | self._add_history("rotate_xyphase", varlist)
|
---|
| 4051 | return
|
---|
| 4052 |
|
---|
[1862] | 4053 | @asaplog_post_dec
|
---|
[914] | 4054 | def swap_linears(self):
|
---|
[1846] | 4055 | """\
|
---|
[1573] | 4056 | Swap the linear polarisations XX and YY, or better the first two
|
---|
[1348] | 4057 | polarisations as this also works for ciculars.
|
---|
[914] | 4058 | """
|
---|
| 4059 | varlist = vars()
|
---|
[936] | 4060 | self._math._swap_linears(self)
|
---|
[914] | 4061 | self._add_history("swap_linears", varlist)
|
---|
| 4062 | return
|
---|
| 4063 |
|
---|
[1862] | 4064 | @asaplog_post_dec
|
---|
[914] | 4065 | def invert_phase(self):
|
---|
[1846] | 4066 | """\
|
---|
[914] | 4067 | Invert the phase of the complex polarisation
|
---|
| 4068 | """
|
---|
| 4069 | varlist = vars()
|
---|
[936] | 4070 | self._math._invert_phase(self)
|
---|
[914] | 4071 | self._add_history("invert_phase", varlist)
|
---|
| 4072 | return
|
---|
| 4073 |
|
---|
[1862] | 4074 | @asaplog_post_dec
|
---|
[876] | 4075 | def add(self, offset, insitu=None):
|
---|
[1846] | 4076 | """\
|
---|
[513] | 4077 | Return a scan where all spectra have the offset added
|
---|
[1846] | 4078 |
|
---|
[513] | 4079 | Parameters:
|
---|
[1846] | 4080 |
|
---|
[513] | 4081 | offset: the offset
|
---|
[1855] | 4082 |
|
---|
[513] | 4083 | insitu: if False a new scantable is returned.
|
---|
| 4084 | Otherwise, the scaling is done in-situ
|
---|
| 4085 | The default is taken from .asaprc (False)
|
---|
[1846] | 4086 |
|
---|
[513] | 4087 | """
|
---|
| 4088 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 4089 | self._math._setinsitu(insitu)
|
---|
[513] | 4090 | varlist = vars()
|
---|
[876] | 4091 | s = scantable(self._math._unaryop(self, offset, "ADD", False))
|
---|
[1118] | 4092 | s._add_history("add", varlist)
|
---|
[876] | 4093 | if insitu:
|
---|
| 4094 | self._assign(s)
|
---|
| 4095 | else:
|
---|
[513] | 4096 | return s
|
---|
| 4097 |
|
---|
[1862] | 4098 | @asaplog_post_dec
|
---|
[1308] | 4099 | def scale(self, factor, tsys=True, insitu=None):
|
---|
[1846] | 4100 | """\
|
---|
| 4101 |
|
---|
[1938] | 4102 | Return a scan where all spectra are scaled by the given 'factor'
|
---|
[1846] | 4103 |
|
---|
[513] | 4104 | Parameters:
|
---|
[1846] | 4105 |
|
---|
[1819] | 4106 | factor: the scaling factor (float or 1D float list)
|
---|
[1855] | 4107 |
|
---|
[513] | 4108 | insitu: if False a new scantable is returned.
