[1846] | 1 | """This module defines the scantable class."""
|
---|
| 2 |
|
---|
[1697] | 3 | import os
|
---|
[2751] | 4 | import re
|
---|
[2315] | 5 | import tempfile
|
---|
[1948] | 6 | import numpy
|
---|
[1691] | 7 | try:
|
---|
| 8 | from functools import wraps as wraps_dec
|
---|
| 9 | except ImportError:
|
---|
| 10 | from asap.compatibility import wraps as wraps_dec
|
---|
| 11 |
|
---|
[1824] | 12 | from asap.env import is_casapy
|
---|
[876] | 13 | from asap._asap import Scantable
|
---|
[2004] | 14 | from asap._asap import filler, msfiller
|
---|
[1824] | 15 | from asap.parameters import rcParams
|
---|
[1862] | 16 | from asap.logging import asaplog, asaplog_post_dec
|
---|
[1824] | 17 | from asap.selector import selector
|
---|
| 18 | from asap.linecatalog import linecatalog
|
---|
[1600] | 19 | from asap.coordinate import coordinate
|
---|
[1859] | 20 | from asap.utils import _n_bools, mask_not, mask_and, mask_or, page
|
---|
[1907] | 21 | from asap.asapfitter import fitter
|
---|
[102] | 22 |
|
---|
[1689] | 23 | def preserve_selection(func):
|
---|
[1691] | 24 | @wraps_dec(func)
|
---|
[1689] | 25 | def wrap(obj, *args, **kw):
|
---|
| 26 | basesel = obj.get_selection()
|
---|
[1857] | 27 | try:
|
---|
| 28 | val = func(obj, *args, **kw)
|
---|
| 29 | finally:
|
---|
| 30 | obj.set_selection(basesel)
|
---|
[1689] | 31 | return val
|
---|
| 32 | return wrap
|
---|
| 33 |
|
---|
[1846] | 34 | def is_scantable(filename):
|
---|
| 35 | """Is the given file a scantable?
|
---|
[1689] | 36 |
|
---|
[1846] | 37 | Parameters:
|
---|
| 38 |
|
---|
| 39 | filename: the name of the file/directory to test
|
---|
| 40 |
|
---|
| 41 | """
|
---|
[1883] | 42 | if ( os.path.isdir(filename)
|
---|
| 43 | and os.path.exists(filename+'/table.info')
|
---|
| 44 | and os.path.exists(filename+'/table.dat') ):
|
---|
| 45 | f=open(filename+'/table.info')
|
---|
| 46 | l=f.readline()
|
---|
| 47 | f.close()
|
---|
[2753] | 48 | match_pattern = '^Type = (Scantable)? *$'
|
---|
[2751] | 49 | if re.match(match_pattern,l):
|
---|
[1883] | 50 | return True
|
---|
| 51 | else:
|
---|
| 52 | return False
|
---|
| 53 | else:
|
---|
| 54 | return False
|
---|
| 55 | ## return (os.path.isdir(filename)
|
---|
| 56 | ## and not os.path.exists(filename+'/table.f1')
|
---|
| 57 | ## and os.path.exists(filename+'/table.info'))
|
---|
[1697] | 58 |
|
---|
[1883] | 59 | def is_ms(filename):
|
---|
| 60 | """Is the given file a MeasurementSet?
|
---|
[1697] | 61 |
|
---|
[1883] | 62 | Parameters:
|
---|
| 63 |
|
---|
| 64 | filename: the name of the file/directory to test
|
---|
| 65 |
|
---|
| 66 | """
|
---|
| 67 | if ( os.path.isdir(filename)
|
---|
| 68 | and os.path.exists(filename+'/table.info')
|
---|
| 69 | and os.path.exists(filename+'/table.dat') ):
|
---|
| 70 | f=open(filename+'/table.info')
|
---|
| 71 | l=f.readline()
|
---|
| 72 | f.close()
|
---|
| 73 | if ( l.find('Measurement Set') != -1 ):
|
---|
| 74 | return True
|
---|
| 75 | else:
|
---|
| 76 | return False
|
---|
| 77 | else:
|
---|
| 78 | return False
|
---|
[2186] | 79 |
|
---|
| 80 | def normalise_edge_param(edge):
|
---|
| 81 | """\
|
---|
| 82 | Convert a given edge value to a one-dimensional array that can be
|
---|
| 83 | given to baseline-fitting/subtraction functions.
|
---|
| 84 | The length of the output value will be an even because values for
|
---|
| 85 | the both sides of spectra are to be contained for each IF. When
|
---|
| 86 | the length is 2, the values will be applied to all IFs. If the length
|
---|
| 87 | is larger than 2, it will be 2*ifnos().
|
---|
| 88 | Accepted format of edge include:
|
---|
| 89 | * an integer - will be used for both sides of spectra of all IFs.
|
---|
| 90 | e.g. 10 is converted to [10,10]
|
---|
[2277] | 91 | * an empty list/tuple [] - converted to [0, 0] and used for all IFs.
|
---|
[2186] | 92 | * a list/tuple containing an integer - same as the above case.
|
---|
| 93 | e.g. [10] is converted to [10,10]
|
---|
| 94 | * a list/tuple containing two integers - will be used for all IFs.
|
---|
| 95 | e.g. [5,10] is output as it is. no need to convert.
|
---|
| 96 | * a list/tuple of lists/tuples containing TWO integers -
|
---|
| 97 | each element of edge will be used for each IF.
|
---|
[2277] | 98 | e.g. [[5,10],[15,20]] - [5,10] for IF[0] and [15,20] for IF[1].
|
---|
| 99 |
|
---|
| 100 | If an element contains the same integer values, the input 'edge'
|
---|
| 101 | parameter can be given in a simpler shape in the following cases:
|
---|
[2186] | 102 | ** when len(edge)!=2
|
---|
[2277] | 103 | any elements containing the same values can be replaced
|
---|
| 104 | to single integers.
|
---|
| 105 | e.g. [[15,15]] can be simplified to [15] (or [15,15] or 15 also).
|
---|
| 106 | e.g. [[1,1],[2,2],[3,3]] can be simplified to [1,2,3].
|
---|
[2186] | 107 | ** when len(edge)=2
|
---|
| 108 | care is needed for this case: ONLY ONE of the
|
---|
| 109 | elements can be a single integer,
|
---|
| 110 | e.g. [[5,5],[10,10]] can be simplified to [5,[10,10]]
|
---|
[2277] | 111 | or [[5,5],10], but can NOT be simplified to [5,10].
|
---|
[2186] | 112 | when [5,10] given, it is interpreted as
|
---|
[2277] | 113 | [[5,10],[5,10],[5,10],...] instead, as shown before.
|
---|
[2186] | 114 | """
|
---|
| 115 | from asap import _is_sequence_or_number as _is_valid
|
---|
| 116 | if isinstance(edge, list) or isinstance(edge, tuple):
|
---|
| 117 | for edgepar in edge:
|
---|
| 118 | if not _is_valid(edgepar, int):
|
---|
| 119 | raise ValueError, "Each element of the 'edge' tuple has \
|
---|
| 120 | to be a pair of integers or an integer."
|
---|
| 121 | if isinstance(edgepar, list) or isinstance(edgepar, tuple):
|
---|
| 122 | if len(edgepar) != 2:
|
---|
| 123 | raise ValueError, "Each element of the 'edge' tuple has \
|
---|
| 124 | to be a pair of integers or an integer."
|
---|
| 125 | else:
|
---|
| 126 | if not _is_valid(edge, int):
|
---|
| 127 | raise ValueError, "Parameter 'edge' has to be an integer or a \
|
---|
| 128 | pair of integers specified as a tuple. \
|
---|
| 129 | Nested tuples are allowed \
|
---|
| 130 | to make individual selection for different IFs."
|
---|
| 131 |
|
---|
| 132 |
|
---|
| 133 | if isinstance(edge, int):
|
---|
| 134 | edge = [ edge, edge ] # e.g. 3 => [3,3]
|
---|
| 135 | elif isinstance(edge, list) or isinstance(edge, tuple):
|
---|
| 136 | if len(edge) == 0:
|
---|
| 137 | edge = [0, 0] # e.g. [] => [0,0]
|
---|
| 138 | elif len(edge) == 1:
|
---|
| 139 | if isinstance(edge[0], int):
|
---|
| 140 | edge = [ edge[0], edge[0] ] # e.g. [1] => [1,1]
|
---|
| 141 |
|
---|
| 142 | commonedge = True
|
---|
| 143 | if len(edge) > 2: commonedge = False
|
---|
| 144 | else:
|
---|
| 145 | for edgepar in edge:
|
---|
| 146 | if isinstance(edgepar, list) or isinstance(edgepar, tuple):
|
---|
| 147 | commonedge = False
|
---|
| 148 | break
|
---|
| 149 |
|
---|
| 150 | if commonedge:
|
---|
| 151 | if len(edge) > 1:
|
---|
| 152 | norm_edge = edge
|
---|
| 153 | else:
|
---|
| 154 | norm_edge = edge + edge
|
---|
| 155 | else:
|
---|
| 156 | norm_edge = []
|
---|
| 157 | for edgepar in edge:
|
---|
| 158 | if isinstance(edgepar, int):
|
---|
| 159 | norm_edge += [edgepar, edgepar]
|
---|
| 160 | else:
|
---|
| 161 | norm_edge += edgepar
|
---|
| 162 |
|
---|
| 163 | return norm_edge
|
---|
| 164 |
|
---|
| 165 | def raise_fitting_failure_exception(e):
|
---|
| 166 | msg = "The fit failed, possibly because it didn't converge."
|
---|
| 167 | if rcParams["verbose"]:
|
---|
| 168 | asaplog.push(str(e))
|
---|
| 169 | asaplog.push(str(msg))
|
---|
| 170 | else:
|
---|
| 171 | raise RuntimeError(str(e)+'\n'+msg)
|
---|
| 172 |
|
---|
[2189] | 173 | def pack_progress_params(showprogress, minnrow):
|
---|
| 174 | return str(showprogress).lower() + ',' + str(minnrow)
|
---|
| 175 |
|
---|
[876] | 176 | class scantable(Scantable):
|
---|
[1846] | 177 | """\
|
---|
| 178 | The ASAP container for scans (single-dish data).
|
---|
[102] | 179 | """
|
---|
[1819] | 180 |
|
---|
[1862] | 181 | @asaplog_post_dec
|
---|
[2315] | 182 | def __init__(self, filename, average=None, unit=None, parallactify=None,
|
---|
| 183 | **args):
|
---|
[1846] | 184 | """\
|
---|
[102] | 185 | Create a scantable from a saved one or make a reference
|
---|
[1846] | 186 |
|
---|
[102] | 187 | Parameters:
|
---|
[1846] | 188 |
|
---|
| 189 | filename: the name of an asap table on disk
|
---|
| 190 | or
|
---|
| 191 | the name of a rpfits/sdfits/ms file
|
---|
| 192 | (integrations within scans are auto averaged
|
---|
| 193 | and the whole file is read) or
|
---|
| 194 | [advanced] a reference to an existing scantable
|
---|
| 195 |
|
---|
| 196 | average: average all integrations withinb a scan on read.
|
---|
| 197 | The default (True) is taken from .asaprc.
|
---|
| 198 |
|
---|
[484] | 199 | unit: brightness unit; must be consistent with K or Jy.
|
---|
[1846] | 200 | Over-rides the default selected by the filler
|
---|
| 201 | (input rpfits/sdfits/ms) or replaces the value
|
---|
| 202 | in existing scantables
|
---|
| 203 |
|
---|
[1920] | 204 | antenna: for MeasurementSet input data only:
|
---|
[2349] | 205 | Antenna selection. integer (id) or string
|
---|
| 206 | (name or id).
|
---|
[1846] | 207 |
|
---|
[2349] | 208 | parallactify: Indicate that the data had been parallactified.
|
---|
| 209 | Default (false) is taken from rc file.
|
---|
[1846] | 210 |
|
---|
[2754] | 211 | getpt: Whether to import direction from MS/POINTING
|
---|
| 212 | table properly or not.
|
---|
| 213 | This is effective only when filename is MS.
|
---|
| 214 | The default (True) is to import direction
|
---|
| 215 | from MS/POINTING.
|
---|
| 216 |
|
---|
| 217 | freq_tolsr: Whether to convert frequency frame information
|
---|
| 218 | to LSRK or not.
|
---|
| 219 | This is effective only when filename is MS.
|
---|
| 220 | The default (False) is to import frequency
|
---|
| 221 | as is.
|
---|
| 222 |
|
---|
[710] | 223 | """
|
---|
[976] | 224 | if average is None:
|
---|
[710] | 225 | average = rcParams['scantable.autoaverage']
|
---|
[1593] | 226 | parallactify = parallactify or rcParams['scantable.parallactify']
|
---|
[1259] | 227 | varlist = vars()
|
---|
[876] | 228 | from asap._asap import stmath
|
---|
[1819] | 229 | self._math = stmath( rcParams['insitu'] )
|
---|
[876] | 230 | if isinstance(filename, Scantable):
|
---|
| 231 | Scantable.__init__(self, filename)
|
---|
[181] | 232 | else:
|
---|
[1697] | 233 | if isinstance(filename, str):
|
---|
[976] | 234 | filename = os.path.expandvars(filename)
|
---|
| 235 | filename = os.path.expanduser(filename)
|
---|
| 236 | if not os.path.exists(filename):
|
---|
| 237 | s = "File '%s' not found." % (filename)
|
---|
| 238 | raise IOError(s)
|
---|
[1697] | 239 | if is_scantable(filename):
|
---|
| 240 | ondisk = rcParams['scantable.storage'] == 'disk'
|
---|
| 241 | Scantable.__init__(self, filename, ondisk)
|
---|
| 242 | if unit is not None:
|
---|
| 243 | self.set_fluxunit(unit)
|
---|
[2008] | 244 | if average:
|
---|
| 245 | self._assign( self.average_time( scanav=True ) )
|
---|
[1819] | 246 | # do not reset to the default freqframe
|
---|
| 247 | #self.set_freqframe(rcParams['scantable.freqframe'])
|
---|
[1883] | 248 | elif is_ms(filename):
|
---|
[1916] | 249 | # Measurement Set
|
---|
| 250 | opts={'ms': {}}
|
---|
[2753] | 251 | mskeys=['getpt','antenna','freq_tolsr']
|
---|
[1916] | 252 | for key in mskeys:
|
---|
| 253 | if key in args.keys():
|
---|
| 254 | opts['ms'][key] = args[key]
|
---|
| 255 | self._fill([filename], unit, average, opts)
|
---|
[1893] | 256 | elif os.path.isfile(filename):
|
---|
[1916] | 257 | self._fill([filename], unit, average)
|
---|
[2350] | 258 | # only apply to new data not "copy constructor"
|
---|
| 259 | self.parallactify(parallactify)
|
---|
[1883] | 260 | else:
|
---|
[1819] | 261 | msg = "The given file '%s'is not a valid " \
|
---|
| 262 | "asap table." % (filename)
|
---|
[1859] | 263 | raise IOError(msg)
|
---|
[1118] | 264 | elif (isinstance(filename, list) or isinstance(filename, tuple)) \
|
---|
[976] | 265 | and isinstance(filename[-1], str):
|
---|
[1916] | 266 | self._fill(filename, unit, average)
|
---|
[1586] | 267 | self.parallactify(parallactify)
|
---|
[1259] | 268 | self._add_history("scantable", varlist)
|
---|
[102] | 269 |
|
---|
[1862] | 270 | @asaplog_post_dec
|
---|
[876] | 271 | def save(self, name=None, format=None, overwrite=False):
|
---|
[1846] | 272 | """\
|
---|
[1280] | 273 | Store the scantable on disk. This can be an asap (aips++) Table,
|
---|
| 274 | SDFITS or MS2 format.
|
---|
[1846] | 275 |
|
---|
[116] | 276 | Parameters:
|
---|
[1846] | 277 |
|
---|
[2431] | 278 | name: the name of the outputfile. For format 'ASCII'
|
---|
[1093] | 279 | this is the root file name (data in 'name'.txt
|
---|
[497] | 280 | and header in 'name'_header.txt)
|
---|
[1855] | 281 |
|
---|
[116] | 282 | format: an optional file format. Default is ASAP.
|
---|
[1855] | 283 | Allowed are:
|
---|
| 284 |
|
---|
| 285 | * 'ASAP' (save as ASAP [aips++] Table),
|
---|
| 286 | * 'SDFITS' (save as SDFITS file)
|
---|
| 287 | * 'ASCII' (saves as ascii text file)
|
---|
| 288 | * 'MS2' (saves as an casacore MeasurementSet V2)
|
---|
[2315] | 289 | * 'FITS' (save as image FITS - not readable by
|
---|
| 290 | class)
|
---|
[1855] | 291 | * 'CLASS' (save as FITS readable by CLASS)
|
---|
| 292 |
|
---|
[411] | 293 | overwrite: If the file should be overwritten if it exists.
|
---|
[256] | 294 | The default False is to return with warning
|
---|
[411] | 295 | without writing the output. USE WITH CARE.
|
---|
[1855] | 296 |
|
---|
[1846] | 297 | Example::
|
---|
| 298 |
|
---|
[116] | 299 | scan.save('myscan.asap')
|
---|
[1118] | 300 | scan.save('myscan.sdfits', 'SDFITS')
|
---|
[1846] | 301 |
|
---|
[116] | 302 | """
|
---|
[411] | 303 | from os import path
|
---|
[1593] | 304 | format = format or rcParams['scantable.save']
|
---|
[256] | 305 | suffix = '.'+format.lower()
|
---|
[1118] | 306 | if name is None or name == "":
|
---|
[256] | 307 | name = 'scantable'+suffix
|
---|
[718] | 308 | msg = "No filename given. Using default name %s..." % name
|
---|
| 309 | asaplog.push(msg)
|
---|
[411] | 310 | name = path.expandvars(name)
|
---|
[256] | 311 | if path.isfile(name) or path.isdir(name):
|
---|
| 312 | if not overwrite:
|
---|
[718] | 313 | msg = "File %s exists." % name
|
---|
[1859] | 314 | raise IOError(msg)
|
---|
[451] | 315 | format2 = format.upper()
|
---|
| 316 | if format2 == 'ASAP':
|
---|
[116] | 317 | self._save(name)
|
---|
[2029] | 318 | elif format2 == 'MS2':
|
---|
| 319 | msopt = {'ms': {'overwrite': overwrite } }
|
---|
| 320 | from asap._asap import mswriter
|
---|
| 321 | writer = mswriter( self )
|
---|
| 322 | writer.write( name, msopt )
|
---|
[116] | 323 | else:
|
---|
[989] | 324 | from asap._asap import stwriter as stw
|
---|
[1118] | 325 | writer = stw(format2)
|
---|
| 326 | writer.write(self, name)
|
---|
[116] | 327 | return
|
---|
| 328 |
|
---|
[102] | 329 | def copy(self):
|
---|
[1846] | 330 | """Return a copy of this scantable.
|
---|
| 331 |
|
---|
| 332 | *Note*:
|
---|
| 333 |
|
---|
[1348] | 334 | This makes a full (deep) copy. scan2 = scan1 makes a reference.
|
---|
[1846] | 335 |
|
---|
| 336 | Example::
|
---|
| 337 |
|
---|
[102] | 338 | copiedscan = scan.copy()
|
---|
[1846] | 339 |
|
---|
[102] | 340 | """
|
---|
[876] | 341 | sd = scantable(Scantable._copy(self))
|
---|
[113] | 342 | return sd
|
---|
| 343 |
|
---|
[1093] | 344 | def drop_scan(self, scanid=None):
|
---|
[1846] | 345 | """\
|
---|
[1093] | 346 | Return a new scantable where the specified scan number(s) has(have)
|
---|
| 347 | been dropped.
|
---|
[1846] | 348 |
|
---|
[1093] | 349 | Parameters:
|
---|
[1846] | 350 |
|
---|
[1093] | 351 | scanid: a (list of) scan number(s)
|
---|
[1846] | 352 |
|
---|
[1093] | 353 | """
|
---|
| 354 | from asap import _is_sequence_or_number as _is_valid
|
---|
| 355 | from asap import _to_list
|
---|
| 356 | from asap import unique
|
---|
| 357 | if not _is_valid(scanid):
|
---|
[2315] | 358 | raise RuntimeError( 'Please specify a scanno to drop from the'
|
---|
| 359 | ' scantable' )
|
---|
[1859] | 360 | scanid = _to_list(scanid)
|
---|
| 361 | allscans = unique([ self.getscan(i) for i in range(self.nrow())])
|
---|
| 362 | for sid in scanid: allscans.remove(sid)
|
---|
| 363 | if len(allscans) == 0:
|
---|
| 364 | raise ValueError("Can't remove all scans")
|
---|
| 365 | sel = selector(scans=allscans)
|
---|
| 366 | return self._select_copy(sel)
|
---|
[1093] | 367 |
|
---|
[1594] | 368 | def _select_copy(self, selection):
|
---|
| 369 | orig = self.get_selection()
|
---|
| 370 | self.set_selection(orig+selection)
|
---|
| 371 | cp = self.copy()
|
---|
| 372 | self.set_selection(orig)
|
---|
| 373 | return cp
|
---|
| 374 |
|
---|
[102] | 375 | def get_scan(self, scanid=None):
|
---|
[1855] | 376 | """\
|
---|
[102] | 377 | Return a specific scan (by scanno) or collection of scans (by
|
---|
| 378 | source name) in a new scantable.
|
---|
[1846] | 379 |
|
---|
| 380 | *Note*:
|
---|
| 381 |
|
---|
[1348] | 382 | See scantable.drop_scan() for the inverse operation.
|
---|
[1846] | 383 |
|
---|
[102] | 384 | Parameters:
|
---|
[1846] | 385 |
|
---|
[513] | 386 | scanid: a (list of) scanno or a source name, unix-style
|
---|
| 387 | patterns are accepted for source name matching, e.g.
|
---|
| 388 | '*_R' gets all 'ref scans
|
---|
[1846] | 389 |
|
---|
| 390 | Example::
|
---|
| 391 |
|
---|
[513] | 392 | # get all scans containing the source '323p459'
|
---|
| 393 | newscan = scan.get_scan('323p459')
|
---|
| 394 | # get all 'off' scans
|
---|
| 395 | refscans = scan.get_scan('*_R')
|
---|
| 396 | # get a susbset of scans by scanno (as listed in scan.summary())
|
---|
[1118] | 397 | newscan = scan.get_scan([0, 2, 7, 10])
|
---|
[1846] | 398 |
|
---|
[102] | 399 | """
|
---|
| 400 | if scanid is None:
|
---|
[1859] | 401 | raise RuntimeError( 'Please specify a scan no or name to '
|
---|
| 402 | 'retrieve from the scantable' )
|
---|
[102] | 403 | try:
|
---|
[946] | 404 | bsel = self.get_selection()
|
---|
| 405 | sel = selector()
|
---|
[102] | 406 | if type(scanid) is str:
|
---|
[946] | 407 | sel.set_name(scanid)
|
---|
[1594] | 408 | return self._select_copy(sel)
|
---|
[102] | 409 | elif type(scanid) is int:
|
---|
[946] | 410 | sel.set_scans([scanid])
|
---|
[1594] | 411 | return self._select_copy(sel)
|
---|
[381] | 412 | elif type(scanid) is list:
|
---|
[946] | 413 | sel.set_scans(scanid)
|
---|
[1594] | 414 | return self._select_copy(sel)
|
---|
[381] | 415 | else:
|
---|
[718] | 416 | msg = "Illegal scanid type, use 'int' or 'list' if ints."
|
---|
[1859] | 417 | raise TypeError(msg)
|
---|
[102] | 418 | except RuntimeError:
|
---|
[1859] | 419 | raise
|
---|
[102] | 420 |
|
---|
| 421 | def __str__(self):
|
---|
[2315] | 422 | tempFile = tempfile.NamedTemporaryFile()
|
---|
| 423 | Scantable._summary(self, tempFile.name)
|
---|
| 424 | tempFile.seek(0)
|
---|
| 425 | asaplog.clear()
|
---|
| 426 | return tempFile.file.read()
|
---|
[102] | 427 |
|
---|
[2315] | 428 | @asaplog_post_dec
|
---|
[976] | 429 | def summary(self, filename=None):
|
---|
[1846] | 430 | """\
|
---|
[102] | 431 | Print a summary of the contents of this scantable.
|
---|
[1846] | 432 |
|
---|
[102] | 433 | Parameters:
|
---|
[1846] | 434 |
|
---|
[1931] | 435 | filename: the name of a file to write the putput to
|
---|
[102] | 436 | Default - no file output
|
---|
[1846] | 437 |
|
---|
[102] | 438 | """
|
---|
| 439 | if filename is not None:
|
---|
[256] | 440 | if filename is "":
|
---|
| 441 | filename = 'scantable_summary.txt'
|
---|
[415] | 442 | from os.path import expandvars, isdir
|
---|
[411] | 443 | filename = expandvars(filename)
|
---|
[2286] | 444 | if isdir(filename):
|
---|
[718] | 445 | msg = "Illegal file name '%s'." % (filename)
|
---|
[1859] | 446 | raise IOError(msg)
|
---|
[2286] | 447 | else:
|
---|
| 448 | filename = ""
|
---|
| 449 | Scantable._summary(self, filename)
|
---|
[710] | 450 |
|
---|
[1512] | 451 | def get_spectrum(self, rowno):
|
---|
[1471] | 452 | """Return the spectrum for the current row in the scantable as a list.
|
---|
[1846] | 453 |
|
---|
[1471] | 454 | Parameters:
|
---|
[1846] | 455 |
|
---|
[1573] | 456 | rowno: the row number to retrieve the spectrum from
|
---|
[1846] | 457 |
|
---|
[1471] | 458 | """
|
---|
| 459 | return self._getspectrum(rowno)
|
---|
[946] | 460 |
|
---|
[1471] | 461 | def get_mask(self, rowno):
|
---|
| 462 | """Return the mask for the current row in the scantable as a list.
|
---|
[1846] | 463 |
|
---|
[1471] | 464 | Parameters:
|
---|
[1846] | 465 |
|
---|
[1573] | 466 | rowno: the row number to retrieve the mask from
|
---|
[1846] | 467 |
|
---|
[1471] | 468 | """
|
---|
| 469 | return self._getmask(rowno)
|
---|
| 470 |
|
---|
| 471 | def set_spectrum(self, spec, rowno):
|
---|
[1938] | 472 | """Set the spectrum for the current row in the scantable.
|
---|
[1846] | 473 |
|
---|
[1471] | 474 | Parameters:
|
---|
[1846] | 475 |
|
---|
[1855] | 476 | spec: the new spectrum
|
---|
[1846] | 477 |
|
---|
[1855] | 478 | rowno: the row number to set the spectrum for
|
---|
| 479 |
|
---|
[1471] | 480 | """
|
---|
[2348] | 481 | assert(len(spec) == self.nchan(self.getif(rowno)))
|
---|
[1471] | 482 | return self._setspectrum(spec, rowno)
|
---|
| 483 |
|
---|
[1600] | 484 | def get_coordinate(self, rowno):
|
---|
| 485 | """Return the (spectral) coordinate for a a given 'rowno'.
|
---|
[1846] | 486 |
|
---|
| 487 | *Note*:
|
---|
| 488 |
|
---|
[1600] | 489 | * This coordinate is only valid until a scantable method modifies
|
---|
| 490 | the frequency axis.
|
---|
| 491 | * This coordinate does contain the original frequency set-up
|
---|
| 492 | NOT the new frame. The conversions however are done using the user
|
---|
| 493 | specified frame (e.g. LSRK/TOPO). To get the 'real' coordinate,
|
---|
| 494 | use scantable.freq_align first. Without it there is no closure,
|
---|
[1846] | 495 | i.e.::
|
---|
[1600] | 496 |
|
---|
[1846] | 497 | c = myscan.get_coordinate(0)
|
---|
| 498 | c.to_frequency(c.get_reference_pixel()) != c.get_reference_value()
|
---|
| 499 |
|
---|
[1600] | 500 | Parameters:
|
---|
[1846] | 501 |
|
---|
[1600] | 502 | rowno: the row number for the spectral coordinate
|
---|
| 503 |
|
---|
| 504 | """
|
---|
| 505 | return coordinate(Scantable.get_coordinate(self, rowno))
|
---|
| 506 |
|
---|
[946] | 507 | def get_selection(self):
|
---|
[1846] | 508 | """\
|
---|
[1005] | 509 | Get the selection object currently set on this scantable.
|
---|
[1846] | 510 |
|
---|
| 511 | Example::
|
---|
| 512 |
|
---|
[1005] | 513 | sel = scan.get_selection()
|
---|
| 514 | sel.set_ifs(0) # select IF 0
|
---|
| 515 | scan.set_selection(sel) # apply modified selection
|
---|
[1846] | 516 |
|
---|
[946] | 517 | """
|
---|
| 518 | return selector(self._getselection())
|
---|
| 519 |
|
---|
[1576] | 520 | def set_selection(self, selection=None, **kw):
|
---|
[1846] | 521 | """\
|
---|
[1005] | 522 | Select a subset of the data. All following operations on this scantable
|
---|
| 523 | are only applied to thi selection.
