[1846] | 1 | """This module defines the scantable class."""
|
---|
| 2 |
|
---|
[1697] | 3 | import os
|
---|
[2315] | 4 | import tempfile
|
---|
[1948] | 5 | import numpy
|
---|
[1691] | 6 | try:
|
---|
| 7 | from functools import wraps as wraps_dec
|
---|
| 8 | except ImportError:
|
---|
| 9 | from asap.compatibility import wraps as wraps_dec
|
---|
| 10 |
|
---|
[1824] | 11 | from asap.env import is_casapy
|
---|
[876] | 12 | from asap._asap import Scantable
|
---|
[2004] | 13 | from asap._asap import filler, msfiller
|
---|
[1824] | 14 | from asap.parameters import rcParams
|
---|
[1862] | 15 | from asap.logging import asaplog, asaplog_post_dec
|
---|
[1824] | 16 | from asap.selector import selector
|
---|
| 17 | from asap.linecatalog import linecatalog
|
---|
[1600] | 18 | from asap.coordinate import coordinate
|
---|
[1859] | 19 | from asap.utils import _n_bools, mask_not, mask_and, mask_or, page
|
---|
[1907] | 20 | from asap.asapfitter import fitter
|
---|
[102] | 21 |
|
---|
[2411] | 22 | ###############################################################
|
---|
| 23 | ### WK temporarily added these lines for testing 2011/11/28 ###
|
---|
| 24 | ###############################################################
|
---|
| 25 | #from asap._asap import TestClass
|
---|
[1689] | 26 |
|
---|
[2411] | 27 | #class testclass(TestClass):
|
---|
| 28 | # def __init__(self, nelem):
|
---|
| 29 | # TestClass.__init__(self, nelem)
|
---|
| 30 |
|
---|
| 31 | ###############################################################
|
---|
| 32 |
|
---|
| 33 |
|
---|
[1689] | 34 | def preserve_selection(func):
|
---|
[1691] | 35 | @wraps_dec(func)
|
---|
[1689] | 36 | def wrap(obj, *args, **kw):
|
---|
| 37 | basesel = obj.get_selection()
|
---|
[1857] | 38 | try:
|
---|
| 39 | val = func(obj, *args, **kw)
|
---|
| 40 | finally:
|
---|
| 41 | obj.set_selection(basesel)
|
---|
[1689] | 42 | return val
|
---|
| 43 | return wrap
|
---|
| 44 |
|
---|
[1846] | 45 | def is_scantable(filename):
|
---|
| 46 | """Is the given file a scantable?
|
---|
[1689] | 47 |
|
---|
[1846] | 48 | Parameters:
|
---|
| 49 |
|
---|
| 50 | filename: the name of the file/directory to test
|
---|
| 51 |
|
---|
| 52 | """
|
---|
[1883] | 53 | if ( os.path.isdir(filename)
|
---|
| 54 | and os.path.exists(filename+'/table.info')
|
---|
| 55 | and os.path.exists(filename+'/table.dat') ):
|
---|
| 56 | f=open(filename+'/table.info')
|
---|
| 57 | l=f.readline()
|
---|
| 58 | f.close()
|
---|
| 59 | #if ( l.find('Scantable') != -1 ):
|
---|
| 60 | if ( l.find('Measurement Set') == -1 ):
|
---|
| 61 | return True
|
---|
| 62 | else:
|
---|
| 63 | return False
|
---|
| 64 | else:
|
---|
| 65 | return False
|
---|
| 66 | ## return (os.path.isdir(filename)
|
---|
| 67 | ## and not os.path.exists(filename+'/table.f1')
|
---|
| 68 | ## and os.path.exists(filename+'/table.info'))
|
---|
[1697] | 69 |
|
---|
[1883] | 70 | def is_ms(filename):
|
---|
| 71 | """Is the given file a MeasurementSet?