|
---|
| 4109 | Otherwise, the scaling is done in-situ
|
---|
| 4110 | The default is taken from .asaprc (False)
|
---|
[1855] | 4111 |
|
---|
[513] | 4112 | tsys: if True (default) then apply the operation to Tsys
|
---|
| 4113 | as well as the data
|
---|
[1846] | 4114 |
|
---|
[513] | 4115 | """
|
---|
| 4116 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 4117 | self._math._setinsitu(insitu)
|
---|
[513] | 4118 | varlist = vars()
|
---|
[1819] | 4119 | s = None
|
---|
| 4120 | import numpy
|
---|
| 4121 | if isinstance(factor, list) or isinstance(factor, numpy.ndarray):
|
---|
[2320] | 4122 | if isinstance(factor[0], list) or isinstance(factor[0],
|
---|
| 4123 | numpy.ndarray):
|
---|
[1819] | 4124 | from asapmath import _array2dOp
|
---|
[2320] | 4125 | s = _array2dOp( self, factor, "MUL", tsys, insitu )
|
---|
[1819] | 4126 | else:
|
---|
[2320] | 4127 | s = scantable( self._math._arrayop( self, factor,
|
---|
| 4128 | "MUL", tsys ) )
|
---|
[1819] | 4129 | else:
|
---|
[2320] | 4130 | s = scantable(self._math._unaryop(self, factor, "MUL", tsys))
|
---|
[1118] | 4131 | s._add_history("scale", varlist)
|
---|
[876] | 4132 | if insitu:
|
---|
| 4133 | self._assign(s)
|
---|
| 4134 | else:
|
---|
[513] | 4135 | return s
|
---|
| 4136 |
|
---|
[2349] | 4137 | @preserve_selection
|
---|
| 4138 | def set_sourcetype(self, match, matchtype="pattern",
|
---|
[1504] | 4139 | sourcetype="reference"):
|
---|
[1846] | 4140 | """\
|
---|
[1502] | 4141 | Set the type of the source to be an source or reference scan
|
---|
[1846] | 4142 | using the provided pattern.
|
---|
| 4143 |
|
---|
[1502] | 4144 | Parameters:
|
---|
[1846] | 4145 |
|
---|
[1504] | 4146 | match: a Unix style pattern, regular expression or selector
|
---|
[1855] | 4147 |
|
---|
[1504] | 4148 | matchtype: 'pattern' (default) UNIX style pattern or
|
---|
| 4149 | 'regex' regular expression
|
---|
[1855] | 4150 |
|
---|
[1502] | 4151 | sourcetype: the type of the source to use (source/reference)
|
---|
[1846] | 4152 |
|
---|
[1502] | 4153 | """
|
---|
| 4154 | varlist = vars()
|
---|
| 4155 | stype = -1
|
---|
[2480] | 4156 | if sourcetype.lower().startswith("r") or sourcetype.lower() == "off":
|
---|
[1502] | 4157 | stype = 1
|
---|
[2480] | 4158 | elif sourcetype.lower().startswith("s") or sourcetype.lower() == "on":
|
---|
[1502] | 4159 | stype = 0
|
---|
[1504] | 4160 | else:
|
---|
[2480] | 4161 | raise ValueError("Illegal sourcetype use s(ource)/on or r(eference)/off")
|
---|
[1504] | 4162 | if matchtype.lower().startswith("p"):
|
---|
| 4163 | matchtype = "pattern"
|
---|
| 4164 | elif matchtype.lower().startswith("r"):
|
---|
| 4165 | matchtype = "regex"
|
---|
| 4166 | else:
|
---|
| 4167 | raise ValueError("Illegal matchtype, use p(attern) or r(egex)")
|
---|
[1502] | 4168 | sel = selector()
|
---|
| 4169 | if isinstance(match, selector):
|
---|
| 4170 | sel = match
|
---|
| 4171 | else:
|
---|
[2480] | 4172 | sel.set_query("SRCNAME=%s('%s')" % (matchtype, match))
|
---|
| 4173 | self.set_selection(sel)
|
---|
[1502] | 4174 | self._setsourcetype(stype)
|
---|
[1573] | 4175 | self._add_history("set_sourcetype", varlist)
|
---|
[1502] | 4176 |
|
---|
[1862] | 4177 | @asaplog_post_dec
|
---|
[1857] | 4178 | @preserve_selection
|
---|
[1819] | 4179 | def auto_quotient(self, preserve=True, mode='paired', verify=False):
|
---|
[1846] | 4180 | """\
|
---|
[670] | 4181 | This function allows to build quotients automatically.
