[1846] | 1 | """This module defines the scantable class."""
|
---|
| 2 |
|
---|
[1697] | 3 | import os
|
---|
[2315] | 4 | import tempfile
|
---|
[1948] | 5 | import numpy
|
---|
[1691] | 6 | try:
|
---|
| 7 | from functools import wraps as wraps_dec
|
---|
| 8 | except ImportError:
|
---|
| 9 | from asap.compatibility import wraps as wraps_dec
|
---|
| 10 |
|
---|
[1824] | 11 | from asap.env import is_casapy
|
---|
[876] | 12 | from asap._asap import Scantable
|
---|
[2004] | 13 | from asap._asap import filler, msfiller
|
---|
[1824] | 14 | from asap.parameters import rcParams
|
---|
[1862] | 15 | from asap.logging import asaplog, asaplog_post_dec
|
---|
[1824] | 16 | from asap.selector import selector
|
---|
| 17 | from asap.linecatalog import linecatalog
|
---|
[1600] | 18 | from asap.coordinate import coordinate
|
---|
[1859] | 19 | from asap.utils import _n_bools, mask_not, mask_and, mask_or, page
|
---|
[1907] | 20 | from asap.asapfitter import fitter
|
---|
[102] | 21 |
|
---|
[1689] | 22 | def preserve_selection(func):
|
---|
[1691] | 23 | @wraps_dec(func)
|
---|
[1689] | 24 | def wrap(obj, *args, **kw):
|
---|
| 25 | basesel = obj.get_selection()
|
---|
[1857] | 26 | try:
|
---|
| 27 | val = func(obj, *args, **kw)
|
---|
| 28 | finally:
|
---|
| 29 | obj.set_selection(basesel)
|
---|
[1689] | 30 | return val
|
---|
| 31 | return wrap
|
---|
| 32 |
|
---|
[1846] | 33 | def is_scantable(filename):
|
---|
| 34 | """Is the given file a scantable?
|
---|
[1689] | 35 |
|
---|
[1846] | 36 | Parameters:
|
---|
| 37 |
|
---|
| 38 | filename: the name of the file/directory to test
|
---|
| 39 |
|
---|
| 40 | """
|
---|
[1883] | 41 | if ( os.path.isdir(filename)
|
---|
| 42 | and os.path.exists(filename+'/table.info')
|
---|
| 43 | and os.path.exists(filename+'/table.dat') ):
|
---|
| 44 | f=open(filename+'/table.info')
|
---|
| 45 | l=f.readline()
|
---|
| 46 | f.close()
|
---|
| 47 | #if ( l.find('Scantable') != -1 ):
|
---|
| 48 | if ( l.find('Measurement Set') == -1 ):
|
---|
| 49 | return True
|
---|
| 50 | else:
|
---|
| 51 | return False
|
---|
| 52 | else:
|
---|
| 53 | return False
|
---|
| 54 | ## return (os.path.isdir(filename)
|
---|
| 55 | ## and not os.path.exists(filename+'/table.f1')
|
---|
| 56 | ## and os.path.exists(filename+'/table.info'))
|
---|
[1697] | 57 |
|
---|
[1883] | 58 | def is_ms(filename):
|
---|
| 59 | """Is the given file a MeasurementSet?
|
---|
[1697] | 60 |
|
---|
[1883] | 61 | Parameters:
|
---|
| 62 |
|
---|
| 63 | filename: the name of the file/directory to test
|
---|
| 64 |
|
---|
| 65 | """
|
---|
| 66 | if ( os.path.isdir(filename)
|
---|
| 67 | and os.path.exists(filename+'/table.info')
|
---|
| 68 | and os.path.exists(filename+'/table.dat') ):
|
---|
| 69 | f=open(filename+'/table.info')
|
---|
| 70 | l=f.readline()
|
---|
| 71 | f.close()
|
---|
| 72 | if ( l.find('Measurement Set') != -1 ):
|
---|
| 73 | return True
|
---|
| 74 | else:
|
---|
| 75 | return False
|
---|
| 76 | else:
|
---|
| 77 | return False
|
---|
[2186] | 78 |
|
---|
| 79 | def normalise_edge_param(edge):
|
---|
| 80 | """\
|
---|
| 81 | Convert a given edge value to a one-dimensional array that can be
|
---|
| 82 | given to baseline-fitting/subtraction functions.
|
---|
| 83 | The length of the output value will be an even because values for
|
---|
| 84 | the both sides of spectra are to be contained for each IF. When
|
---|
| 85 | the length is 2, the values will be applied to all IFs. If the length
|
---|
| 86 | is larger than 2, it will be 2*ifnos().
|
---|
| 87 | Accepted format of edge include:
|
---|
| 88 | * an integer - will be used for both sides of spectra of all IFs.
|
---|
| 89 | e.g. 10 is converted to [10,10]
|
---|
[2277] | 90 | * an empty list/tuple [] - converted to [0, 0] and used for all IFs.
|
---|
[2186] | 91 | * a list/tuple containing an integer - same as the above case.
|
---|
| 92 | e.g. [10] is converted to [10,10]
|
---|
| 93 | * a list/tuple containing two integers - will be used for all IFs.
|
---|
| 94 | e.g. [5,10] is output as it is. no need to convert.
|
---|
| 95 | * a list/tuple of lists/tuples containing TWO integers -
|
---|
| 96 | each element of edge will be used for each IF.
|
---|
[2277] | 97 | e.g. [[5,10],[15,20]] - [5,10] for IF[0] and [15,20] for IF[1].
|
---|
| 98 |
|
---|
| 99 | If an element contains the same integer values, the input 'edge'
|
---|
| 100 | parameter can be given in a simpler shape in the following cases:
|
---|
[2186] | 101 | ** when len(edge)!=2
|
---|
[2277] | 102 | any elements containing the same values can be replaced
|
---|
| 103 | to single integers.
|
---|
| 104 | e.g. [[15,15]] can be simplified to [15] (or [15,15] or 15 also).
|
---|
| 105 | e.g. [[1,1],[2,2],[3,3]] can be simplified to [1,2,3].
|
---|
[2186] | 106 | ** when len(edge)=2
|
---|
| 107 | care is needed for this case: ONLY ONE of the
|
---|
| 108 | elements can be a single integer,
|
---|
| 109 | e.g. [[5,5],[10,10]] can be simplified to [5,[10,10]]
|
---|
[2277] | 110 | or [[5,5],10], but can NOT be simplified to [5,10].
|
---|
[2186] | 111 | when [5,10] given, it is interpreted as
|
---|
[2277] | 112 | [[5,10],[5,10],[5,10],...] instead, as shown before.
|
---|
[2186] | 113 | """
|
---|
| 114 | from asap import _is_sequence_or_number as _is_valid
|
---|
| 115 | if isinstance(edge, list) or isinstance(edge, tuple):
|
---|
| 116 | for edgepar in edge:
|
---|
| 117 | if not _is_valid(edgepar, int):
|
---|
| 118 | raise ValueError, "Each element of the 'edge' tuple has \
|
---|
| 119 | to be a pair of integers or an integer."
|
---|
| 120 | if isinstance(edgepar, list) or isinstance(edgepar, tuple):
|
---|
| 121 | if len(edgepar) != 2:
|
---|
| 122 | raise ValueError, "Each element of the 'edge' tuple has \
|
---|
| 123 | to be a pair of integers or an integer."
|
---|
| 124 | else:
|
---|
| 125 | if not _is_valid(edge, int):
|
---|
| 126 | raise ValueError, "Parameter 'edge' has to be an integer or a \
|
---|
| 127 | pair of integers specified as a tuple. \
|
---|
| 128 | Nested tuples are allowed \
|
---|
| 129 | to make individual selection for different IFs."
|
---|
| 130 |
|
---|
| 131 |
|
---|
| 132 | if isinstance(edge, int):
|
---|
| 133 | edge = [ edge, edge ] # e.g. 3 => [3,3]
|
---|
| 134 | elif isinstance(edge, list) or isinstance(edge, tuple):
|
---|
| 135 | if len(edge) == 0:
|
---|
| 136 | edge = [0, 0] # e.g. [] => [0,0]
|
---|
| 137 | elif len(edge) == 1:
|
---|
| 138 | if isinstance(edge[0], int):
|
---|
| 139 | edge = [ edge[0], edge[0] ] # e.g. [1] => [1,1]
|
---|
| 140 |
|
---|
| 141 | commonedge = True
|
---|
| 142 | if len(edge) > 2: commonedge = False
|
---|
| 143 | else:
|
---|
| 144 | for edgepar in edge:
|
---|
| 145 | if isinstance(edgepar, list) or isinstance(edgepar, tuple):
|
---|
| 146 | commonedge = False
|
---|
| 147 | break
|
---|
| 148 |
|
---|
| 149 | if commonedge:
|
---|
| 150 | if len(edge) > 1:
|
---|
| 151 | norm_edge = edge
|
---|
| 152 | else:
|
---|
| 153 | norm_edge = edge + edge
|
---|
| 154 | else:
|
---|
| 155 | norm_edge = []
|
---|
| 156 | for edgepar in edge:
|
---|
| 157 | if isinstance(edgepar, int):
|
---|
| 158 | norm_edge += [edgepar, edgepar]
|
---|
| 159 | else:
|
---|
| 160 | norm_edge += edgepar
|
---|
| 161 |
|
---|
| 162 | return norm_edge
|
---|
| 163 |
|
---|
| 164 | def raise_fitting_failure_exception(e):
|
---|
| 165 | msg = "The fit failed, possibly because it didn't converge."
|
---|
| 166 | if rcParams["verbose"]:
|
---|
| 167 | asaplog.push(str(e))
|
---|
| 168 | asaplog.push(str(msg))
|
---|
| 169 | else:
|
---|
| 170 | raise RuntimeError(str(e)+'\n'+msg)
|
---|
| 171 |
|
---|
[2189] | 172 | def pack_progress_params(showprogress, minnrow):
|
---|
| 173 | return str(showprogress).lower() + ',' + str(minnrow)
|
---|
| 174 |
|
---|
[876] | 175 | class scantable(Scantable):
|
---|
[1846] | 176 | """\
|
---|
| 177 | The ASAP container for scans (single-dish data).
|
---|
[102] | 178 | """
|
---|
[1819] | 179 |
|
---|
[1862] | 180 | @asaplog_post_dec
|
---|
[2315] | 181 | def __init__(self, filename, average=None, unit=None, parallactify=None,
|
---|
| 182 | **args):
|
---|
[1846] | 183 | """\
|
---|
[102] | 184 | Create a scantable from a saved one or make a reference
|
---|
[1846] | 185 |
|
---|
[102] | 186 | Parameters:
|
---|
[1846] | 187 |
|
---|
| 188 | filename: the name of an asap table on disk
|
---|
| 189 | or
|
---|
| 190 | the name of a rpfits/sdfits/ms file
|
---|
| 191 | (integrations within scans are auto averaged
|
---|
| 192 | and the whole file is read) or
|
---|
| 193 | [advanced] a reference to an existing scantable
|
---|
| 194 |
|
---|
| 195 | average: average all integrations withinb a scan on read.
|
---|
| 196 | The default (True) is taken from .asaprc.
|
---|
| 197 |
|
---|
[484] | 198 | unit: brightness unit; must be consistent with K or Jy.
|
---|
[1846] | 199 | Over-rides the default selected by the filler
|
---|
| 200 | (input rpfits/sdfits/ms) or replaces the value
|
---|
| 201 | in existing scantables
|
---|
| 202 |
|
---|
[1920] | 203 | antenna: for MeasurementSet input data only:
|
---|
[2349] | 204 | Antenna selection. integer (id) or string
|
---|
| 205 | (name or id).
|
---|
[1846] | 206 |
|
---|
[2349] | 207 | parallactify: Indicate that the data had been parallactified.
|
---|
| 208 | Default (false) is taken from rc file.
|
---|
[1846] | 209 |
|
---|
[710] | 210 | """
|
---|
[976] | 211 | if average is None:
|
---|
[710] | 212 | average = rcParams['scantable.autoaverage']
|
---|
[1593] | 213 | parallactify = parallactify or rcParams['scantable.parallactify']
|
---|
[1259] | 214 | varlist = vars()
|
---|
[876] | 215 | from asap._asap import stmath
|
---|
[1819] | 216 | self._math = stmath( rcParams['insitu'] )
|
---|
[876] | 217 | if isinstance(filename, Scantable):
|
---|
| 218 | Scantable.__init__(self, filename)
|
---|
[181] | 219 | else:
|
---|
[1697] | 220 | if isinstance(filename, str):
|
---|
[976] | 221 | filename = os.path.expandvars(filename)
|
---|
| 222 | filename = os.path.expanduser(filename)
|
---|
| 223 | if not os.path.exists(filename):
|
---|
| 224 | s = "File '%s' not found." % (filename)
|
---|
| 225 | raise IOError(s)
|
---|
[1697] | 226 | if is_scantable(filename):
|
---|
| 227 | ondisk = rcParams['scantable.storage'] == 'disk'
|
---|
| 228 | Scantable.__init__(self, filename, ondisk)
|
---|
| 229 | if unit is not None:
|
---|
| 230 | self.set_fluxunit(unit)
|
---|
[2008] | 231 | if average:
|
---|
| 232 | self._assign( self.average_time( scanav=True ) )
|
---|
[1819] | 233 | # do not reset to the default freqframe
|
---|
| 234 | #self.set_freqframe(rcParams['scantable.freqframe'])
|
---|
[1883] | 235 | elif is_ms(filename):
|
---|
[1916] | 236 | # Measurement Set
|
---|
| 237 | opts={'ms': {}}
|
---|
| 238 | mskeys=['getpt','antenna']
|
---|
| 239 | for key in mskeys:
|
---|
| 240 | if key in args.keys():
|
---|
| 241 | opts['ms'][key] = args[key]
|
---|
| 242 | self._fill([filename], unit, average, opts)
|
---|
[1893] | 243 | elif os.path.isfile(filename):
|
---|
[1916] | 244 | self._fill([filename], unit, average)
|
---|
[2350] | 245 | # only apply to new data not "copy constructor"
|
---|
| 246 | self.parallactify(parallactify)
|
---|
[1883] | 247 | else:
|
---|
[1819] | 248 | msg = "The given file '%s'is not a valid " \
|
---|
| 249 | "asap table." % (filename)
|
---|
[1859] | 250 | raise IOError(msg)
|
---|
[1118] | 251 | elif (isinstance(filename, list) or isinstance(filename, tuple)) \
|
---|
[976] | 252 | and isinstance(filename[-1], str):
|
---|
[1916] | 253 | self._fill(filename, unit, average)
|
---|
[1586] | 254 | self.parallactify(parallactify)
|
---|
[1259] | 255 | self._add_history("scantable", varlist)
|
---|
[102] | 256 |
|
---|
[1862] | 257 | @asaplog_post_dec
|
---|
[876] | 258 | def save(self, name=None, format=None, overwrite=False):
|
---|
[1846] | 259 | """\
|
---|
[1280] | 260 | Store the scantable on disk. This can be an asap (aips++) Table,
|
---|
| 261 | SDFITS or MS2 format.
|
---|
[1846] | 262 |
|
---|
[116] | 263 | Parameters:
|
---|
[1846] | 264 |
|
---|
[2431] | 265 | name: the name of the outputfile. For format 'ASCII'
|
---|
[1093] | 266 | this is the root file name (data in 'name'.txt
|
---|
[497] | 267 | and header in 'name'_header.txt)
|
---|
[1855] | 268 |
|
---|
[116] | 269 | format: an optional file format. Default is ASAP.
|
---|
[1855] | 270 | Allowed are:
|
---|
| 271 |
|
---|
| 272 | * 'ASAP' (save as ASAP [aips++] Table),
|
---|
| 273 | * 'SDFITS' (save as SDFITS file)
|
---|
| 274 | * 'ASCII' (saves as ascii text file)
|
---|
| 275 | * 'MS2' (saves as an casacore MeasurementSet V2)
|
---|
[2315] | 276 | * 'FITS' (save as image FITS - not readable by
|
---|
| 277 | class)
|
---|
[1855] | 278 | * 'CLASS' (save as FITS readable by CLASS)
|
---|
| 279 |
|
---|
[411] | 280 | overwrite: If the file should be overwritten if it exists.
|
---|
[256] | 281 | The default False is to return with warning
|
---|
[411] | 282 | without writing the output. USE WITH CARE.
|
---|
[1855] | 283 |
|
---|
[1846] | 284 | Example::
|
---|
| 285 |
|
---|
[116] | 286 | scan.save('myscan.asap')
|
---|
[1118] | 287 | scan.save('myscan.sdfits', 'SDFITS')
|
---|
[1846] | 288 |
|
---|
[116] | 289 | """
|
---|
[411] | 290 | from os import path
|
---|
[1593] | 291 | format = format or rcParams['scantable.save']
|
---|
[256] | 292 | suffix = '.'+format.lower()
|
---|
[1118] | 293 | if name is None or name == "":
|
---|
[256] | 294 | name = 'scantable'+suffix
|
---|
[718] | 295 | msg = "No filename given. Using default name %s..." % name
|
---|
| 296 | asaplog.push(msg)
|
---|
[411] | 297 | name = path.expandvars(name)
|
---|
[256] | 298 | if path.isfile(name) or path.isdir(name):
|
---|
| 299 | if not overwrite:
|
---|
[718] | 300 | msg = "File %s exists." % name
|
---|
[1859] | 301 | raise IOError(msg)
|
---|
[451] | 302 | format2 = format.upper()
|
---|
| 303 | if format2 == 'ASAP':
|
---|
[116] | 304 | self._save(name)
|
---|
[2029] | 305 | elif format2 == 'MS2':
|
---|
| 306 | msopt = {'ms': {'overwrite': overwrite } }
|
---|
| 307 | from asap._asap import mswriter
|
---|
| 308 | writer = mswriter( self )
|
---|
| 309 | writer.write( name, msopt )
|
---|
[116] | 310 | else:
|
---|
[989] | 311 | from asap._asap import stwriter as stw
|
---|
[1118] | 312 | writer = stw(format2)
|
---|
| 313 | writer.write(self, name)
|
---|
[116] | 314 | return
|
---|
| 315 |
|
---|
[102] | 316 | def copy(self):
|
---|
[1846] | 317 | """Return a copy of this scantable.
|
---|
| 318 |
|
---|
| 319 | *Note*:
|
---|
| 320 |
|
---|
[1348] | 321 | This makes a full (deep) copy. scan2 = scan1 makes a reference.
|
---|
[1846] | 322 |
|
---|
| 323 | Example::
|
---|
| 324 |
|
---|
[102] | 325 | copiedscan = scan.copy()
|
---|
[1846] | 326 |
|
---|
[102] | 327 | """
|
---|
[876] | 328 | sd = scantable(Scantable._copy(self))
|
---|
[113] | 329 | return sd
|
---|
| 330 |
|
---|
[1093] | 331 | def drop_scan(self, scanid=None):
|
---|
[1846] | 332 | """\
|
---|
[1093] | 333 | Return a new scantable where the specified scan number(s) has(have)
|
---|
| 334 | been dropped.
|
---|
[1846] | 335 |
|
---|
[1093] | 336 | Parameters:
|
---|
[1846] | 337 |
|
---|
[1093] | 338 | scanid: a (list of) scan number(s)
|
---|
[1846] | 339 |
|
---|
[1093] | 340 | """
|
---|
| 341 | from asap import _is_sequence_or_number as _is_valid
|
---|
| 342 | from asap import _to_list
|
---|
| 343 | from asap import unique
|
---|
| 344 | if not _is_valid(scanid):
|
---|
[2315] | 345 | raise RuntimeError( 'Please specify a scanno to drop from the'
|
---|
| 346 | ' scantable' )
|
---|
[1859] | 347 | scanid = _to_list(scanid)
|
---|
| 348 | allscans = unique([ self.getscan(i) for i in range(self.nrow())])
|
---|
| 349 | for sid in scanid: allscans.remove(sid)
|
---|
| 350 | if len(allscans) == 0:
|
---|
| 351 | raise ValueError("Can't remove all scans")
|
---|
| 352 | sel = selector(scans=allscans)
|
---|
| 353 | return self._select_copy(sel)
|
---|
[1093] | 354 |
|
---|
[1594] | 355 | def _select_copy(self, selection):
|
---|
| 356 | orig = self.get_selection()
|
---|
| 357 | self.set_selection(orig+selection)
|
---|
| 358 | cp = self.copy()
|
---|
| 359 | self.set_selection(orig)
|
---|
| 360 | return cp
|
---|
| 361 |
|
---|
[102] | 362 | def get_scan(self, scanid=None):
|
---|
[1855] | 363 | """\
|
---|
[102] | 364 | Return a specific scan (by scanno) or collection of scans (by
|
---|
| 365 | source name) in a new scantable.
|
---|
[1846] | 366 |
|
---|
| 367 | *Note*:
|
---|
| 368 |
|
---|
[1348] | 369 | See scantable.drop_scan() for the inverse operation.
|
---|
[1846] | 370 |
|
---|
[102] | 371 | Parameters:
|
---|
[1846] | 372 |
|
---|
[513] | 373 | scanid: a (list of) scanno or a source name, unix-style
|
---|
| 374 | patterns are accepted for source name matching, e.g.
|
---|
| 375 | '*_R' gets all 'ref scans
|
---|
[1846] | 376 |
|
---|
| 377 | Example::
|
---|
| 378 |
|
---|
[513] | 379 | # get all scans containing the source '323p459'
|
---|
| 380 | newscan = scan.get_scan('323p459')
|
---|
| 381 | # get all 'off' scans
|
---|
| 382 | refscans = scan.get_scan('*_R')
|
---|
| 383 | # get a susbset of scans by scanno (as listed in scan.summary())
|
---|
[1118] | 384 | newscan = scan.get_scan([0, 2, 7, 10])
|
---|
[1846] | 385 |
|
---|
[102] | 386 | """
|
---|
| 387 | if scanid is None:
|
---|
[1859] | 388 | raise RuntimeError( 'Please specify a scan no or name to '
|
---|
| 389 | 'retrieve from the scantable' )
|
---|
[102] | 390 | try:
|
---|
[946] | 391 | bsel = self.get_selection()
|
---|
| 392 | sel = selector()
|
---|
[102] | 393 | if type(scanid) is str:
|
---|
[946] | 394 | sel.set_name(scanid)
|
---|
[1594] | 395 | return self._select_copy(sel)
|
---|
[102] | 396 | elif type(scanid) is int:
|
---|
[946] | 397 | sel.set_scans([scanid])
|
---|
[1594] | 398 | return self._select_copy(sel)
|
---|
[381] | 399 | elif type(scanid) is list:
|
---|
[946] | 400 | sel.set_scans(scanid)
|
---|
[1594] | 401 | return self._select_copy(sel)
|
---|
[381] | 402 | else:
|
---|
[718] | 403 | msg = "Illegal scanid type, use 'int' or 'list' if ints."
|
---|
[1859] | 404 | raise TypeError(msg)
|
---|
[102] | 405 | except RuntimeError:
|
---|
[1859] | 406 | raise
|
---|
[102] | 407 |
|
---|
| 408 | def __str__(self):
|
---|
[2315] | 409 | tempFile = tempfile.NamedTemporaryFile()
|
---|
| 410 | Scantable._summary(self, tempFile.name)
|
---|
| 411 | tempFile.seek(0)
|
---|
| 412 | asaplog.clear()
|
---|
| 413 | return tempFile.file.read()
|
---|
[102] | 414 |
|
---|
[2315] | 415 | @asaplog_post_dec
|
---|
[976] | 416 | def summary(self, filename=None):
|
---|
[1846] | 417 | """\
|
---|
[102] | 418 | Print a summary of the contents of this scantable.
|
---|
[1846] | 419 |
|
---|
[102] | 420 | Parameters:
|
---|
[1846] | 421 |
|
---|
[1931] | 422 | filename: the name of a file to write the putput to
|
---|
[102] | 423 | Default - no file output
|
---|
[1846] | 424 |
|
---|
[102] | 425 | """
|
---|
| 426 | if filename is not None:
|
---|
[256] | 427 | if filename is "":
|
---|
| 428 | filename = 'scantable_summary.txt'
|
---|
[415] | 429 | from os.path import expandvars, isdir
|
---|
[411] | 430 | filename = expandvars(filename)
|
---|
[2286] | 431 | if isdir(filename):
|
---|
[718] | 432 | msg = "Illegal file name '%s'." % (filename)
|
---|
[1859] | 433 | raise IOError(msg)
|
---|
[2286] | 434 | else:
|
---|
| 435 | filename = ""
|
---|
| 436 | Scantable._summary(self, filename)
|
---|
[710] | 437 |
|
---|
[1512] | 438 | def get_spectrum(self, rowno):
|
---|
[1471] | 439 | """Return the spectrum for the current row in the scantable as a list.
|
---|
[1846] | 440 |
|
---|
[1471] | 441 | Parameters:
|
---|
[1846] | 442 |
|
---|
[1573] | 443 | rowno: the row number to retrieve the spectrum from
|
---|
[1846] | 444 |
|
---|
[1471] | 445 | """
|
---|
| 446 | return self._getspectrum(rowno)
|
---|
[946] | 447 |
|
---|
[1471] | 448 | def get_mask(self, rowno):
|
---|
| 449 | """Return the mask for the current row in the scantable as a list.
|
---|
[1846] | 450 |
|
---|
[1471] | 451 | Parameters:
|
---|
[1846] | 452 |
|
---|
[1573] | 453 | rowno: the row number to retrieve the mask from
|
---|
[1846] | 454 |
|
---|
[1471] | 455 | """
|
---|
| 456 | return self._getmask(rowno)
|
---|
| 457 |
|
---|
| 458 | def set_spectrum(self, spec, rowno):
|
---|
[1938] | 459 | """Set the spectrum for the current row in the scantable.
|
---|
[1846] | 460 |
|
---|
[1471] | 461 | Parameters:
|
---|
[1846] | 462 |
|
---|
[1855] | 463 | spec: the new spectrum
|
---|
[1846] | 464 |
|
---|
[1855] | 465 | rowno: the row number to set the spectrum for
|
---|
| 466 |
|
---|
[1471] | 467 | """
|
---|
[2348] | 468 | assert(len(spec) == self.nchan(self.getif(rowno)))
|
---|
[1471] | 469 | return self._setspectrum(spec, rowno)
|
---|
| 470 |
|
---|
[1600] | 471 | def get_coordinate(self, rowno):
|
---|
| 472 | """Return the (spectral) coordinate for a a given 'rowno'.
|
---|
[1846] | 473 |
|
---|
| 474 | *Note*:
|
---|
| 475 |
|
---|
[1600] | 476 | * This coordinate is only valid until a scantable method modifies
|
---|
| 477 | the frequency axis.
|
---|
| 478 | * This coordinate does contain the original frequency set-up
|
---|
| 479 | NOT the new frame. The conversions however are done using the user
|
---|
| 480 | specified frame (e.g. LSRK/TOPO). To get the 'real' coordinate,
|
---|
| 481 | use scantable.freq_align first. Without it there is no closure,
|
---|
[1846] | 482 | i.e.::
|
---|
[1600] | 483 |
|
---|
[1846] | 484 | c = myscan.get_coordinate(0)
|
---|
| 485 | c.to_frequency(c.get_reference_pixel()) != c.get_reference_value()
|
---|
| 486 |
|
---|
[1600] | 487 | Parameters:
|
---|
[1846] | 488 |
|
---|
[1600] | 489 | rowno: the row number for the spectral coordinate
|
---|
| 490 |
|
---|
| 491 | """
|
---|
| 492 | return coordinate(Scantable.get_coordinate(self, rowno))
|
---|
| 493 |
|
---|
[946] | 494 | def get_selection(self):
|
---|
[1846] | 495 | """\
|
---|
[1005] | 496 | Get the selection object currently set on this scantable.
|
---|
[1846] | 497 |
|
---|
| 498 | Example::
|
---|
| 499 |
|
---|
[1005] | 500 | sel = scan.get_selection()
|
---|
| 501 | sel.set_ifs(0) # select IF 0
|
---|
| 502 | scan.set_selection(sel) # apply modified selection
|
---|
[1846] | 503 |
|
---|
[946] | 504 | """
|
---|
| 505 | return selector(self._getselection())
|
---|
| 506 |
|
---|
[1576] | 507 | def set_selection(self, selection=None, **kw):
|
---|
[1846] | 508 | """\
|
---|
[1005] | 509 | Select a subset of the data. All following operations on this scantable
|
---|
| 510 | are only applied to thi selection.
