[1846] | 1 | """This module defines the scantable class."""
|
---|
| 2 |
|
---|
[1697] | 3 | import os
|
---|
[2315] | 4 | import tempfile
|
---|
[1948] | 5 | import numpy
|
---|
[1691] | 6 | try:
|
---|
| 7 | from functools import wraps as wraps_dec
|
---|
| 8 | except ImportError:
|
---|
| 9 | from asap.compatibility import wraps as wraps_dec
|
---|
| 10 |
|
---|
[1824] | 11 | from asap.env import is_casapy
|
---|
[876] | 12 | from asap._asap import Scantable
|
---|
[2004] | 13 | from asap._asap import filler, msfiller
|
---|
[1824] | 14 | from asap.parameters import rcParams
|
---|
[1862] | 15 | from asap.logging import asaplog, asaplog_post_dec
|
---|
[1824] | 16 | from asap.selector import selector
|
---|
| 17 | from asap.linecatalog import linecatalog
|
---|
[1600] | 18 | from asap.coordinate import coordinate
|
---|
[1859] | 19 | from asap.utils import _n_bools, mask_not, mask_and, mask_or, page
|
---|
[1907] | 20 | from asap.asapfitter import fitter
|
---|
[102] | 21 |
|
---|
[1689] | 22 | def preserve_selection(func):
|
---|
[1691] | 23 | @wraps_dec(func)
|
---|
[1689] | 24 | def wrap(obj, *args, **kw):
|
---|
| 25 | basesel = obj.get_selection()
|
---|
[1857] | 26 | try:
|
---|
| 27 | val = func(obj, *args, **kw)
|
---|
| 28 | finally:
|
---|
| 29 | obj.set_selection(basesel)
|
---|
[1689] | 30 | return val
|
---|
| 31 | return wrap
|
---|
| 32 |
|
---|
[1846] | 33 | def is_scantable(filename):
|
---|
| 34 | """Is the given file a scantable?
|
---|
[1689] | 35 |
|
---|
[1846] | 36 | Parameters:
|
---|
| 37 |
|
---|
| 38 | filename: the name of the file/directory to test
|
---|
| 39 |
|
---|
| 40 | """
|
---|
[1883] | 41 | if ( os.path.isdir(filename)
|
---|
| 42 | and os.path.exists(filename+'/table.info')
|
---|
| 43 | and os.path.exists(filename+'/table.dat') ):
|
---|
| 44 | f=open(filename+'/table.info')
|
---|
| 45 | l=f.readline()
|
---|
| 46 | f.close()
|
---|
[2687] | 47 | if ( l.find('Scantable') != -1 ):
|
---|
[1883] | 48 | return True
|
---|
[2687] | 49 | elif ( l.find('Measurement Set') == -1 and
|
---|
| 50 | l.find('Image') == -1 ):
|
---|
| 51 | return True
|
---|
[1883] | 52 | else:
|
---|
| 53 | return False
|
---|
| 54 | else:
|
---|
| 55 | return False
|
---|
| 56 | ## return (os.path.isdir(filename)
|
---|
| 57 | ## and not os.path.exists(filename+'/table.f1')
|
---|
| 58 | ## and os.path.exists(filename+'/table.info'))
|
---|
[1697] | 59 |
|
---|
[1883] | 60 | def is_ms(filename):
|
---|
| 61 | """Is the given file a MeasurementSet?
|
---|
[1697] | 62 |
|
---|
[1883] | 63 | Parameters:
|
---|
| 64 |
|
---|
| 65 | filename: the name of the file/directory to test
|
---|
| 66 |
|
---|
| 67 | """
|
---|
| 68 | if ( os.path.isdir(filename)
|
---|
| 69 | and os.path.exists(filename+'/table.info')
|
---|
| 70 | and os.path.exists(filename+'/table.dat') ):
|
---|
| 71 | f=open(filename+'/table.info')
|
---|
| 72 | l=f.readline()
|
---|
| 73 | f.close()
|
---|
| 74 | if ( l.find('Measurement Set') != -1 ):
|
---|
| 75 | return True
|
---|
| 76 | else:
|
---|
| 77 | return False
|
---|
| 78 | else:
|
---|
| 79 | return False
|
---|
[2186] | 80 |
|
---|
| 81 | def normalise_edge_param(edge):
|
---|
| 82 | """\
|
---|
| 83 | Convert a given edge value to a one-dimensional array that can be
|
---|
| 84 | given to baseline-fitting/subtraction functions.
|
---|
| 85 | The length of the output value will be an even because values for
|
---|
| 86 | the both sides of spectra are to be contained for each IF. When
|
---|
| 87 | the length is 2, the values will be applied to all IFs. If the length
|
---|
| 88 | is larger than 2, it will be 2*ifnos().
|
---|
| 89 | Accepted format of edge include:
|
---|
| 90 | * an integer - will be used for both sides of spectra of all IFs.
|
---|
| 91 | e.g. 10 is converted to [10,10]
|
---|
[2277] | 92 | * an empty list/tuple [] - converted to [0, 0] and used for all IFs.
|
---|
[2186] | 93 | * a list/tuple containing an integer - same as the above case.
|
---|
| 94 | e.g. [10] is converted to [10,10]
|
---|
| 95 | * a list/tuple containing two integers - will be used for all IFs.
|
---|
| 96 | e.g. [5,10] is output as it is. no need to convert.
|
---|
| 97 | * a list/tuple of lists/tuples containing TWO integers -
|
---|
| 98 | each element of edge will be used for each IF.
|
---|
[2277] | 99 | e.g. [[5,10],[15,20]] - [5,10] for IF[0] and [15,20] for IF[1].
|
---|
| 100 |
|
---|
| 101 | If an element contains the same integer values, the input 'edge'
|
---|
| 102 | parameter can be given in a simpler shape in the following cases:
|
---|
[2186] | 103 | ** when len(edge)!=2
|
---|
[2277] | 104 | any elements containing the same values can be replaced
|
---|
| 105 | to single integers.
|
---|
| 106 | e.g. [[15,15]] can be simplified to [15] (or [15,15] or 15 also).
|
---|
| 107 | e.g. [[1,1],[2,2],[3,3]] can be simplified to [1,2,3].
|
---|
[2186] | 108 | ** when len(edge)=2
|
---|
| 109 | care is needed for this case: ONLY ONE of the
|
---|
| 110 | elements can be a single integer,
|
---|
| 111 | e.g. [[5,5],[10,10]] can be simplified to [5,[10,10]]
|
---|
[2277] | 112 | or [[5,5],10], but can NOT be simplified to [5,10].
|
---|
[2186] | 113 | when [5,10] given, it is interpreted as
|
---|
[2277] | 114 | [[5,10],[5,10],[5,10],...] instead, as shown before.
|
---|
[2186] | 115 | """
|
---|
| 116 | from asap import _is_sequence_or_number as _is_valid
|
---|
| 117 | if isinstance(edge, list) or isinstance(edge, tuple):
|
---|
| 118 | for edgepar in edge:
|
---|
| 119 | if not _is_valid(edgepar, int):
|
---|
| 120 | raise ValueError, "Each element of the 'edge' tuple has \
|
---|
| 121 | to be a pair of integers or an integer."
|
---|
| 122 | if isinstance(edgepar, list) or isinstance(edgepar, tuple):
|
---|
| 123 | if len(edgepar) != 2:
|
---|
| 124 | raise ValueError, "Each element of the 'edge' tuple has \
|
---|
| 125 | to be a pair of integers or an integer."
|
---|
| 126 | else:
|
---|
| 127 | if not _is_valid(edge, int):
|
---|
| 128 | raise ValueError, "Parameter 'edge' has to be an integer or a \
|
---|
| 129 | pair of integers specified as a tuple. \
|
---|
| 130 | Nested tuples are allowed \
|
---|
| 131 | to make individual selection for different IFs."
|
---|
| 132 |
|
---|
| 133 |
|
---|
| 134 | if isinstance(edge, int):
|
---|
| 135 | edge = [ edge, edge ] # e.g. 3 => [3,3]
|
---|
| 136 | elif isinstance(edge, list) or isinstance(edge, tuple):
|
---|
| 137 | if len(edge) == 0:
|
---|
| 138 | edge = [0, 0] # e.g. [] => [0,0]
|
---|
| 139 | elif len(edge) == 1:
|
---|
| 140 | if isinstance(edge[0], int):
|
---|
| 141 | edge = [ edge[0], edge[0] ] # e.g. [1] => [1,1]
|
---|
| 142 |
|
---|
| 143 | commonedge = True
|
---|
| 144 | if len(edge) > 2: commonedge = False
|
---|
| 145 | else:
|
---|
| 146 | for edgepar in edge:
|
---|
| 147 | if isinstance(edgepar, list) or isinstance(edgepar, tuple):
|
---|
| 148 | commonedge = False
|
---|
| 149 | break
|
---|
| 150 |
|
---|
| 151 | if commonedge:
|
---|
| 152 | if len(edge) > 1:
|
---|
| 153 | norm_edge = edge
|
---|
| 154 | else:
|
---|
| 155 | norm_edge = edge + edge
|
---|
| 156 | else:
|
---|
| 157 | norm_edge = []
|
---|
| 158 | for edgepar in edge:
|
---|
| 159 | if isinstance(edgepar, int):
|
---|
| 160 | norm_edge += [edgepar, edgepar]
|
---|
| 161 | else:
|
---|
| 162 | norm_edge += edgepar
|
---|
| 163 |
|
---|
| 164 | return norm_edge
|
---|
| 165 |
|
---|
| 166 | def raise_fitting_failure_exception(e):
|
---|
| 167 | msg = "The fit failed, possibly because it didn't converge."
|
---|
| 168 | if rcParams["verbose"]:
|
---|
| 169 | asaplog.push(str(e))
|
---|
| 170 | asaplog.push(str(msg))
|
---|
| 171 | else:
|
---|
| 172 | raise RuntimeError(str(e)+'\n'+msg)
|
---|
| 173 |
|
---|
[2189] | 174 | def pack_progress_params(showprogress, minnrow):
|
---|
| 175 | return str(showprogress).lower() + ',' + str(minnrow)
|
---|
| 176 |
|
---|
[876] | 177 | class scantable(Scantable):
|
---|
[1846] | 178 | """\
|
---|
| 179 | The ASAP container for scans (single-dish data).
|
---|
[102] | 180 | """
|
---|
[1819] | 181 |
|
---|
[1862] | 182 | @asaplog_post_dec
|
---|
[2315] | 183 | def __init__(self, filename, average=None, unit=None, parallactify=None,
|
---|
| 184 | **args):
|
---|
[1846] | 185 | """\
|
---|
[102] | 186 | Create a scantable from a saved one or make a reference
|
---|
[1846] | 187 |
|
---|
[102] | 188 | Parameters:
|
---|
[1846] | 189 |
|
---|
| 190 | filename: the name of an asap table on disk
|
---|
| 191 | or
|
---|
| 192 | the name of a rpfits/sdfits/ms file
|
---|
| 193 | (integrations within scans are auto averaged
|
---|
| 194 | and the whole file is read) or
|
---|
| 195 | [advanced] a reference to an existing scantable
|
---|
| 196 |
|
---|
| 197 | average: average all integrations withinb a scan on read.
|
---|
| 198 | The default (True) is taken from .asaprc.
|
---|
| 199 |
|
---|
[484] | 200 | unit: brightness unit; must be consistent with K or Jy.
|
---|
[1846] | 201 | Over-rides the default selected by the filler
|
---|
| 202 | (input rpfits/sdfits/ms) or replaces the value
|
---|
| 203 | in existing scantables
|
---|
| 204 |
|
---|
[1920] | 205 | antenna: for MeasurementSet input data only:
|
---|
[2349] | 206 | Antenna selection. integer (id) or string
|
---|
| 207 | (name or id).
|
---|
[1846] | 208 |
|
---|
[2349] | 209 | parallactify: Indicate that the data had been parallactified.
|
---|
| 210 | Default (false) is taken from rc file.
|
---|
[1846] | 211 |
|
---|
[710] | 212 | """
|
---|
[976] | 213 | if average is None:
|
---|
[710] | 214 | average = rcParams['scantable.autoaverage']
|
---|
[1593] | 215 | parallactify = parallactify or rcParams['scantable.parallactify']
|
---|
[1259] | 216 | varlist = vars()
|
---|
[876] | 217 | from asap._asap import stmath
|
---|
[1819] | 218 | self._math = stmath( rcParams['insitu'] )
|
---|
[876] | 219 | if isinstance(filename, Scantable):
|
---|
| 220 | Scantable.__init__(self, filename)
|
---|
[181] | 221 | else:
|
---|
[1697] | 222 | if isinstance(filename, str):
|
---|
[976] | 223 | filename = os.path.expandvars(filename)
|
---|
| 224 | filename = os.path.expanduser(filename)
|
---|
| 225 | if not os.path.exists(filename):
|
---|
| 226 | s = "File '%s' not found." % (filename)
|
---|
| 227 | raise IOError(s)
|
---|
[1697] | 228 | if is_scantable(filename):
|
---|
| 229 | ondisk = rcParams['scantable.storage'] == 'disk'
|
---|
| 230 | Scantable.__init__(self, filename, ondisk)
|
---|
| 231 | if unit is not None:
|
---|
| 232 | self.set_fluxunit(unit)
|
---|
[2008] | 233 | if average:
|
---|
| 234 | self._assign( self.average_time( scanav=True ) )
|
---|
[1819] | 235 | # do not reset to the default freqframe
|
---|
| 236 | #self.set_freqframe(rcParams['scantable.freqframe'])
|
---|
[1883] | 237 | elif is_ms(filename):
|
---|
[1916] | 238 | # Measurement Set
|
---|
| 239 | opts={'ms': {}}
|
---|
| 240 | mskeys=['getpt','antenna']
|
---|
| 241 | for key in mskeys:
|
---|
| 242 | if key in args.keys():
|
---|
| 243 | opts['ms'][key] = args[key]
|
---|
| 244 | self._fill([filename], unit, average, opts)
|
---|
[1893] | 245 | elif os.path.isfile(filename):
|
---|
[1916] | 246 | self._fill([filename], unit, average)
|
---|
[2350] | 247 | # only apply to new data not "copy constructor"
|
---|
| 248 | self.parallactify(parallactify)
|
---|
[1883] | 249 | else:
|
---|
[1819] | 250 | msg = "The given file '%s'is not a valid " \
|
---|
| 251 | "asap table." % (filename)
|
---|
[1859] | 252 | raise IOError(msg)
|
---|
[1118] | 253 | elif (isinstance(filename, list) or isinstance(filename, tuple)) \
|
---|
[976] | 254 | and isinstance(filename[-1], str):
|
---|
[1916] | 255 | self._fill(filename, unit, average)
|
---|
[1586] | 256 | self.parallactify(parallactify)
|
---|
[1259] | 257 | self._add_history("scantable", varlist)
|
---|
[102] | 258 |
|
---|
[1862] | 259 | @asaplog_post_dec
|
---|
[876] | 260 | def save(self, name=None, format=None, overwrite=False):
|
---|
[1846] | 261 | """\
|
---|
[1280] | 262 | Store the scantable on disk. This can be an asap (aips++) Table,
|
---|
| 263 | SDFITS or MS2 format.
|
---|
[1846] | 264 |
|
---|
[116] | 265 | Parameters:
|
---|
[1846] | 266 |
|
---|
[2431] | 267 | name: the name of the outputfile. For format 'ASCII'
|
---|
[1093] | 268 | this is the root file name (data in 'name'.txt
|
---|
[497] | 269 | and header in 'name'_header.txt)
|
---|
[1855] | 270 |
|
---|
[116] | 271 | format: an optional file format. Default is ASAP.
|
---|
[1855] | 272 | Allowed are:
|
---|
| 273 |
|
---|
| 274 | * 'ASAP' (save as ASAP [aips++] Table),
|
---|
| 275 | * 'SDFITS' (save as SDFITS file)
|
---|
| 276 | * 'ASCII' (saves as ascii text file)
|
---|
| 277 | * 'MS2' (saves as an casacore MeasurementSet V2)
|
---|
[2315] | 278 | * 'FITS' (save as image FITS - not readable by
|
---|
| 279 | class)
|
---|
[1855] | 280 | * 'CLASS' (save as FITS readable by CLASS)
|
---|
| 281 |
|
---|
[411] | 282 | overwrite: If the file should be overwritten if it exists.
|
---|
[256] | 283 | The default False is to return with warning
|
---|
[411] | 284 | without writing the output. USE WITH CARE.
|
---|
[1855] | 285 |
|
---|
[1846] | 286 | Example::
|
---|
| 287 |
|
---|
[116] | 288 | scan.save('myscan.asap')
|
---|
[1118] | 289 | scan.save('myscan.sdfits', 'SDFITS')
|
---|
[1846] | 290 |
|
---|
[116] | 291 | """
|
---|
[411] | 292 | from os import path
|
---|
[1593] | 293 | format = format or rcParams['scantable.save']
|
---|
[256] | 294 | suffix = '.'+format.lower()
|
---|
[1118] | 295 | if name is None or name == "":
|
---|
[256] | 296 | name = 'scantable'+suffix
|
---|
[718] | 297 | msg = "No filename given. Using default name %s..." % name
|
---|
| 298 | asaplog.push(msg)
|
---|
[411] | 299 | name = path.expandvars(name)
|
---|
[256] | 300 | if path.isfile(name) or path.isdir(name):
|
---|
| 301 | if not overwrite:
|
---|
[718] | 302 | msg = "File %s exists." % name
|
---|
[1859] | 303 | raise IOError(msg)
|
---|
[451] | 304 | format2 = format.upper()
|
---|
| 305 | if format2 == 'ASAP':
|
---|
[116] | 306 | self._save(name)
|
---|
[2029] | 307 | elif format2 == 'MS2':
|
---|
| 308 | msopt = {'ms': {'overwrite': overwrite } }
|
---|
| 309 | from asap._asap import mswriter
|
---|
| 310 | writer = mswriter( self )
|
---|
| 311 | writer.write( name, msopt )
|
---|
[116] | 312 | else:
|
---|
[989] | 313 | from asap._asap import stwriter as stw
|
---|
[1118] | 314 | writer = stw(format2)
|
---|
| 315 | writer.write(self, name)
|
---|
[116] | 316 | return
|
---|
| 317 |
|
---|
[102] | 318 | def copy(self):
|
---|
[1846] | 319 | """Return a copy of this scantable.
|
---|
| 320 |
|
---|
| 321 | *Note*:
|
---|
| 322 |
|
---|
[1348] | 323 | This makes a full (deep) copy. scan2 = scan1 makes a reference.
|
---|
[1846] | 324 |
|
---|
| 325 | Example::
|
---|
| 326 |
|
---|
[102] | 327 | copiedscan = scan.copy()
|
---|
[1846] | 328 |
|
---|
[102] | 329 | """
|
---|
[876] | 330 | sd = scantable(Scantable._copy(self))
|
---|
[113] | 331 | return sd
|
---|
| 332 |
|
---|
[1093] | 333 | def drop_scan(self, scanid=None):
|
---|
[1846] | 334 | """\
|
---|
[1093] | 335 | Return a new scantable where the specified scan number(s) has(have)
|
---|
| 336 | been dropped.
|
---|
[1846] | 337 |
|
---|
[1093] | 338 | Parameters:
|
---|
[1846] | 339 |
|
---|
[1093] | 340 | scanid: a (list of) scan number(s)
|
---|
[1846] | 341 |
|
---|
[1093] | 342 | """
|
---|
| 343 | from asap import _is_sequence_or_number as _is_valid
|
---|
| 344 | from asap import _to_list
|
---|
| 345 | from asap import unique
|
---|
| 346 | if not _is_valid(scanid):
|
---|
[2315] | 347 | raise RuntimeError( 'Please specify a scanno to drop from the'
|
---|
| 348 | ' scantable' )
|
---|
[1859] | 349 | scanid = _to_list(scanid)
|
---|
| 350 | allscans = unique([ self.getscan(i) for i in range(self.nrow())])
|
---|
| 351 | for sid in scanid: allscans.remove(sid)
|
---|
| 352 | if len(allscans) == 0:
|
---|
| 353 | raise ValueError("Can't remove all scans")
|
---|
| 354 | sel = selector(scans=allscans)
|
---|
| 355 | return self._select_copy(sel)
|
---|
[1093] | 356 |
|
---|
[1594] | 357 | def _select_copy(self, selection):
|
---|
| 358 | orig = self.get_selection()
|
---|
| 359 | self.set_selection(orig+selection)
|
---|
| 360 | cp = self.copy()
|
---|
| 361 | self.set_selection(orig)
|
---|
| 362 | return cp
|
---|
| 363 |
|
---|
[102] | 364 | def get_scan(self, scanid=None):
|
---|
[1855] | 365 | """\
|
---|
[102] | 366 | Return a specific scan (by scanno) or collection of scans (by
|
---|
| 367 | source name) in a new scantable.
|
---|
[1846] | 368 |
|
---|
| 369 | *Note*:
|
---|
| 370 |
|
---|
[1348] | 371 | See scantable.drop_scan() for the inverse operation.
|
---|
[1846] | 372 |
|
---|
[102] | 373 | Parameters:
|
---|
[1846] | 374 |
|
---|
[513] | 375 | scanid: a (list of) scanno or a source name, unix-style
|
---|
| 376 | patterns are accepted for source name matching, e.g.
|
---|
| 377 | '*_R' gets all 'ref scans
|
---|
[1846] | 378 |
|
---|
| 379 | Example::
|
---|
| 380 |
|
---|
[513] | 381 | # get all scans containing the source '323p459'
|
---|
| 382 | newscan = scan.get_scan('323p459')
|
---|
| 383 | # get all 'off' scans
|
---|
| 384 | refscans = scan.get_scan('*_R')
|
---|
| 385 | # get a susbset of scans by scanno (as listed in scan.summary())
|
---|
[1118] | 386 | newscan = scan.get_scan([0, 2, 7, 10])
|
---|
[1846] | 387 |
|
---|
[102] | 388 | """
|
---|
| 389 | if scanid is None:
|
---|
[1859] | 390 | raise RuntimeError( 'Please specify a scan no or name to '
|
---|
| 391 | 'retrieve from the scantable' )
|
---|
[102] | 392 | try:
|
---|
[946] | 393 | bsel = self.get_selection()
|
---|
| 394 | sel = selector()
|
---|
[102] | 395 | if type(scanid) is str:
|
---|
[946] | 396 | sel.set_name(scanid)
|
---|
[1594] | 397 | return self._select_copy(sel)
|
---|
[102] | 398 | elif type(scanid) is int:
|
---|
[946] | 399 | sel.set_scans([scanid])
|
---|
[1594] | 400 | return self._select_copy(sel)
|
---|
[381] | 401 | elif type(scanid) is list:
|
---|
[946] | 402 | sel.set_scans(scanid)
|
---|
[1594] | 403 | return self._select_copy(sel)
|
---|
[381] | 404 | else:
|
---|
[718] | 405 | msg = "Illegal scanid type, use 'int' or 'list' if ints."
|
---|
[1859] | 406 | raise TypeError(msg)
|
---|
[102] | 407 | except RuntimeError:
|
---|
[1859] | 408 | raise
|
---|
[102] | 409 |
|
---|
| 410 | def __str__(self):
|
---|
[2315] | 411 | tempFile = tempfile.NamedTemporaryFile()
|
---|
| 412 | Scantable._summary(self, tempFile.name)
|
---|
| 413 | tempFile.seek(0)
|
---|
| 414 | asaplog.clear()
|
---|
| 415 | return tempFile.file.read()
|
---|
[102] | 416 |
|
---|
[2315] | 417 | @asaplog_post_dec
|
---|
[976] | 418 | def summary(self, filename=None):
|
---|
[1846] | 419 | """\
|
---|
[102] | 420 | Print a summary of the contents of this scantable.
|
---|
[1846] | 421 |
|
---|
[102] | 422 | Parameters:
|
---|
[1846] | 423 |
|
---|
[1931] | 424 | filename: the name of a file to write the putput to
|
---|
[102] | 425 | Default - no file output
|
---|
[1846] | 426 |
|
---|
[102] | 427 | """
|
---|
| 428 | if filename is not None:
|
---|
[256] | 429 | if filename is "":
|
---|
| 430 | filename = 'scantable_summary.txt'
|
---|
[415] | 431 | from os.path import expandvars, isdir
|
---|
[411] | 432 | filename = expandvars(filename)
|
---|
[2286] | 433 | if isdir(filename):
|
---|
[718] | 434 | msg = "Illegal file name '%s'." % (filename)
|
---|
[1859] | 435 | raise IOError(msg)
|
---|
[2286] | 436 | else:
|
---|
| 437 | filename = ""
|
---|
| 438 | Scantable._summary(self, filename)
|
---|
[710] | 439 |
|
---|
[1512] | 440 | def get_spectrum(self, rowno):
|
---|
[1471] | 441 | """Return the spectrum for the current row in the scantable as a list.
|
---|
[1846] | 442 |
|
---|
[1471] | 443 | Parameters:
|
---|
[1846] | 444 |
|
---|
[1573] | 445 | rowno: the row number to retrieve the spectrum from
|
---|
[1846] | 446 |
|
---|
[1471] | 447 | """
|
---|
| 448 | return self._getspectrum(rowno)
|
---|
[946] | 449 |
|
---|
[1471] | 450 | def get_mask(self, rowno):
|
---|
| 451 | """Return the mask for the current row in the scantable as a list.
|
---|
[1846] | 452 |
|
---|
[1471] | 453 | Parameters:
|
---|
[1846] | 454 |
|
---|
[1573] | 455 | rowno: the row number to retrieve the mask from
|
---|
[1846] | 456 |
|
---|
[1471] | 457 | """
|
---|
| 458 | return self._getmask(rowno)
|
---|
| 459 |
|
---|
| 460 | def set_spectrum(self, spec, rowno):
|
---|
[1938] | 461 | """Set the spectrum for the current row in the scantable.
|
---|
[1846] | 462 |
|
---|
[1471] | 463 | Parameters:
|
---|
[1846] | 464 |
|
---|
[1855] | 465 | spec: the new spectrum
|
---|
[1846] | 466 |
|
---|
[1855] | 467 | rowno: the row number to set the spectrum for
|
---|
| 468 |
|
---|
[1471] | 469 | """
|
---|
[2348] | 470 | assert(len(spec) == self.nchan(self.getif(rowno)))
|
---|
[1471] | 471 | return self._setspectrum(spec, rowno)
|
---|
| 472 |
|
---|
[1600] | 473 | def get_coordinate(self, rowno):
|
---|
| 474 | """Return the (spectral) coordinate for a a given 'rowno'.
|
---|
[1846] | 475 |
|
---|
| 476 | *Note*:
|
---|
| 477 |
|
---|
[1600] | 478 | * This coordinate is only valid until a scantable method modifies
|
---|
| 479 | the frequency axis.
|
---|
| 480 | * This coordinate does contain the original frequency set-up
|
---|
| 481 | NOT the new frame. The conversions however are done using the user
|
---|
| 482 | specified frame (e.g. LSRK/TOPO). To get the 'real' coordinate,
|
---|
| 483 | use scantable.freq_align first. Without it there is no closure,
|
---|
[1846] | 484 | i.e.::
|
---|
[1600] | 485 |
|
---|
[1846] | 486 | c = myscan.get_coordinate(0)
|
---|
| 487 | c.to_frequency(c.get_reference_pixel()) != c.get_reference_value()
|
---|
| 488 |
|
---|
[1600] | 489 | Parameters:
|
---|
[1846] | 490 |
|
---|
[1600] | 491 | rowno: the row number for the spectral coordinate
|
---|
| 492 |
|
---|
| 493 | """
|
---|
| 494 | return coordinate(Scantable.get_coordinate(self, rowno))
|
---|
| 495 |
|
---|
[946] | 496 | def get_selection(self):
|
---|
[1846] | 497 | """\
|
---|
[1005] | 498 | Get the selection object currently set on this scantable.
|
---|
[1846] | 499 |
|
---|
| 500 | Example::
|
---|
| 501 |
|
---|
[1005] | 502 | sel = scan.get_selection()
|
---|
| 503 | sel.set_ifs(0) # select IF 0
|
---|
| 504 | scan.set_selection(sel) # apply modified selection
|
---|
[1846] | 505 |
|
---|
[946] | 506 | """
|
---|
| 507 | return selector(self._getselection())
|
---|
| 508 |
|
---|
[1576] | 509 | def set_selection(self, selection=None, **kw):
|
---|
[1846] | 510 | """\
|
---|
[1005] | 511 | Select a subset of the data. All following operations on this scantable
|
---|
| 512 | are only applied to thi selection.