|
---|
[1819] | 4182 | It assumes the observation to have the same number of
|
---|
[670] | 4183 | "ons" and "offs"
|
---|
[1846] | 4184 |
|
---|
[670] | 4185 | Parameters:
|
---|
[1846] | 4186 |
|
---|
[710] | 4187 | preserve: you can preserve (default) the continuum or
|
---|
| 4188 | remove it. The equations used are
|
---|
[1857] | 4189 |
|
---|
[670] | 4190 | preserve: Output = Toff * (on/off) - Toff
|
---|
[1857] | 4191 |
|
---|
[1070] | 4192 | remove: Output = Toff * (on/off) - Ton
|
---|
[1855] | 4193 |
|
---|
[1573] | 4194 | mode: the on/off detection mode
|
---|
[1348] | 4195 | 'paired' (default)
|
---|
| 4196 | identifies 'off' scans by the
|
---|
| 4197 | trailing '_R' (Mopra/Parkes) or
|
---|
| 4198 | '_e'/'_w' (Tid) and matches
|
---|
| 4199 | on/off pairs from the observing pattern
|
---|
[1502] | 4200 | 'time'
|
---|
| 4201 | finds the closest off in time
|
---|
[1348] | 4202 |
|
---|
[1857] | 4203 | .. todo:: verify argument is not implemented
|
---|
| 4204 |
|
---|
[670] | 4205 | """
|
---|
[1857] | 4206 | varlist = vars()
|
---|
[1348] | 4207 | modes = ["time", "paired"]
|
---|
[670] | 4208 | if not mode in modes:
|
---|
[876] | 4209 | msg = "please provide valid mode. Valid modes are %s" % (modes)
|
---|
| 4210 | raise ValueError(msg)
|
---|
[1348] | 4211 | s = None
|
---|
| 4212 | if mode.lower() == "paired":
|
---|
[1857] | 4213 | sel = self.get_selection()
|
---|
[1875] | 4214 | sel.set_query("SRCTYPE==psoff")
|
---|
[1356] | 4215 | self.set_selection(sel)
|
---|
[1348] | 4216 | offs = self.copy()
|
---|
[1875] | 4217 | sel.set_query("SRCTYPE==pson")
|
---|
[1356] | 4218 | self.set_selection(sel)
|
---|
[1348] | 4219 | ons = self.copy()
|
---|
| 4220 | s = scantable(self._math._quotient(ons, offs, preserve))
|
---|
| 4221 | elif mode.lower() == "time":
|
---|
| 4222 | s = scantable(self._math._auto_quotient(self, mode, preserve))
|
---|
[1118] | 4223 | s._add_history("auto_quotient", varlist)
|
---|
[876] | 4224 | return s
|
---|
[710] | 4225 |
|
---|
[1862] | 4226 | @asaplog_post_dec
|
---|
[1145] | 4227 | def mx_quotient(self, mask = None, weight='median', preserve=True):
|
---|
[1846] | 4228 | """\
|
---|
[1143] | 4229 | Form a quotient using "off" beams when observing in "MX" mode.
|
---|
[1846] | 4230 |
|
---|
[1143] | 4231 | Parameters:
|
---|
[1846] | 4232 |
|
---|
[1145] | 4233 | mask: an optional mask to be used when weight == 'stddev'
|
---|
[1855] | 4234 |
|
---|
[1143] | 4235 | weight: How to average the off beams. Default is 'median'.
|
---|
[1855] | 4236 |
|
---|
[1145] | 4237 | preserve: you can preserve (default) the continuum or
|
---|
[1855] | 4238 | remove it. The equations used are:
|
---|
[1846] | 4239 |
|
---|
[1855] | 4240 | preserve: Output = Toff * (on/off) - Toff
|
---|
| 4241 |
|
---|
| 4242 | remove: Output = Toff * (on/off) - Ton
|
---|
| 4243 |
|
---|
[1217] | 4244 | """
|
---|
[1593] | 4245 | mask = mask or ()
|
---|
[1141] | 4246 | varlist = vars()
|
---|
| 4247 | on = scantable(self._math._mx_extract(self, 'on'))
|
---|
[1143] | 4248 | preoff = scantable(self._math._mx_extract(self, 'off'))
|
---|
| 4249 | off = preoff.average_time(mask=mask, weight=weight, scanav=False)
|
---|
[1217] | 4250 | from asapmath import quotient
|
---|
[1145] | 4251 | q = quotient(on, off, preserve)
|
---|
[1143] | 4252 | q._add_history("mx_quotient", varlist)
|
---|
[1217] | 4253 | return q
|
---|
[513] | 4254 |
|
---|
[1862] | 4255 | @asaplog_post_dec
|
---|
[718] | 4256 | def freq_switch(self, insitu=None):
|
---|
[1846] | 4257 | """\
|
---|
[718] | 4258 | Apply frequency switching to the data.