|
---|
[1846] | 511 |
|
---|
[1005] | 512 | Parameters:
|
---|
[1697] | 513 |
|
---|
[1846] | 514 | selection: a selector object (default unset the selection), or
|
---|
[2431] | 515 | any combination of 'pols', 'ifs', 'beams', 'scans',
|
---|
| 516 | 'cycles', 'name', 'query'
|
---|
[1697] | 517 |
|
---|
[1846] | 518 | Examples::
|
---|
[1697] | 519 |
|
---|
[1005] | 520 | sel = selector() # create a selection object
|
---|
[1118] | 521 | self.set_scans([0, 3]) # select SCANNO 0 and 3
|
---|
[1005] | 522 | scan.set_selection(sel) # set the selection
|
---|
| 523 | scan.summary() # will only print summary of scanno 0 an 3
|
---|
| 524 | scan.set_selection() # unset the selection
|
---|
[1697] | 525 | # or the equivalent
|
---|
| 526 | scan.set_selection(scans=[0,3])
|
---|
| 527 | scan.summary() # will only print summary of scanno 0 an 3
|
---|
| 528 | scan.set_selection() # unset the selection
|
---|
[1846] | 529 |
|
---|
[946] | 530 | """
|
---|
[1576] | 531 | if selection is None:
|
---|
| 532 | # reset
|
---|
| 533 | if len(kw) == 0:
|
---|
| 534 | selection = selector()
|
---|
| 535 | else:
|
---|
| 536 | # try keywords
|
---|
| 537 | for k in kw:
|
---|
| 538 | if k not in selector.fields:
|
---|
[2320] | 539 | raise KeyError("Invalid selection key '%s', "
|
---|
| 540 | "valid keys are %s" % (k,
|
---|
| 541 | selector.fields))
|
---|
[1576] | 542 | selection = selector(**kw)
|
---|
[946] | 543 | self._setselection(selection)
|
---|
| 544 |
|
---|
[1819] | 545 | def get_row(self, row=0, insitu=None):
|
---|
[1846] | 546 | """\
|
---|
[1819] | 547 | Select a row in the scantable.
|
---|
| 548 | Return a scantable with single row.
|
---|
[1846] | 549 |
|
---|
[1819] | 550 | Parameters:
|
---|
[1846] | 551 |
|
---|
| 552 | row: row no of integration, default is 0.
|
---|
| 553 | insitu: if False a new scantable is returned. Otherwise, the
|
---|
| 554 | scaling is done in-situ. The default is taken from .asaprc
|
---|
| 555 | (False)
|
---|
| 556 |
|
---|
[1819] | 557 | """
|
---|
[2349] | 558 | if insitu is None:
|
---|
| 559 | insitu = rcParams['insitu']
|
---|
[1819] | 560 | if not insitu:
|
---|
| 561 | workscan = self.copy()
|
---|
| 562 | else:
|
---|
| 563 | workscan = self
|
---|
| 564 | # Select a row
|
---|
[2349] | 565 | sel = selector()
|
---|
[1992] | 566 | sel.set_rows([row])
|
---|
[1819] | 567 | workscan.set_selection(sel)
|
---|
| 568 | if not workscan.nrow() == 1:
|
---|
[2349] | 569 | msg = "Could not identify single row. %d rows selected." \
|
---|
| 570 | % (workscan.nrow())
|
---|
[1819] | 571 | raise RuntimeError(msg)
|
---|
| 572 | if insitu:
|
---|
| 573 | self._assign(workscan)
|
---|
| 574 | else:
|
---|
| 575 | return workscan
|
---|
| 576 |
|
---|
[1862] | 577 | @asaplog_post_dec
|
---|
[1907] | 578 | def stats(self, stat='stddev', mask=None, form='3.3f', row=None):
|
---|
[1846] | 579 | """\
|
---|
[135] | 580 | Determine the specified statistic of the current beam/if/pol
|
---|
[102] | 581 | Takes a 'mask' as an optional parameter to specify which
|
---|
| 582 | channels should be excluded.
|
---|
[1846] | 583 |
|
---|
[102] | 584 | Parameters:
|
---|
[1846] | 585 |
|
---|
[1819] | 586 | stat: 'min', 'max', 'min_abc', 'max_abc', 'sumsq', 'sum',
|
---|
| 587 | 'mean', 'var', 'stddev', 'avdev', 'rms', 'median'
|
---|
[1855] | 588 |
|
---|
[135] | 589 | mask: an optional mask specifying where the statistic
|
---|
[102] | 590 | should be determined.
|
---|
[1855] | 591 |
|
---|
[1819] | 592 | form: format string to print statistic values
|
---|
[1846] | 593 |
|
---|
[1907] | 594 | row: row number of spectrum to process.
|
---|
| 595 | (default is None: for all rows)
|
---|
[1846] | 596 |
|
---|
[1907] | 597 | Example:
|
---|
[113] | 598 | scan.set_unit('channel')
|
---|
[1118] | 599 | msk = scan.create_mask([100, 200], [500, 600])
|
---|
[135] | 600 | scan.stats(stat='mean', mask=m)
|
---|
[1846] | 601 |
|
---|
[102] | 602 | """
|
---|
[1593] | 603 | mask = mask or []
|
---|
[876] | 604 | if not self._check_ifs():
|
---|
[1118] | 605 | raise ValueError("Cannot apply mask as the IFs have different "
|
---|
| 606 | "number of channels. Please use setselection() "
|
---|
| 607 | "to select individual IFs")
|
---|
[1819] | 608 | rtnabc = False
|
---|
| 609 | if stat.lower().endswith('_abc'): rtnabc = True
|
---|
| 610 | getchan = False
|
---|
| 611 | if stat.lower().startswith('min') or stat.lower().startswith('max'):
|
---|
| 612 | chan = self._math._minmaxchan(self, mask, stat)
|
---|
| 613 | getchan = True
|
---|
| 614 | statvals = []
|
---|
[1907] | 615 | if not rtnabc:
|
---|
| 616 | if row == None:
|
---|
| 617 | statvals = self._math._stats(self, mask, stat)
|
---|
| 618 | else:
|
---|
| 619 | statvals = self._math._statsrow(self, mask, stat, int(row))
|
---|
[256] | 620 |
|
---|
[1819] | 621 | #def cb(i):
|
---|
| 622 | # return statvals[i]
|
---|
[256] | 623 |
|
---|
[1819] | 624 | #return self._row_callback(cb, stat)
|
---|
[102] | 625 |
|
---|
[1819] | 626 | label=stat
|
---|
| 627 | #callback=cb
|
---|
| 628 | out = ""
|
---|
| 629 | #outvec = []
|
---|
| 630 | sep = '-'*50
|
---|
[1907] | 631 |
|
---|
| 632 | if row == None:
|
---|
| 633 | rows = xrange(self.nrow())
|
---|
| 634 | elif isinstance(row, int):
|
---|
| 635 | rows = [ row ]
|
---|
| 636 |
|
---|
| 637 | for i in rows:
|
---|
[1819] | 638 | refstr = ''
|
---|
| 639 | statunit= ''
|
---|
| 640 | if getchan:
|
---|
| 641 | qx, qy = self.chan2data(rowno=i, chan=chan[i])
|
---|
| 642 | if rtnabc:
|
---|
| 643 | statvals.append(qx['value'])
|
---|
| 644 | refstr = ('(value: %'+form) % (qy['value'])+' ['+qy['unit']+'])'
|
---|
| 645 | statunit= '['+qx['unit']+']'
|
---|
| 646 | else:
|
---|
| 647 | refstr = ('(@ %'+form) % (qx['value'])+' ['+qx['unit']+'])'
|
---|
| 648 |
|
---|
| 649 | tm = self._gettime(i)
|
---|
| 650 | src = self._getsourcename(i)
|
---|
| 651 | out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
|
---|
| 652 | out += 'Time[%s]:\n' % (tm)
|
---|
[1907] | 653 | if self.nbeam(-1) > 1: out += ' Beam[%d] ' % (self.getbeam(i))
|
---|
| 654 | if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
|
---|
| 655 | if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
|
---|
[1819] | 656 | #outvec.append(callback(i))
|
---|
[1907] | 657 | if len(rows) > 1:
|
---|
| 658 | # out += ('= %'+form) % (outvec[i]) +' '+refstr+'\n'
|
---|
| 659 | out += ('= %'+form) % (statvals[i]) +' '+refstr+'\n'
|
---|
| 660 | else:
|
---|
| 661 | # out += ('= %'+form) % (outvec[0]) +' '+refstr+'\n'
|
---|
| 662 | out += ('= %'+form) % (statvals[0]) +' '+refstr+'\n'
|
---|
[1819] | 663 | out += sep+"\n"
|
---|
| 664 |
|
---|
[1859] | 665 | import os
|
---|
| 666 | if os.environ.has_key( 'USER' ):
|
---|
| 667 | usr = os.environ['USER']
|
---|
| 668 | else:
|
---|
| 669 | import commands
|
---|
| 670 | usr = commands.getoutput( 'whoami' )
|
---|
| 671 | tmpfile = '/tmp/tmp_'+usr+'_casapy_asap_scantable_stats'
|
---|
| 672 | f = open(tmpfile,'w')
|
---|
| 673 | print >> f, sep
|
---|
| 674 | print >> f, ' %s %s' % (label, statunit)
|
---|
| 675 | print >> f, sep
|
---|
| 676 | print >> f, out
|
---|
| 677 | f.close()
|
---|
| 678 | f = open(tmpfile,'r')
|
---|
| 679 | x = f.readlines()
|
---|
| 680 | f.close()
|
---|
| 681 | asaplog.push(''.join(x), False)
|
---|
| 682 |
|
---|
[1819] | 683 | return statvals
|
---|
| 684 |
|
---|
| 685 | def chan2data(self, rowno=0, chan=0):
|
---|
[1846] | 686 | """\
|
---|
[1819] | 687 | Returns channel/frequency/velocity and spectral value
|
---|
| 688 | at an arbitrary row and channel in the scantable.
|
---|
[1846] | 689 |
|
---|
[1819] | 690 | Parameters:
|
---|
[1846] | 691 |
|
---|
[1819] | 692 | rowno: a row number in the scantable. Default is the
|
---|
| 693 | first row, i.e. rowno=0
|
---|
[1855] | 694 |
|
---|
[1819] | 695 | chan: a channel in the scantable. Default is the first
|
---|
| 696 | channel, i.e. pos=0
|
---|
[1846] | 697 |
|
---|
[1819] | 698 | """
|
---|
| 699 | if isinstance(rowno, int) and isinstance(chan, int):
|
---|
| 700 | qx = {'unit': self.get_unit(),
|
---|
| 701 | 'value': self._getabcissa(rowno)[chan]}
|
---|
| 702 | qy = {'unit': self.get_fluxunit(),
|
---|
| 703 | 'value': self._getspectrum(rowno)[chan]}
|
---|
| 704 | return qx, qy
|
---|
| 705 |
|
---|
[1118] | 706 | def stddev(self, mask=None):
|
---|
[1846] | 707 | """\
|
---|
[135] | 708 | Determine the standard deviation of the current beam/if/pol
|
---|
| 709 | Takes a 'mask' as an optional parameter to specify which
|
---|
| 710 | channels should be excluded.
|
---|
[1846] | 711 |
|
---|
[135] | 712 | Parameters:
|
---|
[1846] | 713 |
|
---|
[135] | 714 | mask: an optional mask specifying where the standard
|
---|
| 715 | deviation should be determined.
|
---|
| 716 |
|
---|
[1846] | 717 | Example::
|
---|
| 718 |
|
---|
[135] | 719 | scan.set_unit('channel')
|
---|
[1118] | 720 | msk = scan.create_mask([100, 200], [500, 600])
|
---|
[135] | 721 | scan.stddev(mask=m)
|
---|
[1846] | 722 |
|
---|
[135] | 723 | """
|
---|
[1118] | 724 | return self.stats(stat='stddev', mask=mask);
|
---|
[135] | 725 |
|
---|
[1003] | 726 |
|
---|
[1259] | 727 | def get_column_names(self):
|
---|
[1846] | 728 | """\
|
---|
[1003] | 729 | Return a list of column names, which can be used for selection.
|
---|
| 730 | """
|
---|
[1259] | 731 | return list(Scantable.get_column_names(self))
|
---|
[1003] | 732 |
|
---|
[1730] | 733 | def get_tsys(self, row=-1):
|
---|
[1846] | 734 | """\
|
---|
[113] | 735 | Return the System temperatures.
|
---|
[1846] | 736 |
|
---|
| 737 | Parameters:
|
---|
| 738 |
|
---|
| 739 | row: the rowno to get the information for. (default all rows)
|
---|
| 740 |
|
---|
[113] | 741 | Returns:
|
---|
[1846] | 742 |
|
---|
[876] | 743 | a list of Tsys values for the current selection
|
---|
[1846] | 744 |
|
---|
[113] | 745 | """
|
---|
[1730] | 746 | if row > -1:
|
---|
| 747 | return self._get_column(self._gettsys, row)
|
---|
[876] | 748 | return self._row_callback(self._gettsys, "Tsys")
|
---|
[256] | 749 |
|
---|
[2406] | 750 | def get_tsysspectrum(self, row=-1):
|
---|
| 751 | """\
|
---|
| 752 | Return the channel dependent system temperatures.
|
---|
[1730] | 753 |
|
---|
[2406] | 754 | Parameters:
|
---|
| 755 |
|
---|
| 756 | row: the rowno to get the information for. (default all rows)
|
---|
| 757 |
|
---|
| 758 | Returns:
|
---|
| 759 |
|
---|
| 760 | a list of Tsys values for the current selection
|
---|
| 761 |
|
---|
| 762 | """
|
---|
| 763 | return self._get_column( self._gettsysspectrum, row )
|
---|
| 764 |
|
---|
[1730] | 765 | def get_weather(self, row=-1):
|
---|
[1846] | 766 | """\
|
---|
| 767 | Return the weather informations.
|
---|
| 768 |
|
---|
| 769 | Parameters:
|
---|
| 770 |
|
---|
| 771 | row: the rowno to get the information for. (default all rows)
|
---|
| 772 |
|
---|
| 773 | Returns:
|
---|
| 774 |
|
---|
| 775 | a dict or list of of dicts of values for the current selection
|
---|
| 776 |
|
---|
| 777 | """
|
---|
| 778 |
|
---|
[1730] | 779 | values = self._get_column(self._get_weather, row)
|
---|
| 780 | if row > -1:
|
---|
| 781 | return {'temperature': values[0],
|
---|
| 782 | 'pressure': values[1], 'humidity' : values[2],
|
---|
| 783 | 'windspeed' : values[3], 'windaz' : values[4]
|
---|
| 784 | }
|
---|
| 785 | else:
|
---|
| 786 | out = []
|
---|
| 787 | for r in values:
|
---|
| 788 |
|
---|
| 789 | out.append({'temperature': r[0],
|
---|
| 790 | 'pressure': r[1], 'humidity' : r[2],
|
---|
| 791 | 'windspeed' : r[3], 'windaz' : r[4]
|
---|
| 792 | })
|
---|
| 793 | return out
|
---|
| 794 |
|
---|
[876] | 795 | def _row_callback(self, callback, label):
|
---|
| 796 | out = ""
|
---|
[1118] | 797 | outvec = []
|
---|
[1590] | 798 | sep = '-'*50
|
---|
[876] | 799 | for i in range(self.nrow()):
|
---|
| 800 | tm = self._gettime(i)
|
---|
| 801 | src = self._getsourcename(i)
|
---|
[1590] | 802 | out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
|
---|
[876] | 803 | out += 'Time[%s]:\n' % (tm)
|
---|
[1590] | 804 | if self.nbeam(-1) > 1:
|
---|
| 805 | out += ' Beam[%d] ' % (self.getbeam(i))
|
---|
| 806 | if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
|
---|
| 807 | if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
|
---|
[876] | 808 | outvec.append(callback(i))
|
---|
| 809 | out += '= %3.3f\n' % (outvec[i])
|
---|
[1590] | 810 | out += sep+'\n'
|
---|
[1859] | 811 |
|
---|
| 812 | asaplog.push(sep)
|
---|
| 813 | asaplog.push(" %s" % (label))
|
---|
| 814 | asaplog.push(sep)
|
---|
| 815 | asaplog.push(out)
|
---|
[1861] | 816 | asaplog.post()
|
---|
[1175] | 817 | return outvec
|
---|
[256] | 818 |
|
---|
[1947] | 819 | def _get_column(self, callback, row=-1, *args):
|
---|
[1070] | 820 | """
|
---|
| 821 | """
|
---|
| 822 | if row == -1:
|
---|
[1947] | 823 | return [callback(i, *args) for i in range(self.nrow())]
|
---|
[1070] | 824 | else:
|
---|
[1819] | 825 | if 0 <= row < self.nrow():
|
---|
[1947] | 826 | return callback(row, *args)
|
---|
[256] | 827 |
|
---|
[1070] | 828 |
|
---|
[1948] | 829 | def get_time(self, row=-1, asdatetime=False, prec=-1):
|
---|
[1846] | 830 | """\
|
---|
[113] | 831 | Get a list of time stamps for the observations.
|
---|
[1938] | 832 | Return a datetime object or a string (default) for each
|
---|
| 833 | integration time stamp in the scantable.
|
---|
[1846] | 834 |
|
---|
[113] | 835 | Parameters:
|
---|
[1846] | 836 |
|
---|
[1348] | 837 | row: row no of integration. Default -1 return all rows
|
---|
[1855] | 838 |
|
---|
[1348] | 839 | asdatetime: return values as datetime objects rather than strings
|
---|
[1846] | 840 |
|
---|
[2349] | 841 | prec: number of digits shown. Default -1 to automatic
|
---|
| 842 | calculation.
|
---|
[1948] | 843 | Note this number is equals to the digits of MVTime,
|
---|
| 844 | i.e., 0<prec<3: dates with hh:: only,
|
---|
| 845 | <5: with hh:mm:, <7 or 0: with hh:mm:ss,
|
---|
[1947] | 846 | and 6> : with hh:mm:ss.tt... (prec-6 t's added)
|
---|
| 847 |
|
---|
[113] | 848 | """
|
---|
[1175] | 849 | from datetime import datetime
|
---|
[1948] | 850 | if prec < 0:
|
---|
| 851 | # automagically set necessary precision +1
|
---|
[2349] | 852 | prec = 7 - \
|
---|
| 853 | numpy.floor(numpy.log10(numpy.min(self.get_inttime(row))))
|
---|
[1948] | 854 | prec = max(6, int(prec))
|
---|
| 855 | else:
|
---|
| 856 | prec = max(0, prec)
|
---|
| 857 | if asdatetime:
|
---|
| 858 | #precision can be 1 millisecond at max
|
---|
| 859 | prec = min(12, prec)
|
---|
| 860 |
|
---|
[1947] | 861 | times = self._get_column(self._gettime, row, prec)
|
---|
[1348] | 862 | if not asdatetime:
|
---|
[1392] | 863 | return times
|
---|
[1947] | 864 | format = "%Y/%m/%d/%H:%M:%S.%f"
|
---|
| 865 | if prec < 7:
|
---|
| 866 | nsub = 1 + (((6-prec)/2) % 3)
|
---|
| 867 | substr = [".%f","%S","%M"]
|
---|
| 868 | for i in range(nsub):
|
---|
| 869 | format = format.replace(substr[i],"")
|
---|
[1175] | 870 | if isinstance(times, list):
|
---|
[1947] | 871 | return [datetime.strptime(i, format) for i in times]
|
---|
[1175] | 872 | else:
|
---|
[1947] | 873 | return datetime.strptime(times, format)
|
---|
[102] | 874 |
|
---|
[1348] | 875 |
|
---|
| 876 | def get_inttime(self, row=-1):
|
---|
[1846] | 877 | """\
|
---|
[1348] | 878 | Get a list of integration times for the observations.
|
---|
| 879 | Return a time in seconds for each integration in the scantable.
|
---|
[1846] | 880 |
|
---|
[1348] | 881 | Parameters:
|
---|
[1846] | 882 |
|
---|
[1348] | 883 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 884 |
|
---|
[1348] | 885 | """
|
---|
[1573] | 886 | return self._get_column(self._getinttime, row)
|
---|
[1348] | 887 |
|
---|
[1573] | 888 |
|
---|
[714] | 889 | def get_sourcename(self, row=-1):
|
---|
[1846] | 890 | """\
|
---|
[794] | 891 | Get a list source names for the observations.
|
---|
[714] | 892 | Return a string for each integration in the scantable.
|
---|
| 893 | Parameters:
|
---|
[1846] | 894 |
|
---|
[1348] | 895 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 896 |
|
---|
[714] | 897 | """
|
---|
[1070] | 898 | return self._get_column(self._getsourcename, row)
|
---|
[714] | 899 |
|
---|
[794] | 900 | def get_elevation(self, row=-1):
|
---|
[1846] | 901 | """\
|
---|
[794] | 902 | Get a list of elevations for the observations.
|
---|
| 903 | Return a float for each integration in the scantable.
|
---|
[1846] | 904 |
|
---|
[794] | 905 | Parameters:
|
---|
[1846] | 906 |
|
---|
[1348] | 907 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 908 |
|
---|
[794] | 909 | """
|
---|
[1070] | 910 | return self._get_column(self._getelevation, row)
|
---|
[794] | 911 |
|
---|
| 912 | def get_azimuth(self, row=-1):
|
---|
[1846] | 913 | """\
|
---|
[794] | 914 | Get a list of azimuths for the observations.
|
---|
| 915 | Return a float for each integration in the scantable.
|
---|
[1846] | 916 |
|
---|
[794] | 917 | Parameters:
|
---|
[1348] | 918 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 919 |
|
---|
[794] | 920 | """
|
---|
[1070] | 921 | return self._get_column(self._getazimuth, row)
|
---|
[794] | 922 |
|
---|
| 923 | def get_parangle(self, row=-1):
|
---|
[1846] | 924 | """\
|
---|
[794] | 925 | Get a list of parallactic angles for the observations.
|
---|
| 926 | Return a float for each integration in the scantable.
|
---|
[1846] | 927 |
|
---|
[794] | 928 | Parameters:
|
---|
[1846] | 929 |
|
---|
[1348] | 930 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 931 |
|
---|
[794] | 932 | """
|
---|
[1070] | 933 | return self._get_column(self._getparangle, row)
|
---|
[794] | 934 |
|
---|
[1070] | 935 | def get_direction(self, row=-1):
|
---|
| 936 | """
|
---|
| 937 | Get a list of Positions on the sky (direction) for the observations.
|
---|
[1594] | 938 | Return a string for each integration in the scantable.
|
---|
[1855] | 939 |
|
---|
[1070] | 940 | Parameters:
|
---|
[1855] | 941 |
|
---|
[1070] | 942 | row: row no of integration. Default -1 return all rows
|
---|
[1855] | 943 |
|
---|
[1070] | 944 | """
|
---|
| 945 | return self._get_column(self._getdirection, row)
|
---|
| 946 |
|
---|
[1391] | 947 | def get_directionval(self, row=-1):
|
---|
[1846] | 948 | """\
|
---|
[1391] | 949 | Get a list of Positions on the sky (direction) for the observations.
|
---|
| 950 | Return a float for each integration in the scantable.
|
---|
[1846] | 951 |
|
---|
[1391] | 952 | Parameters:
|
---|
[1846] | 953 |
|
---|
[1391] | 954 | row: row no of integration. Default -1 return all rows
|
---|
[1846] | 955 |
|
---|
[1391] | 956 | """
|
---|
| 957 | return self._get_column(self._getdirectionvec, row)
|
---|
| 958 |
|
---|
[1862] | 959 | @asaplog_post_dec
|
---|
[102] | 960 | def set_unit(self, unit='channel'):
|
---|
[1846] | 961 | """\
|
---|
[102] | 962 | Set the unit for all following operations on this scantable
|
---|
[1846] | 963 |
|
---|
[102] | 964 | Parameters:
|
---|
[1846] | 965 |
|
---|
| 966 | unit: optional unit, default is 'channel'. Use one of '*Hz',
|
---|
| 967 | 'km/s', 'channel' or equivalent ''
|
---|
| 968 |
|
---|
[102] | 969 | """
|
---|
[484] | 970 | varlist = vars()
|
---|
[1118] | 971 | if unit in ['', 'pixel', 'channel']:
|
---|
[113] | 972 | unit = ''
|
---|
| 973 | inf = list(self._getcoordinfo())
|
---|
| 974 | inf[0] = unit
|
---|
| 975 | self._setcoordinfo(inf)
|
---|
[1118] | 976 | self._add_history("set_unit", varlist)
|
---|
[113] | 977 |
|
---|
[1862] | 978 | @asaplog_post_dec
|
---|
[484] | 979 | def set_instrument(self, instr):
|
---|
[1846] | 980 | """\
|
---|
[1348] | 981 | Set the instrument for subsequent processing.
|
---|
[1846] | 982 |
|
---|
[358] | 983 | Parameters:
|
---|
[1846] | 984 |
|
---|
[710] | 985 | instr: Select from 'ATPKSMB', 'ATPKSHOH', 'ATMOPRA',
|
---|
[407] | 986 | 'DSS-43' (Tid), 'CEDUNA', and 'HOBART'
|
---|
[1846] | 987 |
|
---|
[358] | 988 | """
|
---|
| 989 | self._setInstrument(instr)
|
---|
[1118] | 990 | self._add_history("set_instument", vars())
|
---|
[358] | 991 |
|
---|
[1862] | 992 | @asaplog_post_dec
|
---|
[1190] | 993 | def set_feedtype(self, feedtype):
|
---|
[1846] | 994 | """\
|
---|
[1190] | 995 | Overwrite the feed type, which might not be set correctly.
|
---|
[1846] | 996 |
|
---|
[1190] | 997 | Parameters:
|
---|
[1846] | 998 |
|
---|
[1190] | 999 | feedtype: 'linear' or 'circular'
|
---|
[1846] | 1000 |
|
---|
[1190] | 1001 | """
|
---|
| 1002 | self._setfeedtype(feedtype)
|
---|
| 1003 | self._add_history("set_feedtype", vars())
|
---|
| 1004 |
|
---|
[1862] | 1005 | @asaplog_post_dec
|
---|
[276] | 1006 | def set_doppler(self, doppler='RADIO'):
|
---|
[1846] | 1007 | """\
|
---|
[276] | 1008 | Set the doppler for all following operations on this scantable.
|
---|
[1846] | 1009 |
|
---|
[276] | 1010 | Parameters:
|
---|
[1846] | 1011 |
|
---|
[276] | 1012 | doppler: One of 'RADIO', 'OPTICAL', 'Z', 'BETA', 'GAMMA'
|
---|
[1846] | 1013 |
|
---|
[276] | 1014 | """
|
---|
[484] | 1015 | varlist = vars()
|
---|
[276] | 1016 | inf = list(self._getcoordinfo())
|
---|
| 1017 | inf[2] = doppler
|
---|
| 1018 | self._setcoordinfo(inf)
|
---|
[1118] | 1019 | self._add_history("set_doppler", vars())
|
---|
[710] | 1020 |
|
---|
[1862] | 1021 | @asaplog_post_dec
|
---|
[226] | 1022 | def set_freqframe(self, frame=None):
|
---|
[1846] | 1023 | """\
|
---|
[113] | 1024 | Set the frame type of the Spectral Axis.
|
---|
[1846] | 1025 |
|
---|
[113] | 1026 | Parameters:
|
---|
[1846] | 1027 |
|
---|
[591] | 1028 | frame: an optional frame type, default 'LSRK'. Valid frames are:
|
---|
[1819] | 1029 | 'TOPO', 'LSRD', 'LSRK', 'BARY',
|
---|
[1118] | 1030 | 'GEO', 'GALACTO', 'LGROUP', 'CMB'
|
---|
[1846] | 1031 |
|
---|
| 1032 | Example::
|
---|
| 1033 |
|
---|
[113] | 1034 | scan.set_freqframe('BARY')
|
---|
[1846] | 1035 |
|
---|
[113] | 1036 | """
|
---|
[1593] | 1037 | frame = frame or rcParams['scantable.freqframe']
|
---|
[484] | 1038 | varlist = vars()
|
---|
[1819] | 1039 | # "REST" is not implemented in casacore
|
---|
| 1040 | #valid = ['REST', 'TOPO', 'LSRD', 'LSRK', 'BARY', \
|
---|
| 1041 | # 'GEO', 'GALACTO', 'LGROUP', 'CMB']
|
---|
| 1042 | valid = ['TOPO', 'LSRD', 'LSRK', 'BARY', \
|
---|
[1118] | 1043 | 'GEO', 'GALACTO', 'LGROUP', 'CMB']
|
---|
[591] | 1044 |
|
---|
[989] | 1045 | if frame in valid:
|
---|
[113] | 1046 | inf = list(self._getcoordinfo())
|
---|
| 1047 | inf[1] = frame
|
---|
| 1048 | self._setcoordinfo(inf)
|
---|
[1118] | 1049 | self._add_history("set_freqframe", varlist)
|
---|
[102] | 1050 | else:
|
---|
[1118] | 1051 | msg = "Please specify a valid freq type. Valid types are:\n", valid
|
---|
[1859] | 1052 | raise TypeError(msg)
|
---|
[710] | 1053 |
|
---|
[1862] | 1054 | @asaplog_post_dec
|
---|
[989] | 1055 | def set_dirframe(self, frame=""):
|
---|
[1846] | 1056 | """\
|
---|
[989] | 1057 | Set the frame type of the Direction on the sky.