|
---|
[1846] | 513 |
|
---|
[1005] | 514 | Parameters:
|
---|
[1697] | 515 |
|
---|
[1846] | 516 | selection: a selector object (default unset the selection), or
|
---|
[2431] | 517 | any combination of 'pols', 'ifs', 'beams', 'scans',
|
---|
| 518 | 'cycles', 'name', 'query'
|
---|
[1697] | 519 |
|
---|
[1846] | 520 | Examples::
|
---|
[1697] | 521 |
|
---|
[1005] | 522 | sel = selector() # create a selection object
|
---|
[1118] | 523 | self.set_scans([0, 3]) # select SCANNO 0 and 3
|
---|
[1005] | 524 | scan.set_selection(sel) # set the selection
|
---|
| 525 | scan.summary() # will only print summary of scanno 0 an 3
|
---|
| 526 | scan.set_selection() # unset the selection
|
---|
[1697] | 527 | # or the equivalent
|
---|
| 528 | scan.set_selection(scans=[0,3])
|
---|
| 529 | scan.summary() # will only print summary of scanno 0 an 3
|
---|
| 530 | scan.set_selection() # unset the selection
|
---|
[1846] | 531 |
|
---|
[946] | 532 | """
|
---|
[1576] | 533 | if selection is None:
|
---|
| 534 | # reset
|
---|
| 535 | if len(kw) == 0:
|
---|
| 536 | selection = selector()
|
---|
| 537 | else:
|
---|
| 538 | # try keywords
|
---|
| 539 | for k in kw:
|
---|
| 540 | if k not in selector.fields:
|
---|
[2320] | 541 | raise KeyError("Invalid selection key '%s', "
|
---|
| 542 | "valid keys are %s" % (k,
|
---|
| 543 | selector.fields))
|
---|
[1576] | 544 | selection = selector(**kw)
|
---|
[946] | 545 | self._setselection(selection)
|
---|
| 546 |
|
---|
[1819] | 547 | def get_row(self, row=0, insitu=None):
|
---|
[1846] | 548 | """\
|
---|
[1819] | 549 | Select a row in the scantable.
|
---|
| 550 | Return a scantable with single row.
|
---|
[1846] | 551 |
|
---|
[1819] | 552 | Parameters:
|
---|
[1846] | 553 |
|
---|
| 554 | row: row no of integration, default is 0.
|
---|
| 555 | insitu: if False a new scantable is returned. Otherwise, the
|
---|
| 556 | scaling is done in-situ. The default is taken from .asaprc
|
---|
| 557 | (False)
|
---|
| 558 |
|
---|
[1819] | 559 | """
|
---|
[2349] | 560 | if insitu is None:
|
---|
| 561 | insitu = rcParams['insitu']
|
---|
[1819] | 562 | if not insitu:
|
---|
| 563 | workscan = self.copy()
|
---|
| 564 | else:
|
---|
| 565 | workscan = self
|
---|
| 566 | # Select a row
|
---|
[2349] | 567 | sel = selector()
|
---|
[1992] | 568 | sel.set_rows([row])
|
---|
[1819] | 569 | workscan.set_selection(sel)
|
---|
| 570 | if not workscan.nrow() == 1:
|
---|
[2349] | 571 | msg = "Could not identify single row. %d rows selected." \
|
---|
| 572 | % (workscan.nrow())
|
---|
[1819] | 573 | raise RuntimeError(msg)
|
---|
| 574 | if insitu:
|
---|
| 575 | self._assign(workscan)
|
---|
| 576 | else:
|
---|
| 577 | return workscan
|
---|
| 578 |
|
---|
[1862] | 579 | @asaplog_post_dec
|
---|
[1907] | 580 | def stats(self, stat='stddev', mask=None, form='3.3f', row=None):
|
---|
[1846] | 581 | """\
|
---|
[135] | 582 | Determine the specified statistic of the current beam/if/pol
|
---|
[102] | 583 | Takes a 'mask' as an optional parameter to specify which
|
---|
| 584 | channels should be excluded.
|
---|
[1846] | 585 |
|
---|
[102] | 586 | Parameters:
|
---|
[1846] | 587 |
|
---|
[1819] | 588 | stat: 'min', 'max', 'min_abc', 'max_abc', 'sumsq', 'sum',
|
---|
| 589 | 'mean', 'var', 'stddev', 'avdev', 'rms', 'median'
|
---|
[1855] | 590 |
|
---|
[135] | 591 | mask: an optional mask specifying where the statistic
|
---|
[102] | 592 | should be determined.
|
---|
[1855] | 593 |
|
---|
[1819] | 594 | form: format string to print statistic values
|
---|
[1846] | 595 |
|
---|
[1907] | 596 | row: row number of spectrum to process.
|
---|
| 597 | (default is None: for all rows)
|
---|
[1846] | 598 |
|
---|
[1907] | 599 | Example:
|
---|
[113] | 600 | scan.set_unit('channel')
|
---|
[1118] | 601 | msk = scan.create_mask([100, 200], [500, 600])
|
---|
[135] | 602 | scan.stats(stat='mean', mask=m)
|
---|
[1846] | 603 |
|
---|
[102] | 604 | """
|
---|
[1593] | 605 | mask = mask or []
|
---|
[876] | 606 | if not self._check_ifs():
|
---|
[1118] | 607 | raise ValueError("Cannot apply mask as the IFs have different "
|
---|
| 608 | "number of channels. Please use setselection() "
|
---|
| 609 | "to select individual IFs")
|
---|
[1819] | 610 | rtnabc = False
|
---|
| 611 | if stat.lower().endswith('_abc'): rtnabc = True
|
---|
| 612 | getchan = False
|
---|
| 613 | if stat.lower().startswith('min') or stat.lower().startswith('max'):
|
---|
| 614 | chan = self._math._minmaxchan(self, mask, stat)
|
---|
| 615 | getchan = True
|
---|
| 616 | statvals = []
|
---|
[1907] | 617 | if not rtnabc:
|
---|
| 618 | if row == None:
|
---|
| 619 | statvals = self._math._stats(self, mask, stat)
|
---|
| 620 | else:
|
---|
| 621 | statvals = self._math._statsrow(self, mask, stat, int(row))
|
---|
[256] | 622 |
|
---|
[1819] | 623 | #def cb(i):
|
---|
| 624 | # return statvals[i]
|
---|
[256] | 625 |
|
---|
[1819] | 626 | #return self._row_callback(cb, stat)
|
---|
[102] | 627 |
|
---|
[1819] | 628 | label=stat
|
---|
| 629 | #callback=cb
|
---|
| 630 | out = ""
|
---|
| 631 | #outvec = []
|
---|
| 632 | sep = '-'*50
|
---|
[1907] | 633 |
|
---|
| 634 | if row == None:
|
---|
| 635 | rows = xrange(self.nrow())
|
---|
| 636 | elif isinstance(row, int):
|
---|
| 637 | rows = [ row ]
|
---|
| 638 |
|
---|
| 639 | for i in rows:
|
---|
[1819] | 640 | refstr = ''
|
---|
| 641 | statunit= ''
|
---|
| 642 | if getchan:
|
---|
| 643 | qx, qy = self.chan2data(rowno=i, chan=chan[i])
|
---|
| 644 | if rtnabc:
|
---|
| 645 | statvals.append(qx['value'])
|
---|
| 646 | refstr = ('(value: %'+form) % (qy['value'])+' ['+qy['unit']+'])'
|
---|
| 647 | statunit= '['+qx['unit']+']'
|
---|
| 648 | else:
|
---|
| 649 | refstr = ('(@ %'+form) % (qx['value'])+' ['+qx['unit']+'])'
|
---|
| 650 |
|
---|
| 651 | tm = self._gettime(i)
|
---|
| 652 | src = self._getsourcename(i)
|
---|
| 653 | out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
|
---|
| 654 | out += 'Time[%s]:\n' % (tm)
|
---|
[1907] | 655 | if self.nbeam(-1) > 1: out += ' Beam[%d] ' % (self.getbeam(i))
|
---|
| 656 | if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
|
---|
| 657 | if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
|
---|
[1819] | 658 | #outvec.append(callback(i))
|
---|
[1907] | 659 | if len(rows) > 1:
|
---|
| 660 | # out += ('= %'+form) % (outvec[i]) +' '+refstr+'\n'
|
---|
| 661 | out += ('= %'+form) % (statvals[i]) +' '+refstr+'\n'
|
---|
| 662 | else:
|
---|
| 663 | # out += ('= %'+form) % (outvec[0]) +' '+refstr+'\n'
|
---|
| 664 | out += ('= %'+form) % (statvals[0]) +' '+refstr+'\n'
|
---|
[1819] | 665 | out += sep+"\n"
|
---|
| 666 |
|
---|
[1859] | 667 | import os
|
---|
| 668 | if os.environ.has_key( 'USER' ):
|
---|
| 669 | usr = os.environ['USER']
|
---|
| 670 | else:
|
---|
| 671 | import commands
|
---|
| 672 | usr = commands.getoutput( 'whoami' )
|
---|
| 673 | tmpfile = '/tmp/tmp_'+usr+'_casapy_asap_scantable_stats'
|
---|
| 674 | f = open(tmpfile,'w')
|
---|
| 675 | print >> f, sep
|
---|
| 676 | print >> f, ' %s %s' % (label, statunit)
|
---|
| 677 | print >> f, sep
|
---|
| 678 | print >> f, out
|
---|
| 679 | f.close()
|
---|
| 680 | f = open(tmpfile,'r')
|
---|
| 681 | x = f.readlines()
|
---|
| 682 | f.close()
|
---|
| 683 | asaplog.push(''.join(x), False)
|
---|
| 684 |
|
---|
[1819] | 685 | return statvals
|
---|
| 686 |
|
---|
| 687 | def chan2data(self, rowno=0, chan=0):
|
---|
[1846] | 688 | """\
|
---|
[1819] | 689 | Returns channel/frequency/velocity and spectral value
|
---|
| 690 | at an arbitrary row and channel in the scantable.
|
---|
[1846] | 691 |
|
---|
[1819] | 692 | Parameters:
|
---|
[1846] | 693 |
|
---|
[1819] | 694 | rowno: a row number in the scantable. Default is the
|
---|
| 695 | first row, i.e. rowno=0
|
---|
[1855] | 696 |
|
---|
[1819] | 697 | chan: a channel in the scantable. Default is the first
|
---|
| 698 | channel, i.e. pos=0
|
---|
[1846] | 699 |
|
---|
[1819] | 700 | """
|
---|
| 701 | if isinstance(rowno, int) and isinstance(chan, int):
|
---|
| 702 | qx = {'unit': self.get_unit(),
|
---|
| 703 | 'value': self._getabcissa(rowno)[chan]}
|
---|
| 704 | qy = {'unit': self.get_fluxunit(),
|
---|
| 705 | 'value': self._getspectrum(rowno)[chan]}
|
---|
| 706 | return qx, qy
|
---|
| 707 |
|
---|
[1118] | 708 | def stddev(self, mask=None):
|
---|
[1846] | 709 | """\
|
---|
[135] | 710 | Determine the standard deviation of the current beam/if/pol
|
---|
| 711 | Takes a 'mask' as an optional parameter to specify which
|
---|
| 712 | channels should be excluded.
|
---|
[1846] | 713 |
|
---|
[135] | 714 | Parameters:
|
---|
[1846] | 715 |
|
---|
[135] | 716 | mask: an optional mask specifying where the standard
|
---|
| 717 | deviation should be determined.
|
---|
| 718 |
|
---|
[1846] | 719 | Example::
|
---|
| 720 |
|
---|
[135] | 721 | scan.set_unit('channel')
|
---|
[1118] | 722 | msk = scan.create_mask([100, 200], [500, 600])
|
---|
[135] | 723 | scan.stddev(mask=m)
|
---|
[1846] | 724 |
|
---|
[135] | 725 | """
|
---|
[1118] | 726 | return self.stats(stat='stddev', mask=mask);
|
---|
[135] | 727 |
|
---|
[1003] | 728 |
|
---|
[1259] | 729 | def get_column_names(self):
|
---|
[1846] | 730 | """\
|
---|
[1003] | 731 | Return a list of column names, which can be used for selection.
|
---|
| 732 | """
|
---|
[1259] | 733 | return list(Scantable.get_column_names(self))
|
---|
[1003] | 734 |
|
---|
[1730] | 735 | def get_tsys(self, row=-1):
|
---|
[1846] | 736 | """\
|
---|
[113] | 737 | Return the System temperatures.
|
---|
[1846] | 738 |
|
---|
| 739 | Parameters:
|
---|
| 740 |
|
---|
| 741 | row: the rowno to get the information for. (default all rows)
|
---|
| 742 |
|
---|
[113] | 743 | Returns:
|
---|
[1846] | 744 |
|
---|
[876] | 745 | a list of Tsys values for the current selection
|
---|
[1846] | 746 |
|
---|
[113] | 747 | """
|
---|
[1730] | 748 | if row > -1:
|
---|
| 749 | return self._get_column(self._gettsys, row)
|
---|
[876] | 750 | return self._row_callback(self._gettsys, "Tsys")
|
---|
[256] | 751 |
|
---|
[2406] | 752 | def get_tsysspectrum(self, row=-1):
|
---|
| 753 | """\
|
---|
| 754 | Return the channel dependent system temperatures.
|
---|
[1730] | 755 |
|
---|
[2406] | 756 | Parameters:
|
---|
| 757 |
|
---|
| 758 | row: the rowno to get the information for. (default all rows)
|
---|
| 759 |
|
---|
| 760 | Returns:
|
---|
| 761 |
|
---|
| 762 | a list of Tsys values for the current selection
|
---|
| 763 |
|
---|
| 764 | """
|
---|
| 765 | return self._get_column( self._gettsysspectrum, row )
|
---|
| 766 |
|
---|
[1730] | 767 | def get_weather(self, row=-1):
|
---|
[1846] | 768 | """\
|
---|
| 769 | Return the weather informations.
|
---|
| 770 |
|
---|
| 771 | Parameters:
|
---|
| 772 |
|
---|
| 773 | row: the rowno to get the information for. (default all rows)
|
---|
| 774 |
|
---|
| 775 | Returns:
|
---|
| 776 |
|
---|
| 777 | a dict or list of of dicts of values for the current selection
|
---|
| 778 |
|
---|
| 779 | """
|
---|
| 780 |
|
---|
[1730] | 781 | values = self._get_column(self._get_weather, row)
|
---|
| 782 | if row > -1:
|
---|
| 783 | return {'temperature': values[0],
|
---|
| 784 | 'pressure': values[1], 'humidity' : values[2],
|
---|
| 785 | 'windspeed' : values[3], 'windaz' : values[4]
|
---|
| 786 | }
|
---|
| 787 | else:
|
---|
| 788 | out = []
|
---|
| 789 | for r in values:
|
---|
| 790 |
|
---|
| 791 | out.append({'temperature': r[0],
|
---|
| 792 | 'pressure': r[1], 'humidity' : r[2],
|
---|
| 793 | 'windspeed' : r[3], 'windaz' : r[4]
|
---|
| 794 | })
|
---|
| 795 | return out
|
---|
| 796 |
|
---|
[876] | 797 | def _row_callback(self, callback, label):
|
---|
| 798 | out = ""
|
---|
[1118] | 799 | outvec = []
|
---|
[1590] | 800 | sep = '-'*50
|
---|
[876] | 801 | for i in range(self.nrow()):
|
---|
| 802 | tm = self._gettime(i)
|
---|
| 803 | src = self._getsourcename(i)
|
---|
[1590] | 804 | out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
|
---|
[876] | 805 | out += 'Time[%s]:\n' % (tm)
|
---|
[1590] | 806 | if self.nbeam(-1) > 1:
|
---|
| 807 | out += ' Beam[%d] ' % (self.getbeam(i))
|
---|
| 808 | if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
|
---|
| 809 | if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
|
---|
[876] | 810 | outvec.append(callback(i))
|
---|
| 811 | out += '= %3.3f\n' % (outvec[i])
|
---|
[1590] | 812 | out += sep+'\n'
|
---|
[1859] | 813 |
|
---|
| 814 | asaplog.push(sep)
|
---|
| 815 | asaplog.push(" %s" % (label))
|
---|
| 816 | asaplog.push(sep)
|
---|
| 817 | asaplog.push(out)
|
---|
[1861] | 818 | asaplog.post()
|
---|
[1175] | 819 | return outvec
|
---|
[256] | 820 |
|
---|
[1947] | 821 | def _get_column(self, callback, row=-1, *args):
|
---|
[1070] | 822 | """
|
---|
| 823 | """
|
---|
| 824 | if row == -1:
|
---|
[1947] | 825 | return [callback(i, *args) for i in range(self.nrow())]
|
---|
[1070] | 826 | else:
|
---|
[1819] | 827 | if 0 <= row < self.nrow():
|
---|
[1947] | 828 | return callback(row, *args)
|
---|
[256] | 829 |
|
---|
[1070] | 830 |
|
---|
[1948] | 831 | def get_time(self, row=-1, asdatetime=False, prec=-1):
|
---|
[1846] | 832 | """\
|
---|
[113] | 833 | Get a list of time stamps for the observations.
|
---|
[1938] | 834 | Return a datetime object or a string (default) for each
|
---|
| 835 | integration time stamp in the scantable.
|
---|
[1846] | 836 |
|
---|
[113] | 837 | Parameters:
|
---|
[1846] | 838 |
|
---|
[1348] | 839 | row: row no of integration. Default -1 return all rows
|
---|
[1855] | 840 |
|
---|
[1348] | 841 | asdatetime: return values as datetime objects rather than strings
|
---|
[1846] | 842 |
|
---|
[2349] | 843 | prec: number of digits shown. Default -1 to automatic
|
---|
| 844 | calculation.
|
---|
[1948] | 845 | Note this number is equals to the digits of MVTime,
|
---|
| 846 | i.e., 0<prec<3: dates with hh:: only,
|
---|
| 847 | <5: with hh:mm:, <7 or 0: with hh:mm:ss,
|
---|
[1947] | 848 | and 6> : with hh:mm:ss.tt... (prec-6 t's added)
|
---|
| 849 |
|
---|
[113] | 850 | """
|
---|
[1175] | 851 | from datetime import datetime
|
---|
[1948] | 852 | if prec < 0:
|
---|
| 853 | # automagically set necessary precision +1
|
---|
[2349] | 854 | prec = 7 - \
|
---|
| 855 | numpy.floor(numpy.log10(numpy.min(self.get_inttime(row))))
|
---|
[1948] | 856 | prec = max(6, int(prec))
|
---|
| 857 | else:
|
---|
| 858 | prec = max(0, prec)
|
---|
| 859 | if asdatetime:
|
---|
| 860 | #precision can be 1 millisecond at max
|
---|
| 861 | prec = min(12, prec)
|
---|
| 862 |
|
---|
[1947] | 863 | times = self._get_column(self._gettime, row, prec)
|
---|
[1348] | 864 | if not asdatetime:
|
---|
[1392] | 865 | return times
|
---|
[1947] | 866 | format = "%Y/%m/%d/%H:%M:%S.%f"
|
---|
| 867 | if prec < 7:
|
---|
| 868 | nsub = 1 + (((6-prec)/2) % 3)
|
---|
| 869 | substr = [".%f","%S","%M"]
|
---|
| 870 | for i in range(nsub):
|
---|
| 871 | format = format.replace(substr[i],"")
|
---|
[1175] | 872 | if isinstance(times, list):
|
---|
[1947] | 873 | return [datetime.strptime(i, format) for i in times]
|
---|
[1175] | 874 | else:
|
---|
[1947] | 875 | return datetime.strptime(times, format)
|
---|
[102] | 876 |
|
---|
[1348] | 877 |
|
---|
| 878 | def get_inttime(self, row=-1):
|
---|
[1846] | 879 | """\
|
---|
[1348] | 880 | Get a list of integration times for the observations.
|
---|
| 881 | Return a time in seconds for each integration in the scantable.
|
---|
[1846] | 882 |
|
---|
[1348] | 883 | Parameters:
|
---|
[1846] | 884 |
|
---|
[1348] | 885 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 886 |
|
---|
[1348] | 887 | """
|
---|
[1573] | 888 | return self._get_column(self._getinttime, row)
|
---|
[1348] | 889 |
|
---|
[1573] | 890 |
|
---|
[714] | 891 | def get_sourcename(self, row=-1):
|
---|
[1846] | 892 | """\
|
---|
[794] | 893 | Get a list source names for the observations.
|
---|
[714] | 894 | Return a string for each integration in the scantable.
|
---|
| 895 | Parameters:
|
---|
[1846] | 896 |
|
---|
[1348] | 897 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 898 |
|
---|
[714] | 899 | """
|
---|
[1070] | 900 | return self._get_column(self._getsourcename, row)
|
---|
[714] | 901 |
|
---|
[794] | 902 | def get_elevation(self, row=-1):
|
---|
[1846] | 903 | """\
|
---|
[794] | 904 | Get a list of elevations for the observations.
|
---|
| 905 | Return a float for each integration in the scantable.
|
---|
[1846] | 906 |
|
---|
[794] | 907 | Parameters:
|
---|
[1846] | 908 |
|
---|
[1348] | 909 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 910 |
|
---|
[794] | 911 | """
|
---|
[1070] | 912 | return self._get_column(self._getelevation, row)
|
---|
[794] | 913 |
|
---|
| 914 | def get_azimuth(self, row=-1):
|
---|
[1846] | 915 | """\
|
---|
[794] | 916 | Get a list of azimuths for the observations.
|
---|
| 917 | Return a float for each integration in the scantable.
|
---|
[1846] | 918 |
|
---|
[794] | 919 | Parameters:
|
---|
[1348] | 920 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 921 |
|
---|
[794] | 922 | """
|
---|
[1070] | 923 | return self._get_column(self._getazimuth, row)
|
---|
[794] | 924 |
|
---|
| 925 | def get_parangle(self, row=-1):
|
---|
[1846] | 926 | """\
|
---|
[794] | 927 | Get a list of parallactic angles for the observations.
|
---|
| 928 | Return a float for each integration in the scantable.
|
---|
[1846] | 929 |
|
---|
[794] | 930 | Parameters:
|
---|
[1846] | 931 |
|
---|
[1348] | 932 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 933 |
|
---|
[794] | 934 | """
|
---|
[1070] | 935 | return self._get_column(self._getparangle, row)
|
---|
[794] | 936 |
|
---|
[1070] | 937 | def get_direction(self, row=-1):
|
---|
| 938 | """
|
---|
| 939 | Get a list of Positions on the sky (direction) for the observations.
|
---|
[1594] | 940 | Return a string for each integration in the scantable.
|
---|
[1855] | 941 |
|
---|
[1070] | 942 | Parameters:
|
---|
[1855] | 943 |
|
---|
[1070] | 944 | row: row no of integration. Default -1 return all rows
|
---|
[1855] | 945 |
|
---|
[1070] | 946 | """
|
---|
| 947 | return self._get_column(self._getdirection, row)
|
---|
| 948 |
|
---|
[1391] | 949 | def get_directionval(self, row=-1):
|
---|
[1846] | 950 | """\
|
---|
[1391] | 951 | Get a list of Positions on the sky (direction) for the observations.
|
---|
| 952 | Return a float for each integration in the scantable.
|
---|
[1846] | 953 |
|
---|
[1391] | 954 | Parameters:
|
---|
[1846] | 955 |
|
---|
[1391] | 956 | row: row no of integration. Default -1 return all rows
|
---|
[1846] | 957 |
|
---|
[1391] | 958 | """
|
---|
| 959 | return self._get_column(self._getdirectionvec, row)
|
---|
| 960 |
|
---|
[1862] | 961 | @asaplog_post_dec
|
---|
[102] | 962 | def set_unit(self, unit='channel'):
|
---|
[1846] | 963 | """\
|
---|
[102] | 964 | Set the unit for all following operations on this scantable
|
---|
[1846] | 965 |
|
---|
[102] | 966 | Parameters:
|
---|
[1846] | 967 |
|
---|
| 968 | unit: optional unit, default is 'channel'. Use one of '*Hz',
|
---|
| 969 | 'km/s', 'channel' or equivalent ''
|
---|
| 970 |
|
---|
[102] | 971 | """
|
---|
[484] | 972 | varlist = vars()
|
---|
[1118] | 973 | if unit in ['', 'pixel', 'channel']:
|
---|
[113] | 974 | unit = ''
|
---|
| 975 | inf = list(self._getcoordinfo())
|
---|
| 976 | inf[0] = unit
|
---|
| 977 | self._setcoordinfo(inf)
|
---|
[1118] | 978 | self._add_history("set_unit", varlist)
|
---|
[113] | 979 |
|
---|
[1862] | 980 | @asaplog_post_dec
|
---|
[484] | 981 | def set_instrument(self, instr):
|
---|
[1846] | 982 | """\
|
---|
[1348] | 983 | Set the instrument for subsequent processing.
|
---|
[1846] | 984 |
|
---|
[358] | 985 | Parameters:
|
---|
[1846] | 986 |
|
---|
[710] | 987 | instr: Select from 'ATPKSMB', 'ATPKSHOH', 'ATMOPRA',
|
---|
[407] | 988 | 'DSS-43' (Tid), 'CEDUNA', and 'HOBART'
|
---|
[1846] | 989 |
|
---|
[358] | 990 | """
|
---|
| 991 | self._setInstrument(instr)
|
---|
[1118] | 992 | self._add_history("set_instument", vars())
|
---|
[358] | 993 |
|
---|
[1862] | 994 | @asaplog_post_dec
|
---|
[1190] | 995 | def set_feedtype(self, feedtype):
|
---|
[1846] | 996 | """\
|
---|
[1190] | 997 | Overwrite the feed type, which might not be set correctly.
|
---|
[1846] | 998 |
|
---|
[1190] | 999 | Parameters:
|
---|
[1846] | 1000 |
|
---|
[1190] | 1001 | feedtype: 'linear' or 'circular'
|
---|
[1846] | 1002 |
|
---|
[1190] | 1003 | """
|
---|
| 1004 | self._setfeedtype(feedtype)
|
---|
| 1005 | self._add_history("set_feedtype", vars())
|
---|
| 1006 |
|
---|
[1862] | 1007 | @asaplog_post_dec
|
---|
[276] | 1008 | def set_doppler(self, doppler='RADIO'):
|
---|
[1846] | 1009 | """\
|
---|
[276] | 1010 | Set the doppler for all following operations on this scantable.
|
---|
[1846] | 1011 |
|
---|
[276] | 1012 | Parameters:
|
---|
[1846] | 1013 |
|
---|
[276] | 1014 | doppler: One of 'RADIO', 'OPTICAL', 'Z', 'BETA', 'GAMMA'
|
---|
[1846] | 1015 |
|
---|
[276] | 1016 | """
|
---|
[484] | 1017 | varlist = vars()
|
---|
[276] | 1018 | inf = list(self._getcoordinfo())
|
---|
| 1019 | inf[2] = doppler
|
---|
| 1020 | self._setcoordinfo(inf)
|
---|
[1118] | 1021 | self._add_history("set_doppler", vars())
|
---|
[710] | 1022 |
|
---|
[1862] | 1023 | @asaplog_post_dec
|
---|
[226] | 1024 | def set_freqframe(self, frame=None):
|
---|
[1846] | 1025 | """\
|
---|
[113] | 1026 | Set the frame type of the Spectral Axis.
|
---|
[1846] | 1027 |
|
---|
[113] | 1028 | Parameters:
|
---|
[1846] | 1029 |
|
---|
[591] | 1030 | frame: an optional frame type, default 'LSRK'. Valid frames are:
|
---|
[1819] | 1031 | 'TOPO', 'LSRD', 'LSRK', 'BARY',
|
---|
[1118] | 1032 | 'GEO', 'GALACTO', 'LGROUP', 'CMB'
|
---|
[1846] | 1033 |
|
---|
| 1034 | Example::
|
---|
| 1035 |
|
---|
[113] | 1036 | scan.set_freqframe('BARY')
|
---|
[1846] | 1037 |
|
---|
[113] | 1038 | """
|
---|
[1593] | 1039 | frame = frame or rcParams['scantable.freqframe']
|
---|
[484] | 1040 | varlist = vars()
|
---|
[1819] | 1041 | # "REST" is not implemented in casacore
|
---|
| 1042 | #valid = ['REST', 'TOPO', 'LSRD', 'LSRK', 'BARY', \
|
---|
| 1043 | # 'GEO', 'GALACTO', 'LGROUP', 'CMB']
|
---|
| 1044 | valid = ['TOPO', 'LSRD', 'LSRK', 'BARY', \
|
---|
[1118] | 1045 | 'GEO', 'GALACTO', 'LGROUP', 'CMB']
|
---|
[591] | 1046 |
|
---|
[989] | 1047 | if frame in valid:
|
---|
[113] | 1048 | inf = list(self._getcoordinfo())
|
---|
| 1049 | inf[1] = frame
|
---|
| 1050 | self._setcoordinfo(inf)
|
---|
[1118] | 1051 | self._add_history("set_freqframe", varlist)
|
---|
[102] | 1052 | else:
|
---|
[1118] | 1053 | msg = "Please specify a valid freq type. Valid types are:\n", valid
|
---|
[1859] | 1054 | raise TypeError(msg)
|
---|
[710] | 1055 |
|
---|
[1862] | 1056 | @asaplog_post_dec
|
---|
[989] | 1057 | def set_dirframe(self, frame=""):
|
---|
[1846] | 1058 | """\
|
---|
[989] | 1059 | Set the frame type of the Direction on the sky.