|
---|
[1846] | 4259 |
|
---|
[718] | 4260 | Parameters:
|
---|
[1846] | 4261 |
|
---|
[718] | 4262 | insitu: if False a new scantable is returned.
|
---|
| 4263 | Otherwise, the swictching is done in-situ
|
---|
| 4264 | The default is taken from .asaprc (False)
|
---|
[1846] | 4265 |
|
---|
[718] | 4266 | """
|
---|
| 4267 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 4268 | self._math._setinsitu(insitu)
|
---|
[718] | 4269 | varlist = vars()
|
---|
[876] | 4270 | s = scantable(self._math._freqswitch(self))
|
---|
[1118] | 4271 | s._add_history("freq_switch", varlist)
|
---|
[1856] | 4272 | if insitu:
|
---|
| 4273 | self._assign(s)
|
---|
| 4274 | else:
|
---|
| 4275 | return s
|
---|
[718] | 4276 |
|
---|
[1862] | 4277 | @asaplog_post_dec
|
---|
[780] | 4278 | def recalc_azel(self):
|
---|
[1846] | 4279 | """Recalculate the azimuth and elevation for each position."""
|
---|
[780] | 4280 | varlist = vars()
|
---|
[876] | 4281 | self._recalcazel()
|
---|
[780] | 4282 | self._add_history("recalc_azel", varlist)
|
---|
| 4283 | return
|
---|
| 4284 |
|
---|
[1862] | 4285 | @asaplog_post_dec
|
---|
[513] | 4286 | def __add__(self, other):
|
---|
[2574] | 4287 | """
|
---|
| 4288 | implicit on all axes and on Tsys
|
---|
| 4289 | """
|
---|
[513] | 4290 | varlist = vars()
|
---|
[2574] | 4291 | s = self.__op( other, "ADD" )
|
---|
[513] | 4292 | s._add_history("operator +", varlist)
|
---|
| 4293 | return s
|
---|
| 4294 |
|
---|
[1862] | 4295 | @asaplog_post_dec
|
---|
[513] | 4296 | def __sub__(self, other):
|
---|
| 4297 | """
|
---|
| 4298 | implicit on all axes and on Tsys
|
---|
| 4299 | """
|
---|
| 4300 | varlist = vars()
|
---|
[2574] | 4301 | s = self.__op( other, "SUB" )
|
---|
[513] | 4302 | s._add_history("operator -", varlist)
|
---|
| 4303 | return s
|
---|
[710] | 4304 |
|
---|
[1862] | 4305 | @asaplog_post_dec
|
---|
[513] | 4306 | def __mul__(self, other):
|
---|
| 4307 | """
|
---|
| 4308 | implicit on all axes and on Tsys
|
---|
| 4309 | """
|
---|
| 4310 | varlist = vars()
|
---|
[2574] | 4311 | s = self.__op( other, "MUL" ) ;
|
---|
[513] | 4312 | s._add_history("operator *", varlist)
|
---|
| 4313 | return s
|
---|
| 4314 |
|
---|
[710] | 4315 |
|
---|
[1862] | 4316 | @asaplog_post_dec
|
---|
[513] | 4317 | def __div__(self, other):
|
---|
| 4318 | """
|
---|
| 4319 | implicit on all axes and on Tsys
|
---|
| 4320 | """
|
---|
| 4321 | varlist = vars()
|
---|
[2574] | 4322 | s = self.__op( other, "DIV" )
|
---|
| 4323 | s._add_history("operator /", varlist)
|
---|
| 4324 | return s
|
---|
| 4325 |
|
---|
| 4326 | @asaplog_post_dec
|
---|
| 4327 | def __op( self, other, mode ):
|
---|
[513] | 4328 | s = None
|
---|
| 4329 | if isinstance(other, scantable):
|
---|
[2574] | 4330 | s = scantable(self._math._binaryop(self, other, mode))
|
---|
[513] | 4331 | elif isinstance(other, float):
|
---|
| 4332 | if other == 0.0:
|
---|
[718] | 4333 | raise ZeroDivisionError("Dividing by zero is not recommended")