|
---|
[1846] | 1058 |
|
---|
[989] | 1059 | Parameters:
|
---|
[1846] | 1060 |
|
---|
[989] | 1061 | frame: an optional frame type, default ''. Valid frames are:
|
---|
| 1062 | 'J2000', 'B1950', 'GALACTIC'
|
---|
[1846] | 1063 |
|
---|
| 1064 | Example:
|
---|
| 1065 |
|
---|
[989] | 1066 | scan.set_dirframe('GALACTIC')
|
---|
[1846] | 1067 |
|
---|
[989] | 1068 | """
|
---|
| 1069 | varlist = vars()
|
---|
[1859] | 1070 | Scantable.set_dirframe(self, frame)
|
---|
[1118] | 1071 | self._add_history("set_dirframe", varlist)
|
---|
[989] | 1072 |
|
---|
[113] | 1073 | def get_unit(self):
|
---|
[1846] | 1074 | """\
|
---|
[113] | 1075 | Get the default unit set in this scantable
|
---|
[1846] | 1076 |
|
---|
[113] | 1077 | Returns:
|
---|
[1846] | 1078 |
|
---|
[113] | 1079 | A unit string
|
---|
[1846] | 1080 |
|
---|
[113] | 1081 | """
|
---|
| 1082 | inf = self._getcoordinfo()
|
---|
| 1083 | unit = inf[0]
|
---|
| 1084 | if unit == '': unit = 'channel'
|
---|
| 1085 | return unit
|
---|
[102] | 1086 |
|
---|
[1862] | 1087 | @asaplog_post_dec
|
---|
[158] | 1088 | def get_abcissa(self, rowno=0):
|
---|
[1846] | 1089 | """\
|
---|
[158] | 1090 | Get the abcissa in the current coordinate setup for the currently
|
---|
[113] | 1091 | selected Beam/IF/Pol
|
---|
[1846] | 1092 |
|
---|
[113] | 1093 | Parameters:
|
---|
[1846] | 1094 |
|
---|
[226] | 1095 | rowno: an optional row number in the scantable. Default is the
|
---|
| 1096 | first row, i.e. rowno=0
|
---|
[1846] | 1097 |
|
---|
[113] | 1098 | Returns:
|
---|
[1846] | 1099 |
|
---|
[1348] | 1100 | The abcissa values and the format string (as a dictionary)
|
---|
[1846] | 1101 |
|
---|
[113] | 1102 | """
|
---|
[256] | 1103 | abc = self._getabcissa(rowno)
|
---|
[710] | 1104 | lbl = self._getabcissalabel(rowno)
|
---|
[158] | 1105 | return abc, lbl
|
---|
[113] | 1106 |
|
---|
[1862] | 1107 | @asaplog_post_dec
|
---|
[2322] | 1108 | def flag(self, mask=None, unflag=False, row=-1):
|
---|
[1846] | 1109 | """\
|
---|
[1001] | 1110 | Flag the selected data using an optional channel mask.
|
---|
[1846] | 1111 |
|
---|
[1001] | 1112 | Parameters:
|
---|
[1846] | 1113 |
|
---|
[1001] | 1114 | mask: an optional channel mask, created with create_mask. Default
|
---|
| 1115 | (no mask) is all channels.
|
---|
[1855] | 1116 |
|
---|
[1819] | 1117 | unflag: if True, unflag the data
|
---|
[1846] | 1118 |
|
---|
[2322] | 1119 | row: an optional row number in the scantable.
|
---|
| 1120 | Default -1 flags all rows
|
---|
| 1121 |
|
---|
[1001] | 1122 | """
|
---|
| 1123 | varlist = vars()
|
---|
[1593] | 1124 | mask = mask or []
|
---|
[1994] | 1125 | self._flag(row, mask, unflag)
|
---|
[1001] | 1126 | self._add_history("flag", varlist)
|
---|
| 1127 |
|
---|
[1862] | 1128 | @asaplog_post_dec
|
---|
[2322] | 1129 | def flag_row(self, rows=None, unflag=False):
|
---|
[1846] | 1130 | """\
|
---|
[1819] | 1131 | Flag the selected data in row-based manner.
|
---|
[1846] | 1132 |
|
---|
[1819] | 1133 | Parameters:
|
---|
[1846] | 1134 |
|
---|
[1843] | 1135 | rows: list of row numbers to be flagged. Default is no row
|
---|
[2322] | 1136 | (must be explicitly specified to execute row-based
|
---|
| 1137 | flagging).
|
---|
[1855] | 1138 |
|
---|
[1819] | 1139 | unflag: if True, unflag the data.
|
---|
[1846] | 1140 |
|
---|
[1819] | 1141 | """
|
---|
| 1142 | varlist = vars()
|
---|
[2322] | 1143 | if rows is None:
|
---|
| 1144 | rows = []
|
---|
[1859] | 1145 | self._flag_row(rows, unflag)
|
---|
[1819] | 1146 | self._add_history("flag_row", varlist)
|
---|
| 1147 |
|
---|
[1862] | 1148 | @asaplog_post_dec
|
---|
[1819] | 1149 | def clip(self, uthres=None, dthres=None, clipoutside=True, unflag=False):
|
---|
[1846] | 1150 | """\
|
---|
[1819] | 1151 | Flag the selected data outside a specified range (in channel-base)
|
---|
[1846] | 1152 |
|
---|
[1819] | 1153 | Parameters:
|
---|
[1846] | 1154 |
|
---|
[1819] | 1155 | uthres: upper threshold.
|
---|
[1855] | 1156 |
|
---|
[1819] | 1157 | dthres: lower threshold
|
---|
[1846] | 1158 |
|
---|
[2322] | 1159 | clipoutside: True for flagging data outside the range
|
---|
| 1160 | [dthres:uthres].
|
---|
[1928] | 1161 | False for flagging data inside the range.
|
---|
[1855] | 1162 |
|
---|
[1846] | 1163 | unflag: if True, unflag the data.
|
---|
| 1164 |
|
---|
[1819] | 1165 | """
|
---|
| 1166 | varlist = vars()
|
---|
[1859] | 1167 | self._clip(uthres, dthres, clipoutside, unflag)
|
---|
[1819] | 1168 | self._add_history("clip", varlist)
|
---|
| 1169 |
|
---|
[1862] | 1170 | @asaplog_post_dec
|
---|
[1584] | 1171 | def lag_flag(self, start, end, unit="MHz", insitu=None):
|
---|
[1846] | 1172 | """\
|
---|
[1192] | 1173 | Flag the data in 'lag' space by providing a frequency to remove.
|
---|
[2177] | 1174 | Flagged data in the scantable get interpolated over the region.
|
---|
[1192] | 1175 | No taper is applied.
|
---|
[1846] | 1176 |
|
---|
[1192] | 1177 | Parameters:
|
---|
[1846] | 1178 |
|
---|
[1579] | 1179 | start: the start frequency (really a period within the
|
---|
| 1180 | bandwidth) or period to remove
|
---|
[1855] | 1181 |
|
---|
[1579] | 1182 | end: the end frequency or period to remove
|
---|
[1855] | 1183 |
|
---|
[2431] | 1184 | unit: the frequency unit (default 'MHz') or '' for
|
---|
[1579] | 1185 | explicit lag channels
|
---|
[1846] | 1186 |
|
---|
| 1187 | *Notes*:
|
---|
| 1188 |
|
---|
[1579] | 1189 | It is recommended to flag edges of the band or strong
|
---|
[1348] | 1190 | signals beforehand.
|
---|
[1846] | 1191 |
|
---|
[1192] | 1192 | """
|
---|
| 1193 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 1194 | self._math._setinsitu(insitu)
|
---|
| 1195 | varlist = vars()
|
---|
[1579] | 1196 | base = { "GHz": 1000000000., "MHz": 1000000., "kHz": 1000., "Hz": 1.}
|
---|
| 1197 | if not (unit == "" or base.has_key(unit)):
|
---|
[1192] | 1198 | raise ValueError("%s is not a valid unit." % unit)
|
---|
[1859] | 1199 | if unit == "":
|
---|
| 1200 | s = scantable(self._math._lag_flag(self, start, end, "lags"))
|
---|
| 1201 | else:
|
---|
| 1202 | s = scantable(self._math._lag_flag(self, start*base[unit],
|
---|
| 1203 | end*base[unit], "frequency"))
|
---|
[1192] | 1204 | s._add_history("lag_flag", varlist)
|
---|
| 1205 | if insitu:
|
---|
| 1206 | self._assign(s)
|
---|
| 1207 | else:
|
---|
| 1208 | return s
|
---|
[1001] | 1209 |
|
---|
[1862] | 1210 | @asaplog_post_dec
|
---|
[2349] | 1211 | def fft(self, rowno=None, mask=None, getrealimag=False):
|
---|
[2177] | 1212 | """\
|
---|
| 1213 | Apply FFT to the spectra.
|
---|
| 1214 | Flagged data in the scantable get interpolated over the region.
|
---|
| 1215 |
|
---|
| 1216 | Parameters:
|
---|
[2186] | 1217 |
|
---|
| 1218 | rowno: The row number(s) to be processed. int, list
|
---|
[2349] | 1219 | and tuple are accepted. By default (None), FFT
|
---|
[2186] | 1220 | is applied to the whole data.
|
---|
| 1221 |
|
---|
| 1222 | mask: Auxiliary channel mask(s). Given as a boolean
|
---|
| 1223 | list, it is applied to all specified rows.
|
---|
| 1224 | A list of boolean lists can also be used to
|
---|
| 1225 | apply different masks. In the latter case, the
|
---|
| 1226 | length of 'mask' must be the same as that of
|
---|
[2349] | 1227 | 'rowno'. The default is None.
|
---|
[2177] | 1228 |
|
---|
| 1229 | getrealimag: If True, returns the real and imaginary part
|
---|
| 1230 | values of the complex results.
|
---|
| 1231 | If False (the default), returns the amplitude
|
---|
| 1232 | (absolute value) normalised with Ndata/2 and
|
---|
| 1233 | phase (argument, in unit of radian).
|
---|
| 1234 |
|
---|
| 1235 | Returns:
|
---|
| 1236 |
|
---|
[2186] | 1237 | A list of dictionaries containing the results for each spectrum.
|
---|
| 1238 | Each dictionary contains two values, the real and the imaginary
|
---|
| 1239 | parts when getrealimag = True, or the amplitude(absolute value)
|
---|
| 1240 | and the phase(argument) when getrealimag = False. The key for
|
---|
| 1241 | these values are 'real' and 'imag', or 'ampl' and 'phase',
|
---|
[2177] | 1242 | respectively.
|
---|
| 1243 | """
|
---|
[2349] | 1244 | if rowno is None:
|
---|
| 1245 | rowno = []
|
---|
[2177] | 1246 | if isinstance(rowno, int):
|
---|
| 1247 | rowno = [rowno]
|
---|
| 1248 | elif not (isinstance(rowno, list) or isinstance(rowno, tuple)):
|
---|
[2186] | 1249 | raise TypeError("The row number(s) must be int, list or tuple.")
|
---|
| 1250 | if len(rowno) == 0: rowno = [i for i in xrange(self.nrow())]
|
---|
| 1251 |
|
---|
[2411] | 1252 | usecommonmask = True
|
---|
| 1253 |
|
---|
| 1254 | if mask is None:
|
---|
| 1255 | mask = []
|
---|
| 1256 | if isinstance(mask, list) or isinstance(mask, tuple):
|
---|
| 1257 | if len(mask) == 0:
|
---|
| 1258 | mask = [[]]
|
---|
| 1259 | else:
|
---|
| 1260 | if isinstance(mask[0], bool):
|
---|
| 1261 | if len(mask) != self.nchan(self.getif(rowno[0])):
|
---|
| 1262 | raise ValueError("The spectra and the mask have "
|
---|
| 1263 | "different length.")
|
---|
| 1264 | mask = [mask]
|
---|
| 1265 | elif isinstance(mask[0], list) or isinstance(mask[0], tuple):
|
---|
| 1266 | usecommonmask = False
|
---|
| 1267 | if len(mask) != len(rowno):
|
---|
| 1268 | raise ValueError("When specifying masks for each "
|
---|
| 1269 | "spectrum, the numbers of them "
|
---|
| 1270 | "must be identical.")
|
---|
| 1271 | for i in xrange(mask):
|
---|
| 1272 | if len(mask[i]) != self.nchan(self.getif(rowno[i])):
|
---|
| 1273 | raise ValueError("The spectra and the mask have "
|
---|
| 1274 | "different length.")
|
---|
| 1275 | else:
|
---|
| 1276 | raise TypeError("The mask must be a boolean list or "
|
---|
| 1277 | "a list of boolean list.")
|
---|
| 1278 | else:
|
---|
[2349] | 1279 | raise TypeError("The mask must be a boolean list or a list of "
|
---|
| 1280 | "boolean list.")
|
---|
[2186] | 1281 |
|
---|
| 1282 | res = []
|
---|
| 1283 |
|
---|
| 1284 | imask = 0
|
---|
| 1285 | for whichrow in rowno:
|
---|
| 1286 | fspec = self._fft(whichrow, mask[imask], getrealimag)
|
---|
| 1287 | nspec = len(fspec)
|
---|
[2177] | 1288 |
|
---|
[2349] | 1289 | i = 0
|
---|
| 1290 | v1 = []
|
---|
| 1291 | v2 = []
|
---|
| 1292 | reselem = {"real":[],"imag":[]} if getrealimag \
|
---|
| 1293 | else {"ampl":[],"phase":[]}
|
---|
[2177] | 1294 |
|
---|
[2186] | 1295 | while (i < nspec):
|
---|
| 1296 | v1.append(fspec[i])
|
---|
| 1297 | v2.append(fspec[i+1])
|
---|
[2349] | 1298 | i += 2
|
---|
[2186] | 1299 |
|
---|
[2177] | 1300 | if getrealimag:
|
---|
[2186] | 1301 | reselem["real"] += v1
|
---|
| 1302 | reselem["imag"] += v2
|
---|
[2177] | 1303 | else:
|
---|
[2186] | 1304 | reselem["ampl"] += v1
|
---|
| 1305 | reselem["phase"] += v2
|
---|
[2177] | 1306 |
|
---|
[2186] | 1307 | res.append(reselem)
|
---|
| 1308 |
|
---|
[2349] | 1309 | if not usecommonmask:
|
---|
| 1310 | imask += 1
|
---|
[2186] | 1311 |
|
---|
[2177] | 1312 | return res
|
---|
| 1313 |
|
---|
| 1314 | @asaplog_post_dec
|
---|
[113] | 1315 | def create_mask(self, *args, **kwargs):
|
---|
[1846] | 1316 | """\
|
---|
[1118] | 1317 | Compute and return a mask based on [min, max] windows.
|
---|
[189] | 1318 | The specified windows are to be INCLUDED, when the mask is
|
---|
[113] | 1319 | applied.
|
---|
[1846] | 1320 |
|
---|
[102] | 1321 | Parameters:
|
---|
[1846] | 1322 |
|
---|
[1118] | 1323 | [min, max], [min2, max2], ...
|
---|
[1024] | 1324 | Pairs of start/end points (inclusive)specifying the regions
|
---|
[102] | 1325 | to be masked
|
---|
[1855] | 1326 |
|
---|
[189] | 1327 | invert: optional argument. If specified as True,
|
---|
| 1328 | return an inverted mask, i.e. the regions
|
---|
| 1329 | specified are EXCLUDED
|
---|
[1855] | 1330 |
|
---|
[513] | 1331 | row: create the mask using the specified row for
|
---|
| 1332 | unit conversions, default is row=0
|
---|
| 1333 | only necessary if frequency varies over rows.
|
---|
[1846] | 1334 |
|
---|
| 1335 | Examples::
|
---|
| 1336 |
|
---|
[113] | 1337 | scan.set_unit('channel')
|
---|
[1846] | 1338 | # a)
|
---|
[1118] | 1339 | msk = scan.create_mask([400, 500], [800, 900])
|
---|
[189] | 1340 | # masks everything outside 400 and 500
|
---|
[113] | 1341 | # and 800 and 900 in the unit 'channel'
|
---|
| 1342 |
|
---|
[1846] | 1343 | # b)
|
---|
[1118] | 1344 | msk = scan.create_mask([400, 500], [800, 900], invert=True)
|
---|
[189] | 1345 | # masks the regions between 400 and 500
|
---|
[113] | 1346 | # and 800 and 900 in the unit 'channel'
|
---|
[1846] | 1347 |
|
---|
| 1348 | # c)
|
---|
| 1349 | #mask only channel 400
|
---|
[1554] | 1350 | msk = scan.create_mask([400])
|
---|
[1846] | 1351 |
|
---|
[102] | 1352 | """
|
---|
[1554] | 1353 | row = kwargs.get("row", 0)
|
---|
[513] | 1354 | data = self._getabcissa(row)
|
---|
[113] | 1355 | u = self._getcoordinfo()[0]
|
---|
[1859] | 1356 | if u == "":
|
---|
| 1357 | u = "channel"
|
---|
| 1358 | msg = "The current mask window unit is %s" % u
|
---|
| 1359 | i = self._check_ifs()
|
---|
| 1360 | if not i:
|
---|
| 1361 | msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
|
---|
| 1362 | asaplog.push(msg)
|
---|
[2348] | 1363 | n = len(data)
|
---|
[1295] | 1364 | msk = _n_bools(n, False)
|
---|
[710] | 1365 | # test if args is a 'list' or a 'normal *args - UGLY!!!
|
---|
| 1366 |
|
---|
[2349] | 1367 | ws = (isinstance(args[-1][-1], int)
|
---|
| 1368 | or isinstance(args[-1][-1], float)) and args or args[0]
|
---|
[710] | 1369 | for window in ws:
|
---|
[1554] | 1370 | if len(window) == 1:
|
---|
| 1371 | window = [window[0], window[0]]
|
---|
| 1372 | if len(window) == 0 or len(window) > 2:
|
---|
[2349] | 1373 | raise ValueError("A window needs to be defined as "
|
---|
| 1374 | "[start(, end)]")
|
---|
[1545] | 1375 | if window[0] > window[1]:
|
---|
| 1376 | tmp = window[0]
|
---|
| 1377 | window[0] = window[1]
|
---|
| 1378 | window[1] = tmp
|
---|
[102] | 1379 | for i in range(n):
|
---|
[1024] | 1380 | if data[i] >= window[0] and data[i] <= window[1]:
|
---|
[1295] | 1381 | msk[i] = True
|
---|
[113] | 1382 | if kwargs.has_key('invert'):
|
---|
| 1383 | if kwargs.get('invert'):
|
---|
[1295] | 1384 | msk = mask_not(msk)
|
---|
[102] | 1385 | return msk
|
---|
[710] | 1386 |
|
---|
[1931] | 1387 | def get_masklist(self, mask=None, row=0, silent=False):
|
---|
[1846] | 1388 | """\
|
---|
[1819] | 1389 | Compute and return a list of mask windows, [min, max].
|
---|
[1846] | 1390 |
|
---|
[1819] | 1391 | Parameters:
|
---|
[1846] | 1392 |
|
---|
[1819] | 1393 | mask: channel mask, created with create_mask.
|
---|
[1855] | 1394 |
|
---|
[1819] | 1395 | row: calcutate the masklist using the specified row
|
---|
| 1396 | for unit conversions, default is row=0
|
---|
| 1397 | only necessary if frequency varies over rows.
|
---|
[1846] | 1398 |
|
---|
[1819] | 1399 | Returns:
|
---|
[1846] | 1400 |
|
---|
[1819] | 1401 | [min, max], [min2, max2], ...
|
---|
| 1402 | Pairs of start/end points (inclusive)specifying
|
---|
| 1403 | the masked regions
|
---|
[1846] | 1404 |
|
---|
[1819] | 1405 | """
|
---|
| 1406 | if not (isinstance(mask,list) or isinstance(mask, tuple)):
|
---|
| 1407 | raise TypeError("The mask should be list or tuple.")
|
---|
[2427] | 1408 | if len(mask) <= 0:
|
---|
| 1409 | raise TypeError("The mask elements should be > 0")
|
---|
[2348] | 1410 | data = self._getabcissa(row)
|
---|
| 1411 | if len(data) != len(mask):
|
---|
[1819] | 1412 | msg = "Number of channels in scantable != number of mask elements"
|
---|
| 1413 | raise TypeError(msg)
|
---|
| 1414 | u = self._getcoordinfo()[0]
|
---|
[1859] | 1415 | if u == "":
|
---|
| 1416 | u = "channel"
|
---|
| 1417 | msg = "The current mask window unit is %s" % u
|
---|
| 1418 | i = self._check_ifs()
|
---|
| 1419 | if not i:
|
---|
| 1420 | msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
|
---|
[1931] | 1421 | if not silent:
|
---|
| 1422 | asaplog.push(msg)
|
---|
[2349] | 1423 | masklist = []
|
---|
[1819] | 1424 | ist, ien = None, None
|
---|
| 1425 | ist, ien=self.get_mask_indices(mask)
|
---|
| 1426 | if ist is not None and ien is not None:
|
---|
| 1427 | for i in xrange(len(ist)):
|
---|
| 1428 | range=[data[ist[i]],data[ien[i]]]
|
---|
| 1429 | range.sort()
|
---|
| 1430 | masklist.append([range[0],range[1]])
|
---|
| 1431 | return masklist
|
---|
| 1432 |
|
---|
| 1433 | def get_mask_indices(self, mask=None):
|
---|
[1846] | 1434 | """\
|
---|
[1819] | 1435 | Compute and Return lists of mask start indices and mask end indices.
|
---|
[1855] | 1436 |
|
---|
| 1437 | Parameters:
|
---|
| 1438 |
|
---|
[1819] | 1439 | mask: channel mask, created with create_mask.
|
---|
[1846] | 1440 |
|
---|
[1819] | 1441 | Returns:
|
---|
[1846] | 1442 |
|
---|
[1819] | 1443 | List of mask start indices and that of mask end indices,
|
---|
| 1444 | i.e., [istart1,istart2,....], [iend1,iend2,....].
|
---|
[1846] | 1445 |
|
---|
[1819] | 1446 | """
|
---|
| 1447 | if not (isinstance(mask,list) or isinstance(mask, tuple)):
|
---|
| 1448 | raise TypeError("The mask should be list or tuple.")
|
---|
[2427] | 1449 | if len(mask) <= 0:
|
---|
| 1450 | raise TypeError("The mask elements should be > 0")
|
---|
[2349] | 1451 | istart = []
|
---|
| 1452 | iend = []
|
---|
| 1453 | if mask[0]:
|
---|
| 1454 | istart.append(0)
|
---|
[1819] | 1455 | for i in range(len(mask)-1):
|
---|
| 1456 | if not mask[i] and mask[i+1]:
|
---|
| 1457 | istart.append(i+1)
|
---|
| 1458 | elif mask[i] and not mask[i+1]:
|
---|
| 1459 | iend.append(i)
|
---|
[2349] | 1460 | if mask[len(mask)-1]:
|
---|
| 1461 | iend.append(len(mask)-1)
|
---|
[1819] | 1462 | if len(istart) != len(iend):
|
---|
| 1463 | raise RuntimeError("Numbers of mask start != mask end.")
|
---|
| 1464 | for i in range(len(istart)):
|
---|
| 1465 | if istart[i] > iend[i]:
|
---|
| 1466 | raise RuntimeError("Mask start index > mask end index")
|
---|
| 1467 | break
|
---|
| 1468 | return istart,iend
|
---|
| 1469 |
|
---|
[2013] | 1470 | @asaplog_post_dec
|
---|
[2349] | 1471 | def parse_maskexpr(self, maskstring):
|
---|
[2013] | 1472 | """
|
---|
| 1473 | Parse CASA type mask selection syntax (IF dependent).
|
---|
| 1474 |
|
---|
| 1475 | Parameters:
|
---|
| 1476 | maskstring : A string mask selection expression.
|
---|
| 1477 | A comma separated selections mean different IF -
|
---|
| 1478 | channel combinations. IFs and channel selections
|
---|
| 1479 | are partitioned by a colon, ':'.
|
---|
| 1480 | examples:
|
---|
[2015] | 1481 | '' = all IFs (all channels)
|
---|
[2013] | 1482 | '<2,4~6,9' = IFs 0,1,4,5,6,9 (all channels)
|
---|
| 1483 | '3:3~45;60' = channels 3 to 45 and 60 in IF 3
|
---|
| 1484 | '0~1:2~6,8' = channels 2 to 6 in IFs 0,1, and
|
---|
| 1485 | all channels in IF8
|
---|
| 1486 | Returns:
|
---|
| 1487 | A dictionary of selected (valid) IF and masklist pairs,
|
---|
| 1488 | e.g. {'0': [[50,250],[350,462]], '2': [[100,400],[550,974]]}
|
---|
| 1489 | """
|
---|
| 1490 | if not isinstance(maskstring,str):
|
---|
| 1491 | asaplog.post()
|
---|
[2611] | 1492 | asaplog.push("Mask expression should be a string.")
|
---|
[2013] | 1493 | asaplog.post("ERROR")
|
---|
| 1494 |
|
---|
| 1495 | valid_ifs = self.getifnos()
|
---|
| 1496 | frequnit = self.get_unit()
|
---|
| 1497 | seldict = {}
|
---|
[2015] | 1498 | if maskstring == "":
|
---|
| 1499 | maskstring = str(valid_ifs)[1:-1]
|
---|
[2611] | 1500 | ## split each selection "IF range[:CHAN range]"
|
---|
[2013] | 1501 | sellist = maskstring.split(',')
|
---|
| 1502 | for currselstr in sellist:
|
---|
| 1503 | selset = currselstr.split(':')
|
---|
| 1504 | # spw and mask string (may include ~, < or >)
|
---|
[2349] | 1505 | spwmasklist = self._parse_selection(selset[0], typestr='integer',
|
---|
[2611] | 1506 | minval=min(valid_ifs),
|
---|
[2349] | 1507 | maxval=max(valid_ifs))
|
---|
[2013] | 1508 | for spwlist in spwmasklist:
|
---|
| 1509 | selspws = []
|
---|
| 1510 | for ispw in range(spwlist[0],spwlist[1]+1):
|
---|
| 1511 | # Put into the list only if ispw exists
|
---|
| 1512 | if valid_ifs.count(ispw):
|
---|
| 1513 | selspws.append(ispw)
|
---|
| 1514 | del spwmasklist, spwlist
|
---|
| 1515 |
|
---|
| 1516 | # parse frequency mask list
|
---|
| 1517 | if len(selset) > 1:
|
---|
[2349] | 1518 | freqmasklist = self._parse_selection(selset[1], typestr='float',
|
---|
| 1519 | offset=0.)
|
---|
[2013] | 1520 | else:
|
---|
| 1521 | # want to select the whole spectrum
|
---|
| 1522 | freqmasklist = [None]
|
---|
| 1523 |
|
---|
| 1524 | ## define a dictionary of spw - masklist combination
|
---|
| 1525 | for ispw in selspws:
|
---|
| 1526 | #print "working on", ispw
|
---|
| 1527 | spwstr = str(ispw)
|
---|
| 1528 | if len(selspws) == 0:
|
---|
| 1529 | # empty spw
|
---|
| 1530 | continue
|
---|
| 1531 | else:
|
---|
| 1532 | ## want to get min and max of the spw and
|
---|
| 1533 | ## offset to set for '<' and '>'
|
---|
| 1534 | if frequnit == 'channel':
|
---|
| 1535 | minfreq = 0
|
---|
| 1536 | maxfreq = self.nchan(ifno=ispw)
|
---|
| 1537 | offset = 0.5
|
---|
| 1538 | else:
|
---|
| 1539 | ## This is ugly part. need improvement
|
---|
| 1540 | for ifrow in xrange(self.nrow()):
|
---|
| 1541 | if self.getif(ifrow) == ispw:
|
---|
| 1542 | #print "IF",ispw,"found in row =",ifrow
|
---|
| 1543 | break
|
---|
| 1544 | freqcoord = self.get_coordinate(ifrow)
|
---|
| 1545 | freqs = self._getabcissa(ifrow)
|
---|
| 1546 | minfreq = min(freqs)
|
---|
| 1547 | maxfreq = max(freqs)
|
---|
| 1548 | if len(freqs) == 1:
|
---|
| 1549 | offset = 0.5
|
---|
| 1550 | elif frequnit.find('Hz') > 0:
|
---|
[2349] | 1551 | offset = abs(freqcoord.to_frequency(1,
|
---|
| 1552 | unit=frequnit)
|
---|
| 1553 | -freqcoord.to_frequency(0,
|
---|
| 1554 | unit=frequnit)
|
---|
| 1555 | )*0.5
|
---|
[2013] | 1556 | elif frequnit.find('m/s') > 0:
|
---|
[2349] | 1557 | offset = abs(freqcoord.to_velocity(1,
|
---|
| 1558 | unit=frequnit)
|
---|
| 1559 | -freqcoord.to_velocity(0,
|
---|
| 1560 | unit=frequnit)
|
---|
| 1561 | )*0.5
|
---|
[2013] | 1562 | else:
|
---|
| 1563 | asaplog.post()
|
---|
| 1564 | asaplog.push("Invalid frequency unit")
|
---|
| 1565 | asaplog.post("ERROR")
|
---|
| 1566 | del freqs, freqcoord, ifrow
|
---|
| 1567 | for freq in freqmasklist:
|
---|
| 1568 | selmask = freq or [minfreq, maxfreq]
|
---|
| 1569 | if selmask[0] == None:
|
---|
| 1570 | ## selection was "<freq[1]".