|
---|
[1846] | 524 |
|
---|
[1005] | 525 | Parameters:
|
---|
[1697] | 526 |
|
---|
[1846] | 527 | selection: a selector object (default unset the selection), or
|
---|
[2431] | 528 | any combination of 'pols', 'ifs', 'beams', 'scans',
|
---|
| 529 | 'cycles', 'name', 'query'
|
---|
[1697] | 530 |
|
---|
[1846] | 531 | Examples::
|
---|
[1697] | 532 |
|
---|
[1005] | 533 | sel = selector() # create a selection object
|
---|
[1118] | 534 | self.set_scans([0, 3]) # select SCANNO 0 and 3
|
---|
[1005] | 535 | scan.set_selection(sel) # set the selection
|
---|
| 536 | scan.summary() # will only print summary of scanno 0 an 3
|
---|
| 537 | scan.set_selection() # unset the selection
|
---|
[1697] | 538 | # or the equivalent
|
---|
| 539 | scan.set_selection(scans=[0,3])
|
---|
| 540 | scan.summary() # will only print summary of scanno 0 an 3
|
---|
| 541 | scan.set_selection() # unset the selection
|
---|
[1846] | 542 |
|
---|
[946] | 543 | """
|
---|
[1576] | 544 | if selection is None:
|
---|
| 545 | # reset
|
---|
| 546 | if len(kw) == 0:
|
---|
| 547 | selection = selector()
|
---|
| 548 | else:
|
---|
| 549 | # try keywords
|
---|
| 550 | for k in kw:
|
---|
| 551 | if k not in selector.fields:
|
---|
[2320] | 552 | raise KeyError("Invalid selection key '%s', "
|
---|
| 553 | "valid keys are %s" % (k,
|
---|
| 554 | selector.fields))
|
---|
[1576] | 555 | selection = selector(**kw)
|
---|
[946] | 556 | self._setselection(selection)
|
---|
| 557 |
|
---|
[1819] | 558 | def get_row(self, row=0, insitu=None):
|
---|
[1846] | 559 | """\
|
---|
[1819] | 560 | Select a row in the scantable.
|
---|
| 561 | Return a scantable with single row.
|
---|
[1846] | 562 |
|
---|
[1819] | 563 | Parameters:
|
---|
[1846] | 564 |
|
---|
| 565 | row: row no of integration, default is 0.
|
---|
| 566 | insitu: if False a new scantable is returned. Otherwise, the
|
---|
| 567 | scaling is done in-situ. The default is taken from .asaprc
|
---|
| 568 | (False)
|
---|
| 569 |
|
---|
[1819] | 570 | """
|
---|
[2349] | 571 | if insitu is None:
|
---|
| 572 | insitu = rcParams['insitu']
|
---|
[1819] | 573 | if not insitu:
|
---|
| 574 | workscan = self.copy()
|
---|
| 575 | else:
|
---|
| 576 | workscan = self
|
---|
| 577 | # Select a row
|
---|
[2349] | 578 | sel = selector()
|
---|
[1992] | 579 | sel.set_rows([row])
|
---|
[1819] | 580 | workscan.set_selection(sel)
|
---|
| 581 | if not workscan.nrow() == 1:
|
---|
[2349] | 582 | msg = "Could not identify single row. %d rows selected." \
|
---|
| 583 | % (workscan.nrow())
|
---|
[1819] | 584 | raise RuntimeError(msg)
|
---|
| 585 | if insitu:
|
---|
| 586 | self._assign(workscan)
|
---|
| 587 | else:
|
---|
| 588 | return workscan
|
---|
| 589 |
|
---|
[1862] | 590 | @asaplog_post_dec
|
---|
[1907] | 591 | def stats(self, stat='stddev', mask=None, form='3.3f', row=None):
|
---|
[1846] | 592 | """\
|
---|
[135] | 593 | Determine the specified statistic of the current beam/if/pol
|
---|
[102] | 594 | Takes a 'mask' as an optional parameter to specify which
|
---|
| 595 | channels should be excluded.
|
---|
[1846] | 596 |
|
---|
[102] | 597 | Parameters:
|
---|
[1846] | 598 |
|
---|
[1819] | 599 | stat: 'min', 'max', 'min_abc', 'max_abc', 'sumsq', 'sum',
|
---|
| 600 | 'mean', 'var', 'stddev', 'avdev', 'rms', 'median'
|
---|
[1855] | 601 |
|
---|
[135] | 602 | mask: an optional mask specifying where the statistic
|
---|
[102] | 603 | should be determined.
|
---|
[1855] | 604 |
|
---|
[1819] | 605 | form: format string to print statistic values
|
---|
[1846] | 606 |
|
---|
[1907] | 607 | row: row number of spectrum to process.
|
---|
| 608 | (default is None: for all rows)
|
---|
[1846] | 609 |
|
---|
[1907] | 610 | Example:
|
---|
[113] | 611 | scan.set_unit('channel')
|
---|
[1118] | 612 | msk = scan.create_mask([100, 200], [500, 600])
|
---|
[135] | 613 | scan.stats(stat='mean', mask=m)
|
---|
[1846] | 614 |
|
---|
[102] | 615 | """
|
---|
[1593] | 616 | mask = mask or []
|
---|
[876] | 617 | if not self._check_ifs():
|
---|
[1118] | 618 | raise ValueError("Cannot apply mask as the IFs have different "
|
---|
| 619 | "number of channels. Please use setselection() "
|
---|
| 620 | "to select individual IFs")
|
---|
[1819] | 621 | rtnabc = False
|
---|
| 622 | if stat.lower().endswith('_abc'): rtnabc = True
|
---|
| 623 | getchan = False
|
---|
| 624 | if stat.lower().startswith('min') or stat.lower().startswith('max'):
|
---|
| 625 | chan = self._math._minmaxchan(self, mask, stat)
|
---|
| 626 | getchan = True
|
---|
| 627 | statvals = []
|
---|
[1907] | 628 | if not rtnabc:
|
---|
| 629 | if row == None:
|
---|
| 630 | statvals = self._math._stats(self, mask, stat)
|
---|
| 631 | else:
|
---|
| 632 | statvals = self._math._statsrow(self, mask, stat, int(row))
|
---|
[256] | 633 |
|
---|
[1819] | 634 | #def cb(i):
|
---|
| 635 | # return statvals[i]
|
---|
[256] | 636 |
|
---|
[1819] | 637 | #return self._row_callback(cb, stat)
|
---|
[102] | 638 |
|
---|
[1819] | 639 | label=stat
|
---|
| 640 | #callback=cb
|
---|
| 641 | out = ""
|
---|
| 642 | #outvec = []
|
---|
| 643 | sep = '-'*50
|
---|
[1907] | 644 |
|
---|
| 645 | if row == None:
|
---|
| 646 | rows = xrange(self.nrow())
|
---|
| 647 | elif isinstance(row, int):
|
---|
| 648 | rows = [ row ]
|
---|
| 649 |
|
---|
| 650 | for i in rows:
|
---|
[1819] | 651 | refstr = ''
|
---|
| 652 | statunit= ''
|
---|
| 653 | if getchan:
|
---|
| 654 | qx, qy = self.chan2data(rowno=i, chan=chan[i])
|
---|
| 655 | if rtnabc:
|
---|
| 656 | statvals.append(qx['value'])
|
---|
| 657 | refstr = ('(value: %'+form) % (qy['value'])+' ['+qy['unit']+'])'
|
---|
| 658 | statunit= '['+qx['unit']+']'
|
---|
| 659 | else:
|
---|
| 660 | refstr = ('(@ %'+form) % (qx['value'])+' ['+qx['unit']+'])'
|
---|
| 661 |
|
---|
| 662 | tm = self._gettime(i)
|
---|
| 663 | src = self._getsourcename(i)
|
---|
| 664 | out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
|
---|
| 665 | out += 'Time[%s]:\n' % (tm)
|
---|
[1907] | 666 | if self.nbeam(-1) > 1: out += ' Beam[%d] ' % (self.getbeam(i))
|
---|
| 667 | if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
|
---|
| 668 | if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
|
---|
[1819] | 669 | #outvec.append(callback(i))
|
---|
[1907] | 670 | if len(rows) > 1:
|
---|
| 671 | # out += ('= %'+form) % (outvec[i]) +' '+refstr+'\n'
|
---|
| 672 | out += ('= %'+form) % (statvals[i]) +' '+refstr+'\n'
|
---|
| 673 | else:
|
---|
| 674 | # out += ('= %'+form) % (outvec[0]) +' '+refstr+'\n'
|
---|
| 675 | out += ('= %'+form) % (statvals[0]) +' '+refstr+'\n'
|
---|
[1819] | 676 | out += sep+"\n"
|
---|
| 677 |
|
---|
[1859] | 678 | import os
|
---|
| 679 | if os.environ.has_key( 'USER' ):
|
---|
| 680 | usr = os.environ['USER']
|
---|
| 681 | else:
|
---|
| 682 | import commands
|
---|
| 683 | usr = commands.getoutput( 'whoami' )
|
---|
| 684 | tmpfile = '/tmp/tmp_'+usr+'_casapy_asap_scantable_stats'
|
---|
| 685 | f = open(tmpfile,'w')
|
---|
| 686 | print >> f, sep
|
---|
| 687 | print >> f, ' %s %s' % (label, statunit)
|
---|
| 688 | print >> f, sep
|
---|
| 689 | print >> f, out
|
---|
| 690 | f.close()
|
---|
| 691 | f = open(tmpfile,'r')
|
---|
| 692 | x = f.readlines()
|
---|
| 693 | f.close()
|
---|
| 694 | asaplog.push(''.join(x), False)
|
---|
| 695 |
|
---|
[1819] | 696 | return statvals
|
---|
| 697 |
|
---|
| 698 | def chan2data(self, rowno=0, chan=0):
|
---|
[1846] | 699 | """\
|
---|
[1819] | 700 | Returns channel/frequency/velocity and spectral value
|
---|
| 701 | at an arbitrary row and channel in the scantable.
|
---|
[1846] | 702 |
|
---|
[1819] | 703 | Parameters:
|
---|
[1846] | 704 |
|
---|
[1819] | 705 | rowno: a row number in the scantable. Default is the
|
---|
| 706 | first row, i.e. rowno=0
|
---|
[1855] | 707 |
|
---|
[1819] | 708 | chan: a channel in the scantable. Default is the first
|
---|
| 709 | channel, i.e. pos=0
|
---|
[1846] | 710 |
|
---|
[1819] | 711 | """
|
---|
| 712 | if isinstance(rowno, int) and isinstance(chan, int):
|
---|
| 713 | qx = {'unit': self.get_unit(),
|
---|
| 714 | 'value': self._getabcissa(rowno)[chan]}
|
---|
| 715 | qy = {'unit': self.get_fluxunit(),
|
---|
| 716 | 'value': self._getspectrum(rowno)[chan]}
|
---|
| 717 | return qx, qy
|
---|
| 718 |
|
---|
[1118] | 719 | def stddev(self, mask=None):
|
---|
[1846] | 720 | """\
|
---|
[135] | 721 | Determine the standard deviation of the current beam/if/pol
|
---|
| 722 | Takes a 'mask' as an optional parameter to specify which
|
---|
| 723 | channels should be excluded.
|
---|
[1846] | 724 |
|
---|
[135] | 725 | Parameters:
|
---|
[1846] | 726 |
|
---|
[135] | 727 | mask: an optional mask specifying where the standard
|
---|
| 728 | deviation should be determined.
|
---|
| 729 |
|
---|
[1846] | 730 | Example::
|
---|
| 731 |
|
---|
[135] | 732 | scan.set_unit('channel')
|
---|
[1118] | 733 | msk = scan.create_mask([100, 200], [500, 600])
|
---|
[135] | 734 | scan.stddev(mask=m)
|
---|
[1846] | 735 |
|
---|
[135] | 736 | """
|
---|
[1118] | 737 | return self.stats(stat='stddev', mask=mask);
|
---|
[135] | 738 |
|
---|
[1003] | 739 |
|
---|
[1259] | 740 | def get_column_names(self):
|
---|
[1846] | 741 | """\
|
---|
[1003] | 742 | Return a list of column names, which can be used for selection.
|
---|
| 743 | """
|
---|
[1259] | 744 | return list(Scantable.get_column_names(self))
|
---|
[1003] | 745 |
|
---|
[1730] | 746 | def get_tsys(self, row=-1):
|
---|
[1846] | 747 | """\
|
---|
[113] | 748 | Return the System temperatures.
|
---|
[1846] | 749 |
|
---|
| 750 | Parameters:
|
---|
| 751 |
|
---|
| 752 | row: the rowno to get the information for. (default all rows)
|
---|
| 753 |
|
---|
[113] | 754 | Returns:
|
---|
[1846] | 755 |
|
---|
[876] | 756 | a list of Tsys values for the current selection
|
---|
[1846] | 757 |
|
---|
[113] | 758 | """
|
---|
[1730] | 759 | if row > -1:
|
---|
| 760 | return self._get_column(self._gettsys, row)
|
---|
[876] | 761 | return self._row_callback(self._gettsys, "Tsys")
|
---|
[256] | 762 |
|
---|
[2406] | 763 | def get_tsysspectrum(self, row=-1):
|
---|
| 764 | """\
|
---|
| 765 | Return the channel dependent system temperatures.
|
---|
[1730] | 766 |
|
---|
[2406] | 767 | Parameters:
|
---|
| 768 |
|
---|
| 769 | row: the rowno to get the information for. (default all rows)
|
---|
| 770 |
|
---|
| 771 | Returns:
|
---|
| 772 |
|
---|
| 773 | a list of Tsys values for the current selection
|
---|
| 774 |
|
---|
| 775 | """
|
---|
| 776 | return self._get_column( self._gettsysspectrum, row )
|
---|
| 777 |
|
---|
[1730] | 778 | def get_weather(self, row=-1):
|
---|
[1846] | 779 | """\
|
---|
| 780 | Return the weather informations.
|
---|
| 781 |
|
---|
| 782 | Parameters:
|
---|
| 783 |
|
---|
| 784 | row: the rowno to get the information for. (default all rows)
|
---|
| 785 |
|
---|
| 786 | Returns:
|
---|
| 787 |
|
---|
| 788 | a dict or list of of dicts of values for the current selection
|
---|
| 789 |
|
---|
| 790 | """
|
---|
| 791 |
|
---|
[1730] | 792 | values = self._get_column(self._get_weather, row)
|
---|
| 793 | if row > -1:
|
---|
| 794 | return {'temperature': values[0],
|
---|
| 795 | 'pressure': values[1], 'humidity' : values[2],
|
---|
| 796 | 'windspeed' : values[3], 'windaz' : values[4]
|
---|
| 797 | }
|
---|
| 798 | else:
|
---|
| 799 | out = []
|
---|
| 800 | for r in values:
|
---|
| 801 |
|
---|
| 802 | out.append({'temperature': r[0],
|
---|
| 803 | 'pressure': r[1], 'humidity' : r[2],
|
---|
| 804 | 'windspeed' : r[3], 'windaz' : r[4]
|
---|
| 805 | })
|
---|
| 806 | return out
|
---|
| 807 |
|
---|
[876] | 808 | def _row_callback(self, callback, label):
|
---|
| 809 | out = ""
|
---|
[1118] | 810 | outvec = []
|
---|
[1590] | 811 | sep = '-'*50
|
---|
[876] | 812 | for i in range(self.nrow()):
|
---|
| 813 | tm = self._gettime(i)
|
---|
| 814 | src = self._getsourcename(i)
|
---|
[1590] | 815 | out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
|
---|
[876] | 816 | out += 'Time[%s]:\n' % (tm)
|
---|
[1590] | 817 | if self.nbeam(-1) > 1:
|
---|
| 818 | out += ' Beam[%d] ' % (self.getbeam(i))
|
---|
| 819 | if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
|
---|
| 820 | if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
|
---|
[876] | 821 | outvec.append(callback(i))
|
---|
| 822 | out += '= %3.3f\n' % (outvec[i])
|
---|
[1590] | 823 | out += sep+'\n'
|
---|
[1859] | 824 |
|
---|
| 825 | asaplog.push(sep)
|
---|
| 826 | asaplog.push(" %s" % (label))
|
---|
| 827 | asaplog.push(sep)
|
---|
| 828 | asaplog.push(out)
|
---|
[1861] | 829 | asaplog.post()
|
---|
[1175] | 830 | return outvec
|
---|
[256] | 831 |
|
---|
[1947] | 832 | def _get_column(self, callback, row=-1, *args):
|
---|
[1070] | 833 | """
|
---|
| 834 | """
|
---|
| 835 | if row == -1:
|
---|
[1947] | 836 | return [callback(i, *args) for i in range(self.nrow())]
|
---|
[1070] | 837 | else:
|
---|
[1819] | 838 | if 0 <= row < self.nrow():
|
---|
[1947] | 839 | return callback(row, *args)
|
---|
[256] | 840 |
|
---|
[1070] | 841 |
|
---|
[1948] | 842 | def get_time(self, row=-1, asdatetime=False, prec=-1):
|
---|
[1846] | 843 | """\
|
---|
[113] | 844 | Get a list of time stamps for the observations.
|
---|
[1938] | 845 | Return a datetime object or a string (default) for each
|
---|
| 846 | integration time stamp in the scantable.
|
---|
[1846] | 847 |
|
---|
[113] | 848 | Parameters:
|
---|
[1846] | 849 |
|
---|
[1348] | 850 | row: row no of integration. Default -1 return all rows
|
---|
[1855] | 851 |
|
---|
[1348] | 852 | asdatetime: return values as datetime objects rather than strings
|
---|
[1846] | 853 |
|
---|
[2349] | 854 | prec: number of digits shown. Default -1 to automatic
|
---|
| 855 | calculation.
|
---|
[1948] | 856 | Note this number is equals to the digits of MVTime,
|
---|
| 857 | i.e., 0<prec<3: dates with hh:: only,
|
---|
| 858 | <5: with hh:mm:, <7 or 0: with hh:mm:ss,
|
---|
[1947] | 859 | and 6> : with hh:mm:ss.tt... (prec-6 t's added)
|
---|
| 860 |
|
---|
[113] | 861 | """
|
---|
[1175] | 862 | from datetime import datetime
|
---|
[1948] | 863 | if prec < 0:
|
---|
| 864 | # automagically set necessary precision +1
|
---|
[2349] | 865 | prec = 7 - \
|
---|
| 866 | numpy.floor(numpy.log10(numpy.min(self.get_inttime(row))))
|
---|
[1948] | 867 | prec = max(6, int(prec))
|
---|
| 868 | else:
|
---|
| 869 | prec = max(0, prec)
|
---|
| 870 | if asdatetime:
|
---|
| 871 | #precision can be 1 millisecond at max
|
---|
| 872 | prec = min(12, prec)
|
---|
| 873 |
|
---|
[1947] | 874 | times = self._get_column(self._gettime, row, prec)
|
---|
[1348] | 875 | if not asdatetime:
|
---|
[1392] | 876 | return times
|
---|
[1947] | 877 | format = "%Y/%m/%d/%H:%M:%S.%f"
|
---|
| 878 | if prec < 7:
|
---|
| 879 | nsub = 1 + (((6-prec)/2) % 3)
|
---|
| 880 | substr = [".%f","%S","%M"]
|
---|
| 881 | for i in range(nsub):
|
---|
| 882 | format = format.replace(substr[i],"")
|
---|
[1175] | 883 | if isinstance(times, list):
|
---|
[1947] | 884 | return [datetime.strptime(i, format) for i in times]
|
---|
[1175] | 885 | else:
|
---|
[1947] | 886 | return datetime.strptime(times, format)
|
---|
[102] | 887 |
|
---|
[1348] | 888 |
|
---|
| 889 | def get_inttime(self, row=-1):
|
---|
[1846] | 890 | """\
|
---|
[1348] | 891 | Get a list of integration times for the observations.
|
---|
| 892 | Return a time in seconds for each integration in the scantable.
|
---|
[1846] | 893 |
|
---|
[1348] | 894 | Parameters:
|
---|
[1846] | 895 |
|
---|
[1348] | 896 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 897 |
|
---|
[1348] | 898 | """
|
---|
[1573] | 899 | return self._get_column(self._getinttime, row)
|
---|
[1348] | 900 |
|
---|
[1573] | 901 |
|
---|
[714] | 902 | def get_sourcename(self, row=-1):
|
---|
[1846] | 903 | """\
|
---|
[794] | 904 | Get a list source names for the observations.
|
---|
[714] | 905 | Return a string for each integration in the scantable.
|
---|
| 906 | Parameters:
|
---|
[1846] | 907 |
|
---|
[1348] | 908 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 909 |
|
---|
[714] | 910 | """
|
---|
[1070] | 911 | return self._get_column(self._getsourcename, row)
|
---|
[714] | 912 |
|
---|
[794] | 913 | def get_elevation(self, row=-1):
|
---|
[1846] | 914 | """\
|
---|
[794] | 915 | Get a list of elevations for the observations.
|
---|
| 916 | Return a float for each integration in the scantable.
|
---|
[1846] | 917 |
|
---|
[794] | 918 | Parameters:
|
---|
[1846] | 919 |
|
---|
[1348] | 920 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 921 |
|
---|
[794] | 922 | """
|
---|
[1070] | 923 | return self._get_column(self._getelevation, row)
|
---|
[794] | 924 |
|
---|
| 925 | def get_azimuth(self, row=-1):
|
---|
[1846] | 926 | """\
|
---|
[794] | 927 | Get a list of azimuths for the observations.
|
---|
| 928 | Return a float for each integration in the scantable.
|
---|
[1846] | 929 |
|
---|
[794] | 930 | Parameters:
|
---|
[1348] | 931 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 932 |
|
---|
[794] | 933 | """
|
---|
[1070] | 934 | return self._get_column(self._getazimuth, row)
|
---|
[794] | 935 |
|
---|
| 936 | def get_parangle(self, row=-1):
|
---|
[1846] | 937 | """\
|
---|
[794] | 938 | Get a list of parallactic angles for the observations.
|
---|
| 939 | Return a float for each integration in the scantable.
|
---|
[1846] | 940 |
|
---|
[794] | 941 | Parameters:
|
---|
[1846] | 942 |
|
---|
[1348] | 943 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 944 |
|
---|
[794] | 945 | """
|
---|
[1070] | 946 | return self._get_column(self._getparangle, row)
|
---|
[794] | 947 |
|
---|
[1070] | 948 | def get_direction(self, row=-1):
|
---|
| 949 | """
|
---|
| 950 | Get a list of Positions on the sky (direction) for the observations.
|
---|
[1594] | 951 | Return a string for each integration in the scantable.
|
---|
[1855] | 952 |
|
---|
[1070] | 953 | Parameters:
|
---|
[1855] | 954 |
|
---|
[1070] | 955 | row: row no of integration. Default -1 return all rows
|
---|
[1855] | 956 |
|
---|
[1070] | 957 | """
|
---|
| 958 | return self._get_column(self._getdirection, row)
|
---|
| 959 |
|
---|
[1391] | 960 | def get_directionval(self, row=-1):
|
---|
[1846] | 961 | """\
|
---|
[1391] | 962 | Get a list of Positions on the sky (direction) for the observations.
|
---|
| 963 | Return a float for each integration in the scantable.
|
---|
[1846] | 964 |
|
---|
[1391] | 965 | Parameters:
|
---|
[1846] | 966 |
|
---|
[1391] | 967 | row: row no of integration. Default -1 return all rows
|
---|
[1846] | 968 |
|
---|
[1391] | 969 | """
|
---|
| 970 | return self._get_column(self._getdirectionvec, row)
|
---|
| 971 |
|
---|
[1862] | 972 | @asaplog_post_dec
|
---|
[102] | 973 | def set_unit(self, unit='channel'):
|
---|
[1846] | 974 | """\
|
---|
[102] | 975 | Set the unit for all following operations on this scantable
|
---|
[1846] | 976 |
|
---|
[102] | 977 | Parameters:
|
---|
[1846] | 978 |
|
---|
| 979 | unit: optional unit, default is 'channel'. Use one of '*Hz',
|
---|
| 980 | 'km/s', 'channel' or equivalent ''
|
---|
| 981 |
|
---|
[102] | 982 | """
|
---|
[484] | 983 | varlist = vars()
|
---|
[1118] | 984 | if unit in ['', 'pixel', 'channel']:
|
---|
[113] | 985 | unit = ''
|
---|
| 986 | inf = list(self._getcoordinfo())
|
---|
| 987 | inf[0] = unit
|
---|
| 988 | self._setcoordinfo(inf)
|
---|
[1118] | 989 | self._add_history("set_unit", varlist)
|
---|
[113] | 990 |
|
---|
[1862] | 991 | @asaplog_post_dec
|
---|
[484] | 992 | def set_instrument(self, instr):
|
---|
[1846] | 993 | """\
|
---|
[1348] | 994 | Set the instrument for subsequent processing.
|
---|
[1846] | 995 |
|
---|
[358] | 996 | Parameters:
|
---|
[1846] | 997 |
|
---|
[710] | 998 | instr: Select from 'ATPKSMB', 'ATPKSHOH', 'ATMOPRA',
|
---|
[407] | 999 | 'DSS-43' (Tid), 'CEDUNA', and 'HOBART'
|
---|
[1846] | 1000 |
|
---|
[358] | 1001 | """
|
---|
| 1002 | self._setInstrument(instr)
|
---|
[1118] | 1003 | self._add_history("set_instument", vars())
|
---|
[358] | 1004 |
|
---|
[1862] | 1005 | @asaplog_post_dec
|
---|
[1190] | 1006 | def set_feedtype(self, feedtype):
|
---|
[1846] | 1007 | """\
|
---|
[1190] | 1008 | Overwrite the feed type, which might not be set correctly.
|
---|
[1846] | 1009 |
|
---|
[1190] | 1010 | Parameters:
|
---|
[1846] | 1011 |
|
---|
[1190] | 1012 | feedtype: 'linear' or 'circular'
|
---|
[1846] | 1013 |
|
---|
[1190] | 1014 | """
|
---|
| 1015 | self._setfeedtype(feedtype)
|
---|
| 1016 | self._add_history("set_feedtype", vars())
|
---|
| 1017 |
|
---|
[1862] | 1018 | @asaplog_post_dec
|
---|
[276] | 1019 | def set_doppler(self, doppler='RADIO'):
|
---|
[1846] | 1020 | """\
|
---|
[276] | 1021 | Set the doppler for all following operations on this scantable.
|
---|
[1846] | 1022 |
|
---|
[276] | 1023 | Parameters:
|
---|
[1846] | 1024 |
|
---|
[276] | 1025 | doppler: One of 'RADIO', 'OPTICAL', 'Z', 'BETA', 'GAMMA'
|
---|
[1846] | 1026 |
|
---|
[276] | 1027 | """
|
---|
[484] | 1028 | varlist = vars()
|
---|
[276] | 1029 | inf = list(self._getcoordinfo())
|
---|
| 1030 | inf[2] = doppler
|
---|
| 1031 | self._setcoordinfo(inf)
|
---|
[1118] | 1032 | self._add_history("set_doppler", vars())
|
---|
[710] | 1033 |
|
---|
[1862] | 1034 | @asaplog_post_dec
|
---|
[226] | 1035 | def set_freqframe(self, frame=None):
|
---|
[1846] | 1036 | """\
|
---|
[113] | 1037 | Set the frame type of the Spectral Axis.
|
---|
[1846] | 1038 |
|
---|
[113] | 1039 | Parameters:
|
---|
[1846] | 1040 |
|
---|
[591] | 1041 | frame: an optional frame type, default 'LSRK'. Valid frames are:
|
---|
[1819] | 1042 | 'TOPO', 'LSRD', 'LSRK', 'BARY',
|
---|
[1118] | 1043 | 'GEO', 'GALACTO', 'LGROUP', 'CMB'
|
---|
[1846] | 1044 |
|
---|
| 1045 | Example::
|
---|
| 1046 |
|
---|
[113] | 1047 | scan.set_freqframe('BARY')
|
---|
[1846] | 1048 |
|
---|
[113] | 1049 | """
|
---|
[1593] | 1050 | frame = frame or rcParams['scantable.freqframe']
|
---|
[484] | 1051 | varlist = vars()
|
---|
[1819] | 1052 | # "REST" is not implemented in casacore
|
---|
| 1053 | #valid = ['REST', 'TOPO', 'LSRD', 'LSRK', 'BARY', \
|
---|
| 1054 | # 'GEO', 'GALACTO', 'LGROUP', 'CMB']
|
---|
| 1055 | valid = ['TOPO', 'LSRD', 'LSRK', 'BARY', \
|
---|
[1118] | 1056 | 'GEO', 'GALACTO', 'LGROUP', 'CMB']
|
---|
[591] | 1057 |
|
---|
[989] | 1058 | if frame in valid:
|
---|
[113] | 1059 | inf = list(self._getcoordinfo())
|
---|
| 1060 | inf[1] = frame
|
---|
| 1061 | self._setcoordinfo(inf)
|
---|
[1118] | 1062 | self._add_history("set_freqframe", varlist)
|
---|
[102] | 1063 | else:
|
---|
[1118] | 1064 | msg = "Please specify a valid freq type. Valid types are:\n", valid
|
---|
[1859] | 1065 | raise TypeError(msg)
|
---|
[710] | 1066 |
|
---|
[1862] | 1067 | @asaplog_post_dec
|
---|
[989] | 1068 | def set_dirframe(self, frame=""):
|
---|
[1846] | 1069 | """\
|
---|
[989] | 1070 | Set the frame type of the Direction on the sky.