|
---|
[1697] | 72 |
|
---|
[1883] | 73 | Parameters:
|
---|
| 74 |
|
---|
| 75 | filename: the name of the file/directory to test
|
---|
| 76 |
|
---|
| 77 | """
|
---|
| 78 | if ( os.path.isdir(filename)
|
---|
| 79 | and os.path.exists(filename+'/table.info')
|
---|
| 80 | and os.path.exists(filename+'/table.dat') ):
|
---|
| 81 | f=open(filename+'/table.info')
|
---|
| 82 | l=f.readline()
|
---|
| 83 | f.close()
|
---|
| 84 | if ( l.find('Measurement Set') != -1 ):
|
---|
| 85 | return True
|
---|
| 86 | else:
|
---|
| 87 | return False
|
---|
| 88 | else:
|
---|
| 89 | return False
|
---|
[2186] | 90 |
|
---|
| 91 | def normalise_edge_param(edge):
|
---|
| 92 | """\
|
---|
| 93 | Convert a given edge value to a one-dimensional array that can be
|
---|
| 94 | given to baseline-fitting/subtraction functions.
|
---|
| 95 | The length of the output value will be an even because values for
|
---|
| 96 | the both sides of spectra are to be contained for each IF. When
|
---|
| 97 | the length is 2, the values will be applied to all IFs. If the length
|
---|
| 98 | is larger than 2, it will be 2*ifnos().
|
---|
| 99 | Accepted format of edge include:
|
---|
| 100 | * an integer - will be used for both sides of spectra of all IFs.
|
---|
| 101 | e.g. 10 is converted to [10,10]
|
---|
[2277] | 102 | * an empty list/tuple [] - converted to [0, 0] and used for all IFs.
|
---|
[2186] | 103 | * a list/tuple containing an integer - same as the above case.
|
---|
| 104 | e.g. [10] is converted to [10,10]
|
---|
| 105 | * a list/tuple containing two integers - will be used for all IFs.
|
---|
| 106 | e.g. [5,10] is output as it is. no need to convert.
|
---|
| 107 | * a list/tuple of lists/tuples containing TWO integers -
|
---|
| 108 | each element of edge will be used for each IF.
|
---|
[2277] | 109 | e.g. [[5,10],[15,20]] - [5,10] for IF[0] and [15,20] for IF[1].
|
---|
| 110 |
|
---|
| 111 | If an element contains the same integer values, the input 'edge'
|
---|
| 112 | parameter can be given in a simpler shape in the following cases:
|
---|
[2186] | 113 | ** when len(edge)!=2
|
---|
[2277] | 114 | any elements containing the same values can be replaced
|
---|
| 115 | to single integers.
|
---|
| 116 | e.g. [[15,15]] can be simplified to [15] (or [15,15] or 15 also).
|
---|
| 117 | e.g. [[1,1],[2,2],[3,3]] can be simplified to [1,2,3].
|
---|
[2186] | 118 | ** when len(edge)=2
|
---|
| 119 | care is needed for this case: ONLY ONE of the
|
---|
| 120 | elements can be a single integer,
|
---|
| 121 | e.g. [[5,5],[10,10]] can be simplified to [5,[10,10]]
|
---|
[2277] | 122 | or [[5,5],10], but can NOT be simplified to [5,10].
|
---|
[2186] | 123 | when [5,10] given, it is interpreted as
|
---|
[2277] | 124 | [[5,10],[5,10],[5,10],...] instead, as shown before.
|
---|
[2186] | 125 | """
|
---|
| 126 | from asap import _is_sequence_or_number as _is_valid
|
---|
| 127 | if isinstance(edge, list) or isinstance(edge, tuple):
|
---|
| 128 | for edgepar in edge:
|
---|
| 129 | if not _is_valid(edgepar, int):
|
---|
| 130 | raise ValueError, "Each element of the 'edge' tuple has \
|
---|
| 131 | to be a pair of integers or an integer."
|
---|
| 132 | if isinstance(edgepar, list) or isinstance(edgepar, tuple):
|
---|
| 133 | if len(edgepar) != 2:
|
---|
| 134 | raise ValueError, "Each element of the 'edge' tuple has \
|
---|
| 135 | to be a pair of integers or an integer."
|
---|
| 136 | else:
|
---|
| 137 | if not _is_valid(edge, int):
|
---|
| 138 | raise ValueError, "Parameter 'edge' has to be an integer or a \
|
---|
| 139 | pair of integers specified as a tuple. \
|
---|
| 140 | Nested tuples are allowed \
|
---|
| 141 | to make individual selection for different IFs."