|
---|
| 1571 | if selmask[1] < minfreq:
|
---|
| 1572 | ## avoid adding region selection
|
---|
| 1573 | selmask = None
|
---|
| 1574 | else:
|
---|
| 1575 | selmask = [minfreq,selmask[1]-offset]
|
---|
| 1576 | elif selmask[1] == None:
|
---|
| 1577 | ## selection was ">freq[0]"
|
---|
| 1578 | if selmask[0] > maxfreq:
|
---|
| 1579 | ## avoid adding region selection
|
---|
| 1580 | selmask = None
|
---|
| 1581 | else:
|
---|
| 1582 | selmask = [selmask[0]+offset,maxfreq]
|
---|
| 1583 | if selmask:
|
---|
| 1584 | if not seldict.has_key(spwstr):
|
---|
| 1585 | # new spw selection
|
---|
| 1586 | seldict[spwstr] = []
|
---|
| 1587 | seldict[spwstr] += [selmask]
|
---|
| 1588 | del minfreq,maxfreq,offset,freq,selmask
|
---|
| 1589 | del spwstr
|
---|
| 1590 | del freqmasklist
|
---|
| 1591 | del valid_ifs
|
---|
| 1592 | if len(seldict) == 0:
|
---|
| 1593 | asaplog.post()
|
---|
[2349] | 1594 | asaplog.push("No valid selection in the mask expression: "
|
---|
| 1595 | +maskstring)
|
---|
[2013] | 1596 | asaplog.post("WARN")
|
---|
| 1597 | return None
|
---|
| 1598 | msg = "Selected masklist:\n"
|
---|
| 1599 | for sif, lmask in seldict.iteritems():
|
---|
| 1600 | msg += " IF"+sif+" - "+str(lmask)+"\n"
|
---|
| 1601 | asaplog.push(msg)
|
---|
| 1602 | return seldict
|
---|
| 1603 |
|
---|
[2611] | 1604 | @asaplog_post_dec
|
---|
| 1605 | def parse_idx_selection(self, mode, selexpr):
|
---|
| 1606 | """
|
---|
| 1607 | Parse CASA type mask selection syntax of SCANNO, IFNO, POLNO,
|
---|
| 1608 | BEAMNO, and row number
|
---|
| 1609 |
|
---|
| 1610 | Parameters:
|
---|
| 1611 | mode : which column to select.
|
---|
| 1612 | ['scan',|'if'|'pol'|'beam'|'row']
|
---|
| 1613 | selexpr : A comma separated selection expression.
|
---|
| 1614 | examples:
|
---|
| 1615 | '' = all (returns [])
|
---|
| 1616 | '<2,4~6,9' = indices less than 2, 4 to 6 and 9
|
---|
| 1617 | (returns [0,1,4,5,6,9])
|
---|
| 1618 | Returns:
|
---|
| 1619 | A List of selected indices
|
---|
| 1620 | """
|
---|
| 1621 | if selexpr == "":
|
---|
| 1622 | return []
|
---|
| 1623 | valid_modes = {'s': 'scan', 'i': 'if', 'p': 'pol',
|
---|
| 1624 | 'b': 'beam', 'r': 'row'}
|
---|
| 1625 | smode = mode.lower()[0]
|
---|
| 1626 | if not (smode in valid_modes.keys()):
|
---|
| 1627 | msg = "Invalid mode '%s'. Valid modes are %s" %\
|
---|
| 1628 | (mode, str(valid_modes.values()))
|
---|
| 1629 | asaplog.post()
|
---|
| 1630 | asaplog.push(msg)
|
---|
| 1631 | asaplog.post("ERROR")
|
---|
| 1632 | mode = valid_modes[smode]
|
---|
| 1633 | minidx = None
|
---|
| 1634 | maxidx = None
|
---|
| 1635 | if smode == 'r':
|
---|
| 1636 | minidx = 0
|
---|
| 1637 | maxidx = self.nrow()
|
---|
| 1638 | else:
|
---|
| 1639 | idx = getattr(self,"get"+mode+"nos")()
|
---|
| 1640 | minidx = min(idx)
|
---|
| 1641 | maxidx = max(idx)
|
---|
| 1642 | del idx
|
---|
| 1643 | sellist = selexpr.split(',')
|
---|
| 1644 | idxlist = []
|
---|
| 1645 | for currselstr in sellist:
|
---|
| 1646 | # single range (may include ~, < or >)
|
---|
| 1647 | currlist = self._parse_selection(currselstr, typestr='integer',
|
---|
| 1648 | minval=minidx,maxval=maxidx)
|
---|
| 1649 | for thelist in currlist:
|
---|
| 1650 | idxlist += range(thelist[0],thelist[1]+1)
|
---|
| 1651 | msg = "Selected %s: %s" % (mode.upper()+"NO", str(idxlist))
|
---|
| 1652 | asaplog.push(msg)
|
---|
| 1653 | return idxlist
|
---|
| 1654 |
|
---|
[2349] | 1655 | def _parse_selection(self, selstr, typestr='float', offset=0.,
|
---|
[2351] | 1656 | minval=None, maxval=None):
|
---|
[2013] | 1657 | """
|
---|
| 1658 | Parameters:
|
---|
| 1659 | selstr : The Selection string, e.g., '<3;5~7;100~103;9'
|
---|
| 1660 | typestr : The type of the values in returned list
|
---|
| 1661 | ('integer' or 'float')
|
---|
| 1662 | offset : The offset value to subtract from or add to
|
---|
| 1663 | the boundary value if the selection string
|
---|
[2611] | 1664 | includes '<' or '>' [Valid only for typestr='float']
|
---|
[2013] | 1665 | minval, maxval : The minimum/maximum values to set if the
|
---|
| 1666 | selection string includes '<' or '>'.
|
---|
| 1667 | The list element is filled with None by default.
|
---|
| 1668 | Returns:
|
---|
| 1669 | A list of min/max pair of selections.
|
---|
| 1670 | Example:
|
---|
[2611] | 1671 | _parse_selection('<3;5~7;9',typestr='int',minval=0)
|
---|
| 1672 | --> returns [[0,2],[5,7],[9,9]]
|
---|
| 1673 | _parse_selection('<3;5~7;9',typestr='float',offset=0.5,minval=0)
|
---|
| 1674 | --> returns [[0.,2.5],[5.0,7.0],[9.,9.]]
|
---|
[2013] | 1675 | """
|
---|
| 1676 | selgroups = selstr.split(';')
|
---|
| 1677 | sellists = []
|
---|
| 1678 | if typestr.lower().startswith('int'):
|
---|
| 1679 | formatfunc = int
|
---|
[2611] | 1680 | offset = 1
|
---|
[2013] | 1681 | else:
|
---|
| 1682 | formatfunc = float
|
---|
| 1683 |
|
---|
| 1684 | for currsel in selgroups:
|
---|
| 1685 | if currsel.find('~') > 0:
|
---|
[2611] | 1686 | # val0 <= x <= val1
|
---|
[2013] | 1687 | minsel = formatfunc(currsel.split('~')[0].strip())
|
---|
| 1688 | maxsel = formatfunc(currsel.split('~')[1].strip())
|
---|
[2611] | 1689 | elif currsel.strip().find('<=') > -1:
|
---|
| 1690 | bound = currsel.split('<=')
|
---|
| 1691 | try: # try "x <= val"
|
---|
| 1692 | minsel = minval
|
---|
| 1693 | maxsel = formatfunc(bound[1].strip())
|
---|
| 1694 | except ValueError: # now "val <= x"
|
---|
| 1695 | minsel = formatfunc(bound[0].strip())
|
---|
| 1696 | maxsel = maxval
|
---|
| 1697 | elif currsel.strip().find('>=') > -1:
|
---|
| 1698 | bound = currsel.split('>=')
|
---|
| 1699 | try: # try "x >= val"
|
---|
| 1700 | minsel = formatfunc(bound[1].strip())
|
---|
| 1701 | maxsel = maxval
|
---|
| 1702 | except ValueError: # now "val >= x"
|
---|
| 1703 | minsel = minval
|
---|
| 1704 | maxsel = formatfunc(bound[0].strip())
|
---|
| 1705 | elif currsel.strip().find('<') > -1:
|
---|
| 1706 | bound = currsel.split('<')
|
---|
| 1707 | try: # try "x < val"
|
---|
| 1708 | minsel = minval
|
---|
| 1709 | maxsel = formatfunc(bound[1].strip()) \
|
---|
| 1710 | - formatfunc(offset)
|
---|
| 1711 | except ValueError: # now "val < x"
|
---|
| 1712 | minsel = formatfunc(bound[0].strip()) \
|
---|
[2013] | 1713 | + formatfunc(offset)
|
---|
[2611] | 1714 | maxsel = maxval
|
---|
| 1715 | elif currsel.strip().find('>') > -1:
|
---|
| 1716 | bound = currsel.split('>')
|
---|
| 1717 | try: # try "x > val"
|
---|
| 1718 | minsel = formatfunc(bound[1].strip()) \
|
---|
| 1719 | + formatfunc(offset)
|
---|
| 1720 | maxsel = maxval
|
---|
| 1721 | except ValueError: # now "val > x"
|
---|
| 1722 | minsel = minval
|
---|
| 1723 | maxsel = formatfunc(bound[0].strip()) \
|
---|
| 1724 | - formatfunc(offset)
|
---|
[2013] | 1725 | else:
|
---|
| 1726 | minsel = formatfunc(currsel)
|
---|
| 1727 | maxsel = formatfunc(currsel)
|
---|
| 1728 | sellists.append([minsel,maxsel])
|
---|
| 1729 | return sellists
|
---|
| 1730 |
|
---|
[1819] | 1731 | # def get_restfreqs(self):
|
---|
| 1732 | # """
|
---|
| 1733 | # Get the restfrequency(s) stored in this scantable.
|
---|
| 1734 | # The return value(s) are always of unit 'Hz'
|
---|
| 1735 | # Parameters:
|
---|
| 1736 | # none
|
---|
| 1737 | # Returns:
|
---|
| 1738 | # a list of doubles
|
---|
| 1739 | # """
|
---|
| 1740 | # return list(self._getrestfreqs())
|
---|
| 1741 |
|
---|
| 1742 | def get_restfreqs(self, ids=None):
|
---|
[1846] | 1743 | """\
|
---|
[256] | 1744 | Get the restfrequency(s) stored in this scantable.
|
---|
| 1745 | The return value(s) are always of unit 'Hz'
|
---|
[1846] | 1746 |
|
---|
[256] | 1747 | Parameters:
|
---|
[1846] | 1748 |
|
---|
[1819] | 1749 | ids: (optional) a list of MOLECULE_ID for that restfrequency(s) to
|
---|
| 1750 | be retrieved
|
---|
[1846] | 1751 |
|
---|
[256] | 1752 | Returns:
|
---|
[1846] | 1753 |
|
---|
[1819] | 1754 | dictionary containing ids and a list of doubles for each id
|
---|
[1846] | 1755 |
|
---|
[256] | 1756 | """
|
---|
[1819] | 1757 | if ids is None:
|
---|
[2349] | 1758 | rfreqs = {}
|
---|
[1819] | 1759 | idlist = self.getmolnos()
|
---|
| 1760 | for i in idlist:
|
---|
[2349] | 1761 | rfreqs[i] = list(self._getrestfreqs(i))
|
---|
[1819] | 1762 | return rfreqs
|
---|
| 1763 | else:
|
---|
[2349] | 1764 | if type(ids) == list or type(ids) == tuple:
|
---|
| 1765 | rfreqs = {}
|
---|
[1819] | 1766 | for i in ids:
|
---|
[2349] | 1767 | rfreqs[i] = list(self._getrestfreqs(i))
|
---|
[1819] | 1768 | return rfreqs
|
---|
| 1769 | else:
|
---|
| 1770 | return list(self._getrestfreqs(ids))
|
---|
[102] | 1771 |
|
---|
[2349] | 1772 | @asaplog_post_dec
|
---|
[931] | 1773 | def set_restfreqs(self, freqs=None, unit='Hz'):
|
---|
[1846] | 1774 | """\
|
---|
[931] | 1775 | Set or replace the restfrequency specified and
|
---|
[1938] | 1776 | if the 'freqs' argument holds a scalar,
|
---|
[931] | 1777 | then that rest frequency will be applied to all the selected
|
---|
| 1778 | data. If the 'freqs' argument holds
|
---|
| 1779 | a vector, then it MUST be of equal or smaller length than
|
---|
| 1780 | the number of IFs (and the available restfrequencies will be
|
---|
| 1781 | replaced by this vector). In this case, *all* data have
|
---|
| 1782 | the restfrequency set per IF according
|
---|
| 1783 | to the corresponding value you give in the 'freqs' vector.
|
---|
[1118] | 1784 | E.g. 'freqs=[1e9, 2e9]' would mean IF 0 gets restfreq 1e9 and
|
---|
[931] | 1785 | IF 1 gets restfreq 2e9.
|
---|
[1846] | 1786 |
|
---|
[1395] | 1787 | You can also specify the frequencies via a linecatalog.
|
---|
[1153] | 1788 |
|
---|
[931] | 1789 | Parameters:
|
---|
[1846] | 1790 |
|
---|
[931] | 1791 | freqs: list of rest frequency values or string idenitfiers
|
---|
[1855] | 1792 |
|
---|
[931] | 1793 | unit: unit for rest frequency (default 'Hz')
|
---|
[402] | 1794 |
|
---|
[1846] | 1795 |
|
---|
| 1796 | Example::
|
---|
| 1797 |
|
---|
[1819] | 1798 | # set the given restfrequency for the all currently selected IFs
|
---|
[931] | 1799 | scan.set_restfreqs(freqs=1.4e9)
|
---|
[1845] | 1800 | # set restfrequencies for the n IFs (n > 1) in the order of the
|
---|
| 1801 | # list, i.e
|
---|
| 1802 | # IF0 -> 1.4e9, IF1 -> 1.41e9, IF3 -> 1.42e9
|
---|
| 1803 | # len(list_of_restfreqs) == nIF
|
---|
| 1804 | # for nIF == 1 the following will set multiple restfrequency for
|
---|
| 1805 | # that IF
|
---|
[1819] | 1806 | scan.set_restfreqs(freqs=[1.4e9, 1.41e9, 1.42e9])
|
---|
[1845] | 1807 | # set multiple restfrequencies per IF. as a list of lists where
|
---|
| 1808 | # the outer list has nIF elements, the inner s arbitrary
|
---|
| 1809 | scan.set_restfreqs(freqs=[[1.4e9, 1.41e9], [1.67e9]])
|
---|
[391] | 1810 |
|
---|
[1846] | 1811 | *Note*:
|
---|
[1845] | 1812 |
|
---|
[931] | 1813 | To do more sophisticate Restfrequency setting, e.g. on a
|
---|
| 1814 | source and IF basis, use scantable.set_selection() before using
|
---|
[1846] | 1815 | this function::
|
---|
[931] | 1816 |
|
---|
[1846] | 1817 | # provided your scantable is called scan
|
---|
| 1818 | selection = selector()
|
---|
[2431] | 1819 | selection.set_name('ORION*')
|
---|
[1846] | 1820 | selection.set_ifs([1])
|
---|
| 1821 | scan.set_selection(selection)
|
---|
| 1822 | scan.set_restfreqs(freqs=86.6e9)
|
---|
| 1823 |
|
---|
[931] | 1824 | """
|
---|
| 1825 | varlist = vars()
|
---|
[1157] | 1826 | from asap import linecatalog
|
---|
| 1827 | # simple value
|
---|
[1118] | 1828 | if isinstance(freqs, int) or isinstance(freqs, float):
|
---|
[1845] | 1829 | self._setrestfreqs([freqs], [""], unit)
|
---|
[1157] | 1830 | # list of values
|
---|
[1118] | 1831 | elif isinstance(freqs, list) or isinstance(freqs, tuple):
|
---|
[1157] | 1832 | # list values are scalars
|
---|
[1118] | 1833 | if isinstance(freqs[-1], int) or isinstance(freqs[-1], float):
|
---|
[1845] | 1834 | if len(freqs) == 1:
|
---|
| 1835 | self._setrestfreqs(freqs, [""], unit)
|
---|
| 1836 | else:
|
---|
| 1837 | # allow the 'old' mode of setting mulitple IFs
|
---|
| 1838 | savesel = self._getselection()
|
---|
[2599] | 1839 | sel = self.get_selection()
|
---|
[1845] | 1840 | iflist = self.getifnos()
|
---|
| 1841 | if len(freqs)>len(iflist):
|
---|
| 1842 | raise ValueError("number of elements in list of list "
|
---|
| 1843 | "exeeds the current IF selections")
|
---|
| 1844 | iflist = self.getifnos()
|
---|
| 1845 | for i, fval in enumerate(freqs):
|
---|
| 1846 | sel.set_ifs(iflist[i])
|
---|
| 1847 | self._setselection(sel)
|
---|
| 1848 | self._setrestfreqs([fval], [""], unit)
|
---|
| 1849 | self._setselection(savesel)
|
---|
| 1850 |
|
---|
| 1851 | # list values are dict, {'value'=, 'name'=)
|
---|
[1157] | 1852 | elif isinstance(freqs[-1], dict):
|
---|
[1845] | 1853 | values = []
|
---|
| 1854 | names = []
|
---|
| 1855 | for d in freqs:
|
---|
| 1856 | values.append(d["value"])
|
---|
| 1857 | names.append(d["name"])
|
---|
| 1858 | self._setrestfreqs(values, names, unit)
|
---|
[1819] | 1859 | elif isinstance(freqs[-1], list) or isinstance(freqs[-1], tuple):
|
---|
[1157] | 1860 | savesel = self._getselection()
|
---|
[2599] | 1861 | sel = self.get_selection()
|
---|
[1322] | 1862 | iflist = self.getifnos()
|
---|
[1819] | 1863 | if len(freqs)>len(iflist):
|
---|
[1845] | 1864 | raise ValueError("number of elements in list of list exeeds"
|
---|
| 1865 | " the current IF selections")
|
---|
| 1866 | for i, fval in enumerate(freqs):
|
---|
[1322] | 1867 | sel.set_ifs(iflist[i])
|
---|
[1259] | 1868 | self._setselection(sel)
|
---|
[1845] | 1869 | self._setrestfreqs(fval, [""], unit)
|
---|
[1157] | 1870 | self._setselection(savesel)
|
---|
| 1871 | # freqs are to be taken from a linecatalog
|
---|
[1153] | 1872 | elif isinstance(freqs, linecatalog):
|
---|
| 1873 | savesel = self._getselection()
|
---|
[2599] | 1874 | sel = self.get_selection()
|
---|
[1153] | 1875 | for i in xrange(freqs.nrow()):
|
---|
[1322] | 1876 | sel.set_ifs(iflist[i])
|
---|
[1153] | 1877 | self._setselection(sel)
|
---|
[1845] | 1878 | self._setrestfreqs([freqs.get_frequency(i)],
|
---|
| 1879 | [freqs.get_name(i)], "MHz")
|
---|
[1153] | 1880 | # ensure that we are not iterating past nIF
|
---|
| 1881 | if i == self.nif()-1: break
|
---|
| 1882 | self._setselection(savesel)
|
---|
[931] | 1883 | else:
|
---|
| 1884 | return
|
---|
| 1885 | self._add_history("set_restfreqs", varlist)
|
---|
| 1886 |
|
---|
[2349] | 1887 | @asaplog_post_dec
|
---|
[1360] | 1888 | def shift_refpix(self, delta):
|
---|
[1846] | 1889 | """\
|
---|
[1589] | 1890 | Shift the reference pixel of the Spectra Coordinate by an
|
---|
| 1891 | integer amount.
|
---|
[1846] | 1892 |
|
---|
[1589] | 1893 | Parameters:
|
---|
[1846] | 1894 |
|
---|
[1589] | 1895 | delta: the amount to shift by
|
---|
[1846] | 1896 |
|
---|
| 1897 | *Note*:
|
---|
| 1898 |
|
---|
[1589] | 1899 | Be careful using this with broadband data.
|
---|
[1846] | 1900 |
|
---|
[1360] | 1901 | """
|
---|
[2349] | 1902 | varlist = vars()
|
---|
[1731] | 1903 | Scantable.shift_refpix(self, delta)
|
---|
[2349] | 1904 | s._add_history("shift_refpix", varlist)
|
---|
[931] | 1905 |
|
---|
[1862] | 1906 | @asaplog_post_dec
|
---|
[1259] | 1907 | def history(self, filename=None):
|
---|
[1846] | 1908 | """\
|
---|
[1259] | 1909 | Print the history. Optionally to a file.
|
---|
[1846] | 1910 |
|
---|
[1348] | 1911 | Parameters:
|
---|
[1846] | 1912 |
|
---|
[1928] | 1913 | filename: The name of the file to save the history to.
|
---|
[1846] | 1914 |
|
---|
[1259] | 1915 | """
|
---|
[484] | 1916 | hist = list(self._gethistory())
|
---|
[794] | 1917 | out = "-"*80
|
---|
[484] | 1918 | for h in hist:
|
---|
[489] | 1919 | if h.startswith("---"):
|
---|
[1857] | 1920 | out = "\n".join([out, h])
|
---|
[489] | 1921 | else:
|
---|
| 1922 | items = h.split("##")
|
---|
| 1923 | date = items[0]
|
---|
| 1924 | func = items[1]
|
---|
| 1925 | items = items[2:]
|
---|
[794] | 1926 | out += "\n"+date+"\n"
|
---|
| 1927 | out += "Function: %s\n Parameters:" % (func)
|
---|
[489] | 1928 | for i in items:
|
---|
[1938] | 1929 | if i == '':
|
---|
| 1930 | continue
|
---|
[489] | 1931 | s = i.split("=")
|
---|
[1118] | 1932 | out += "\n %s = %s" % (s[0], s[1])
|
---|
[1857] | 1933 | out = "\n".join([out, "-"*80])
|
---|
[1259] | 1934 | if filename is not None:
|
---|
| 1935 | if filename is "":
|
---|
| 1936 | filename = 'scantable_history.txt'
|
---|
| 1937 | import os
|
---|
| 1938 | filename = os.path.expandvars(os.path.expanduser(filename))
|
---|
| 1939 | if not os.path.isdir(filename):
|
---|
| 1940 | data = open(filename, 'w')
|
---|
| 1941 | data.write(out)
|
---|
| 1942 | data.close()
|
---|
| 1943 | else:
|
---|
| 1944 | msg = "Illegal file name '%s'." % (filename)
|
---|
[1859] | 1945 | raise IOError(msg)
|
---|
| 1946 | return page(out)
|
---|
[2349] | 1947 |
|
---|
[513] | 1948 | #
|
---|
| 1949 | # Maths business
|
---|
| 1950 | #
|
---|
[1862] | 1951 | @asaplog_post_dec
|
---|
[931] | 1952 | def average_time(self, mask=None, scanav=False, weight='tint', align=False):
|
---|
[1846] | 1953 | """\
|
---|
[2349] | 1954 | Return the (time) weighted average of a scan. Scans will be averaged
|
---|
| 1955 | only if the source direction (RA/DEC) is within 1' otherwise
|
---|
[1846] | 1956 |
|
---|
| 1957 | *Note*:
|
---|
| 1958 |
|
---|
[1070] | 1959 | in channels only - align if necessary
|
---|
[1846] | 1960 |
|
---|
[513] | 1961 | Parameters:
|
---|
[1846] | 1962 |
|
---|
[513] | 1963 | mask: an optional mask (only used for 'var' and 'tsys'
|
---|
| 1964 | weighting)
|
---|
[1855] | 1965 |
|
---|
[558] | 1966 | scanav: True averages each scan separately
|
---|
| 1967 | False (default) averages all scans together,
|
---|
[1855] | 1968 |
|
---|
[1099] | 1969 | weight: Weighting scheme.
|
---|
| 1970 | 'none' (mean no weight)
|
---|
| 1971 | 'var' (1/var(spec) weighted)
|
---|
| 1972 | 'tsys' (1/Tsys**2 weighted)
|
---|
| 1973 | 'tint' (integration time weighted)
|
---|
| 1974 | 'tintsys' (Tint/Tsys**2)
|
---|
| 1975 | 'median' ( median averaging)
|
---|
[535] | 1976 | The default is 'tint'
|
---|
[1855] | 1977 |
|
---|
[931] | 1978 | align: align the spectra in velocity before averaging. It takes
|
---|
| 1979 | the time of the first spectrum as reference time.
|
---|
[1846] | 1980 |
|
---|
| 1981 | Example::
|
---|
| 1982 |
|
---|
[513] | 1983 | # time average the scantable without using a mask
|
---|
[710] | 1984 | newscan = scan.average_time()
|
---|
[1846] | 1985 |
|
---|
[513] | 1986 | """
|
---|
| 1987 | varlist = vars()
|
---|
[1593] | 1988 | weight = weight or 'TINT'
|
---|
| 1989 | mask = mask or ()
|
---|
| 1990 | scanav = (scanav and 'SCAN') or 'NONE'
|
---|
[1118] | 1991 | scan = (self, )
|
---|
[1859] | 1992 |
|
---|
| 1993 | if align:
|
---|
| 1994 | scan = (self.freq_align(insitu=False), )
|
---|
| 1995 | s = None
|
---|
| 1996 | if weight.upper() == 'MEDIAN':
|
---|
| 1997 | s = scantable(self._math._averagechannel(scan[0], 'MEDIAN',
|
---|
| 1998 | scanav))
|
---|
| 1999 | else:
|
---|
| 2000 | s = scantable(self._math._average(scan, mask, weight.upper(),
|
---|
| 2001 | scanav))
|
---|
[1099] | 2002 | s._add_history("average_time", varlist)
|
---|
[513] | 2003 | return s
|
---|
[710] | 2004 |
|
---|
[1862] | 2005 | @asaplog_post_dec
|
---|
[876] | 2006 | def convert_flux(self, jyperk=None, eta=None, d=None, insitu=None):
|
---|
[1846] | 2007 | """\
|
---|
[513] | 2008 | Return a scan where all spectra are converted to either
|
---|
| 2009 | Jansky or Kelvin depending upon the flux units of the scan table.
|
---|
| 2010 | By default the function tries to look the values up internally.
|
---|
| 2011 | If it can't find them (or if you want to over-ride), you must
|
---|
| 2012 | specify EITHER jyperk OR eta (and D which it will try to look up
|
---|
| 2013 | also if you don't set it). jyperk takes precedence if you set both.
|
---|
[1846] | 2014 |
|
---|
[513] | 2015 | Parameters:
|
---|
[1846] | 2016 |
|
---|
[513] | 2017 | jyperk: the Jy / K conversion factor
|
---|
[1855] | 2018 |
|
---|
[513] | 2019 | eta: the aperture efficiency
|
---|
[1855] | 2020 |
|
---|
[1928] | 2021 | d: the geometric diameter (metres)
|
---|
[1855] | 2022 |
|
---|
[513] | 2023 | insitu: if False a new scantable is returned.
|
---|
| 2024 | Otherwise, the scaling is done in-situ
|
---|
| 2025 | The default is taken from .asaprc (False)
|
---|
[1846] | 2026 |
|
---|
[513] | 2027 | """
|
---|
| 2028 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 2029 | self._math._setinsitu(insitu)
|
---|
[513] | 2030 | varlist = vars()
|
---|
[1593] | 2031 | jyperk = jyperk or -1.0
|
---|
| 2032 | d = d or -1.0
|
---|
| 2033 | eta = eta or -1.0
|
---|
[876] | 2034 | s = scantable(self._math._convertflux(self, d, eta, jyperk))
|
---|
| 2035 | s._add_history("convert_flux", varlist)
|
---|
| 2036 | if insitu: self._assign(s)
|
---|
| 2037 | else: return s
|
---|
[513] | 2038 |
|
---|
[1862] | 2039 | @asaplog_post_dec
|
---|
[876] | 2040 | def gain_el(self, poly=None, filename="", method="linear", insitu=None):
|
---|
[1846] | 2041 | """\
|
---|
[513] | 2042 | Return a scan after applying a gain-elevation correction.