|
---|
[2574] | 4334 | s = scantable(self._math._unaryop(self, other, mode, False))
|
---|
[2144] | 4335 | elif isinstance(other, list) or isinstance(other, numpy.ndarray):
|
---|
[2349] | 4336 | if isinstance(other[0], list) \
|
---|
| 4337 | or isinstance(other[0], numpy.ndarray):
|
---|
[2144] | 4338 | from asapmath import _array2dOp
|
---|
[2574] | 4339 | s = _array2dOp( self, other, mode, False )
|
---|
[2144] | 4340 | else:
|
---|
[2574] | 4341 | s = scantable( self._math._arrayop( self, other,
|
---|
| 4342 | mode, False ) )
|
---|
[513] | 4343 | else:
|
---|
[718] | 4344 | raise TypeError("Other input is not a scantable or float value")
|
---|
[513] | 4345 | return s
|
---|
| 4346 |
|
---|
[1862] | 4347 | @asaplog_post_dec
|
---|
[530] | 4348 | def get_fit(self, row=0):
|
---|
[1846] | 4349 | """\
|
---|
[530] | 4350 | Print or return the stored fits for a row in the scantable
|
---|
[1846] | 4351 |
|
---|
[530] | 4352 | Parameters:
|
---|
[1846] | 4353 |
|
---|
[530] | 4354 | row: the row which the fit has been applied to.
|
---|
[1846] | 4355 |
|
---|
[530] | 4356 | """
|
---|
| 4357 | if row > self.nrow():
|
---|
| 4358 | return
|
---|
[976] | 4359 | from asap.asapfit import asapfit
|
---|
[530] | 4360 | fit = asapfit(self._getfit(row))
|
---|
[1859] | 4361 | asaplog.push( '%s' %(fit) )
|
---|
| 4362 | return fit.as_dict()
|
---|
[530] | 4363 |
|
---|
[2349] | 4364 | @preserve_selection
|
---|
[1483] | 4365 | def flag_nans(self):
|
---|
[1846] | 4366 | """\
|
---|
[1483] | 4367 | Utility function to flag NaN values in the scantable.
|
---|
| 4368 | """
|
---|
| 4369 | import numpy
|
---|
| 4370 | basesel = self.get_selection()
|
---|
| 4371 | for i in range(self.nrow()):
|
---|
[1589] | 4372 | sel = self.get_row_selector(i)
|
---|
| 4373 | self.set_selection(basesel+sel)
|
---|
[1483] | 4374 | nans = numpy.isnan(self._getspectrum(0))
|
---|
| 4375 | if numpy.any(nans):
|
---|
| 4376 | bnans = [ bool(v) for v in nans]
|
---|
| 4377 | self.flag(bnans)
|
---|
| 4378 |
|
---|
[1588] | 4379 | def get_row_selector(self, rowno):
|
---|
[1992] | 4380 | return selector(rows=[rowno])
|
---|
[1573] | 4381 |
|
---|
[484] | 4382 | def _add_history(self, funcname, parameters):
|
---|
[1435] | 4383 | if not rcParams['scantable.history']:
|
---|
| 4384 | return
|
---|
[484] | 4385 | # create date
|
---|
| 4386 | sep = "##"
|
---|
| 4387 | from datetime import datetime
|
---|
| 4388 | dstr = datetime.now().strftime('%Y/%m/%d %H:%M:%S')
|
---|
| 4389 | hist = dstr+sep
|
---|
| 4390 | hist += funcname+sep#cdate+sep
|
---|
[2349] | 4391 | if parameters.has_key('self'):
|
---|
| 4392 | del parameters['self']
|
---|
[1118] | 4393 | for k, v in parameters.iteritems():
|
---|
[484] | 4394 | if type(v) is dict:
|
---|
[1118] | 4395 | for k2, v2 in v.iteritems():
|
---|
[484] | 4396 | hist += k2
|
---|
| 4397 | hist += "="
|
---|
[1118] | 4398 | if isinstance(v2, scantable):
|
---|