|
---|
| 142 |
|
---|
| 143 |
|
---|
| 144 | if isinstance(edge, int):
|
---|
| 145 | edge = [ edge, edge ] # e.g. 3 => [3,3]
|
---|
| 146 | elif isinstance(edge, list) or isinstance(edge, tuple):
|
---|
| 147 | if len(edge) == 0:
|
---|
| 148 | edge = [0, 0] # e.g. [] => [0,0]
|
---|
| 149 | elif len(edge) == 1:
|
---|
| 150 | if isinstance(edge[0], int):
|
---|
| 151 | edge = [ edge[0], edge[0] ] # e.g. [1] => [1,1]
|
---|
| 152 |
|
---|
| 153 | commonedge = True
|
---|
| 154 | if len(edge) > 2: commonedge = False
|
---|
| 155 | else:
|
---|
| 156 | for edgepar in edge:
|
---|
| 157 | if isinstance(edgepar, list) or isinstance(edgepar, tuple):
|
---|
| 158 | commonedge = False
|
---|
| 159 | break
|
---|
| 160 |
|
---|
| 161 | if commonedge:
|
---|
| 162 | if len(edge) > 1:
|
---|
| 163 | norm_edge = edge
|
---|
| 164 | else:
|
---|
| 165 | norm_edge = edge + edge
|
---|
| 166 | else:
|
---|
| 167 | norm_edge = []
|
---|
| 168 | for edgepar in edge:
|
---|
| 169 | if isinstance(edgepar, int):
|
---|
| 170 | norm_edge += [edgepar, edgepar]
|
---|
| 171 | else:
|
---|
| 172 | norm_edge += edgepar
|
---|
| 173 |
|
---|
| 174 | return norm_edge
|
---|
| 175 |
|
---|
| 176 | def raise_fitting_failure_exception(e):
|
---|
| 177 | msg = "The fit failed, possibly because it didn't converge."
|
---|
| 178 | if rcParams["verbose"]:
|
---|
| 179 | asaplog.push(str(e))
|
---|
| 180 | asaplog.push(str(msg))
|
---|
| 181 | else:
|
---|
| 182 | raise RuntimeError(str(e)+'\n'+msg)
|
---|
| 183 |
|
---|
[2189] | 184 | def pack_progress_params(showprogress, minnrow):
|
---|
| 185 | return str(showprogress).lower() + ',' + str(minnrow)
|
---|
| 186 |
|
---|
[876] | 187 | class scantable(Scantable):
|
---|
[1846] | 188 | """\
|
---|
| 189 | The ASAP container for scans (single-dish data).
|
---|
[102] | 190 | """
|
---|
[1819] | 191 |
|
---|
[1862] | 192 | @asaplog_post_dec
|
---|
[2315] | 193 | def __init__(self, filename, average=None, unit=None, parallactify=None,
|
---|
| 194 | **args):
|
---|
[1846] | 195 | """\
|
---|
[102] | 196 | Create a scantable from a saved one or make a reference
|
---|
[1846] | 197 |
|
---|
[102] | 198 | Parameters:
|
---|
[1846] | 199 |
|
---|
| 200 | filename: the name of an asap table on disk
|
---|
| 201 | or
|
---|
| 202 | the name of a rpfits/sdfits/ms file
|
---|
| 203 | (integrations within scans are auto averaged
|
---|
| 204 | and the whole file is read) or
|
---|
| 205 | [advanced] a reference to an existing scantable
|
---|
| 206 |
|
---|
| 207 | average: average all integrations withinb a scan on read.
|
---|
| 208 | The default (True) is taken from .asaprc.
|
---|
| 209 |
|
---|
[484] | 210 | unit: brightness unit; must be consistent with K or Jy.
|
---|
[1846] | 211 | Over-rides the default selected by the filler
|
---|
| 212 | (input rpfits/sdfits/ms) or replaces the value
|
---|
| 213 | in existing scantables
|
---|
| 214 |
|
---|
[1920] | 215 | antenna: for MeasurementSet input data only:
|
---|
[2349] | 216 | Antenna selection. integer (id) or string
|
---|
| 217 | (name or id).
|
---|
[1846] | 218 |
|
---|
[2349] | 219 | parallactify: Indicate that the data had been parallactified.