|
---|
| 2043 | The correction can be made via either a polynomial or a
|
---|
| 2044 | table-based interpolation (and extrapolation if necessary).
|
---|
| 2045 | You specify polynomial coefficients, an ascii table or neither.
|
---|
| 2046 | If you specify neither, then a polynomial correction will be made
|
---|
| 2047 | with built in coefficients known for certain telescopes (an error
|
---|
| 2048 | will occur if the instrument is not known).
|
---|
| 2049 | The data and Tsys are *divided* by the scaling factors.
|
---|
[1846] | 2050 |
|
---|
[513] | 2051 | Parameters:
|
---|
[1846] | 2052 |
|
---|
[513] | 2053 | poly: Polynomial coefficients (default None) to compute a
|
---|
| 2054 | gain-elevation correction as a function of
|
---|
| 2055 | elevation (in degrees).
|
---|
[1855] | 2056 |
|
---|
[513] | 2057 | filename: The name of an ascii file holding correction factors.
|
---|
| 2058 | The first row of the ascii file must give the column
|
---|
| 2059 | names and these MUST include columns
|
---|
[2431] | 2060 | 'ELEVATION' (degrees) and 'FACTOR' (multiply data
|
---|
[513] | 2061 | by this) somewhere.
|
---|
| 2062 | The second row must give the data type of the
|
---|
| 2063 | column. Use 'R' for Real and 'I' for Integer.
|
---|
| 2064 | An example file would be
|
---|
| 2065 | (actual factors are arbitrary) :
|
---|
| 2066 |
|
---|
| 2067 | TIME ELEVATION FACTOR
|
---|
| 2068 | R R R
|
---|
| 2069 | 0.1 0 0.8
|
---|
| 2070 | 0.2 20 0.85
|
---|
| 2071 | 0.3 40 0.9
|
---|
| 2072 | 0.4 60 0.85
|
---|
| 2073 | 0.5 80 0.8
|
---|
| 2074 | 0.6 90 0.75
|
---|
[1855] | 2075 |
|
---|
[513] | 2076 | method: Interpolation method when correcting from a table.
|
---|
[2431] | 2077 | Values are 'nearest', 'linear' (default), 'cubic'
|
---|
| 2078 | and 'spline'
|
---|
[1855] | 2079 |
|
---|
[513] | 2080 | insitu: if False a new scantable is returned.
|
---|
| 2081 | Otherwise, the scaling is done in-situ
|
---|
| 2082 | The default is taken from .asaprc (False)
|
---|
[1846] | 2083 |
|
---|
[513] | 2084 | """
|
---|
| 2085 |
|
---|
| 2086 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 2087 | self._math._setinsitu(insitu)
|
---|
[513] | 2088 | varlist = vars()
|
---|
[1593] | 2089 | poly = poly or ()
|
---|
[513] | 2090 | from os.path import expandvars
|
---|
| 2091 | filename = expandvars(filename)
|
---|
[876] | 2092 | s = scantable(self._math._gainel(self, poly, filename, method))
|
---|
| 2093 | s._add_history("gain_el", varlist)
|
---|
[1593] | 2094 | if insitu:
|
---|
| 2095 | self._assign(s)
|
---|
| 2096 | else:
|
---|
| 2097 | return s
|
---|
[710] | 2098 |
|
---|
[1862] | 2099 | @asaplog_post_dec
|
---|
[931] | 2100 | def freq_align(self, reftime=None, method='cubic', insitu=None):
|
---|
[1846] | 2101 | """\
|
---|
[513] | 2102 | Return a scan where all rows have been aligned in frequency/velocity.
|
---|
| 2103 | The alignment frequency frame (e.g. LSRK) is that set by function
|
---|
| 2104 | set_freqframe.
|
---|
[1846] | 2105 |
|
---|
[513] | 2106 | Parameters:
|
---|
[1855] | 2107 |
|
---|
[513] | 2108 | reftime: reference time to align at. By default, the time of
|
---|
| 2109 | the first row of data is used.
|
---|
[1855] | 2110 |
|
---|
[513] | 2111 | method: Interpolation method for regridding the spectra.
|
---|
[2431] | 2112 | Choose from 'nearest', 'linear', 'cubic' (default)
|
---|
| 2113 | and 'spline'
|
---|
[1855] | 2114 |
|
---|
[513] | 2115 | insitu: if False a new scantable is returned.
|
---|
| 2116 | Otherwise, the scaling is done in-situ
|
---|
| 2117 | The default is taken from .asaprc (False)
|
---|
[1846] | 2118 |
|
---|
[513] | 2119 | """
|
---|
[931] | 2120 | if insitu is None: insitu = rcParams["insitu"]
|
---|
[2429] | 2121 | oldInsitu = self._math._insitu()
|
---|
[876] | 2122 | self._math._setinsitu(insitu)
|
---|
[513] | 2123 | varlist = vars()
|
---|
[1593] | 2124 | reftime = reftime or ""
|
---|
[931] | 2125 | s = scantable(self._math._freq_align(self, reftime, method))
|
---|
[876] | 2126 | s._add_history("freq_align", varlist)
|
---|
[2429] | 2127 | self._math._setinsitu(oldInsitu)
|
---|
[2349] | 2128 | if insitu:
|
---|
| 2129 | self._assign(s)
|
---|
| 2130 | else:
|
---|
| 2131 | return s
|
---|
[513] | 2132 |
|
---|
[1862] | 2133 | @asaplog_post_dec
|
---|
[1725] | 2134 | def opacity(self, tau=None, insitu=None):
|
---|
[1846] | 2135 | """\
|
---|
[513] | 2136 | Apply an opacity correction. The data
|
---|
| 2137 | and Tsys are multiplied by the correction factor.
|
---|
[1846] | 2138 |
|
---|
[513] | 2139 | Parameters:
|
---|
[1855] | 2140 |
|
---|
[1689] | 2141 | tau: (list of) opacity from which the correction factor is
|
---|
[513] | 2142 | exp(tau*ZD)
|
---|
[1689] | 2143 | where ZD is the zenith-distance.
|
---|
| 2144 | If a list is provided, it has to be of length nIF,
|
---|
| 2145 | nIF*nPol or 1 and in order of IF/POL, e.g.
|
---|
| 2146 | [opif0pol0, opif0pol1, opif1pol0 ...]
|
---|
[1725] | 2147 | if tau is `None` the opacities are determined from a
|
---|
| 2148 | model.
|
---|
[1855] | 2149 |
|
---|
[513] | 2150 | insitu: if False a new scantable is returned.
|
---|
| 2151 | Otherwise, the scaling is done in-situ
|
---|
| 2152 | The default is taken from .asaprc (False)
|
---|
[1846] | 2153 |
|
---|
[513] | 2154 | """
|
---|
[2349] | 2155 | if insitu is None:
|
---|
| 2156 | insitu = rcParams['insitu']
|
---|
[876] | 2157 | self._math._setinsitu(insitu)
|
---|
[513] | 2158 | varlist = vars()
|
---|
[1689] | 2159 | if not hasattr(tau, "__len__"):
|
---|
| 2160 | tau = [tau]
|
---|
[876] | 2161 | s = scantable(self._math._opacity(self, tau))
|
---|
| 2162 | s._add_history("opacity", varlist)
|
---|
[2349] | 2163 | if insitu:
|
---|
| 2164 | self._assign(s)
|
---|
| 2165 | else:
|
---|
| 2166 | return s
|
---|
[513] | 2167 |
|
---|
[1862] | 2168 | @asaplog_post_dec
|
---|
[513] | 2169 | def bin(self, width=5, insitu=None):
|
---|
[1846] | 2170 | """\
|
---|
[513] | 2171 | Return a scan where all spectra have been binned up.
|
---|
[1846] | 2172 |
|
---|
[1348] | 2173 | Parameters:
|
---|
[1846] | 2174 |
|
---|
[513] | 2175 | width: The bin width (default=5) in pixels
|
---|
[1855] | 2176 |
|
---|
[513] | 2177 | insitu: if False a new scantable is returned.
|
---|
| 2178 | Otherwise, the scaling is done in-situ
|
---|
| 2179 | The default is taken from .asaprc (False)
|
---|
[1846] | 2180 |
|
---|
[513] | 2181 | """
|
---|
[2349] | 2182 | if insitu is None:
|
---|
| 2183 | insitu = rcParams['insitu']
|
---|
[876] | 2184 | self._math._setinsitu(insitu)
|
---|
[513] | 2185 | varlist = vars()
|
---|
[876] | 2186 | s = scantable(self._math._bin(self, width))
|
---|
[1118] | 2187 | s._add_history("bin", varlist)
|
---|
[1589] | 2188 | if insitu:
|
---|
| 2189 | self._assign(s)
|
---|
| 2190 | else:
|
---|
| 2191 | return s
|
---|
[513] | 2192 |
|
---|
[1862] | 2193 | @asaplog_post_dec
|
---|
[513] | 2194 | def resample(self, width=5, method='cubic', insitu=None):
|
---|
[1846] | 2195 | """\
|
---|
[1348] | 2196 | Return a scan where all spectra have been binned up.
|
---|
[1573] | 2197 |
|
---|
[1348] | 2198 | Parameters:
|
---|
[1846] | 2199 |
|
---|
[513] | 2200 | width: The bin width (default=5) in pixels
|
---|
[1855] | 2201 |
|
---|
[513] | 2202 | method: Interpolation method when correcting from a table.
|
---|
[2431] | 2203 | Values are 'nearest', 'linear', 'cubic' (default)
|
---|
| 2204 | and 'spline'
|
---|
[1855] | 2205 |
|
---|
[513] | 2206 | insitu: if False a new scantable is returned.
|
---|
| 2207 | Otherwise, the scaling is done in-situ
|
---|
| 2208 | The default is taken from .asaprc (False)
|
---|
[1846] | 2209 |
|
---|
[513] | 2210 | """
|
---|
[2349] | 2211 | if insitu is None:
|
---|
| 2212 | insitu = rcParams['insitu']
|
---|
[876] | 2213 | self._math._setinsitu(insitu)
|
---|
[513] | 2214 | varlist = vars()
|
---|
[876] | 2215 | s = scantable(self._math._resample(self, method, width))
|
---|
[1118] | 2216 | s._add_history("resample", varlist)
|
---|
[2349] | 2217 | if insitu:
|
---|
| 2218 | self._assign(s)
|
---|
| 2219 | else:
|
---|
| 2220 | return s
|
---|
[513] | 2221 |
|
---|
[1862] | 2222 | @asaplog_post_dec
|
---|
[946] | 2223 | def average_pol(self, mask=None, weight='none'):
|
---|
[1846] | 2224 | """\
|
---|
[946] | 2225 | Average the Polarisations together.
|
---|
[1846] | 2226 |
|
---|
[946] | 2227 | Parameters:
|
---|
[1846] | 2228 |
|
---|
[946] | 2229 | mask: An optional mask defining the region, where the
|
---|
| 2230 | averaging will be applied. The output will have all
|
---|
| 2231 | specified points masked.
|
---|
[1855] | 2232 |
|
---|
[946] | 2233 | weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
|
---|
| 2234 | weighted), or 'tsys' (1/Tsys**2 weighted)
|
---|
[1846] | 2235 |
|
---|
[946] | 2236 | """
|
---|
| 2237 | varlist = vars()
|
---|
[1593] | 2238 | mask = mask or ()
|
---|
[1010] | 2239 | s = scantable(self._math._averagepol(self, mask, weight.upper()))
|
---|
[1118] | 2240 | s._add_history("average_pol", varlist)
|
---|
[992] | 2241 | return s
|
---|
[513] | 2242 |
|
---|
[1862] | 2243 | @asaplog_post_dec
|
---|
[1145] | 2244 | def average_beam(self, mask=None, weight='none'):
|
---|
[1846] | 2245 | """\
|
---|
[1145] | 2246 | Average the Beams together.
|
---|
[1846] | 2247 |
|
---|
[1145] | 2248 | Parameters:
|
---|
| 2249 | mask: An optional mask defining the region, where the
|
---|
| 2250 | averaging will be applied. The output will have all
|
---|
| 2251 | specified points masked.
|
---|
[1855] | 2252 |
|
---|
[1145] | 2253 | weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
|
---|
| 2254 | weighted), or 'tsys' (1/Tsys**2 weighted)
|
---|
[1846] | 2255 |
|
---|
[1145] | 2256 | """
|
---|
| 2257 | varlist = vars()
|
---|
[1593] | 2258 | mask = mask or ()
|
---|
[1145] | 2259 | s = scantable(self._math._averagebeams(self, mask, weight.upper()))
|
---|
| 2260 | s._add_history("average_beam", varlist)
|
---|
| 2261 | return s
|
---|
| 2262 |
|
---|
[1586] | 2263 | def parallactify(self, pflag):
|
---|
[1846] | 2264 | """\
|
---|
[1843] | 2265 | Set a flag to indicate whether this data should be treated as having
|
---|
[1617] | 2266 | been 'parallactified' (total phase == 0.0)
|
---|
[1846] | 2267 |
|
---|
[1617] | 2268 | Parameters:
|
---|
[1855] | 2269 |
|
---|
[1843] | 2270 | pflag: Bool indicating whether to turn this on (True) or
|
---|
[1617] | 2271 | off (False)
|
---|
[1846] | 2272 |
|
---|
[1617] | 2273 | """
|
---|
[1586] | 2274 | varlist = vars()
|
---|
| 2275 | self._parallactify(pflag)
|
---|
| 2276 | self._add_history("parallactify", varlist)
|
---|
| 2277 |
|
---|
[1862] | 2278 | @asaplog_post_dec
|
---|
[992] | 2279 | def convert_pol(self, poltype=None):
|
---|
[1846] | 2280 | """\
|
---|
[992] | 2281 | Convert the data to a different polarisation type.
|
---|
[1565] | 2282 | Note that you will need cross-polarisation terms for most conversions.
|
---|
[1846] | 2283 |
|
---|
[992] | 2284 | Parameters:
|
---|
[1855] | 2285 |
|
---|
[992] | 2286 | poltype: The new polarisation type. Valid types are:
|
---|
[2431] | 2287 | 'linear', 'circular', 'stokes' and 'linpol'
|
---|
[1846] | 2288 |
|
---|
[992] | 2289 | """
|
---|
| 2290 | varlist = vars()
|
---|
[1859] | 2291 | s = scantable(self._math._convertpol(self, poltype))
|
---|
[1118] | 2292 | s._add_history("convert_pol", varlist)
|
---|
[992] | 2293 | return s
|
---|
| 2294 |
|
---|
[1862] | 2295 | @asaplog_post_dec
|
---|
[2269] | 2296 | def smooth(self, kernel="hanning", width=5.0, order=2, plot=False,
|
---|
| 2297 | insitu=None):
|
---|
[1846] | 2298 | """\
|
---|
[513] | 2299 | Smooth the spectrum by the specified kernel (conserving flux).
|
---|
[1846] | 2300 |
|
---|
[513] | 2301 | Parameters:
|
---|
[1846] | 2302 |
|
---|
[513] | 2303 | kernel: The type of smoothing kernel. Select from
|
---|
[1574] | 2304 | 'hanning' (default), 'gaussian', 'boxcar', 'rmedian'
|
---|
| 2305 | or 'poly'
|
---|
[1855] | 2306 |
|
---|
[513] | 2307 | width: The width of the kernel in pixels. For hanning this is
|
---|
| 2308 | ignored otherwise it defauls to 5 pixels.
|
---|
| 2309 | For 'gaussian' it is the Full Width Half
|
---|
| 2310 | Maximum. For 'boxcar' it is the full width.
|
---|
[1574] | 2311 | For 'rmedian' and 'poly' it is the half width.
|
---|
[1855] | 2312 |
|
---|
[1574] | 2313 | order: Optional parameter for 'poly' kernel (default is 2), to
|
---|
| 2314 | specify the order of the polnomial. Ignored by all other
|
---|
| 2315 | kernels.
|
---|
[1855] | 2316 |
|
---|
[1819] | 2317 | plot: plot the original and the smoothed spectra.
|
---|
| 2318 | In this each indivual fit has to be approved, by
|
---|
| 2319 | typing 'y' or 'n'
|
---|
[1855] | 2320 |
|
---|
[513] | 2321 | insitu: if False a new scantable is returned.
|
---|
| 2322 | Otherwise, the scaling is done in-situ
|
---|
| 2323 | The default is taken from .asaprc (False)
|
---|
[1846] | 2324 |
|
---|
[513] | 2325 | """
|
---|
| 2326 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 2327 | self._math._setinsitu(insitu)
|
---|
[513] | 2328 | varlist = vars()
|
---|
[1819] | 2329 |
|
---|
| 2330 | if plot: orgscan = self.copy()
|
---|
| 2331 |
|
---|
[1574] | 2332 | s = scantable(self._math._smooth(self, kernel.lower(), width, order))
|
---|
[876] | 2333 | s._add_history("smooth", varlist)
|
---|
[1819] | 2334 |
|
---|
[2610] | 2335 | action = 'H'
|
---|
[1819] | 2336 | if plot:
|
---|
[2150] | 2337 | from asap.asapplotter import new_asaplot
|
---|
| 2338 | theplot = new_asaplot(rcParams['plotter.gui'])
|
---|
[2535] | 2339 | from matplotlib import rc as rcp
|
---|
| 2340 | rcp('lines', linewidth=1)
|
---|
[2150] | 2341 | theplot.set_panels()
|
---|
[1819] | 2342 | ylab=s._get_ordinate_label()
|
---|
[2150] | 2343 | #theplot.palette(0,["#777777","red"])
|
---|
[1819] | 2344 | for r in xrange(s.nrow()):
|
---|
| 2345 | xsm=s._getabcissa(r)
|
---|
| 2346 | ysm=s._getspectrum(r)
|
---|
| 2347 | xorg=orgscan._getabcissa(r)
|
---|
| 2348 | yorg=orgscan._getspectrum(r)
|
---|
[2610] | 2349 | if action != "N": #skip plotting if rejecting all
|
---|
| 2350 | theplot.clear()
|
---|
| 2351 | theplot.hold()
|
---|
| 2352 | theplot.set_axes('ylabel',ylab)
|
---|
| 2353 | theplot.set_axes('xlabel',s._getabcissalabel(r))
|
---|
| 2354 | theplot.set_axes('title',s._getsourcename(r))
|
---|
| 2355 | theplot.set_line(label='Original',color="#777777")
|
---|
| 2356 | theplot.plot(xorg,yorg)
|
---|
| 2357 | theplot.set_line(label='Smoothed',color="red")
|
---|
| 2358 | theplot.plot(xsm,ysm)
|
---|
| 2359 | ### Ugly part for legend
|
---|
| 2360 | for i in [0,1]:
|
---|
| 2361 | theplot.subplots[0]['lines'].append(
|
---|
| 2362 | [theplot.subplots[0]['axes'].lines[i]]
|
---|
| 2363 | )
|
---|
| 2364 | theplot.release()
|
---|
| 2365 | ### Ugly part for legend
|
---|
| 2366 | theplot.subplots[0]['lines']=[]
|
---|
| 2367 | res = self._get_verify_action("Accept smoothing?",action)
|
---|
| 2368 | #print "IF%d, POL%d: got result = %s" %(s.getif(r),s.getpol(r),res)
|
---|
| 2369 | if r == 0: action = None
|
---|
| 2370 | #res = raw_input("Accept smoothing ([y]/n): ")
|
---|
[1819] | 2371 | if res.upper() == 'N':
|
---|
[2610] | 2372 | # reject for the current rows
|
---|
[1819] | 2373 | s._setspectrum(yorg, r)
|
---|
[2610] | 2374 | elif res.upper() == 'R':
|
---|
| 2375 | # reject all the following rows
|
---|
| 2376 | action = "N"
|
---|
| 2377 | s._setspectrum(yorg, r)
|
---|
| 2378 | elif res.upper() == 'A':
|
---|
| 2379 | # accept all the following rows
|
---|
| 2380 | break
|
---|
[2150] | 2381 | theplot.quit()
|
---|
| 2382 | del theplot
|
---|
[1819] | 2383 | del orgscan
|
---|
| 2384 |
|
---|
[876] | 2385 | if insitu: self._assign(s)
|
---|
| 2386 | else: return s
|
---|
[513] | 2387 |
|
---|
[2186] | 2388 | @asaplog_post_dec
|
---|
[2435] | 2389 | def regrid_channel(self, width=5, plot=False, insitu=None):
|
---|
| 2390 | """\
|
---|
| 2391 | Regrid the spectra by the specified channel width
|
---|
| 2392 |
|
---|
| 2393 | Parameters:
|
---|
| 2394 |
|
---|
| 2395 | width: The channel width (float) of regridded spectra
|
---|
| 2396 | in the current spectral unit.
|
---|
| 2397 |
|
---|
| 2398 | plot: [NOT IMPLEMENTED YET]
|
---|
| 2399 | plot the original and the regridded spectra.
|
---|
| 2400 | In this each indivual fit has to be approved, by
|
---|
| 2401 | typing 'y' or 'n'
|
---|
| 2402 |
|
---|
| 2403 | insitu: if False a new scantable is returned.
|
---|
| 2404 | Otherwise, the scaling is done in-situ
|
---|
| 2405 | The default is taken from .asaprc (False)
|
---|
| 2406 |
|
---|
| 2407 | """
|
---|
| 2408 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2409 | varlist = vars()
|
---|
| 2410 |
|
---|
| 2411 | if plot:
|
---|
| 2412 | asaplog.post()
|
---|
| 2413 | asaplog.push("Verification plot is not implemtnetd yet.")
|
---|
| 2414 | asaplog.post("WARN")
|
---|
| 2415 |
|
---|
| 2416 | s = self.copy()
|
---|
| 2417 | s._regrid_specchan(width)
|
---|
| 2418 |
|
---|
| 2419 | s._add_history("regrid_channel", varlist)
|
---|
| 2420 |
|
---|
| 2421 | # if plot:
|
---|
| 2422 | # from asap.asapplotter import new_asaplot
|
---|
| 2423 | # theplot = new_asaplot(rcParams['plotter.gui'])
|
---|
[2535] | 2424 | # from matplotlib import rc as rcp
|
---|
| 2425 | # rcp('lines', linewidth=1)
|
---|
[2435] | 2426 | # theplot.set_panels()
|
---|
| 2427 | # ylab=s._get_ordinate_label()
|
---|
| 2428 | # #theplot.palette(0,["#777777","red"])
|
---|
| 2429 | # for r in xrange(s.nrow()):
|
---|
| 2430 | # xsm=s._getabcissa(r)
|
---|
| 2431 | # ysm=s._getspectrum(r)
|
---|
| 2432 | # xorg=orgscan._getabcissa(r)
|
---|
| 2433 | # yorg=orgscan._getspectrum(r)
|
---|
| 2434 | # theplot.clear()
|
---|
| 2435 | # theplot.hold()
|
---|
| 2436 | # theplot.set_axes('ylabel',ylab)
|
---|
| 2437 | # theplot.set_axes('xlabel',s._getabcissalabel(r))
|
---|
| 2438 | # theplot.set_axes('title',s._getsourcename(r))
|
---|
| 2439 | # theplot.set_line(label='Original',color="#777777")
|
---|
| 2440 | # theplot.plot(xorg,yorg)
|
---|
| 2441 | # theplot.set_line(label='Smoothed',color="red")
|
---|
| 2442 | # theplot.plot(xsm,ysm)
|
---|
| 2443 | # ### Ugly part for legend
|
---|
| 2444 | # for i in [0,1]:
|
---|
| 2445 | # theplot.subplots[0]['lines'].append(
|
---|
| 2446 | # [theplot.subplots[0]['axes'].lines[i]]
|
---|
| 2447 | # )
|
---|
| 2448 | # theplot.release()
|
---|
| 2449 | # ### Ugly part for legend
|
---|
| 2450 | # theplot.subplots[0]['lines']=[]
|
---|
| 2451 | # res = raw_input("Accept smoothing ([y]/n): ")
|
---|
| 2452 | # if res.upper() == 'N':
|
---|
| 2453 | # s._setspectrum(yorg, r)
|
---|
| 2454 | # theplot.quit()
|
---|
| 2455 | # del theplot
|
---|
| 2456 | # del orgscan
|
---|
| 2457 |
|
---|
| 2458 | if insitu: self._assign(s)
|
---|
| 2459 | else: return s
|
---|
| 2460 |
|
---|
| 2461 | @asaplog_post_dec
|
---|
[2186] | 2462 | def _parse_wn(self, wn):
|
---|
| 2463 | if isinstance(wn, list) or isinstance(wn, tuple):
|
---|
| 2464 | return wn
|
---|
| 2465 | elif isinstance(wn, int):
|
---|
| 2466 | return [ wn ]
|
---|
| 2467 | elif isinstance(wn, str):
|
---|
[2277] | 2468 | if '-' in wn: # case 'a-b' : return [a,a+1,...,b-1,b]
|
---|
[2186] | 2469 | val = wn.split('-')
|
---|
| 2470 | val = [int(val[0]), int(val[1])]
|
---|
| 2471 | val.sort()
|
---|
| 2472 | res = [i for i in xrange(val[0], val[1]+1)]
|
---|
[2277] | 2473 | elif wn[:2] == '<=' or wn[:2] == '=<': # cases '<=a','=<a' : return [0,1,...,a-1,a]
|
---|
[2186] | 2474 | val = int(wn[2:])+1
|
---|
| 2475 | res = [i for i in xrange(val)]
|
---|
[2277] | 2476 | elif wn[-2:] == '>=' or wn[-2:] == '=>': # cases 'a>=','a=>' : return [0,1,...,a-1,a]
|
---|
[2186] | 2477 | val = int(wn[:-2])+1
|
---|
| 2478 | res = [i for i in xrange(val)]
|
---|
[2277] | 2479 | elif wn[0] == '<': # case '<a' : return [0,1,...,a-2,a-1]
|
---|
[2186] | 2480 | val = int(wn[1:])
|
---|
| 2481 | res = [i for i in xrange(val)]
|
---|
[2277] | 2482 | elif wn[-1] == '>': # case 'a>' : return [0,1,...,a-2,a-1]
|
---|
[2186] | 2483 | val = int(wn[:-1])
|
---|
| 2484 | res = [i for i in xrange(val)]
|
---|
[2411] | 2485 | elif wn[:2] == '>=' or wn[:2] == '=>': # cases '>=a','=>a' : return [a,-999], which is
|
---|
| 2486 | # then interpreted in C++
|
---|
| 2487 | # side as [a,a+1,...,a_nyq]
|
---|
| 2488 | # (CAS-3759)
|
---|
[2186] | 2489 | val = int(wn[2:])
|
---|
[2411] | 2490 | res = [val, -999]
|
---|
| 2491 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
| 2492 | elif wn[-2:] == '<=' or wn[-2:] == '=<': # cases 'a<=','a=<' : return [a,-999], which is
|
---|
| 2493 | # then interpreted in C++
|
---|
| 2494 | # side as [a,a+1,...,a_nyq]
|
---|
| 2495 | # (CAS-3759)
|
---|
[2186] | 2496 | val = int(wn[:-2])
|
---|
[2411] | 2497 | res = [val, -999]
|
---|
| 2498 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
| 2499 | elif wn[0] == '>': # case '>a' : return [a+1,-999], which is
|
---|
| 2500 | # then interpreted in C++
|
---|
| 2501 | # side as [a+1,a+2,...,a_nyq]
|
---|
| 2502 | # (CAS-3759)
|
---|
[2186] | 2503 | val = int(wn[1:])+1
|
---|
[2411] | 2504 | res = [val, -999]
|
---|
| 2505 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
| 2506 | elif wn[-1] == '<': # case 'a<' : return [a+1,-999], which is
|
---|
| 2507 | # then interpreted in C++
|
---|
| 2508 | # side as [a+1,a+2,...,a_nyq]
|
---|
| 2509 | # (CAS-3759)
|
---|
[2186] | 2510 | val = int(wn[:-1])+1
|
---|
[2411] | 2511 | res = [val, -999]
|
---|
| 2512 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
[2012] | 2513 |
|
---|
[2186] | 2514 | return res
|
---|
| 2515 | else:
|
---|
| 2516 | msg = 'wrong value given for addwn/rejwn'
|
---|
| 2517 | raise RuntimeError(msg)
|
---|
| 2518 |
|
---|
| 2519 |
|
---|
[1862] | 2520 | @asaplog_post_dec
|
---|
[2277] | 2521 | def sinusoid_baseline(self, insitu=None, mask=None, applyfft=None,
|
---|
[2269] | 2522 | fftmethod=None, fftthresh=None,
|
---|
| 2523 | addwn=None, rejwn=None, clipthresh=None,
|
---|
| 2524 | clipniter=None, plot=None,
|
---|
| 2525 | getresidual=None, showprogress=None,
|
---|
[2641] | 2526 | minnrow=None, outlog=None, blfile=None, csvformat=None):
|
---|
[2047] | 2527 | """\
|
---|
[2349] | 2528 | Return a scan which has been baselined (all rows) with sinusoidal
|
---|
| 2529 | functions.