|
---|
[1846] | 1071 |
|
---|
[989] | 1072 | Parameters:
|
---|
[1846] | 1073 |
|
---|
[989] | 1074 | frame: an optional frame type, default ''. Valid frames are:
|
---|
| 1075 | 'J2000', 'B1950', 'GALACTIC'
|
---|
[1846] | 1076 |
|
---|
| 1077 | Example:
|
---|
| 1078 |
|
---|
[989] | 1079 | scan.set_dirframe('GALACTIC')
|
---|
[1846] | 1080 |
|
---|
[989] | 1081 | """
|
---|
| 1082 | varlist = vars()
|
---|
[1859] | 1083 | Scantable.set_dirframe(self, frame)
|
---|
[1118] | 1084 | self._add_history("set_dirframe", varlist)
|
---|
[989] | 1085 |
|
---|
[113] | 1086 | def get_unit(self):
|
---|
[1846] | 1087 | """\
|
---|
[113] | 1088 | Get the default unit set in this scantable
|
---|
[1846] | 1089 |
|
---|
[113] | 1090 | Returns:
|
---|
[1846] | 1091 |
|
---|
[113] | 1092 | A unit string
|
---|
[1846] | 1093 |
|
---|
[113] | 1094 | """
|
---|
| 1095 | inf = self._getcoordinfo()
|
---|
| 1096 | unit = inf[0]
|
---|
| 1097 | if unit == '': unit = 'channel'
|
---|
| 1098 | return unit
|
---|
[102] | 1099 |
|
---|
[1862] | 1100 | @asaplog_post_dec
|
---|
[158] | 1101 | def get_abcissa(self, rowno=0):
|
---|
[1846] | 1102 | """\
|
---|
[158] | 1103 | Get the abcissa in the current coordinate setup for the currently
|
---|
[113] | 1104 | selected Beam/IF/Pol
|
---|
[1846] | 1105 |
|
---|
[113] | 1106 | Parameters:
|
---|
[1846] | 1107 |
|
---|
[226] | 1108 | rowno: an optional row number in the scantable. Default is the
|
---|
| 1109 | first row, i.e. rowno=0
|
---|
[1846] | 1110 |
|
---|
[113] | 1111 | Returns:
|
---|
[1846] | 1112 |
|
---|
[1348] | 1113 | The abcissa values and the format string (as a dictionary)
|
---|
[1846] | 1114 |
|
---|
[113] | 1115 | """
|
---|
[256] | 1116 | abc = self._getabcissa(rowno)
|
---|
[710] | 1117 | lbl = self._getabcissalabel(rowno)
|
---|
[158] | 1118 | return abc, lbl
|
---|
[113] | 1119 |
|
---|
[1862] | 1120 | @asaplog_post_dec
|
---|
[2322] | 1121 | def flag(self, mask=None, unflag=False, row=-1):
|
---|
[1846] | 1122 | """\
|
---|
[1001] | 1123 | Flag the selected data using an optional channel mask.
|
---|
[1846] | 1124 |
|
---|
[1001] | 1125 | Parameters:
|
---|
[1846] | 1126 |
|
---|
[1001] | 1127 | mask: an optional channel mask, created with create_mask. Default
|
---|
| 1128 | (no mask) is all channels.
|
---|
[1855] | 1129 |
|
---|
[1819] | 1130 | unflag: if True, unflag the data
|
---|
[1846] | 1131 |
|
---|
[2322] | 1132 | row: an optional row number in the scantable.
|
---|
| 1133 | Default -1 flags all rows
|
---|
| 1134 |
|
---|
[1001] | 1135 | """
|
---|
| 1136 | varlist = vars()
|
---|
[1593] | 1137 | mask = mask or []
|
---|
[1994] | 1138 | self._flag(row, mask, unflag)
|
---|
[1001] | 1139 | self._add_history("flag", varlist)
|
---|
| 1140 |
|
---|
[1862] | 1141 | @asaplog_post_dec
|
---|
[2322] | 1142 | def flag_row(self, rows=None, unflag=False):
|
---|
[1846] | 1143 | """\
|
---|
[1819] | 1144 | Flag the selected data in row-based manner.
|
---|
[1846] | 1145 |
|
---|
[1819] | 1146 | Parameters:
|
---|
[1846] | 1147 |
|
---|
[1843] | 1148 | rows: list of row numbers to be flagged. Default is no row
|
---|
[2322] | 1149 | (must be explicitly specified to execute row-based
|
---|
| 1150 | flagging).
|
---|
[1855] | 1151 |
|
---|
[1819] | 1152 | unflag: if True, unflag the data.
|
---|
[1846] | 1153 |
|
---|
[1819] | 1154 | """
|
---|
| 1155 | varlist = vars()
|
---|
[2322] | 1156 | if rows is None:
|
---|
| 1157 | rows = []
|
---|
[1859] | 1158 | self._flag_row(rows, unflag)
|
---|
[1819] | 1159 | self._add_history("flag_row", varlist)
|
---|
| 1160 |
|
---|
[1862] | 1161 | @asaplog_post_dec
|
---|
[1819] | 1162 | def clip(self, uthres=None, dthres=None, clipoutside=True, unflag=False):
|
---|
[1846] | 1163 | """\
|
---|
[1819] | 1164 | Flag the selected data outside a specified range (in channel-base)
|
---|
[1846] | 1165 |
|
---|
[1819] | 1166 | Parameters:
|
---|
[1846] | 1167 |
|
---|
[1819] | 1168 | uthres: upper threshold.
|
---|
[1855] | 1169 |
|
---|
[1819] | 1170 | dthres: lower threshold
|
---|
[1846] | 1171 |
|
---|
[2322] | 1172 | clipoutside: True for flagging data outside the range
|
---|
| 1173 | [dthres:uthres].
|
---|
[1928] | 1174 | False for flagging data inside the range.
|
---|
[1855] | 1175 |
|
---|
[1846] | 1176 | unflag: if True, unflag the data.
|
---|
| 1177 |
|
---|
[1819] | 1178 | """
|
---|
| 1179 | varlist = vars()
|
---|
[1859] | 1180 | self._clip(uthres, dthres, clipoutside, unflag)
|
---|
[1819] | 1181 | self._add_history("clip", varlist)
|
---|
| 1182 |
|
---|
[1862] | 1183 | @asaplog_post_dec
|
---|
[1584] | 1184 | def lag_flag(self, start, end, unit="MHz", insitu=None):
|
---|
[1846] | 1185 | """\
|
---|
[1192] | 1186 | Flag the data in 'lag' space by providing a frequency to remove.
|
---|
[2177] | 1187 | Flagged data in the scantable get interpolated over the region.
|
---|
[1192] | 1188 | No taper is applied.
|
---|
[1846] | 1189 |
|
---|
[1192] | 1190 | Parameters:
|
---|
[1846] | 1191 |
|
---|
[1579] | 1192 | start: the start frequency (really a period within the
|
---|
| 1193 | bandwidth) or period to remove
|
---|
[1855] | 1194 |
|
---|
[1579] | 1195 | end: the end frequency or period to remove
|
---|
[1855] | 1196 |
|
---|
[2431] | 1197 | unit: the frequency unit (default 'MHz') or '' for
|
---|
[1579] | 1198 | explicit lag channels
|
---|
[1846] | 1199 |
|
---|
| 1200 | *Notes*:
|
---|
| 1201 |
|
---|
[1579] | 1202 | It is recommended to flag edges of the band or strong
|
---|
[1348] | 1203 | signals beforehand.
|
---|
[1846] | 1204 |
|
---|
[1192] | 1205 | """
|
---|
| 1206 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 1207 | self._math._setinsitu(insitu)
|
---|
| 1208 | varlist = vars()
|
---|
[1579] | 1209 | base = { "GHz": 1000000000., "MHz": 1000000., "kHz": 1000., "Hz": 1.}
|
---|
| 1210 | if not (unit == "" or base.has_key(unit)):
|
---|
[1192] | 1211 | raise ValueError("%s is not a valid unit." % unit)
|
---|
[1859] | 1212 | if unit == "":
|
---|
| 1213 | s = scantable(self._math._lag_flag(self, start, end, "lags"))
|
---|
| 1214 | else:
|
---|
| 1215 | s = scantable(self._math._lag_flag(self, start*base[unit],
|
---|
| 1216 | end*base[unit], "frequency"))
|
---|
[1192] | 1217 | s._add_history("lag_flag", varlist)
|
---|
| 1218 | if insitu:
|
---|
| 1219 | self._assign(s)
|
---|
| 1220 | else:
|
---|
| 1221 | return s
|
---|
[1001] | 1222 |
|
---|
[1862] | 1223 | @asaplog_post_dec
|
---|
[2349] | 1224 | def fft(self, rowno=None, mask=None, getrealimag=False):
|
---|
[2177] | 1225 | """\
|
---|
| 1226 | Apply FFT to the spectra.
|
---|
| 1227 | Flagged data in the scantable get interpolated over the region.
|
---|
| 1228 |
|
---|
| 1229 | Parameters:
|
---|
[2186] | 1230 |
|
---|
| 1231 | rowno: The row number(s) to be processed. int, list
|
---|
[2349] | 1232 | and tuple are accepted. By default (None), FFT
|
---|
[2186] | 1233 | is applied to the whole data.
|
---|
| 1234 |
|
---|
| 1235 | mask: Auxiliary channel mask(s). Given as a boolean
|
---|
| 1236 | list, it is applied to all specified rows.
|
---|
| 1237 | A list of boolean lists can also be used to
|
---|
| 1238 | apply different masks. In the latter case, the
|
---|
| 1239 | length of 'mask' must be the same as that of
|
---|
[2349] | 1240 | 'rowno'. The default is None.
|
---|
[2177] | 1241 |
|
---|
| 1242 | getrealimag: If True, returns the real and imaginary part
|
---|
| 1243 | values of the complex results.
|
---|
| 1244 | If False (the default), returns the amplitude
|
---|
| 1245 | (absolute value) normalised with Ndata/2 and
|
---|
| 1246 | phase (argument, in unit of radian).
|
---|
| 1247 |
|
---|
| 1248 | Returns:
|
---|
| 1249 |
|
---|
[2186] | 1250 | A list of dictionaries containing the results for each spectrum.
|
---|
| 1251 | Each dictionary contains two values, the real and the imaginary
|
---|
| 1252 | parts when getrealimag = True, or the amplitude(absolute value)
|
---|
| 1253 | and the phase(argument) when getrealimag = False. The key for
|
---|
| 1254 | these values are 'real' and 'imag', or 'ampl' and 'phase',
|
---|
[2177] | 1255 | respectively.
|
---|
| 1256 | """
|
---|
[2349] | 1257 | if rowno is None:
|
---|
| 1258 | rowno = []
|
---|
[2177] | 1259 | if isinstance(rowno, int):
|
---|
| 1260 | rowno = [rowno]
|
---|
| 1261 | elif not (isinstance(rowno, list) or isinstance(rowno, tuple)):
|
---|
[2186] | 1262 | raise TypeError("The row number(s) must be int, list or tuple.")
|
---|
| 1263 | if len(rowno) == 0: rowno = [i for i in xrange(self.nrow())]
|
---|
| 1264 |
|
---|
[2411] | 1265 | usecommonmask = True
|
---|
| 1266 |
|
---|
| 1267 | if mask is None:
|
---|
| 1268 | mask = []
|
---|
| 1269 | if isinstance(mask, list) or isinstance(mask, tuple):
|
---|
| 1270 | if len(mask) == 0:
|
---|
| 1271 | mask = [[]]
|
---|
| 1272 | else:
|
---|
| 1273 | if isinstance(mask[0], bool):
|
---|
| 1274 | if len(mask) != self.nchan(self.getif(rowno[0])):
|
---|
| 1275 | raise ValueError("The spectra and the mask have "
|
---|
| 1276 | "different length.")
|
---|
| 1277 | mask = [mask]
|
---|
| 1278 | elif isinstance(mask[0], list) or isinstance(mask[0], tuple):
|
---|
| 1279 | usecommonmask = False
|
---|
| 1280 | if len(mask) != len(rowno):
|
---|
| 1281 | raise ValueError("When specifying masks for each "
|
---|
| 1282 | "spectrum, the numbers of them "
|
---|
| 1283 | "must be identical.")
|
---|
| 1284 | for i in xrange(mask):
|
---|
| 1285 | if len(mask[i]) != self.nchan(self.getif(rowno[i])):
|
---|
| 1286 | raise ValueError("The spectra and the mask have "
|
---|
| 1287 | "different length.")
|
---|
| 1288 | else:
|
---|
| 1289 | raise TypeError("The mask must be a boolean list or "
|
---|
| 1290 | "a list of boolean list.")
|
---|
| 1291 | else:
|
---|
[2349] | 1292 | raise TypeError("The mask must be a boolean list or a list of "
|
---|
| 1293 | "boolean list.")
|
---|
[2186] | 1294 |
|
---|
| 1295 | res = []
|
---|
| 1296 |
|
---|
| 1297 | imask = 0
|
---|
| 1298 | for whichrow in rowno:
|
---|
| 1299 | fspec = self._fft(whichrow, mask[imask], getrealimag)
|
---|
| 1300 | nspec = len(fspec)
|
---|
[2177] | 1301 |
|
---|
[2349] | 1302 | i = 0
|
---|
| 1303 | v1 = []
|
---|
| 1304 | v2 = []
|
---|
| 1305 | reselem = {"real":[],"imag":[]} if getrealimag \
|
---|
| 1306 | else {"ampl":[],"phase":[]}
|
---|
[2177] | 1307 |
|
---|
[2186] | 1308 | while (i < nspec):
|
---|
| 1309 | v1.append(fspec[i])
|
---|
| 1310 | v2.append(fspec[i+1])
|
---|
[2349] | 1311 | i += 2
|
---|
[2186] | 1312 |
|
---|
[2177] | 1313 | if getrealimag:
|
---|
[2186] | 1314 | reselem["real"] += v1
|
---|
| 1315 | reselem["imag"] += v2
|
---|
[2177] | 1316 | else:
|
---|
[2186] | 1317 | reselem["ampl"] += v1
|
---|
| 1318 | reselem["phase"] += v2
|
---|
[2177] | 1319 |
|
---|
[2186] | 1320 | res.append(reselem)
|
---|
| 1321 |
|
---|
[2349] | 1322 | if not usecommonmask:
|
---|
| 1323 | imask += 1
|
---|
[2186] | 1324 |
|
---|
[2177] | 1325 | return res
|
---|
| 1326 |
|
---|
| 1327 | @asaplog_post_dec
|
---|
[113] | 1328 | def create_mask(self, *args, **kwargs):
|
---|
[1846] | 1329 | """\
|
---|
[1118] | 1330 | Compute and return a mask based on [min, max] windows.
|
---|
[189] | 1331 | The specified windows are to be INCLUDED, when the mask is
|
---|
[113] | 1332 | applied.
|
---|
[1846] | 1333 |
|
---|
[102] | 1334 | Parameters:
|
---|
[1846] | 1335 |
|
---|
[1118] | 1336 | [min, max], [min2, max2], ...
|
---|
[1024] | 1337 | Pairs of start/end points (inclusive)specifying the regions
|
---|
[102] | 1338 | to be masked
|
---|
[1855] | 1339 |
|
---|
[189] | 1340 | invert: optional argument. If specified as True,
|
---|
| 1341 | return an inverted mask, i.e. the regions
|
---|
| 1342 | specified are EXCLUDED
|
---|
[1855] | 1343 |
|
---|
[513] | 1344 | row: create the mask using the specified row for
|
---|
| 1345 | unit conversions, default is row=0
|
---|
| 1346 | only necessary if frequency varies over rows.
|
---|
[1846] | 1347 |
|
---|
| 1348 | Examples::
|
---|
| 1349 |
|
---|
[113] | 1350 | scan.set_unit('channel')
|
---|
[1846] | 1351 | # a)
|
---|
[1118] | 1352 | msk = scan.create_mask([400, 500], [800, 900])
|
---|
[189] | 1353 | # masks everything outside 400 and 500
|
---|
[113] | 1354 | # and 800 and 900 in the unit 'channel'
|
---|
| 1355 |
|
---|
[1846] | 1356 | # b)
|
---|
[1118] | 1357 | msk = scan.create_mask([400, 500], [800, 900], invert=True)
|
---|
[189] | 1358 | # masks the regions between 400 and 500
|
---|
[113] | 1359 | # and 800 and 900 in the unit 'channel'
|
---|
[1846] | 1360 |
|
---|
| 1361 | # c)
|
---|
| 1362 | #mask only channel 400
|
---|
[1554] | 1363 | msk = scan.create_mask([400])
|
---|
[1846] | 1364 |
|
---|
[102] | 1365 | """
|
---|
[1554] | 1366 | row = kwargs.get("row", 0)
|
---|
[513] | 1367 | data = self._getabcissa(row)
|
---|
[113] | 1368 | u = self._getcoordinfo()[0]
|
---|
[1859] | 1369 | if u == "":
|
---|
| 1370 | u = "channel"
|
---|
| 1371 | msg = "The current mask window unit is %s" % u
|
---|
| 1372 | i = self._check_ifs()
|
---|
| 1373 | if not i:
|
---|
| 1374 | msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
|
---|
| 1375 | asaplog.push(msg)
|
---|
[2348] | 1376 | n = len(data)
|
---|
[1295] | 1377 | msk = _n_bools(n, False)
|
---|
[710] | 1378 | # test if args is a 'list' or a 'normal *args - UGLY!!!
|
---|
| 1379 |
|
---|
[2349] | 1380 | ws = (isinstance(args[-1][-1], int)
|
---|
| 1381 | or isinstance(args[-1][-1], float)) and args or args[0]
|
---|
[710] | 1382 | for window in ws:
|
---|
[1554] | 1383 | if len(window) == 1:
|
---|
| 1384 | window = [window[0], window[0]]
|
---|
| 1385 | if len(window) == 0 or len(window) > 2:
|
---|
[2349] | 1386 | raise ValueError("A window needs to be defined as "
|
---|
| 1387 | "[start(, end)]")
|
---|
[1545] | 1388 | if window[0] > window[1]:
|
---|
| 1389 | tmp = window[0]
|
---|
| 1390 | window[0] = window[1]
|
---|
| 1391 | window[1] = tmp
|
---|
[102] | 1392 | for i in range(n):
|
---|
[1024] | 1393 | if data[i] >= window[0] and data[i] <= window[1]:
|
---|
[1295] | 1394 | msk[i] = True
|
---|
[113] | 1395 | if kwargs.has_key('invert'):
|
---|
| 1396 | if kwargs.get('invert'):
|
---|
[1295] | 1397 | msk = mask_not(msk)
|
---|
[102] | 1398 | return msk
|
---|
[710] | 1399 |
|
---|
[1931] | 1400 | def get_masklist(self, mask=None, row=0, silent=False):
|
---|
[1846] | 1401 | """\
|
---|
[1819] | 1402 | Compute and return a list of mask windows, [min, max].
|
---|
[1846] | 1403 |
|
---|
[1819] | 1404 | Parameters:
|
---|
[1846] | 1405 |
|
---|
[1819] | 1406 | mask: channel mask, created with create_mask.
|
---|
[1855] | 1407 |
|
---|
[1819] | 1408 | row: calcutate the masklist using the specified row
|
---|
| 1409 | for unit conversions, default is row=0
|
---|
| 1410 | only necessary if frequency varies over rows.
|
---|
[1846] | 1411 |
|
---|
[1819] | 1412 | Returns:
|
---|
[1846] | 1413 |
|
---|
[1819] | 1414 | [min, max], [min2, max2], ...
|
---|
| 1415 | Pairs of start/end points (inclusive)specifying
|
---|
| 1416 | the masked regions
|
---|
[1846] | 1417 |
|
---|
[1819] | 1418 | """
|
---|
| 1419 | if not (isinstance(mask,list) or isinstance(mask, tuple)):
|
---|
| 1420 | raise TypeError("The mask should be list or tuple.")
|
---|
[2427] | 1421 | if len(mask) <= 0:
|
---|
| 1422 | raise TypeError("The mask elements should be > 0")
|
---|
[2348] | 1423 | data = self._getabcissa(row)
|
---|
| 1424 | if len(data) != len(mask):
|
---|
[1819] | 1425 | msg = "Number of channels in scantable != number of mask elements"
|
---|
| 1426 | raise TypeError(msg)
|
---|
| 1427 | u = self._getcoordinfo()[0]
|
---|
[1859] | 1428 | if u == "":
|
---|
| 1429 | u = "channel"
|
---|
| 1430 | msg = "The current mask window unit is %s" % u
|
---|
| 1431 | i = self._check_ifs()
|
---|
| 1432 | if not i:
|
---|
| 1433 | msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
|
---|
[1931] | 1434 | if not silent:
|
---|
| 1435 | asaplog.push(msg)
|
---|
[2349] | 1436 | masklist = []
|
---|
[1819] | 1437 | ist, ien = None, None
|
---|
| 1438 | ist, ien=self.get_mask_indices(mask)
|
---|
| 1439 | if ist is not None and ien is not None:
|
---|
| 1440 | for i in xrange(len(ist)):
|
---|
| 1441 | range=[data[ist[i]],data[ien[i]]]
|
---|
| 1442 | range.sort()
|
---|
| 1443 | masklist.append([range[0],range[1]])
|
---|
| 1444 | return masklist
|
---|
| 1445 |
|
---|
| 1446 | def get_mask_indices(self, mask=None):
|
---|
[1846] | 1447 | """\
|
---|
[1819] | 1448 | Compute and Return lists of mask start indices and mask end indices.
|
---|
[1855] | 1449 |
|
---|
| 1450 | Parameters:
|
---|
| 1451 |
|
---|
[1819] | 1452 | mask: channel mask, created with create_mask.
|
---|
[1846] | 1453 |
|
---|
[1819] | 1454 | Returns:
|
---|
[1846] | 1455 |
|
---|
[1819] | 1456 | List of mask start indices and that of mask end indices,
|
---|
| 1457 | i.e., [istart1,istart2,....], [iend1,iend2,....].
|
---|
[1846] | 1458 |
|
---|
[1819] | 1459 | """
|
---|
| 1460 | if not (isinstance(mask,list) or isinstance(mask, tuple)):
|
---|
| 1461 | raise TypeError("The mask should be list or tuple.")
|
---|
[2427] | 1462 | if len(mask) <= 0:
|
---|
| 1463 | raise TypeError("The mask elements should be > 0")
|
---|
[2349] | 1464 | istart = []
|
---|
| 1465 | iend = []
|
---|
| 1466 | if mask[0]:
|
---|
| 1467 | istart.append(0)
|
---|
[1819] | 1468 | for i in range(len(mask)-1):
|
---|
| 1469 | if not mask[i] and mask[i+1]:
|
---|
| 1470 | istart.append(i+1)
|
---|
| 1471 | elif mask[i] and not mask[i+1]:
|
---|
| 1472 | iend.append(i)
|
---|
[2349] | 1473 | if mask[len(mask)-1]:
|
---|
| 1474 | iend.append(len(mask)-1)
|
---|
[1819] | 1475 | if len(istart) != len(iend):
|
---|
| 1476 | raise RuntimeError("Numbers of mask start != mask end.")
|
---|
| 1477 | for i in range(len(istart)):
|
---|
| 1478 | if istart[i] > iend[i]:
|
---|
| 1479 | raise RuntimeError("Mask start index > mask end index")
|
---|
| 1480 | break
|
---|
| 1481 | return istart,iend
|
---|
| 1482 |
|
---|
[2013] | 1483 | @asaplog_post_dec
|
---|
[2349] | 1484 | def parse_maskexpr(self, maskstring):
|
---|
[2013] | 1485 | """
|
---|
| 1486 | Parse CASA type mask selection syntax (IF dependent).
|
---|
| 1487 |
|
---|
| 1488 | Parameters:
|
---|
| 1489 | maskstring : A string mask selection expression.
|
---|
| 1490 | A comma separated selections mean different IF -
|
---|
| 1491 | channel combinations. IFs and channel selections
|
---|
| 1492 | are partitioned by a colon, ':'.
|
---|
| 1493 | examples:
|
---|
[2015] | 1494 | '' = all IFs (all channels)
|
---|
[2013] | 1495 | '<2,4~6,9' = IFs 0,1,4,5,6,9 (all channels)
|
---|
| 1496 | '3:3~45;60' = channels 3 to 45 and 60 in IF 3
|
---|
| 1497 | '0~1:2~6,8' = channels 2 to 6 in IFs 0,1, and
|
---|
| 1498 | all channels in IF8
|
---|
| 1499 | Returns:
|
---|
| 1500 | A dictionary of selected (valid) IF and masklist pairs,
|
---|
| 1501 | e.g. {'0': [[50,250],[350,462]], '2': [[100,400],[550,974]]}
|
---|
| 1502 | """
|
---|
| 1503 | if not isinstance(maskstring,str):
|
---|
| 1504 | asaplog.post()
|
---|
[2611] | 1505 | asaplog.push("Mask expression should be a string.")
|
---|
[2013] | 1506 | asaplog.post("ERROR")
|
---|
| 1507 |
|
---|
| 1508 | valid_ifs = self.getifnos()
|
---|
| 1509 | frequnit = self.get_unit()
|
---|
| 1510 | seldict = {}
|
---|
[2015] | 1511 | if maskstring == "":
|
---|
| 1512 | maskstring = str(valid_ifs)[1:-1]
|
---|
[2611] | 1513 | ## split each selection "IF range[:CHAN range]"
|
---|
[2013] | 1514 | sellist = maskstring.split(',')
|
---|
| 1515 | for currselstr in sellist:
|
---|
| 1516 | selset = currselstr.split(':')
|
---|
| 1517 | # spw and mask string (may include ~, < or >)
|
---|
[2349] | 1518 | spwmasklist = self._parse_selection(selset[0], typestr='integer',
|
---|
[2611] | 1519 | minval=min(valid_ifs),
|
---|
[2349] | 1520 | maxval=max(valid_ifs))
|
---|
[2013] | 1521 | for spwlist in spwmasklist:
|
---|
| 1522 | selspws = []
|
---|
| 1523 | for ispw in range(spwlist[0],spwlist[1]+1):
|
---|
| 1524 | # Put into the list only if ispw exists
|
---|
| 1525 | if valid_ifs.count(ispw):
|
---|
| 1526 | selspws.append(ispw)
|
---|
| 1527 | del spwmasklist, spwlist
|
---|
| 1528 |
|
---|
| 1529 | # parse frequency mask list
|
---|
| 1530 | if len(selset) > 1:
|
---|
[2349] | 1531 | freqmasklist = self._parse_selection(selset[1], typestr='float',
|
---|
| 1532 | offset=0.)
|
---|
[2013] | 1533 | else:
|
---|
| 1534 | # want to select the whole spectrum
|
---|
| 1535 | freqmasklist = [None]
|
---|
| 1536 |
|
---|
| 1537 | ## define a dictionary of spw - masklist combination
|
---|
| 1538 | for ispw in selspws:
|
---|
| 1539 | #print "working on", ispw
|
---|
| 1540 | spwstr = str(ispw)
|
---|
| 1541 | if len(selspws) == 0:
|
---|
| 1542 | # empty spw
|
---|
| 1543 | continue
|
---|
| 1544 | else:
|
---|
| 1545 | ## want to get min and max of the spw and
|
---|
| 1546 | ## offset to set for '<' and '>'
|
---|
| 1547 | if frequnit == 'channel':
|
---|
| 1548 | minfreq = 0
|
---|
| 1549 | maxfreq = self.nchan(ifno=ispw)
|
---|
| 1550 | offset = 0.5
|
---|
| 1551 | else:
|
---|
| 1552 | ## This is ugly part. need improvement
|
---|
| 1553 | for ifrow in xrange(self.nrow()):
|
---|
| 1554 | if self.getif(ifrow) == ispw:
|
---|
| 1555 | #print "IF",ispw,"found in row =",ifrow
|
---|
| 1556 | break
|
---|
| 1557 | freqcoord = self.get_coordinate(ifrow)
|
---|
| 1558 | freqs = self._getabcissa(ifrow)
|
---|
| 1559 | minfreq = min(freqs)
|
---|
| 1560 | maxfreq = max(freqs)
|
---|
| 1561 | if len(freqs) == 1:
|
---|
| 1562 | offset = 0.5
|
---|
| 1563 | elif frequnit.find('Hz') > 0:
|
---|
[2349] | 1564 | offset = abs(freqcoord.to_frequency(1,
|
---|
| 1565 | unit=frequnit)
|
---|
| 1566 | -freqcoord.to_frequency(0,
|
---|
| 1567 | unit=frequnit)
|
---|
| 1568 | )*0.5
|
---|
[2013] | 1569 | elif frequnit.find('m/s') > 0:
|
---|
[2349] | 1570 | offset = abs(freqcoord.to_velocity(1,
|
---|
| 1571 | unit=frequnit)
|
---|
| 1572 | -freqcoord.to_velocity(0,
|
---|
| 1573 | unit=frequnit)
|
---|
| 1574 | )*0.5
|
---|
[2013] | 1575 | else:
|
---|
| 1576 | asaplog.post()
|
---|
| 1577 | asaplog.push("Invalid frequency unit")
|
---|
| 1578 | asaplog.post("ERROR")
|
---|
| 1579 | del freqs, freqcoord, ifrow
|
---|
| 1580 | for freq in freqmasklist:
|
---|
| 1581 | selmask = freq or [minfreq, maxfreq]
|
---|
| 1582 | if selmask[0] == None:
|
---|
| 1583 | ## selection was "<freq[1]".