|
---|
| 220 | Default (false) is taken from rc file.
|
---|
[1846] | 221 |
|
---|
[710] | 222 | """
|
---|
[976] | 223 | if average is None:
|
---|
[710] | 224 | average = rcParams['scantable.autoaverage']
|
---|
[1593] | 225 | parallactify = parallactify or rcParams['scantable.parallactify']
|
---|
[1259] | 226 | varlist = vars()
|
---|
[876] | 227 | from asap._asap import stmath
|
---|
[1819] | 228 | self._math = stmath( rcParams['insitu'] )
|
---|
[876] | 229 | if isinstance(filename, Scantable):
|
---|
| 230 | Scantable.__init__(self, filename)
|
---|
[181] | 231 | else:
|
---|
[1697] | 232 | if isinstance(filename, str):
|
---|
[976] | 233 | filename = os.path.expandvars(filename)
|
---|
| 234 | filename = os.path.expanduser(filename)
|
---|
| 235 | if not os.path.exists(filename):
|
---|
| 236 | s = "File '%s' not found." % (filename)
|
---|
| 237 | raise IOError(s)
|
---|
[1697] | 238 | if is_scantable(filename):
|
---|
| 239 | ondisk = rcParams['scantable.storage'] == 'disk'
|
---|
| 240 | Scantable.__init__(self, filename, ondisk)
|
---|
| 241 | if unit is not None:
|
---|
| 242 | self.set_fluxunit(unit)
|
---|
[2008] | 243 | if average:
|
---|
| 244 | self._assign( self.average_time( scanav=True ) )
|
---|
[1819] | 245 | # do not reset to the default freqframe
|
---|
| 246 | #self.set_freqframe(rcParams['scantable.freqframe'])
|
---|
[1883] | 247 | elif is_ms(filename):
|
---|
[1916] | 248 | # Measurement Set
|
---|
| 249 | opts={'ms': {}}
|
---|
| 250 | mskeys=['getpt','antenna']
|
---|
| 251 | for key in mskeys:
|
---|
| 252 | if key in args.keys():
|
---|
| 253 | opts['ms'][key] = args[key]
|
---|
| 254 | self._fill([filename], unit, average, opts)
|
---|
[1893] | 255 | elif os.path.isfile(filename):
|
---|
[1916] | 256 | self._fill([filename], unit, average)
|
---|
[2350] | 257 | # only apply to new data not "copy constructor"
|
---|
| 258 | self.parallactify(parallactify)
|
---|
[1883] | 259 | else:
|
---|
[1819] | 260 | msg = "The given file '%s'is not a valid " \
|
---|
| 261 | "asap table." % (filename)
|
---|
[1859] | 262 | raise IOError(msg)
|
---|
[1118] | 263 | elif (isinstance(filename, list) or isinstance(filename, tuple)) \
|
---|
[976] | 264 | and isinstance(filename[-1], str):
|
---|
[1916] | 265 | self._fill(filename, unit, average)
|
---|
[1586] | 266 | self.parallactify(parallactify)
|
---|
[1259] | 267 | self._add_history("scantable", varlist)
|
---|
[102] | 268 |
|
---|
[1862] | 269 | @asaplog_post_dec
|
---|
[876] | 270 | def save(self, name=None, format=None, overwrite=False):
|
---|
[1846] | 271 | """\
|
---|
[1280] | 272 | Store the scantable on disk. This can be an asap (aips++) Table,
|
---|
| 273 | SDFITS or MS2 format.
|
---|
[1846] | 274 |
|
---|
[116] | 275 | Parameters:
|
---|
[1846] | 276 |
|
---|
[2431] | 277 | name: the name of the outputfile. For format 'ASCII'
|
---|
[1093] | 278 | this is the root file name (data in 'name'.txt
|
---|
[497] | 279 | and header in 'name'_header.txt)
|
---|
[1855] | 280 |
|
---|
[116] | 281 | format: an optional file format. Default is ASAP.