|
---|
| 2530 |
|
---|
[2047] | 2531 | Parameters:
|
---|
[2186] | 2532 | insitu: if False a new scantable is returned.
|
---|
[2081] | 2533 | Otherwise, the scaling is done in-situ
|
---|
| 2534 | The default is taken from .asaprc (False)
|
---|
[2186] | 2535 | mask: an optional mask
|
---|
| 2536 | applyfft: if True use some method, such as FFT, to find
|
---|
| 2537 | strongest sinusoidal components in the wavenumber
|
---|
| 2538 | domain to be used for baseline fitting.
|
---|
| 2539 | default is True.
|
---|
| 2540 | fftmethod: method to find the strong sinusoidal components.
|
---|
| 2541 | now only 'fft' is available and it is the default.
|
---|
| 2542 | fftthresh: the threshold to select wave numbers to be used for
|
---|
| 2543 | fitting from the distribution of amplitudes in the
|
---|
| 2544 | wavenumber domain.
|
---|
| 2545 | both float and string values accepted.
|
---|
| 2546 | given a float value, the unit is set to sigma.
|
---|
| 2547 | for string values, allowed formats include:
|
---|
[2349] | 2548 | 'xsigma' or 'x' (= x-sigma level. e.g.,
|
---|
| 2549 | '3sigma'), or
|
---|
[2186] | 2550 | 'topx' (= the x strongest ones, e.g. 'top5').
|
---|
| 2551 | default is 3.0 (unit: sigma).
|
---|
| 2552 | addwn: the additional wave numbers to be used for fitting.
|
---|
| 2553 | list or integer value is accepted to specify every
|
---|
| 2554 | wave numbers. also string value can be used in case
|
---|
| 2555 | you need to specify wave numbers in a certain range,
|
---|
| 2556 | e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b),
|
---|
| 2557 | '<a' (= 0,1,...,a-2,a-1),
|
---|
| 2558 | '>=a' (= a, a+1, ... up to the maximum wave
|
---|
| 2559 | number corresponding to the Nyquist
|
---|
| 2560 | frequency for the case of FFT).
|
---|
[2411] | 2561 | default is [0].
|
---|
[2186] | 2562 | rejwn: the wave numbers NOT to be used for fitting.
|
---|
| 2563 | can be set just as addwn but has higher priority:
|
---|
| 2564 | wave numbers which are specified both in addwn
|
---|
| 2565 | and rejwn will NOT be used. default is [].
|
---|
[2081] | 2566 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
[2349] | 2567 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 2568 | clipping (default is 0)
|
---|
[2081] | 2569 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 2570 | plot the fit and the residual. In this each
|
---|
| 2571 | indivual fit has to be approved, by typing 'y'
|
---|
| 2572 | or 'n'
|
---|
| 2573 | getresidual: if False, returns best-fit values instead of
|
---|
| 2574 | residual. (default is True)
|
---|
[2189] | 2575 | showprogress: show progress status for large data.
|
---|
| 2576 | default is True.
|
---|
| 2577 | minnrow: minimum number of input spectra to show.
|
---|
| 2578 | default is 1000.
|
---|
[2081] | 2579 | outlog: Output the coefficients of the best-fit
|
---|
| 2580 | function to logger (default is False)
|
---|
| 2581 | blfile: Name of a text file in which the best-fit
|
---|
| 2582 | parameter values to be written
|
---|
[2186] | 2583 | (default is '': no file/logger output)
|
---|
[2641] | 2584 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[2047] | 2585 |
|
---|
| 2586 | Example:
|
---|
[2349] | 2587 | # return a scan baselined by a combination of sinusoidal curves
|
---|
| 2588 | # having wave numbers in spectral window up to 10,
|
---|
[2047] | 2589 | # also with 3-sigma clipping, iteration up to 4 times
|
---|
[2186] | 2590 | bscan = scan.sinusoid_baseline(addwn='<=10',clipthresh=3.0,clipniter=4)
|
---|
[2081] | 2591 |
|
---|
| 2592 | Note:
|
---|
| 2593 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 2594 | based on specunit of 'channel'.
|
---|
[2047] | 2595 | """
|
---|
| 2596 |
|
---|
[2186] | 2597 | try:
|
---|
| 2598 | varlist = vars()
|
---|
[2047] | 2599 |
|
---|
[2186] | 2600 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2601 | if insitu:
|
---|
| 2602 | workscan = self
|
---|
| 2603 | else:
|
---|
| 2604 | workscan = self.copy()
|
---|
| 2605 |
|
---|
[2410] | 2606 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
| 2607 | if mask is None: mask = []
|
---|
[2186] | 2608 | if applyfft is None: applyfft = True
|
---|
| 2609 | if fftmethod is None: fftmethod = 'fft'
|
---|
| 2610 | if fftthresh is None: fftthresh = 3.0
|
---|
[2411] | 2611 | if addwn is None: addwn = [0]
|
---|
[2186] | 2612 | if rejwn is None: rejwn = []
|
---|
| 2613 | if clipthresh is None: clipthresh = 3.0
|
---|
| 2614 | if clipniter is None: clipniter = 0
|
---|
| 2615 | if plot is None: plot = False
|
---|
| 2616 | if getresidual is None: getresidual = True
|
---|
[2189] | 2617 | if showprogress is None: showprogress = True
|
---|
| 2618 | if minnrow is None: minnrow = 1000
|
---|
[2186] | 2619 | if outlog is None: outlog = False
|
---|
| 2620 | if blfile is None: blfile = ''
|
---|
[2641] | 2621 | if csvformat is None: csvformat = False
|
---|
[2047] | 2622 |
|
---|
[2641] | 2623 | if csvformat:
|
---|
| 2624 | scsvformat = "T"
|
---|
| 2625 | else:
|
---|
| 2626 | scsvformat = "F"
|
---|
| 2627 |
|
---|
[2081] | 2628 | #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method.
|
---|
[2349] | 2629 | workscan._sinusoid_baseline(mask, applyfft, fftmethod.lower(),
|
---|
| 2630 | str(fftthresh).lower(),
|
---|
| 2631 | workscan._parse_wn(addwn),
|
---|
[2643] | 2632 | workscan._parse_wn(rejwn),
|
---|
| 2633 | clipthresh, clipniter,
|
---|
| 2634 | getresidual,
|
---|
[2349] | 2635 | pack_progress_params(showprogress,
|
---|
[2641] | 2636 | minnrow),
|
---|
| 2637 | outlog, scsvformat+blfile)
|
---|
[2186] | 2638 | workscan._add_history('sinusoid_baseline', varlist)
|
---|
[2047] | 2639 |
|
---|
| 2640 | if insitu:
|
---|
| 2641 | self._assign(workscan)
|
---|
| 2642 | else:
|
---|
| 2643 | return workscan
|
---|
| 2644 |
|
---|
| 2645 | except RuntimeError, e:
|
---|
[2186] | 2646 | raise_fitting_failure_exception(e)
|
---|
[2047] | 2647 |
|
---|
| 2648 |
|
---|
[2186] | 2649 | @asaplog_post_dec
|
---|
[2349] | 2650 | def auto_sinusoid_baseline(self, insitu=None, mask=None, applyfft=None,
|
---|
| 2651 | fftmethod=None, fftthresh=None,
|
---|
| 2652 | addwn=None, rejwn=None, clipthresh=None,
|
---|
| 2653 | clipniter=None, edge=None, threshold=None,
|
---|
| 2654 | chan_avg_limit=None, plot=None,
|
---|
| 2655 | getresidual=None, showprogress=None,
|
---|
[2641] | 2656 | minnrow=None, outlog=None, blfile=None, csvformat=None):
|
---|
[2047] | 2657 | """\
|
---|
[2349] | 2658 | Return a scan which has been baselined (all rows) with sinusoidal
|
---|
| 2659 | functions.
|
---|
[2047] | 2660 | Spectral lines are detected first using linefinder and masked out
|
---|
| 2661 | to avoid them affecting the baseline solution.
|
---|
| 2662 |
|
---|
| 2663 | Parameters:
|
---|
[2189] | 2664 | insitu: if False a new scantable is returned.
|
---|
| 2665 | Otherwise, the scaling is done in-situ
|
---|
| 2666 | The default is taken from .asaprc (False)
|
---|
| 2667 | mask: an optional mask retreived from scantable
|
---|
| 2668 | applyfft: if True use some method, such as FFT, to find
|
---|
| 2669 | strongest sinusoidal components in the wavenumber
|
---|
| 2670 | domain to be used for baseline fitting.
|
---|
| 2671 | default is True.
|
---|
| 2672 | fftmethod: method to find the strong sinusoidal components.
|
---|
| 2673 | now only 'fft' is available and it is the default.
|
---|
| 2674 | fftthresh: the threshold to select wave numbers to be used for
|
---|
| 2675 | fitting from the distribution of amplitudes in the
|
---|
| 2676 | wavenumber domain.
|
---|
| 2677 | both float and string values accepted.
|
---|
| 2678 | given a float value, the unit is set to sigma.
|
---|
| 2679 | for string values, allowed formats include:
|
---|
[2349] | 2680 | 'xsigma' or 'x' (= x-sigma level. e.g.,
|
---|
| 2681 | '3sigma'), or
|
---|
[2189] | 2682 | 'topx' (= the x strongest ones, e.g. 'top5').
|
---|
| 2683 | default is 3.0 (unit: sigma).
|
---|
| 2684 | addwn: the additional wave numbers to be used for fitting.
|
---|
| 2685 | list or integer value is accepted to specify every
|
---|
| 2686 | wave numbers. also string value can be used in case
|
---|
| 2687 | you need to specify wave numbers in a certain range,
|
---|
| 2688 | e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b),
|
---|
| 2689 | '<a' (= 0,1,...,a-2,a-1),
|
---|
| 2690 | '>=a' (= a, a+1, ... up to the maximum wave
|
---|
| 2691 | number corresponding to the Nyquist
|
---|
| 2692 | frequency for the case of FFT).
|
---|
[2411] | 2693 | default is [0].
|
---|
[2189] | 2694 | rejwn: the wave numbers NOT to be used for fitting.
|
---|
| 2695 | can be set just as addwn but has higher priority:
|
---|
| 2696 | wave numbers which are specified both in addwn
|
---|
| 2697 | and rejwn will NOT be used. default is [].
|
---|
| 2698 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
[2349] | 2699 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 2700 | clipping (default is 0)
|
---|
[2189] | 2701 | edge: an optional number of channel to drop at
|
---|
| 2702 | the edge of spectrum. If only one value is
|
---|
| 2703 | specified, the same number will be dropped
|
---|
| 2704 | from both sides of the spectrum. Default
|
---|
| 2705 | is to keep all channels. Nested tuples
|
---|
| 2706 | represent individual edge selection for
|
---|
| 2707 | different IFs (a number of spectral channels
|
---|
| 2708 | can be different)
|
---|
| 2709 | threshold: the threshold used by line finder. It is
|
---|
| 2710 | better to keep it large as only strong lines
|
---|
| 2711 | affect the baseline solution.
|
---|
| 2712 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 2713 | channels to average during the search of
|
---|
| 2714 | weak and broad lines. The default is no
|
---|
| 2715 | averaging (and no search for weak lines).
|
---|
| 2716 | If such lines can affect the fitted baseline
|
---|
| 2717 | (e.g. a high order polynomial is fitted),
|
---|
| 2718 | increase this parameter (usually values up
|
---|
| 2719 | to 8 are reasonable). Most users of this
|
---|
| 2720 | method should find the default value sufficient.
|
---|
| 2721 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 2722 | plot the fit and the residual. In this each
|
---|
| 2723 | indivual fit has to be approved, by typing 'y'
|
---|
| 2724 | or 'n'
|
---|
| 2725 | getresidual: if False, returns best-fit values instead of
|
---|
| 2726 | residual. (default is True)
|
---|
| 2727 | showprogress: show progress status for large data.
|
---|
| 2728 | default is True.
|
---|
| 2729 | minnrow: minimum number of input spectra to show.
|
---|
| 2730 | default is 1000.
|
---|
| 2731 | outlog: Output the coefficients of the best-fit
|
---|
| 2732 | function to logger (default is False)
|
---|
| 2733 | blfile: Name of a text file in which the best-fit
|
---|
| 2734 | parameter values to be written
|
---|
| 2735 | (default is "": no file/logger output)
|
---|
[2641] | 2736 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[2047] | 2737 |
|
---|
| 2738 | Example:
|
---|
[2186] | 2739 | bscan = scan.auto_sinusoid_baseline(addwn='<=10', insitu=False)
|
---|
[2081] | 2740 |
|
---|
| 2741 | Note:
|
---|
| 2742 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 2743 | based on specunit of 'channel'.
|
---|
[2047] | 2744 | """
|
---|
| 2745 |
|
---|
[2186] | 2746 | try:
|
---|
| 2747 | varlist = vars()
|
---|
[2047] | 2748 |
|
---|
[2186] | 2749 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2750 | if insitu:
|
---|
| 2751 | workscan = self
|
---|
[2047] | 2752 | else:
|
---|
[2186] | 2753 | workscan = self.copy()
|
---|
| 2754 |
|
---|
[2410] | 2755 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
| 2756 | if mask is None: mask = []
|
---|
[2186] | 2757 | if applyfft is None: applyfft = True
|
---|
| 2758 | if fftmethod is None: fftmethod = 'fft'
|
---|
| 2759 | if fftthresh is None: fftthresh = 3.0
|
---|
[2411] | 2760 | if addwn is None: addwn = [0]
|
---|
[2186] | 2761 | if rejwn is None: rejwn = []
|
---|
| 2762 | if clipthresh is None: clipthresh = 3.0
|
---|
| 2763 | if clipniter is None: clipniter = 0
|
---|
| 2764 | if edge is None: edge = (0,0)
|
---|
| 2765 | if threshold is None: threshold = 3
|
---|
| 2766 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 2767 | if plot is None: plot = False
|
---|
| 2768 | if getresidual is None: getresidual = True
|
---|
[2189] | 2769 | if showprogress is None: showprogress = True
|
---|
| 2770 | if minnrow is None: minnrow = 1000
|
---|
[2186] | 2771 | if outlog is None: outlog = False
|
---|
| 2772 | if blfile is None: blfile = ''
|
---|
[2641] | 2773 | if csvformat is None: csvformat = False
|
---|
[2047] | 2774 |
|
---|
[2641] | 2775 | if csvformat:
|
---|
| 2776 | scsvformat = "T"
|
---|
| 2777 | else:
|
---|
| 2778 | scsvformat = "F"
|
---|
| 2779 |
|
---|
[2277] | 2780 | #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method.
|
---|
[2349] | 2781 | workscan._auto_sinusoid_baseline(mask, applyfft,
|
---|
| 2782 | fftmethod.lower(),
|
---|
| 2783 | str(fftthresh).lower(),
|
---|
| 2784 | workscan._parse_wn(addwn),
|
---|
| 2785 | workscan._parse_wn(rejwn),
|
---|
| 2786 | clipthresh, clipniter,
|
---|
| 2787 | normalise_edge_param(edge),
|
---|
| 2788 | threshold, chan_avg_limit,
|
---|
| 2789 | getresidual,
|
---|
| 2790 | pack_progress_params(showprogress,
|
---|
| 2791 | minnrow),
|
---|
[2641] | 2792 | outlog, scsvformat+blfile)
|
---|
[2047] | 2793 | workscan._add_history("auto_sinusoid_baseline", varlist)
|
---|
| 2794 |
|
---|
| 2795 | if insitu:
|
---|
| 2796 | self._assign(workscan)
|
---|
| 2797 | else:
|
---|
| 2798 | return workscan
|
---|
| 2799 |
|
---|
| 2800 | except RuntimeError, e:
|
---|
[2186] | 2801 | raise_fitting_failure_exception(e)
|
---|
[2047] | 2802 |
|
---|
| 2803 | @asaplog_post_dec
|
---|
[2349] | 2804 | def cspline_baseline(self, insitu=None, mask=None, npiece=None,
|
---|
| 2805 | clipthresh=None, clipniter=None, plot=None,
|
---|
| 2806 | getresidual=None, showprogress=None, minnrow=None,
|
---|
[2641] | 2807 | outlog=None, blfile=None, csvformat=None):
|
---|
[1846] | 2808 | """\
|
---|
[2349] | 2809 | Return a scan which has been baselined (all rows) by cubic spline
|
---|
| 2810 | function (piecewise cubic polynomial).
|
---|
| 2811 |
|
---|
[513] | 2812 | Parameters:
|
---|
[2189] | 2813 | insitu: If False a new scantable is returned.
|
---|
| 2814 | Otherwise, the scaling is done in-situ
|
---|
| 2815 | The default is taken from .asaprc (False)
|
---|
| 2816 | mask: An optional mask
|
---|
| 2817 | npiece: Number of pieces. (default is 2)
|
---|
| 2818 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
[2349] | 2819 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 2820 | clipping (default is 0)
|
---|
[2189] | 2821 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 2822 | plot the fit and the residual. In this each
|
---|
| 2823 | indivual fit has to be approved, by typing 'y'
|
---|
| 2824 | or 'n'
|
---|
| 2825 | getresidual: if False, returns best-fit values instead of
|
---|
| 2826 | residual. (default is True)
|
---|
| 2827 | showprogress: show progress status for large data.
|
---|
| 2828 | default is True.
|
---|
| 2829 | minnrow: minimum number of input spectra to show.
|
---|
| 2830 | default is 1000.
|
---|
| 2831 | outlog: Output the coefficients of the best-fit
|
---|
| 2832 | function to logger (default is False)
|
---|
| 2833 | blfile: Name of a text file in which the best-fit
|
---|
| 2834 | parameter values to be written
|
---|
| 2835 | (default is "": no file/logger output)
|
---|
[2641] | 2836 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[1846] | 2837 |
|
---|
[2012] | 2838 | Example:
|
---|
[2349] | 2839 | # return a scan baselined by a cubic spline consisting of 2 pieces
|
---|
| 2840 | # (i.e., 1 internal knot),
|
---|
[2012] | 2841 | # also with 3-sigma clipping, iteration up to 4 times
|
---|
| 2842 | bscan = scan.cspline_baseline(npiece=2,clipthresh=3.0,clipniter=4)
|
---|
[2081] | 2843 |
|
---|
| 2844 | Note:
|
---|
| 2845 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 2846 | based on specunit of 'channel'.
|
---|
[2012] | 2847 | """
|
---|
| 2848 |
|
---|
[2186] | 2849 | try:
|
---|
| 2850 | varlist = vars()
|
---|
| 2851 |
|
---|
| 2852 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2853 | if insitu:
|
---|
| 2854 | workscan = self
|
---|
| 2855 | else:
|
---|
| 2856 | workscan = self.copy()
|
---|
[1855] | 2857 |
|
---|
[2410] | 2858 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
| 2859 | if mask is None: mask = []
|
---|
[2189] | 2860 | if npiece is None: npiece = 2
|
---|
| 2861 | if clipthresh is None: clipthresh = 3.0
|
---|
| 2862 | if clipniter is None: clipniter = 0
|
---|
| 2863 | if plot is None: plot = False
|
---|
| 2864 | if getresidual is None: getresidual = True
|
---|
| 2865 | if showprogress is None: showprogress = True
|
---|
| 2866 | if minnrow is None: minnrow = 1000
|
---|
| 2867 | if outlog is None: outlog = False
|
---|
| 2868 | if blfile is None: blfile = ''
|
---|
[2641] | 2869 | if csvformat is None: csvformat = False
|
---|
[1855] | 2870 |
|
---|
[2641] | 2871 | if csvformat:
|
---|
| 2872 | scsvformat = "T"
|
---|
| 2873 | else:
|
---|
| 2874 | scsvformat = "F"
|
---|
| 2875 |
|
---|
[2012] | 2876 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
[2349] | 2877 | workscan._cspline_baseline(mask, npiece, clipthresh, clipniter,
|
---|
| 2878 | getresidual,
|
---|
| 2879 | pack_progress_params(showprogress,
|
---|
[2641] | 2880 | minnrow),
|
---|
| 2881 | outlog, scsvformat+blfile)
|
---|
[2012] | 2882 | workscan._add_history("cspline_baseline", varlist)
|
---|
| 2883 |
|
---|
| 2884 | if insitu:
|
---|
| 2885 | self._assign(workscan)
|
---|
| 2886 | else:
|
---|
| 2887 | return workscan
|
---|
| 2888 |
|
---|
| 2889 | except RuntimeError, e:
|
---|
[2186] | 2890 | raise_fitting_failure_exception(e)
|
---|
[1855] | 2891 |
|
---|
[2186] | 2892 | @asaplog_post_dec
|
---|
[2349] | 2893 | def auto_cspline_baseline(self, insitu=None, mask=None, npiece=None,
|
---|
| 2894 | clipthresh=None, clipniter=None,
|
---|
| 2895 | edge=None, threshold=None, chan_avg_limit=None,
|
---|
| 2896 | getresidual=None, plot=None,
|
---|
| 2897 | showprogress=None, minnrow=None, outlog=None,
|
---|
[2641] | 2898 | blfile=None, csvformat=None):
|
---|
[2012] | 2899 | """\
|
---|
| 2900 | Return a scan which has been baselined (all rows) by cubic spline
|
---|
| 2901 | function (piecewise cubic polynomial).
|
---|
| 2902 | Spectral lines are detected first using linefinder and masked out
|
---|
| 2903 | to avoid them affecting the baseline solution.
|
---|
| 2904 |
|
---|
| 2905 | Parameters:
|
---|
[2189] | 2906 | insitu: if False a new scantable is returned.
|
---|
| 2907 | Otherwise, the scaling is done in-situ
|
---|
| 2908 | The default is taken from .asaprc (False)
|
---|
| 2909 | mask: an optional mask retreived from scantable
|
---|
| 2910 | npiece: Number of pieces. (default is 2)
|
---|
| 2911 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
[2349] | 2912 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 2913 | clipping (default is 0)
|
---|
[2189] | 2914 | edge: an optional number of channel to drop at
|
---|
| 2915 | the edge of spectrum. If only one value is
|
---|
| 2916 | specified, the same number will be dropped
|
---|
| 2917 | from both sides of the spectrum. Default
|
---|
| 2918 | is to keep all channels. Nested tuples
|
---|
| 2919 | represent individual edge selection for
|
---|
| 2920 | different IFs (a number of spectral channels
|
---|
| 2921 | can be different)
|
---|
| 2922 | threshold: the threshold used by line finder. It is
|
---|
| 2923 | better to keep it large as only strong lines
|
---|
| 2924 | affect the baseline solution.
|
---|
| 2925 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 2926 | channels to average during the search of
|
---|
| 2927 | weak and broad lines. The default is no
|
---|
| 2928 | averaging (and no search for weak lines).
|
---|
| 2929 | If such lines can affect the fitted baseline
|
---|
| 2930 | (e.g. a high order polynomial is fitted),
|
---|
| 2931 | increase this parameter (usually values up
|
---|
| 2932 | to 8 are reasonable). Most users of this
|
---|
| 2933 | method should find the default value sufficient.
|
---|
| 2934 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 2935 | plot the fit and the residual. In this each
|
---|
| 2936 | indivual fit has to be approved, by typing 'y'
|
---|
| 2937 | or 'n'
|
---|
| 2938 | getresidual: if False, returns best-fit values instead of
|
---|
| 2939 | residual. (default is True)
|
---|
| 2940 | showprogress: show progress status for large data.
|
---|
| 2941 | default is True.
|
---|
| 2942 | minnrow: minimum number of input spectra to show.
|
---|
| 2943 | default is 1000.
|
---|
| 2944 | outlog: Output the coefficients of the best-fit
|
---|
| 2945 | function to logger (default is False)
|
---|
| 2946 | blfile: Name of a text file in which the best-fit
|
---|
| 2947 | parameter values to be written
|
---|
| 2948 | (default is "": no file/logger output)
|
---|
[2641] | 2949 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[1846] | 2950 |
|
---|
[1907] | 2951 | Example:
|
---|
[2012] | 2952 | bscan = scan.auto_cspline_baseline(npiece=3, insitu=False)
|
---|
[2081] | 2953 |
|
---|
| 2954 | Note:
|
---|
| 2955 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 2956 | based on specunit of 'channel'.
|
---|
[2012] | 2957 | """
|
---|
[1846] | 2958 |
|
---|
[2186] | 2959 | try:
|
---|
| 2960 | varlist = vars()
|
---|
[2012] | 2961 |
|
---|
[2186] | 2962 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2963 | if insitu:
|
---|
| 2964 | workscan = self
|
---|
[1391] | 2965 | else:
|
---|
[2186] | 2966 | workscan = self.copy()
|
---|
| 2967 |
|
---|
[2410] | 2968 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
| 2969 | if mask is None: mask = []
|
---|
[2186] | 2970 | if npiece is None: npiece = 2
|
---|
| 2971 | if clipthresh is None: clipthresh = 3.0
|
---|
| 2972 | if clipniter is None: clipniter = 0
|
---|
| 2973 | if edge is None: edge = (0, 0)
|
---|
| 2974 | if threshold is None: threshold = 3
|
---|
| 2975 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 2976 | if plot is None: plot = False
|
---|
| 2977 | if getresidual is None: getresidual = True
|
---|
[2189] | 2978 | if showprogress is None: showprogress = True
|
---|
| 2979 | if minnrow is None: minnrow = 1000
|
---|
[2186] | 2980 | if outlog is None: outlog = False
|
---|
| 2981 | if blfile is None: blfile = ''
|
---|
[2641] | 2982 | if csvformat is None: csvformat = False
|
---|
[1819] | 2983 |
|
---|
[2641] | 2984 | if csvformat:
|
---|
| 2985 | scsvformat = "T"
|
---|
| 2986 | else:
|
---|
| 2987 | scsvformat = "F"
|
---|
| 2988 |
|
---|
[2277] | 2989 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
[2269] | 2990 | workscan._auto_cspline_baseline(mask, npiece, clipthresh,
|
---|
| 2991 | clipniter,
|
---|
| 2992 | normalise_edge_param(edge),
|
---|
| 2993 | threshold,
|
---|
| 2994 | chan_avg_limit, getresidual,
|
---|
| 2995 | pack_progress_params(showprogress,
|
---|
| 2996 | minnrow),
|
---|
[2641] | 2997 | outlog, scsvformat+blfile)
|
---|
[2012] | 2998 | workscan._add_history("auto_cspline_baseline", varlist)
|
---|
[1907] | 2999 |
|
---|
[1856] | 3000 | if insitu:
|
---|
| 3001 | self._assign(workscan)
|
---|
| 3002 | else:
|
---|
| 3003 | return workscan
|
---|
[2012] | 3004 |
|
---|
| 3005 | except RuntimeError, e:
|
---|
[2186] | 3006 | raise_fitting_failure_exception(e)
|
---|
[513] | 3007 |
|
---|
[1931] | 3008 | @asaplog_post_dec
|
---|
[2645] | 3009 | def chebyshev_baseline(self, insitu=None, mask=None, order=None,
|
---|
| 3010 | clipthresh=None, clipniter=None, plot=None,
|
---|
| 3011 | getresidual=None, showprogress=None, minnrow=None,
|
---|
| 3012 | outlog=None, blfile=None, csvformat=None):
|
---|
| 3013 | """\
|
---|
| 3014 | Return a scan which has been baselined (all rows) by Chebyshev polynomials.
|
---|
| 3015 |
|
---|
| 3016 | Parameters:
|
---|
| 3017 | insitu: If False a new scantable is returned.
|
---|
| 3018 | Otherwise, the scaling is done in-situ
|
---|
| 3019 | The default is taken from .asaprc (False)
|
---|
| 3020 | mask: An optional mask
|
---|
| 3021 | order: the maximum order of Chebyshev polynomial (default is 5)
|
---|
| 3022 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
| 3023 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 3024 | clipping (default is 0)
|
---|
| 3025 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 3026 | plot the fit and the residual. In this each
|
---|
| 3027 | indivual fit has to be approved, by typing 'y'
|
---|
| 3028 | or 'n'
|
---|
| 3029 | getresidual: if False, returns best-fit values instead of
|
---|
| 3030 | residual. (default is True)
|
---|
| 3031 | showprogress: show progress status for large data.
|
---|
| 3032 | default is True.
|
---|
| 3033 | minnrow: minimum number of input spectra to show.
|
---|
| 3034 | default is 1000.