|
---|
| 1584 | if selmask[1] < minfreq:
|
---|
| 1585 | ## avoid adding region selection
|
---|
| 1586 | selmask = None
|
---|
| 1587 | else:
|
---|
| 1588 | selmask = [minfreq,selmask[1]-offset]
|
---|
| 1589 | elif selmask[1] == None:
|
---|
| 1590 | ## selection was ">freq[0]"
|
---|
| 1591 | if selmask[0] > maxfreq:
|
---|
| 1592 | ## avoid adding region selection
|
---|
| 1593 | selmask = None
|
---|
| 1594 | else:
|
---|
| 1595 | selmask = [selmask[0]+offset,maxfreq]
|
---|
| 1596 | if selmask:
|
---|
| 1597 | if not seldict.has_key(spwstr):
|
---|
| 1598 | # new spw selection
|
---|
| 1599 | seldict[spwstr] = []
|
---|
| 1600 | seldict[spwstr] += [selmask]
|
---|
| 1601 | del minfreq,maxfreq,offset,freq,selmask
|
---|
| 1602 | del spwstr
|
---|
| 1603 | del freqmasklist
|
---|
| 1604 | del valid_ifs
|
---|
| 1605 | if len(seldict) == 0:
|
---|
| 1606 | asaplog.post()
|
---|
[2349] | 1607 | asaplog.push("No valid selection in the mask expression: "
|
---|
| 1608 | +maskstring)
|
---|
[2013] | 1609 | asaplog.post("WARN")
|
---|
| 1610 | return None
|
---|
| 1611 | msg = "Selected masklist:\n"
|
---|
| 1612 | for sif, lmask in seldict.iteritems():
|
---|
| 1613 | msg += " IF"+sif+" - "+str(lmask)+"\n"
|
---|
| 1614 | asaplog.push(msg)
|
---|
| 1615 | return seldict
|
---|
| 1616 |
|
---|
[2611] | 1617 | @asaplog_post_dec
|
---|
| 1618 | def parse_idx_selection(self, mode, selexpr):
|
---|
| 1619 | """
|
---|
| 1620 | Parse CASA type mask selection syntax of SCANNO, IFNO, POLNO,
|
---|
| 1621 | BEAMNO, and row number
|
---|
| 1622 |
|
---|
| 1623 | Parameters:
|
---|
| 1624 | mode : which column to select.
|
---|
| 1625 | ['scan',|'if'|'pol'|'beam'|'row']
|
---|
| 1626 | selexpr : A comma separated selection expression.
|
---|
| 1627 | examples:
|
---|
| 1628 | '' = all (returns [])
|
---|
| 1629 | '<2,4~6,9' = indices less than 2, 4 to 6 and 9
|
---|
| 1630 | (returns [0,1,4,5,6,9])
|
---|
| 1631 | Returns:
|
---|
| 1632 | A List of selected indices
|
---|
| 1633 | """
|
---|
| 1634 | if selexpr == "":
|
---|
| 1635 | return []
|
---|
| 1636 | valid_modes = {'s': 'scan', 'i': 'if', 'p': 'pol',
|
---|
| 1637 | 'b': 'beam', 'r': 'row'}
|
---|
| 1638 | smode = mode.lower()[0]
|
---|
| 1639 | if not (smode in valid_modes.keys()):
|
---|
| 1640 | msg = "Invalid mode '%s'. Valid modes are %s" %\
|
---|
| 1641 | (mode, str(valid_modes.values()))
|
---|
| 1642 | asaplog.post()
|
---|
| 1643 | asaplog.push(msg)
|
---|
| 1644 | asaplog.post("ERROR")
|
---|
| 1645 | mode = valid_modes[smode]
|
---|
| 1646 | minidx = None
|
---|
| 1647 | maxidx = None
|
---|
| 1648 | if smode == 'r':
|
---|
| 1649 | minidx = 0
|
---|
| 1650 | maxidx = self.nrow()
|
---|
| 1651 | else:
|
---|
| 1652 | idx = getattr(self,"get"+mode+"nos")()
|
---|
| 1653 | minidx = min(idx)
|
---|
| 1654 | maxidx = max(idx)
|
---|
| 1655 | del idx
|
---|
| 1656 | sellist = selexpr.split(',')
|
---|
| 1657 | idxlist = []
|
---|
| 1658 | for currselstr in sellist:
|
---|
| 1659 | # single range (may include ~, < or >)
|
---|
| 1660 | currlist = self._parse_selection(currselstr, typestr='integer',
|
---|
| 1661 | minval=minidx,maxval=maxidx)
|
---|
| 1662 | for thelist in currlist:
|
---|
| 1663 | idxlist += range(thelist[0],thelist[1]+1)
|
---|
| 1664 | msg = "Selected %s: %s" % (mode.upper()+"NO", str(idxlist))
|
---|
| 1665 | asaplog.push(msg)
|
---|
| 1666 | return idxlist
|
---|
| 1667 |
|
---|
[2349] | 1668 | def _parse_selection(self, selstr, typestr='float', offset=0.,
|
---|
[2351] | 1669 | minval=None, maxval=None):
|
---|
[2013] | 1670 | """
|
---|
| 1671 | Parameters:
|
---|
| 1672 | selstr : The Selection string, e.g., '<3;5~7;100~103;9'
|
---|
| 1673 | typestr : The type of the values in returned list
|
---|
| 1674 | ('integer' or 'float')
|
---|
| 1675 | offset : The offset value to subtract from or add to
|
---|
| 1676 | the boundary value if the selection string
|
---|
[2611] | 1677 | includes '<' or '>' [Valid only for typestr='float']
|
---|
[2013] | 1678 | minval, maxval : The minimum/maximum values to set if the
|
---|
| 1679 | selection string includes '<' or '>'.
|
---|
| 1680 | The list element is filled with None by default.
|
---|
| 1681 | Returns:
|
---|
| 1682 | A list of min/max pair of selections.
|
---|
| 1683 | Example:
|
---|
[2611] | 1684 | _parse_selection('<3;5~7;9',typestr='int',minval=0)
|
---|
| 1685 | --> returns [[0,2],[5,7],[9,9]]
|
---|
| 1686 | _parse_selection('<3;5~7;9',typestr='float',offset=0.5,minval=0)
|
---|
| 1687 | --> returns [[0.,2.5],[5.0,7.0],[9.,9.]]
|
---|
[2013] | 1688 | """
|
---|
| 1689 | selgroups = selstr.split(';')
|
---|
| 1690 | sellists = []
|
---|
| 1691 | if typestr.lower().startswith('int'):
|
---|
| 1692 | formatfunc = int
|
---|
[2611] | 1693 | offset = 1
|
---|
[2013] | 1694 | else:
|
---|
| 1695 | formatfunc = float
|
---|
| 1696 |
|
---|
| 1697 | for currsel in selgroups:
|
---|
| 1698 | if currsel.find('~') > 0:
|
---|
[2611] | 1699 | # val0 <= x <= val1
|
---|
[2013] | 1700 | minsel = formatfunc(currsel.split('~')[0].strip())
|
---|
| 1701 | maxsel = formatfunc(currsel.split('~')[1].strip())
|
---|
[2611] | 1702 | elif currsel.strip().find('<=') > -1:
|
---|
| 1703 | bound = currsel.split('<=')
|
---|
| 1704 | try: # try "x <= val"
|
---|
| 1705 | minsel = minval
|
---|
| 1706 | maxsel = formatfunc(bound[1].strip())
|
---|
| 1707 | except ValueError: # now "val <= x"
|
---|
| 1708 | minsel = formatfunc(bound[0].strip())
|
---|
| 1709 | maxsel = maxval
|
---|
| 1710 | elif currsel.strip().find('>=') > -1:
|
---|
| 1711 | bound = currsel.split('>=')
|
---|
| 1712 | try: # try "x >= val"
|
---|
| 1713 | minsel = formatfunc(bound[1].strip())
|
---|
| 1714 | maxsel = maxval
|
---|
| 1715 | except ValueError: # now "val >= x"
|
---|
| 1716 | minsel = minval
|
---|
| 1717 | maxsel = formatfunc(bound[0].strip())
|
---|
| 1718 | elif currsel.strip().find('<') > -1:
|
---|
| 1719 | bound = currsel.split('<')
|
---|
| 1720 | try: # try "x < val"
|
---|
| 1721 | minsel = minval
|
---|
| 1722 | maxsel = formatfunc(bound[1].strip()) \
|
---|
| 1723 | - formatfunc(offset)
|
---|
| 1724 | except ValueError: # now "val < x"
|
---|
| 1725 | minsel = formatfunc(bound[0].strip()) \
|
---|
[2013] | 1726 | + formatfunc(offset)
|
---|
[2611] | 1727 | maxsel = maxval
|
---|
| 1728 | elif currsel.strip().find('>') > -1:
|
---|
| 1729 | bound = currsel.split('>')
|
---|
| 1730 | try: # try "x > val"
|
---|
| 1731 | minsel = formatfunc(bound[1].strip()) \
|
---|
| 1732 | + formatfunc(offset)
|
---|
| 1733 | maxsel = maxval
|
---|
| 1734 | except ValueError: # now "val > x"
|
---|
| 1735 | minsel = minval
|
---|
| 1736 | maxsel = formatfunc(bound[0].strip()) \
|
---|
| 1737 | - formatfunc(offset)
|
---|
[2013] | 1738 | else:
|
---|
| 1739 | minsel = formatfunc(currsel)
|
---|
| 1740 | maxsel = formatfunc(currsel)
|
---|
| 1741 | sellists.append([minsel,maxsel])
|
---|
| 1742 | return sellists
|
---|
| 1743 |
|
---|
[1819] | 1744 | # def get_restfreqs(self):
|
---|
| 1745 | # """
|
---|
| 1746 | # Get the restfrequency(s) stored in this scantable.
|
---|
| 1747 | # The return value(s) are always of unit 'Hz'
|
---|
| 1748 | # Parameters:
|
---|
| 1749 | # none
|
---|
| 1750 | # Returns:
|
---|
| 1751 | # a list of doubles
|
---|
| 1752 | # """
|
---|
| 1753 | # return list(self._getrestfreqs())
|
---|
| 1754 |
|
---|
| 1755 | def get_restfreqs(self, ids=None):
|
---|
[1846] | 1756 | """\
|
---|
[256] | 1757 | Get the restfrequency(s) stored in this scantable.
|
---|
| 1758 | The return value(s) are always of unit 'Hz'
|
---|
[1846] | 1759 |
|
---|
[256] | 1760 | Parameters:
|
---|
[1846] | 1761 |
|
---|
[1819] | 1762 | ids: (optional) a list of MOLECULE_ID for that restfrequency(s) to
|
---|
| 1763 | be retrieved
|
---|
[1846] | 1764 |
|
---|
[256] | 1765 | Returns:
|
---|
[1846] | 1766 |
|
---|
[1819] | 1767 | dictionary containing ids and a list of doubles for each id
|
---|
[1846] | 1768 |
|
---|
[256] | 1769 | """
|
---|
[1819] | 1770 | if ids is None:
|
---|
[2349] | 1771 | rfreqs = {}
|
---|
[1819] | 1772 | idlist = self.getmolnos()
|
---|
| 1773 | for i in idlist:
|
---|
[2349] | 1774 | rfreqs[i] = list(self._getrestfreqs(i))
|
---|
[1819] | 1775 | return rfreqs
|
---|
| 1776 | else:
|
---|
[2349] | 1777 | if type(ids) == list or type(ids) == tuple:
|
---|
| 1778 | rfreqs = {}
|
---|
[1819] | 1779 | for i in ids:
|
---|
[2349] | 1780 | rfreqs[i] = list(self._getrestfreqs(i))
|
---|
[1819] | 1781 | return rfreqs
|
---|
| 1782 | else:
|
---|
| 1783 | return list(self._getrestfreqs(ids))
|
---|
[102] | 1784 |
|
---|
[2349] | 1785 | @asaplog_post_dec
|
---|
[931] | 1786 | def set_restfreqs(self, freqs=None, unit='Hz'):
|
---|
[1846] | 1787 | """\
|
---|
[931] | 1788 | Set or replace the restfrequency specified and
|
---|
[1938] | 1789 | if the 'freqs' argument holds a scalar,
|
---|
[931] | 1790 | then that rest frequency will be applied to all the selected
|
---|
| 1791 | data. If the 'freqs' argument holds
|
---|
| 1792 | a vector, then it MUST be of equal or smaller length than
|
---|
| 1793 | the number of IFs (and the available restfrequencies will be
|
---|
| 1794 | replaced by this vector). In this case, *all* data have
|
---|
| 1795 | the restfrequency set per IF according
|
---|
| 1796 | to the corresponding value you give in the 'freqs' vector.
|
---|
[1118] | 1797 | E.g. 'freqs=[1e9, 2e9]' would mean IF 0 gets restfreq 1e9 and
|
---|
[931] | 1798 | IF 1 gets restfreq 2e9.
|
---|
[1846] | 1799 |
|
---|
[1395] | 1800 | You can also specify the frequencies via a linecatalog.
|
---|
[1153] | 1801 |
|
---|
[931] | 1802 | Parameters:
|
---|
[1846] | 1803 |
|
---|
[931] | 1804 | freqs: list of rest frequency values or string idenitfiers
|
---|
[1855] | 1805 |
|
---|
[931] | 1806 | unit: unit for rest frequency (default 'Hz')
|
---|
[402] | 1807 |
|
---|
[1846] | 1808 |
|
---|
| 1809 | Example::
|
---|
| 1810 |
|
---|
[1819] | 1811 | # set the given restfrequency for the all currently selected IFs
|
---|
[931] | 1812 | scan.set_restfreqs(freqs=1.4e9)
|
---|
[1845] | 1813 | # set restfrequencies for the n IFs (n > 1) in the order of the
|
---|
| 1814 | # list, i.e
|
---|
| 1815 | # IF0 -> 1.4e9, IF1 -> 1.41e9, IF3 -> 1.42e9
|
---|
| 1816 | # len(list_of_restfreqs) == nIF
|
---|
| 1817 | # for nIF == 1 the following will set multiple restfrequency for
|
---|
| 1818 | # that IF
|
---|
[1819] | 1819 | scan.set_restfreqs(freqs=[1.4e9, 1.41e9, 1.42e9])
|
---|
[1845] | 1820 | # set multiple restfrequencies per IF. as a list of lists where
|
---|
| 1821 | # the outer list has nIF elements, the inner s arbitrary
|
---|
| 1822 | scan.set_restfreqs(freqs=[[1.4e9, 1.41e9], [1.67e9]])
|
---|
[391] | 1823 |
|
---|
[1846] | 1824 | *Note*:
|
---|
[1845] | 1825 |
|
---|
[931] | 1826 | To do more sophisticate Restfrequency setting, e.g. on a
|
---|
| 1827 | source and IF basis, use scantable.set_selection() before using
|
---|
[1846] | 1828 | this function::
|
---|
[931] | 1829 |
|
---|
[1846] | 1830 | # provided your scantable is called scan
|
---|
| 1831 | selection = selector()
|
---|
[2431] | 1832 | selection.set_name('ORION*')
|
---|
[1846] | 1833 | selection.set_ifs([1])
|
---|
| 1834 | scan.set_selection(selection)
|
---|
| 1835 | scan.set_restfreqs(freqs=86.6e9)
|
---|
| 1836 |
|
---|
[931] | 1837 | """
|
---|
| 1838 | varlist = vars()
|
---|
[1157] | 1839 | from asap import linecatalog
|
---|
| 1840 | # simple value
|
---|
[1118] | 1841 | if isinstance(freqs, int) or isinstance(freqs, float):
|
---|
[1845] | 1842 | self._setrestfreqs([freqs], [""], unit)
|
---|
[1157] | 1843 | # list of values
|
---|
[1118] | 1844 | elif isinstance(freqs, list) or isinstance(freqs, tuple):
|
---|
[1157] | 1845 | # list values are scalars
|
---|
[1118] | 1846 | if isinstance(freqs[-1], int) or isinstance(freqs[-1], float):
|
---|
[1845] | 1847 | if len(freqs) == 1:
|
---|
| 1848 | self._setrestfreqs(freqs, [""], unit)
|
---|
| 1849 | else:
|
---|
| 1850 | # allow the 'old' mode of setting mulitple IFs
|
---|
| 1851 | savesel = self._getselection()
|
---|
[2599] | 1852 | sel = self.get_selection()
|
---|
[1845] | 1853 | iflist = self.getifnos()
|
---|
| 1854 | if len(freqs)>len(iflist):
|
---|
| 1855 | raise ValueError("number of elements in list of list "
|
---|
| 1856 | "exeeds the current IF selections")
|
---|
| 1857 | iflist = self.getifnos()
|
---|
| 1858 | for i, fval in enumerate(freqs):
|
---|
| 1859 | sel.set_ifs(iflist[i])
|
---|
| 1860 | self._setselection(sel)
|
---|
| 1861 | self._setrestfreqs([fval], [""], unit)
|
---|
| 1862 | self._setselection(savesel)
|
---|
| 1863 |
|
---|
| 1864 | # list values are dict, {'value'=, 'name'=)
|
---|
[1157] | 1865 | elif isinstance(freqs[-1], dict):
|
---|
[1845] | 1866 | values = []
|
---|
| 1867 | names = []
|
---|
| 1868 | for d in freqs:
|
---|
| 1869 | values.append(d["value"])
|
---|
| 1870 | names.append(d["name"])
|
---|
| 1871 | self._setrestfreqs(values, names, unit)
|
---|
[1819] | 1872 | elif isinstance(freqs[-1], list) or isinstance(freqs[-1], tuple):
|
---|
[1157] | 1873 | savesel = self._getselection()
|
---|
[2599] | 1874 | sel = self.get_selection()
|
---|
[1322] | 1875 | iflist = self.getifnos()
|
---|
[1819] | 1876 | if len(freqs)>len(iflist):
|
---|
[1845] | 1877 | raise ValueError("number of elements in list of list exeeds"
|
---|
| 1878 | " the current IF selections")
|
---|
| 1879 | for i, fval in enumerate(freqs):
|
---|
[1322] | 1880 | sel.set_ifs(iflist[i])
|
---|
[1259] | 1881 | self._setselection(sel)
|
---|
[1845] | 1882 | self._setrestfreqs(fval, [""], unit)
|
---|
[1157] | 1883 | self._setselection(savesel)
|
---|
| 1884 | # freqs are to be taken from a linecatalog
|
---|
[1153] | 1885 | elif isinstance(freqs, linecatalog):
|
---|
| 1886 | savesel = self._getselection()
|
---|
[2599] | 1887 | sel = self.get_selection()
|
---|
[1153] | 1888 | for i in xrange(freqs.nrow()):
|
---|
[1322] | 1889 | sel.set_ifs(iflist[i])
|
---|
[1153] | 1890 | self._setselection(sel)
|
---|
[1845] | 1891 | self._setrestfreqs([freqs.get_frequency(i)],
|
---|
| 1892 | [freqs.get_name(i)], "MHz")
|
---|
[1153] | 1893 | # ensure that we are not iterating past nIF
|
---|
| 1894 | if i == self.nif()-1: break
|
---|
| 1895 | self._setselection(savesel)
|
---|
[931] | 1896 | else:
|
---|
| 1897 | return
|
---|
| 1898 | self._add_history("set_restfreqs", varlist)
|
---|
| 1899 |
|
---|
[2349] | 1900 | @asaplog_post_dec
|
---|
[1360] | 1901 | def shift_refpix(self, delta):
|
---|
[1846] | 1902 | """\
|
---|
[1589] | 1903 | Shift the reference pixel of the Spectra Coordinate by an
|
---|
| 1904 | integer amount.
|
---|
[1846] | 1905 |
|
---|
[1589] | 1906 | Parameters:
|
---|
[1846] | 1907 |
|
---|
[1589] | 1908 | delta: the amount to shift by
|
---|
[1846] | 1909 |
|
---|
| 1910 | *Note*:
|
---|
| 1911 |
|
---|
[1589] | 1912 | Be careful using this with broadband data.
|
---|
[1846] | 1913 |
|
---|
[1360] | 1914 | """
|
---|
[2349] | 1915 | varlist = vars()
|
---|
[1731] | 1916 | Scantable.shift_refpix(self, delta)
|
---|
[2349] | 1917 | s._add_history("shift_refpix", varlist)
|
---|
[931] | 1918 |
|
---|
[1862] | 1919 | @asaplog_post_dec
|
---|
[1259] | 1920 | def history(self, filename=None):
|
---|
[1846] | 1921 | """\
|
---|
[1259] | 1922 | Print the history. Optionally to a file.
|
---|
[1846] | 1923 |
|
---|
[1348] | 1924 | Parameters:
|
---|
[1846] | 1925 |
|
---|
[1928] | 1926 | filename: The name of the file to save the history to.
|
---|
[1846] | 1927 |
|
---|
[1259] | 1928 | """
|
---|
[484] | 1929 | hist = list(self._gethistory())
|
---|
[794] | 1930 | out = "-"*80
|
---|
[484] | 1931 | for h in hist:
|
---|
[489] | 1932 | if h.startswith("---"):
|
---|
[1857] | 1933 | out = "\n".join([out, h])
|
---|
[489] | 1934 | else:
|
---|
| 1935 | items = h.split("##")
|
---|
| 1936 | date = items[0]
|
---|
| 1937 | func = items[1]
|
---|
| 1938 | items = items[2:]
|
---|
[794] | 1939 | out += "\n"+date+"\n"
|
---|
| 1940 | out += "Function: %s\n Parameters:" % (func)
|
---|
[489] | 1941 | for i in items:
|
---|
[1938] | 1942 | if i == '':
|
---|
| 1943 | continue
|
---|
[489] | 1944 | s = i.split("=")
|
---|
[1118] | 1945 | out += "\n %s = %s" % (s[0], s[1])
|
---|
[1857] | 1946 | out = "\n".join([out, "-"*80])
|
---|
[1259] | 1947 | if filename is not None:
|
---|
| 1948 | if filename is "":
|
---|
| 1949 | filename = 'scantable_history.txt'
|
---|
| 1950 | import os
|
---|
| 1951 | filename = os.path.expandvars(os.path.expanduser(filename))
|
---|
| 1952 | if not os.path.isdir(filename):
|
---|
| 1953 | data = open(filename, 'w')
|
---|
| 1954 | data.write(out)
|
---|
| 1955 | data.close()
|
---|
| 1956 | else:
|
---|
| 1957 | msg = "Illegal file name '%s'." % (filename)
|
---|
[1859] | 1958 | raise IOError(msg)
|
---|
| 1959 | return page(out)
|
---|
[2349] | 1960 |
|
---|
[513] | 1961 | #
|
---|
| 1962 | # Maths business
|
---|
| 1963 | #
|
---|
[1862] | 1964 | @asaplog_post_dec
|
---|
[931] | 1965 | def average_time(self, mask=None, scanav=False, weight='tint', align=False):
|
---|
[1846] | 1966 | """\
|
---|
[2349] | 1967 | Return the (time) weighted average of a scan. Scans will be averaged
|
---|
| 1968 | only if the source direction (RA/DEC) is within 1' otherwise
|
---|
[1846] | 1969 |
|
---|
| 1970 | *Note*:
|
---|
| 1971 |
|
---|
[1070] | 1972 | in channels only - align if necessary
|
---|
[1846] | 1973 |
|
---|
[513] | 1974 | Parameters:
|
---|
[1846] | 1975 |
|
---|
[513] | 1976 | mask: an optional mask (only used for 'var' and 'tsys'
|
---|
| 1977 | weighting)
|
---|
[1855] | 1978 |
|
---|
[558] | 1979 | scanav: True averages each scan separately
|
---|
| 1980 | False (default) averages all scans together,
|
---|
[1855] | 1981 |
|
---|
[1099] | 1982 | weight: Weighting scheme.
|
---|
| 1983 | 'none' (mean no weight)
|
---|
| 1984 | 'var' (1/var(spec) weighted)
|
---|
| 1985 | 'tsys' (1/Tsys**2 weighted)
|
---|
| 1986 | 'tint' (integration time weighted)
|
---|
| 1987 | 'tintsys' (Tint/Tsys**2)
|
---|
| 1988 | 'median' ( median averaging)
|
---|
[535] | 1989 | The default is 'tint'
|
---|
[1855] | 1990 |
|
---|
[931] | 1991 | align: align the spectra in velocity before averaging. It takes
|
---|
| 1992 | the time of the first spectrum as reference time.
|
---|
[1846] | 1993 |
|
---|
| 1994 | Example::
|
---|
| 1995 |
|
---|
[513] | 1996 | # time average the scantable without using a mask
|
---|
[710] | 1997 | newscan = scan.average_time()
|
---|
[1846] | 1998 |
|
---|
[513] | 1999 | """
|
---|
| 2000 | varlist = vars()
|
---|
[1593] | 2001 | weight = weight or 'TINT'
|
---|
| 2002 | mask = mask or ()
|
---|
| 2003 | scanav = (scanav and 'SCAN') or 'NONE'
|
---|
[1118] | 2004 | scan = (self, )
|
---|
[1859] | 2005 |
|
---|
| 2006 | if align:
|
---|
| 2007 | scan = (self.freq_align(insitu=False), )
|
---|
| 2008 | s = None
|
---|
| 2009 | if weight.upper() == 'MEDIAN':
|
---|
| 2010 | s = scantable(self._math._averagechannel(scan[0], 'MEDIAN',
|
---|
| 2011 | scanav))
|
---|
| 2012 | else:
|
---|
| 2013 | s = scantable(self._math._average(scan, mask, weight.upper(),
|
---|
| 2014 | scanav))
|
---|
[1099] | 2015 | s._add_history("average_time", varlist)
|
---|
[513] | 2016 | return s
|
---|
[710] | 2017 |
|
---|
[1862] | 2018 | @asaplog_post_dec
|
---|
[876] | 2019 | def convert_flux(self, jyperk=None, eta=None, d=None, insitu=None):
|
---|
[1846] | 2020 | """\
|
---|
[513] | 2021 | Return a scan where all spectra are converted to either
|
---|
| 2022 | Jansky or Kelvin depending upon the flux units of the scan table.
|
---|
| 2023 | By default the function tries to look the values up internally.
|
---|
| 2024 | If it can't find them (or if you want to over-ride), you must
|
---|
| 2025 | specify EITHER jyperk OR eta (and D which it will try to look up
|
---|
| 2026 | also if you don't set it). jyperk takes precedence if you set both.
|
---|
[1846] | 2027 |
|
---|
[513] | 2028 | Parameters:
|
---|
[1846] | 2029 |
|
---|
[513] | 2030 | jyperk: the Jy / K conversion factor
|
---|
[1855] | 2031 |
|
---|
[513] | 2032 | eta: the aperture efficiency
|
---|
[1855] | 2033 |
|
---|
[1928] | 2034 | d: the geometric diameter (metres)
|
---|
[1855] | 2035 |
|
---|
[513] | 2036 | insitu: if False a new scantable is returned.
|
---|
| 2037 | Otherwise, the scaling is done in-situ
|
---|
| 2038 | The default is taken from .asaprc (False)
|
---|
[1846] | 2039 |
|
---|
[513] | 2040 | """
|
---|
| 2041 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 2042 | self._math._setinsitu(insitu)
|
---|
[513] | 2043 | varlist = vars()
|
---|
[1593] | 2044 | jyperk = jyperk or -1.0
|
---|
| 2045 | d = d or -1.0
|
---|
| 2046 | eta = eta or -1.0
|
---|
[876] | 2047 | s = scantable(self._math._convertflux(self, d, eta, jyperk))
|
---|
| 2048 | s._add_history("convert_flux", varlist)
|
---|
| 2049 | if insitu: self._assign(s)
|
---|
| 2050 | else: return s
|
---|
[513] | 2051 |
|
---|
[1862] | 2052 | @asaplog_post_dec
|
---|
[876] | 2053 | def gain_el(self, poly=None, filename="", method="linear", insitu=None):
|
---|
[1846] | 2054 | """\
|
---|
[513] | 2055 | Return a scan after applying a gain-elevation correction.
|
---|
| 2056 | The correction can be made via either a polynomial or a
|
---|
| 2057 | table-based interpolation (and extrapolation if necessary).
|
---|
| 2058 | You specify polynomial coefficients, an ascii table or neither.
|
---|
| 2059 | If you specify neither, then a polynomial correction will be made
|
---|
| 2060 | with built in coefficients known for certain telescopes (an error
|
---|
| 2061 | will occur if the instrument is not known).
|
---|
| 2062 | The data and Tsys are *divided* by the scaling factors.
|
---|
[1846] | 2063 |
|
---|
[513] | 2064 | Parameters:
|
---|
[1846] | 2065 |
|
---|
[513] | 2066 | poly: Polynomial coefficients (default None) to compute a
|
---|
| 2067 | gain-elevation correction as a function of
|
---|
| 2068 | elevation (in degrees).
|
---|
[1855] | 2069 |
|
---|
[513] | 2070 | filename: The name of an ascii file holding correction factors.
|
---|
| 2071 | The first row of the ascii file must give the column
|
---|
| 2072 | names and these MUST include columns
|
---|
[2431] | 2073 | 'ELEVATION' (degrees) and 'FACTOR' (multiply data
|
---|
[513] | 2074 | by this) somewhere.
|
---|
| 2075 | The second row must give the data type of the
|
---|
| 2076 | column. Use 'R' for Real and 'I' for Integer.
|
---|
| 2077 | An example file would be
|
---|
| 2078 | (actual factors are arbitrary) :
|
---|
| 2079 |
|
---|
| 2080 | TIME ELEVATION FACTOR
|
---|
| 2081 | R R R
|
---|
| 2082 | 0.1 0 0.8
|
---|
| 2083 | 0.2 20 0.85
|
---|
| 2084 | 0.3 40 0.9
|
---|
| 2085 | 0.4 60 0.85
|
---|
| 2086 | 0.5 80 0.8
|
---|
| 2087 | 0.6 90 0.75
|
---|
[1855] | 2088 |
|
---|
[513] | 2089 | method: Interpolation method when correcting from a table.