|
---|
[1846] | 1060 |
|
---|
[989] | 1061 | Parameters:
|
---|
[1846] | 1062 |
|
---|
[989] | 1063 | frame: an optional frame type, default ''. Valid frames are:
|
---|
| 1064 | 'J2000', 'B1950', 'GALACTIC'
|
---|
[1846] | 1065 |
|
---|
| 1066 | Example:
|
---|
| 1067 |
|
---|
[989] | 1068 | scan.set_dirframe('GALACTIC')
|
---|
[1846] | 1069 |
|
---|
[989] | 1070 | """
|
---|
| 1071 | varlist = vars()
|
---|
[1859] | 1072 | Scantable.set_dirframe(self, frame)
|
---|
[1118] | 1073 | self._add_history("set_dirframe", varlist)
|
---|
[989] | 1074 |
|
---|
[113] | 1075 | def get_unit(self):
|
---|
[1846] | 1076 | """\
|
---|
[113] | 1077 | Get the default unit set in this scantable
|
---|
[1846] | 1078 |
|
---|
[113] | 1079 | Returns:
|
---|
[1846] | 1080 |
|
---|
[113] | 1081 | A unit string
|
---|
[1846] | 1082 |
|
---|
[113] | 1083 | """
|
---|
| 1084 | inf = self._getcoordinfo()
|
---|
| 1085 | unit = inf[0]
|
---|
| 1086 | if unit == '': unit = 'channel'
|
---|
| 1087 | return unit
|
---|
[102] | 1088 |
|
---|
[1862] | 1089 | @asaplog_post_dec
|
---|
[158] | 1090 | def get_abcissa(self, rowno=0):
|
---|
[1846] | 1091 | """\
|
---|
[158] | 1092 | Get the abcissa in the current coordinate setup for the currently
|
---|
[113] | 1093 | selected Beam/IF/Pol
|
---|
[1846] | 1094 |
|
---|
[113] | 1095 | Parameters:
|
---|
[1846] | 1096 |
|
---|
[226] | 1097 | rowno: an optional row number in the scantable. Default is the
|
---|
| 1098 | first row, i.e. rowno=0
|
---|
[1846] | 1099 |
|
---|
[113] | 1100 | Returns:
|
---|
[1846] | 1101 |
|
---|
[1348] | 1102 | The abcissa values and the format string (as a dictionary)
|
---|
[1846] | 1103 |
|
---|
[113] | 1104 | """
|
---|
[256] | 1105 | abc = self._getabcissa(rowno)
|
---|
[710] | 1106 | lbl = self._getabcissalabel(rowno)
|
---|
[158] | 1107 | return abc, lbl
|
---|
[113] | 1108 |
|
---|
[1862] | 1109 | @asaplog_post_dec
|
---|
[2322] | 1110 | def flag(self, mask=None, unflag=False, row=-1):
|
---|
[1846] | 1111 | """\
|
---|
[1001] | 1112 | Flag the selected data using an optional channel mask.
|
---|
[1846] | 1113 |
|
---|
[1001] | 1114 | Parameters:
|
---|
[1846] | 1115 |
|
---|
[1001] | 1116 | mask: an optional channel mask, created with create_mask. Default
|
---|
| 1117 | (no mask) is all channels.
|
---|
[1855] | 1118 |
|
---|
[1819] | 1119 | unflag: if True, unflag the data
|
---|
[1846] | 1120 |
|
---|
[2322] | 1121 | row: an optional row number in the scantable.
|
---|
| 1122 | Default -1 flags all rows
|
---|
| 1123 |
|
---|
[1001] | 1124 | """
|
---|
| 1125 | varlist = vars()
|
---|
[1593] | 1126 | mask = mask or []
|
---|
[1994] | 1127 | self._flag(row, mask, unflag)
|
---|
[1001] | 1128 | self._add_history("flag", varlist)
|
---|
| 1129 |
|
---|
[1862] | 1130 | @asaplog_post_dec
|
---|
[2322] | 1131 | def flag_row(self, rows=None, unflag=False):
|
---|
[1846] | 1132 | """\
|
---|
[1819] | 1133 | Flag the selected data in row-based manner.
|
---|
[1846] | 1134 |
|
---|
[1819] | 1135 | Parameters:
|
---|
[1846] | 1136 |
|
---|
[1843] | 1137 | rows: list of row numbers to be flagged. Default is no row
|
---|
[2322] | 1138 | (must be explicitly specified to execute row-based
|
---|
| 1139 | flagging).
|
---|
[1855] | 1140 |
|
---|
[1819] | 1141 | unflag: if True, unflag the data.
|
---|
[1846] | 1142 |
|
---|
[1819] | 1143 | """
|
---|
| 1144 | varlist = vars()
|
---|
[2322] | 1145 | if rows is None:
|
---|
| 1146 | rows = []
|
---|
[1859] | 1147 | self._flag_row(rows, unflag)
|
---|
[1819] | 1148 | self._add_history("flag_row", varlist)
|
---|
| 1149 |
|
---|
[1862] | 1150 | @asaplog_post_dec
|
---|
[1819] | 1151 | def clip(self, uthres=None, dthres=None, clipoutside=True, unflag=False):
|
---|
[1846] | 1152 | """\
|
---|
[1819] | 1153 | Flag the selected data outside a specified range (in channel-base)
|
---|
[1846] | 1154 |
|
---|
[1819] | 1155 | Parameters:
|
---|
[1846] | 1156 |
|
---|
[1819] | 1157 | uthres: upper threshold.
|
---|
[1855] | 1158 |
|
---|
[1819] | 1159 | dthres: lower threshold
|
---|
[1846] | 1160 |
|
---|
[2322] | 1161 | clipoutside: True for flagging data outside the range
|
---|
| 1162 | [dthres:uthres].
|
---|
[1928] | 1163 | False for flagging data inside the range.
|
---|
[1855] | 1164 |
|
---|
[1846] | 1165 | unflag: if True, unflag the data.
|
---|
| 1166 |
|
---|
[1819] | 1167 | """
|
---|
| 1168 | varlist = vars()
|
---|
[1859] | 1169 | self._clip(uthres, dthres, clipoutside, unflag)
|
---|
[1819] | 1170 | self._add_history("clip", varlist)
|
---|
| 1171 |
|
---|
[1862] | 1172 | @asaplog_post_dec
|
---|
[1584] | 1173 | def lag_flag(self, start, end, unit="MHz", insitu=None):
|
---|
[1846] | 1174 | """\
|
---|
[1192] | 1175 | Flag the data in 'lag' space by providing a frequency to remove.
|
---|
[2177] | 1176 | Flagged data in the scantable get interpolated over the region.
|
---|
[1192] | 1177 | No taper is applied.
|
---|
[1846] | 1178 |
|
---|
[1192] | 1179 | Parameters:
|
---|
[1846] | 1180 |
|
---|
[1579] | 1181 | start: the start frequency (really a period within the
|
---|
| 1182 | bandwidth) or period to remove
|
---|
[1855] | 1183 |
|
---|
[1579] | 1184 | end: the end frequency or period to remove
|
---|
[1855] | 1185 |
|
---|
[2431] | 1186 | unit: the frequency unit (default 'MHz') or '' for
|
---|
[1579] | 1187 | explicit lag channels
|
---|
[1846] | 1188 |
|
---|
| 1189 | *Notes*:
|
---|
| 1190 |
|
---|
[1579] | 1191 | It is recommended to flag edges of the band or strong
|
---|
[1348] | 1192 | signals beforehand.
|
---|
[1846] | 1193 |
|
---|
[1192] | 1194 | """
|
---|
| 1195 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 1196 | self._math._setinsitu(insitu)
|
---|
| 1197 | varlist = vars()
|
---|
[1579] | 1198 | base = { "GHz": 1000000000., "MHz": 1000000., "kHz": 1000., "Hz": 1.}
|
---|
| 1199 | if not (unit == "" or base.has_key(unit)):
|
---|
[1192] | 1200 | raise ValueError("%s is not a valid unit." % unit)
|
---|
[1859] | 1201 | if unit == "":
|
---|
| 1202 | s = scantable(self._math._lag_flag(self, start, end, "lags"))
|
---|
| 1203 | else:
|
---|
| 1204 | s = scantable(self._math._lag_flag(self, start*base[unit],
|
---|
| 1205 | end*base[unit], "frequency"))
|
---|
[1192] | 1206 | s._add_history("lag_flag", varlist)
|
---|
| 1207 | if insitu:
|
---|
| 1208 | self._assign(s)
|
---|
| 1209 | else:
|
---|
| 1210 | return s
|
---|
[1001] | 1211 |
|
---|
[1862] | 1212 | @asaplog_post_dec
|
---|
[2349] | 1213 | def fft(self, rowno=None, mask=None, getrealimag=False):
|
---|
[2177] | 1214 | """\
|
---|
| 1215 | Apply FFT to the spectra.
|
---|
| 1216 | Flagged data in the scantable get interpolated over the region.
|
---|
| 1217 |
|
---|
| 1218 | Parameters:
|
---|
[2186] | 1219 |
|
---|
| 1220 | rowno: The row number(s) to be processed. int, list
|
---|
[2349] | 1221 | and tuple are accepted. By default (None), FFT
|
---|
[2186] | 1222 | is applied to the whole data.
|
---|
| 1223 |
|
---|
| 1224 | mask: Auxiliary channel mask(s). Given as a boolean
|
---|
| 1225 | list, it is applied to all specified rows.
|
---|
| 1226 | A list of boolean lists can also be used to
|
---|
| 1227 | apply different masks. In the latter case, the
|
---|
| 1228 | length of 'mask' must be the same as that of
|
---|
[2349] | 1229 | 'rowno'. The default is None.
|
---|
[2177] | 1230 |
|
---|
| 1231 | getrealimag: If True, returns the real and imaginary part
|
---|
| 1232 | values of the complex results.
|
---|
| 1233 | If False (the default), returns the amplitude
|
---|
| 1234 | (absolute value) normalised with Ndata/2 and
|
---|
| 1235 | phase (argument, in unit of radian).
|
---|
| 1236 |
|
---|
| 1237 | Returns:
|
---|
| 1238 |
|
---|
[2186] | 1239 | A list of dictionaries containing the results for each spectrum.
|
---|
| 1240 | Each dictionary contains two values, the real and the imaginary
|
---|
| 1241 | parts when getrealimag = True, or the amplitude(absolute value)
|
---|
| 1242 | and the phase(argument) when getrealimag = False. The key for
|
---|
| 1243 | these values are 'real' and 'imag', or 'ampl' and 'phase',
|
---|
[2177] | 1244 | respectively.
|
---|
| 1245 | """
|
---|
[2349] | 1246 | if rowno is None:
|
---|
| 1247 | rowno = []
|
---|
[2177] | 1248 | if isinstance(rowno, int):
|
---|
| 1249 | rowno = [rowno]
|
---|
| 1250 | elif not (isinstance(rowno, list) or isinstance(rowno, tuple)):
|
---|
[2186] | 1251 | raise TypeError("The row number(s) must be int, list or tuple.")
|
---|
| 1252 | if len(rowno) == 0: rowno = [i for i in xrange(self.nrow())]
|
---|
| 1253 |
|
---|
[2411] | 1254 | usecommonmask = True
|
---|
| 1255 |
|
---|
| 1256 | if mask is None:
|
---|
| 1257 | mask = []
|
---|
| 1258 | if isinstance(mask, list) or isinstance(mask, tuple):
|
---|
| 1259 | if len(mask) == 0:
|
---|
| 1260 | mask = [[]]
|
---|
| 1261 | else:
|
---|
| 1262 | if isinstance(mask[0], bool):
|
---|
| 1263 | if len(mask) != self.nchan(self.getif(rowno[0])):
|
---|
| 1264 | raise ValueError("The spectra and the mask have "
|
---|
| 1265 | "different length.")
|
---|
| 1266 | mask = [mask]
|
---|
| 1267 | elif isinstance(mask[0], list) or isinstance(mask[0], tuple):
|
---|
| 1268 | usecommonmask = False
|
---|
| 1269 | if len(mask) != len(rowno):
|
---|
| 1270 | raise ValueError("When specifying masks for each "
|
---|
| 1271 | "spectrum, the numbers of them "
|
---|
| 1272 | "must be identical.")
|
---|
| 1273 | for i in xrange(mask):
|
---|
| 1274 | if len(mask[i]) != self.nchan(self.getif(rowno[i])):
|
---|
| 1275 | raise ValueError("The spectra and the mask have "
|
---|
| 1276 | "different length.")
|
---|
| 1277 | else:
|
---|
| 1278 | raise TypeError("The mask must be a boolean list or "
|
---|
| 1279 | "a list of boolean list.")
|
---|
| 1280 | else:
|
---|
[2349] | 1281 | raise TypeError("The mask must be a boolean list or a list of "
|
---|
| 1282 | "boolean list.")
|
---|
[2186] | 1283 |
|
---|
| 1284 | res = []
|
---|
| 1285 |
|
---|
| 1286 | imask = 0
|
---|
| 1287 | for whichrow in rowno:
|
---|
| 1288 | fspec = self._fft(whichrow, mask[imask], getrealimag)
|
---|
| 1289 | nspec = len(fspec)
|
---|
[2177] | 1290 |
|
---|
[2349] | 1291 | i = 0
|
---|
| 1292 | v1 = []
|
---|
| 1293 | v2 = []
|
---|
| 1294 | reselem = {"real":[],"imag":[]} if getrealimag \
|
---|
| 1295 | else {"ampl":[],"phase":[]}
|
---|
[2177] | 1296 |
|
---|
[2186] | 1297 | while (i < nspec):
|
---|
| 1298 | v1.append(fspec[i])
|
---|
| 1299 | v2.append(fspec[i+1])
|
---|
[2349] | 1300 | i += 2
|
---|
[2186] | 1301 |
|
---|
[2177] | 1302 | if getrealimag:
|
---|
[2186] | 1303 | reselem["real"] += v1
|
---|
| 1304 | reselem["imag"] += v2
|
---|
[2177] | 1305 | else:
|
---|
[2186] | 1306 | reselem["ampl"] += v1
|
---|
| 1307 | reselem["phase"] += v2
|
---|
[2177] | 1308 |
|
---|
[2186] | 1309 | res.append(reselem)
|
---|
| 1310 |
|
---|
[2349] | 1311 | if not usecommonmask:
|
---|
| 1312 | imask += 1
|
---|
[2186] | 1313 |
|
---|
[2177] | 1314 | return res
|
---|
| 1315 |
|
---|
| 1316 | @asaplog_post_dec
|
---|
[113] | 1317 | def create_mask(self, *args, **kwargs):
|
---|
[1846] | 1318 | """\
|
---|
[1118] | 1319 | Compute and return a mask based on [min, max] windows.
|
---|
[189] | 1320 | The specified windows are to be INCLUDED, when the mask is
|
---|
[113] | 1321 | applied.
|
---|
[1846] | 1322 |
|
---|
[102] | 1323 | Parameters:
|
---|
[1846] | 1324 |
|
---|
[1118] | 1325 | [min, max], [min2, max2], ...
|
---|
[1024] | 1326 | Pairs of start/end points (inclusive)specifying the regions
|
---|
[102] | 1327 | to be masked
|
---|
[1855] | 1328 |
|
---|
[189] | 1329 | invert: optional argument. If specified as True,
|
---|
| 1330 | return an inverted mask, i.e. the regions
|
---|
| 1331 | specified are EXCLUDED
|
---|
[1855] | 1332 |
|
---|
[513] | 1333 | row: create the mask using the specified row for
|
---|
| 1334 | unit conversions, default is row=0
|
---|
| 1335 | only necessary if frequency varies over rows.
|
---|
[1846] | 1336 |
|
---|
| 1337 | Examples::
|
---|
| 1338 |
|
---|
[113] | 1339 | scan.set_unit('channel')
|
---|
[1846] | 1340 | # a)
|
---|
[1118] | 1341 | msk = scan.create_mask([400, 500], [800, 900])
|
---|
[189] | 1342 | # masks everything outside 400 and 500
|
---|
[113] | 1343 | # and 800 and 900 in the unit 'channel'
|
---|
| 1344 |
|
---|
[1846] | 1345 | # b)
|
---|
[1118] | 1346 | msk = scan.create_mask([400, 500], [800, 900], invert=True)
|
---|
[189] | 1347 | # masks the regions between 400 and 500
|
---|
[113] | 1348 | # and 800 and 900 in the unit 'channel'
|
---|
[1846] | 1349 |
|
---|
| 1350 | # c)
|
---|
| 1351 | #mask only channel 400
|
---|
[1554] | 1352 | msk = scan.create_mask([400])
|
---|
[1846] | 1353 |
|
---|
[102] | 1354 | """
|
---|
[1554] | 1355 | row = kwargs.get("row", 0)
|
---|
[513] | 1356 | data = self._getabcissa(row)
|
---|
[113] | 1357 | u = self._getcoordinfo()[0]
|
---|
[1859] | 1358 | if u == "":
|
---|
| 1359 | u = "channel"
|
---|
| 1360 | msg = "The current mask window unit is %s" % u
|
---|
| 1361 | i = self._check_ifs()
|
---|
| 1362 | if not i:
|
---|
| 1363 | msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
|
---|
| 1364 | asaplog.push(msg)
|
---|
[2348] | 1365 | n = len(data)
|
---|
[1295] | 1366 | msk = _n_bools(n, False)
|
---|
[710] | 1367 | # test if args is a 'list' or a 'normal *args - UGLY!!!
|
---|
| 1368 |
|
---|
[2349] | 1369 | ws = (isinstance(args[-1][-1], int)
|
---|
| 1370 | or isinstance(args[-1][-1], float)) and args or args[0]
|
---|
[710] | 1371 | for window in ws:
|
---|
[1554] | 1372 | if len(window) == 1:
|
---|
| 1373 | window = [window[0], window[0]]
|
---|
| 1374 | if len(window) == 0 or len(window) > 2:
|
---|
[2349] | 1375 | raise ValueError("A window needs to be defined as "
|
---|
| 1376 | "[start(, end)]")
|
---|
[1545] | 1377 | if window[0] > window[1]:
|
---|
| 1378 | tmp = window[0]
|
---|
| 1379 | window[0] = window[1]
|
---|
| 1380 | window[1] = tmp
|
---|
[102] | 1381 | for i in range(n):
|
---|
[1024] | 1382 | if data[i] >= window[0] and data[i] <= window[1]:
|
---|
[1295] | 1383 | msk[i] = True
|
---|
[113] | 1384 | if kwargs.has_key('invert'):
|
---|
| 1385 | if kwargs.get('invert'):
|
---|
[1295] | 1386 | msk = mask_not(msk)
|
---|
[102] | 1387 | return msk
|
---|
[710] | 1388 |
|
---|
[1931] | 1389 | def get_masklist(self, mask=None, row=0, silent=False):
|
---|
[1846] | 1390 | """\
|
---|
[1819] | 1391 | Compute and return a list of mask windows, [min, max].
|
---|
[1846] | 1392 |
|
---|
[1819] | 1393 | Parameters:
|
---|
[1846] | 1394 |
|
---|
[1819] | 1395 | mask: channel mask, created with create_mask.
|
---|
[1855] | 1396 |
|
---|
[1819] | 1397 | row: calcutate the masklist using the specified row
|
---|
| 1398 | for unit conversions, default is row=0
|
---|
| 1399 | only necessary if frequency varies over rows.
|
---|
[1846] | 1400 |
|
---|
[1819] | 1401 | Returns:
|
---|
[1846] | 1402 |
|
---|
[1819] | 1403 | [min, max], [min2, max2], ...
|
---|
| 1404 | Pairs of start/end points (inclusive)specifying
|
---|
| 1405 | the masked regions
|
---|
[1846] | 1406 |
|
---|
[1819] | 1407 | """
|
---|
| 1408 | if not (isinstance(mask,list) or isinstance(mask, tuple)):
|
---|
| 1409 | raise TypeError("The mask should be list or tuple.")
|
---|
[2427] | 1410 | if len(mask) <= 0:
|
---|
| 1411 | raise TypeError("The mask elements should be > 0")
|
---|
[2348] | 1412 | data = self._getabcissa(row)
|
---|
| 1413 | if len(data) != len(mask):
|
---|
[1819] | 1414 | msg = "Number of channels in scantable != number of mask elements"
|
---|
| 1415 | raise TypeError(msg)
|
---|
| 1416 | u = self._getcoordinfo()[0]
|
---|
[1859] | 1417 | if u == "":
|
---|
| 1418 | u = "channel"
|
---|
| 1419 | msg = "The current mask window unit is %s" % u
|
---|
| 1420 | i = self._check_ifs()
|
---|
| 1421 | if not i:
|
---|
| 1422 | msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
|
---|
[1931] | 1423 | if not silent:
|
---|
| 1424 | asaplog.push(msg)
|
---|
[2349] | 1425 | masklist = []
|
---|
[1819] | 1426 | ist, ien = None, None
|
---|
| 1427 | ist, ien=self.get_mask_indices(mask)
|
---|
| 1428 | if ist is not None and ien is not None:
|
---|
| 1429 | for i in xrange(len(ist)):
|
---|
| 1430 | range=[data[ist[i]],data[ien[i]]]
|
---|
| 1431 | range.sort()
|
---|
| 1432 | masklist.append([range[0],range[1]])
|
---|
| 1433 | return masklist
|
---|
| 1434 |
|
---|
| 1435 | def get_mask_indices(self, mask=None):
|
---|
[1846] | 1436 | """\
|
---|
[1819] | 1437 | Compute and Return lists of mask start indices and mask end indices.
|
---|
[1855] | 1438 |
|
---|
| 1439 | Parameters:
|
---|
| 1440 |
|
---|
[1819] | 1441 | mask: channel mask, created with create_mask.
|
---|
[1846] | 1442 |
|
---|
[1819] | 1443 | Returns:
|
---|
[1846] | 1444 |
|
---|
[1819] | 1445 | List of mask start indices and that of mask end indices,
|
---|
| 1446 | i.e., [istart1,istart2,....], [iend1,iend2,....].
|
---|
[1846] | 1447 |
|
---|
[1819] | 1448 | """
|
---|
| 1449 | if not (isinstance(mask,list) or isinstance(mask, tuple)):
|
---|
| 1450 | raise TypeError("The mask should be list or tuple.")
|
---|
[2427] | 1451 | if len(mask) <= 0:
|
---|
| 1452 | raise TypeError("The mask elements should be > 0")
|
---|
[2349] | 1453 | istart = []
|
---|
| 1454 | iend = []
|
---|
| 1455 | if mask[0]:
|
---|
| 1456 | istart.append(0)
|
---|
[1819] | 1457 | for i in range(len(mask)-1):
|
---|
| 1458 | if not mask[i] and mask[i+1]:
|
---|
| 1459 | istart.append(i+1)
|
---|
| 1460 | elif mask[i] and not mask[i+1]:
|
---|
| 1461 | iend.append(i)
|
---|
[2349] | 1462 | if mask[len(mask)-1]:
|
---|
| 1463 | iend.append(len(mask)-1)
|
---|
[1819] | 1464 | if len(istart) != len(iend):
|
---|
| 1465 | raise RuntimeError("Numbers of mask start != mask end.")
|
---|
| 1466 | for i in range(len(istart)):
|
---|
| 1467 | if istart[i] > iend[i]:
|
---|
| 1468 | raise RuntimeError("Mask start index > mask end index")
|
---|
| 1469 | break
|
---|
| 1470 | return istart,iend
|
---|
| 1471 |
|
---|
[2013] | 1472 | @asaplog_post_dec
|
---|
[2349] | 1473 | def parse_maskexpr(self, maskstring):
|
---|
[2013] | 1474 | """
|
---|
| 1475 | Parse CASA type mask selection syntax (IF dependent).
|
---|
| 1476 |
|
---|
| 1477 | Parameters:
|
---|
| 1478 | maskstring : A string mask selection expression.
|
---|
| 1479 | A comma separated selections mean different IF -
|
---|
| 1480 | channel combinations. IFs and channel selections
|
---|
| 1481 | are partitioned by a colon, ':'.
|
---|
| 1482 | examples:
|
---|
[2015] | 1483 | '' = all IFs (all channels)
|
---|
[2013] | 1484 | '<2,4~6,9' = IFs 0,1,4,5,6,9 (all channels)
|
---|
| 1485 | '3:3~45;60' = channels 3 to 45 and 60 in IF 3
|
---|
| 1486 | '0~1:2~6,8' = channels 2 to 6 in IFs 0,1, and
|
---|
| 1487 | all channels in IF8
|
---|
| 1488 | Returns:
|
---|
| 1489 | A dictionary of selected (valid) IF and masklist pairs,
|
---|
| 1490 | e.g. {'0': [[50,250],[350,462]], '2': [[100,400],[550,974]]}
|
---|
| 1491 | """
|
---|
| 1492 | if not isinstance(maskstring,str):
|
---|
| 1493 | asaplog.post()
|
---|
[2611] | 1494 | asaplog.push("Mask expression should be a string.")
|
---|
[2013] | 1495 | asaplog.post("ERROR")
|
---|
| 1496 |
|
---|
| 1497 | valid_ifs = self.getifnos()
|
---|
| 1498 | frequnit = self.get_unit()
|
---|
| 1499 | seldict = {}
|
---|
[2015] | 1500 | if maskstring == "":
|
---|
| 1501 | maskstring = str(valid_ifs)[1:-1]
|
---|
[2611] | 1502 | ## split each selection "IF range[:CHAN range]"
|
---|
[2013] | 1503 | sellist = maskstring.split(',')
|
---|
| 1504 | for currselstr in sellist:
|
---|
| 1505 | selset = currselstr.split(':')
|
---|
| 1506 | # spw and mask string (may include ~, < or >)
|
---|
[2349] | 1507 | spwmasklist = self._parse_selection(selset[0], typestr='integer',
|
---|
[2611] | 1508 | minval=min(valid_ifs),
|
---|
[2349] | 1509 | maxval=max(valid_ifs))
|
---|
[2013] | 1510 | for spwlist in spwmasklist:
|
---|
| 1511 | selspws = []
|
---|
| 1512 | for ispw in range(spwlist[0],spwlist[1]+1):
|
---|
| 1513 | # Put into the list only if ispw exists
|
---|
| 1514 | if valid_ifs.count(ispw):
|
---|
| 1515 | selspws.append(ispw)
|
---|
| 1516 | del spwmasklist, spwlist
|
---|
| 1517 |
|
---|
| 1518 | # parse frequency mask list
|
---|
| 1519 | if len(selset) > 1:
|
---|
[2349] | 1520 | freqmasklist = self._parse_selection(selset[1], typestr='float',
|
---|
| 1521 | offset=0.)
|
---|
[2013] | 1522 | else:
|
---|
| 1523 | # want to select the whole spectrum
|
---|
| 1524 | freqmasklist = [None]
|
---|
| 1525 |
|
---|
| 1526 | ## define a dictionary of spw - masklist combination
|
---|
| 1527 | for ispw in selspws:
|
---|
| 1528 | #print "working on", ispw
|
---|
| 1529 | spwstr = str(ispw)
|
---|
| 1530 | if len(selspws) == 0:
|
---|
| 1531 | # empty spw
|
---|
| 1532 | continue
|
---|
| 1533 | else:
|
---|
| 1534 | ## want to get min and max of the spw and
|
---|
| 1535 | ## offset to set for '<' and '>'
|
---|
| 1536 | if frequnit == 'channel':
|
---|
| 1537 | minfreq = 0
|
---|
| 1538 | maxfreq = self.nchan(ifno=ispw)
|
---|
| 1539 | offset = 0.5
|
---|
| 1540 | else:
|
---|
| 1541 | ## This is ugly part. need improvement
|
---|
| 1542 | for ifrow in xrange(self.nrow()):
|
---|
| 1543 | if self.getif(ifrow) == ispw:
|
---|
| 1544 | #print "IF",ispw,"found in row =",ifrow
|
---|
| 1545 | break
|
---|
| 1546 | freqcoord = self.get_coordinate(ifrow)
|
---|
| 1547 | freqs = self._getabcissa(ifrow)
|
---|
| 1548 | minfreq = min(freqs)
|
---|
| 1549 | maxfreq = max(freqs)
|
---|
| 1550 | if len(freqs) == 1:
|
---|
| 1551 | offset = 0.5
|
---|
| 1552 | elif frequnit.find('Hz') > 0:
|
---|
[2349] | 1553 | offset = abs(freqcoord.to_frequency(1,
|
---|
| 1554 | unit=frequnit)
|
---|
| 1555 | -freqcoord.to_frequency(0,
|
---|
| 1556 | unit=frequnit)
|
---|
| 1557 | )*0.5
|
---|
[2013] | 1558 | elif frequnit.find('m/s') > 0:
|
---|
[2349] | 1559 | offset = abs(freqcoord.to_velocity(1,
|
---|
| 1560 | unit=frequnit)
|
---|
| 1561 | -freqcoord.to_velocity(0,
|
---|
| 1562 | unit=frequnit)
|
---|
| 1563 | )*0.5
|
---|
[2013] | 1564 | else:
|
---|
| 1565 | asaplog.post()
|
---|
| 1566 | asaplog.push("Invalid frequency unit")
|
---|
| 1567 | asaplog.post("ERROR")
|
---|
| 1568 | del freqs, freqcoord, ifrow
|
---|
| 1569 | for freq in freqmasklist:
|
---|
| 1570 | selmask = freq or [minfreq, maxfreq]
|
---|
| 1571 | if selmask[0] == None:
|
---|
| 1572 | ## selection was "<freq[1]".