|
---|
| 3035 | outlog: Output the coefficients of the best-fit
|
---|
| 3036 | function to logger (default is False)
|
---|
| 3037 | blfile: Name of a text file in which the best-fit
|
---|
| 3038 | parameter values to be written
|
---|
| 3039 | (default is "": no file/logger output)
|
---|
| 3040 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
| 3041 |
|
---|
| 3042 | Example:
|
---|
| 3043 | # return a scan baselined by a cubic spline consisting of 2 pieces
|
---|
| 3044 | # (i.e., 1 internal knot),
|
---|
| 3045 | # also with 3-sigma clipping, iteration up to 4 times
|
---|
| 3046 | bscan = scan.cspline_baseline(npiece=2,clipthresh=3.0,clipniter=4)
|
---|
| 3047 |
|
---|
| 3048 | Note:
|
---|
| 3049 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 3050 | based on specunit of 'channel'.
|
---|
| 3051 | """
|
---|
| 3052 |
|
---|
| 3053 | try:
|
---|
| 3054 | varlist = vars()
|
---|
| 3055 |
|
---|
| 3056 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 3057 | if insitu:
|
---|
| 3058 | workscan = self
|
---|
| 3059 | else:
|
---|
| 3060 | workscan = self.copy()
|
---|
| 3061 |
|
---|
| 3062 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
| 3063 | if mask is None: mask = []
|
---|
| 3064 | if order is None: order = 5
|
---|
| 3065 | if clipthresh is None: clipthresh = 3.0
|
---|
| 3066 | if clipniter is None: clipniter = 0
|
---|
| 3067 | if plot is None: plot = False
|
---|
| 3068 | if getresidual is None: getresidual = True
|
---|
| 3069 | if showprogress is None: showprogress = True
|
---|
| 3070 | if minnrow is None: minnrow = 1000
|
---|
| 3071 | if outlog is None: outlog = False
|
---|
| 3072 | if blfile is None: blfile = ''
|
---|
| 3073 | if csvformat is None: csvformat = False
|
---|
| 3074 |
|
---|
| 3075 | if csvformat:
|
---|
| 3076 | scsvformat = "T"
|
---|
| 3077 | else:
|
---|
| 3078 | scsvformat = "F"
|
---|
| 3079 |
|
---|
| 3080 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
| 3081 | workscan._chebyshev_baseline(mask, order, clipthresh, clipniter,
|
---|
| 3082 | getresidual,
|
---|
| 3083 | pack_progress_params(showprogress,
|
---|
| 3084 | minnrow),
|
---|
| 3085 | outlog, scsvformat+blfile)
|
---|
| 3086 | workscan._add_history("chebyshev_baseline", varlist)
|
---|
| 3087 |
|
---|
| 3088 | if insitu:
|
---|
| 3089 | self._assign(workscan)
|
---|
| 3090 | else:
|
---|
| 3091 | return workscan
|
---|
| 3092 |
|
---|
| 3093 | except RuntimeError, e:
|
---|
| 3094 | raise_fitting_failure_exception(e)
|
---|
| 3095 |
|
---|
| 3096 | @asaplog_post_dec
|
---|
| 3097 | def auto_chebyshev_baseline(self, insitu=None, mask=None, order=None,
|
---|
| 3098 | clipthresh=None, clipniter=None,
|
---|
| 3099 | edge=None, threshold=None, chan_avg_limit=None,
|
---|
| 3100 | getresidual=None, plot=None,
|
---|
| 3101 | showprogress=None, minnrow=None, outlog=None,
|
---|
| 3102 | blfile=None, csvformat=None):
|
---|
| 3103 | """\
|
---|
| 3104 | Return a scan which has been baselined (all rows) by Chebyshev polynomials.
|
---|
| 3105 | Spectral lines are detected first using linefinder and masked out
|
---|
| 3106 | to avoid them affecting the baseline solution.
|
---|
| 3107 |
|
---|
| 3108 | Parameters:
|
---|
| 3109 | insitu: if False a new scantable is returned.
|
---|
| 3110 | Otherwise, the scaling is done in-situ
|
---|
| 3111 | The default is taken from .asaprc (False)
|
---|
| 3112 | mask: an optional mask retreived from scantable
|
---|
| 3113 | order: the maximum order of Chebyshev polynomial (default is 5)
|
---|
| 3114 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
| 3115 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 3116 | clipping (default is 0)
|
---|
| 3117 | edge: an optional number of channel to drop at
|
---|
| 3118 | the edge of spectrum. If only one value is
|
---|
| 3119 | specified, the same number will be dropped
|
---|
| 3120 | from both sides of the spectrum. Default
|
---|
| 3121 | is to keep all channels. Nested tuples
|
---|
| 3122 | represent individual edge selection for
|
---|
| 3123 | different IFs (a number of spectral channels
|
---|
| 3124 | can be different)
|
---|
| 3125 | threshold: the threshold used by line finder. It is
|
---|
| 3126 | better to keep it large as only strong lines
|
---|
| 3127 | affect the baseline solution.
|
---|
| 3128 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 3129 | channels to average during the search of
|
---|
| 3130 | weak and broad lines. The default is no
|
---|
| 3131 | averaging (and no search for weak lines).
|
---|
| 3132 | If such lines can affect the fitted baseline
|
---|
| 3133 | (e.g. a high order polynomial is fitted),
|
---|
| 3134 | increase this parameter (usually values up
|
---|
| 3135 | to 8 are reasonable). Most users of this
|
---|
| 3136 | method should find the default value sufficient.
|
---|
| 3137 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 3138 | plot the fit and the residual. In this each
|
---|
| 3139 | indivual fit has to be approved, by typing 'y'
|
---|
| 3140 | or 'n'
|
---|
| 3141 | getresidual: if False, returns best-fit values instead of
|
---|
| 3142 | residual. (default is True)
|
---|
| 3143 | showprogress: show progress status for large data.
|
---|
| 3144 | default is True.
|
---|
| 3145 | minnrow: minimum number of input spectra to show.
|
---|
| 3146 | default is 1000.
|
---|
| 3147 | outlog: Output the coefficients of the best-fit
|
---|
| 3148 | function to logger (default is False)
|
---|
| 3149 | blfile: Name of a text file in which the best-fit
|
---|
| 3150 | parameter values to be written
|
---|
| 3151 | (default is "": no file/logger output)
|
---|
| 3152 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
| 3153 |
|
---|
| 3154 | Example:
|
---|
| 3155 | bscan = scan.auto_cspline_baseline(npiece=3, insitu=False)
|
---|
| 3156 |
|
---|
| 3157 | Note:
|
---|
| 3158 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 3159 | based on specunit of 'channel'.
|
---|
| 3160 | """
|
---|
| 3161 |
|
---|
| 3162 | try:
|
---|
| 3163 | varlist = vars()
|
---|
| 3164 |
|
---|
| 3165 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 3166 | if insitu:
|
---|
| 3167 | workscan = self
|
---|
| 3168 | else:
|
---|
| 3169 | workscan = self.copy()
|
---|
| 3170 |
|
---|
| 3171 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
| 3172 | if mask is None: mask = []
|
---|
| 3173 | if order is None: order = 5
|
---|
| 3174 | if clipthresh is None: clipthresh = 3.0
|
---|
| 3175 | if clipniter is None: clipniter = 0
|
---|
| 3176 | if edge is None: edge = (0, 0)
|
---|
| 3177 | if threshold is None: threshold = 3
|
---|
| 3178 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 3179 | if plot is None: plot = False
|
---|
| 3180 | if getresidual is None: getresidual = True
|
---|
| 3181 | if showprogress is None: showprogress = True
|
---|
| 3182 | if minnrow is None: minnrow = 1000
|
---|
| 3183 | if outlog is None: outlog = False
|
---|
| 3184 | if blfile is None: blfile = ''
|
---|
| 3185 | if csvformat is None: csvformat = False
|
---|
| 3186 |
|
---|
| 3187 | if csvformat:
|
---|
| 3188 | scsvformat = "T"
|
---|
| 3189 | else:
|
---|
| 3190 | scsvformat = "F"
|
---|
| 3191 |
|
---|
| 3192 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
| 3193 | workscan._auto_chebyshev_baseline(mask, order, clipthresh,
|
---|
| 3194 | clipniter,
|
---|
| 3195 | normalise_edge_param(edge),
|
---|
| 3196 | threshold,
|
---|
| 3197 | chan_avg_limit, getresidual,
|
---|
| 3198 | pack_progress_params(showprogress,
|
---|
| 3199 | minnrow),
|
---|
| 3200 | outlog, scsvformat+blfile)
|
---|
| 3201 | workscan._add_history("auto_chebyshev_baseline", varlist)
|
---|
| 3202 |
|
---|
| 3203 | if insitu:
|
---|
| 3204 | self._assign(workscan)
|
---|
| 3205 | else:
|
---|
| 3206 | return workscan
|
---|
| 3207 |
|
---|
| 3208 | except RuntimeError, e:
|
---|
| 3209 | raise_fitting_failure_exception(e)
|
---|
| 3210 |
|
---|
| 3211 | @asaplog_post_dec
|
---|
[2269] | 3212 | def poly_baseline(self, mask=None, order=None, insitu=None, plot=None,
|
---|
| 3213 | getresidual=None, showprogress=None, minnrow=None,
|
---|
[2641] | 3214 | outlog=None, blfile=None, csvformat=None):
|
---|
[1907] | 3215 | """\
|
---|
| 3216 | Return a scan which has been baselined (all rows) by a polynomial.
|
---|
| 3217 | Parameters:
|
---|
[2189] | 3218 | insitu: if False a new scantable is returned.
|
---|
| 3219 | Otherwise, the scaling is done in-situ
|
---|
| 3220 | The default is taken from .asaprc (False)
|
---|
| 3221 | mask: an optional mask
|
---|
| 3222 | order: the order of the polynomial (default is 0)
|
---|
| 3223 | plot: plot the fit and the residual. In this each
|
---|
| 3224 | indivual fit has to be approved, by typing 'y'
|
---|
| 3225 | or 'n'
|
---|
| 3226 | getresidual: if False, returns best-fit values instead of
|
---|
| 3227 | residual. (default is True)
|
---|
| 3228 | showprogress: show progress status for large data.
|
---|
| 3229 | default is True.
|
---|
| 3230 | minnrow: minimum number of input spectra to show.
|
---|
| 3231 | default is 1000.
|
---|
| 3232 | outlog: Output the coefficients of the best-fit
|
---|
| 3233 | function to logger (default is False)
|
---|
| 3234 | blfile: Name of a text file in which the best-fit
|
---|
| 3235 | parameter values to be written
|
---|
| 3236 | (default is "": no file/logger output)
|
---|
[2641] | 3237 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[2012] | 3238 |
|
---|
[1907] | 3239 | Example:
|
---|
| 3240 | # return a scan baselined by a third order polynomial,
|
---|
| 3241 | # not using a mask
|
---|
| 3242 | bscan = scan.poly_baseline(order=3)
|
---|
| 3243 | """
|
---|
[1931] | 3244 |
|
---|
[2186] | 3245 | try:
|
---|
| 3246 | varlist = vars()
|
---|
[1931] | 3247 |
|
---|
[2269] | 3248 | if insitu is None:
|
---|
| 3249 | insitu = rcParams["insitu"]
|
---|
[2186] | 3250 | if insitu:
|
---|
| 3251 | workscan = self
|
---|
| 3252 | else:
|
---|
| 3253 | workscan = self.copy()
|
---|
[1907] | 3254 |
|
---|
[2410] | 3255 | #if mask is None: mask = [True for i in \
|
---|
| 3256 | # xrange(workscan.nchan())]
|
---|
| 3257 | if mask is None: mask = []
|
---|
[2189] | 3258 | if order is None: order = 0
|
---|
| 3259 | if plot is None: plot = False
|
---|
| 3260 | if getresidual is None: getresidual = True
|
---|
| 3261 | if showprogress is None: showprogress = True
|
---|
| 3262 | if minnrow is None: minnrow = 1000
|
---|
| 3263 | if outlog is None: outlog = False
|
---|
| 3264 | if blfile is None: blfile = ""
|
---|
[2641] | 3265 | if csvformat is None: csvformat = False
|
---|
[1907] | 3266 |
|
---|
[2641] | 3267 | if csvformat:
|
---|
| 3268 | scsvformat = "T"
|
---|
| 3269 | else:
|
---|
| 3270 | scsvformat = "F"
|
---|
| 3271 |
|
---|
[2012] | 3272 | if plot:
|
---|
[2269] | 3273 | outblfile = (blfile != "") and \
|
---|
[2349] | 3274 | os.path.exists(os.path.expanduser(
|
---|
| 3275 | os.path.expandvars(blfile))
|
---|
| 3276 | )
|
---|
[2269] | 3277 | if outblfile:
|
---|
| 3278 | blf = open(blfile, "a")
|
---|
[2012] | 3279 |
|
---|
[1907] | 3280 | f = fitter()
|
---|
| 3281 | f.set_function(lpoly=order)
|
---|
[2186] | 3282 |
|
---|
| 3283 | rows = xrange(workscan.nrow())
|
---|
| 3284 | #if len(rows) > 0: workscan._init_blinfo()
|
---|
[2610] | 3285 |
|
---|
| 3286 | action = "H"
|
---|
[1907] | 3287 | for r in rows:
|
---|
| 3288 | f.x = workscan._getabcissa(r)
|
---|
| 3289 | f.y = workscan._getspectrum(r)
|
---|
[2541] | 3290 | if mask:
|
---|
| 3291 | f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
|
---|
| 3292 | else: # mask=None
|
---|
| 3293 | f.mask = workscan._getmask(r)
|
---|
| 3294 |
|
---|
[1907] | 3295 | f.data = None
|
---|
| 3296 | f.fit()
|
---|
[2541] | 3297 |
|
---|
[2610] | 3298 | if action != "Y": # skip plotting when accepting all
|
---|
| 3299 | f.plot(residual=True)
|
---|
| 3300 | #accept_fit = raw_input("Accept fit ( [y]/n ): ")
|
---|
| 3301 | #if accept_fit.upper() == "N":
|
---|
| 3302 | # #workscan._append_blinfo(None, None, None)
|
---|
| 3303 | # continue
|
---|
| 3304 | accept_fit = self._get_verify_action("Accept fit?",action)
|
---|
| 3305 | if r == 0: action = None
|
---|
[1907] | 3306 | if accept_fit.upper() == "N":
|
---|
| 3307 | continue
|
---|
[2610] | 3308 | elif accept_fit.upper() == "R":
|
---|
| 3309 | break
|
---|
| 3310 | elif accept_fit.upper() == "A":
|
---|
| 3311 | action = "Y"
|
---|
[2012] | 3312 |
|
---|
| 3313 | blpars = f.get_parameters()
|
---|
| 3314 | masklist = workscan.get_masklist(f.mask, row=r, silent=True)
|
---|
| 3315 | #workscan._append_blinfo(blpars, masklist, f.mask)
|
---|
[2269] | 3316 | workscan._setspectrum((f.fitter.getresidual()
|
---|
| 3317 | if getresidual else f.fitter.getfit()), r)
|
---|
[1907] | 3318 |
|
---|
[2012] | 3319 | if outblfile:
|
---|
| 3320 | rms = workscan.get_rms(f.mask, r)
|
---|
[2269] | 3321 | dataout = \
|
---|
| 3322 | workscan.format_blparams_row(blpars["params"],
|
---|
| 3323 | blpars["fixed"],
|
---|
| 3324 | rms, str(masklist),
|
---|
[2641] | 3325 | r, True, csvformat)
|
---|
[2012] | 3326 | blf.write(dataout)
|
---|
| 3327 |
|
---|
[1907] | 3328 | f._p.unmap()
|
---|
| 3329 | f._p = None
|
---|
[2012] | 3330 |
|
---|
[2349] | 3331 | if outblfile:
|
---|
| 3332 | blf.close()
|
---|
[1907] | 3333 | else:
|
---|
[2269] | 3334 | workscan._poly_baseline(mask, order, getresidual,
|
---|
| 3335 | pack_progress_params(showprogress,
|
---|
| 3336 | minnrow),
|
---|
[2641] | 3337 | outlog, scsvformat+blfile)
|
---|
[1907] | 3338 |
|
---|
| 3339 | workscan._add_history("poly_baseline", varlist)
|
---|
| 3340 |
|
---|
| 3341 | if insitu:
|
---|
| 3342 | self._assign(workscan)
|
---|
| 3343 | else:
|
---|
| 3344 | return workscan
|
---|
| 3345 |
|
---|
[1919] | 3346 | except RuntimeError, e:
|
---|
[2186] | 3347 | raise_fitting_failure_exception(e)
|
---|
[1907] | 3348 |
|
---|
[2186] | 3349 | @asaplog_post_dec
|
---|
[2269] | 3350 | def auto_poly_baseline(self, mask=None, order=None, edge=None,
|
---|
| 3351 | threshold=None, chan_avg_limit=None,
|
---|
| 3352 | plot=None, insitu=None,
|
---|
| 3353 | getresidual=None, showprogress=None,
|
---|
[2641] | 3354 | minnrow=None, outlog=None, blfile=None, csvformat=None):
|
---|
[1846] | 3355 | """\
|
---|
[1931] | 3356 | Return a scan which has been baselined (all rows) by a polynomial.
|
---|
[880] | 3357 | Spectral lines are detected first using linefinder and masked out
|
---|
| 3358 | to avoid them affecting the baseline solution.
|
---|
| 3359 |
|
---|
| 3360 | Parameters:
|
---|
[2189] | 3361 | insitu: if False a new scantable is returned.
|
---|
| 3362 | Otherwise, the scaling is done in-situ
|
---|
| 3363 | The default is taken from .asaprc (False)
|
---|
| 3364 | mask: an optional mask retreived from scantable
|
---|
| 3365 | order: the order of the polynomial (default is 0)
|
---|
| 3366 | edge: an optional number of channel to drop at
|
---|
| 3367 | the edge of spectrum. If only one value is
|
---|
| 3368 | specified, the same number will be dropped
|
---|
| 3369 | from both sides of the spectrum. Default
|
---|
| 3370 | is to keep all channels. Nested tuples
|
---|
| 3371 | represent individual edge selection for
|
---|
| 3372 | different IFs (a number of spectral channels
|
---|
| 3373 | can be different)
|
---|
| 3374 | threshold: the threshold used by line finder. It is
|
---|
| 3375 | better to keep it large as only strong lines
|
---|
| 3376 | affect the baseline solution.
|
---|
| 3377 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 3378 | channels to average during the search of
|
---|
| 3379 | weak and broad lines. The default is no
|
---|
| 3380 | averaging (and no search for weak lines).
|
---|
| 3381 | If such lines can affect the fitted baseline
|
---|
| 3382 | (e.g. a high order polynomial is fitted),
|
---|
| 3383 | increase this parameter (usually values up
|
---|
| 3384 | to 8 are reasonable). Most users of this
|
---|
| 3385 | method should find the default value sufficient.
|
---|
| 3386 | plot: plot the fit and the residual. In this each
|
---|
| 3387 | indivual fit has to be approved, by typing 'y'
|
---|
| 3388 | or 'n'
|
---|
| 3389 | getresidual: if False, returns best-fit values instead of
|
---|
| 3390 | residual. (default is True)
|
---|
| 3391 | showprogress: show progress status for large data.
|
---|
| 3392 | default is True.
|
---|
| 3393 | minnrow: minimum number of input spectra to show.
|
---|
| 3394 | default is 1000.
|
---|
| 3395 | outlog: Output the coefficients of the best-fit
|
---|
| 3396 | function to logger (default is False)
|
---|
| 3397 | blfile: Name of a text file in which the best-fit
|
---|
| 3398 | parameter values to be written
|
---|
| 3399 | (default is "": no file/logger output)
|
---|
[2641] | 3400 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
[1846] | 3401 |
|
---|
[2012] | 3402 | Example:
|
---|
| 3403 | bscan = scan.auto_poly_baseline(order=7, insitu=False)
|
---|
| 3404 | """
|
---|
[880] | 3405 |
|
---|
[2186] | 3406 | try:
|
---|
| 3407 | varlist = vars()
|
---|
[1846] | 3408 |
|
---|
[2269] | 3409 | if insitu is None:
|
---|
| 3410 | insitu = rcParams['insitu']
|
---|
[2186] | 3411 | if insitu:
|
---|
| 3412 | workscan = self
|
---|
| 3413 | else:
|
---|
| 3414 | workscan = self.copy()
|
---|
[1846] | 3415 |
|
---|
[2410] | 3416 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
| 3417 | if mask is None: mask = []
|
---|
[2186] | 3418 | if order is None: order = 0
|
---|
| 3419 | if edge is None: edge = (0, 0)
|
---|
| 3420 | if threshold is None: threshold = 3
|
---|
| 3421 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 3422 | if plot is None: plot = False
|
---|
| 3423 | if getresidual is None: getresidual = True
|
---|
[2189] | 3424 | if showprogress is None: showprogress = True
|
---|
| 3425 | if minnrow is None: minnrow = 1000
|
---|
[2186] | 3426 | if outlog is None: outlog = False
|
---|
| 3427 | if blfile is None: blfile = ''
|
---|
[2641] | 3428 | if csvformat is None: csvformat = False
|
---|
[1846] | 3429 |
|
---|
[2641] | 3430 | if csvformat:
|
---|
| 3431 | scsvformat = "T"
|
---|
| 3432 | else:
|
---|
| 3433 | scsvformat = "F"
|
---|
| 3434 |
|
---|
[2186] | 3435 | edge = normalise_edge_param(edge)
|
---|
[880] | 3436 |
|
---|
[2012] | 3437 | if plot:
|
---|
[2269] | 3438 | outblfile = (blfile != "") and \
|
---|
| 3439 | os.path.exists(os.path.expanduser(os.path.expandvars(blfile)))
|
---|
[2012] | 3440 | if outblfile: blf = open(blfile, "a")
|
---|
| 3441 |
|
---|
[2186] | 3442 | from asap.asaplinefind import linefinder
|
---|
[2012] | 3443 | fl = linefinder()
|
---|
[2269] | 3444 | fl.set_options(threshold=threshold, avg_limit=chan_avg_limit)
|
---|
[2012] | 3445 | fl.set_scan(workscan)
|
---|
[2186] | 3446 |
|
---|
[2012] | 3447 | f = fitter()
|
---|
| 3448 | f.set_function(lpoly=order)
|
---|
[880] | 3449 |
|
---|
[2186] | 3450 | rows = xrange(workscan.nrow())
|
---|
| 3451 | #if len(rows) > 0: workscan._init_blinfo()
|
---|
[2610] | 3452 |
|
---|
| 3453 | action = "H"
|
---|
[2012] | 3454 | for r in rows:
|
---|
[2186] | 3455 | idx = 2*workscan.getif(r)
|
---|
[2541] | 3456 | if mask:
|
---|
| 3457 | msk = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
|
---|
| 3458 | else: # mask=None
|
---|
| 3459 | msk = workscan._getmask(r)
|
---|
| 3460 | fl.find_lines(r, msk, edge[idx:idx+2])
|
---|
[907] | 3461 |
|
---|
[2012] | 3462 | f.x = workscan._getabcissa(r)
|
---|
| 3463 | f.y = workscan._getspectrum(r)
|
---|
| 3464 | f.mask = fl.get_mask()
|
---|
| 3465 | f.data = None
|
---|
| 3466 | f.fit()
|
---|
| 3467 |
|
---|
[2610] | 3468 | if action != "Y": # skip plotting when accepting all
|
---|
| 3469 | f.plot(residual=True)
|
---|
| 3470 | #accept_fit = raw_input("Accept fit ( [y]/n ): ")
|
---|
| 3471 | accept_fit = self._get_verify_action("Accept fit?",action)
|
---|
| 3472 | if r == 0: action = None
|
---|
[2012] | 3473 | if accept_fit.upper() == "N":
|
---|
| 3474 | #workscan._append_blinfo(None, None, None)
|
---|
| 3475 | continue
|
---|
[2610] | 3476 | elif accept_fit.upper() == "R":
|
---|
| 3477 | break
|
---|
| 3478 | elif accept_fit.upper() == "A":
|
---|
| 3479 | action = "Y"
|
---|
[2012] | 3480 |
|
---|
| 3481 | blpars = f.get_parameters()
|
---|
| 3482 | masklist = workscan.get_masklist(f.mask, row=r, silent=True)
|
---|
| 3483 | #workscan._append_blinfo(blpars, masklist, f.mask)
|
---|
[2349] | 3484 | workscan._setspectrum(
|
---|
| 3485 | (f.fitter.getresidual() if getresidual
|
---|
| 3486 | else f.fitter.getfit()), r
|
---|
| 3487 | )
|
---|
[2012] | 3488 |
|
---|
| 3489 | if outblfile:
|
---|
| 3490 | rms = workscan.get_rms(f.mask, r)
|
---|
[2269] | 3491 | dataout = \
|
---|
| 3492 | workscan.format_blparams_row(blpars["params"],
|
---|
| 3493 | blpars["fixed"],
|
---|
| 3494 | rms, str(masklist),
|
---|
[2641] | 3495 | r, True, csvformat)
|
---|
[2012] | 3496 | blf.write(dataout)
|
---|
| 3497 |
|
---|
| 3498 | f._p.unmap()
|
---|
| 3499 | f._p = None
|
---|
| 3500 |
|
---|
| 3501 | if outblfile: blf.close()
|
---|
| 3502 | else:
|
---|
[2269] | 3503 | workscan._auto_poly_baseline(mask, order, edge, threshold,
|
---|
| 3504 | chan_avg_limit, getresidual,
|
---|
| 3505 | pack_progress_params(showprogress,
|
---|
| 3506 | minnrow),
|
---|
[2641] | 3507 | outlog, scsvformat+blfile)
|
---|
[2012] | 3508 |
|
---|
| 3509 | workscan._add_history("auto_poly_baseline", varlist)
|
---|
| 3510 |
|
---|
| 3511 | if insitu:
|
---|
| 3512 | self._assign(workscan)
|
---|
| 3513 | else:
|
---|
| 3514 | return workscan
|
---|
| 3515 |
|
---|
| 3516 | except RuntimeError, e:
|
---|
[2186] | 3517 | raise_fitting_failure_exception(e)
|
---|
[2012] | 3518 |
|
---|
| 3519 | def _init_blinfo(self):
|
---|
| 3520 | """\
|
---|
| 3521 | Initialise the following three auxiliary members:
|
---|
| 3522 | blpars : parameters of the best-fit baseline,
|
---|
| 3523 | masklists : mask data (edge positions of masked channels) and
|
---|
| 3524 | actualmask : mask data (in boolean list),
|
---|
| 3525 | to keep for use later (including output to logger/text files).
|
---|
| 3526 | Used by poly_baseline() and auto_poly_baseline() in case of
|
---|
| 3527 | 'plot=True'.
|
---|
| 3528 | """
|
---|
| 3529 | self.blpars = []
|
---|
| 3530 | self.masklists = []
|
---|
| 3531 | self.actualmask = []
|
---|
| 3532 | return
|
---|
[880] | 3533 |
|
---|
[2012] | 3534 | def _append_blinfo(self, data_blpars, data_masklists, data_actualmask):
|
---|
| 3535 | """\
|
---|
| 3536 | Append baseline-fitting related info to blpars, masklist and
|
---|
| 3537 | actualmask.
|
---|
| 3538 | """
|
---|
| 3539 | self.blpars.append(data_blpars)
|
---|
| 3540 | self.masklists.append(data_masklists)
|
---|
| 3541 | self.actualmask.append(data_actualmask)
|
---|
| 3542 | return
|
---|
| 3543 |
|
---|
[1862] | 3544 | @asaplog_post_dec
|
---|
[914] | 3545 | def rotate_linpolphase(self, angle):
|
---|
[1846] | 3546 | """\
|
---|
[914] | 3547 | Rotate the phase of the complex polarization O=Q+iU correlation.
|
---|
| 3548 | This is always done in situ in the raw data. So if you call this
|
---|
| 3549 | function more than once then each call rotates the phase further.
|
---|
[1846] | 3550 |
|
---|
[914] | 3551 | Parameters:
|
---|
[1846] | 3552 |
|
---|
[914] | 3553 | angle: The angle (degrees) to rotate (add) by.
|
---|
[1846] | 3554 |
|
---|
| 3555 | Example::
|
---|
| 3556 |
|
---|
[914] | 3557 | scan.rotate_linpolphase(2.3)
|
---|
[1846] | 3558 |
|
---|
[914] | 3559 | """
|
---|
| 3560 | varlist = vars()
|
---|
[936] | 3561 | self._math._rotate_linpolphase(self, angle)
|
---|
[914] | 3562 | self._add_history("rotate_linpolphase", varlist)
|
---|
| 3563 | return
|
---|
[710] | 3564 |
|
---|
[1862] | 3565 | @asaplog_post_dec
|
---|
[914] | 3566 | def rotate_xyphase(self, angle):
|
---|
[1846] | 3567 | """\
|
---|
[914] | 3568 | Rotate the phase of the XY correlation. This is always done in situ
|
---|
| 3569 | in the data. So if you call this function more than once
|
---|
| 3570 | then each call rotates the phase further.