|
---|
[2431] | 2090 | Values are 'nearest', 'linear' (default), 'cubic'
|
---|
| 2091 | and 'spline'
|
---|
[1855] | 2092 |
|
---|
[513] | 2093 | insitu: if False a new scantable is returned.
|
---|
| 2094 | Otherwise, the scaling is done in-situ
|
---|
| 2095 | The default is taken from .asaprc (False)
|
---|
[1846] | 2096 |
|
---|
[513] | 2097 | """
|
---|
| 2098 |
|
---|
| 2099 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 2100 | self._math._setinsitu(insitu)
|
---|
[513] | 2101 | varlist = vars()
|
---|
[1593] | 2102 | poly = poly or ()
|
---|
[513] | 2103 | from os.path import expandvars
|
---|
| 2104 | filename = expandvars(filename)
|
---|
[876] | 2105 | s = scantable(self._math._gainel(self, poly, filename, method))
|
---|
| 2106 | s._add_history("gain_el", varlist)
|
---|
[1593] | 2107 | if insitu:
|
---|
| 2108 | self._assign(s)
|
---|
| 2109 | else:
|
---|
| 2110 | return s
|
---|
[710] | 2111 |
|
---|
[1862] | 2112 | @asaplog_post_dec
|
---|
[931] | 2113 | def freq_align(self, reftime=None, method='cubic', insitu=None):
|
---|
[1846] | 2114 | """\
|
---|
[513] | 2115 | Return a scan where all rows have been aligned in frequency/velocity.
|
---|
| 2116 | The alignment frequency frame (e.g. LSRK) is that set by function
|
---|
| 2117 | set_freqframe.
|
---|
[1846] | 2118 |
|
---|
[513] | 2119 | Parameters:
|
---|
[1855] | 2120 |
|
---|
[513] | 2121 | reftime: reference time to align at. By default, the time of
|
---|
| 2122 | the first row of data is used.
|
---|
[1855] | 2123 |
|
---|
[513] | 2124 | method: Interpolation method for regridding the spectra.
|
---|
[2431] | 2125 | Choose from 'nearest', 'linear', 'cubic' (default)
|
---|
| 2126 | and 'spline'
|
---|
[1855] | 2127 |
|
---|
[513] | 2128 | insitu: if False a new scantable is returned.
|
---|
| 2129 | Otherwise, the scaling is done in-situ
|
---|
| 2130 | The default is taken from .asaprc (False)
|
---|
[1846] | 2131 |
|
---|
[513] | 2132 | """
|
---|
[931] | 2133 | if insitu is None: insitu = rcParams["insitu"]
|
---|
[2429] | 2134 | oldInsitu = self._math._insitu()
|
---|
[876] | 2135 | self._math._setinsitu(insitu)
|
---|
[513] | 2136 | varlist = vars()
|
---|
[1593] | 2137 | reftime = reftime or ""
|
---|
[931] | 2138 | s = scantable(self._math._freq_align(self, reftime, method))
|
---|
[876] | 2139 | s._add_history("freq_align", varlist)
|
---|
[2429] | 2140 | self._math._setinsitu(oldInsitu)
|
---|
[2349] | 2141 | if insitu:
|
---|
| 2142 | self._assign(s)
|
---|
| 2143 | else:
|
---|
| 2144 | return s
|
---|
[513] | 2145 |
|
---|
[1862] | 2146 | @asaplog_post_dec
|
---|
[1725] | 2147 | def opacity(self, tau=None, insitu=None):
|
---|
[1846] | 2148 | """\
|
---|
[513] | 2149 | Apply an opacity correction. The data
|
---|
| 2150 | and Tsys are multiplied by the correction factor.
|
---|
[1846] | 2151 |
|
---|
[513] | 2152 | Parameters:
|
---|
[1855] | 2153 |
|
---|
[1689] | 2154 | tau: (list of) opacity from which the correction factor is
|
---|
[513] | 2155 | exp(tau*ZD)
|
---|
[1689] | 2156 | where ZD is the zenith-distance.
|
---|
| 2157 | If a list is provided, it has to be of length nIF,
|
---|
| 2158 | nIF*nPol or 1 and in order of IF/POL, e.g.
|
---|
| 2159 | [opif0pol0, opif0pol1, opif1pol0 ...]
|
---|
[1725] | 2160 | if tau is `None` the opacities are determined from a
|
---|
| 2161 | model.
|
---|
[1855] | 2162 |
|
---|
[513] | 2163 | insitu: if False a new scantable is returned.
|
---|
| 2164 | Otherwise, the scaling is done in-situ
|
---|
| 2165 | The default is taken from .asaprc (False)
|
---|
[1846] | 2166 |
|
---|
[513] | 2167 | """
|
---|
[2349] | 2168 | if insitu is None:
|
---|
| 2169 | insitu = rcParams['insitu']
|
---|
[876] | 2170 | self._math._setinsitu(insitu)
|
---|
[513] | 2171 | varlist = vars()
|
---|
[1689] | 2172 | if not hasattr(tau, "__len__"):
|
---|
| 2173 | tau = [tau]
|
---|
[876] | 2174 | s = scantable(self._math._opacity(self, tau))
|
---|
| 2175 | s._add_history("opacity", varlist)
|
---|
[2349] | 2176 | if insitu:
|
---|
| 2177 | self._assign(s)
|
---|
| 2178 | else:
|
---|
| 2179 | return s
|
---|
[513] | 2180 |
|
---|
[1862] | 2181 | @asaplog_post_dec
|
---|
[513] | 2182 | def bin(self, width=5, insitu=None):
|
---|
[1846] | 2183 | """\
|
---|
[513] | 2184 | Return a scan where all spectra have been binned up.
|
---|
[1846] | 2185 |
|
---|
[1348] | 2186 | Parameters:
|
---|
[1846] | 2187 |
|
---|
[513] | 2188 | width: The bin width (default=5) in pixels
|
---|
[1855] | 2189 |
|
---|
[513] | 2190 | insitu: if False a new scantable is returned.
|
---|
| 2191 | Otherwise, the scaling is done in-situ
|
---|
| 2192 | The default is taken from .asaprc (False)
|
---|
[1846] | 2193 |
|
---|
[513] | 2194 | """
|
---|
[2349] | 2195 | if insitu is None:
|
---|
| 2196 | insitu = rcParams['insitu']
|
---|
[876] | 2197 | self._math._setinsitu(insitu)
|
---|
[513] | 2198 | varlist = vars()
|
---|
[876] | 2199 | s = scantable(self._math._bin(self, width))
|
---|
[1118] | 2200 | s._add_history("bin", varlist)
|
---|
[1589] | 2201 | if insitu:
|
---|
| 2202 | self._assign(s)
|
---|
| 2203 | else:
|
---|
| 2204 | return s
|
---|
[513] | 2205 |
|
---|
[1862] | 2206 | @asaplog_post_dec
|
---|
[2672] | 2207 | def reshape(self, first, last, insitu=None):
|
---|
| 2208 | """Resize the band by providing first and last channel.
|
---|
| 2209 | This will cut off all channels outside [first, last].
|
---|
| 2210 | """
|
---|
| 2211 | if insitu is None:
|
---|
| 2212 | insitu = rcParams['insitu']
|
---|
| 2213 | varlist = vars()
|
---|
| 2214 | if last < 0:
|
---|
| 2215 | last = self.nchan()-1 + last
|
---|
| 2216 | s = None
|
---|
| 2217 | if insitu:
|
---|
| 2218 | s = self
|
---|
| 2219 | else:
|
---|
| 2220 | s = self.copy()
|
---|
| 2221 | s._reshape(first,last)
|
---|
| 2222 | s._add_history("reshape", varlist)
|
---|
| 2223 | if not insitu:
|
---|
| 2224 | return s
|
---|
| 2225 |
|
---|
| 2226 | @asaplog_post_dec
|
---|
[513] | 2227 | def resample(self, width=5, method='cubic', insitu=None):
|
---|
[1846] | 2228 | """\
|
---|
[1348] | 2229 | Return a scan where all spectra have been binned up.
|
---|
[1573] | 2230 |
|
---|
[1348] | 2231 | Parameters:
|
---|
[1846] | 2232 |
|
---|
[513] | 2233 | width: The bin width (default=5) in pixels
|
---|
[1855] | 2234 |
|
---|
[513] | 2235 | method: Interpolation method when correcting from a table.
|
---|
[2431] | 2236 | Values are 'nearest', 'linear', 'cubic' (default)
|
---|
| 2237 | and 'spline'
|
---|
[1855] | 2238 |
|
---|
[513] | 2239 | insitu: if False a new scantable is returned.
|
---|
| 2240 | Otherwise, the scaling is done in-situ
|
---|
| 2241 | The default is taken from .asaprc (False)
|
---|
[1846] | 2242 |
|
---|
[513] | 2243 | """
|
---|
[2349] | 2244 | if insitu is None:
|
---|
| 2245 | insitu = rcParams['insitu']
|
---|
[876] | 2246 | self._math._setinsitu(insitu)
|
---|
[513] | 2247 | varlist = vars()
|
---|
[876] | 2248 | s = scantable(self._math._resample(self, method, width))
|
---|
[1118] | 2249 | s._add_history("resample", varlist)
|
---|
[2349] | 2250 | if insitu:
|
---|
| 2251 | self._assign(s)
|
---|
| 2252 | else:
|
---|
| 2253 | return s
|
---|
[513] | 2254 |
|
---|
[1862] | 2255 | @asaplog_post_dec
|
---|
[946] | 2256 | def average_pol(self, mask=None, weight='none'):
|
---|
[1846] | 2257 | """\
|
---|
[946] | 2258 | Average the Polarisations together.
|
---|
[1846] | 2259 |
|
---|
[946] | 2260 | Parameters:
|
---|
[1846] | 2261 |
|
---|
[946] | 2262 | mask: An optional mask defining the region, where the
|
---|
| 2263 | averaging will be applied. The output will have all
|
---|
| 2264 | specified points masked.
|
---|
[1855] | 2265 |
|
---|
[946] | 2266 | weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
|
---|
| 2267 | weighted), or 'tsys' (1/Tsys**2 weighted)
|
---|
[1846] | 2268 |
|
---|
[946] | 2269 | """
|
---|
| 2270 | varlist = vars()
|
---|
[1593] | 2271 | mask = mask or ()
|
---|
[1010] | 2272 | s = scantable(self._math._averagepol(self, mask, weight.upper()))
|
---|
[1118] | 2273 | s._add_history("average_pol", varlist)
|
---|
[992] | 2274 | return s
|
---|
[513] | 2275 |
|
---|
[1862] | 2276 | @asaplog_post_dec
|
---|
[1145] | 2277 | def average_beam(self, mask=None, weight='none'):
|
---|
[1846] | 2278 | """\
|
---|
[1145] | 2279 | Average the Beams together.
|
---|
[1846] | 2280 |
|
---|
[1145] | 2281 | Parameters:
|
---|
| 2282 | mask: An optional mask defining the region, where the
|
---|
| 2283 | averaging will be applied. The output will have all
|
---|
| 2284 | specified points masked.
|
---|
[1855] | 2285 |
|
---|
[1145] | 2286 | weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
|
---|
| 2287 | weighted), or 'tsys' (1/Tsys**2 weighted)
|
---|
[1846] | 2288 |
|
---|
[1145] | 2289 | """
|
---|
| 2290 | varlist = vars()
|
---|
[1593] | 2291 | mask = mask or ()
|
---|
[1145] | 2292 | s = scantable(self._math._averagebeams(self, mask, weight.upper()))
|
---|
| 2293 | s._add_history("average_beam", varlist)
|
---|
| 2294 | return s
|
---|
| 2295 |
|
---|
[1586] | 2296 | def parallactify(self, pflag):
|
---|
[1846] | 2297 | """\
|
---|
[1843] | 2298 | Set a flag to indicate whether this data should be treated as having
|
---|
[1617] | 2299 | been 'parallactified' (total phase == 0.0)
|
---|
[1846] | 2300 |
|
---|
[1617] | 2301 | Parameters:
|
---|
[1855] | 2302 |
|
---|
[1843] | 2303 | pflag: Bool indicating whether to turn this on (True) or
|
---|
[1617] | 2304 | off (False)
|
---|
[1846] | 2305 |
|
---|
[1617] | 2306 | """
|
---|
[1586] | 2307 | varlist = vars()
|
---|
| 2308 | self._parallactify(pflag)
|
---|
| 2309 | self._add_history("parallactify", varlist)
|
---|
| 2310 |
|
---|
[1862] | 2311 | @asaplog_post_dec
|
---|
[992] | 2312 | def convert_pol(self, poltype=None):
|
---|
[1846] | 2313 | """\
|
---|
[992] | 2314 | Convert the data to a different polarisation type.
|
---|
[1565] | 2315 | Note that you will need cross-polarisation terms for most conversions.
|
---|
[1846] | 2316 |
|
---|
[992] | 2317 | Parameters:
|
---|
[1855] | 2318 |
|
---|
[992] | 2319 | poltype: The new polarisation type. Valid types are:
|
---|
[2431] | 2320 | 'linear', 'circular', 'stokes' and 'linpol'
|
---|
[1846] | 2321 |
|
---|
[992] | 2322 | """
|
---|
| 2323 | varlist = vars()
|
---|
[1859] | 2324 | s = scantable(self._math._convertpol(self, poltype))
|
---|
[1118] | 2325 | s._add_history("convert_pol", varlist)
|
---|
[992] | 2326 | return s
|
---|
| 2327 |
|
---|
[1862] | 2328 | @asaplog_post_dec
|
---|
[2269] | 2329 | def smooth(self, kernel="hanning", width=5.0, order=2, plot=False,
|
---|
| 2330 | insitu=None):
|
---|
[1846] | 2331 | """\
|
---|
[513] | 2332 | Smooth the spectrum by the specified kernel (conserving flux).
|
---|
[1846] | 2333 |
|
---|
[513] | 2334 | Parameters:
|
---|
[1846] | 2335 |
|
---|
[513] | 2336 | kernel: The type of smoothing kernel. Select from
|
---|
[1574] | 2337 | 'hanning' (default), 'gaussian', 'boxcar', 'rmedian'
|
---|
| 2338 | or 'poly'
|
---|
[1855] | 2339 |
|
---|
[513] | 2340 | width: The width of the kernel in pixels. For hanning this is
|
---|
| 2341 | ignored otherwise it defauls to 5 pixels.
|
---|
| 2342 | For 'gaussian' it is the Full Width Half
|
---|
| 2343 | Maximum. For 'boxcar' it is the full width.
|
---|
[1574] | 2344 | For 'rmedian' and 'poly' it is the half width.
|
---|
[1855] | 2345 |
|
---|
[1574] | 2346 | order: Optional parameter for 'poly' kernel (default is 2), to
|
---|
| 2347 | specify the order of the polnomial. Ignored by all other
|
---|
| 2348 | kernels.
|
---|
[1855] | 2349 |
|
---|
[1819] | 2350 | plot: plot the original and the smoothed spectra.
|
---|
| 2351 | In this each indivual fit has to be approved, by
|
---|
| 2352 | typing 'y' or 'n'
|
---|
[1855] | 2353 |
|
---|
[513] | 2354 | insitu: if False a new scantable is returned.
|
---|
| 2355 | Otherwise, the scaling is done in-situ
|
---|
| 2356 | The default is taken from .asaprc (False)
|
---|
[1846] | 2357 |
|
---|
[513] | 2358 | """
|
---|
| 2359 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 2360 | self._math._setinsitu(insitu)
|
---|
[513] | 2361 | varlist = vars()
|
---|
[1819] | 2362 |
|
---|
| 2363 | if plot: orgscan = self.copy()
|
---|
| 2364 |
|
---|
[1574] | 2365 | s = scantable(self._math._smooth(self, kernel.lower(), width, order))
|
---|
[876] | 2366 | s._add_history("smooth", varlist)
|
---|
[1819] | 2367 |
|
---|
[2610] | 2368 | action = 'H'
|
---|
[1819] | 2369 | if plot:
|
---|
[2150] | 2370 | from asap.asapplotter import new_asaplot
|
---|
| 2371 | theplot = new_asaplot(rcParams['plotter.gui'])
|
---|
[2535] | 2372 | from matplotlib import rc as rcp
|
---|
| 2373 | rcp('lines', linewidth=1)
|
---|
[2150] | 2374 | theplot.set_panels()
|
---|
[1819] | 2375 | ylab=s._get_ordinate_label()
|
---|
[2150] | 2376 | #theplot.palette(0,["#777777","red"])
|
---|
[1819] | 2377 | for r in xrange(s.nrow()):
|
---|
| 2378 | xsm=s._getabcissa(r)
|
---|
| 2379 | ysm=s._getspectrum(r)
|
---|
| 2380 | xorg=orgscan._getabcissa(r)
|
---|
| 2381 | yorg=orgscan._getspectrum(r)
|
---|
[2610] | 2382 | if action != "N": #skip plotting if rejecting all
|
---|
| 2383 | theplot.clear()
|
---|
| 2384 | theplot.hold()
|
---|
| 2385 | theplot.set_axes('ylabel',ylab)
|
---|
| 2386 | theplot.set_axes('xlabel',s._getabcissalabel(r))
|
---|
| 2387 | theplot.set_axes('title',s._getsourcename(r))
|
---|
| 2388 | theplot.set_line(label='Original',color="#777777")
|
---|
| 2389 | theplot.plot(xorg,yorg)
|
---|
| 2390 | theplot.set_line(label='Smoothed',color="red")
|
---|
| 2391 | theplot.plot(xsm,ysm)
|
---|
| 2392 | ### Ugly part for legend
|
---|
| 2393 | for i in [0,1]:
|
---|
| 2394 | theplot.subplots[0]['lines'].append(
|
---|
| 2395 | [theplot.subplots[0]['axes'].lines[i]]
|
---|
| 2396 | )
|
---|
| 2397 | theplot.release()
|
---|
| 2398 | ### Ugly part for legend
|
---|
| 2399 | theplot.subplots[0]['lines']=[]
|
---|
| 2400 | res = self._get_verify_action("Accept smoothing?",action)
|
---|
| 2401 | #print "IF%d, POL%d: got result = %s" %(s.getif(r),s.getpol(r),res)
|
---|
| 2402 | if r == 0: action = None
|
---|
| 2403 | #res = raw_input("Accept smoothing ([y]/n): ")
|
---|
[1819] | 2404 | if res.upper() == 'N':
|
---|
[2610] | 2405 | # reject for the current rows
|
---|
[1819] | 2406 | s._setspectrum(yorg, r)
|
---|
[2610] | 2407 | elif res.upper() == 'R':
|
---|
| 2408 | # reject all the following rows
|
---|
| 2409 | action = "N"
|
---|
| 2410 | s._setspectrum(yorg, r)
|
---|
| 2411 | elif res.upper() == 'A':
|
---|
| 2412 | # accept all the following rows
|
---|
| 2413 | break
|
---|
[2150] | 2414 | theplot.quit()
|
---|
| 2415 | del theplot
|
---|
[1819] | 2416 | del orgscan
|
---|
| 2417 |
|
---|
[876] | 2418 | if insitu: self._assign(s)
|
---|
| 2419 | else: return s
|
---|
[513] | 2420 |
|
---|
[2186] | 2421 | @asaplog_post_dec
|
---|
[2435] | 2422 | def regrid_channel(self, width=5, plot=False, insitu=None):
|
---|
| 2423 | """\
|
---|
| 2424 | Regrid the spectra by the specified channel width
|
---|
| 2425 |
|
---|
| 2426 | Parameters:
|
---|
| 2427 |
|
---|
| 2428 | width: The channel width (float) of regridded spectra
|
---|
| 2429 | in the current spectral unit.
|
---|
| 2430 |
|
---|
| 2431 | plot: [NOT IMPLEMENTED YET]
|
---|
| 2432 | plot the original and the regridded spectra.
|
---|
| 2433 | In this each indivual fit has to be approved, by
|
---|
| 2434 | typing 'y' or 'n'
|
---|
| 2435 |
|
---|
| 2436 | insitu: if False a new scantable is returned.
|
---|
| 2437 | Otherwise, the scaling is done in-situ
|
---|
| 2438 | The default is taken from .asaprc (False)
|
---|
| 2439 |
|
---|
| 2440 | """
|
---|
| 2441 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2442 | varlist = vars()
|
---|
| 2443 |
|
---|
| 2444 | if plot:
|
---|
| 2445 | asaplog.post()
|
---|
| 2446 | asaplog.push("Verification plot is not implemtnetd yet.")
|
---|
| 2447 | asaplog.post("WARN")
|
---|
| 2448 |
|
---|
| 2449 | s = self.copy()
|
---|
| 2450 | s._regrid_specchan(width)
|
---|
| 2451 |
|
---|
| 2452 | s._add_history("regrid_channel", varlist)
|
---|
| 2453 |
|
---|
| 2454 | # if plot:
|
---|
| 2455 | # from asap.asapplotter import new_asaplot
|
---|
| 2456 | # theplot = new_asaplot(rcParams['plotter.gui'])
|
---|
[2535] | 2457 | # from matplotlib import rc as rcp
|
---|
| 2458 | # rcp('lines', linewidth=1)
|
---|
[2435] | 2459 | # theplot.set_panels()
|
---|
| 2460 | # ylab=s._get_ordinate_label()
|
---|
| 2461 | # #theplot.palette(0,["#777777","red"])
|
---|
| 2462 | # for r in xrange(s.nrow()):
|
---|
| 2463 | # xsm=s._getabcissa(r)
|
---|
| 2464 | # ysm=s._getspectrum(r)
|
---|
| 2465 | # xorg=orgscan._getabcissa(r)
|
---|
| 2466 | # yorg=orgscan._getspectrum(r)
|
---|
| 2467 | # theplot.clear()
|
---|
| 2468 | # theplot.hold()
|
---|
| 2469 | # theplot.set_axes('ylabel',ylab)
|
---|
| 2470 | # theplot.set_axes('xlabel',s._getabcissalabel(r))
|
---|
| 2471 | # theplot.set_axes('title',s._getsourcename(r))
|
---|
| 2472 | # theplot.set_line(label='Original',color="#777777")
|
---|
| 2473 | # theplot.plot(xorg,yorg)
|
---|
| 2474 | # theplot.set_line(label='Smoothed',color="red")
|
---|
| 2475 | # theplot.plot(xsm,ysm)
|
---|
| 2476 | # ### Ugly part for legend
|
---|
| 2477 | # for i in [0,1]:
|
---|
| 2478 | # theplot.subplots[0]['lines'].append(
|
---|
| 2479 | # [theplot.subplots[0]['axes'].lines[i]]
|
---|
| 2480 | # )
|
---|
| 2481 | # theplot.release()
|
---|
| 2482 | # ### Ugly part for legend
|
---|
| 2483 | # theplot.subplots[0]['lines']=[]
|
---|
| 2484 | # res = raw_input("Accept smoothing ([y]/n): ")
|
---|
| 2485 | # if res.upper() == 'N':
|
---|
| 2486 | # s._setspectrum(yorg, r)
|
---|
| 2487 | # theplot.quit()
|
---|
| 2488 | # del theplot
|
---|
| 2489 | # del orgscan
|
---|
| 2490 |
|
---|
| 2491 | if insitu: self._assign(s)
|
---|
| 2492 | else: return s
|
---|
| 2493 |
|
---|
| 2494 | @asaplog_post_dec
|
---|
[2186] | 2495 | def _parse_wn(self, wn):
|
---|
| 2496 | if isinstance(wn, list) or isinstance(wn, tuple):
|
---|
| 2497 | return wn
|
---|
| 2498 | elif isinstance(wn, int):
|
---|
| 2499 | return [ wn ]
|
---|
| 2500 | elif isinstance(wn, str):
|
---|
[2277] | 2501 | if '-' in wn: # case 'a-b' : return [a,a+1,...,b-1,b]
|
---|
[2186] | 2502 | val = wn.split('-')
|
---|
| 2503 | val = [int(val[0]), int(val[1])]
|
---|
| 2504 | val.sort()
|
---|
| 2505 | res = [i for i in xrange(val[0], val[1]+1)]
|
---|
[2277] | 2506 | elif wn[:2] == '<=' or wn[:2] == '=<': # cases '<=a','=<a' : return [0,1,...,a-1,a]
|
---|
[2186] | 2507 | val = int(wn[2:])+1
|
---|
| 2508 | res = [i for i in xrange(val)]
|
---|
[2277] | 2509 | elif wn[-2:] == '>=' or wn[-2:] == '=>': # cases 'a>=','a=>' : return [0,1,...,a-1,a]
|
---|
[2186] | 2510 | val = int(wn[:-2])+1
|
---|
| 2511 | res = [i for i in xrange(val)]
|
---|
[2277] | 2512 | elif wn[0] == '<': # case '<a' : return [0,1,...,a-2,a-1]
|
---|
[2186] | 2513 | val = int(wn[1:])
|
---|
| 2514 | res = [i for i in xrange(val)]
|
---|
[2277] | 2515 | elif wn[-1] == '>': # case 'a>' : return [0,1,...,a-2,a-1]
|
---|
[2186] | 2516 | val = int(wn[:-1])
|
---|
| 2517 | res = [i for i in xrange(val)]
|
---|
[2411] | 2518 | elif wn[:2] == '>=' or wn[:2] == '=>': # cases '>=a','=>a' : return [a,-999], which is
|
---|
| 2519 | # then interpreted in C++
|
---|
| 2520 | # side as [a,a+1,...,a_nyq]
|
---|
| 2521 | # (CAS-3759)
|
---|
[2186] | 2522 | val = int(wn[2:])
|
---|
[2411] | 2523 | res = [val, -999]
|
---|
| 2524 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
| 2525 | elif wn[-2:] == '<=' or wn[-2:] == '=<': # cases 'a<=','a=<' : return [a,-999], which is
|
---|
| 2526 | # then interpreted in C++
|
---|
| 2527 | # side as [a,a+1,...,a_nyq]
|
---|
| 2528 | # (CAS-3759)
|
---|
[2186] | 2529 | val = int(wn[:-2])
|
---|
[2411] | 2530 | res = [val, -999]
|
---|
| 2531 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
| 2532 | elif wn[0] == '>': # case '>a' : return [a+1,-999], which is
|
---|
| 2533 | # then interpreted in C++
|
---|
| 2534 | # side as [a+1,a+2,...,a_nyq]
|
---|
| 2535 | # (CAS-3759)
|
---|
[2186] | 2536 | val = int(wn[1:])+1
|
---|
[2411] | 2537 | res = [val, -999]
|
---|
| 2538 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
| 2539 | elif wn[-1] == '<': # case 'a<' : return [a+1,-999], which is
|
---|
| 2540 | # then interpreted in C++
|
---|
| 2541 | # side as [a+1,a+2,...,a_nyq]
|
---|
| 2542 | # (CAS-3759)
|
---|
[2186] | 2543 | val = int(wn[:-1])+1
|
---|
[2411] | 2544 | res = [val, -999]
|
---|
| 2545 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
[2012] | 2546 |
|
---|
[2186] | 2547 | return res
|
---|
| 2548 | else:
|
---|
| 2549 | msg = 'wrong value given for addwn/rejwn'
|
---|
| 2550 | raise RuntimeError(msg)
|
---|
| 2551 |
|
---|
[2713] | 2552 | @asaplog_post_dec
|
---|
| 2553 | def calc_aic(self, value=None, blfunc=None, order=None, mask=None,
|
---|
| 2554 | whichrow=None, uselinefinder=None, edge=None,
|
---|
| 2555 | threshold=None, chan_avg_limit=None):
|
---|
| 2556 | """\
|
---|
| 2557 | Calculates and returns model selection criteria for a specified
|
---|
| 2558 | baseline model and a given spectrum data.
|
---|
| 2559 | Available values include Akaike Information Criterion (AIC), the
|
---|
| 2560 | corrected Akaike Information Criterion (AICc) by Sugiura(1978),
|
---|
| 2561 | Bayesian Information Criterion (BIC) and the Generalised Cross
|
---|
| 2562 | Validation (GCV).
|
---|
[2186] | 2563 |
|
---|
[2713] | 2564 | Parameters:
|
---|
| 2565 | value: name of model selection criteria to calculate.
|
---|
| 2566 | available ones include 'aic', 'aicc', 'bic' and
|
---|
| 2567 | 'gcv'. default is 'aicc'.
|
---|
| 2568 | blfunc: baseline function name. available ones include
|
---|
| 2569 | 'chebyshev', 'cspline' and 'sinusoid'.
|
---|
| 2570 | default is 'chebyshev'.
|
---|
| 2571 | order: parameter for basline function. actually stands for
|
---|
| 2572 | order of polynomial (order) for 'chebyshev',
|
---|
| 2573 | number of spline pieces (npiece) for 'cspline' and
|
---|
| 2574 | maximum wave number for 'sinusoid', respectively.
|
---|
| 2575 | default is 5 (which is also the default order value
|
---|
| 2576 | for [auto_]chebyshev_baseline()).
|
---|
| 2577 | mask: an optional mask. default is [].
|
---|
| 2578 | whichrow: row number. default is 0 (the first row)
|
---|
| 2579 | uselinefinder: use sd.linefinder() to flag out line regions
|
---|
| 2580 | default is True.
|
---|
| 2581 | edge: an optional number of channel to drop at
|
---|
| 2582 | the edge of spectrum. If only one value is
|
---|
| 2583 | specified, the same number will be dropped
|
---|
| 2584 | from both sides of the spectrum. Default
|
---|
| 2585 | is to keep all channels. Nested tuples
|
---|
| 2586 | represent individual edge selection for
|
---|
| 2587 | different IFs (a number of spectral channels
|
---|
| 2588 | can be different)
|
---|
| 2589 | default is (0, 0).