|
---|
| 1573 | if selmask[1] < minfreq:
|
---|
| 1574 | ## avoid adding region selection
|
---|
| 1575 | selmask = None
|
---|
| 1576 | else:
|
---|
| 1577 | selmask = [minfreq,selmask[1]-offset]
|
---|
| 1578 | elif selmask[1] == None:
|
---|
| 1579 | ## selection was ">freq[0]"
|
---|
| 1580 | if selmask[0] > maxfreq:
|
---|
| 1581 | ## avoid adding region selection
|
---|
| 1582 | selmask = None
|
---|
| 1583 | else:
|
---|
| 1584 | selmask = [selmask[0]+offset,maxfreq]
|
---|
| 1585 | if selmask:
|
---|
| 1586 | if not seldict.has_key(spwstr):
|
---|
| 1587 | # new spw selection
|
---|
| 1588 | seldict[spwstr] = []
|
---|
| 1589 | seldict[spwstr] += [selmask]
|
---|
| 1590 | del minfreq,maxfreq,offset,freq,selmask
|
---|
| 1591 | del spwstr
|
---|
| 1592 | del freqmasklist
|
---|
| 1593 | del valid_ifs
|
---|
| 1594 | if len(seldict) == 0:
|
---|
| 1595 | asaplog.post()
|
---|
[2349] | 1596 | asaplog.push("No valid selection in the mask expression: "
|
---|
| 1597 | +maskstring)
|
---|
[2013] | 1598 | asaplog.post("WARN")
|
---|
| 1599 | return None
|
---|
| 1600 | msg = "Selected masklist:\n"
|
---|
| 1601 | for sif, lmask in seldict.iteritems():
|
---|
| 1602 | msg += " IF"+sif+" - "+str(lmask)+"\n"
|
---|
| 1603 | asaplog.push(msg)
|
---|
| 1604 | return seldict
|
---|
| 1605 |
|
---|
[2611] | 1606 | @asaplog_post_dec
|
---|
| 1607 | def parse_idx_selection(self, mode, selexpr):
|
---|
| 1608 | """
|
---|
| 1609 | Parse CASA type mask selection syntax of SCANNO, IFNO, POLNO,
|
---|
| 1610 | BEAMNO, and row number
|
---|
| 1611 |
|
---|
| 1612 | Parameters:
|
---|
| 1613 | mode : which column to select.
|
---|
| 1614 | ['scan',|'if'|'pol'|'beam'|'row']
|
---|
| 1615 | selexpr : A comma separated selection expression.
|
---|
| 1616 | examples:
|
---|
| 1617 | '' = all (returns [])
|
---|
| 1618 | '<2,4~6,9' = indices less than 2, 4 to 6 and 9
|
---|
| 1619 | (returns [0,1,4,5,6,9])
|
---|
| 1620 | Returns:
|
---|
| 1621 | A List of selected indices
|
---|
| 1622 | """
|
---|
| 1623 | if selexpr == "":
|
---|
| 1624 | return []
|
---|
| 1625 | valid_modes = {'s': 'scan', 'i': 'if', 'p': 'pol',
|
---|
| 1626 | 'b': 'beam', 'r': 'row'}
|
---|
| 1627 | smode = mode.lower()[0]
|
---|
| 1628 | if not (smode in valid_modes.keys()):
|
---|
| 1629 | msg = "Invalid mode '%s'. Valid modes are %s" %\
|
---|
| 1630 | (mode, str(valid_modes.values()))
|
---|
| 1631 | asaplog.post()
|
---|
| 1632 | asaplog.push(msg)
|
---|
| 1633 | asaplog.post("ERROR")
|
---|
| 1634 | mode = valid_modes[smode]
|
---|
| 1635 | minidx = None
|
---|
| 1636 | maxidx = None
|
---|
| 1637 | if smode == 'r':
|
---|
| 1638 | minidx = 0
|
---|
| 1639 | maxidx = self.nrow()
|
---|
| 1640 | else:
|
---|
| 1641 | idx = getattr(self,"get"+mode+"nos")()
|
---|
| 1642 | minidx = min(idx)
|
---|
| 1643 | maxidx = max(idx)
|
---|
| 1644 | del idx
|
---|
| 1645 | sellist = selexpr.split(',')
|
---|
| 1646 | idxlist = []
|
---|
| 1647 | for currselstr in sellist:
|
---|
| 1648 | # single range (may include ~, < or >)
|
---|
| 1649 | currlist = self._parse_selection(currselstr, typestr='integer',
|
---|
| 1650 | minval=minidx,maxval=maxidx)
|
---|
| 1651 | for thelist in currlist:
|
---|
| 1652 | idxlist += range(thelist[0],thelist[1]+1)
|
---|
| 1653 | msg = "Selected %s: %s" % (mode.upper()+"NO", str(idxlist))
|
---|
| 1654 | asaplog.push(msg)
|
---|
| 1655 | return idxlist
|
---|
| 1656 |
|
---|
[2349] | 1657 | def _parse_selection(self, selstr, typestr='float', offset=0.,
|
---|
[2351] | 1658 | minval=None, maxval=None):
|
---|
[2013] | 1659 | """
|
---|
| 1660 | Parameters:
|
---|
| 1661 | selstr : The Selection string, e.g., '<3;5~7;100~103;9'
|
---|
| 1662 | typestr : The type of the values in returned list
|
---|
| 1663 | ('integer' or 'float')
|
---|
| 1664 | offset : The offset value to subtract from or add to
|
---|
| 1665 | the boundary value if the selection string
|
---|
[2611] | 1666 | includes '<' or '>' [Valid only for typestr='float']
|
---|
[2013] | 1667 | minval, maxval : The minimum/maximum values to set if the
|
---|
| 1668 | selection string includes '<' or '>'.
|
---|
| 1669 | The list element is filled with None by default.
|
---|
| 1670 | Returns:
|
---|
| 1671 | A list of min/max pair of selections.
|
---|
| 1672 | Example:
|
---|
[2611] | 1673 | _parse_selection('<3;5~7;9',typestr='int',minval=0)
|
---|
| 1674 | --> returns [[0,2],[5,7],[9,9]]
|
---|
| 1675 | _parse_selection('<3;5~7;9',typestr='float',offset=0.5,minval=0)
|
---|
| 1676 | --> returns [[0.,2.5],[5.0,7.0],[9.,9.]]
|
---|
[2013] | 1677 | """
|
---|
| 1678 | selgroups = selstr.split(';')
|
---|
| 1679 | sellists = []
|
---|
| 1680 | if typestr.lower().startswith('int'):
|
---|
| 1681 | formatfunc = int
|
---|
[2611] | 1682 | offset = 1
|
---|
[2013] | 1683 | else:
|
---|
| 1684 | formatfunc = float
|
---|
| 1685 |
|
---|
| 1686 | for currsel in selgroups:
|
---|
| 1687 | if currsel.find('~') > 0:
|
---|
[2611] | 1688 | # val0 <= x <= val1
|
---|
[2013] | 1689 | minsel = formatfunc(currsel.split('~')[0].strip())
|
---|
| 1690 | maxsel = formatfunc(currsel.split('~')[1].strip())
|
---|
[2611] | 1691 | elif currsel.strip().find('<=') > -1:
|
---|
| 1692 | bound = currsel.split('<=')
|
---|
| 1693 | try: # try "x <= val"
|
---|
| 1694 | minsel = minval
|
---|
| 1695 | maxsel = formatfunc(bound[1].strip())
|
---|
| 1696 | except ValueError: # now "val <= x"
|
---|
| 1697 | minsel = formatfunc(bound[0].strip())
|
---|
| 1698 | maxsel = maxval
|
---|
| 1699 | elif currsel.strip().find('>=') > -1:
|
---|
| 1700 | bound = currsel.split('>=')
|
---|
| 1701 | try: # try "x >= val"
|
---|
| 1702 | minsel = formatfunc(bound[1].strip())
|
---|
| 1703 | maxsel = maxval
|
---|
| 1704 | except ValueError: # now "val >= x"
|
---|
| 1705 | minsel = minval
|
---|
| 1706 | maxsel = formatfunc(bound[0].strip())
|
---|
| 1707 | elif currsel.strip().find('<') > -1:
|
---|
| 1708 | bound = currsel.split('<')
|
---|
| 1709 | try: # try "x < val"
|
---|
| 1710 | minsel = minval
|
---|
| 1711 | maxsel = formatfunc(bound[1].strip()) \
|
---|
| 1712 | - formatfunc(offset)
|
---|
| 1713 | except ValueError: # now "val < x"
|
---|
| 1714 | minsel = formatfunc(bound[0].strip()) \
|
---|
[2013] | 1715 | + formatfunc(offset)
|
---|
[2611] | 1716 | maxsel = maxval
|
---|
| 1717 | elif currsel.strip().find('>') > -1:
|
---|
| 1718 | bound = currsel.split('>')
|
---|
| 1719 | try: # try "x > val"
|
---|
| 1720 | minsel = formatfunc(bound[1].strip()) \
|
---|
| 1721 | + formatfunc(offset)
|
---|
| 1722 | maxsel = maxval
|
---|
| 1723 | except ValueError: # now "val > x"
|
---|
| 1724 | minsel = minval
|
---|
| 1725 | maxsel = formatfunc(bound[0].strip()) \
|
---|
| 1726 | - formatfunc(offset)
|
---|
[2013] | 1727 | else:
|
---|
| 1728 | minsel = formatfunc(currsel)
|
---|
| 1729 | maxsel = formatfunc(currsel)
|
---|
| 1730 | sellists.append([minsel,maxsel])
|
---|
| 1731 | return sellists
|
---|
| 1732 |
|
---|
[1819] | 1733 | # def get_restfreqs(self):
|
---|
| 1734 | # """
|
---|
| 1735 | # Get the restfrequency(s) stored in this scantable.
|
---|
| 1736 | # The return value(s) are always of unit 'Hz'
|
---|
| 1737 | # Parameters:
|
---|
| 1738 | # none
|
---|
| 1739 | # Returns:
|
---|
| 1740 | # a list of doubles
|
---|
| 1741 | # """
|
---|
| 1742 | # return list(self._getrestfreqs())
|
---|
| 1743 |
|
---|
| 1744 | def get_restfreqs(self, ids=None):
|
---|
[1846] | 1745 | """\
|
---|
[256] | 1746 | Get the restfrequency(s) stored in this scantable.
|
---|
| 1747 | The return value(s) are always of unit 'Hz'
|
---|
[1846] | 1748 |
|
---|
[256] | 1749 | Parameters:
|
---|
[1846] | 1750 |
|
---|
[1819] | 1751 | ids: (optional) a list of MOLECULE_ID for that restfrequency(s) to
|
---|
| 1752 | be retrieved
|
---|
[1846] | 1753 |
|
---|
[256] | 1754 | Returns:
|
---|
[1846] | 1755 |
|
---|
[1819] | 1756 | dictionary containing ids and a list of doubles for each id
|
---|
[1846] | 1757 |
|
---|
[256] | 1758 | """
|
---|
[1819] | 1759 | if ids is None:
|
---|
[2349] | 1760 | rfreqs = {}
|
---|
[1819] | 1761 | idlist = self.getmolnos()
|
---|
| 1762 | for i in idlist:
|
---|
[2349] | 1763 | rfreqs[i] = list(self._getrestfreqs(i))
|
---|
[1819] | 1764 | return rfreqs
|
---|
| 1765 | else:
|
---|
[2349] | 1766 | if type(ids) == list or type(ids) == tuple:
|
---|
| 1767 | rfreqs = {}
|
---|
[1819] | 1768 | for i in ids:
|
---|
[2349] | 1769 | rfreqs[i] = list(self._getrestfreqs(i))
|
---|
[1819] | 1770 | return rfreqs
|
---|
| 1771 | else:
|
---|
| 1772 | return list(self._getrestfreqs(ids))
|
---|
[102] | 1773 |
|
---|
[2349] | 1774 | @asaplog_post_dec
|
---|
[931] | 1775 | def set_restfreqs(self, freqs=None, unit='Hz'):
|
---|
[1846] | 1776 | """\
|
---|
[931] | 1777 | Set or replace the restfrequency specified and
|
---|
[1938] | 1778 | if the 'freqs' argument holds a scalar,
|
---|
[931] | 1779 | then that rest frequency will be applied to all the selected
|
---|
| 1780 | data. If the 'freqs' argument holds
|
---|
| 1781 | a vector, then it MUST be of equal or smaller length than
|
---|
| 1782 | the number of IFs (and the available restfrequencies will be
|
---|
| 1783 | replaced by this vector). In this case, *all* data have
|
---|
| 1784 | the restfrequency set per IF according
|
---|
| 1785 | to the corresponding value you give in the 'freqs' vector.
|
---|
[1118] | 1786 | E.g. 'freqs=[1e9, 2e9]' would mean IF 0 gets restfreq 1e9 and
|
---|
[931] | 1787 | IF 1 gets restfreq 2e9.
|
---|
[1846] | 1788 |
|
---|
[1395] | 1789 | You can also specify the frequencies via a linecatalog.
|
---|
[1153] | 1790 |
|
---|
[931] | 1791 | Parameters:
|
---|
[1846] | 1792 |
|
---|
[931] | 1793 | freqs: list of rest frequency values or string idenitfiers
|
---|
[1855] | 1794 |
|
---|
[931] | 1795 | unit: unit for rest frequency (default 'Hz')
|
---|
[402] | 1796 |
|
---|
[1846] | 1797 |
|
---|
| 1798 | Example::
|
---|
| 1799 |
|
---|
[1819] | 1800 | # set the given restfrequency for the all currently selected IFs
|
---|
[931] | 1801 | scan.set_restfreqs(freqs=1.4e9)
|
---|
[1845] | 1802 | # set restfrequencies for the n IFs (n > 1) in the order of the
|
---|
| 1803 | # list, i.e
|
---|
| 1804 | # IF0 -> 1.4e9, IF1 -> 1.41e9, IF3 -> 1.42e9
|
---|
| 1805 | # len(list_of_restfreqs) == nIF
|
---|
| 1806 | # for nIF == 1 the following will set multiple restfrequency for
|
---|
| 1807 | # that IF
|
---|
[1819] | 1808 | scan.set_restfreqs(freqs=[1.4e9, 1.41e9, 1.42e9])
|
---|
[1845] | 1809 | # set multiple restfrequencies per IF. as a list of lists where
|
---|
| 1810 | # the outer list has nIF elements, the inner s arbitrary
|
---|
| 1811 | scan.set_restfreqs(freqs=[[1.4e9, 1.41e9], [1.67e9]])
|
---|
[391] | 1812 |
|
---|
[1846] | 1813 | *Note*:
|
---|
[1845] | 1814 |
|
---|
[931] | 1815 | To do more sophisticate Restfrequency setting, e.g. on a
|
---|
| 1816 | source and IF basis, use scantable.set_selection() before using
|
---|
[1846] | 1817 | this function::
|
---|
[931] | 1818 |
|
---|
[1846] | 1819 | # provided your scantable is called scan
|
---|
| 1820 | selection = selector()
|
---|
[2431] | 1821 | selection.set_name('ORION*')
|
---|
[1846] | 1822 | selection.set_ifs([1])
|
---|
| 1823 | scan.set_selection(selection)
|
---|
| 1824 | scan.set_restfreqs(freqs=86.6e9)
|
---|
| 1825 |
|
---|
[931] | 1826 | """
|
---|
| 1827 | varlist = vars()
|
---|
[1157] | 1828 | from asap import linecatalog
|
---|
| 1829 | # simple value
|
---|
[1118] | 1830 | if isinstance(freqs, int) or isinstance(freqs, float):
|
---|
[1845] | 1831 | self._setrestfreqs([freqs], [""], unit)
|
---|
[1157] | 1832 | # list of values
|
---|
[1118] | 1833 | elif isinstance(freqs, list) or isinstance(freqs, tuple):
|
---|
[1157] | 1834 | # list values are scalars
|
---|
[1118] | 1835 | if isinstance(freqs[-1], int) or isinstance(freqs[-1], float):
|
---|
[1845] | 1836 | if len(freqs) == 1:
|
---|
| 1837 | self._setrestfreqs(freqs, [""], unit)
|
---|
| 1838 | else:
|
---|
| 1839 | # allow the 'old' mode of setting mulitple IFs
|
---|
| 1840 | savesel = self._getselection()
|
---|
[2599] | 1841 | sel = self.get_selection()
|
---|
[1845] | 1842 | iflist = self.getifnos()
|
---|
| 1843 | if len(freqs)>len(iflist):
|
---|
| 1844 | raise ValueError("number of elements in list of list "
|
---|
| 1845 | "exeeds the current IF selections")
|
---|
| 1846 | iflist = self.getifnos()
|
---|
| 1847 | for i, fval in enumerate(freqs):
|
---|
| 1848 | sel.set_ifs(iflist[i])
|
---|
| 1849 | self._setselection(sel)
|
---|
| 1850 | self._setrestfreqs([fval], [""], unit)
|
---|
| 1851 | self._setselection(savesel)
|
---|
| 1852 |
|
---|
| 1853 | # list values are dict, {'value'=, 'name'=)
|
---|
[1157] | 1854 | elif isinstance(freqs[-1], dict):
|
---|
[1845] | 1855 | values = []
|
---|
| 1856 | names = []
|
---|
| 1857 | for d in freqs:
|
---|
| 1858 | values.append(d["value"])
|
---|
| 1859 | names.append(d["name"])
|
---|
| 1860 | self._setrestfreqs(values, names, unit)
|
---|
[1819] | 1861 | elif isinstance(freqs[-1], list) or isinstance(freqs[-1], tuple):
|
---|
[1157] | 1862 | savesel = self._getselection()
|
---|
[2599] | 1863 | sel = self.get_selection()
|
---|
[1322] | 1864 | iflist = self.getifnos()
|
---|
[1819] | 1865 | if len(freqs)>len(iflist):
|
---|
[1845] | 1866 | raise ValueError("number of elements in list of list exeeds"
|
---|
| 1867 | " the current IF selections")
|
---|
| 1868 | for i, fval in enumerate(freqs):
|
---|
[1322] | 1869 | sel.set_ifs(iflist[i])
|
---|
[1259] | 1870 | self._setselection(sel)
|
---|
[1845] | 1871 | self._setrestfreqs(fval, [""], unit)
|
---|
[1157] | 1872 | self._setselection(savesel)
|
---|
| 1873 | # freqs are to be taken from a linecatalog
|
---|
[1153] | 1874 | elif isinstance(freqs, linecatalog):
|
---|
| 1875 | savesel = self._getselection()
|
---|
[2599] | 1876 | sel = self.get_selection()
|
---|
[1153] | 1877 | for i in xrange(freqs.nrow()):
|
---|
[1322] | 1878 | sel.set_ifs(iflist[i])
|
---|
[1153] | 1879 | self._setselection(sel)
|
---|
[1845] | 1880 | self._setrestfreqs([freqs.get_frequency(i)],
|
---|
| 1881 | [freqs.get_name(i)], "MHz")
|
---|
[1153] | 1882 | # ensure that we are not iterating past nIF
|
---|
| 1883 | if i == self.nif()-1: break
|
---|
| 1884 | self._setselection(savesel)
|
---|
[931] | 1885 | else:
|
---|
| 1886 | return
|
---|
| 1887 | self._add_history("set_restfreqs", varlist)
|
---|
| 1888 |
|
---|
[2349] | 1889 | @asaplog_post_dec
|
---|
[1360] | 1890 | def shift_refpix(self, delta):
|
---|
[1846] | 1891 | """\
|
---|
[1589] | 1892 | Shift the reference pixel of the Spectra Coordinate by an
|
---|
| 1893 | integer amount.
|
---|
[1846] | 1894 |
|
---|
[1589] | 1895 | Parameters:
|
---|
[1846] | 1896 |
|
---|
[1589] | 1897 | delta: the amount to shift by
|
---|
[1846] | 1898 |
|
---|
| 1899 | *Note*:
|
---|
| 1900 |
|
---|
[1589] | 1901 | Be careful using this with broadband data.
|
---|
[1846] | 1902 |
|
---|
[1360] | 1903 | """
|
---|
[2349] | 1904 | varlist = vars()
|
---|
[1731] | 1905 | Scantable.shift_refpix(self, delta)
|
---|
[2349] | 1906 | s._add_history("shift_refpix", varlist)
|
---|
[931] | 1907 |
|
---|
[1862] | 1908 | @asaplog_post_dec
|
---|
[1259] | 1909 | def history(self, filename=None):
|
---|
[1846] | 1910 | """\
|
---|
[1259] | 1911 | Print the history. Optionally to a file.
|
---|
[1846] | 1912 |
|
---|
[1348] | 1913 | Parameters:
|
---|
[1846] | 1914 |
|
---|
[1928] | 1915 | filename: The name of the file to save the history to.
|
---|
[1846] | 1916 |
|
---|
[1259] | 1917 | """
|
---|
[484] | 1918 | hist = list(self._gethistory())
|
---|
[794] | 1919 | out = "-"*80
|
---|
[484] | 1920 | for h in hist:
|
---|
[489] | 1921 | if h.startswith("---"):
|
---|
[1857] | 1922 | out = "\n".join([out, h])
|
---|
[489] | 1923 | else:
|
---|
| 1924 | items = h.split("##")
|
---|
| 1925 | date = items[0]
|
---|
| 1926 | func = items[1]
|
---|
| 1927 | items = items[2:]
|
---|
[794] | 1928 | out += "\n"+date+"\n"
|
---|
| 1929 | out += "Function: %s\n Parameters:" % (func)
|
---|
[489] | 1930 | for i in items:
|
---|
[1938] | 1931 | if i == '':
|
---|
| 1932 | continue
|
---|
[489] | 1933 | s = i.split("=")
|
---|
[1118] | 1934 | out += "\n %s = %s" % (s[0], s[1])
|
---|
[1857] | 1935 | out = "\n".join([out, "-"*80])
|
---|
[1259] | 1936 | if filename is not None:
|
---|
| 1937 | if filename is "":
|
---|
| 1938 | filename = 'scantable_history.txt'
|
---|
| 1939 | import os
|
---|
| 1940 | filename = os.path.expandvars(os.path.expanduser(filename))
|
---|
| 1941 | if not os.path.isdir(filename):
|
---|
| 1942 | data = open(filename, 'w')
|
---|
| 1943 | data.write(out)
|
---|
| 1944 | data.close()
|
---|
| 1945 | else:
|
---|
| 1946 | msg = "Illegal file name '%s'." % (filename)
|
---|
[1859] | 1947 | raise IOError(msg)
|
---|
| 1948 | return page(out)
|
---|
[2349] | 1949 |
|
---|
[513] | 1950 | #
|
---|
| 1951 | # Maths business
|
---|
| 1952 | #
|
---|
[1862] | 1953 | @asaplog_post_dec
|
---|
[931] | 1954 | def average_time(self, mask=None, scanav=False, weight='tint', align=False):
|
---|
[1846] | 1955 | """\
|
---|
[2349] | 1956 | Return the (time) weighted average of a scan. Scans will be averaged
|
---|
| 1957 | only if the source direction (RA/DEC) is within 1' otherwise
|
---|
[1846] | 1958 |
|
---|
| 1959 | *Note*:
|
---|
| 1960 |
|
---|
[1070] | 1961 | in channels only - align if necessary
|
---|
[1846] | 1962 |
|
---|
[513] | 1963 | Parameters:
|
---|
[1846] | 1964 |
|
---|
[513] | 1965 | mask: an optional mask (only used for 'var' and 'tsys'
|
---|
| 1966 | weighting)
|
---|
[1855] | 1967 |
|
---|
[558] | 1968 | scanav: True averages each scan separately
|
---|
| 1969 | False (default) averages all scans together,
|
---|
[1855] | 1970 |
|
---|
[1099] | 1971 | weight: Weighting scheme.
|
---|
| 1972 | 'none' (mean no weight)
|
---|
| 1973 | 'var' (1/var(spec) weighted)
|
---|
| 1974 | 'tsys' (1/Tsys**2 weighted)
|
---|
| 1975 | 'tint' (integration time weighted)
|
---|
| 1976 | 'tintsys' (Tint/Tsys**2)
|
---|
| 1977 | 'median' ( median averaging)
|
---|
[535] | 1978 | The default is 'tint'
|
---|
[1855] | 1979 |
|
---|
[931] | 1980 | align: align the spectra in velocity before averaging. It takes
|
---|
| 1981 | the time of the first spectrum as reference time.
|
---|
[1846] | 1982 |
|
---|
| 1983 | Example::
|
---|
| 1984 |
|
---|
[513] | 1985 | # time average the scantable without using a mask
|
---|
[710] | 1986 | newscan = scan.average_time()
|
---|
[1846] | 1987 |
|
---|
[513] | 1988 | """
|
---|
| 1989 | varlist = vars()
|
---|
[1593] | 1990 | weight = weight or 'TINT'
|
---|
| 1991 | mask = mask or ()
|
---|
| 1992 | scanav = (scanav and 'SCAN') or 'NONE'
|
---|
[1118] | 1993 | scan = (self, )
|
---|
[1859] | 1994 |
|
---|
| 1995 | if align:
|
---|
| 1996 | scan = (self.freq_align(insitu=False), )
|
---|
| 1997 | s = None
|
---|
| 1998 | if weight.upper() == 'MEDIAN':
|
---|
| 1999 | s = scantable(self._math._averagechannel(scan[0], 'MEDIAN',
|
---|
| 2000 | scanav))
|
---|
| 2001 | else:
|
---|
| 2002 | s = scantable(self._math._average(scan, mask, weight.upper(),
|
---|
| 2003 | scanav))
|
---|
[1099] | 2004 | s._add_history("average_time", varlist)
|
---|
[513] | 2005 | return s
|
---|
[710] | 2006 |
|
---|
[1862] | 2007 | @asaplog_post_dec
|
---|
[876] | 2008 | def convert_flux(self, jyperk=None, eta=None, d=None, insitu=None):
|
---|
[1846] | 2009 | """\
|
---|
[513] | 2010 | Return a scan where all spectra are converted to either
|
---|
| 2011 | Jansky or Kelvin depending upon the flux units of the scan table.
|
---|
| 2012 | By default the function tries to look the values up internally.
|
---|
| 2013 | If it can't find them (or if you want to over-ride), you must
|
---|
| 2014 | specify EITHER jyperk OR eta (and D which it will try to look up
|
---|
| 2015 | also if you don't set it). jyperk takes precedence if you set both.
|
---|
[1846] | 2016 |
|
---|
[513] | 2017 | Parameters:
|
---|
[1846] | 2018 |
|
---|
[513] | 2019 | jyperk: the Jy / K conversion factor
|
---|
[1855] | 2020 |
|
---|
[513] | 2021 | eta: the aperture efficiency
|
---|
[1855] | 2022 |
|
---|
[1928] | 2023 | d: the geometric diameter (metres)
|
---|
[1855] | 2024 |
|
---|
[513] | 2025 | insitu: if False a new scantable is returned.
|
---|
| 2026 | Otherwise, the scaling is done in-situ
|
---|
| 2027 | The default is taken from .asaprc (False)
|
---|
[1846] | 2028 |
|
---|
[513] | 2029 | """
|
---|
| 2030 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 2031 | self._math._setinsitu(insitu)
|
---|
[513] | 2032 | varlist = vars()
|
---|
[1593] | 2033 | jyperk = jyperk or -1.0
|
---|
| 2034 | d = d or -1.0
|
---|
| 2035 | eta = eta or -1.0
|
---|
[876] | 2036 | s = scantable(self._math._convertflux(self, d, eta, jyperk))
|
---|
| 2037 | s._add_history("convert_flux", varlist)
|
---|
| 2038 | if insitu: self._assign(s)
|
---|
| 2039 | else: return s
|
---|
[513] | 2040 |
|
---|
[1862] | 2041 | @asaplog_post_dec
|
---|
[876] | 2042 | def gain_el(self, poly=None, filename="", method="linear", insitu=None):
|
---|
[1846] | 2043 | """\
|
---|
[513] | 2044 | Return a scan after applying a gain-elevation correction.
|
---|
| 2045 | The correction can be made via either a polynomial or a
|
---|
| 2046 | table-based interpolation (and extrapolation if necessary).
|
---|
| 2047 | You specify polynomial coefficients, an ascii table or neither.
|
---|
| 2048 | If you specify neither, then a polynomial correction will be made
|
---|
| 2049 | with built in coefficients known for certain telescopes (an error
|
---|
| 2050 | will occur if the instrument is not known).
|
---|
| 2051 | The data and Tsys are *divided* by the scaling factors.
|
---|
[1846] | 2052 |
|
---|
[513] | 2053 | Parameters:
|
---|
[1846] | 2054 |
|
---|
[513] | 2055 | poly: Polynomial coefficients (default None) to compute a
|
---|
| 2056 | gain-elevation correction as a function of
|
---|
| 2057 | elevation (in degrees).
|
---|
[1855] | 2058 |
|
---|
[513] | 2059 | filename: The name of an ascii file holding correction factors.
|
---|
| 2060 | The first row of the ascii file must give the column
|
---|
| 2061 | names and these MUST include columns
|
---|
[2431] | 2062 | 'ELEVATION' (degrees) and 'FACTOR' (multiply data
|
---|
[513] | 2063 | by this) somewhere.
|
---|
| 2064 | The second row must give the data type of the
|
---|
| 2065 | column. Use 'R' for Real and 'I' for Integer.
|
---|
| 2066 | An example file would be
|
---|
| 2067 | (actual factors are arbitrary) :
|
---|
| 2068 |
|
---|
| 2069 | TIME ELEVATION FACTOR
|
---|
| 2070 | R R R
|
---|
| 2071 | 0.1 0 0.8
|
---|
| 2072 | 0.2 20 0.85
|
---|
| 2073 | 0.3 40 0.9
|
---|
| 2074 | 0.4 60 0.85
|
---|
| 2075 | 0.5 80 0.8
|
---|
| 2076 | 0.6 90 0.75
|
---|
[1855] | 2077 |
|
---|
[513] | 2078 | method: Interpolation method when correcting from a table.
|
---|
[2431] | 2079 | Values are 'nearest', 'linear' (default), 'cubic'
|
---|
| 2080 | and 'spline'
|
---|
[1855] | 2081 |
|
---|
[513] | 2082 | insitu: if False a new scantable is returned.