|
---|
[1846] | 3571 |
|
---|
[914] | 3572 | Parameters:
|
---|
[1846] | 3573 |
|
---|
[914] | 3574 | angle: The angle (degrees) to rotate (add) by.
|
---|
[1846] | 3575 |
|
---|
| 3576 | Example::
|
---|
| 3577 |
|
---|
[914] | 3578 | scan.rotate_xyphase(2.3)
|
---|
[1846] | 3579 |
|
---|
[914] | 3580 | """
|
---|
| 3581 | varlist = vars()
|
---|
[936] | 3582 | self._math._rotate_xyphase(self, angle)
|
---|
[914] | 3583 | self._add_history("rotate_xyphase", varlist)
|
---|
| 3584 | return
|
---|
| 3585 |
|
---|
[1862] | 3586 | @asaplog_post_dec
|
---|
[914] | 3587 | def swap_linears(self):
|
---|
[1846] | 3588 | """\
|
---|
[1573] | 3589 | Swap the linear polarisations XX and YY, or better the first two
|
---|
[1348] | 3590 | polarisations as this also works for ciculars.
|
---|
[914] | 3591 | """
|
---|
| 3592 | varlist = vars()
|
---|
[936] | 3593 | self._math._swap_linears(self)
|
---|
[914] | 3594 | self._add_history("swap_linears", varlist)
|
---|
| 3595 | return
|
---|
| 3596 |
|
---|
[1862] | 3597 | @asaplog_post_dec
|
---|
[914] | 3598 | def invert_phase(self):
|
---|
[1846] | 3599 | """\
|
---|
[914] | 3600 | Invert the phase of the complex polarisation
|
---|
| 3601 | """
|
---|
| 3602 | varlist = vars()
|
---|
[936] | 3603 | self._math._invert_phase(self)
|
---|
[914] | 3604 | self._add_history("invert_phase", varlist)
|
---|
| 3605 | return
|
---|
| 3606 |
|
---|
[1862] | 3607 | @asaplog_post_dec
|
---|
[876] | 3608 | def add(self, offset, insitu=None):
|
---|
[1846] | 3609 | """\
|
---|
[513] | 3610 | Return a scan where all spectra have the offset added
|
---|
[1846] | 3611 |
|
---|
[513] | 3612 | Parameters:
|
---|
[1846] | 3613 |
|
---|
[513] | 3614 | offset: the offset
|
---|
[1855] | 3615 |
|
---|
[513] | 3616 | insitu: if False a new scantable is returned.
|
---|
| 3617 | Otherwise, the scaling is done in-situ
|
---|
| 3618 | The default is taken from .asaprc (False)
|
---|
[1846] | 3619 |
|
---|
[513] | 3620 | """
|
---|
| 3621 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 3622 | self._math._setinsitu(insitu)
|
---|
[513] | 3623 | varlist = vars()
|
---|
[876] | 3624 | s = scantable(self._math._unaryop(self, offset, "ADD", False))
|
---|
[1118] | 3625 | s._add_history("add", varlist)
|
---|
[876] | 3626 | if insitu:
|
---|
| 3627 | self._assign(s)
|
---|
| 3628 | else:
|
---|
[513] | 3629 | return s
|
---|
| 3630 |
|
---|
[1862] | 3631 | @asaplog_post_dec
|
---|
[1308] | 3632 | def scale(self, factor, tsys=True, insitu=None):
|
---|
[1846] | 3633 | """\
|
---|
| 3634 |
|
---|
[1938] | 3635 | Return a scan where all spectra are scaled by the given 'factor'
|
---|
[1846] | 3636 |
|
---|
[513] | 3637 | Parameters:
|
---|
[1846] | 3638 |
|
---|
[1819] | 3639 | factor: the scaling factor (float or 1D float list)
|
---|
[1855] | 3640 |
|
---|
[513] | 3641 | insitu: if False a new scantable is returned.
|
---|
| 3642 | Otherwise, the scaling is done in-situ
|
---|
| 3643 | The default is taken from .asaprc (False)
|
---|
[1855] | 3644 |
|
---|
[513] | 3645 | tsys: if True (default) then apply the operation to Tsys
|
---|
| 3646 | as well as the data
|
---|
[1846] | 3647 |
|
---|
[513] | 3648 | """
|
---|
| 3649 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 3650 | self._math._setinsitu(insitu)
|
---|
[513] | 3651 | varlist = vars()
|
---|
[1819] | 3652 | s = None
|
---|
| 3653 | import numpy
|
---|
| 3654 | if isinstance(factor, list) or isinstance(factor, numpy.ndarray):
|
---|
[2320] | 3655 | if isinstance(factor[0], list) or isinstance(factor[0],
|
---|
| 3656 | numpy.ndarray):
|
---|
[1819] | 3657 | from asapmath import _array2dOp
|
---|
[2320] | 3658 | s = _array2dOp( self, factor, "MUL", tsys, insitu )
|
---|
[1819] | 3659 | else:
|
---|
[2320] | 3660 | s = scantable( self._math._arrayop( self, factor,
|
---|
| 3661 | "MUL", tsys ) )
|
---|
[1819] | 3662 | else:
|
---|
[2320] | 3663 | s = scantable(self._math._unaryop(self, factor, "MUL", tsys))
|
---|
[1118] | 3664 | s._add_history("scale", varlist)
|
---|
[876] | 3665 | if insitu:
|
---|
| 3666 | self._assign(s)
|
---|
| 3667 | else:
|
---|
[513] | 3668 | return s
|
---|
| 3669 |
|
---|
[2349] | 3670 | @preserve_selection
|
---|
| 3671 | def set_sourcetype(self, match, matchtype="pattern",
|
---|
[1504] | 3672 | sourcetype="reference"):
|
---|
[1846] | 3673 | """\
|
---|
[1502] | 3674 | Set the type of the source to be an source or reference scan
|
---|
[1846] | 3675 | using the provided pattern.
|
---|
| 3676 |
|
---|
[1502] | 3677 | Parameters:
|
---|
[1846] | 3678 |
|
---|
[1504] | 3679 | match: a Unix style pattern, regular expression or selector
|
---|
[1855] | 3680 |
|
---|
[1504] | 3681 | matchtype: 'pattern' (default) UNIX style pattern or
|
---|
| 3682 | 'regex' regular expression
|
---|
[1855] | 3683 |
|
---|
[1502] | 3684 | sourcetype: the type of the source to use (source/reference)
|
---|
[1846] | 3685 |
|
---|
[1502] | 3686 | """
|
---|
| 3687 | varlist = vars()
|
---|
| 3688 | stype = -1
|
---|
[2480] | 3689 | if sourcetype.lower().startswith("r") or sourcetype.lower() == "off":
|
---|
[1502] | 3690 | stype = 1
|
---|
[2480] | 3691 | elif sourcetype.lower().startswith("s") or sourcetype.lower() == "on":
|
---|
[1502] | 3692 | stype = 0
|
---|
[1504] | 3693 | else:
|
---|
[2480] | 3694 | raise ValueError("Illegal sourcetype use s(ource)/on or r(eference)/off")
|
---|
[1504] | 3695 | if matchtype.lower().startswith("p"):
|
---|
| 3696 | matchtype = "pattern"
|
---|
| 3697 | elif matchtype.lower().startswith("r"):
|
---|
| 3698 | matchtype = "regex"
|
---|
| 3699 | else:
|
---|
| 3700 | raise ValueError("Illegal matchtype, use p(attern) or r(egex)")
|
---|
[1502] | 3701 | sel = selector()
|
---|
| 3702 | if isinstance(match, selector):
|
---|
| 3703 | sel = match
|
---|
| 3704 | else:
|
---|
[2480] | 3705 | sel.set_query("SRCNAME=%s('%s')" % (matchtype, match))
|
---|
| 3706 | self.set_selection(sel)
|
---|
[1502] | 3707 | self._setsourcetype(stype)
|
---|
[1573] | 3708 | self._add_history("set_sourcetype", varlist)
|
---|
[1502] | 3709 |
|
---|
[1862] | 3710 | @asaplog_post_dec
|
---|
[1857] | 3711 | @preserve_selection
|
---|
[1819] | 3712 | def auto_quotient(self, preserve=True, mode='paired', verify=False):
|
---|
[1846] | 3713 | """\
|
---|
[670] | 3714 | This function allows to build quotients automatically.
|
---|
[1819] | 3715 | It assumes the observation to have the same number of
|
---|
[670] | 3716 | "ons" and "offs"
|
---|
[1846] | 3717 |
|
---|
[670] | 3718 | Parameters:
|
---|
[1846] | 3719 |
|
---|
[710] | 3720 | preserve: you can preserve (default) the continuum or
|
---|
| 3721 | remove it. The equations used are
|
---|
[1857] | 3722 |
|
---|
[670] | 3723 | preserve: Output = Toff * (on/off) - Toff
|
---|
[1857] | 3724 |
|
---|
[1070] | 3725 | remove: Output = Toff * (on/off) - Ton
|
---|
[1855] | 3726 |
|
---|
[1573] | 3727 | mode: the on/off detection mode
|
---|
[1348] | 3728 | 'paired' (default)
|
---|
| 3729 | identifies 'off' scans by the
|
---|
| 3730 | trailing '_R' (Mopra/Parkes) or
|
---|
| 3731 | '_e'/'_w' (Tid) and matches
|
---|
| 3732 | on/off pairs from the observing pattern
|
---|
[1502] | 3733 | 'time'
|
---|
| 3734 | finds the closest off in time
|
---|
[1348] | 3735 |
|
---|
[1857] | 3736 | .. todo:: verify argument is not implemented
|
---|
| 3737 |
|
---|
[670] | 3738 | """
|
---|
[1857] | 3739 | varlist = vars()
|
---|
[1348] | 3740 | modes = ["time", "paired"]
|
---|
[670] | 3741 | if not mode in modes:
|
---|
[876] | 3742 | msg = "please provide valid mode. Valid modes are %s" % (modes)
|
---|
| 3743 | raise ValueError(msg)
|
---|
[1348] | 3744 | s = None
|
---|
| 3745 | if mode.lower() == "paired":
|
---|
[1857] | 3746 | sel = self.get_selection()
|
---|
[1875] | 3747 | sel.set_query("SRCTYPE==psoff")
|
---|
[1356] | 3748 | self.set_selection(sel)
|
---|
[1348] | 3749 | offs = self.copy()
|
---|
[1875] | 3750 | sel.set_query("SRCTYPE==pson")
|
---|
[1356] | 3751 | self.set_selection(sel)
|
---|
[1348] | 3752 | ons = self.copy()
|
---|
| 3753 | s = scantable(self._math._quotient(ons, offs, preserve))
|
---|
| 3754 | elif mode.lower() == "time":
|
---|
| 3755 | s = scantable(self._math._auto_quotient(self, mode, preserve))
|
---|
[1118] | 3756 | s._add_history("auto_quotient", varlist)
|
---|
[876] | 3757 | return s
|
---|
[710] | 3758 |
|
---|
[1862] | 3759 | @asaplog_post_dec
|
---|
[1145] | 3760 | def mx_quotient(self, mask = None, weight='median', preserve=True):
|
---|
[1846] | 3761 | """\
|
---|
[1143] | 3762 | Form a quotient using "off" beams when observing in "MX" mode.
|
---|
[1846] | 3763 |
|
---|
[1143] | 3764 | Parameters:
|
---|
[1846] | 3765 |
|
---|
[1145] | 3766 | mask: an optional mask to be used when weight == 'stddev'
|
---|
[1855] | 3767 |
|
---|
[1143] | 3768 | weight: How to average the off beams. Default is 'median'.
|
---|
[1855] | 3769 |
|
---|
[1145] | 3770 | preserve: you can preserve (default) the continuum or
|
---|
[1855] | 3771 | remove it. The equations used are:
|
---|
[1846] | 3772 |
|
---|
[1855] | 3773 | preserve: Output = Toff * (on/off) - Toff
|
---|
| 3774 |
|
---|
| 3775 | remove: Output = Toff * (on/off) - Ton
|
---|
| 3776 |
|
---|
[1217] | 3777 | """
|
---|
[1593] | 3778 | mask = mask or ()
|
---|
[1141] | 3779 | varlist = vars()
|
---|
| 3780 | on = scantable(self._math._mx_extract(self, 'on'))
|
---|
[1143] | 3781 | preoff = scantable(self._math._mx_extract(self, 'off'))
|
---|
| 3782 | off = preoff.average_time(mask=mask, weight=weight, scanav=False)
|
---|
[1217] | 3783 | from asapmath import quotient
|
---|
[1145] | 3784 | q = quotient(on, off, preserve)
|
---|
[1143] | 3785 | q._add_history("mx_quotient", varlist)
|
---|
[1217] | 3786 | return q
|
---|
[513] | 3787 |
|
---|
[1862] | 3788 | @asaplog_post_dec
|
---|
[718] | 3789 | def freq_switch(self, insitu=None):
|
---|
[1846] | 3790 | """\
|
---|
[718] | 3791 | Apply frequency switching to the data.
|
---|
[1846] | 3792 |
|
---|
[718] | 3793 | Parameters:
|
---|
[1846] | 3794 |
|
---|
[718] | 3795 | insitu: if False a new scantable is returned.
|
---|
| 3796 | Otherwise, the swictching is done in-situ
|
---|
| 3797 | The default is taken from .asaprc (False)
|
---|
[1846] | 3798 |
|
---|
[718] | 3799 | """
|
---|
| 3800 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 3801 | self._math._setinsitu(insitu)
|
---|
[718] | 3802 | varlist = vars()
|
---|
[876] | 3803 | s = scantable(self._math._freqswitch(self))
|
---|
[1118] | 3804 | s._add_history("freq_switch", varlist)
|
---|
[1856] | 3805 | if insitu:
|
---|
| 3806 | self._assign(s)
|
---|
| 3807 | else:
|
---|
| 3808 | return s
|
---|
[718] | 3809 |
|
---|
[1862] | 3810 | @asaplog_post_dec
|
---|
[780] | 3811 | def recalc_azel(self):
|
---|
[1846] | 3812 | """Recalculate the azimuth and elevation for each position."""
|
---|
[780] | 3813 | varlist = vars()
|
---|
[876] | 3814 | self._recalcazel()
|
---|
[780] | 3815 | self._add_history("recalc_azel", varlist)
|
---|
| 3816 | return
|
---|
| 3817 |
|
---|
[1862] | 3818 | @asaplog_post_dec
|
---|
[513] | 3819 | def __add__(self, other):
|
---|
[2574] | 3820 | """
|
---|
| 3821 | implicit on all axes and on Tsys
|
---|
| 3822 | """
|
---|
[513] | 3823 | varlist = vars()
|
---|
[2574] | 3824 | s = self.__op( other, "ADD" )
|
---|
[513] | 3825 | s._add_history("operator +", varlist)
|
---|
| 3826 | return s
|
---|
| 3827 |
|
---|
[1862] | 3828 | @asaplog_post_dec
|
---|
[513] | 3829 | def __sub__(self, other):
|
---|
| 3830 | """
|
---|
| 3831 | implicit on all axes and on Tsys
|
---|
| 3832 | """
|
---|
| 3833 | varlist = vars()
|
---|
[2574] | 3834 | s = self.__op( other, "SUB" )
|
---|
[513] | 3835 | s._add_history("operator -", varlist)
|
---|
| 3836 | return s
|
---|
[710] | 3837 |
|
---|
[1862] | 3838 | @asaplog_post_dec
|
---|
[513] | 3839 | def __mul__(self, other):
|
---|
| 3840 | """
|
---|
| 3841 | implicit on all axes and on Tsys
|
---|
| 3842 | """
|
---|
| 3843 | varlist = vars()
|
---|
[2574] | 3844 | s = self.__op( other, "MUL" ) ;
|
---|
[513] | 3845 | s._add_history("operator *", varlist)
|
---|
| 3846 | return s
|
---|
| 3847 |
|
---|
[710] | 3848 |
|
---|
[1862] | 3849 | @asaplog_post_dec
|
---|
[513] | 3850 | def __div__(self, other):
|
---|
| 3851 | """
|
---|
| 3852 | implicit on all axes and on Tsys
|
---|
| 3853 | """
|
---|
| 3854 | varlist = vars()
|
---|
[2574] | 3855 | s = self.__op( other, "DIV" )
|
---|
| 3856 | s._add_history("operator /", varlist)
|
---|
| 3857 | return s
|
---|
| 3858 |
|
---|
| 3859 | @asaplog_post_dec
|
---|
| 3860 | def __op( self, other, mode ):
|
---|
[513] | 3861 | s = None
|
---|
| 3862 | if isinstance(other, scantable):
|
---|
[2574] | 3863 | s = scantable(self._math._binaryop(self, other, mode))
|
---|
[513] | 3864 | elif isinstance(other, float):
|
---|
| 3865 | if other == 0.0:
|
---|
[718] | 3866 | raise ZeroDivisionError("Dividing by zero is not recommended")
|
---|
[2574] | 3867 | s = scantable(self._math._unaryop(self, other, mode, False))
|
---|
[2144] | 3868 | elif isinstance(other, list) or isinstance(other, numpy.ndarray):
|
---|
[2349] | 3869 | if isinstance(other[0], list) \
|
---|
| 3870 | or isinstance(other[0], numpy.ndarray):
|
---|
[2144] | 3871 | from asapmath import _array2dOp
|
---|
[2574] | 3872 | s = _array2dOp( self, other, mode, False )
|
---|
[2144] | 3873 | else:
|
---|
[2574] | 3874 | s = scantable( self._math._arrayop( self, other,
|
---|
| 3875 | mode, False ) )
|
---|
[513] | 3876 | else:
|
---|
[718] | 3877 | raise TypeError("Other input is not a scantable or float value")
|
---|
[513] | 3878 | return s
|
---|
| 3879 |
|
---|
[1862] | 3880 | @asaplog_post_dec
|
---|
[530] | 3881 | def get_fit(self, row=0):
|
---|
[1846] | 3882 | """\
|
---|
[530] | 3883 | Print or return the stored fits for a row in the scantable
|
---|
[1846] | 3884 |
|
---|
[530] | 3885 | Parameters:
|
---|
[1846] | 3886 |
|
---|
[530] | 3887 | row: the row which the fit has been applied to.
|
---|
[1846] | 3888 |
|
---|
[530] | 3889 | """
|
---|
| 3890 | if row > self.nrow():
|
---|
| 3891 | return
|
---|
[976] | 3892 | from asap.asapfit import asapfit
|
---|
[530] | 3893 | fit = asapfit(self._getfit(row))
|
---|
[1859] | 3894 | asaplog.push( '%s' %(fit) )
|
---|
| 3895 | return fit.as_dict()
|
---|
[530] | 3896 |
|
---|
[2349] | 3897 | @preserve_selection
|
---|
[1483] | 3898 | def flag_nans(self):
|
---|
[1846] | 3899 | """\
|
---|
[1483] | 3900 | Utility function to flag NaN values in the scantable.
|
---|
| 3901 | """
|
---|
| 3902 | import numpy
|
---|
| 3903 | basesel = self.get_selection()
|
---|
| 3904 | for i in range(self.nrow()):
|
---|
[1589] | 3905 | sel = self.get_row_selector(i)
|
---|
| 3906 | self.set_selection(basesel+sel)
|
---|
[1483] | 3907 | nans = numpy.isnan(self._getspectrum(0))
|
---|
| 3908 | if numpy.any(nans):
|
---|
| 3909 | bnans = [ bool(v) for v in nans]
|
---|
| 3910 | self.flag(bnans)
|
---|
| 3911 |
|
---|
[1588] | 3912 | def get_row_selector(self, rowno):
|
---|
[1992] | 3913 | return selector(rows=[rowno])
|
---|
[1573] | 3914 |
|
---|
[484] | 3915 | def _add_history(self, funcname, parameters):
|
---|
[1435] | 3916 | if not rcParams['scantable.history']:
|
---|
| 3917 | return
|
---|
[484] | 3918 | # create date
|
---|
| 3919 | sep = "##"
|
---|
| 3920 | from datetime import datetime
|
---|
| 3921 | dstr = datetime.now().strftime('%Y/%m/%d %H:%M:%S')
|
---|
| 3922 | hist = dstr+sep
|
---|
| 3923 | hist += funcname+sep#cdate+sep
|
---|
[2349] | 3924 | if parameters.has_key('self'):
|
---|
| 3925 | del parameters['self']
|
---|
[1118] | 3926 | for k, v in parameters.iteritems():
|
---|
[484] | 3927 | if type(v) is dict:
|
---|
[1118] | 3928 | for k2, v2 in v.iteritems():
|
---|
[484] | 3929 | hist += k2
|
---|
| 3930 | hist += "="
|
---|
[1118] | 3931 | if isinstance(v2, scantable):
|
---|
[484] | 3932 | hist += 'scantable'
|
---|
| 3933 | elif k2 == 'mask':
|
---|
[1118] | 3934 | if isinstance(v2, list) or isinstance(v2, tuple):
|
---|
[513] | 3935 | hist += str(self._zip_mask(v2))
|
---|
| 3936 | else:
|
---|
| 3937 | hist += str(v2)
|
---|
[484] | 3938 | else:
|
---|
[513] | 3939 | hist += str(v2)
|
---|
[484] | 3940 | else:
|
---|
| 3941 | hist += k
|
---|
| 3942 | hist += "="
|
---|
[1118] | 3943 | if isinstance(v, scantable):
|
---|
[484] | 3944 | hist += 'scantable'
|
---|
| 3945 | elif k == 'mask':
|
---|
[1118] | 3946 | if isinstance(v, list) or isinstance(v, tuple):
|
---|
[513] | 3947 | hist += str(self._zip_mask(v))
|
---|
| 3948 | else:
|
---|
| 3949 | hist += str(v)
|
---|
[484] | 3950 | else:
|
---|
| 3951 | hist += str(v)
|
---|
| 3952 | hist += sep
|
---|
| 3953 | hist = hist[:-2] # remove trailing '##'
|
---|
| 3954 | self._addhistory(hist)
|
---|
| 3955 |
|
---|
[710] | 3956 |
|
---|
[484] | 3957 | def _zip_mask(self, mask):
|
---|
| 3958 | mask = list(mask)
|
---|
| 3959 | i = 0
|
---|
| 3960 | segments = []
|
---|
| 3961 | while mask[i:].count(1):
|
---|
| 3962 | i += mask[i:].index(1)
|
---|
| 3963 | if mask[i:].count(0):
|
---|
| 3964 | j = i + mask[i:].index(0)
|
---|
| 3965 | else:
|
---|
[710] | 3966 | j = len(mask)
|
---|
[1118] | 3967 | segments.append([i, j])
|
---|
[710] | 3968 | i = j
|
---|
[484] | 3969 | return segments
|
---|
[714] | 3970 |
|
---|
[626] | 3971 | def _get_ordinate_label(self):
|
---|
| 3972 | fu = "("+self.get_fluxunit()+")"
|
---|
| 3973 | import re
|
---|
| 3974 | lbl = "Intensity"
|
---|
[1118] | 3975 | if re.match(".K.", fu):
|
---|
[626] | 3976 | lbl = "Brightness Temperature "+ fu
|
---|
[1118] | 3977 | elif re.match(".Jy.", fu):
|
---|
[626] | 3978 | lbl = "Flux density "+ fu
|
---|
| 3979 | return lbl
|
---|
[710] | 3980 |
|
---|
[876] | 3981 | def _check_ifs(self):
|
---|
[2349] | 3982 | # return len(set([self.nchan(i) for i in self.getifnos()])) == 1
|
---|
[1986] | 3983 | nchans = [self.nchan(i) for i in self.getifnos()]
|
---|
[2004] | 3984 | nchans = filter(lambda t: t > 0, nchans)
|
---|
[876] | 3985 | return (sum(nchans)/len(nchans) == nchans[0])
|
---|
[976] | 3986 |
|
---|
[1862] | 3987 | @asaplog_post_dec
|
---|
[1916] | 3988 | def _fill(self, names, unit, average, opts={}):
|
---|
[976] | 3989 | first = True
|
---|
| 3990 | fullnames = []
|
---|
| 3991 | for name in names:
|
---|
| 3992 | name = os.path.expandvars(name)
|
---|
| 3993 | name = os.path.expanduser(name)
|
---|
| 3994 | if not os.path.exists(name):
|
---|
| 3995 | msg = "File '%s' does not exists" % (name)
|
---|
| 3996 | raise IOError(msg)
|
---|
| 3997 | fullnames.append(name)
|
---|
| 3998 | if average:
|
---|
| 3999 | asaplog.push('Auto averaging integrations')
|
---|
[1079] | 4000 | stype = int(rcParams['scantable.storage'].lower() == 'disk')
|
---|
[976] | 4001 | for name in fullnames:
|
---|
[1073] | 4002 | tbl = Scantable(stype)
|
---|
[2004] | 4003 | if is_ms( name ):
|
---|
| 4004 | r = msfiller( tbl )
|
---|
| 4005 | else:
|
---|
| 4006 | r = filler( tbl )
|
---|
[976] | 4007 | msg = "Importing %s..." % (name)
|
---|
[1118] | 4008 | asaplog.push(msg, False)
|
---|
[2349] | 4009 | r.open(name, opts)
|
---|
[2480] | 4010 | rx = rcParams['scantable.reference']
|
---|
| 4011 | r.setreferenceexpr(rx)
|
---|
[1843] | 4012 | r.fill()
|
---|
[976] | 4013 | if average:
|
---|
[1118] | 4014 | tbl = self._math._average((tbl, ), (), 'NONE', 'SCAN')
|
---|
[976] | 4015 | if not first:
|
---|
| 4016 | tbl = self._math._merge([self, tbl])
|
---|
| 4017 | Scantable.__init__(self, tbl)
|
---|
[1843] | 4018 | r.close()
|
---|
[1118] | 4019 | del r, tbl
|
---|
[976] | 4020 | first = False
|
---|
[1861] | 4021 | #flush log
|
---|
| 4022 | asaplog.post()
|
---|
[976] | 4023 | if unit is not None:
|
---|
| 4024 | self.set_fluxunit(unit)
|
---|
[1824] | 4025 | if not is_casapy():
|
---|
| 4026 | self.set_freqframe(rcParams['scantable.freqframe'])
|
---|
[976] | 4027 |
|
---|
[2610] | 4028 | def _get_verify_action( self, msg, action=None ):
|
---|
| 4029 | valid_act = ['Y', 'N', 'A', 'R']
|
---|
| 4030 | if not action or not isinstance(action, str):
|
---|
| 4031 | action = raw_input("%s [Y/n/a/r] (h for help): " % msg)
|
---|
| 4032 | if action == '':
|
---|
| 4033 | return "Y"
|
---|
| 4034 | elif (action.upper()[0] in valid_act):
|
---|
| 4035 | return action.upper()[0]
|
---|
| 4036 | elif (action.upper()[0] in ['H','?']):
|
---|
| 4037 | print "Available actions of verification [Y|n|a|r]"
|
---|
| 4038 | print " Y : Yes for current data (default)"
|
---|
| 4039 | print " N : No for current data"
|
---|
| 4040 | print " A : Accept all in the following and exit from verification"
|
---|
| 4041 | print " R : Reject all in the following and exit from verification"
|
---|
| 4042 | print " H or ?: help (show this message)"
|
---|
| 4043 | return self._get_verify_action(msg)
|
---|
| 4044 | else:
|
---|
| 4045 | return 'Y'
|
---|
[2012] | 4046 |
|
---|
[1402] | 4047 | def __getitem__(self, key):
|
---|
| 4048 | if key < 0:
|
---|
| 4049 | key += self.nrow()
|
---|
| 4050 | if key >= self.nrow():
|
---|
| 4051 | raise IndexError("Row index out of range.")
|
---|
| 4052 | return self._getspectrum(key)
|
---|
| 4053 |
|
---|
| 4054 | def __setitem__(self, key, value):
|
---|
| 4055 | if key < 0:
|
---|
| 4056 | key += self.nrow()
|
---|
| 4057 | if key >= self.nrow():
|
---|
| 4058 | raise IndexError("Row index out of range.")
|
---|
| 4059 | if not hasattr(value, "__len__") or \
|
---|
| 4060 | len(value) > self.nchan(self.getif(key)):
|
---|
| 4061 | raise ValueError("Spectrum length doesn't match.")
|
---|
| 4062 | return self._setspectrum(value, key)
|
---|
| 4063 |
|
---|
| 4064 | def __len__(self):
|
---|
| 4065 | return self.nrow()
|
---|
| 4066 |
|
---|
| 4067 | def __iter__(self):
|
---|
| 4068 | for i in range(len(self)):
|
---|
| 4069 | yield self[i]
|
---|