|
---|
[1855] | 282 | Allowed are:
|
---|
| 283 |
|
---|
| 284 | * 'ASAP' (save as ASAP [aips++] Table),
|
---|
| 285 | * 'SDFITS' (save as SDFITS file)
|
---|
| 286 | * 'ASCII' (saves as ascii text file)
|
---|
| 287 | * 'MS2' (saves as an casacore MeasurementSet V2)
|
---|
[2315] | 288 | * 'FITS' (save as image FITS - not readable by
|
---|
| 289 | class)
|
---|
[1855] | 290 | * 'CLASS' (save as FITS readable by CLASS)
|
---|
| 291 |
|
---|
[411] | 292 | overwrite: If the file should be overwritten if it exists.
|
---|
[256] | 293 | The default False is to return with warning
|
---|
[411] | 294 | without writing the output. USE WITH CARE.
|
---|
[1855] | 295 |
|
---|
[1846] | 296 | Example::
|
---|
| 297 |
|
---|
[116] | 298 | scan.save('myscan.asap')
|
---|
[1118] | 299 | scan.save('myscan.sdfits', 'SDFITS')
|
---|
[1846] | 300 |
|
---|
[116] | 301 | """
|
---|
[411] | 302 | from os import path
|
---|
[1593] | 303 | format = format or rcParams['scantable.save']
|
---|
[256] | 304 | suffix = '.'+format.lower()
|
---|
[1118] | 305 | if name is None or name == "":
|
---|
[256] | 306 | name = 'scantable'+suffix
|
---|
[718] | 307 | msg = "No filename given. Using default name %s..." % name
|
---|
| 308 | asaplog.push(msg)
|
---|
[411] | 309 | name = path.expandvars(name)
|
---|
[256] | 310 | if path.isfile(name) or path.isdir(name):
|
---|
| 311 | if not overwrite:
|
---|
[718] | 312 | msg = "File %s exists." % name
|
---|
[1859] | 313 | raise IOError(msg)
|
---|
[451] | 314 | format2 = format.upper()
|
---|
| 315 | if format2 == 'ASAP':
|
---|
[116] | 316 | self._save(name)
|
---|
[2029] | 317 | elif format2 == 'MS2':
|
---|
| 318 | msopt = {'ms': {'overwrite': overwrite } }
|
---|
| 319 | from asap._asap import mswriter
|
---|
| 320 | writer = mswriter( self )
|
---|
| 321 | writer.write( name, msopt )
|
---|
[116] | 322 | else:
|
---|
[989] | 323 | from asap._asap import stwriter as stw
|
---|
[1118] | 324 | writer = stw(format2)
|
---|
| 325 | writer.write(self, name)
|
---|
[116] | 326 | return
|
---|
| 327 |
|
---|
[102] | 328 | def copy(self):
|
---|
[1846] | 329 | """Return a copy of this scantable.
|
---|
| 330 |
|
---|
| 331 | *Note*:
|
---|
| 332 |
|
---|
[1348] | 333 | This makes a full (deep) copy. scan2 = scan1 makes a reference.
|
---|
[1846] | 334 |
|
---|
| 335 | Example::
|
---|
| 336 |
|
---|
[102] | 337 | copiedscan = scan.copy()
|
---|
[1846] | 338 |
|
---|
[102] | 339 | """
|
---|
[876] | 340 | sd = scantable(Scantable._copy(self))
|
---|
[113] | 341 | return sd
|
---|
| 342 |
|
---|
[1093] | 343 | def drop_scan(self, scanid=None):
|
---|
[1846] | 344 | """\
|
---|
[1093] | 345 | Return a new scantable where the specified scan number(s) has(have)
|
---|
| 346 | been dropped.