|
---|
| 2083 | Otherwise, the scaling is done in-situ
|
---|
| 2084 | The default is taken from .asaprc (False)
|
---|
[1846] | 2085 |
|
---|
[513] | 2086 | """
|
---|
| 2087 |
|
---|
| 2088 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 2089 | self._math._setinsitu(insitu)
|
---|
[513] | 2090 | varlist = vars()
|
---|
[1593] | 2091 | poly = poly or ()
|
---|
[513] | 2092 | from os.path import expandvars
|
---|
| 2093 | filename = expandvars(filename)
|
---|
[876] | 2094 | s = scantable(self._math._gainel(self, poly, filename, method))
|
---|
| 2095 | s._add_history("gain_el", varlist)
|
---|
[1593] | 2096 | if insitu:
|
---|
| 2097 | self._assign(s)
|
---|
| 2098 | else:
|
---|
| 2099 | return s
|
---|
[710] | 2100 |
|
---|
[1862] | 2101 | @asaplog_post_dec
|
---|
[931] | 2102 | def freq_align(self, reftime=None, method='cubic', insitu=None):
|
---|
[1846] | 2103 | """\
|
---|
[513] | 2104 | Return a scan where all rows have been aligned in frequency/velocity.
|
---|
| 2105 | The alignment frequency frame (e.g. LSRK) is that set by function
|
---|
| 2106 | set_freqframe.
|
---|
[1846] | 2107 |
|
---|
[513] | 2108 | Parameters:
|
---|
[1855] | 2109 |
|
---|
[513] | 2110 | reftime: reference time to align at. By default, the time of
|
---|
| 2111 | the first row of data is used.
|
---|
[1855] | 2112 |
|
---|
[513] | 2113 | method: Interpolation method for regridding the spectra.
|
---|
[2431] | 2114 | Choose from 'nearest', 'linear', 'cubic' (default)
|
---|
| 2115 | and 'spline'
|
---|
[1855] | 2116 |
|
---|
[513] | 2117 | insitu: if False a new scantable is returned.
|
---|
| 2118 | Otherwise, the scaling is done in-situ
|
---|
| 2119 | The default is taken from .asaprc (False)
|
---|
[1846] | 2120 |
|
---|
[513] | 2121 | """
|
---|
[931] | 2122 | if insitu is None: insitu = rcParams["insitu"]
|
---|
[2429] | 2123 | oldInsitu = self._math._insitu()
|
---|
[876] | 2124 | self._math._setinsitu(insitu)
|
---|
[513] | 2125 | varlist = vars()
|
---|
[1593] | 2126 | reftime = reftime or ""
|
---|
[931] | 2127 | s = scantable(self._math._freq_align(self, reftime, method))
|
---|
[876] | 2128 | s._add_history("freq_align", varlist)
|
---|
[2429] | 2129 | self._math._setinsitu(oldInsitu)
|
---|
[2349] | 2130 | if insitu:
|
---|
| 2131 | self._assign(s)
|
---|
| 2132 | else:
|
---|
| 2133 | return s
|
---|
[513] | 2134 |
|
---|
[1862] | 2135 | @asaplog_post_dec
|
---|
[1725] | 2136 | def opacity(self, tau=None, insitu=None):
|
---|
[1846] | 2137 | """\
|
---|
[513] | 2138 | Apply an opacity correction. The data
|
---|
| 2139 | and Tsys are multiplied by the correction factor.
|
---|
[1846] | 2140 |
|
---|
[513] | 2141 | Parameters:
|
---|
[1855] | 2142 |
|
---|
[1689] | 2143 | tau: (list of) opacity from which the correction factor is
|
---|
[513] | 2144 | exp(tau*ZD)
|
---|
[1689] | 2145 | where ZD is the zenith-distance.
|
---|
| 2146 | If a list is provided, it has to be of length nIF,
|
---|
| 2147 | nIF*nPol or 1 and in order of IF/POL, e.g.
|
---|
| 2148 | [opif0pol0, opif0pol1, opif1pol0 ...]
|
---|
[1725] | 2149 | if tau is `None` the opacities are determined from a
|
---|
| 2150 | model.
|
---|
[1855] | 2151 |
|
---|
[513] | 2152 | insitu: if False a new scantable is returned.
|
---|
| 2153 | Otherwise, the scaling is done in-situ
|
---|
| 2154 | The default is taken from .asaprc (False)
|
---|
[1846] | 2155 |
|
---|
[513] | 2156 | """
|
---|
[2349] | 2157 | if insitu is None:
|
---|
| 2158 | insitu = rcParams['insitu']
|
---|
[876] | 2159 | self._math._setinsitu(insitu)
|
---|
[513] | 2160 | varlist = vars()
|
---|
[1689] | 2161 | if not hasattr(tau, "__len__"):
|
---|
| 2162 | tau = [tau]
|
---|
[876] | 2163 | s = scantable(self._math._opacity(self, tau))
|
---|
| 2164 | s._add_history("opacity", varlist)
|
---|
[2349] | 2165 | if insitu:
|
---|
| 2166 | self._assign(s)
|
---|
| 2167 | else:
|
---|
| 2168 | return s
|
---|
[513] | 2169 |
|
---|
[1862] | 2170 | @asaplog_post_dec
|
---|
[513] | 2171 | def bin(self, width=5, insitu=None):
|
---|
[1846] | 2172 | """\
|
---|
[513] | 2173 | Return a scan where all spectra have been binned up.
|
---|
[1846] | 2174 |
|
---|
[1348] | 2175 | Parameters:
|
---|
[1846] | 2176 |
|
---|
[513] | 2177 | width: The bin width (default=5) in pixels
|
---|
[1855] | 2178 |
|
---|
[513] | 2179 | insitu: if False a new scantable is returned.
|
---|
| 2180 | Otherwise, the scaling is done in-situ
|
---|
| 2181 | The default is taken from .asaprc (False)
|
---|
[1846] | 2182 |
|
---|
[513] | 2183 | """
|
---|
[2349] | 2184 | if insitu is None:
|
---|
| 2185 | insitu = rcParams['insitu']
|
---|
[876] | 2186 | self._math._setinsitu(insitu)
|
---|
[513] | 2187 | varlist = vars()
|
---|
[876] | 2188 | s = scantable(self._math._bin(self, width))
|
---|
[1118] | 2189 | s._add_history("bin", varlist)
|
---|
[1589] | 2190 | if insitu:
|
---|
| 2191 | self._assign(s)
|
---|
| 2192 | else:
|
---|
| 2193 | return s
|
---|
[513] | 2194 |
|
---|
[1862] | 2195 | @asaplog_post_dec
|
---|
[2672] | 2196 | def reshape(self, first, last, insitu=None):
|
---|
| 2197 | """Resize the band by providing first and last channel.
|
---|
| 2198 | This will cut off all channels outside [first, last].
|
---|
| 2199 | """
|
---|
| 2200 | if insitu is None:
|
---|
| 2201 | insitu = rcParams['insitu']
|
---|
| 2202 | varlist = vars()
|
---|
| 2203 | if last < 0:
|
---|
| 2204 | last = self.nchan()-1 + last
|
---|
| 2205 | s = None
|
---|
| 2206 | if insitu:
|
---|
| 2207 | s = self
|
---|
| 2208 | else:
|
---|
| 2209 | s = self.copy()
|
---|
| 2210 | s._reshape(first,last)
|
---|
| 2211 | s._add_history("reshape", varlist)
|
---|
| 2212 | if not insitu:
|
---|
| 2213 | return s
|
---|
| 2214 |
|
---|
| 2215 | @asaplog_post_dec
|
---|
[513] | 2216 | def resample(self, width=5, method='cubic', insitu=None):
|
---|
[1846] | 2217 | """\
|
---|
[1348] | 2218 | Return a scan where all spectra have been binned up.
|
---|
[1573] | 2219 |
|
---|
[1348] | 2220 | Parameters:
|
---|
[1846] | 2221 |
|
---|
[513] | 2222 | width: The bin width (default=5) in pixels
|
---|
[1855] | 2223 |
|
---|
[513] | 2224 | method: Interpolation method when correcting from a table.
|
---|
[2431] | 2225 | Values are 'nearest', 'linear', 'cubic' (default)
|
---|
| 2226 | and 'spline'
|
---|
[1855] | 2227 |
|
---|
[513] | 2228 | insitu: if False a new scantable is returned.
|
---|
| 2229 | Otherwise, the scaling is done in-situ
|
---|
| 2230 | The default is taken from .asaprc (False)
|
---|
[1846] | 2231 |
|
---|
[513] | 2232 | """
|
---|
[2349] | 2233 | if insitu is None:
|
---|
| 2234 | insitu = rcParams['insitu']
|
---|
[876] | 2235 | self._math._setinsitu(insitu)
|
---|
[513] | 2236 | varlist = vars()
|
---|
[876] | 2237 | s = scantable(self._math._resample(self, method, width))
|
---|
[1118] | 2238 | s._add_history("resample", varlist)
|
---|
[2349] | 2239 | if insitu:
|
---|
| 2240 | self._assign(s)
|
---|
| 2241 | else:
|
---|
| 2242 | return s
|
---|
[513] | 2243 |
|
---|
[1862] | 2244 | @asaplog_post_dec
|
---|
[946] | 2245 | def average_pol(self, mask=None, weight='none'):
|
---|
[1846] | 2246 | """\
|
---|
[946] | 2247 | Average the Polarisations together.
|
---|
[1846] | 2248 |
|
---|
[946] | 2249 | Parameters:
|
---|
[1846] | 2250 |
|
---|
[946] | 2251 | mask: An optional mask defining the region, where the
|
---|
| 2252 | averaging will be applied. The output will have all
|
---|
| 2253 | specified points masked.
|
---|
[1855] | 2254 |
|
---|
[946] | 2255 | weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
|
---|
| 2256 | weighted), or 'tsys' (1/Tsys**2 weighted)
|
---|
[1846] | 2257 |
|
---|
[946] | 2258 | """
|
---|
| 2259 | varlist = vars()
|
---|
[1593] | 2260 | mask = mask or ()
|
---|
[1010] | 2261 | s = scantable(self._math._averagepol(self, mask, weight.upper()))
|
---|
[1118] | 2262 | s._add_history("average_pol", varlist)
|
---|
[992] | 2263 | return s
|
---|
[513] | 2264 |
|
---|
[1862] | 2265 | @asaplog_post_dec
|
---|
[1145] | 2266 | def average_beam(self, mask=None, weight='none'):
|
---|
[1846] | 2267 | """\
|
---|
[1145] | 2268 | Average the Beams together.
|
---|
[1846] | 2269 |
|
---|
[1145] | 2270 | Parameters:
|
---|
| 2271 | mask: An optional mask defining the region, where the
|
---|
| 2272 | averaging will be applied. The output will have all
|
---|
| 2273 | specified points masked.
|
---|
[1855] | 2274 |
|
---|
[1145] | 2275 | weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
|
---|
| 2276 | weighted), or 'tsys' (1/Tsys**2 weighted)
|
---|
[1846] | 2277 |
|
---|
[1145] | 2278 | """
|
---|
| 2279 | varlist = vars()
|
---|
[1593] | 2280 | mask = mask or ()
|
---|
[1145] | 2281 | s = scantable(self._math._averagebeams(self, mask, weight.upper()))
|
---|
| 2282 | s._add_history("average_beam", varlist)
|
---|
| 2283 | return s
|
---|
| 2284 |
|
---|
[1586] | 2285 | def parallactify(self, pflag):
|
---|
[1846] | 2286 | """\
|
---|
[1843] | 2287 | Set a flag to indicate whether this data should be treated as having
|
---|
[1617] | 2288 | been 'parallactified' (total phase == 0.0)
|
---|
[1846] | 2289 |
|
---|
[1617] | 2290 | Parameters:
|
---|
[1855] | 2291 |
|
---|
[1843] | 2292 | pflag: Bool indicating whether to turn this on (True) or
|
---|
[1617] | 2293 | off (False)
|
---|
[1846] | 2294 |
|
---|
[1617] | 2295 | """
|
---|
[1586] | 2296 | varlist = vars()
|
---|
| 2297 | self._parallactify(pflag)
|
---|
| 2298 | self._add_history("parallactify", varlist)
|
---|
| 2299 |
|
---|
[1862] | 2300 | @asaplog_post_dec
|
---|
[992] | 2301 | def convert_pol(self, poltype=None):
|
---|
[1846] | 2302 | """\
|
---|
[992] | 2303 | Convert the data to a different polarisation type.
|
---|
[1565] | 2304 | Note that you will need cross-polarisation terms for most conversions.
|
---|
[1846] | 2305 |
|
---|
[992] | 2306 | Parameters:
|
---|
[1855] | 2307 |
|
---|
[992] | 2308 | poltype: The new polarisation type. Valid types are:
|
---|
[2431] | 2309 | 'linear', 'circular', 'stokes' and 'linpol'
|
---|
[1846] | 2310 |
|
---|
[992] | 2311 | """
|
---|
| 2312 | varlist = vars()
|
---|
[1859] | 2313 | s = scantable(self._math._convertpol(self, poltype))
|
---|
[1118] | 2314 | s._add_history("convert_pol", varlist)
|
---|
[992] | 2315 | return s
|
---|
| 2316 |
|
---|
[1862] | 2317 | @asaplog_post_dec
|
---|
[2269] | 2318 | def smooth(self, kernel="hanning", width=5.0, order=2, plot=False,
|
---|
| 2319 | insitu=None):
|
---|
[1846] | 2320 | """\
|
---|
[513] | 2321 | Smooth the spectrum by the specified kernel (conserving flux).
|
---|
[1846] | 2322 |
|
---|
[513] | 2323 | Parameters:
|
---|
[1846] | 2324 |
|
---|
[513] | 2325 | kernel: The type of smoothing kernel. Select from
|
---|
[1574] | 2326 | 'hanning' (default), 'gaussian', 'boxcar', 'rmedian'
|
---|
| 2327 | or 'poly'
|
---|
[1855] | 2328 |
|
---|
[513] | 2329 | width: The width of the kernel in pixels. For hanning this is
|
---|
| 2330 | ignored otherwise it defauls to 5 pixels.
|
---|
| 2331 | For 'gaussian' it is the Full Width Half
|
---|
| 2332 | Maximum. For 'boxcar' it is the full width.
|
---|
[1574] | 2333 | For 'rmedian' and 'poly' it is the half width.
|
---|
[1855] | 2334 |
|
---|
[1574] | 2335 | order: Optional parameter for 'poly' kernel (default is 2), to
|
---|
| 2336 | specify the order of the polnomial. Ignored by all other
|
---|
| 2337 | kernels.
|
---|
[1855] | 2338 |
|
---|
[1819] | 2339 | plot: plot the original and the smoothed spectra.
|
---|
| 2340 | In this each indivual fit has to be approved, by
|
---|
| 2341 | typing 'y' or 'n'
|
---|
[1855] | 2342 |
|
---|
[513] | 2343 | insitu: if False a new scantable is returned.
|
---|
| 2344 | Otherwise, the scaling is done in-situ
|
---|
| 2345 | The default is taken from .asaprc (False)
|
---|
[1846] | 2346 |
|
---|
[513] | 2347 | """
|
---|
| 2348 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 2349 | self._math._setinsitu(insitu)
|
---|
[513] | 2350 | varlist = vars()
|
---|
[1819] | 2351 |
|
---|
| 2352 | if plot: orgscan = self.copy()
|
---|
| 2353 |
|
---|
[1574] | 2354 | s = scantable(self._math._smooth(self, kernel.lower(), width, order))
|
---|
[876] | 2355 | s._add_history("smooth", varlist)
|
---|
[1819] | 2356 |
|
---|
[2610] | 2357 | action = 'H'
|
---|
[1819] | 2358 | if plot:
|
---|
[2150] | 2359 | from asap.asapplotter import new_asaplot
|
---|
| 2360 | theplot = new_asaplot(rcParams['plotter.gui'])
|
---|
[2535] | 2361 | from matplotlib import rc as rcp
|
---|
| 2362 | rcp('lines', linewidth=1)
|
---|
[2150] | 2363 | theplot.set_panels()
|
---|
[1819] | 2364 | ylab=s._get_ordinate_label()
|
---|
[2150] | 2365 | #theplot.palette(0,["#777777","red"])
|
---|
[1819] | 2366 | for r in xrange(s.nrow()):
|
---|
| 2367 | xsm=s._getabcissa(r)
|
---|
| 2368 | ysm=s._getspectrum(r)
|
---|
| 2369 | xorg=orgscan._getabcissa(r)
|
---|
| 2370 | yorg=orgscan._getspectrum(r)
|
---|
[2610] | 2371 | if action != "N": #skip plotting if rejecting all
|
---|
| 2372 | theplot.clear()
|
---|
| 2373 | theplot.hold()
|
---|
| 2374 | theplot.set_axes('ylabel',ylab)
|
---|
| 2375 | theplot.set_axes('xlabel',s._getabcissalabel(r))
|
---|
| 2376 | theplot.set_axes('title',s._getsourcename(r))
|
---|
| 2377 | theplot.set_line(label='Original',color="#777777")
|
---|
| 2378 | theplot.plot(xorg,yorg)
|
---|
| 2379 | theplot.set_line(label='Smoothed',color="red")
|
---|
| 2380 | theplot.plot(xsm,ysm)
|
---|
| 2381 | ### Ugly part for legend
|
---|
| 2382 | for i in [0,1]:
|
---|
| 2383 | theplot.subplots[0]['lines'].append(
|
---|
| 2384 | [theplot.subplots[0]['axes'].lines[i]]
|
---|
| 2385 | )
|
---|
| 2386 | theplot.release()
|
---|
| 2387 | ### Ugly part for legend
|
---|
| 2388 | theplot.subplots[0]['lines']=[]
|
---|
| 2389 | res = self._get_verify_action("Accept smoothing?",action)
|
---|
| 2390 | #print "IF%d, POL%d: got result = %s" %(s.getif(r),s.getpol(r),res)
|
---|
| 2391 | if r == 0: action = None
|
---|
| 2392 | #res = raw_input("Accept smoothing ([y]/n): ")
|
---|
[1819] | 2393 | if res.upper() == 'N':
|
---|
[2610] | 2394 | # reject for the current rows
|
---|
[1819] | 2395 | s._setspectrum(yorg, r)
|
---|
[2610] | 2396 | elif res.upper() == 'R':
|
---|
| 2397 | # reject all the following rows
|
---|
| 2398 | action = "N"
|
---|
| 2399 | s._setspectrum(yorg, r)
|
---|
| 2400 | elif res.upper() == 'A':
|
---|
| 2401 | # accept all the following rows
|
---|
| 2402 | break
|
---|
[2150] | 2403 | theplot.quit()
|
---|
| 2404 | del theplot
|
---|
[1819] | 2405 | del orgscan
|
---|
| 2406 |
|
---|
[876] | 2407 | if insitu: self._assign(s)
|
---|
| 2408 | else: return s
|
---|
[513] | 2409 |
|
---|
[2186] | 2410 | @asaplog_post_dec
|
---|
[2435] | 2411 | def regrid_channel(self, width=5, plot=False, insitu=None):
|
---|
| 2412 | """\
|
---|
| 2413 | Regrid the spectra by the specified channel width
|
---|
| 2414 |
|
---|
| 2415 | Parameters:
|
---|
| 2416 |
|
---|
| 2417 | width: The channel width (float) of regridded spectra
|
---|
| 2418 | in the current spectral unit.
|
---|
| 2419 |
|
---|
| 2420 | plot: [NOT IMPLEMENTED YET]
|
---|
| 2421 | plot the original and the regridded spectra.
|
---|
| 2422 | In this each indivual fit has to be approved, by
|
---|
| 2423 | typing 'y' or 'n'
|
---|
| 2424 |
|
---|
| 2425 | insitu: if False a new scantable is returned.
|
---|
| 2426 | Otherwise, the scaling is done in-situ
|
---|
| 2427 | The default is taken from .asaprc (False)
|
---|
| 2428 |
|
---|
| 2429 | """
|
---|
| 2430 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2431 | varlist = vars()
|
---|
| 2432 |
|
---|
| 2433 | if plot:
|
---|
| 2434 | asaplog.post()
|
---|
| 2435 | asaplog.push("Verification plot is not implemtnetd yet.")
|
---|
| 2436 | asaplog.post("WARN")
|
---|
| 2437 |
|
---|
| 2438 | s = self.copy()
|
---|
| 2439 | s._regrid_specchan(width)
|
---|
| 2440 |
|
---|
| 2441 | s._add_history("regrid_channel", varlist)
|
---|
| 2442 |
|
---|
| 2443 | # if plot:
|
---|
| 2444 | # from asap.asapplotter import new_asaplot
|
---|
| 2445 | # theplot = new_asaplot(rcParams['plotter.gui'])
|
---|
[2535] | 2446 | # from matplotlib import rc as rcp
|
---|
| 2447 | # rcp('lines', linewidth=1)
|
---|
[2435] | 2448 | # theplot.set_panels()
|
---|
| 2449 | # ylab=s._get_ordinate_label()
|
---|
| 2450 | # #theplot.palette(0,["#777777","red"])
|
---|
| 2451 | # for r in xrange(s.nrow()):
|
---|
| 2452 | # xsm=s._getabcissa(r)
|
---|
| 2453 | # ysm=s._getspectrum(r)
|
---|
| 2454 | # xorg=orgscan._getabcissa(r)
|
---|
| 2455 | # yorg=orgscan._getspectrum(r)
|
---|
| 2456 | # theplot.clear()
|
---|
| 2457 | # theplot.hold()
|
---|
| 2458 | # theplot.set_axes('ylabel',ylab)
|
---|
| 2459 | # theplot.set_axes('xlabel',s._getabcissalabel(r))
|
---|
| 2460 | # theplot.set_axes('title',s._getsourcename(r))
|
---|
| 2461 | # theplot.set_line(label='Original',color="#777777")
|
---|
| 2462 | # theplot.plot(xorg,yorg)
|
---|
| 2463 | # theplot.set_line(label='Smoothed',color="red")
|
---|
| 2464 | # theplot.plot(xsm,ysm)
|
---|
| 2465 | # ### Ugly part for legend
|
---|
| 2466 | # for i in [0,1]:
|
---|
| 2467 | # theplot.subplots[0]['lines'].append(
|
---|
| 2468 | # [theplot.subplots[0]['axes'].lines[i]]
|
---|
| 2469 | # )
|
---|
| 2470 | # theplot.release()
|
---|
| 2471 | # ### Ugly part for legend
|
---|
| 2472 | # theplot.subplots[0]['lines']=[]
|
---|
| 2473 | # res = raw_input("Accept smoothing ([y]/n): ")
|
---|
| 2474 | # if res.upper() == 'N':
|
---|
| 2475 | # s._setspectrum(yorg, r)
|
---|
| 2476 | # theplot.quit()
|
---|
| 2477 | # del theplot
|
---|
| 2478 | # del orgscan
|
---|
| 2479 |
|
---|
| 2480 | if insitu: self._assign(s)
|
---|
| 2481 | else: return s
|
---|
| 2482 |
|
---|
| 2483 | @asaplog_post_dec
|
---|
[2186] | 2484 | def _parse_wn(self, wn):
|
---|
| 2485 | if isinstance(wn, list) or isinstance(wn, tuple):
|
---|
| 2486 | return wn
|
---|
| 2487 | elif isinstance(wn, int):
|
---|
| 2488 | return [ wn ]
|
---|
| 2489 | elif isinstance(wn, str):
|
---|
[2277] | 2490 | if '-' in wn: # case 'a-b' : return [a,a+1,...,b-1,b]
|
---|
[2186] | 2491 | val = wn.split('-')
|
---|
| 2492 | val = [int(val[0]), int(val[1])]
|
---|
| 2493 | val.sort()
|
---|
| 2494 | res = [i for i in xrange(val[0], val[1]+1)]
|
---|
[2277] | 2495 | elif wn[:2] == '<=' or wn[:2] == '=<': # cases '<=a','=<a' : return [0,1,...,a-1,a]
|
---|
[2186] | 2496 | val = int(wn[2:])+1
|
---|
| 2497 | res = [i for i in xrange(val)]
|
---|
[2277] | 2498 | elif wn[-2:] == '>=' or wn[-2:] == '=>': # cases 'a>=','a=>' : return [0,1,...,a-1,a]
|
---|
[2186] | 2499 | val = int(wn[:-2])+1
|
---|
| 2500 | res = [i for i in xrange(val)]
|
---|
[2277] | 2501 | elif wn[0] == '<': # case '<a' : return [0,1,...,a-2,a-1]
|
---|
[2186] | 2502 | val = int(wn[1:])
|
---|
| 2503 | res = [i for i in xrange(val)]
|
---|
[2277] | 2504 | elif wn[-1] == '>': # case 'a>' : return [0,1,...,a-2,a-1]
|
---|
[2186] | 2505 | val = int(wn[:-1])
|
---|
| 2506 | res = [i for i in xrange(val)]
|
---|
[2411] | 2507 | elif wn[:2] == '>=' or wn[:2] == '=>': # cases '>=a','=>a' : return [a,-999], which is
|
---|
| 2508 | # then interpreted in C++
|
---|
| 2509 | # side as [a,a+1,...,a_nyq]
|
---|
| 2510 | # (CAS-3759)
|
---|
[2186] | 2511 | val = int(wn[2:])
|
---|
[2411] | 2512 | res = [val, -999]
|
---|
| 2513 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
| 2514 | elif wn[-2:] == '<=' or wn[-2:] == '=<': # cases 'a<=','a=<' : return [a,-999], which is
|
---|
| 2515 | # then interpreted in C++
|
---|
| 2516 | # side as [a,a+1,...,a_nyq]
|
---|
| 2517 | # (CAS-3759)
|
---|
[2186] | 2518 | val = int(wn[:-2])
|
---|
[2411] | 2519 | res = [val, -999]
|
---|
| 2520 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
| 2521 | elif wn[0] == '>': # case '>a' : return [a+1,-999], which is
|
---|
| 2522 | # then interpreted in C++
|
---|
| 2523 | # side as [a+1,a+2,...,a_nyq]
|
---|
| 2524 | # (CAS-3759)
|
---|
[2186] | 2525 | val = int(wn[1:])+1
|
---|
[2411] | 2526 | res = [val, -999]
|
---|
| 2527 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
| 2528 | elif wn[-1] == '<': # case 'a<' : return [a+1,-999], which is
|
---|
| 2529 | # then interpreted in C++
|
---|
| 2530 | # side as [a+1,a+2,...,a_nyq]
|
---|
| 2531 | # (CAS-3759)
|
---|
[2186] | 2532 | val = int(wn[:-1])+1
|
---|
[2411] | 2533 | res = [val, -999]
|
---|
| 2534 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
[2012] | 2535 |
|
---|
[2186] | 2536 | return res
|
---|
| 2537 | else:
|
---|
| 2538 | msg = 'wrong value given for addwn/rejwn'
|
---|
| 2539 | raise RuntimeError(msg)
|
---|
| 2540 |
|
---|
[2713] | 2541 | @asaplog_post_dec
|
---|
| 2542 | def calc_aic(self, value=None, blfunc=None, order=None, mask=None,
|
---|
| 2543 | whichrow=None, uselinefinder=None, edge=None,
|
---|
| 2544 | threshold=None, chan_avg_limit=None):
|
---|
| 2545 | """\
|
---|
| 2546 | Calculates and returns model selection criteria for a specified
|
---|
| 2547 | baseline model and a given spectrum data.
|
---|
| 2548 | Available values include Akaike Information Criterion (AIC), the
|
---|
| 2549 | corrected Akaike Information Criterion (AICc) by Sugiura(1978),
|
---|
| 2550 | Bayesian Information Criterion (BIC) and the Generalised Cross
|
---|
| 2551 | Validation (GCV).
|
---|
[2186] | 2552 |
|
---|
[2713] | 2553 | Parameters:
|
---|
| 2554 | value: name of model selection criteria to calculate.
|
---|
| 2555 | available ones include 'aic', 'aicc', 'bic' and
|
---|
| 2556 | 'gcv'. default is 'aicc'.
|
---|
| 2557 | blfunc: baseline function name. available ones include
|
---|
| 2558 | 'chebyshev', 'cspline' and 'sinusoid'.
|
---|
| 2559 | default is 'chebyshev'.
|
---|
| 2560 | order: parameter for basline function. actually stands for
|
---|
| 2561 | order of polynomial (order) for 'chebyshev',
|
---|
| 2562 | number of spline pieces (npiece) for 'cspline' and
|
---|
| 2563 | maximum wave number for 'sinusoid', respectively.
|
---|
| 2564 | default is 5 (which is also the default order value
|
---|
| 2565 | for [auto_]chebyshev_baseline()).
|
---|
| 2566 | mask: an optional mask. default is [].
|
---|
| 2567 | whichrow: row number. default is 0 (the first row)
|
---|
| 2568 | uselinefinder: use sd.linefinder() to flag out line regions
|
---|
| 2569 | default is True.
|
---|
| 2570 | edge: an optional number of channel to drop at
|
---|
| 2571 | the edge of spectrum. If only one value is
|
---|
| 2572 | specified, the same number will be dropped
|
---|
| 2573 | from both sides of the spectrum. Default
|
---|
| 2574 | is to keep all channels. Nested tuples
|
---|
| 2575 | represent individual edge selection for
|
---|
| 2576 | different IFs (a number of spectral channels
|
---|
| 2577 | can be different)
|
---|
| 2578 | default is (0, 0).
|
---|
| 2579 | threshold: the threshold used by line finder. It is
|
---|
| 2580 | better to keep it large as only strong lines
|
---|
| 2581 | affect the baseline solution.
|
---|
| 2582 | default is 3.