|
---|
| 2590 | threshold: the threshold used by line finder. It is
|
---|
| 2591 | better to keep it large as only strong lines
|
---|
| 2592 | affect the baseline solution.
|
---|
| 2593 | default is 3.
|
---|
| 2594 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 2595 | channels to average during the search of
|
---|
| 2596 | weak and broad lines. The default is no
|
---|
| 2597 | averaging (and no search for weak lines).
|
---|
| 2598 | If such lines can affect the fitted baseline
|
---|
| 2599 | (e.g. a high order polynomial is fitted),
|
---|
| 2600 | increase this parameter (usually values up
|
---|
| 2601 | to 8 are reasonable). Most users of this
|
---|
| 2602 | method should find the default value sufficient.
|
---|
| 2603 | default is 1.
|
---|
| 2604 |
|
---|
| 2605 | Example:
|
---|
| 2606 | aic = scan.calc_aic(blfunc='chebyshev', order=5, whichrow=0)
|
---|
| 2607 | """
|
---|
| 2608 |
|
---|
| 2609 | try:
|
---|
| 2610 | varlist = vars()
|
---|
| 2611 |
|
---|
| 2612 | if value is None: value = 'aicc'
|
---|
| 2613 | if blfunc is None: blfunc = 'chebyshev'
|
---|
| 2614 | if order is None: order = 5
|
---|
| 2615 | if mask is None: mask = []
|
---|
| 2616 | if whichrow is None: whichrow = 0
|
---|
| 2617 | if uselinefinder is None: uselinefinder = True
|
---|
| 2618 | if edge is None: edge = (0, 0)
|
---|
| 2619 | if threshold is None: threshold = 3
|
---|
| 2620 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 2621 |
|
---|
| 2622 | return self._calc_aic(value, blfunc, order, mask,
|
---|
| 2623 | whichrow, uselinefinder, edge,
|
---|
| 2624 | threshold, chan_avg_limit)
|
---|
| 2625 |
|
---|
| 2626 | except RuntimeError, e:
|
---|
| 2627 | raise_fitting_failure_exception(e)
|
---|
| 2628 |
|
---|
[1862] | 2629 | @asaplog_post_dec
|
---|
[2277] | 2630 | def sinusoid_baseline(self, insitu=None, mask=None, applyfft=None,
|
---|
[2269] | 2631 | fftmethod=None, fftthresh=None,
|
---|
| 2632 | addwn=None, rejwn=None, clipthresh=None,
|
---|
| 2633 | clipniter=None, plot=None,
|
---|
| 2634 | getresidual=None, showprogress=None,
|
---|
[2641] | 2635 | minnrow=None, outlog=None, blfile=None, csvformat=None):
|
---|
[2047] | 2636 | """\
|
---|
[2349] | 2637 | Return a scan which has been baselined (all rows) with sinusoidal
|
---|
| 2638 | functions.
|
---|
| 2639 |
|
---|
[2047] | 2640 | Parameters:
|
---|
[2186] | 2641 | insitu: if False a new scantable is returned.
|
---|
[2081] | 2642 | Otherwise, the scaling is done in-situ
|
---|
| 2643 | The default is taken from .asaprc (False)
|
---|
[2186] | 2644 | mask: an optional mask
|
---|
| 2645 | applyfft: if True use some method, such as FFT, to find
|
---|
| 2646 | strongest sinusoidal components in the wavenumber
|
---|
| 2647 | domain to be used for baseline fitting.
|
---|
| 2648 | default is True.
|
---|
| 2649 | fftmethod: method to find the strong sinusoidal components.
|
---|
| 2650 | now only 'fft' is available and it is the default.
|
---|
| 2651 | fftthresh: the threshold to select wave numbers to be used for
|
---|
| 2652 | fitting from the distribution of amplitudes in the
|
---|
| 2653 | wavenumber domain.
|
---|
| 2654 | both float and string values accepted.
|
---|
| 2655 | given a float value, the unit is set to sigma.
|
---|
| 2656 | for string values, allowed formats include:
|
---|
[2349] | 2657 | 'xsigma' or 'x' (= x-sigma level. e.g.,
|
---|
| 2658 | '3sigma'), or
|
---|
[2186] | 2659 | 'topx' (= the x strongest ones, e.g. 'top5').
|
---|
| 2660 | default is 3.0 (unit: sigma).
|
---|
| 2661 | addwn: the additional wave numbers to be used for fitting.
|
---|
| 2662 | list or integer value is accepted to specify every
|
---|
| 2663 | wave numbers. also string value can be used in case
|
---|
| 2664 | you need to specify wave numbers in a certain range,
|
---|
| 2665 | e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b),
|
---|
| 2666 | '<a' (= 0,1,...,a-2,a-1),
|
---|
| 2667 | '>=a' (= a, a+1, ... up to the maximum wave
|
---|
| 2668 | number corresponding to the Nyquist
|
---|
| 2669 | frequency for the case of FFT).
|
---|
[2411] | 2670 | default is [0].
|
---|
[2186] | 2671 | rejwn: the wave numbers NOT to be used for fitting.
|
---|
| 2672 | can be set just as addwn but has higher priority:
|
---|
| 2673 | wave numbers which are specified both in addwn
|
---|
| 2674 | and rejwn will NOT be used. default is [].
|
---|
[2081] | 2675 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
[2349] | 2676 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 2677 | clipping (default is 0)
|
---|
[2081] | 2678 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 2679 | plot the fit and the residual. In this each
|
---|
| 2680 | indivual fit has to be approved, by typing 'y'
|
---|
| 2681 | or 'n'
|
---|
| 2682 | getresidual: if False, returns best-fit values instead of
|
---|
| 2683 | residual. (default is True)
|
---|
[2189] | 2684 | showprogress: show progress status for large data.
|
---|
| 2685 | default is True.
|
---|
| 2686 | minnrow: minimum number of input spectra to show.
|
---|
| 2687 | default is 1000.
|
---|
[2081] | 2688 | outlog: Output the coefficients of the best-fit
|
---|
| 2689 | function to logger (default is False)
|
---|
| 2690 | blfile: Name of a text file in which the best-fit
|
---|
| 2691 | parameter values to be written
|
---|
[2186] | 2692 | (default is '': no file/logger output)
|
---|
[2641] | 2693 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[2047] | 2694 |
|
---|
| 2695 | Example:
|
---|
[2349] | 2696 | # return a scan baselined by a combination of sinusoidal curves
|
---|
| 2697 | # having wave numbers in spectral window up to 10,
|
---|
[2047] | 2698 | # also with 3-sigma clipping, iteration up to 4 times
|
---|
[2186] | 2699 | bscan = scan.sinusoid_baseline(addwn='<=10',clipthresh=3.0,clipniter=4)
|
---|
[2081] | 2700 |
|
---|
| 2701 | Note:
|
---|
| 2702 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 2703 | based on specunit of 'channel'.
|
---|
[2047] | 2704 | """
|
---|
| 2705 |
|
---|
[2186] | 2706 | try:
|
---|
| 2707 | varlist = vars()
|
---|
[2047] | 2708 |
|
---|
[2186] | 2709 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2710 | if insitu:
|
---|
| 2711 | workscan = self
|
---|
| 2712 | else:
|
---|
| 2713 | workscan = self.copy()
|
---|
| 2714 |
|
---|
[2410] | 2715 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
| 2716 | if mask is None: mask = []
|
---|
[2186] | 2717 | if applyfft is None: applyfft = True
|
---|
| 2718 | if fftmethod is None: fftmethod = 'fft'
|
---|
| 2719 | if fftthresh is None: fftthresh = 3.0
|
---|
[2411] | 2720 | if addwn is None: addwn = [0]
|
---|
[2186] | 2721 | if rejwn is None: rejwn = []
|
---|
| 2722 | if clipthresh is None: clipthresh = 3.0
|
---|
| 2723 | if clipniter is None: clipniter = 0
|
---|
| 2724 | if plot is None: plot = False
|
---|
| 2725 | if getresidual is None: getresidual = True
|
---|
[2189] | 2726 | if showprogress is None: showprogress = True
|
---|
| 2727 | if minnrow is None: minnrow = 1000
|
---|
[2186] | 2728 | if outlog is None: outlog = False
|
---|
| 2729 | if blfile is None: blfile = ''
|
---|
[2641] | 2730 | if csvformat is None: csvformat = False
|
---|
[2047] | 2731 |
|
---|
[2641] | 2732 | if csvformat:
|
---|
| 2733 | scsvformat = "T"
|
---|
| 2734 | else:
|
---|
| 2735 | scsvformat = "F"
|
---|
| 2736 |
|
---|
[2081] | 2737 | #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method.
|
---|
[2349] | 2738 | workscan._sinusoid_baseline(mask, applyfft, fftmethod.lower(),
|
---|
| 2739 | str(fftthresh).lower(),
|
---|
| 2740 | workscan._parse_wn(addwn),
|
---|
[2643] | 2741 | workscan._parse_wn(rejwn),
|
---|
| 2742 | clipthresh, clipniter,
|
---|
| 2743 | getresidual,
|
---|
[2349] | 2744 | pack_progress_params(showprogress,
|
---|
[2641] | 2745 | minnrow),
|
---|
| 2746 | outlog, scsvformat+blfile)
|
---|
[2186] | 2747 | workscan._add_history('sinusoid_baseline', varlist)
|
---|
[2047] | 2748 |
|
---|
| 2749 | if insitu:
|
---|
| 2750 | self._assign(workscan)
|
---|
| 2751 | else:
|
---|
| 2752 | return workscan
|
---|
| 2753 |
|
---|
| 2754 | except RuntimeError, e:
|
---|
[2186] | 2755 | raise_fitting_failure_exception(e)
|
---|
[2047] | 2756 |
|
---|
| 2757 |
|
---|
[2186] | 2758 | @asaplog_post_dec
|
---|
[2349] | 2759 | def auto_sinusoid_baseline(self, insitu=None, mask=None, applyfft=None,
|
---|
| 2760 | fftmethod=None, fftthresh=None,
|
---|
| 2761 | addwn=None, rejwn=None, clipthresh=None,
|
---|
| 2762 | clipniter=None, edge=None, threshold=None,
|
---|
| 2763 | chan_avg_limit=None, plot=None,
|
---|
| 2764 | getresidual=None, showprogress=None,
|
---|
[2641] | 2765 | minnrow=None, outlog=None, blfile=None, csvformat=None):
|
---|
[2047] | 2766 | """\
|
---|
[2349] | 2767 | Return a scan which has been baselined (all rows) with sinusoidal
|
---|
| 2768 | functions.
|
---|
[2047] | 2769 | Spectral lines are detected first using linefinder and masked out
|
---|
| 2770 | to avoid them affecting the baseline solution.
|
---|
| 2771 |
|
---|
| 2772 | Parameters:
|
---|
[2189] | 2773 | insitu: if False a new scantable is returned.
|
---|
| 2774 | Otherwise, the scaling is done in-situ
|
---|
| 2775 | The default is taken from .asaprc (False)
|
---|
| 2776 | mask: an optional mask retreived from scantable
|
---|
| 2777 | applyfft: if True use some method, such as FFT, to find
|
---|
| 2778 | strongest sinusoidal components in the wavenumber
|
---|
| 2779 | domain to be used for baseline fitting.
|
---|
| 2780 | default is True.
|
---|
| 2781 | fftmethod: method to find the strong sinusoidal components.
|
---|
| 2782 | now only 'fft' is available and it is the default.
|
---|
| 2783 | fftthresh: the threshold to select wave numbers to be used for
|
---|
| 2784 | fitting from the distribution of amplitudes in the
|
---|
| 2785 | wavenumber domain.
|
---|
| 2786 | both float and string values accepted.
|
---|
| 2787 | given a float value, the unit is set to sigma.
|
---|
| 2788 | for string values, allowed formats include:
|
---|
[2349] | 2789 | 'xsigma' or 'x' (= x-sigma level. e.g.,
|
---|
| 2790 | '3sigma'), or
|
---|
[2189] | 2791 | 'topx' (= the x strongest ones, e.g. 'top5').
|
---|
| 2792 | default is 3.0 (unit: sigma).
|
---|
| 2793 | addwn: the additional wave numbers to be used for fitting.
|
---|
| 2794 | list or integer value is accepted to specify every
|
---|
| 2795 | wave numbers. also string value can be used in case
|
---|
| 2796 | you need to specify wave numbers in a certain range,
|
---|
| 2797 | e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b),
|
---|
| 2798 | '<a' (= 0,1,...,a-2,a-1),
|
---|
| 2799 | '>=a' (= a, a+1, ... up to the maximum wave
|
---|
| 2800 | number corresponding to the Nyquist
|
---|
| 2801 | frequency for the case of FFT).
|
---|
[2411] | 2802 | default is [0].
|
---|
[2189] | 2803 | rejwn: the wave numbers NOT to be used for fitting.
|
---|
| 2804 | can be set just as addwn but has higher priority:
|
---|
| 2805 | wave numbers which are specified both in addwn
|
---|
| 2806 | and rejwn will NOT be used. default is [].
|
---|
| 2807 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
[2349] | 2808 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 2809 | clipping (default is 0)
|
---|
[2189] | 2810 | edge: an optional number of channel to drop at
|
---|
| 2811 | the edge of spectrum. If only one value is
|
---|
| 2812 | specified, the same number will be dropped
|
---|
| 2813 | from both sides of the spectrum. Default
|
---|
| 2814 | is to keep all channels. Nested tuples
|
---|
| 2815 | represent individual edge selection for
|
---|
| 2816 | different IFs (a number of spectral channels
|
---|
| 2817 | can be different)
|
---|
| 2818 | threshold: the threshold used by line finder. It is
|
---|
| 2819 | better to keep it large as only strong lines
|
---|
| 2820 | affect the baseline solution.
|
---|
| 2821 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 2822 | channels to average during the search of
|
---|
| 2823 | weak and broad lines. The default is no
|
---|
| 2824 | averaging (and no search for weak lines).
|
---|
| 2825 | If such lines can affect the fitted baseline
|
---|
| 2826 | (e.g. a high order polynomial is fitted),
|
---|
| 2827 | increase this parameter (usually values up
|
---|
| 2828 | to 8 are reasonable). Most users of this
|
---|
| 2829 | method should find the default value sufficient.
|
---|
| 2830 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 2831 | plot the fit and the residual. In this each
|
---|
| 2832 | indivual fit has to be approved, by typing 'y'
|
---|
| 2833 | or 'n'
|
---|
| 2834 | getresidual: if False, returns best-fit values instead of
|
---|
| 2835 | residual. (default is True)
|
---|
| 2836 | showprogress: show progress status for large data.
|
---|
| 2837 | default is True.
|
---|
| 2838 | minnrow: minimum number of input spectra to show.
|
---|
| 2839 | default is 1000.
|
---|
| 2840 | outlog: Output the coefficients of the best-fit
|
---|
| 2841 | function to logger (default is False)
|
---|
| 2842 | blfile: Name of a text file in which the best-fit
|
---|
| 2843 | parameter values to be written
|
---|
| 2844 | (default is "": no file/logger output)
|
---|
[2641] | 2845 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[2047] | 2846 |
|
---|
| 2847 | Example:
|
---|
[2186] | 2848 | bscan = scan.auto_sinusoid_baseline(addwn='<=10', insitu=False)
|
---|
[2081] | 2849 |
|
---|
| 2850 | Note:
|
---|
| 2851 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 2852 | based on specunit of 'channel'.
|
---|
[2047] | 2853 | """
|
---|
| 2854 |
|
---|
[2186] | 2855 | try:
|
---|
| 2856 | varlist = vars()
|
---|
[2047] | 2857 |
|
---|
[2186] | 2858 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2859 | if insitu:
|
---|
| 2860 | workscan = self
|
---|
[2047] | 2861 | else:
|
---|
[2186] | 2862 | workscan = self.copy()
|
---|
| 2863 |
|
---|
[2410] | 2864 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
| 2865 | if mask is None: mask = []
|
---|
[2186] | 2866 | if applyfft is None: applyfft = True
|
---|
| 2867 | if fftmethod is None: fftmethod = 'fft'
|
---|
| 2868 | if fftthresh is None: fftthresh = 3.0
|
---|
[2411] | 2869 | if addwn is None: addwn = [0]
|
---|
[2186] | 2870 | if rejwn is None: rejwn = []
|
---|
| 2871 | if clipthresh is None: clipthresh = 3.0
|
---|
| 2872 | if clipniter is None: clipniter = 0
|
---|
| 2873 | if edge is None: edge = (0,0)
|
---|
| 2874 | if threshold is None: threshold = 3
|
---|
| 2875 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 2876 | if plot is None: plot = False
|
---|
| 2877 | if getresidual is None: getresidual = True
|
---|
[2189] | 2878 | if showprogress is None: showprogress = True
|
---|
| 2879 | if minnrow is None: minnrow = 1000
|
---|
[2186] | 2880 | if outlog is None: outlog = False
|
---|
| 2881 | if blfile is None: blfile = ''
|
---|
[2641] | 2882 | if csvformat is None: csvformat = False
|
---|
[2047] | 2883 |
|
---|
[2641] | 2884 | if csvformat:
|
---|
| 2885 | scsvformat = "T"
|
---|
| 2886 | else:
|
---|
| 2887 | scsvformat = "F"
|
---|
| 2888 |
|
---|
[2277] | 2889 | #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method.
|
---|
[2349] | 2890 | workscan._auto_sinusoid_baseline(mask, applyfft,
|
---|
| 2891 | fftmethod.lower(),
|
---|
| 2892 | str(fftthresh).lower(),
|
---|
| 2893 | workscan._parse_wn(addwn),
|
---|
| 2894 | workscan._parse_wn(rejwn),
|
---|
| 2895 | clipthresh, clipniter,
|
---|
| 2896 | normalise_edge_param(edge),
|
---|
| 2897 | threshold, chan_avg_limit,
|
---|
| 2898 | getresidual,
|
---|
| 2899 | pack_progress_params(showprogress,
|
---|
| 2900 | minnrow),
|
---|
[2641] | 2901 | outlog, scsvformat+blfile)
|
---|
[2047] | 2902 | workscan._add_history("auto_sinusoid_baseline", varlist)
|
---|
| 2903 |
|
---|
| 2904 | if insitu:
|
---|
| 2905 | self._assign(workscan)
|
---|
| 2906 | else:
|
---|
| 2907 | return workscan
|
---|
| 2908 |
|
---|
| 2909 | except RuntimeError, e:
|
---|
[2186] | 2910 | raise_fitting_failure_exception(e)
|
---|
[2047] | 2911 |
|
---|
| 2912 | @asaplog_post_dec
|
---|
[2349] | 2913 | def cspline_baseline(self, insitu=None, mask=None, npiece=None,
|
---|
| 2914 | clipthresh=None, clipniter=None, plot=None,
|
---|
| 2915 | getresidual=None, showprogress=None, minnrow=None,
|
---|
[2641] | 2916 | outlog=None, blfile=None, csvformat=None):
|
---|
[1846] | 2917 | """\
|
---|
[2349] | 2918 | Return a scan which has been baselined (all rows) by cubic spline
|
---|
| 2919 | function (piecewise cubic polynomial).
|
---|
| 2920 |
|
---|
[513] | 2921 | Parameters:
|
---|
[2189] | 2922 | insitu: If False a new scantable is returned.
|
---|
| 2923 | Otherwise, the scaling is done in-situ
|
---|
| 2924 | The default is taken from .asaprc (False)
|
---|
| 2925 | mask: An optional mask
|
---|
| 2926 | npiece: Number of pieces. (default is 2)
|
---|
| 2927 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
[2349] | 2928 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 2929 | clipping (default is 0)
|
---|
[2189] | 2930 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 2931 | plot the fit and the residual. In this each
|
---|
| 2932 | indivual fit has to be approved, by typing 'y'
|
---|
| 2933 | or 'n'
|
---|
| 2934 | getresidual: if False, returns best-fit values instead of
|
---|
| 2935 | residual. (default is True)
|
---|
| 2936 | showprogress: show progress status for large data.
|
---|
| 2937 | default is True.
|
---|
| 2938 | minnrow: minimum number of input spectra to show.
|
---|
| 2939 | default is 1000.
|
---|
| 2940 | outlog: Output the coefficients of the best-fit
|
---|
| 2941 | function to logger (default is False)
|
---|
| 2942 | blfile: Name of a text file in which the best-fit
|
---|
| 2943 | parameter values to be written
|
---|
| 2944 | (default is "": no file/logger output)
|
---|
[2641] | 2945 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[1846] | 2946 |
|
---|
[2012] | 2947 | Example:
|
---|
[2349] | 2948 | # return a scan baselined by a cubic spline consisting of 2 pieces
|
---|
| 2949 | # (i.e., 1 internal knot),
|
---|
[2012] | 2950 | # also with 3-sigma clipping, iteration up to 4 times
|
---|
| 2951 | bscan = scan.cspline_baseline(npiece=2,clipthresh=3.0,clipniter=4)
|
---|
[2081] | 2952 |
|
---|
| 2953 | Note:
|
---|
| 2954 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 2955 | based on specunit of 'channel'.
|
---|
[2012] | 2956 | """
|
---|
| 2957 |
|
---|
[2186] | 2958 | try:
|
---|
| 2959 | varlist = vars()
|
---|
| 2960 |
|
---|
| 2961 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2962 | if insitu:
|
---|
| 2963 | workscan = self
|
---|
| 2964 | else:
|
---|
| 2965 | workscan = self.copy()
|
---|
[1855] | 2966 |
|
---|
[2410] | 2967 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
| 2968 | if mask is None: mask = []
|
---|
[2189] | 2969 | if npiece is None: npiece = 2
|
---|
| 2970 | if clipthresh is None: clipthresh = 3.0
|
---|
| 2971 | if clipniter is None: clipniter = 0
|
---|
| 2972 | if plot is None: plot = False
|
---|
| 2973 | if getresidual is None: getresidual = True
|
---|
| 2974 | if showprogress is None: showprogress = True
|
---|
| 2975 | if minnrow is None: minnrow = 1000
|
---|
| 2976 | if outlog is None: outlog = False
|
---|
| 2977 | if blfile is None: blfile = ''
|
---|
[2641] | 2978 | if csvformat is None: csvformat = False
|
---|
[1855] | 2979 |
|
---|
[2641] | 2980 | if csvformat:
|
---|
| 2981 | scsvformat = "T"
|
---|
| 2982 | else:
|
---|
| 2983 | scsvformat = "F"
|
---|
| 2984 |
|
---|
[2012] | 2985 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
[2349] | 2986 | workscan._cspline_baseline(mask, npiece, clipthresh, clipniter,
|
---|
| 2987 | getresidual,
|
---|
| 2988 | pack_progress_params(showprogress,
|
---|
[2641] | 2989 | minnrow),
|
---|
| 2990 | outlog, scsvformat+blfile)
|
---|
[2012] | 2991 | workscan._add_history("cspline_baseline", varlist)
|
---|
| 2992 |
|
---|
| 2993 | if insitu:
|
---|
| 2994 | self._assign(workscan)
|
---|
| 2995 | else:
|
---|
| 2996 | return workscan
|
---|
| 2997 |
|
---|
| 2998 | except RuntimeError, e:
|
---|
[2186] | 2999 | raise_fitting_failure_exception(e)
|
---|
[1855] | 3000 |
|
---|
[2186] | 3001 | @asaplog_post_dec
|
---|
[2349] | 3002 | def auto_cspline_baseline(self, insitu=None, mask=None, npiece=None,
|
---|
| 3003 | clipthresh=None, clipniter=None,
|
---|
| 3004 | edge=None, threshold=None, chan_avg_limit=None,
|
---|
| 3005 | getresidual=None, plot=None,
|
---|
| 3006 | showprogress=None, minnrow=None, outlog=None,
|
---|
[2641] | 3007 | blfile=None, csvformat=None):
|
---|
[2012] | 3008 | """\
|
---|
| 3009 | Return a scan which has been baselined (all rows) by cubic spline
|
---|
| 3010 | function (piecewise cubic polynomial).
|
---|
| 3011 | Spectral lines are detected first using linefinder and masked out
|
---|
| 3012 | to avoid them affecting the baseline solution.
|
---|
| 3013 |
|
---|
| 3014 | Parameters:
|
---|
[2189] | 3015 | insitu: if False a new scantable is returned.
|
---|
| 3016 | Otherwise, the scaling is done in-situ
|
---|
| 3017 | The default is taken from .asaprc (False)
|
---|
| 3018 | mask: an optional mask retreived from scantable
|
---|
| 3019 | npiece: Number of pieces. (default is 2)
|
---|
| 3020 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
[2349] | 3021 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 3022 | clipping (default is 0)
|
---|
[2189] | 3023 | edge: an optional number of channel to drop at
|
---|
| 3024 | the edge of spectrum. If only one value is
|
---|
| 3025 | specified, the same number will be dropped
|
---|
| 3026 | from both sides of the spectrum. Default
|
---|
| 3027 | is to keep all channels. Nested tuples
|
---|
| 3028 | represent individual edge selection for
|
---|
| 3029 | different IFs (a number of spectral channels
|
---|
| 3030 | can be different)
|
---|
| 3031 | threshold: the threshold used by line finder. It is
|
---|
| 3032 | better to keep it large as only strong lines
|
---|
| 3033 | affect the baseline solution.
|
---|
| 3034 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 3035 | channels to average during the search of
|
---|
| 3036 | weak and broad lines. The default is no
|
---|
| 3037 | averaging (and no search for weak lines).
|
---|
| 3038 | If such lines can affect the fitted baseline
|
---|
| 3039 | (e.g. a high order polynomial is fitted),
|
---|
| 3040 | increase this parameter (usually values up
|
---|
| 3041 | to 8 are reasonable). Most users of this
|
---|
| 3042 | method should find the default value sufficient.
|
---|
| 3043 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 3044 | plot the fit and the residual. In this each
|
---|
| 3045 | indivual fit has to be approved, by typing 'y'
|
---|
| 3046 | or 'n'
|
---|
| 3047 | getresidual: if False, returns best-fit values instead of
|
---|
| 3048 | residual. (default is True)
|
---|
| 3049 | showprogress: show progress status for large data.
|
---|
| 3050 | default is True.
|
---|
| 3051 | minnrow: minimum number of input spectra to show.
|
---|
| 3052 | default is 1000.
|
---|
| 3053 | outlog: Output the coefficients of the best-fit
|
---|
| 3054 | function to logger (default is False)
|
---|
| 3055 | blfile: Name of a text file in which the best-fit
|
---|
| 3056 | parameter values to be written
|
---|
| 3057 | (default is "": no file/logger output)
|
---|
[2641] | 3058 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[1846] | 3059 |
|
---|
[1907] | 3060 | Example:
|
---|
[2012] | 3061 | bscan = scan.auto_cspline_baseline(npiece=3, insitu=False)
|
---|
[2081] | 3062 |
|
---|
| 3063 | Note:
|
---|
| 3064 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 3065 | based on specunit of 'channel'.
|
---|
[2012] | 3066 | """
|
---|
[1846] | 3067 |
|
---|
[2186] | 3068 | try:
|
---|
| 3069 | varlist = vars()
|
---|
[2012] | 3070 |
|
---|
[2186] | 3071 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 3072 | if insitu:
|
---|
| 3073 | workscan = self
|
---|
[1391] | 3074 | else:
|
---|
[2186] | 3075 | workscan = self.copy()
|
---|
| 3076 |
|
---|
[2410] | 3077 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
| 3078 | if mask is None: mask = []
|
---|
[2186] | 3079 | if npiece is None: npiece = 2
|
---|
| 3080 | if clipthresh is None: clipthresh = 3.0
|
---|
| 3081 | if clipniter is None: clipniter = 0
|
---|
| 3082 | if edge is None: edge = (0, 0)
|
---|
| 3083 | if threshold is None: threshold = 3
|
---|
| 3084 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 3085 | if plot is None: plot = False
|
---|
| 3086 | if getresidual is None: getresidual = True
|
---|
[2189] | 3087 | if showprogress is None: showprogress = True
|
---|
| 3088 | if minnrow is None: minnrow = 1000
|
---|
[2186] | 3089 | if outlog is None: outlog = False
|
---|
| 3090 | if blfile is None: blfile = ''
|
---|
[2641] | 3091 | if csvformat is None: csvformat = False
|
---|
[1819] | 3092 |
|
---|
[2641] | 3093 | if csvformat:
|
---|
| 3094 | scsvformat = "T"
|
---|
| 3095 | else:
|
---|
| 3096 | scsvformat = "F"
|
---|
| 3097 |
|
---|
[2277] | 3098 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
[2269] | 3099 | workscan._auto_cspline_baseline(mask, npiece, clipthresh,
|
---|
| 3100 | clipniter,
|
---|
| 3101 | normalise_edge_param(edge),
|
---|
| 3102 | threshold,
|
---|
| 3103 | chan_avg_limit, getresidual,
|
---|
| 3104 | pack_progress_params(showprogress,
|
---|
| 3105 | minnrow),
|
---|
[2641] | 3106 | outlog, scsvformat+blfile)
|
---|
[2012] | 3107 | workscan._add_history("auto_cspline_baseline", varlist)
|
---|
[1907] | 3108 |
|
---|
[1856] | 3109 | if insitu:
|
---|
| 3110 | self._assign(workscan)
|
---|
| 3111 | else:
|
---|
| 3112 | return workscan
|
---|
[2012] | 3113 |
|
---|
| 3114 | except RuntimeError, e:
|
---|
[2186] | 3115 | raise_fitting_failure_exception(e)
|
---|
[513] | 3116 |
|
---|
[1931] | 3117 | @asaplog_post_dec
|
---|
[2645] | 3118 | def chebyshev_baseline(self, insitu=None, mask=None, order=None,
|
---|
| 3119 | clipthresh=None, clipniter=None, plot=None,
|
---|
| 3120 | getresidual=None, showprogress=None, minnrow=None,
|
---|
| 3121 | outlog=None, blfile=None, csvformat=None):
|
---|
| 3122 | """\
|
---|
| 3123 | Return a scan which has been baselined (all rows) by Chebyshev polynomials.