[484] | 4399 | hist += 'scantable'
|
---|
| 4400 | elif k2 == 'mask':
|
---|
[1118] | 4401 | if isinstance(v2, list) or isinstance(v2, tuple):
|
---|
[513] | 4402 | hist += str(self._zip_mask(v2))
|
---|
| 4403 | else:
|
---|
| 4404 | hist += str(v2)
|
---|
[484] | 4405 | else:
|
---|
[513] | 4406 | hist += str(v2)
|
---|
[484] | 4407 | else:
|
---|
| 4408 | hist += k
|
---|
| 4409 | hist += "="
|
---|
[1118] | 4410 | if isinstance(v, scantable):
|
---|
[484] | 4411 | hist += 'scantable'
|
---|
| 4412 | elif k == 'mask':
|
---|
[1118] | 4413 | if isinstance(v, list) or isinstance(v, tuple):
|
---|
[513] | 4414 | hist += str(self._zip_mask(v))
|
---|
| 4415 | else:
|
---|
| 4416 | hist += str(v)
|
---|
[484] | 4417 | else:
|
---|
| 4418 | hist += str(v)
|
---|
| 4419 | hist += sep
|
---|
| 4420 | hist = hist[:-2] # remove trailing '##'
|
---|
| 4421 | self._addhistory(hist)
|
---|
| 4422 |
|
---|
[710] | 4423 |
|
---|
[484] | 4424 | def _zip_mask(self, mask):
|
---|
| 4425 | mask = list(mask)
|
---|
| 4426 | i = 0
|
---|
| 4427 | segments = []
|
---|
| 4428 | while mask[i:].count(1):
|
---|
| 4429 | i += mask[i:].index(1)
|
---|
| 4430 | if mask[i:].count(0):
|
---|
| 4431 | j = i + mask[i:].index(0)
|
---|
| 4432 | else:
|
---|
[710] | 4433 | j = len(mask)
|
---|
[1118] | 4434 | segments.append([i, j])
|
---|
[710] | 4435 | i = j
|
---|
[484] | 4436 | return segments
|
---|
[714] | 4437 |
|
---|
[626] | 4438 | def _get_ordinate_label(self):
|
---|
| 4439 | fu = "("+self.get_fluxunit()+")"
|
---|
| 4440 | import re
|
---|
| 4441 | lbl = "Intensity"
|
---|
[1118] | 4442 | if re.match(".K.", fu):
|
---|
[626] | 4443 | lbl = "Brightness Temperature "+ fu
|
---|
[1118] | 4444 | elif re.match(".Jy.", fu):
|
---|
[626] | 4445 | lbl = "Flux density "+ fu
|
---|
| 4446 | return lbl
|
---|
[710] | 4447 |
|
---|
[876] | 4448 | def _check_ifs(self):
|
---|
[2349] | 4449 | # return len(set([self.nchan(i) for i in self.getifnos()])) == 1
|
---|
[1986] | 4450 | nchans = [self.nchan(i) for i in self.getifnos()]
|
---|
[2004] | 4451 | nchans = filter(lambda t: t > 0, nchans)
|
---|
[876] | 4452 | return (sum(nchans)/len(nchans) == nchans[0])
|
---|
[976] | 4453 |
|
---|
[1862] | 4454 | @asaplog_post_dec
|
---|
[1916] | 4455 | def _fill(self, names, unit, average, opts={}):
|
---|
[976] | 4456 | first = True
|
---|
| 4457 | fullnames = []
|
---|
| 4458 | for name in names:
|
---|
| 4459 | name = os.path.expandvars(name)
|
---|
| 4460 | name = os.path.expanduser(name)
|
---|
| 4461 | if not os.path.exists(name):
|
---|
| 4462 | msg = "File '%s' does not exists" % (name)
|
---|
| 4463 | raise IOError(msg)
|
---|
| 4464 | fullnames.append(name)
|
---|
| 4465 | if average:
|
---|
| 4466 | asaplog.push('Auto averaging integrations')
|
---|
[1079] | 4467 | stype = int(rcParams['scantable.storage'].lower() == 'disk')
|
---|
[976] | 4468 | for name in fullnames:
|
---|
[1073] | 4469 | tbl = Scantable(stype)
|
---|