|
---|
| 2583 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 2584 | channels to average during the search of
|
---|
| 2585 | weak and broad lines. The default is no
|
---|
| 2586 | averaging (and no search for weak lines).
|
---|
| 2587 | If such lines can affect the fitted baseline
|
---|
| 2588 | (e.g. a high order polynomial is fitted),
|
---|
| 2589 | increase this parameter (usually values up
|
---|
| 2590 | to 8 are reasonable). Most users of this
|
---|
| 2591 | method should find the default value sufficient.
|
---|
| 2592 | default is 1.
|
---|
| 2593 |
|
---|
| 2594 | Example:
|
---|
| 2595 | aic = scan.calc_aic(blfunc='chebyshev', order=5, whichrow=0)
|
---|
| 2596 | """
|
---|
| 2597 |
|
---|
| 2598 | try:
|
---|
| 2599 | varlist = vars()
|
---|
| 2600 |
|
---|
| 2601 | if value is None: value = 'aicc'
|
---|
| 2602 | if blfunc is None: blfunc = 'chebyshev'
|
---|
| 2603 | if order is None: order = 5
|
---|
| 2604 | if mask is None: mask = []
|
---|
| 2605 | if whichrow is None: whichrow = 0
|
---|
| 2606 | if uselinefinder is None: uselinefinder = True
|
---|
| 2607 | if edge is None: edge = (0, 0)
|
---|
| 2608 | if threshold is None: threshold = 3
|
---|
| 2609 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 2610 |
|
---|
| 2611 | return self._calc_aic(value, blfunc, order, mask,
|
---|
| 2612 | whichrow, uselinefinder, edge,
|
---|
| 2613 | threshold, chan_avg_limit)
|
---|
| 2614 |
|
---|
| 2615 | except RuntimeError, e:
|
---|
| 2616 | raise_fitting_failure_exception(e)
|
---|
| 2617 |
|
---|
[1862] | 2618 | @asaplog_post_dec
|
---|
[2277] | 2619 | def sinusoid_baseline(self, insitu=None, mask=None, applyfft=None,
|
---|
[2269] | 2620 | fftmethod=None, fftthresh=None,
|
---|
| 2621 | addwn=None, rejwn=None, clipthresh=None,
|
---|
| 2622 | clipniter=None, plot=None,
|
---|
| 2623 | getresidual=None, showprogress=None,
|
---|
[2641] | 2624 | minnrow=None, outlog=None, blfile=None, csvformat=None):
|
---|
[2047] | 2625 | """\
|
---|
[2349] | 2626 | Return a scan which has been baselined (all rows) with sinusoidal
|
---|
| 2627 | functions.
|
---|
| 2628 |
|
---|
[2047] | 2629 | Parameters:
|
---|
[2186] | 2630 | insitu: if False a new scantable is returned.
|
---|
[2081] | 2631 | Otherwise, the scaling is done in-situ
|
---|
| 2632 | The default is taken from .asaprc (False)
|
---|
[2186] | 2633 | mask: an optional mask
|
---|
| 2634 | applyfft: if True use some method, such as FFT, to find
|
---|
| 2635 | strongest sinusoidal components in the wavenumber
|
---|
| 2636 | domain to be used for baseline fitting.
|
---|
| 2637 | default is True.
|
---|
| 2638 | fftmethod: method to find the strong sinusoidal components.
|
---|
| 2639 | now only 'fft' is available and it is the default.
|
---|
| 2640 | fftthresh: the threshold to select wave numbers to be used for
|
---|
| 2641 | fitting from the distribution of amplitudes in the
|
---|
| 2642 | wavenumber domain.
|
---|
| 2643 | both float and string values accepted.
|
---|
| 2644 | given a float value, the unit is set to sigma.
|
---|
| 2645 | for string values, allowed formats include:
|
---|
[2349] | 2646 | 'xsigma' or 'x' (= x-sigma level. e.g.,
|
---|
| 2647 | '3sigma'), or
|
---|
[2186] | 2648 | 'topx' (= the x strongest ones, e.g. 'top5').
|
---|
| 2649 | default is 3.0 (unit: sigma).
|
---|
| 2650 | addwn: the additional wave numbers to be used for fitting.
|
---|
| 2651 | list or integer value is accepted to specify every
|
---|
| 2652 | wave numbers. also string value can be used in case
|
---|
| 2653 | you need to specify wave numbers in a certain range,
|
---|
| 2654 | e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b),
|
---|
| 2655 | '<a' (= 0,1,...,a-2,a-1),
|
---|
| 2656 | '>=a' (= a, a+1, ... up to the maximum wave
|
---|
| 2657 | number corresponding to the Nyquist
|
---|
| 2658 | frequency for the case of FFT).
|
---|
[2411] | 2659 | default is [0].
|
---|
[2186] | 2660 | rejwn: the wave numbers NOT to be used for fitting.
|
---|
| 2661 | can be set just as addwn but has higher priority:
|
---|
| 2662 | wave numbers which are specified both in addwn
|
---|
| 2663 | and rejwn will NOT be used. default is [].
|
---|
[2081] | 2664 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
[2349] | 2665 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 2666 | clipping (default is 0)
|
---|
[2081] | 2667 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 2668 | plot the fit and the residual. In this each
|
---|
| 2669 | indivual fit has to be approved, by typing 'y'
|
---|
| 2670 | or 'n'
|
---|
| 2671 | getresidual: if False, returns best-fit values instead of
|
---|
| 2672 | residual. (default is True)
|
---|
[2189] | 2673 | showprogress: show progress status for large data.
|
---|
| 2674 | default is True.
|
---|
| 2675 | minnrow: minimum number of input spectra to show.
|
---|
| 2676 | default is 1000.
|
---|
[2081] | 2677 | outlog: Output the coefficients of the best-fit
|
---|
| 2678 | function to logger (default is False)
|
---|
| 2679 | blfile: Name of a text file in which the best-fit
|
---|
| 2680 | parameter values to be written
|
---|
[2186] | 2681 | (default is '': no file/logger output)
|
---|
[2641] | 2682 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[2047] | 2683 |
|
---|
| 2684 | Example:
|
---|
[2349] | 2685 | # return a scan baselined by a combination of sinusoidal curves
|
---|
| 2686 | # having wave numbers in spectral window up to 10,
|
---|
[2047] | 2687 | # also with 3-sigma clipping, iteration up to 4 times
|
---|
[2186] | 2688 | bscan = scan.sinusoid_baseline(addwn='<=10',clipthresh=3.0,clipniter=4)
|
---|
[2081] | 2689 |
|
---|
| 2690 | Note:
|
---|
| 2691 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 2692 | based on specunit of 'channel'.
|
---|
[2047] | 2693 | """
|
---|
| 2694 |
|
---|
[2186] | 2695 | try:
|
---|
| 2696 | varlist = vars()
|
---|
[2047] | 2697 |
|
---|
[2186] | 2698 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2699 | if insitu:
|
---|
| 2700 | workscan = self
|
---|
| 2701 | else:
|
---|
| 2702 | workscan = self.copy()
|
---|
| 2703 |
|
---|
[2410] | 2704 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
| 2705 | if mask is None: mask = []
|
---|
[2186] | 2706 | if applyfft is None: applyfft = True
|
---|
| 2707 | if fftmethod is None: fftmethod = 'fft'
|
---|
| 2708 | if fftthresh is None: fftthresh = 3.0
|
---|
[2411] | 2709 | if addwn is None: addwn = [0]
|
---|
[2186] | 2710 | if rejwn is None: rejwn = []
|
---|
| 2711 | if clipthresh is None: clipthresh = 3.0
|
---|
| 2712 | if clipniter is None: clipniter = 0
|
---|
| 2713 | if plot is None: plot = False
|
---|
| 2714 | if getresidual is None: getresidual = True
|
---|
[2189] | 2715 | if showprogress is None: showprogress = True
|
---|
| 2716 | if minnrow is None: minnrow = 1000
|
---|
[2186] | 2717 | if outlog is None: outlog = False
|
---|
| 2718 | if blfile is None: blfile = ''
|
---|
[2641] | 2719 | if csvformat is None: csvformat = False
|
---|
[2047] | 2720 |
|
---|
[2641] | 2721 | if csvformat:
|
---|
| 2722 | scsvformat = "T"
|
---|
| 2723 | else:
|
---|
| 2724 | scsvformat = "F"
|
---|
| 2725 |
|
---|
[2081] | 2726 | #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method.
|
---|
[2349] | 2727 | workscan._sinusoid_baseline(mask, applyfft, fftmethod.lower(),
|
---|
| 2728 | str(fftthresh).lower(),
|
---|
| 2729 | workscan._parse_wn(addwn),
|
---|
[2643] | 2730 | workscan._parse_wn(rejwn),
|
---|
| 2731 | clipthresh, clipniter,
|
---|
| 2732 | getresidual,
|
---|
[2349] | 2733 | pack_progress_params(showprogress,
|
---|
[2641] | 2734 | minnrow),
|
---|
| 2735 | outlog, scsvformat+blfile)
|
---|
[2186] | 2736 | workscan._add_history('sinusoid_baseline', varlist)
|
---|
[2047] | 2737 |
|
---|
| 2738 | if insitu:
|
---|
| 2739 | self._assign(workscan)
|
---|
| 2740 | else:
|
---|
| 2741 | return workscan
|
---|
| 2742 |
|
---|
| 2743 | except RuntimeError, e:
|
---|
[2186] | 2744 | raise_fitting_failure_exception(e)
|
---|
[2047] | 2745 |
|
---|
| 2746 |
|
---|
[2186] | 2747 | @asaplog_post_dec
|
---|
[2349] | 2748 | def auto_sinusoid_baseline(self, insitu=None, mask=None, applyfft=None,
|
---|
| 2749 | fftmethod=None, fftthresh=None,
|
---|
| 2750 | addwn=None, rejwn=None, clipthresh=None,
|
---|
| 2751 | clipniter=None, edge=None, threshold=None,
|
---|
| 2752 | chan_avg_limit=None, plot=None,
|
---|
| 2753 | getresidual=None, showprogress=None,
|
---|
[2641] | 2754 | minnrow=None, outlog=None, blfile=None, csvformat=None):
|
---|
[2047] | 2755 | """\
|
---|
[2349] | 2756 | Return a scan which has been baselined (all rows) with sinusoidal
|
---|
| 2757 | functions.
|
---|
[2047] | 2758 | Spectral lines are detected first using linefinder and masked out
|
---|
| 2759 | to avoid them affecting the baseline solution.
|
---|
| 2760 |
|
---|
| 2761 | Parameters:
|
---|
[2189] | 2762 | insitu: if False a new scantable is returned.
|
---|
| 2763 | Otherwise, the scaling is done in-situ
|
---|
| 2764 | The default is taken from .asaprc (False)
|
---|
| 2765 | mask: an optional mask retreived from scantable
|
---|
| 2766 | applyfft: if True use some method, such as FFT, to find
|
---|
| 2767 | strongest sinusoidal components in the wavenumber
|
---|
| 2768 | domain to be used for baseline fitting.
|
---|
| 2769 | default is True.
|
---|
| 2770 | fftmethod: method to find the strong sinusoidal components.
|
---|
| 2771 | now only 'fft' is available and it is the default.
|
---|
| 2772 | fftthresh: the threshold to select wave numbers to be used for
|
---|
| 2773 | fitting from the distribution of amplitudes in the
|
---|
| 2774 | wavenumber domain.
|
---|
| 2775 | both float and string values accepted.
|
---|
| 2776 | given a float value, the unit is set to sigma.
|
---|
| 2777 | for string values, allowed formats include:
|
---|
[2349] | 2778 | 'xsigma' or 'x' (= x-sigma level. e.g.,
|
---|
| 2779 | '3sigma'), or
|
---|
[2189] | 2780 | 'topx' (= the x strongest ones, e.g. 'top5').
|
---|
| 2781 | default is 3.0 (unit: sigma).
|
---|
| 2782 | addwn: the additional wave numbers to be used for fitting.
|
---|
| 2783 | list or integer value is accepted to specify every
|
---|
| 2784 | wave numbers. also string value can be used in case
|
---|
| 2785 | you need to specify wave numbers in a certain range,
|
---|
| 2786 | e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b),
|
---|
| 2787 | '<a' (= 0,1,...,a-2,a-1),
|
---|
| 2788 | '>=a' (= a, a+1, ... up to the maximum wave
|
---|
| 2789 | number corresponding to the Nyquist
|
---|
| 2790 | frequency for the case of FFT).
|
---|
[2411] | 2791 | default is [0].
|
---|
[2189] | 2792 | rejwn: the wave numbers NOT to be used for fitting.
|
---|
| 2793 | can be set just as addwn but has higher priority:
|
---|
| 2794 | wave numbers which are specified both in addwn
|
---|
| 2795 | and rejwn will NOT be used. default is [].
|
---|
| 2796 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
[2349] | 2797 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 2798 | clipping (default is 0)
|
---|
[2189] | 2799 | edge: an optional number of channel to drop at
|
---|
| 2800 | the edge of spectrum. If only one value is
|
---|
| 2801 | specified, the same number will be dropped
|
---|
| 2802 | from both sides of the spectrum. Default
|
---|
| 2803 | is to keep all channels. Nested tuples
|
---|
| 2804 | represent individual edge selection for
|
---|
| 2805 | different IFs (a number of spectral channels
|
---|
| 2806 | can be different)
|
---|
| 2807 | threshold: the threshold used by line finder. It is
|
---|
| 2808 | better to keep it large as only strong lines
|
---|
| 2809 | affect the baseline solution.
|
---|
| 2810 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 2811 | channels to average during the search of
|
---|
| 2812 | weak and broad lines. The default is no
|
---|
| 2813 | averaging (and no search for weak lines).
|
---|
| 2814 | If such lines can affect the fitted baseline
|
---|
| 2815 | (e.g. a high order polynomial is fitted),
|
---|
| 2816 | increase this parameter (usually values up
|
---|
| 2817 | to 8 are reasonable). Most users of this
|
---|
| 2818 | method should find the default value sufficient.
|
---|
| 2819 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 2820 | plot the fit and the residual. In this each
|
---|
| 2821 | indivual fit has to be approved, by typing 'y'
|
---|
| 2822 | or 'n'
|
---|
| 2823 | getresidual: if False, returns best-fit values instead of
|
---|
| 2824 | residual. (default is True)
|
---|
| 2825 | showprogress: show progress status for large data.
|
---|
| 2826 | default is True.
|
---|
| 2827 | minnrow: minimum number of input spectra to show.
|
---|
| 2828 | default is 1000.
|
---|
| 2829 | outlog: Output the coefficients of the best-fit
|
---|
| 2830 | function to logger (default is False)
|
---|
| 2831 | blfile: Name of a text file in which the best-fit
|
---|
| 2832 | parameter values to be written
|
---|
| 2833 | (default is "": no file/logger output)
|
---|
[2641] | 2834 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[2047] | 2835 |
|
---|
| 2836 | Example:
|
---|
[2186] | 2837 | bscan = scan.auto_sinusoid_baseline(addwn='<=10', insitu=False)
|
---|
[2081] | 2838 |
|
---|
| 2839 | Note:
|
---|
| 2840 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 2841 | based on specunit of 'channel'.
|
---|
[2047] | 2842 | """
|
---|
| 2843 |
|
---|
[2186] | 2844 | try:
|
---|
| 2845 | varlist = vars()
|
---|
[2047] | 2846 |
|
---|
[2186] | 2847 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2848 | if insitu:
|
---|
| 2849 | workscan = self
|
---|
[2047] | 2850 | else:
|
---|
[2186] | 2851 | workscan = self.copy()
|
---|
| 2852 |
|
---|
[2410] | 2853 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
| 2854 | if mask is None: mask = []
|
---|
[2186] | 2855 | if applyfft is None: applyfft = True
|
---|
| 2856 | if fftmethod is None: fftmethod = 'fft'
|
---|
| 2857 | if fftthresh is None: fftthresh = 3.0
|
---|
[2411] | 2858 | if addwn is None: addwn = [0]
|
---|
[2186] | 2859 | if rejwn is None: rejwn = []
|
---|
| 2860 | if clipthresh is None: clipthresh = 3.0
|
---|
| 2861 | if clipniter is None: clipniter = 0
|
---|
| 2862 | if edge is None: edge = (0,0)
|
---|
| 2863 | if threshold is None: threshold = 3
|
---|
| 2864 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 2865 | if plot is None: plot = False
|
---|
| 2866 | if getresidual is None: getresidual = True
|
---|
[2189] | 2867 | if showprogress is None: showprogress = True
|
---|
| 2868 | if minnrow is None: minnrow = 1000
|
---|
[2186] | 2869 | if outlog is None: outlog = False
|
---|
| 2870 | if blfile is None: blfile = ''
|
---|
[2641] | 2871 | if csvformat is None: csvformat = False
|
---|
[2047] | 2872 |
|
---|
[2641] | 2873 | if csvformat:
|
---|
| 2874 | scsvformat = "T"
|
---|
| 2875 | else:
|
---|
| 2876 | scsvformat = "F"
|
---|
| 2877 |
|
---|
[2277] | 2878 | #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method.
|
---|
[2349] | 2879 | workscan._auto_sinusoid_baseline(mask, applyfft,
|
---|
| 2880 | fftmethod.lower(),
|
---|
| 2881 | str(fftthresh).lower(),
|
---|
| 2882 | workscan._parse_wn(addwn),
|
---|
| 2883 | workscan._parse_wn(rejwn),
|
---|
| 2884 | clipthresh, clipniter,
|
---|
| 2885 | normalise_edge_param(edge),
|
---|
| 2886 | threshold, chan_avg_limit,
|
---|
| 2887 | getresidual,
|
---|
| 2888 | pack_progress_params(showprogress,
|
---|
| 2889 | minnrow),
|
---|
[2641] | 2890 | outlog, scsvformat+blfile)
|
---|
[2047] | 2891 | workscan._add_history("auto_sinusoid_baseline", varlist)
|
---|
| 2892 |
|
---|
| 2893 | if insitu:
|
---|
| 2894 | self._assign(workscan)
|
---|
| 2895 | else:
|
---|
| 2896 | return workscan
|
---|
| 2897 |
|
---|
| 2898 | except RuntimeError, e:
|
---|
[2186] | 2899 | raise_fitting_failure_exception(e)
|
---|
[2047] | 2900 |
|
---|
| 2901 | @asaplog_post_dec
|
---|
[2349] | 2902 | def cspline_baseline(self, insitu=None, mask=None, npiece=None,
|
---|
| 2903 | clipthresh=None, clipniter=None, plot=None,
|
---|
| 2904 | getresidual=None, showprogress=None, minnrow=None,
|
---|
[2641] | 2905 | outlog=None, blfile=None, csvformat=None):
|
---|
[1846] | 2906 | """\
|
---|
[2349] | 2907 | Return a scan which has been baselined (all rows) by cubic spline
|
---|
| 2908 | function (piecewise cubic polynomial).
|
---|
| 2909 |
|
---|
[513] | 2910 | Parameters:
|
---|
[2189] | 2911 | insitu: If False a new scantable is returned.
|
---|
| 2912 | Otherwise, the scaling is done in-situ
|
---|
| 2913 | The default is taken from .asaprc (False)
|
---|
| 2914 | mask: An optional mask
|
---|
| 2915 | npiece: Number of pieces. (default is 2)
|
---|
| 2916 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
[2349] | 2917 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 2918 | clipping (default is 0)
|
---|
[2189] | 2919 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 2920 | plot the fit and the residual. In this each
|
---|
| 2921 | indivual fit has to be approved, by typing 'y'
|
---|
| 2922 | or 'n'
|
---|
| 2923 | getresidual: if False, returns best-fit values instead of
|
---|
| 2924 | residual. (default is True)
|
---|
| 2925 | showprogress: show progress status for large data.
|
---|
| 2926 | default is True.
|
---|
| 2927 | minnrow: minimum number of input spectra to show.
|
---|
| 2928 | default is 1000.
|
---|
| 2929 | outlog: Output the coefficients of the best-fit
|
---|
| 2930 | function to logger (default is False)
|
---|
| 2931 | blfile: Name of a text file in which the best-fit
|
---|
| 2932 | parameter values to be written
|
---|
| 2933 | (default is "": no file/logger output)
|
---|
[2641] | 2934 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[1846] | 2935 |
|
---|
[2012] | 2936 | Example:
|
---|
[2349] | 2937 | # return a scan baselined by a cubic spline consisting of 2 pieces
|
---|
| 2938 | # (i.e., 1 internal knot),
|
---|
[2012] | 2939 | # also with 3-sigma clipping, iteration up to 4 times
|
---|
| 2940 | bscan = scan.cspline_baseline(npiece=2,clipthresh=3.0,clipniter=4)
|
---|
[2081] | 2941 |
|
---|
| 2942 | Note:
|
---|
| 2943 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 2944 | based on specunit of 'channel'.
|
---|
[2012] | 2945 | """
|
---|
| 2946 |
|
---|
[2186] | 2947 | try:
|
---|
| 2948 | varlist = vars()
|
---|
| 2949 |
|
---|
| 2950 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2951 | if insitu:
|
---|
| 2952 | workscan = self
|
---|
| 2953 | else:
|
---|
| 2954 | workscan = self.copy()
|
---|
[1855] | 2955 |
|
---|
[2410] | 2956 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
| 2957 | if mask is None: mask = []
|
---|
[2189] | 2958 | if npiece is None: npiece = 2
|
---|
| 2959 | if clipthresh is None: clipthresh = 3.0
|
---|
| 2960 | if clipniter is None: clipniter = 0
|
---|
| 2961 | if plot is None: plot = False
|
---|
| 2962 | if getresidual is None: getresidual = True
|
---|
| 2963 | if showprogress is None: showprogress = True
|
---|
| 2964 | if minnrow is None: minnrow = 1000
|
---|
| 2965 | if outlog is None: outlog = False
|
---|
| 2966 | if blfile is None: blfile = ''
|
---|
[2641] | 2967 | if csvformat is None: csvformat = False
|
---|
[1855] | 2968 |
|
---|
[2641] | 2969 | if csvformat:
|
---|
| 2970 | scsvformat = "T"
|
---|
| 2971 | else:
|
---|
| 2972 | scsvformat = "F"
|
---|
| 2973 |
|
---|
[2012] | 2974 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
[2349] | 2975 | workscan._cspline_baseline(mask, npiece, clipthresh, clipniter,
|
---|
| 2976 | getresidual,
|
---|
| 2977 | pack_progress_params(showprogress,
|
---|
[2641] | 2978 | minnrow),
|
---|
| 2979 | outlog, scsvformat+blfile)
|
---|
[2012] | 2980 | workscan._add_history("cspline_baseline", varlist)
|
---|
| 2981 |
|
---|
| 2982 | if insitu:
|
---|
| 2983 | self._assign(workscan)
|
---|
| 2984 | else:
|
---|
| 2985 | return workscan
|
---|
| 2986 |
|
---|
| 2987 | except RuntimeError, e:
|
---|
[2186] | 2988 | raise_fitting_failure_exception(e)
|
---|
[1855] | 2989 |
|
---|
[2186] | 2990 | @asaplog_post_dec
|
---|
[2349] | 2991 | def auto_cspline_baseline(self, insitu=None, mask=None, npiece=None,
|
---|
| 2992 | clipthresh=None, clipniter=None,
|
---|
| 2993 | edge=None, threshold=None, chan_avg_limit=None,
|
---|
| 2994 | getresidual=None, plot=None,
|
---|
| 2995 | showprogress=None, minnrow=None, outlog=None,
|
---|
[2641] | 2996 | blfile=None, csvformat=None):
|
---|
[2012] | 2997 | """\
|
---|
| 2998 | Return a scan which has been baselined (all rows) by cubic spline
|
---|
| 2999 | function (piecewise cubic polynomial).
|
---|
| 3000 | Spectral lines are detected first using linefinder and masked out
|
---|
| 3001 | to avoid them affecting the baseline solution.
|
---|
| 3002 |
|
---|
| 3003 | Parameters:
|
---|
[2189] | 3004 | insitu: if False a new scantable is returned.
|
---|
| 3005 | Otherwise, the scaling is done in-situ
|
---|
| 3006 | The default is taken from .asaprc (False)
|
---|
| 3007 | mask: an optional mask retreived from scantable
|
---|
| 3008 | npiece: Number of pieces. (default is 2)
|
---|
| 3009 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
[2349] | 3010 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 3011 | clipping (default is 0)
|
---|
[2189] | 3012 | edge: an optional number of channel to drop at
|
---|
| 3013 | the edge of spectrum. If only one value is
|
---|
| 3014 | specified, the same number will be dropped
|
---|
| 3015 | from both sides of the spectrum. Default
|
---|
| 3016 | is to keep all channels. Nested tuples
|
---|
| 3017 | represent individual edge selection for
|
---|
| 3018 | different IFs (a number of spectral channels
|
---|
| 3019 | can be different)
|
---|
| 3020 | threshold: the threshold used by line finder. It is
|
---|
| 3021 | better to keep it large as only strong lines
|
---|
| 3022 | affect the baseline solution.
|
---|
| 3023 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 3024 | channels to average during the search of
|
---|
| 3025 | weak and broad lines. The default is no
|
---|
| 3026 | averaging (and no search for weak lines).
|
---|
| 3027 | If such lines can affect the fitted baseline
|
---|
| 3028 | (e.g. a high order polynomial is fitted),
|
---|
| 3029 | increase this parameter (usually values up
|
---|
| 3030 | to 8 are reasonable). Most users of this
|
---|
| 3031 | method should find the default value sufficient.
|
---|
| 3032 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 3033 | plot the fit and the residual. In this each
|
---|
| 3034 | indivual fit has to be approved, by typing 'y'
|
---|
| 3035 | or 'n'
|
---|
| 3036 | getresidual: if False, returns best-fit values instead of
|
---|
| 3037 | residual. (default is True)
|
---|
| 3038 | showprogress: show progress status for large data.
|
---|
| 3039 | default is True.
|
---|
| 3040 | minnrow: minimum number of input spectra to show.
|
---|
| 3041 | default is 1000.
|
---|
| 3042 | outlog: Output the coefficients of the best-fit
|
---|
| 3043 | function to logger (default is False)
|
---|
| 3044 | blfile: Name of a text file in which the best-fit
|
---|
| 3045 | parameter values to be written
|
---|
| 3046 | (default is "": no file/logger output)
|
---|
[2641] | 3047 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[1846] | 3048 |
|
---|
[1907] | 3049 | Example:
|
---|
[2012] | 3050 | bscan = scan.auto_cspline_baseline(npiece=3, insitu=False)
|
---|
[2081] | 3051 |
|
---|
| 3052 | Note:
|
---|
| 3053 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 3054 | based on specunit of 'channel'.
|
---|
[2012] | 3055 | """
|
---|
[1846] | 3056 |
|
---|
[2186] | 3057 | try:
|
---|
| 3058 | varlist = vars()
|
---|
[2012] | 3059 |
|
---|
[2186] | 3060 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 3061 | if insitu:
|
---|
| 3062 | workscan = self
|
---|
[1391] | 3063 | else:
|
---|
[2186] | 3064 | workscan = self.copy()
|
---|
| 3065 |
|
---|
[2410] | 3066 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
| 3067 | if mask is None: mask = []
|
---|
[2186] | 3068 | if npiece is None: npiece = 2
|
---|
| 3069 | if clipthresh is None: clipthresh = 3.0
|
---|
| 3070 | if clipniter is None: clipniter = 0
|
---|
| 3071 | if edge is None: edge = (0, 0)
|
---|
| 3072 | if threshold is None: threshold = 3
|
---|
| 3073 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 3074 | if plot is None: plot = False
|
---|
| 3075 | if getresidual is None: getresidual = True
|
---|
[2189] | 3076 | if showprogress is None: showprogress = True
|
---|
| 3077 | if minnrow is None: minnrow = 1000
|
---|
[2186] | 3078 | if outlog is None: outlog = False
|
---|
| 3079 | if blfile is None: blfile = ''
|
---|
[2641] | 3080 | if csvformat is None: csvformat = False
|
---|
[1819] | 3081 |
|
---|
[2641] | 3082 | if csvformat:
|
---|
| 3083 | scsvformat = "T"
|
---|
| 3084 | else:
|
---|
| 3085 | scsvformat = "F"
|
---|
| 3086 |
|
---|
[2277] | 3087 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
[2269] | 3088 | workscan._auto_cspline_baseline(mask, npiece, clipthresh,
|
---|
| 3089 | clipniter,
|
---|
| 3090 | normalise_edge_param(edge),
|
---|
| 3091 | threshold,
|
---|
| 3092 | chan_avg_limit, getresidual,
|
---|
| 3093 | pack_progress_params(showprogress,
|
---|
| 3094 | minnrow),
|
---|
[2641] | 3095 | outlog, scsvformat+blfile)
|
---|
[2012] | 3096 | workscan._add_history("auto_cspline_baseline", varlist)
|
---|
[1907] | 3097 |
|
---|
[1856] | 3098 | if insitu:
|
---|
| 3099 | self._assign(workscan)
|
---|
| 3100 | else:
|
---|
| 3101 | return workscan
|
---|
[2012] | 3102 |
|
---|
| 3103 | except RuntimeError, e:
|
---|
[2186] | 3104 | raise_fitting_failure_exception(e)
|
---|
[513] | 3105 |
|
---|
[1931] | 3106 | @asaplog_post_dec
|
---|
[2645] | 3107 | def chebyshev_baseline(self, insitu=None, mask=None, order=None,
|
---|
| 3108 | clipthresh=None, clipniter=None, plot=None,
|
---|
| 3109 | getresidual=None, showprogress=None, minnrow=None,
|
---|
| 3110 | outlog=None, blfile=None, csvformat=None):
|
---|
| 3111 | """\
|
---|
| 3112 | Return a scan which has been baselined (all rows) by Chebyshev polynomials.