|
---|
| 3124 |
|
---|
| 3125 | Parameters:
|
---|
| 3126 | insitu: If False a new scantable is returned.
|
---|
| 3127 | Otherwise, the scaling is done in-situ
|
---|
| 3128 | The default is taken from .asaprc (False)
|
---|
| 3129 | mask: An optional mask
|
---|
| 3130 | order: the maximum order of Chebyshev polynomial (default is 5)
|
---|
| 3131 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
| 3132 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 3133 | clipping (default is 0)
|
---|
| 3134 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 3135 | plot the fit and the residual. In this each
|
---|
| 3136 | indivual fit has to be approved, by typing 'y'
|
---|
| 3137 | or 'n'
|
---|
| 3138 | getresidual: if False, returns best-fit values instead of
|
---|
| 3139 | residual. (default is True)
|
---|
| 3140 | showprogress: show progress status for large data.
|
---|
| 3141 | default is True.
|
---|
| 3142 | minnrow: minimum number of input spectra to show.
|
---|
| 3143 | default is 1000.
|
---|
| 3144 | outlog: Output the coefficients of the best-fit
|
---|
| 3145 | function to logger (default is False)
|
---|
| 3146 | blfile: Name of a text file in which the best-fit
|
---|
| 3147 | parameter values to be written
|
---|
| 3148 | (default is "": no file/logger output)
|
---|
| 3149 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
| 3150 |
|
---|
| 3151 | Example:
|
---|
| 3152 | # return a scan baselined by a cubic spline consisting of 2 pieces
|
---|
| 3153 | # (i.e., 1 internal knot),
|
---|
| 3154 | # also with 3-sigma clipping, iteration up to 4 times
|
---|
| 3155 | bscan = scan.cspline_baseline(npiece=2,clipthresh=3.0,clipniter=4)
|
---|
| 3156 |
|
---|
| 3157 | Note:
|
---|
| 3158 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 3159 | based on specunit of 'channel'.
|
---|
| 3160 | """
|
---|
| 3161 |
|
---|
| 3162 | try:
|
---|
| 3163 | varlist = vars()
|
---|
| 3164 |
|
---|
| 3165 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 3166 | if insitu:
|
---|
| 3167 | workscan = self
|
---|
| 3168 | else:
|
---|
| 3169 | workscan = self.copy()
|
---|
| 3170 |
|
---|
| 3171 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
| 3172 | if mask is None: mask = []
|
---|
| 3173 | if order is None: order = 5
|
---|
| 3174 | if clipthresh is None: clipthresh = 3.0
|
---|
| 3175 | if clipniter is None: clipniter = 0
|
---|
| 3176 | if plot is None: plot = False
|
---|
| 3177 | if getresidual is None: getresidual = True
|
---|
| 3178 | if showprogress is None: showprogress = True
|
---|
| 3179 | if minnrow is None: minnrow = 1000
|
---|
| 3180 | if outlog is None: outlog = False
|
---|
| 3181 | if blfile is None: blfile = ''
|
---|
| 3182 | if csvformat is None: csvformat = False
|
---|
| 3183 |
|
---|
| 3184 | if csvformat:
|
---|
| 3185 | scsvformat = "T"
|
---|
| 3186 | else:
|
---|
| 3187 | scsvformat = "F"
|
---|
| 3188 |
|
---|
| 3189 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
| 3190 | workscan._chebyshev_baseline(mask, order, clipthresh, clipniter,
|
---|
| 3191 | getresidual,
|
---|
| 3192 | pack_progress_params(showprogress,
|
---|
| 3193 | minnrow),
|
---|
| 3194 | outlog, scsvformat+blfile)
|
---|
| 3195 | workscan._add_history("chebyshev_baseline", varlist)
|
---|
| 3196 |
|
---|
| 3197 | if insitu:
|
---|
| 3198 | self._assign(workscan)
|
---|
| 3199 | else:
|
---|
| 3200 | return workscan
|
---|
| 3201 |
|
---|
| 3202 | except RuntimeError, e:
|
---|
| 3203 | raise_fitting_failure_exception(e)
|
---|
| 3204 |
|
---|
| 3205 | @asaplog_post_dec
|
---|
| 3206 | def auto_chebyshev_baseline(self, insitu=None, mask=None, order=None,
|
---|
| 3207 | clipthresh=None, clipniter=None,
|
---|
| 3208 | edge=None, threshold=None, chan_avg_limit=None,
|
---|
| 3209 | getresidual=None, plot=None,
|
---|
| 3210 | showprogress=None, minnrow=None, outlog=None,
|
---|
| 3211 | blfile=None, csvformat=None):
|
---|
| 3212 | """\
|
---|
| 3213 | Return a scan which has been baselined (all rows) by Chebyshev polynomials.
|
---|
| 3214 | Spectral lines are detected first using linefinder and masked out
|
---|
| 3215 | to avoid them affecting the baseline solution.
|
---|
| 3216 |
|
---|
| 3217 | Parameters:
|
---|
| 3218 | insitu: if False a new scantable is returned.
|
---|
| 3219 | Otherwise, the scaling is done in-situ
|
---|
| 3220 | The default is taken from .asaprc (False)
|
---|
| 3221 | mask: an optional mask retreived from scantable
|
---|
| 3222 | order: the maximum order of Chebyshev polynomial (default is 5)
|
---|
| 3223 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
| 3224 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 3225 | clipping (default is 0)
|
---|
| 3226 | edge: an optional number of channel to drop at
|
---|
| 3227 | the edge of spectrum. If only one value is
|
---|
| 3228 | specified, the same number will be dropped
|
---|
| 3229 | from both sides of the spectrum. Default
|
---|
| 3230 | is to keep all channels. Nested tuples
|
---|
| 3231 | represent individual edge selection for
|
---|
| 3232 | different IFs (a number of spectral channels
|
---|
| 3233 | can be different)
|
---|
| 3234 | threshold: the threshold used by line finder. It is
|
---|
| 3235 | better to keep it large as only strong lines
|
---|
| 3236 | affect the baseline solution.
|
---|
| 3237 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 3238 | channels to average during the search of
|
---|
| 3239 | weak and broad lines. The default is no
|
---|
| 3240 | averaging (and no search for weak lines).
|
---|
| 3241 | If such lines can affect the fitted baseline
|
---|
| 3242 | (e.g. a high order polynomial is fitted),
|
---|
| 3243 | increase this parameter (usually values up
|
---|
| 3244 | to 8 are reasonable). Most users of this
|
---|
| 3245 | method should find the default value sufficient.
|
---|
| 3246 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 3247 | plot the fit and the residual. In this each
|
---|
| 3248 | indivual fit has to be approved, by typing 'y'
|
---|
| 3249 | or 'n'
|
---|
| 3250 | getresidual: if False, returns best-fit values instead of
|
---|
| 3251 | residual. (default is True)
|
---|
| 3252 | showprogress: show progress status for large data.
|
---|
| 3253 | default is True.
|
---|
| 3254 | minnrow: minimum number of input spectra to show.
|
---|
| 3255 | default is 1000.
|
---|
| 3256 | outlog: Output the coefficients of the best-fit
|
---|
| 3257 | function to logger (default is False)
|
---|
| 3258 | blfile: Name of a text file in which the best-fit
|
---|
| 3259 | parameter values to be written
|
---|
| 3260 | (default is "": no file/logger output)
|
---|
| 3261 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
| 3262 |
|
---|
| 3263 | Example:
|
---|
| 3264 | bscan = scan.auto_cspline_baseline(npiece=3, insitu=False)
|
---|
| 3265 |
|
---|
| 3266 | Note:
|
---|
| 3267 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 3268 | based on specunit of 'channel'.
|
---|
| 3269 | """
|
---|
| 3270 |
|
---|
| 3271 | try:
|
---|
| 3272 | varlist = vars()
|
---|
| 3273 |
|
---|
| 3274 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 3275 | if insitu:
|
---|
| 3276 | workscan = self
|
---|
| 3277 | else:
|
---|
| 3278 | workscan = self.copy()
|
---|
| 3279 |
|
---|
| 3280 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
| 3281 | if mask is None: mask = []
|
---|
| 3282 | if order is None: order = 5
|
---|
| 3283 | if clipthresh is None: clipthresh = 3.0
|
---|
| 3284 | if clipniter is None: clipniter = 0
|
---|
| 3285 | if edge is None: edge = (0, 0)
|
---|
| 3286 | if threshold is None: threshold = 3
|
---|
| 3287 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 3288 | if plot is None: plot = False
|
---|
| 3289 | if getresidual is None: getresidual = True
|
---|
| 3290 | if showprogress is None: showprogress = True
|
---|
| 3291 | if minnrow is None: minnrow = 1000
|
---|
| 3292 | if outlog is None: outlog = False
|
---|
| 3293 | if blfile is None: blfile = ''
|
---|
| 3294 | if csvformat is None: csvformat = False
|
---|
| 3295 |
|
---|
| 3296 | if csvformat:
|
---|
| 3297 | scsvformat = "T"
|
---|
| 3298 | else:
|
---|
| 3299 | scsvformat = "F"
|
---|
| 3300 |
|
---|
| 3301 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
| 3302 | workscan._auto_chebyshev_baseline(mask, order, clipthresh,
|
---|
| 3303 | clipniter,
|
---|
| 3304 | normalise_edge_param(edge),
|
---|
| 3305 | threshold,
|
---|
| 3306 | chan_avg_limit, getresidual,
|
---|
| 3307 | pack_progress_params(showprogress,
|
---|
| 3308 | minnrow),
|
---|
| 3309 | outlog, scsvformat+blfile)
|
---|
| 3310 | workscan._add_history("auto_chebyshev_baseline", varlist)
|
---|
| 3311 |
|
---|
| 3312 | if insitu:
|
---|
| 3313 | self._assign(workscan)
|
---|
| 3314 | else:
|
---|
| 3315 | return workscan
|
---|
| 3316 |
|
---|
| 3317 | except RuntimeError, e:
|
---|
| 3318 | raise_fitting_failure_exception(e)
|
---|
| 3319 |
|
---|
| 3320 | @asaplog_post_dec
|
---|
[2269] | 3321 | def poly_baseline(self, mask=None, order=None, insitu=None, plot=None,
|
---|
| 3322 | getresidual=None, showprogress=None, minnrow=None,
|
---|
[2641] | 3323 | outlog=None, blfile=None, csvformat=None):
|
---|
[1907] | 3324 | """\
|
---|
| 3325 | Return a scan which has been baselined (all rows) by a polynomial.
|
---|
| 3326 | Parameters:
|
---|
[2189] | 3327 | insitu: if False a new scantable is returned.
|
---|
| 3328 | Otherwise, the scaling is done in-situ
|
---|
| 3329 | The default is taken from .asaprc (False)
|
---|
| 3330 | mask: an optional mask
|
---|
| 3331 | order: the order of the polynomial (default is 0)
|
---|
| 3332 | plot: plot the fit and the residual. In this each
|
---|
| 3333 | indivual fit has to be approved, by typing 'y'
|
---|
| 3334 | or 'n'
|
---|
| 3335 | getresidual: if False, returns best-fit values instead of
|
---|
| 3336 | residual. (default is True)
|
---|
| 3337 | showprogress: show progress status for large data.
|
---|
| 3338 | default is True.
|
---|
| 3339 | minnrow: minimum number of input spectra to show.
|
---|
| 3340 | default is 1000.
|
---|
| 3341 | outlog: Output the coefficients of the best-fit
|
---|
| 3342 | function to logger (default is False)
|
---|
| 3343 | blfile: Name of a text file in which the best-fit
|
---|
| 3344 | parameter values to be written
|
---|
| 3345 | (default is "": no file/logger output)
|
---|
[2641] | 3346 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[2012] | 3347 |
|
---|
[1907] | 3348 | Example:
|
---|
| 3349 | # return a scan baselined by a third order polynomial,
|
---|
| 3350 | # not using a mask
|
---|
| 3351 | bscan = scan.poly_baseline(order=3)
|
---|
| 3352 | """
|
---|
[1931] | 3353 |
|
---|
[2186] | 3354 | try:
|
---|
| 3355 | varlist = vars()
|
---|
[1931] | 3356 |
|
---|
[2269] | 3357 | if insitu is None:
|
---|
| 3358 | insitu = rcParams["insitu"]
|
---|
[2186] | 3359 | if insitu:
|
---|
| 3360 | workscan = self
|
---|
| 3361 | else:
|
---|
| 3362 | workscan = self.copy()
|
---|
[1907] | 3363 |
|
---|
[2410] | 3364 | #if mask is None: mask = [True for i in \
|
---|
| 3365 | # xrange(workscan.nchan())]
|
---|
| 3366 | if mask is None: mask = []
|
---|
[2189] | 3367 | if order is None: order = 0
|
---|
| 3368 | if plot is None: plot = False
|
---|
| 3369 | if getresidual is None: getresidual = True
|
---|
| 3370 | if showprogress is None: showprogress = True
|
---|
| 3371 | if minnrow is None: minnrow = 1000
|
---|
| 3372 | if outlog is None: outlog = False
|
---|
| 3373 | if blfile is None: blfile = ""
|
---|
[2641] | 3374 | if csvformat is None: csvformat = False
|
---|
[1907] | 3375 |
|
---|
[2641] | 3376 | if csvformat:
|
---|
| 3377 | scsvformat = "T"
|
---|
| 3378 | else:
|
---|
| 3379 | scsvformat = "F"
|
---|
| 3380 |
|
---|
[2012] | 3381 | if plot:
|
---|
[2269] | 3382 | outblfile = (blfile != "") and \
|
---|
[2349] | 3383 | os.path.exists(os.path.expanduser(
|
---|
| 3384 | os.path.expandvars(blfile))
|
---|
| 3385 | )
|
---|
[2269] | 3386 | if outblfile:
|
---|
| 3387 | blf = open(blfile, "a")
|
---|
[2012] | 3388 |
|
---|
[1907] | 3389 | f = fitter()
|
---|
| 3390 | f.set_function(lpoly=order)
|
---|
[2186] | 3391 |
|
---|
| 3392 | rows = xrange(workscan.nrow())
|
---|
| 3393 | #if len(rows) > 0: workscan._init_blinfo()
|
---|
[2610] | 3394 |
|
---|
| 3395 | action = "H"
|
---|
[1907] | 3396 | for r in rows:
|
---|
| 3397 | f.x = workscan._getabcissa(r)
|
---|
| 3398 | f.y = workscan._getspectrum(r)
|
---|
[2541] | 3399 | if mask:
|
---|
| 3400 | f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
|
---|
| 3401 | else: # mask=None
|
---|
| 3402 | f.mask = workscan._getmask(r)
|
---|
| 3403 |
|
---|
[1907] | 3404 | f.data = None
|
---|
| 3405 | f.fit()
|
---|
[2541] | 3406 |
|
---|
[2610] | 3407 | if action != "Y": # skip plotting when accepting all
|
---|
| 3408 | f.plot(residual=True)
|
---|
| 3409 | #accept_fit = raw_input("Accept fit ( [y]/n ): ")
|
---|
| 3410 | #if accept_fit.upper() == "N":
|
---|
| 3411 | # #workscan._append_blinfo(None, None, None)
|
---|
| 3412 | # continue
|
---|
| 3413 | accept_fit = self._get_verify_action("Accept fit?",action)
|
---|
| 3414 | if r == 0: action = None
|
---|
[1907] | 3415 | if accept_fit.upper() == "N":
|
---|
| 3416 | continue
|
---|
[2610] | 3417 | elif accept_fit.upper() == "R":
|
---|
| 3418 | break
|
---|
| 3419 | elif accept_fit.upper() == "A":
|
---|
| 3420 | action = "Y"
|
---|
[2012] | 3421 |
|
---|
| 3422 | blpars = f.get_parameters()
|
---|
| 3423 | masklist = workscan.get_masklist(f.mask, row=r, silent=True)
|
---|
| 3424 | #workscan._append_blinfo(blpars, masklist, f.mask)
|
---|
[2269] | 3425 | workscan._setspectrum((f.fitter.getresidual()
|
---|
| 3426 | if getresidual else f.fitter.getfit()), r)
|
---|
[1907] | 3427 |
|
---|
[2012] | 3428 | if outblfile:
|
---|
| 3429 | rms = workscan.get_rms(f.mask, r)
|
---|
[2269] | 3430 | dataout = \
|
---|
| 3431 | workscan.format_blparams_row(blpars["params"],
|
---|
| 3432 | blpars["fixed"],
|
---|
| 3433 | rms, str(masklist),
|
---|
[2641] | 3434 | r, True, csvformat)
|
---|
[2012] | 3435 | blf.write(dataout)
|
---|
| 3436 |
|
---|
[1907] | 3437 | f._p.unmap()
|
---|
| 3438 | f._p = None
|
---|
[2012] | 3439 |
|
---|
[2349] | 3440 | if outblfile:
|
---|
| 3441 | blf.close()
|
---|
[1907] | 3442 | else:
|
---|
[2269] | 3443 | workscan._poly_baseline(mask, order, getresidual,
|
---|
| 3444 | pack_progress_params(showprogress,
|
---|
| 3445 | minnrow),
|
---|
[2641] | 3446 | outlog, scsvformat+blfile)
|
---|
[1907] | 3447 |
|
---|
| 3448 | workscan._add_history("poly_baseline", varlist)
|
---|
| 3449 |
|
---|
| 3450 | if insitu:
|
---|
| 3451 | self._assign(workscan)
|
---|
| 3452 | else:
|
---|
| 3453 | return workscan
|
---|
| 3454 |
|
---|
[1919] | 3455 | except RuntimeError, e:
|
---|
[2186] | 3456 | raise_fitting_failure_exception(e)
|
---|
[1907] | 3457 |
|
---|
[2186] | 3458 | @asaplog_post_dec
|
---|
[2269] | 3459 | def auto_poly_baseline(self, mask=None, order=None, edge=None,
|
---|
| 3460 | threshold=None, chan_avg_limit=None,
|
---|
| 3461 | plot=None, insitu=None,
|
---|
| 3462 | getresidual=None, showprogress=None,
|
---|
[2641] | 3463 | minnrow=None, outlog=None, blfile=None, csvformat=None):
|
---|
[1846] | 3464 | """\
|
---|
[1931] | 3465 | Return a scan which has been baselined (all rows) by a polynomial.
|
---|
[880] | 3466 | Spectral lines are detected first using linefinder and masked out
|
---|
| 3467 | to avoid them affecting the baseline solution.
|
---|
| 3468 |
|
---|
| 3469 | Parameters:
|
---|
[2189] | 3470 | insitu: if False a new scantable is returned.
|
---|
| 3471 | Otherwise, the scaling is done in-situ
|
---|
| 3472 | The default is taken from .asaprc (False)
|
---|
| 3473 | mask: an optional mask retreived from scantable
|
---|
| 3474 | order: the order of the polynomial (default is 0)
|
---|
| 3475 | edge: an optional number of channel to drop at
|
---|
| 3476 | the edge of spectrum. If only one value is
|
---|
| 3477 | specified, the same number will be dropped
|
---|
| 3478 | from both sides of the spectrum. Default
|
---|
| 3479 | is to keep all channels. Nested tuples
|
---|
| 3480 | represent individual edge selection for
|
---|
| 3481 | different IFs (a number of spectral channels
|
---|
| 3482 | can be different)
|
---|
| 3483 | threshold: the threshold used by line finder. It is
|
---|
| 3484 | better to keep it large as only strong lines
|
---|
| 3485 | affect the baseline solution.
|
---|
| 3486 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 3487 | channels to average during the search of
|
---|
| 3488 | weak and broad lines. The default is no
|
---|
| 3489 | averaging (and no search for weak lines).
|
---|
| 3490 | If such lines can affect the fitted baseline
|
---|
| 3491 | (e.g. a high order polynomial is fitted),
|
---|
| 3492 | increase this parameter (usually values up
|
---|
| 3493 | to 8 are reasonable). Most users of this
|
---|
| 3494 | method should find the default value sufficient.
|
---|
| 3495 | plot: plot the fit and the residual. In this each
|
---|
| 3496 | indivual fit has to be approved, by typing 'y'
|
---|
| 3497 | or 'n'
|
---|
| 3498 | getresidual: if False, returns best-fit values instead of
|
---|
| 3499 | residual. (default is True)
|
---|
| 3500 | showprogress: show progress status for large data.
|
---|
| 3501 | default is True.
|
---|
| 3502 | minnrow: minimum number of input spectra to show.
|
---|
| 3503 | default is 1000.
|
---|
| 3504 | outlog: Output the coefficients of the best-fit
|
---|
| 3505 | function to logger (default is False)
|
---|
| 3506 | blfile: Name of a text file in which the best-fit
|
---|
| 3507 | parameter values to be written
|
---|
| 3508 | (default is "": no file/logger output)
|
---|
[2641] | 3509 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[1846] | 3510 |
|
---|
[2012] | 3511 | Example:
|
---|
| 3512 | bscan = scan.auto_poly_baseline(order=7, insitu=False)
|
---|
| 3513 | """
|
---|
[880] | 3514 |
|
---|
[2186] | 3515 | try:
|
---|
| 3516 | varlist = vars()
|
---|
[1846] | 3517 |
|
---|
[2269] | 3518 | if insitu is None:
|
---|
| 3519 | insitu = rcParams['insitu']
|
---|
[2186] | 3520 | if insitu:
|
---|
| 3521 | workscan = self
|
---|
| 3522 | else:
|
---|
| 3523 | workscan = self.copy()
|
---|
[1846] | 3524 |
|
---|
[2410] | 3525 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
| 3526 | if mask is None: mask = []
|
---|
[2186] | 3527 | if order is None: order = 0
|
---|
| 3528 | if edge is None: edge = (0, 0)
|
---|
| 3529 | if threshold is None: threshold = 3
|
---|
| 3530 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 3531 | if plot is None: plot = False
|
---|
| 3532 | if getresidual is None: getresidual = True
|
---|
[2189] | 3533 | if showprogress is None: showprogress = True
|
---|
| 3534 | if minnrow is None: minnrow = 1000
|
---|
[2186] | 3535 | if outlog is None: outlog = False
|
---|
| 3536 | if blfile is None: blfile = ''
|
---|
[2641] | 3537 | if csvformat is None: csvformat = False
|
---|
[1846] | 3538 |
|
---|
[2641] | 3539 | if csvformat:
|
---|
| 3540 | scsvformat = "T"
|
---|
| 3541 | else:
|
---|
| 3542 | scsvformat = "F"
|
---|
| 3543 |
|
---|
[2186] | 3544 | edge = normalise_edge_param(edge)
|
---|
[880] | 3545 |
|
---|
[2012] | 3546 | if plot:
|
---|
[2269] | 3547 | outblfile = (blfile != "") and \
|
---|
| 3548 | os.path.exists(os.path.expanduser(os.path.expandvars(blfile)))
|
---|
[2012] | 3549 | if outblfile: blf = open(blfile, "a")
|
---|
| 3550 |
|
---|
[2186] | 3551 | from asap.asaplinefind import linefinder
|
---|
[2012] | 3552 | fl = linefinder()
|
---|
[2269] | 3553 | fl.set_options(threshold=threshold, avg_limit=chan_avg_limit)
|
---|
[2012] | 3554 | fl.set_scan(workscan)
|
---|
[2186] | 3555 |
|
---|
[2012] | 3556 | f = fitter()
|
---|
| 3557 | f.set_function(lpoly=order)
|
---|
[880] | 3558 |
|
---|
[2186] | 3559 | rows = xrange(workscan.nrow())
|
---|
| 3560 | #if len(rows) > 0: workscan._init_blinfo()
|
---|
[2610] | 3561 |
|
---|
| 3562 | action = "H"
|
---|
[2012] | 3563 | for r in rows:
|
---|
[2186] | 3564 | idx = 2*workscan.getif(r)
|
---|
[2541] | 3565 | if mask:
|
---|
| 3566 | msk = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
|
---|
| 3567 | else: # mask=None
|
---|
| 3568 | msk = workscan._getmask(r)
|
---|
| 3569 | fl.find_lines(r, msk, edge[idx:idx+2])
|
---|
[907] | 3570 |
|
---|
[2012] | 3571 | f.x = workscan._getabcissa(r)
|
---|
| 3572 | f.y = workscan._getspectrum(r)
|
---|
| 3573 | f.mask = fl.get_mask()
|
---|
| 3574 | f.data = None
|
---|
| 3575 | f.fit()
|
---|
| 3576 |
|
---|
[2610] | 3577 | if action != "Y": # skip plotting when accepting all
|
---|
| 3578 | f.plot(residual=True)
|
---|
| 3579 | #accept_fit = raw_input("Accept fit ( [y]/n ): ")
|
---|
| 3580 | accept_fit = self._get_verify_action("Accept fit?",action)
|
---|
| 3581 | if r == 0: action = None
|
---|
[2012] | 3582 | if accept_fit.upper() == "N":
|
---|
| 3583 | #workscan._append_blinfo(None, None, None)
|
---|
| 3584 | continue
|
---|
[2610] | 3585 | elif accept_fit.upper() == "R":
|
---|
| 3586 | break
|
---|
| 3587 | elif accept_fit.upper() == "A":
|
---|
| 3588 | action = "Y"
|
---|
[2012] | 3589 |
|
---|
| 3590 | blpars = f.get_parameters()
|
---|
| 3591 | masklist = workscan.get_masklist(f.mask, row=r, silent=True)
|
---|
| 3592 | #workscan._append_blinfo(blpars, masklist, f.mask)
|
---|
[2349] | 3593 | workscan._setspectrum(
|
---|
| 3594 | (f.fitter.getresidual() if getresidual
|
---|
| 3595 | else f.fitter.getfit()), r
|
---|
| 3596 | )
|
---|
[2012] | 3597 |
|
---|
| 3598 | if outblfile:
|
---|
| 3599 | rms = workscan.get_rms(f.mask, r)
|
---|
[2269] | 3600 | dataout = \
|
---|
| 3601 | workscan.format_blparams_row(blpars["params"],
|
---|
| 3602 | blpars["fixed"],
|
---|
| 3603 | rms, str(masklist),
|
---|
[2641] | 3604 | r, True, csvformat)
|
---|
[2012] | 3605 | blf.write(dataout)
|
---|
| 3606 |
|
---|
| 3607 | f._p.unmap()
|
---|
| 3608 | f._p = None
|
---|
| 3609 |
|
---|
| 3610 | if outblfile: blf.close()
|
---|
| 3611 | else:
|
---|
[2269] | 3612 | workscan._auto_poly_baseline(mask, order, edge, threshold,
|
---|
| 3613 | chan_avg_limit, getresidual,
|
---|
| 3614 | pack_progress_params(showprogress,
|
---|
| 3615 | minnrow),
|
---|
[2641] | 3616 | outlog, scsvformat+blfile)
|
---|
[2012] | 3617 |
|
---|
| 3618 | workscan._add_history("auto_poly_baseline", varlist)
|
---|
| 3619 |
|
---|
| 3620 | if insitu:
|
---|
| 3621 | self._assign(workscan)
|
---|
| 3622 | else:
|
---|
| 3623 | return workscan
|
---|
| 3624 |
|
---|
| 3625 | except RuntimeError, e:
|
---|
[2186] | 3626 | raise_fitting_failure_exception(e)
|
---|
[2012] | 3627 |
|
---|
| 3628 | def _init_blinfo(self):
|
---|
| 3629 | """\
|
---|
| 3630 | Initialise the following three auxiliary members:
|
---|
| 3631 | blpars : parameters of the best-fit baseline,
|
---|
| 3632 | masklists : mask data (edge positions of masked channels) and
|
---|
| 3633 | actualmask : mask data (in boolean list),
|
---|
| 3634 | to keep for use later (including output to logger/text files).
|
---|
| 3635 | Used by poly_baseline() and auto_poly_baseline() in case of
|
---|
| 3636 | 'plot=True'.
|
---|
| 3637 | """
|
---|
| 3638 | self.blpars = []
|
---|
| 3639 | self.masklists = []
|
---|
| 3640 | self.actualmask = []
|
---|
| 3641 | return
|
---|
[880] | 3642 |
|
---|
[2012] | 3643 | def _append_blinfo(self, data_blpars, data_masklists, data_actualmask):
|
---|
| 3644 | """\
|
---|
| 3645 | Append baseline-fitting related info to blpars, masklist and
|
---|
| 3646 | actualmask.
|
---|
| 3647 | """
|
---|
| 3648 | self.blpars.append(data_blpars)
|
---|
| 3649 | self.masklists.append(data_masklists)
|
---|
| 3650 | self.actualmask.append(data_actualmask)
|
---|
| 3651 | return
|
---|
| 3652 |
|
---|
[1862] | 3653 | @asaplog_post_dec
|
---|
[914] | 3654 | def rotate_linpolphase(self, angle):
|
---|
[1846] | 3655 | """\
|
---|
[914] | 3656 | Rotate the phase of the complex polarization O=Q+iU correlation.
|
---|
| 3657 | This is always done in situ in the raw data. So if you call this
|
---|
| 3658 | function more than once then each call rotates the phase further.
|
---|
[1846] | 3659 |
|
---|
[914] | 3660 | Parameters:
|
---|
[1846] | 3661 |
|
---|
[914] | 3662 | angle: The angle (degrees) to rotate (add) by.