[2004] | 4470 | if is_ms( name ):
|
---|
| 4471 | r = msfiller( tbl )
|
---|
| 4472 | else:
|
---|
| 4473 | r = filler( tbl )
|
---|
[976] | 4474 | msg = "Importing %s..." % (name)
|
---|
[1118] | 4475 | asaplog.push(msg, False)
|
---|
[2349] | 4476 | r.open(name, opts)
|
---|
[2480] | 4477 | rx = rcParams['scantable.reference']
|
---|
| 4478 | r.setreferenceexpr(rx)
|
---|
[1843] | 4479 | r.fill()
|
---|
[976] | 4480 | if average:
|
---|
[1118] | 4481 | tbl = self._math._average((tbl, ), (), 'NONE', 'SCAN')
|
---|
[976] | 4482 | if not first:
|
---|
| 4483 | tbl = self._math._merge([self, tbl])
|
---|
| 4484 | Scantable.__init__(self, tbl)
|
---|
[1843] | 4485 | r.close()
|
---|
[1118] | 4486 | del r, tbl
|
---|
[976] | 4487 | first = False
|
---|
[1861] | 4488 | #flush log
|
---|
| 4489 | asaplog.post()
|
---|
[976] | 4490 | if unit is not None:
|
---|
| 4491 | self.set_fluxunit(unit)
|
---|
[1824] | 4492 | if not is_casapy():
|
---|
| 4493 | self.set_freqframe(rcParams['scantable.freqframe'])
|
---|
[976] | 4494 |
|
---|
[2610] | 4495 | def _get_verify_action( self, msg, action=None ):
|
---|
| 4496 | valid_act = ['Y', 'N', 'A', 'R']
|
---|
| 4497 | if not action or not isinstance(action, str):
|
---|
| 4498 | action = raw_input("%s [Y/n/a/r] (h for help): " % msg)
|
---|
| 4499 | if action == '':
|
---|
| 4500 | return "Y"
|
---|
| 4501 | elif (action.upper()[0] in valid_act):
|
---|
| 4502 | return action.upper()[0]
|
---|
| 4503 | elif (action.upper()[0] in ['H','?']):
|
---|
| 4504 | print "Available actions of verification [Y|n|a|r]"
|
---|
| 4505 | print " Y : Yes for current data (default)"
|
---|
| 4506 | print " N : No for current data"
|
---|
| 4507 | print " A : Accept all in the following and exit from verification"
|
---|
| 4508 | print " R : Reject all in the following and exit from verification"
|
---|
| 4509 | print " H or ?: help (show this message)"
|
---|
| 4510 | return self._get_verify_action(msg)
|
---|
| 4511 | else:
|
---|
| 4512 | return 'Y'
|
---|
[2012] | 4513 |
|
---|
[1402] | 4514 | def __getitem__(self, key):
|
---|
| 4515 | if key < 0:
|
---|
| 4516 | key += self.nrow()
|
---|
| 4517 | if key >= self.nrow():
|
---|
| 4518 | raise IndexError("Row index out of range.")
|
---|
| 4519 | return self._getspectrum(key)
|
---|
| 4520 |
|
---|
| 4521 | def __setitem__(self, key, value):
|
---|
| 4522 | if key < 0:
|
---|
| 4523 | key += self.nrow()
|
---|
| 4524 | if key >= self.nrow():
|
---|
| 4525 | raise IndexError("Row index out of range.")
|
---|
| 4526 | if not hasattr(value, "__len__") or \
|
---|
| 4527 | len(value) > self.nchan(self.getif(key)):
|
---|
| 4528 | raise ValueError("Spectrum length doesn't match.")
|
---|
| 4529 | return self._setspectrum(value, key)
|
---|
| 4530 |
|
---|
| 4531 | def __len__(self):
|
---|
| 4532 | return self.nrow()
|
---|
| 4533 |
|
---|
| 4534 | def __iter__(self):
|
---|
| 4535 | for i in range(len(self)):
|
---|
| 4536 | yield self[i]
|
---|