|
---|
| 3113 |
|
---|
| 3114 | Parameters:
|
---|
| 3115 | insitu: If False a new scantable is returned.
|
---|
| 3116 | Otherwise, the scaling is done in-situ
|
---|
| 3117 | The default is taken from .asaprc (False)
|
---|
| 3118 | mask: An optional mask
|
---|
| 3119 | order: the maximum order of Chebyshev polynomial (default is 5)
|
---|
| 3120 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
| 3121 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 3122 | clipping (default is 0)
|
---|
| 3123 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 3124 | plot the fit and the residual. In this each
|
---|
| 3125 | indivual fit has to be approved, by typing 'y'
|
---|
| 3126 | or 'n'
|
---|
| 3127 | getresidual: if False, returns best-fit values instead of
|
---|
| 3128 | residual. (default is True)
|
---|
| 3129 | showprogress: show progress status for large data.
|
---|
| 3130 | default is True.
|
---|
| 3131 | minnrow: minimum number of input spectra to show.
|
---|
| 3132 | default is 1000.
|
---|
| 3133 | outlog: Output the coefficients of the best-fit
|
---|
| 3134 | function to logger (default is False)
|
---|
| 3135 | blfile: Name of a text file in which the best-fit
|
---|
| 3136 | parameter values to be written
|
---|
| 3137 | (default is "": no file/logger output)
|
---|
| 3138 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
| 3139 |
|
---|
| 3140 | Example:
|
---|
| 3141 | # return a scan baselined by a cubic spline consisting of 2 pieces
|
---|
| 3142 | # (i.e., 1 internal knot),
|
---|
| 3143 | # also with 3-sigma clipping, iteration up to 4 times
|
---|
| 3144 | bscan = scan.cspline_baseline(npiece=2,clipthresh=3.0,clipniter=4)
|
---|
| 3145 |
|
---|
| 3146 | Note:
|
---|
| 3147 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 3148 | based on specunit of 'channel'.
|
---|
| 3149 | """
|
---|
| 3150 |
|
---|
| 3151 | try:
|
---|
| 3152 | varlist = vars()
|
---|
| 3153 |
|
---|
| 3154 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 3155 | if insitu:
|
---|
| 3156 | workscan = self
|
---|
| 3157 | else:
|
---|
| 3158 | workscan = self.copy()
|
---|
| 3159 |
|
---|
| 3160 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
| 3161 | if mask is None: mask = []
|
---|
| 3162 | if order is None: order = 5
|
---|
| 3163 | if clipthresh is None: clipthresh = 3.0
|
---|
| 3164 | if clipniter is None: clipniter = 0
|
---|
| 3165 | if plot is None: plot = False
|
---|
| 3166 | if getresidual is None: getresidual = True
|
---|
| 3167 | if showprogress is None: showprogress = True
|
---|
| 3168 | if minnrow is None: minnrow = 1000
|
---|
| 3169 | if outlog is None: outlog = False
|
---|
| 3170 | if blfile is None: blfile = ''
|
---|
| 3171 | if csvformat is None: csvformat = False
|
---|
| 3172 |
|
---|
| 3173 | if csvformat:
|
---|
| 3174 | scsvformat = "T"
|
---|
| 3175 | else:
|
---|
| 3176 | scsvformat = "F"
|
---|
| 3177 |
|
---|
| 3178 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
| 3179 | workscan._chebyshev_baseline(mask, order, clipthresh, clipniter,
|
---|
| 3180 | getresidual,
|
---|
| 3181 | pack_progress_params(showprogress,
|
---|
| 3182 | minnrow),
|
---|
| 3183 | outlog, scsvformat+blfile)
|
---|
| 3184 | workscan._add_history("chebyshev_baseline", varlist)
|
---|
| 3185 |
|
---|
| 3186 | if insitu:
|
---|
| 3187 | self._assign(workscan)
|
---|
| 3188 | else:
|
---|
| 3189 | return workscan
|
---|
| 3190 |
|
---|
| 3191 | except RuntimeError, e:
|
---|
| 3192 | raise_fitting_failure_exception(e)
|
---|
| 3193 |
|
---|
| 3194 | @asaplog_post_dec
|
---|
| 3195 | def auto_chebyshev_baseline(self, insitu=None, mask=None, order=None,
|
---|
| 3196 | clipthresh=None, clipniter=None,
|
---|
| 3197 | edge=None, threshold=None, chan_avg_limit=None,
|
---|
| 3198 | getresidual=None, plot=None,
|
---|
| 3199 | showprogress=None, minnrow=None, outlog=None,
|
---|
| 3200 | blfile=None, csvformat=None):
|
---|
| 3201 | """\
|
---|
| 3202 | Return a scan which has been baselined (all rows) by Chebyshev polynomials.
|
---|
| 3203 | Spectral lines are detected first using linefinder and masked out
|
---|
| 3204 | to avoid them affecting the baseline solution.
|
---|
| 3205 |
|
---|
| 3206 | Parameters:
|
---|
| 3207 | insitu: if False a new scantable is returned.
|
---|
| 3208 | Otherwise, the scaling is done in-situ
|
---|
| 3209 | The default is taken from .asaprc (False)
|
---|
| 3210 | mask: an optional mask retreived from scantable
|
---|
| 3211 | order: the maximum order of Chebyshev polynomial (default is 5)
|
---|
| 3212 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
| 3213 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 3214 | clipping (default is 0)
|
---|
| 3215 | edge: an optional number of channel to drop at
|
---|
| 3216 | the edge of spectrum. If only one value is
|
---|
| 3217 | specified, the same number will be dropped
|
---|
| 3218 | from both sides of the spectrum. Default
|
---|
| 3219 | is to keep all channels. Nested tuples
|
---|
| 3220 | represent individual edge selection for
|
---|
| 3221 | different IFs (a number of spectral channels
|
---|
| 3222 | can be different)
|
---|
| 3223 | threshold: the threshold used by line finder. It is
|
---|
| 3224 | better to keep it large as only strong lines
|
---|
| 3225 | affect the baseline solution.
|
---|
| 3226 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 3227 | channels to average during the search of
|
---|
| 3228 | weak and broad lines. The default is no
|
---|
| 3229 | averaging (and no search for weak lines).
|
---|
| 3230 | If such lines can affect the fitted baseline
|
---|
| 3231 | (e.g. a high order polynomial is fitted),
|
---|
| 3232 | increase this parameter (usually values up
|
---|
| 3233 | to 8 are reasonable). Most users of this
|
---|
| 3234 | method should find the default value sufficient.
|
---|
| 3235 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 3236 | plot the fit and the residual. In this each
|
---|
| 3237 | indivual fit has to be approved, by typing 'y'
|
---|
| 3238 | or 'n'
|
---|
| 3239 | getresidual: if False, returns best-fit values instead of
|
---|
| 3240 | residual. (default is True)
|
---|
| 3241 | showprogress: show progress status for large data.
|
---|
| 3242 | default is True.
|
---|
| 3243 | minnrow: minimum number of input spectra to show.
|
---|
| 3244 | default is 1000.
|
---|
| 3245 | outlog: Output the coefficients of the best-fit
|
---|
| 3246 | function to logger (default is False)
|
---|
| 3247 | blfile: Name of a text file in which the best-fit
|
---|
| 3248 | parameter values to be written
|
---|
| 3249 | (default is "": no file/logger output)
|
---|
| 3250 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
| 3251 |
|
---|
| 3252 | Example:
|
---|
| 3253 | bscan = scan.auto_cspline_baseline(npiece=3, insitu=False)
|
---|
| 3254 |
|
---|
| 3255 | Note:
|
---|
| 3256 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 3257 | based on specunit of 'channel'.
|
---|
| 3258 | """
|
---|
| 3259 |
|
---|
| 3260 | try:
|
---|
| 3261 | varlist = vars()
|
---|
| 3262 |
|
---|
| 3263 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 3264 | if insitu:
|
---|
| 3265 | workscan = self
|
---|
| 3266 | else:
|
---|
| 3267 | workscan = self.copy()
|
---|
| 3268 |
|
---|
| 3269 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
| 3270 | if mask is None: mask = []
|
---|
| 3271 | if order is None: order = 5
|
---|
| 3272 | if clipthresh is None: clipthresh = 3.0
|
---|
| 3273 | if clipniter is None: clipniter = 0
|
---|
| 3274 | if edge is None: edge = (0, 0)
|
---|
| 3275 | if threshold is None: threshold = 3
|
---|
| 3276 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 3277 | if plot is None: plot = False
|
---|
| 3278 | if getresidual is None: getresidual = True
|
---|
| 3279 | if showprogress is None: showprogress = True
|
---|
| 3280 | if minnrow is None: minnrow = 1000
|
---|
| 3281 | if outlog is None: outlog = False
|
---|
| 3282 | if blfile is None: blfile = ''
|
---|
| 3283 | if csvformat is None: csvformat = False
|
---|
| 3284 |
|
---|
| 3285 | if csvformat:
|
---|
| 3286 | scsvformat = "T"
|
---|
| 3287 | else:
|
---|
| 3288 | scsvformat = "F"
|
---|
| 3289 |
|
---|
| 3290 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
| 3291 | workscan._auto_chebyshev_baseline(mask, order, clipthresh,
|
---|
| 3292 | clipniter,
|
---|
| 3293 | normalise_edge_param(edge),
|
---|
| 3294 | threshold,
|
---|
| 3295 | chan_avg_limit, getresidual,
|
---|
| 3296 | pack_progress_params(showprogress,
|
---|
| 3297 | minnrow),
|
---|
| 3298 | outlog, scsvformat+blfile)
|
---|
| 3299 | workscan._add_history("auto_chebyshev_baseline", varlist)
|
---|
| 3300 |
|
---|
| 3301 | if insitu:
|
---|
| 3302 | self._assign(workscan)
|
---|
| 3303 | else:
|
---|
| 3304 | return workscan
|
---|
| 3305 |
|
---|
| 3306 | except RuntimeError, e:
|
---|
| 3307 | raise_fitting_failure_exception(e)
|
---|
| 3308 |
|
---|
| 3309 | @asaplog_post_dec
|
---|
[2269] | 3310 | def poly_baseline(self, mask=None, order=None, insitu=None, plot=None,
|
---|
| 3311 | getresidual=None, showprogress=None, minnrow=None,
|
---|
[2641] | 3312 | outlog=None, blfile=None, csvformat=None):
|
---|
[1907] | 3313 | """\
|
---|
| 3314 | Return a scan which has been baselined (all rows) by a polynomial.
|
---|
| 3315 | Parameters:
|
---|
[2189] | 3316 | insitu: if False a new scantable is returned.
|
---|
| 3317 | Otherwise, the scaling is done in-situ
|
---|
| 3318 | The default is taken from .asaprc (False)
|
---|
| 3319 | mask: an optional mask
|
---|
| 3320 | order: the order of the polynomial (default is 0)
|
---|
| 3321 | plot: plot the fit and the residual. In this each
|
---|
| 3322 | indivual fit has to be approved, by typing 'y'
|
---|
| 3323 | or 'n'
|
---|
| 3324 | getresidual: if False, returns best-fit values instead of
|
---|
| 3325 | residual. (default is True)
|
---|
| 3326 | showprogress: show progress status for large data.
|
---|
| 3327 | default is True.
|
---|
| 3328 | minnrow: minimum number of input spectra to show.
|
---|
| 3329 | default is 1000.
|
---|
| 3330 | outlog: Output the coefficients of the best-fit
|
---|
| 3331 | function to logger (default is False)
|
---|
| 3332 | blfile: Name of a text file in which the best-fit
|
---|
| 3333 | parameter values to be written
|
---|
| 3334 | (default is "": no file/logger output)
|
---|
[2641] | 3335 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[2012] | 3336 |
|
---|
[1907] | 3337 | Example:
|
---|
| 3338 | # return a scan baselined by a third order polynomial,
|
---|
| 3339 | # not using a mask
|
---|
| 3340 | bscan = scan.poly_baseline(order=3)
|
---|
| 3341 | """
|
---|
[1931] | 3342 |
|
---|
[2186] | 3343 | try:
|
---|
| 3344 | varlist = vars()
|
---|
[1931] | 3345 |
|
---|
[2269] | 3346 | if insitu is None:
|
---|
| 3347 | insitu = rcParams["insitu"]
|
---|
[2186] | 3348 | if insitu:
|
---|
| 3349 | workscan = self
|
---|
| 3350 | else:
|
---|
| 3351 | workscan = self.copy()
|
---|
[1907] | 3352 |
|
---|
[2410] | 3353 | #if mask is None: mask = [True for i in \
|
---|
| 3354 | # xrange(workscan.nchan())]
|
---|
| 3355 | if mask is None: mask = []
|
---|
[2189] | 3356 | if order is None: order = 0
|
---|
| 3357 | if plot is None: plot = False
|
---|
| 3358 | if getresidual is None: getresidual = True
|
---|
| 3359 | if showprogress is None: showprogress = True
|
---|
| 3360 | if minnrow is None: minnrow = 1000
|
---|
| 3361 | if outlog is None: outlog = False
|
---|
| 3362 | if blfile is None: blfile = ""
|
---|
[2641] | 3363 | if csvformat is None: csvformat = False
|
---|
[1907] | 3364 |
|
---|
[2641] | 3365 | if csvformat:
|
---|
| 3366 | scsvformat = "T"
|
---|
| 3367 | else:
|
---|
| 3368 | scsvformat = "F"
|
---|
| 3369 |
|
---|
[2012] | 3370 | if plot:
|
---|
[2269] | 3371 | outblfile = (blfile != "") and \
|
---|
[2349] | 3372 | os.path.exists(os.path.expanduser(
|
---|
| 3373 | os.path.expandvars(blfile))
|
---|
| 3374 | )
|
---|
[2269] | 3375 | if outblfile:
|
---|
| 3376 | blf = open(blfile, "a")
|
---|
[2012] | 3377 |
|
---|
[1907] | 3378 | f = fitter()
|
---|
| 3379 | f.set_function(lpoly=order)
|
---|
[2186] | 3380 |
|
---|
| 3381 | rows = xrange(workscan.nrow())
|
---|
| 3382 | #if len(rows) > 0: workscan._init_blinfo()
|
---|
[2610] | 3383 |
|
---|
| 3384 | action = "H"
|
---|
[1907] | 3385 | for r in rows:
|
---|
| 3386 | f.x = workscan._getabcissa(r)
|
---|
| 3387 | f.y = workscan._getspectrum(r)
|
---|
[2541] | 3388 | if mask:
|
---|
| 3389 | f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
|
---|
| 3390 | else: # mask=None
|
---|
| 3391 | f.mask = workscan._getmask(r)
|
---|
| 3392 |
|
---|
[1907] | 3393 | f.data = None
|
---|
| 3394 | f.fit()
|
---|
[2541] | 3395 |
|
---|
[2610] | 3396 | if action != "Y": # skip plotting when accepting all
|
---|
| 3397 | f.plot(residual=True)
|
---|
| 3398 | #accept_fit = raw_input("Accept fit ( [y]/n ): ")
|
---|
| 3399 | #if accept_fit.upper() == "N":
|
---|
| 3400 | # #workscan._append_blinfo(None, None, None)
|
---|
| 3401 | # continue
|
---|
| 3402 | accept_fit = self._get_verify_action("Accept fit?",action)
|
---|
| 3403 | if r == 0: action = None
|
---|
[1907] | 3404 | if accept_fit.upper() == "N":
|
---|
| 3405 | continue
|
---|
[2610] | 3406 | elif accept_fit.upper() == "R":
|
---|
| 3407 | break
|
---|
| 3408 | elif accept_fit.upper() == "A":
|
---|
| 3409 | action = "Y"
|
---|
[2012] | 3410 |
|
---|
| 3411 | blpars = f.get_parameters()
|
---|
| 3412 | masklist = workscan.get_masklist(f.mask, row=r, silent=True)
|
---|
| 3413 | #workscan._append_blinfo(blpars, masklist, f.mask)
|
---|
[2269] | 3414 | workscan._setspectrum((f.fitter.getresidual()
|
---|
| 3415 | if getresidual else f.fitter.getfit()), r)
|
---|
[1907] | 3416 |
|
---|
[2012] | 3417 | if outblfile:
|
---|
| 3418 | rms = workscan.get_rms(f.mask, r)
|
---|
[2269] | 3419 | dataout = \
|
---|
| 3420 | workscan.format_blparams_row(blpars["params"],
|
---|
| 3421 | blpars["fixed"],
|
---|
| 3422 | rms, str(masklist),
|
---|
[2641] | 3423 | r, True, csvformat)
|
---|
[2012] | 3424 | blf.write(dataout)
|
---|
| 3425 |
|
---|
[1907] | 3426 | f._p.unmap()
|
---|
| 3427 | f._p = None
|
---|
[2012] | 3428 |
|
---|
[2349] | 3429 | if outblfile:
|
---|
| 3430 | blf.close()
|
---|
[1907] | 3431 | else:
|
---|
[2269] | 3432 | workscan._poly_baseline(mask, order, getresidual,
|
---|
| 3433 | pack_progress_params(showprogress,
|
---|
| 3434 | minnrow),
|
---|
[2641] | 3435 | outlog, scsvformat+blfile)
|
---|
[1907] | 3436 |
|
---|
| 3437 | workscan._add_history("poly_baseline", varlist)
|
---|
| 3438 |
|
---|
| 3439 | if insitu:
|
---|
| 3440 | self._assign(workscan)
|
---|
| 3441 | else:
|
---|
| 3442 | return workscan
|
---|
| 3443 |
|
---|
[1919] | 3444 | except RuntimeError, e:
|
---|
[2186] | 3445 | raise_fitting_failure_exception(e)
|
---|
[1907] | 3446 |
|
---|
[2186] | 3447 | @asaplog_post_dec
|
---|
[2269] | 3448 | def auto_poly_baseline(self, mask=None, order=None, edge=None,
|
---|
| 3449 | threshold=None, chan_avg_limit=None,
|
---|
| 3450 | plot=None, insitu=None,
|
---|
| 3451 | getresidual=None, showprogress=None,
|
---|
[2641] | 3452 | minnrow=None, outlog=None, blfile=None, csvformat=None):
|
---|
[1846] | 3453 | """\
|
---|
[1931] | 3454 | Return a scan which has been baselined (all rows) by a polynomial.
|
---|
[880] | 3455 | Spectral lines are detected first using linefinder and masked out
|
---|
| 3456 | to avoid them affecting the baseline solution.
|
---|
| 3457 |
|
---|
| 3458 | Parameters:
|
---|
[2189] | 3459 | insitu: if False a new scantable is returned.
|
---|
| 3460 | Otherwise, the scaling is done in-situ
|
---|
| 3461 | The default is taken from .asaprc (False)
|
---|
| 3462 | mask: an optional mask retreived from scantable
|
---|
| 3463 | order: the order of the polynomial (default is 0)
|
---|
| 3464 | edge: an optional number of channel to drop at
|
---|
| 3465 | the edge of spectrum. If only one value is
|
---|
| 3466 | specified, the same number will be dropped
|
---|
| 3467 | from both sides of the spectrum. Default
|
---|
| 3468 | is to keep all channels. Nested tuples
|
---|
| 3469 | represent individual edge selection for
|
---|
| 3470 | different IFs (a number of spectral channels
|
---|
| 3471 | can be different)
|
---|
| 3472 | threshold: the threshold used by line finder. It is
|
---|
| 3473 | better to keep it large as only strong lines
|
---|
| 3474 | affect the baseline solution.
|
---|
| 3475 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 3476 | channels to average during the search of
|
---|
| 3477 | weak and broad lines. The default is no
|
---|
| 3478 | averaging (and no search for weak lines).
|
---|
| 3479 | If such lines can affect the fitted baseline
|
---|
| 3480 | (e.g. a high order polynomial is fitted),
|
---|
| 3481 | increase this parameter (usually values up
|
---|
| 3482 | to 8 are reasonable). Most users of this
|
---|
| 3483 | method should find the default value sufficient.
|
---|
| 3484 | plot: plot the fit and the residual. In this each
|
---|
| 3485 | indivual fit has to be approved, by typing 'y'
|
---|
| 3486 | or 'n'
|
---|
| 3487 | getresidual: if False, returns best-fit values instead of
|
---|
| 3488 | residual. (default is True)
|
---|
| 3489 | showprogress: show progress status for large data.
|
---|
| 3490 | default is True.
|
---|
| 3491 | minnrow: minimum number of input spectra to show.
|
---|
| 3492 | default is 1000.
|
---|
| 3493 | outlog: Output the coefficients of the best-fit
|
---|
| 3494 | function to logger (default is False)
|
---|
| 3495 | blfile: Name of a text file in which the best-fit
|
---|
| 3496 | parameter values to be written
|
---|
| 3497 | (default is "": no file/logger output)
|
---|
[2641] | 3498 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[1846] | 3499 |
|
---|
[2012] | 3500 | Example:
|
---|
| 3501 | bscan = scan.auto_poly_baseline(order=7, insitu=False)
|
---|
| 3502 | """
|
---|
[880] | 3503 |
|
---|
[2186] | 3504 | try:
|
---|
| 3505 | varlist = vars()
|
---|
[1846] | 3506 |
|
---|
[2269] | 3507 | if insitu is None:
|
---|
| 3508 | insitu = rcParams['insitu']
|
---|
[2186] | 3509 | if insitu:
|
---|
| 3510 | workscan = self
|
---|
| 3511 | else:
|
---|
| 3512 | workscan = self.copy()
|
---|
[1846] | 3513 |
|
---|
[2410] | 3514 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
| 3515 | if mask is None: mask = []
|
---|
[2186] | 3516 | if order is None: order = 0
|
---|
| 3517 | if edge is None: edge = (0, 0)
|
---|
| 3518 | if threshold is None: threshold = 3
|
---|
| 3519 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 3520 | if plot is None: plot = False
|
---|
| 3521 | if getresidual is None: getresidual = True
|
---|
[2189] | 3522 | if showprogress is None: showprogress = True
|
---|
| 3523 | if minnrow is None: minnrow = 1000
|
---|
[2186] | 3524 | if outlog is None: outlog = False
|
---|
| 3525 | if blfile is None: blfile = ''
|
---|
[2641] | 3526 | if csvformat is None: csvformat = False
|
---|
[1846] | 3527 |
|
---|
[2641] | 3528 | if csvformat:
|
---|
| 3529 | scsvformat = "T"
|
---|
| 3530 | else:
|
---|
| 3531 | scsvformat = "F"
|
---|
| 3532 |
|
---|
[2186] | 3533 | edge = normalise_edge_param(edge)
|
---|
[880] | 3534 |
|
---|
[2012] | 3535 | if plot:
|
---|
[2269] | 3536 | outblfile = (blfile != "") and \
|
---|
| 3537 | os.path.exists(os.path.expanduser(os.path.expandvars(blfile)))
|
---|
[2012] | 3538 | if outblfile: blf = open(blfile, "a")
|
---|
| 3539 |
|
---|
[2186] | 3540 | from asap.asaplinefind import linefinder
|
---|
[2012] | 3541 | fl = linefinder()
|
---|
[2269] | 3542 | fl.set_options(threshold=threshold, avg_limit=chan_avg_limit)
|
---|
[2012] | 3543 | fl.set_scan(workscan)
|
---|
[2186] | 3544 |
|
---|
[2012] | 3545 | f = fitter()
|
---|
| 3546 | f.set_function(lpoly=order)
|
---|
[880] | 3547 |
|
---|
[2186] | 3548 | rows = xrange(workscan.nrow())
|
---|
| 3549 | #if len(rows) > 0: workscan._init_blinfo()
|
---|
[2610] | 3550 |
|
---|
| 3551 | action = "H"
|
---|
[2012] | 3552 | for r in rows:
|
---|
[2186] | 3553 | idx = 2*workscan.getif(r)
|
---|
[2541] | 3554 | if mask:
|
---|
| 3555 | msk = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
|
---|
| 3556 | else: # mask=None
|
---|
| 3557 | msk = workscan._getmask(r)
|
---|
| 3558 | fl.find_lines(r, msk, edge[idx:idx+2])
|
---|
[907] | 3559 |
|
---|
[2012] | 3560 | f.x = workscan._getabcissa(r)
|
---|
| 3561 | f.y = workscan._getspectrum(r)
|
---|
| 3562 | f.mask = fl.get_mask()
|
---|
| 3563 | f.data = None
|
---|
| 3564 | f.fit()
|
---|
| 3565 |
|
---|
[2610] | 3566 | if action != "Y": # skip plotting when accepting all
|
---|
| 3567 | f.plot(residual=True)
|
---|
| 3568 | #accept_fit = raw_input("Accept fit ( [y]/n ): ")
|
---|
| 3569 | accept_fit = self._get_verify_action("Accept fit?",action)
|
---|
| 3570 | if r == 0: action = None
|
---|
[2012] | 3571 | if accept_fit.upper() == "N":
|
---|
| 3572 | #workscan._append_blinfo(None, None, None)
|
---|
| 3573 | continue
|
---|
[2610] | 3574 | elif accept_fit.upper() == "R":
|
---|
| 3575 | break
|
---|
| 3576 | elif accept_fit.upper() == "A":
|
---|
| 3577 | action = "Y"
|
---|
[2012] | 3578 |
|
---|
| 3579 | blpars = f.get_parameters()
|
---|
| 3580 | masklist = workscan.get_masklist(f.mask, row=r, silent=True)
|
---|
| 3581 | #workscan._append_blinfo(blpars, masklist, f.mask)
|
---|
[2349] | 3582 | workscan._setspectrum(
|
---|
| 3583 | (f.fitter.getresidual() if getresidual
|
---|
| 3584 | else f.fitter.getfit()), r
|
---|
| 3585 | )
|
---|
[2012] | 3586 |
|
---|
| 3587 | if outblfile:
|
---|
| 3588 | rms = workscan.get_rms(f.mask, r)
|
---|
[2269] | 3589 | dataout = \
|
---|
| 3590 | workscan.format_blparams_row(blpars["params"],
|
---|
| 3591 | blpars["fixed"],
|
---|
| 3592 | rms, str(masklist),
|
---|
[2641] | 3593 | r, True, csvformat)
|
---|
[2012] | 3594 | blf.write(dataout)
|
---|
| 3595 |
|
---|
| 3596 | f._p.unmap()
|
---|
| 3597 | f._p = None
|
---|
| 3598 |
|
---|
| 3599 | if outblfile: blf.close()
|
---|
| 3600 | else:
|
---|
[2269] | 3601 | workscan._auto_poly_baseline(mask, order, edge, threshold,
|
---|
| 3602 | chan_avg_limit, getresidual,
|
---|
| 3603 | pack_progress_params(showprogress,
|
---|
| 3604 | minnrow),
|
---|
[2641] | 3605 | outlog, scsvformat+blfile)
|
---|
[2012] | 3606 |
|
---|
| 3607 | workscan._add_history("auto_poly_baseline", varlist)
|
---|
| 3608 |
|
---|
| 3609 | if insitu:
|
---|
| 3610 | self._assign(workscan)
|
---|
| 3611 | else:
|
---|
| 3612 | return workscan
|
---|
| 3613 |
|
---|
| 3614 | except RuntimeError, e:
|
---|
[2186] | 3615 | raise_fitting_failure_exception(e)
|
---|
[2012] | 3616 |
|
---|
| 3617 | def _init_blinfo(self):
|
---|
| 3618 | """\
|
---|
| 3619 | Initialise the following three auxiliary members:
|
---|
| 3620 | blpars : parameters of the best-fit baseline,
|
---|
| 3621 | masklists : mask data (edge positions of masked channels) and
|
---|
| 3622 | actualmask : mask data (in boolean list),
|
---|
| 3623 | to keep for use later (including output to logger/text files).
|
---|
| 3624 | Used by poly_baseline() and auto_poly_baseline() in case of
|
---|
| 3625 | 'plot=True'.
|
---|
| 3626 | """
|
---|
| 3627 | self.blpars = []
|
---|
| 3628 | self.masklists = []
|
---|
| 3629 | self.actualmask = []
|
---|
| 3630 | return
|
---|
[880] | 3631 |
|
---|
[2012] | 3632 | def _append_blinfo(self, data_blpars, data_masklists, data_actualmask):
|
---|
| 3633 | """\
|
---|
| 3634 | Append baseline-fitting related info to blpars, masklist and
|
---|
| 3635 | actualmask.
|
---|
| 3636 | """
|
---|
| 3637 | self.blpars.append(data_blpars)
|
---|
| 3638 | self.masklists.append(data_masklists)
|
---|
| 3639 | self.actualmask.append(data_actualmask)
|
---|
| 3640 | return
|
---|
| 3641 |
|
---|
[1862] | 3642 | @asaplog_post_dec
|
---|
[914] | 3643 | def rotate_linpolphase(self, angle):
|
---|
[1846] | 3644 | """\
|
---|
[914] | 3645 | Rotate the phase of the complex polarization O=Q+iU correlation.
|
---|
| 3646 | This is always done in situ in the raw data. So if you call this
|
---|
| 3647 | function more than once then each call rotates the phase further.
|
---|
[1846] | 3648 |
|
---|
[914] | 3649 | Parameters:
|
---|
[1846] | 3650 |
|
---|
[914] | 3651 | angle: The angle (degrees) to rotate (add) by.