|
---|
[1846] | 3663 |
|
---|
| 3664 | Example::
|
---|
| 3665 |
|
---|
[914] | 3666 | scan.rotate_linpolphase(2.3)
|
---|
[1846] | 3667 |
|
---|
[914] | 3668 | """
|
---|
| 3669 | varlist = vars()
|
---|
[936] | 3670 | self._math._rotate_linpolphase(self, angle)
|
---|
[914] | 3671 | self._add_history("rotate_linpolphase", varlist)
|
---|
| 3672 | return
|
---|
[710] | 3673 |
|
---|
[1862] | 3674 | @asaplog_post_dec
|
---|
[914] | 3675 | def rotate_xyphase(self, angle):
|
---|
[1846] | 3676 | """\
|
---|
[914] | 3677 | Rotate the phase of the XY correlation. This is always done in situ
|
---|
| 3678 | in the data. So if you call this function more than once
|
---|
| 3679 | then each call rotates the phase further.
|
---|
[1846] | 3680 |
|
---|
[914] | 3681 | Parameters:
|
---|
[1846] | 3682 |
|
---|
[914] | 3683 | angle: The angle (degrees) to rotate (add) by.
|
---|
[1846] | 3684 |
|
---|
| 3685 | Example::
|
---|
| 3686 |
|
---|
[914] | 3687 | scan.rotate_xyphase(2.3)
|
---|
[1846] | 3688 |
|
---|
[914] | 3689 | """
|
---|
| 3690 | varlist = vars()
|
---|
[936] | 3691 | self._math._rotate_xyphase(self, angle)
|
---|
[914] | 3692 | self._add_history("rotate_xyphase", varlist)
|
---|
| 3693 | return
|
---|
| 3694 |
|
---|
[1862] | 3695 | @asaplog_post_dec
|
---|
[914] | 3696 | def swap_linears(self):
|
---|
[1846] | 3697 | """\
|
---|
[1573] | 3698 | Swap the linear polarisations XX and YY, or better the first two
|
---|
[1348] | 3699 | polarisations as this also works for ciculars.
|
---|
[914] | 3700 | """
|
---|
| 3701 | varlist = vars()
|
---|
[936] | 3702 | self._math._swap_linears(self)
|
---|
[914] | 3703 | self._add_history("swap_linears", varlist)
|
---|
| 3704 | return
|
---|
| 3705 |
|
---|
[1862] | 3706 | @asaplog_post_dec
|
---|
[914] | 3707 | def invert_phase(self):
|
---|
[1846] | 3708 | """\
|
---|
[914] | 3709 | Invert the phase of the complex polarisation
|
---|
| 3710 | """
|
---|
| 3711 | varlist = vars()
|
---|
[936] | 3712 | self._math._invert_phase(self)
|
---|
[914] | 3713 | self._add_history("invert_phase", varlist)
|
---|
| 3714 | return
|
---|
| 3715 |
|
---|
[1862] | 3716 | @asaplog_post_dec
|
---|
[876] | 3717 | def add(self, offset, insitu=None):
|
---|
[1846] | 3718 | """\
|
---|
[513] | 3719 | Return a scan where all spectra have the offset added
|
---|
[1846] | 3720 |
|
---|
[513] | 3721 | Parameters:
|
---|
[1846] | 3722 |
|
---|
[513] | 3723 | offset: the offset
|
---|
[1855] | 3724 |
|
---|
[513] | 3725 | insitu: if False a new scantable is returned.
|
---|
| 3726 | Otherwise, the scaling is done in-situ
|
---|
| 3727 | The default is taken from .asaprc (False)
|
---|
[1846] | 3728 |
|
---|
[513] | 3729 | """
|
---|
| 3730 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 3731 | self._math._setinsitu(insitu)
|
---|
[513] | 3732 | varlist = vars()
|
---|
[876] | 3733 | s = scantable(self._math._unaryop(self, offset, "ADD", False))
|
---|
[1118] | 3734 | s._add_history("add", varlist)
|
---|
[876] | 3735 | if insitu:
|
---|
| 3736 | self._assign(s)
|
---|
| 3737 | else:
|
---|
[513] | 3738 | return s
|
---|
| 3739 |
|
---|
[1862] | 3740 | @asaplog_post_dec
|
---|
[1308] | 3741 | def scale(self, factor, tsys=True, insitu=None):
|
---|
[1846] | 3742 | """\
|
---|
| 3743 |
|
---|
[1938] | 3744 | Return a scan where all spectra are scaled by the given 'factor'
|
---|
[1846] | 3745 |
|
---|
[513] | 3746 | Parameters:
|
---|
[1846] | 3747 |
|
---|
[1819] | 3748 | factor: the scaling factor (float or 1D float list)
|
---|
[1855] | 3749 |
|
---|
[513] | 3750 | insitu: if False a new scantable is returned.
|
---|
| 3751 | Otherwise, the scaling is done in-situ
|
---|
| 3752 | The default is taken from .asaprc (False)
|
---|
[1855] | 3753 |
|
---|
[513] | 3754 | tsys: if True (default) then apply the operation to Tsys
|
---|
| 3755 | as well as the data
|
---|
[1846] | 3756 |
|
---|
[513] | 3757 | """
|
---|
| 3758 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 3759 | self._math._setinsitu(insitu)
|
---|
[513] | 3760 | varlist = vars()
|
---|
[1819] | 3761 | s = None
|
---|
| 3762 | import numpy
|
---|
| 3763 | if isinstance(factor, list) or isinstance(factor, numpy.ndarray):
|
---|
[2320] | 3764 | if isinstance(factor[0], list) or isinstance(factor[0],
|
---|
| 3765 | numpy.ndarray):
|
---|
[1819] | 3766 | from asapmath import _array2dOp
|
---|
[2320] | 3767 | s = _array2dOp( self, factor, "MUL", tsys, insitu )
|
---|
[1819] | 3768 | else:
|
---|
[2320] | 3769 | s = scantable( self._math._arrayop( self, factor,
|
---|
| 3770 | "MUL", tsys ) )
|
---|
[1819] | 3771 | else:
|
---|
[2320] | 3772 | s = scantable(self._math._unaryop(self, factor, "MUL", tsys))
|
---|
[1118] | 3773 | s._add_history("scale", varlist)
|
---|
[876] | 3774 | if insitu:
|
---|
| 3775 | self._assign(s)
|
---|
| 3776 | else:
|
---|
[513] | 3777 | return s
|
---|
| 3778 |
|
---|
[2349] | 3779 | @preserve_selection
|
---|
| 3780 | def set_sourcetype(self, match, matchtype="pattern",
|
---|
[1504] | 3781 | sourcetype="reference"):
|
---|
[1846] | 3782 | """\
|
---|
[1502] | 3783 | Set the type of the source to be an source or reference scan
|
---|
[1846] | 3784 | using the provided pattern.
|
---|
| 3785 |
|
---|
[1502] | 3786 | Parameters:
|
---|
[1846] | 3787 |
|
---|
[1504] | 3788 | match: a Unix style pattern, regular expression or selector
|
---|
[1855] | 3789 |
|
---|
[1504] | 3790 | matchtype: 'pattern' (default) UNIX style pattern or
|
---|
| 3791 | 'regex' regular expression
|
---|
[1855] | 3792 |
|
---|
[1502] | 3793 | sourcetype: the type of the source to use (source/reference)
|
---|
[1846] | 3794 |
|
---|
[1502] | 3795 | """
|
---|
| 3796 | varlist = vars()
|
---|
| 3797 | stype = -1
|
---|
[2480] | 3798 | if sourcetype.lower().startswith("r") or sourcetype.lower() == "off":
|
---|
[1502] | 3799 | stype = 1
|
---|
[2480] | 3800 | elif sourcetype.lower().startswith("s") or sourcetype.lower() == "on":
|
---|
[1502] | 3801 | stype = 0
|
---|
[1504] | 3802 | else:
|
---|
[2480] | 3803 | raise ValueError("Illegal sourcetype use s(ource)/on or r(eference)/off")
|
---|
[1504] | 3804 | if matchtype.lower().startswith("p"):
|
---|
| 3805 | matchtype = "pattern"
|
---|
| 3806 | elif matchtype.lower().startswith("r"):
|
---|
| 3807 | matchtype = "regex"
|
---|
| 3808 | else:
|
---|
| 3809 | raise ValueError("Illegal matchtype, use p(attern) or r(egex)")
|
---|
[1502] | 3810 | sel = selector()
|
---|
| 3811 | if isinstance(match, selector):
|
---|
| 3812 | sel = match
|
---|
| 3813 | else:
|
---|
[2480] | 3814 | sel.set_query("SRCNAME=%s('%s')" % (matchtype, match))
|
---|
| 3815 | self.set_selection(sel)
|
---|
[1502] | 3816 | self._setsourcetype(stype)
|
---|
[1573] | 3817 | self._add_history("set_sourcetype", varlist)
|
---|
[1502] | 3818 |
|
---|
[1862] | 3819 | @asaplog_post_dec
|
---|
[1857] | 3820 | @preserve_selection
|
---|
[1819] | 3821 | def auto_quotient(self, preserve=True, mode='paired', verify=False):
|
---|
[1846] | 3822 | """\
|
---|
[670] | 3823 | This function allows to build quotients automatically.
|
---|
[1819] | 3824 | It assumes the observation to have the same number of
|
---|
[670] | 3825 | "ons" and "offs"
|
---|
[1846] | 3826 |
|
---|
[670] | 3827 | Parameters:
|
---|
[1846] | 3828 |
|
---|
[710] | 3829 | preserve: you can preserve (default) the continuum or
|
---|
| 3830 | remove it. The equations used are
|
---|
[1857] | 3831 |
|
---|
[670] | 3832 | preserve: Output = Toff * (on/off) - Toff
|
---|
[1857] | 3833 |
|
---|
[1070] | 3834 | remove: Output = Toff * (on/off) - Ton
|
---|
[1855] | 3835 |
|
---|
[1573] | 3836 | mode: the on/off detection mode
|
---|
[1348] | 3837 | 'paired' (default)
|
---|
| 3838 | identifies 'off' scans by the
|
---|
| 3839 | trailing '_R' (Mopra/Parkes) or
|
---|
| 3840 | '_e'/'_w' (Tid) and matches
|
---|
| 3841 | on/off pairs from the observing pattern
|
---|
[1502] | 3842 | 'time'
|
---|
| 3843 | finds the closest off in time
|
---|
[1348] | 3844 |
|
---|
[1857] | 3845 | .. todo:: verify argument is not implemented
|
---|
| 3846 |
|
---|
[670] | 3847 | """
|
---|
[1857] | 3848 | varlist = vars()
|
---|
[1348] | 3849 | modes = ["time", "paired"]
|
---|
[670] | 3850 | if not mode in modes:
|
---|
[876] | 3851 | msg = "please provide valid mode. Valid modes are %s" % (modes)
|
---|
| 3852 | raise ValueError(msg)
|
---|
[1348] | 3853 | s = None
|
---|
| 3854 | if mode.lower() == "paired":
|
---|
[1857] | 3855 | sel = self.get_selection()
|
---|
[1875] | 3856 | sel.set_query("SRCTYPE==psoff")
|
---|
[1356] | 3857 | self.set_selection(sel)
|
---|
[1348] | 3858 | offs = self.copy()
|
---|
[1875] | 3859 | sel.set_query("SRCTYPE==pson")
|
---|
[1356] | 3860 | self.set_selection(sel)
|
---|
[1348] | 3861 | ons = self.copy()
|
---|
| 3862 | s = scantable(self._math._quotient(ons, offs, preserve))
|
---|
| 3863 | elif mode.lower() == "time":
|
---|
| 3864 | s = scantable(self._math._auto_quotient(self, mode, preserve))
|
---|
[1118] | 3865 | s._add_history("auto_quotient", varlist)
|
---|
[876] | 3866 | return s
|
---|
[710] | 3867 |
|
---|
[1862] | 3868 | @asaplog_post_dec
|
---|
[1145] | 3869 | def mx_quotient(self, mask = None, weight='median', preserve=True):
|
---|
[1846] | 3870 | """\
|
---|
[1143] | 3871 | Form a quotient using "off" beams when observing in "MX" mode.
|
---|
[1846] | 3872 |
|
---|
[1143] | 3873 | Parameters:
|
---|
[1846] | 3874 |
|
---|
[1145] | 3875 | mask: an optional mask to be used when weight == 'stddev'
|
---|
[1855] | 3876 |
|
---|
[1143] | 3877 | weight: How to average the off beams. Default is 'median'.
|
---|
[1855] | 3878 |
|
---|
[1145] | 3879 | preserve: you can preserve (default) the continuum or
|
---|
[1855] | 3880 | remove it. The equations used are:
|
---|
[1846] | 3881 |
|
---|
[1855] | 3882 | preserve: Output = Toff * (on/off) - Toff
|
---|
| 3883 |
|
---|
| 3884 | remove: Output = Toff * (on/off) - Ton
|
---|
| 3885 |
|
---|
[1217] | 3886 | """
|
---|
[1593] | 3887 | mask = mask or ()
|
---|
[1141] | 3888 | varlist = vars()
|
---|
| 3889 | on = scantable(self._math._mx_extract(self, 'on'))
|
---|
[1143] | 3890 | preoff = scantable(self._math._mx_extract(self, 'off'))
|
---|
| 3891 | off = preoff.average_time(mask=mask, weight=weight, scanav=False)
|
---|
[1217] | 3892 | from asapmath import quotient
|
---|
[1145] | 3893 | q = quotient(on, off, preserve)
|
---|
[1143] | 3894 | q._add_history("mx_quotient", varlist)
|
---|
[1217] | 3895 | return q
|
---|
[513] | 3896 |
|
---|
[1862] | 3897 | @asaplog_post_dec
|
---|
[718] | 3898 | def freq_switch(self, insitu=None):
|
---|
[1846] | 3899 | """\
|
---|
[718] | 3900 | Apply frequency switching to the data.
|
---|
[1846] | 3901 |
|
---|
[718] | 3902 | Parameters:
|
---|
[1846] | 3903 |
|
---|
[718] | 3904 | insitu: if False a new scantable is returned.
|
---|
| 3905 | Otherwise, the swictching is done in-situ
|
---|
| 3906 | The default is taken from .asaprc (False)
|
---|
[1846] | 3907 |
|
---|
[718] | 3908 | """
|
---|
| 3909 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 3910 | self._math._setinsitu(insitu)
|
---|
[718] | 3911 | varlist = vars()
|
---|
[876] | 3912 | s = scantable(self._math._freqswitch(self))
|
---|
[1118] | 3913 | s._add_history("freq_switch", varlist)
|
---|
[1856] | 3914 | if insitu:
|
---|
| 3915 | self._assign(s)
|
---|
| 3916 | else:
|
---|
| 3917 | return s
|
---|
[718] | 3918 |
|
---|
[1862] | 3919 | @asaplog_post_dec
|
---|
[780] | 3920 | def recalc_azel(self):
|
---|
[1846] | 3921 | """Recalculate the azimuth and elevation for each position."""
|
---|
[780] | 3922 | varlist = vars()
|
---|
[876] | 3923 | self._recalcazel()
|
---|
[780] | 3924 | self._add_history("recalc_azel", varlist)
|
---|
| 3925 | return
|
---|
| 3926 |
|
---|
[1862] | 3927 | @asaplog_post_dec
|
---|
[513] | 3928 | def __add__(self, other):
|
---|
[2574] | 3929 | """
|
---|
| 3930 | implicit on all axes and on Tsys
|
---|
| 3931 | """
|
---|
[513] | 3932 | varlist = vars()
|
---|
[2574] | 3933 | s = self.__op( other, "ADD" )
|
---|
[513] | 3934 | s._add_history("operator +", varlist)
|
---|
| 3935 | return s
|
---|
| 3936 |
|
---|
[1862] | 3937 | @asaplog_post_dec
|
---|
[513] | 3938 | def __sub__(self, other):
|
---|
| 3939 | """
|
---|
| 3940 | implicit on all axes and on Tsys
|
---|
| 3941 | """
|
---|
| 3942 | varlist = vars()
|
---|
[2574] | 3943 | s = self.__op( other, "SUB" )
|
---|
[513] | 3944 | s._add_history("operator -", varlist)
|
---|
| 3945 | return s
|
---|
[710] | 3946 |
|
---|
[1862] | 3947 | @asaplog_post_dec
|
---|
[513] | 3948 | def __mul__(self, other):
|
---|
| 3949 | """
|
---|
| 3950 | implicit on all axes and on Tsys
|
---|
| 3951 | """
|
---|
| 3952 | varlist = vars()
|
---|
[2574] | 3953 | s = self.__op( other, "MUL" ) ;
|
---|
[513] | 3954 | s._add_history("operator *", varlist)
|
---|
| 3955 | return s
|
---|
| 3956 |
|
---|
[710] | 3957 |
|
---|
[1862] | 3958 | @asaplog_post_dec
|
---|
[513] | 3959 | def __div__(self, other):
|
---|
| 3960 | """
|
---|
| 3961 | implicit on all axes and on Tsys
|
---|
| 3962 | """
|
---|
| 3963 | varlist = vars()
|
---|
[2574] | 3964 | s = self.__op( other, "DIV" )
|
---|
| 3965 | s._add_history("operator /", varlist)
|
---|
| 3966 | return s
|
---|
| 3967 |
|
---|
| 3968 | @asaplog_post_dec
|
---|
| 3969 | def __op( self, other, mode ):
|
---|
[513] | 3970 | s = None
|
---|
| 3971 | if isinstance(other, scantable):
|
---|
[2574] | 3972 | s = scantable(self._math._binaryop(self, other, mode))
|
---|
[513] | 3973 | elif isinstance(other, float):
|
---|
| 3974 | if other == 0.0:
|
---|
[718] | 3975 | raise ZeroDivisionError("Dividing by zero is not recommended")
|
---|
[2574] | 3976 | s = scantable(self._math._unaryop(self, other, mode, False))
|
---|
[2144] | 3977 | elif isinstance(other, list) or isinstance(other, numpy.ndarray):
|
---|
[2349] | 3978 | if isinstance(other[0], list) \
|
---|
| 3979 | or isinstance(other[0], numpy.ndarray):
|
---|
[2144] | 3980 | from asapmath import _array2dOp
|
---|
[2574] | 3981 | s = _array2dOp( self, other, mode, False )
|
---|
[2144] | 3982 | else:
|
---|
[2574] | 3983 | s = scantable( self._math._arrayop( self, other,
|
---|
| 3984 | mode, False ) )
|
---|
[513] | 3985 | else:
|
---|
[718] | 3986 | raise TypeError("Other input is not a scantable or float value")
|
---|
[513] | 3987 | return s
|
---|
| 3988 |
|
---|
[1862] | 3989 | @asaplog_post_dec
|
---|
[530] | 3990 | def get_fit(self, row=0):
|
---|
[1846] | 3991 | """\
|
---|
[530] | 3992 | Print or return the stored fits for a row in the scantable
|
---|
[1846] | 3993 |
|
---|
[530] | 3994 | Parameters:
|
---|
[1846] | 3995 |
|
---|
[530] | 3996 | row: the row which the fit has been applied to.
|
---|
[1846] | 3997 |
|
---|
[530] | 3998 | """
|
---|
| 3999 | if row > self.nrow():
|
---|
| 4000 | return
|
---|
[976] | 4001 | from asap.asapfit import asapfit
|
---|
[530] | 4002 | fit = asapfit(self._getfit(row))
|
---|
[1859] | 4003 | asaplog.push( '%s' %(fit) )
|
---|
| 4004 | return fit.as_dict()
|
---|
[530] | 4005 |
|
---|
[2349] | 4006 | @preserve_selection
|
---|
[1483] | 4007 | def flag_nans(self):
|
---|
[1846] | 4008 | """\
|
---|
[1483] | 4009 | Utility function to flag NaN values in the scantable.
|
---|
| 4010 | """
|
---|
| 4011 | import numpy
|
---|
| 4012 | basesel = self.get_selection()
|
---|
| 4013 | for i in range(self.nrow()):
|
---|
[1589] | 4014 | sel = self.get_row_selector(i)
|
---|
| 4015 | self.set_selection(basesel+sel)
|
---|
[1483] | 4016 | nans = numpy.isnan(self._getspectrum(0))
|
---|
| 4017 | if numpy.any(nans):
|
---|
| 4018 | bnans = [ bool(v) for v in nans]
|
---|
| 4019 | self.flag(bnans)
|
---|
| 4020 |
|
---|
[1588] | 4021 | def get_row_selector(self, rowno):
|
---|
[1992] | 4022 | return selector(rows=[rowno])
|
---|
[1573] | 4023 |
|
---|
[484] | 4024 | def _add_history(self, funcname, parameters):
|
---|
[1435] | 4025 | if not rcParams['scantable.history']:
|
---|
| 4026 | return
|
---|
[484] | 4027 | # create date
|
---|
| 4028 | sep = "##"
|
---|
| 4029 | from datetime import datetime
|
---|
| 4030 | dstr = datetime.now().strftime('%Y/%m/%d %H:%M:%S')
|
---|
| 4031 | hist = dstr+sep
|
---|
| 4032 | hist += funcname+sep#cdate+sep
|
---|
[2349] | 4033 | if parameters.has_key('self'):
|
---|
| 4034 | del parameters['self']
|
---|
[1118] | 4035 | for k, v in parameters.iteritems():
|
---|
[484] | 4036 | if type(v) is dict:
|
---|
[1118] | 4037 | for k2, v2 in v.iteritems():
|
---|
[484] | 4038 | hist += k2
|
---|
| 4039 | hist += "="
|
---|
[1118] | 4040 | if isinstance(v2, scantable):
|
---|
[484] | 4041 | hist += 'scantable'
|
---|
| 4042 | elif k2 == 'mask':
|
---|
[1118] | 4043 | if isinstance(v2, list) or isinstance(v2, tuple):
|
---|
[513] | 4044 | hist += str(self._zip_mask(v2))
|
---|
| 4045 | else:
|
---|
| 4046 | hist += str(v2)
|
---|
[484] | 4047 | else:
|
---|
[513] | 4048 | hist += str(v2)
|
---|
[484] | 4049 | else:
|
---|
| 4050 | hist += k
|
---|
| 4051 | hist += "="
|
---|
[1118] | 4052 | if isinstance(v, scantable):
|
---|
[484] | 4053 | hist += 'scantable'
|
---|
| 4054 | elif k == 'mask':
|
---|
[1118] | 4055 | if isinstance(v, list) or isinstance(v, tuple):
|
---|
[513] | 4056 | hist += str(self._zip_mask(v))
|
---|
| 4057 | else:
|
---|
| 4058 | hist += str(v)
|
---|
[484] | 4059 | else:
|
---|
| 4060 | hist += str(v)
|
---|
| 4061 | hist += sep
|
---|
| 4062 | hist = hist[:-2] # remove trailing '##'
|
---|
| 4063 | self._addhistory(hist)
|
---|
| 4064 |
|
---|
[710] | 4065 |
|
---|
[484] | 4066 | def _zip_mask(self, mask):
|
---|
| 4067 | mask = list(mask)
|
---|
| 4068 | i = 0
|
---|
| 4069 | segments = []
|
---|
| 4070 | while mask[i:].count(1):
|
---|
| 4071 | i += mask[i:].index(1)
|
---|
| 4072 | if mask[i:].count(0):
|
---|
| 4073 | j = i + mask[i:].index(0)
|
---|
| 4074 | else:
|
---|
[710] | 4075 | j = len(mask)
|
---|
[1118] | 4076 | segments.append([i, j])
|
---|
[710] | 4077 | i = j
|
---|
[484] | 4078 | return segments
|
---|
[714] | 4079 |
|
---|
[626] | 4080 | def _get_ordinate_label(self):
|
---|
| 4081 | fu = "("+self.get_fluxunit()+")"
|
---|
| 4082 | import re
|
---|
| 4083 | lbl = "Intensity"
|
---|
[1118] | 4084 | if re.match(".K.", fu):
|
---|
[626] | 4085 | lbl = "Brightness Temperature "+ fu
|
---|
[1118] | 4086 | elif re.match(".Jy.", fu):
|
---|
[626] | 4087 | lbl = "Flux density "+ fu
|
---|
| 4088 | return lbl
|
---|
[710] | 4089 |
|
---|
[876] | 4090 | def _check_ifs(self):
|
---|
[2349] | 4091 | # return len(set([self.nchan(i) for i in self.getifnos()])) == 1
|
---|
[1986] | 4092 | nchans = [self.nchan(i) for i in self.getifnos()]
|
---|
[2004] | 4093 | nchans = filter(lambda t: t > 0, nchans)
|
---|
[876] | 4094 | return (sum(nchans)/len(nchans) == nchans[0])
|
---|
[976] | 4095 |
|
---|
[1862] | 4096 | @asaplog_post_dec
|
---|
[1916] | 4097 | def _fill(self, names, unit, average, opts={}):
|
---|
[976] | 4098 | first = True
|
---|
| 4099 | fullnames = []
|
---|
| 4100 | for name in names:
|
---|
| 4101 | name = os.path.expandvars(name)
|
---|
| 4102 | name = os.path.expanduser(name)
|
---|
| 4103 | if not os.path.exists(name):
|
---|
| 4104 | msg = "File '%s' does not exists" % (name)
|
---|
| 4105 | raise IOError(msg)
|
---|
| 4106 | fullnames.append(name)
|
---|
| 4107 | if average:
|
---|
| 4108 | asaplog.push('Auto averaging integrations')
|
---|
[1079] | 4109 | stype = int(rcParams['scantable.storage'].lower() == 'disk')
|
---|
[976] | 4110 | for name in fullnames:
|
---|
[1073] | 4111 | tbl = Scantable(stype)
|
---|
[2004] | 4112 | if is_ms( name ):
|
---|
| 4113 | r = msfiller( tbl )
|
---|
| 4114 | else:
|
---|
| 4115 | r = filler( tbl )
|
---|
[976] | 4116 | msg = "Importing %s..." % (name)
|
---|
[1118] | 4117 | asaplog.push(msg, False)
|
---|
[2349] | 4118 | r.open(name, opts)
|
---|
[2480] | 4119 | rx = rcParams['scantable.reference']
|
---|
| 4120 | r.setreferenceexpr(rx)
|
---|
[1843] | 4121 | r.fill()
|
---|
[976] | 4122 | if average:
|
---|
[1118] | 4123 | tbl = self._math._average((tbl, ), (), 'NONE', 'SCAN')
|
---|
[976] | 4124 | if not first:
|
---|
| 4125 | tbl = self._math._merge([self, tbl])
|
---|
| 4126 | Scantable.__init__(self, tbl)
|
---|
[1843] | 4127 | r.close()
|
---|
[1118] | 4128 | del r, tbl
|
---|
[976] | 4129 | first = False
|
---|
[1861] | 4130 | #flush log
|
---|
| 4131 | asaplog.post()
|
---|
[976] | 4132 | if unit is not None:
|
---|
| 4133 | self.set_fluxunit(unit)
|
---|
[1824] | 4134 | if not is_casapy():
|
---|
| 4135 | self.set_freqframe(rcParams['scantable.freqframe'])
|
---|
[976] | 4136 |
|
---|
[2610] | 4137 | def _get_verify_action( self, msg, action=None ):
|
---|
| 4138 | valid_act = ['Y', 'N', 'A', 'R']
|
---|
| 4139 | if not action or not isinstance(action, str):
|
---|
| 4140 | action = raw_input("%s [Y/n/a/r] (h for help): " % msg)
|
---|
| 4141 | if action == '':
|
---|
| 4142 | return "Y"
|
---|
| 4143 | elif (action.upper()[0] in valid_act):
|
---|
| 4144 | return action.upper()[0]
|
---|
| 4145 | elif (action.upper()[0] in ['H','?']):
|
---|
| 4146 | print "Available actions of verification [Y|n|a|r]"
|
---|
| 4147 | print " Y : Yes for current data (default)"
|
---|
| 4148 | print " N : No for current data"
|
---|
| 4149 | print " A : Accept all in the following and exit from verification"
|
---|
| 4150 | print " R : Reject all in the following and exit from verification"
|
---|
| 4151 | print " H or ?: help (show this message)"
|
---|
| 4152 | return self._get_verify_action(msg)
|
---|
| 4153 | else:
|
---|
| 4154 | return 'Y'
|
---|
[2012] | 4155 |
|
---|
[1402] | 4156 | def __getitem__(self, key):
|
---|
| 4157 | if key < 0:
|
---|
| 4158 | key += self.nrow()
|
---|
| 4159 | if key >= self.nrow():
|
---|
| 4160 | raise IndexError("Row index out of range.")
|
---|
| 4161 | return self._getspectrum(key)
|
---|
| 4162 |
|
---|
| 4163 | def __setitem__(self, key, value):
|
---|
| 4164 | if key < 0:
|
---|
| 4165 | key += self.nrow()
|
---|
| 4166 | if key >= self.nrow():
|
---|
| 4167 | raise IndexError("Row index out of range.")
|
---|
| 4168 | if not hasattr(value, "__len__") or \
|
---|
| 4169 | len(value) > self.nchan(self.getif(key)):
|
---|
| 4170 | raise ValueError("Spectrum length doesn't match.")
|
---|
| 4171 | return self._setspectrum(value, key)
|
---|
| 4172 |
|
---|
| 4173 | def __len__(self):
|
---|
| 4174 | return self.nrow()
|
---|
| 4175 |
|
---|
| 4176 | def __iter__(self):
|
---|
| 4177 | for i in range(len(self)):
|
---|
| 4178 | yield self[i]
|
---|