|
---|
[1846] | 3652 |
|
---|
| 3653 | Example::
|
---|
| 3654 |
|
---|
[914] | 3655 | scan.rotate_linpolphase(2.3)
|
---|
[1846] | 3656 |
|
---|
[914] | 3657 | """
|
---|
| 3658 | varlist = vars()
|
---|
[936] | 3659 | self._math._rotate_linpolphase(self, angle)
|
---|
[914] | 3660 | self._add_history("rotate_linpolphase", varlist)
|
---|
| 3661 | return
|
---|
[710] | 3662 |
|
---|
[1862] | 3663 | @asaplog_post_dec
|
---|
[914] | 3664 | def rotate_xyphase(self, angle):
|
---|
[1846] | 3665 | """\
|
---|
[914] | 3666 | Rotate the phase of the XY correlation. This is always done in situ
|
---|
| 3667 | in the data. So if you call this function more than once
|
---|
| 3668 | then each call rotates the phase further.
|
---|
[1846] | 3669 |
|
---|
[914] | 3670 | Parameters:
|
---|
[1846] | 3671 |
|
---|
[914] | 3672 | angle: The angle (degrees) to rotate (add) by.
|
---|
[1846] | 3673 |
|
---|
| 3674 | Example::
|
---|
| 3675 |
|
---|
[914] | 3676 | scan.rotate_xyphase(2.3)
|
---|
[1846] | 3677 |
|
---|
[914] | 3678 | """
|
---|
| 3679 | varlist = vars()
|
---|
[936] | 3680 | self._math._rotate_xyphase(self, angle)
|
---|
[914] | 3681 | self._add_history("rotate_xyphase", varlist)
|
---|
| 3682 | return
|
---|
| 3683 |
|
---|
[1862] | 3684 | @asaplog_post_dec
|
---|
[914] | 3685 | def swap_linears(self):
|
---|
[1846] | 3686 | """\
|
---|
[1573] | 3687 | Swap the linear polarisations XX and YY, or better the first two
|
---|
[1348] | 3688 | polarisations as this also works for ciculars.
|
---|
[914] | 3689 | """
|
---|
| 3690 | varlist = vars()
|
---|
[936] | 3691 | self._math._swap_linears(self)
|
---|
[914] | 3692 | self._add_history("swap_linears", varlist)
|
---|
| 3693 | return
|
---|
| 3694 |
|
---|
[1862] | 3695 | @asaplog_post_dec
|
---|
[914] | 3696 | def invert_phase(self):
|
---|
[1846] | 3697 | """\
|
---|
[914] | 3698 | Invert the phase of the complex polarisation
|
---|
| 3699 | """
|
---|
| 3700 | varlist = vars()
|
---|
[936] | 3701 | self._math._invert_phase(self)
|
---|
[914] | 3702 | self._add_history("invert_phase", varlist)
|
---|
| 3703 | return
|
---|
| 3704 |
|
---|
[1862] | 3705 | @asaplog_post_dec
|
---|
[876] | 3706 | def add(self, offset, insitu=None):
|
---|
[1846] | 3707 | """\
|
---|
[513] | 3708 | Return a scan where all spectra have the offset added
|
---|
[1846] | 3709 |
|
---|
[513] | 3710 | Parameters:
|
---|
[1846] | 3711 |
|
---|
[513] | 3712 | offset: the offset
|
---|
[1855] | 3713 |
|
---|
[513] | 3714 | insitu: if False a new scantable is returned.
|
---|
| 3715 | Otherwise, the scaling is done in-situ
|
---|
| 3716 | The default is taken from .asaprc (False)
|
---|
[1846] | 3717 |
|
---|
[513] | 3718 | """
|
---|
| 3719 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 3720 | self._math._setinsitu(insitu)
|
---|
[513] | 3721 | varlist = vars()
|
---|
[876] | 3722 | s = scantable(self._math._unaryop(self, offset, "ADD", False))
|
---|
[1118] | 3723 | s._add_history("add", varlist)
|
---|
[876] | 3724 | if insitu:
|
---|
| 3725 | self._assign(s)
|
---|
| 3726 | else:
|
---|
[513] | 3727 | return s
|
---|
| 3728 |
|
---|
[1862] | 3729 | @asaplog_post_dec
|
---|
[1308] | 3730 | def scale(self, factor, tsys=True, insitu=None):
|
---|
[1846] | 3731 | """\
|
---|
| 3732 |
|
---|
[1938] | 3733 | Return a scan where all spectra are scaled by the given 'factor'
|
---|
[1846] | 3734 |
|
---|
[513] | 3735 | Parameters:
|
---|
[1846] | 3736 |
|
---|
[1819] | 3737 | factor: the scaling factor (float or 1D float list)
|
---|
[1855] | 3738 |
|
---|
[513] | 3739 | insitu: if False a new scantable is returned.
|
---|
| 3740 | Otherwise, the scaling is done in-situ
|
---|
| 3741 | The default is taken from .asaprc (False)
|
---|
[1855] | 3742 |
|
---|
[513] | 3743 | tsys: if True (default) then apply the operation to Tsys
|
---|
| 3744 | as well as the data
|
---|
[1846] | 3745 |
|
---|
[513] | 3746 | """
|
---|
| 3747 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 3748 | self._math._setinsitu(insitu)
|
---|
[513] | 3749 | varlist = vars()
|
---|
[1819] | 3750 | s = None
|
---|
| 3751 | import numpy
|
---|
| 3752 | if isinstance(factor, list) or isinstance(factor, numpy.ndarray):
|
---|
[2320] | 3753 | if isinstance(factor[0], list) or isinstance(factor[0],
|
---|
| 3754 | numpy.ndarray):
|
---|
[1819] | 3755 | from asapmath import _array2dOp
|
---|
[2320] | 3756 | s = _array2dOp( self, factor, "MUL", tsys, insitu )
|
---|
[1819] | 3757 | else:
|
---|
[2320] | 3758 | s = scantable( self._math._arrayop( self, factor,
|
---|
| 3759 | "MUL", tsys ) )
|
---|
[1819] | 3760 | else:
|
---|
[2320] | 3761 | s = scantable(self._math._unaryop(self, factor, "MUL", tsys))
|
---|
[1118] | 3762 | s._add_history("scale", varlist)
|
---|
[876] | 3763 | if insitu:
|
---|
| 3764 | self._assign(s)
|
---|
| 3765 | else:
|
---|
[513] | 3766 | return s
|
---|
| 3767 |
|
---|
[2349] | 3768 | @preserve_selection
|
---|
| 3769 | def set_sourcetype(self, match, matchtype="pattern",
|
---|
[1504] | 3770 | sourcetype="reference"):
|
---|
[1846] | 3771 | """\
|
---|
[1502] | 3772 | Set the type of the source to be an source or reference scan
|
---|
[1846] | 3773 | using the provided pattern.
|
---|
| 3774 |
|
---|
[1502] | 3775 | Parameters:
|
---|
[1846] | 3776 |
|
---|
[1504] | 3777 | match: a Unix style pattern, regular expression or selector
|
---|
[1855] | 3778 |
|
---|
[1504] | 3779 | matchtype: 'pattern' (default) UNIX style pattern or
|
---|
| 3780 | 'regex' regular expression
|
---|
[1855] | 3781 |
|
---|
[1502] | 3782 | sourcetype: the type of the source to use (source/reference)
|
---|
[1846] | 3783 |
|
---|
[1502] | 3784 | """
|
---|
| 3785 | varlist = vars()
|
---|
| 3786 | stype = -1
|
---|
[2480] | 3787 | if sourcetype.lower().startswith("r") or sourcetype.lower() == "off":
|
---|
[1502] | 3788 | stype = 1
|
---|
[2480] | 3789 | elif sourcetype.lower().startswith("s") or sourcetype.lower() == "on":
|
---|
[1502] | 3790 | stype = 0
|
---|
[1504] | 3791 | else:
|
---|
[2480] | 3792 | raise ValueError("Illegal sourcetype use s(ource)/on or r(eference)/off")
|
---|
[1504] | 3793 | if matchtype.lower().startswith("p"):
|
---|
| 3794 | matchtype = "pattern"
|
---|
| 3795 | elif matchtype.lower().startswith("r"):
|
---|
| 3796 | matchtype = "regex"
|
---|
| 3797 | else:
|
---|
| 3798 | raise ValueError("Illegal matchtype, use p(attern) or r(egex)")
|
---|
[1502] | 3799 | sel = selector()
|
---|
| 3800 | if isinstance(match, selector):
|
---|
| 3801 | sel = match
|
---|
| 3802 | else:
|
---|
[2480] | 3803 | sel.set_query("SRCNAME=%s('%s')" % (matchtype, match))
|
---|
| 3804 | self.set_selection(sel)
|
---|
[1502] | 3805 | self._setsourcetype(stype)
|
---|
[1573] | 3806 | self._add_history("set_sourcetype", varlist)
|
---|
[1502] | 3807 |
|
---|
[1862] | 3808 | @asaplog_post_dec
|
---|
[1857] | 3809 | @preserve_selection
|
---|
[1819] | 3810 | def auto_quotient(self, preserve=True, mode='paired', verify=False):
|
---|
[1846] | 3811 | """\
|
---|
[670] | 3812 | This function allows to build quotients automatically.
|
---|
[1819] | 3813 | It assumes the observation to have the same number of
|
---|
[670] | 3814 | "ons" and "offs"
|
---|
[1846] | 3815 |
|
---|
[670] | 3816 | Parameters:
|
---|
[1846] | 3817 |
|
---|
[710] | 3818 | preserve: you can preserve (default) the continuum or
|
---|
| 3819 | remove it. The equations used are
|
---|
[1857] | 3820 |
|
---|
[670] | 3821 | preserve: Output = Toff * (on/off) - Toff
|
---|
[1857] | 3822 |
|
---|
[1070] | 3823 | remove: Output = Toff * (on/off) - Ton
|
---|
[1855] | 3824 |
|
---|
[1573] | 3825 | mode: the on/off detection mode
|
---|
[1348] | 3826 | 'paired' (default)
|
---|
| 3827 | identifies 'off' scans by the
|
---|
| 3828 | trailing '_R' (Mopra/Parkes) or
|
---|
| 3829 | '_e'/'_w' (Tid) and matches
|
---|
| 3830 | on/off pairs from the observing pattern
|
---|
[1502] | 3831 | 'time'
|
---|
| 3832 | finds the closest off in time
|
---|
[1348] | 3833 |
|
---|
[1857] | 3834 | .. todo:: verify argument is not implemented
|
---|
| 3835 |
|
---|
[670] | 3836 | """
|
---|
[1857] | 3837 | varlist = vars()
|
---|
[1348] | 3838 | modes = ["time", "paired"]
|
---|
[670] | 3839 | if not mode in modes:
|
---|
[876] | 3840 | msg = "please provide valid mode. Valid modes are %s" % (modes)
|
---|
| 3841 | raise ValueError(msg)
|
---|
[1348] | 3842 | s = None
|
---|
| 3843 | if mode.lower() == "paired":
|
---|
[1857] | 3844 | sel = self.get_selection()
|
---|
[1875] | 3845 | sel.set_query("SRCTYPE==psoff")
|
---|
[1356] | 3846 | self.set_selection(sel)
|
---|
[1348] | 3847 | offs = self.copy()
|
---|
[1875] | 3848 | sel.set_query("SRCTYPE==pson")
|
---|
[1356] | 3849 | self.set_selection(sel)
|
---|
[1348] | 3850 | ons = self.copy()
|
---|
| 3851 | s = scantable(self._math._quotient(ons, offs, preserve))
|
---|
| 3852 | elif mode.lower() == "time":
|
---|
| 3853 | s = scantable(self._math._auto_quotient(self, mode, preserve))
|
---|
[1118] | 3854 | s._add_history("auto_quotient", varlist)
|
---|
[876] | 3855 | return s
|
---|
[710] | 3856 |
|
---|
[1862] | 3857 | @asaplog_post_dec
|
---|
[1145] | 3858 | def mx_quotient(self, mask = None, weight='median', preserve=True):
|
---|
[1846] | 3859 | """\
|
---|
[1143] | 3860 | Form a quotient using "off" beams when observing in "MX" mode.
|
---|
[1846] | 3861 |
|
---|
[1143] | 3862 | Parameters:
|
---|
[1846] | 3863 |
|
---|
[1145] | 3864 | mask: an optional mask to be used when weight == 'stddev'
|
---|
[1855] | 3865 |
|
---|
[1143] | 3866 | weight: How to average the off beams. Default is 'median'.
|
---|
[1855] | 3867 |
|
---|
[1145] | 3868 | preserve: you can preserve (default) the continuum or
|
---|
[1855] | 3869 | remove it. The equations used are:
|
---|
[1846] | 3870 |
|
---|
[1855] | 3871 | preserve: Output = Toff * (on/off) - Toff
|
---|
| 3872 |
|
---|
| 3873 | remove: Output = Toff * (on/off) - Ton
|
---|
| 3874 |
|
---|
[1217] | 3875 | """
|
---|
[1593] | 3876 | mask = mask or ()
|
---|
[1141] | 3877 | varlist = vars()
|
---|
| 3878 | on = scantable(self._math._mx_extract(self, 'on'))
|
---|
[1143] | 3879 | preoff = scantable(self._math._mx_extract(self, 'off'))
|
---|
| 3880 | off = preoff.average_time(mask=mask, weight=weight, scanav=False)
|
---|
[1217] | 3881 | from asapmath import quotient
|
---|
[1145] | 3882 | q = quotient(on, off, preserve)
|
---|
[1143] | 3883 | q._add_history("mx_quotient", varlist)
|
---|
[1217] | 3884 | return q
|
---|
[513] | 3885 |
|
---|
[1862] | 3886 | @asaplog_post_dec
|
---|
[718] | 3887 | def freq_switch(self, insitu=None):
|
---|
[1846] | 3888 | """\
|
---|
[718] | 3889 | Apply frequency switching to the data.
|
---|
[1846] | 3890 |
|
---|
[718] | 3891 | Parameters:
|
---|
[1846] | 3892 |
|
---|
[718] | 3893 | insitu: if False a new scantable is returned.
|
---|
| 3894 | Otherwise, the swictching is done in-situ
|
---|
| 3895 | The default is taken from .asaprc (False)
|
---|
[1846] | 3896 |
|
---|
[718] | 3897 | """
|
---|
| 3898 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 3899 | self._math._setinsitu(insitu)
|
---|
[718] | 3900 | varlist = vars()
|
---|
[876] | 3901 | s = scantable(self._math._freqswitch(self))
|
---|
[1118] | 3902 | s._add_history("freq_switch", varlist)
|
---|
[1856] | 3903 | if insitu:
|
---|
| 3904 | self._assign(s)
|
---|
| 3905 | else:
|
---|
| 3906 | return s
|
---|
[718] | 3907 |
|
---|
[1862] | 3908 | @asaplog_post_dec
|
---|
[780] | 3909 | def recalc_azel(self):
|
---|
[1846] | 3910 | """Recalculate the azimuth and elevation for each position."""
|
---|
[780] | 3911 | varlist = vars()
|
---|
[876] | 3912 | self._recalcazel()
|
---|
[780] | 3913 | self._add_history("recalc_azel", varlist)
|
---|
| 3914 | return
|
---|
| 3915 |
|
---|
[1862] | 3916 | @asaplog_post_dec
|
---|
[513] | 3917 | def __add__(self, other):
|
---|
[2574] | 3918 | """
|
---|
| 3919 | implicit on all axes and on Tsys
|
---|
| 3920 | """
|
---|
[513] | 3921 | varlist = vars()
|
---|
[2574] | 3922 | s = self.__op( other, "ADD" )
|
---|
[513] | 3923 | s._add_history("operator +", varlist)
|
---|
| 3924 | return s
|
---|
| 3925 |
|
---|
[1862] | 3926 | @asaplog_post_dec
|
---|
[513] | 3927 | def __sub__(self, other):
|
---|
| 3928 | """
|
---|
| 3929 | implicit on all axes and on Tsys
|
---|
| 3930 | """
|
---|
| 3931 | varlist = vars()
|
---|
[2574] | 3932 | s = self.__op( other, "SUB" )
|
---|
[513] | 3933 | s._add_history("operator -", varlist)
|
---|
| 3934 | return s
|
---|
[710] | 3935 |
|
---|
[1862] | 3936 | @asaplog_post_dec
|
---|
[513] | 3937 | def __mul__(self, other):
|
---|
| 3938 | """
|
---|
| 3939 | implicit on all axes and on Tsys
|
---|
| 3940 | """
|
---|
| 3941 | varlist = vars()
|
---|
[2574] | 3942 | s = self.__op( other, "MUL" ) ;
|
---|
[513] | 3943 | s._add_history("operator *", varlist)
|
---|
| 3944 | return s
|
---|
| 3945 |
|
---|
[710] | 3946 |
|
---|
[1862] | 3947 | @asaplog_post_dec
|
---|
[513] | 3948 | def __div__(self, other):
|
---|
| 3949 | """
|
---|
| 3950 | implicit on all axes and on Tsys
|
---|
| 3951 | """
|
---|
| 3952 | varlist = vars()
|
---|
[2574] | 3953 | s = self.__op( other, "DIV" )
|
---|
| 3954 | s._add_history("operator /", varlist)
|
---|
| 3955 | return s
|
---|
| 3956 |
|
---|
| 3957 | @asaplog_post_dec
|
---|
| 3958 | def __op( self, other, mode ):
|
---|
[513] | 3959 | s = None
|
---|
| 3960 | if isinstance(other, scantable):
|
---|
[2574] | 3961 | s = scantable(self._math._binaryop(self, other, mode))
|
---|
[513] | 3962 | elif isinstance(other, float):
|
---|
| 3963 | if other == 0.0:
|
---|
[718] | 3964 | raise ZeroDivisionError("Dividing by zero is not recommended")
|
---|
[2574] | 3965 | s = scantable(self._math._unaryop(self, other, mode, False))
|
---|
[2144] | 3966 | elif isinstance(other, list) or isinstance(other, numpy.ndarray):
|
---|
[2349] | 3967 | if isinstance(other[0], list) \
|
---|
| 3968 | or isinstance(other[0], numpy.ndarray):
|
---|
[2144] | 3969 | from asapmath import _array2dOp
|
---|
[2574] | 3970 | s = _array2dOp( self, other, mode, False )
|
---|
[2144] | 3971 | else:
|
---|
[2574] | 3972 | s = scantable( self._math._arrayop( self, other,
|
---|
| 3973 | mode, False ) )
|
---|
[513] | 3974 | else:
|
---|
[718] | 3975 | raise TypeError("Other input is not a scantable or float value")
|
---|
[513] | 3976 | return s
|
---|
| 3977 |
|
---|
[1862] | 3978 | @asaplog_post_dec
|
---|
[530] | 3979 | def get_fit(self, row=0):
|
---|
[1846] | 3980 | """\
|
---|
[530] | 3981 | Print or return the stored fits for a row in the scantable
|
---|
[1846] | 3982 |
|
---|
[530] | 3983 | Parameters:
|
---|
[1846] | 3984 |
|
---|
[530] | 3985 | row: the row which the fit has been applied to.
|
---|
[1846] | 3986 |
|
---|
[530] | 3987 | """
|
---|
| 3988 | if row > self.nrow():
|
---|
| 3989 | return
|
---|
[976] | 3990 | from asap.asapfit import asapfit
|
---|
[530] | 3991 | fit = asapfit(self._getfit(row))
|
---|
[1859] | 3992 | asaplog.push( '%s' %(fit) )
|
---|
| 3993 | return fit.as_dict()
|
---|
[530] | 3994 |
|
---|
[2349] | 3995 | @preserve_selection
|
---|
[1483] | 3996 | def flag_nans(self):
|
---|
[1846] | 3997 | """\
|
---|
[1483] | 3998 | Utility function to flag NaN values in the scantable.
|
---|
| 3999 | """
|
---|
| 4000 | import numpy
|
---|
| 4001 | basesel = self.get_selection()
|
---|
| 4002 | for i in range(self.nrow()):
|
---|
[1589] | 4003 | sel = self.get_row_selector(i)
|
---|
| 4004 | self.set_selection(basesel+sel)
|
---|
[1483] | 4005 | nans = numpy.isnan(self._getspectrum(0))
|
---|
| 4006 | if numpy.any(nans):
|
---|
| 4007 | bnans = [ bool(v) for v in nans]
|
---|
| 4008 | self.flag(bnans)
|
---|
| 4009 |
|
---|
[1588] | 4010 | def get_row_selector(self, rowno):
|
---|
[1992] | 4011 | return selector(rows=[rowno])
|
---|
[1573] | 4012 |
|
---|
[484] | 4013 | def _add_history(self, funcname, parameters):
|
---|
[1435] | 4014 | if not rcParams['scantable.history']:
|
---|
| 4015 | return
|
---|
[484] | 4016 | # create date
|
---|
| 4017 | sep = "##"
|
---|
| 4018 | from datetime import datetime
|
---|
| 4019 | dstr = datetime.now().strftime('%Y/%m/%d %H:%M:%S')
|
---|
| 4020 | hist = dstr+sep
|
---|
| 4021 | hist += funcname+sep#cdate+sep
|
---|
[2349] | 4022 | if parameters.has_key('self'):
|
---|
| 4023 | del parameters['self']
|
---|
[1118] | 4024 | for k, v in parameters.iteritems():
|
---|
[484] | 4025 | if type(v) is dict:
|
---|
[1118] | 4026 | for k2, v2 in v.iteritems():
|
---|
[484] | 4027 | hist += k2
|
---|
| 4028 | hist += "="
|
---|
[1118] | 4029 | if isinstance(v2, scantable):
|
---|
[484] | 4030 | hist += 'scantable'
|
---|
| 4031 | elif k2 == 'mask':
|
---|
[1118] | 4032 | if isinstance(v2, list) or isinstance(v2, tuple):
|
---|
[513] | 4033 | hist += str(self._zip_mask(v2))
|
---|
| 4034 | else:
|
---|
| 4035 | hist += str(v2)
|
---|
[484] | 4036 | else:
|
---|
[513] | 4037 | hist += str(v2)
|
---|
[484] | 4038 | else:
|
---|
| 4039 | hist += k
|
---|
| 4040 | hist += "="
|
---|
[1118] | 4041 | if isinstance(v, scantable):
|
---|
[484] | 4042 | hist += 'scantable'
|
---|
| 4043 | elif k == 'mask':
|
---|
[1118] | 4044 | if isinstance(v, list) or isinstance(v, tuple):
|
---|
[513] | 4045 | hist += str(self._zip_mask(v))
|
---|
| 4046 | else:
|
---|
| 4047 | hist += str(v)
|
---|
[484] | 4048 | else:
|
---|
| 4049 | hist += str(v)
|
---|
| 4050 | hist += sep
|
---|
| 4051 | hist = hist[:-2] # remove trailing '##'
|
---|
| 4052 | self._addhistory(hist)
|
---|
| 4053 |
|
---|
[710] | 4054 |
|
---|
[484] | 4055 | def _zip_mask(self, mask):
|
---|
| 4056 | mask = list(mask)
|
---|
| 4057 | i = 0
|
---|
| 4058 | segments = []
|
---|
| 4059 | while mask[i:].count(1):
|
---|
| 4060 | i += mask[i:].index(1)
|
---|
| 4061 | if mask[i:].count(0):
|
---|
| 4062 | j = i + mask[i:].index(0)
|
---|
| 4063 | else:
|
---|
[710] | 4064 | j = len(mask)
|
---|
[1118] | 4065 | segments.append([i, j])
|
---|
[710] | 4066 | i = j
|
---|
[484] | 4067 | return segments
|
---|
[714] | 4068 |
|
---|
[626] | 4069 | def _get_ordinate_label(self):
|
---|
| 4070 | fu = "("+self.get_fluxunit()+")"
|
---|
| 4071 | import re
|
---|
| 4072 | lbl = "Intensity"
|
---|
[1118] | 4073 | if re.match(".K.", fu):
|
---|
[626] | 4074 | lbl = "Brightness Temperature "+ fu
|
---|
[1118] | 4075 | elif re.match(".Jy.", fu):
|
---|
[626] | 4076 | lbl = "Flux density "+ fu
|
---|
| 4077 | return lbl
|
---|
[710] | 4078 |
|
---|
[876] | 4079 | def _check_ifs(self):
|
---|
[2349] | 4080 | # return len(set([self.nchan(i) for i in self.getifnos()])) == 1
|
---|
[1986] | 4081 | nchans = [self.nchan(i) for i in self.getifnos()]
|
---|
[2004] | 4082 | nchans = filter(lambda t: t > 0, nchans)
|
---|
[876] | 4083 | return (sum(nchans)/len(nchans) == nchans[0])
|
---|
[976] | 4084 |
|
---|
[1862] | 4085 | @asaplog_post_dec
|
---|
[1916] | 4086 | def _fill(self, names, unit, average, opts={}):
|
---|
[976] | 4087 | first = True
|
---|
| 4088 | fullnames = []
|
---|
| 4089 | for name in names:
|
---|
| 4090 | name = os.path.expandvars(name)
|
---|
| 4091 | name = os.path.expanduser(name)
|
---|
| 4092 | if not os.path.exists(name):
|
---|
| 4093 | msg = "File '%s' does not exists" % (name)
|
---|
| 4094 | raise IOError(msg)
|
---|
| 4095 | fullnames.append(name)
|
---|
| 4096 | if average:
|
---|
| 4097 | asaplog.push('Auto averaging integrations')
|
---|
[1079] | 4098 | stype = int(rcParams['scantable.storage'].lower() == 'disk')
|
---|
[976] | 4099 | for name in fullnames:
|
---|
[1073] | 4100 | tbl = Scantable(stype)
|
---|
[2004] | 4101 | if is_ms( name ):
|
---|
| 4102 | r = msfiller( tbl )
|
---|
| 4103 | else:
|
---|
| 4104 | r = filler( tbl )
|
---|
[976] | 4105 | msg = "Importing %s..." % (name)
|
---|
[1118] | 4106 | asaplog.push(msg, False)
|
---|
[2349] | 4107 | r.open(name, opts)
|
---|
[2480] | 4108 | rx = rcParams['scantable.reference']
|
---|
| 4109 | r.setreferenceexpr(rx)
|
---|
[1843] | 4110 | r.fill()
|
---|
[976] | 4111 | if average:
|
---|
[1118] | 4112 | tbl = self._math._average((tbl, ), (), 'NONE', 'SCAN')
|
---|
[976] | 4113 | if not first:
|
---|
| 4114 | tbl = self._math._merge([self, tbl])
|
---|
| 4115 | Scantable.__init__(self, tbl)
|
---|
[1843] | 4116 | r.close()
|
---|
[1118] | 4117 | del r, tbl
|
---|
[976] | 4118 | first = False
|
---|
[1861] | 4119 | #flush log
|
---|
| 4120 | asaplog.post()
|
---|
[976] | 4121 | if unit is not None:
|
---|
| 4122 | self.set_fluxunit(unit)
|
---|
[1824] | 4123 | if not is_casapy():
|
---|
| 4124 | self.set_freqframe(rcParams['scantable.freqframe'])
|
---|
[976] | 4125 |
|
---|
[2610] | 4126 | def _get_verify_action( self, msg, action=None ):
|
---|
| 4127 | valid_act = ['Y', 'N', 'A', 'R']
|
---|
| 4128 | if not action or not isinstance(action, str):
|
---|
| 4129 | action = raw_input("%s [Y/n/a/r] (h for help): " % msg)
|
---|
| 4130 | if action == '':
|
---|
| 4131 | return "Y"
|
---|
| 4132 | elif (action.upper()[0] in valid_act):
|
---|
| 4133 | return action.upper()[0]
|
---|
| 4134 | elif (action.upper()[0] in ['H','?']):
|
---|
| 4135 | print "Available actions of verification [Y|n|a|r]"
|
---|
| 4136 | print " Y : Yes for current data (default)"
|
---|
| 4137 | print " N : No for current data"
|
---|
| 4138 | print " A : Accept all in the following and exit from verification"
|
---|
| 4139 | print " R : Reject all in the following and exit from verification"
|
---|
| 4140 | print " H or ?: help (show this message)"
|
---|
| 4141 | return self._get_verify_action(msg)
|
---|
| 4142 | else:
|
---|
| 4143 | return 'Y'
|
---|
[2012] | 4144 |
|
---|
[1402] | 4145 | def __getitem__(self, key):
|
---|
| 4146 | if key < 0:
|
---|
| 4147 | key += self.nrow()
|
---|
| 4148 | if key >= self.nrow():
|
---|
| 4149 | raise IndexError("Row index out of range.")
|
---|
| 4150 | return self._getspectrum(key)
|
---|
| 4151 |
|
---|
| 4152 | def __setitem__(self, key, value):
|
---|
| 4153 | if key < 0:
|
---|
| 4154 | key += self.nrow()
|
---|
| 4155 | if key >= self.nrow():
|
---|
| 4156 | raise IndexError("Row index out of range.")
|
---|
| 4157 | if not hasattr(value, "__len__") or \
|
---|
| 4158 | len(value) > self.nchan(self.getif(key)):
|
---|
| 4159 | raise ValueError("Spectrum length doesn't match.")
|
---|
| 4160 | return self._setspectrum(value, key)
|
---|
| 4161 |
|
---|
| 4162 | def __len__(self):
|
---|
| 4163 | return self.nrow()
|
---|
| 4164 |
|
---|
| 4165 | def __iter__(self):
|
---|
| 4166 | for i in range(len(self)):
|
---|
| 4167 | yield self[i]
|
---|