|
---|
[1846] | 347 |
|
---|
[1093] | 348 | Parameters:
|
---|
[1846] | 349 |
|
---|
[1093] | 350 | scanid: a (list of) scan number(s)
|
---|
[1846] | 351 |
|
---|
[1093] | 352 | """
|
---|
| 353 | from asap import _is_sequence_or_number as _is_valid
|
---|
| 354 | from asap import _to_list
|
---|
| 355 | from asap import unique
|
---|
| 356 | if not _is_valid(scanid):
|
---|
[2315] | 357 | raise RuntimeError( 'Please specify a scanno to drop from the'
|
---|
| 358 | ' scantable' )
|
---|
[1859] | 359 | scanid = _to_list(scanid)
|
---|
| 360 | allscans = unique([ self.getscan(i) for i in range(self.nrow())])
|
---|
| 361 | for sid in scanid: allscans.remove(sid)
|
---|
| 362 | if len(allscans) == 0:
|
---|
| 363 | raise ValueError("Can't remove all scans")
|
---|
| 364 | sel = selector(scans=allscans)
|
---|
| 365 | return self._select_copy(sel)
|
---|
[1093] | 366 |
|
---|
[1594] | 367 | def _select_copy(self, selection):
|
---|
| 368 | orig = self.get_selection()
|
---|
| 369 | self.set_selection(orig+selection)
|
---|
| 370 | cp = self.copy()
|
---|
| 371 | self.set_selection(orig)
|
---|
| 372 | return cp
|
---|
| 373 |
|
---|
[102] | 374 | def get_scan(self, scanid=None):
|
---|
[1855] | 375 | """\
|
---|
[102] | 376 | Return a specific scan (by scanno) or collection of scans (by
|
---|
| 377 | source name) in a new scantable.
|
---|
[1846] | 378 |
|
---|
| 379 | *Note*:
|
---|
| 380 |
|
---|
[1348] | 381 | See scantable.drop_scan() for the inverse operation.
|
---|
[1846] | 382 |
|
---|
[102] | 383 | Parameters:
|
---|
[1846] | 384 |
|
---|
[513] | 385 | scanid: a (list of) scanno or a source name, unix-style
|
---|
| 386 | patterns are accepted for source name matching, e.g.
|
---|
| 387 | '*_R' gets all 'ref scans
|
---|
[1846] | 388 |
|
---|
| 389 | Example::
|
---|
| 390 |
|
---|
[513] | 391 | # get all scans containing the source '323p459'
|
---|
| 392 | newscan = scan.get_scan('323p459')
|
---|
| 393 | # get all 'off' scans
|
---|
| 394 | refscans = scan.get_scan('*_R')
|
---|
| 395 | # get a susbset of scans by scanno (as listed in scan.summary())
|
---|
[1118] | 396 | newscan = scan.get_scan([0, 2, 7, 10])
|
---|
[1846] | 397 |
|
---|
[102] | 398 | """
|
---|
| 399 | if scanid is None:
|
---|
[1859] | 400 | raise RuntimeError( 'Please specify a scan no or name to '
|
---|
| 401 | 'retrieve from the scantable' )
|
---|
[102] | 402 | try:
|
---|
[946] | 403 | bsel = self.get_selection()
|
---|
| 404 | sel = selector()
|
---|
[102] | 405 | if type(scanid) is str:
|
---|
[946] | 406 | sel.set_name(scanid)
|
---|
[1594] | 407 | return self._select_copy(sel)
|
---|
[102] | 408 | elif type(scanid) is int:
|
---|
[946] | 409 | sel.set_scans([scanid])
|
---|
[1594] | 410 | return self._select_copy(sel)
|
---|
[381] | 411 | elif type(scanid) is list:
|
---|
[946] | 412 | sel.set_scans(scanid)
|
---|
[1594] | 413 | return self._select_copy(sel)
|
---|
[381] | 414 | else:
|
---|
[718] | 415 | msg = "Illegal scanid type, use 'int' or 'list' if ints."
|
---|
[1859] | 416 | raise TypeError(msg)
|
---|
[102] | 417 | except RuntimeError:
|
---|
[1859] | 418 | raise
|
---|
[102] | 419 |
|
---|
| 420 | def __str__(self):
|
---|
[2315] | 421 | tempFile = tempfile.NamedTemporaryFile()
|
---|
| 422 | Scantable._summary(self, tempFile.name)
|
---|
| 423 | tempFile.seek(0)
|
---|
| 424 | asaplog.clear()
|
---|
| 425 | return tempFile.file.read()
|
---|
[102] | 426 |
|
---|
[2315] | 427 | @asaplog_post_dec
|
---|
[976] | 428 | def summary(self, filename=None):
|
---|
[1846] | 429 | """\
|
---|
[102] | 430 | Print a summary of the contents of this scantable.
|
---|
[1846] | 431 |
|
---|
[102] | 432 | Parameters:
|
---|
[1846] | 433 |
|
---|
[1931] | 434 | filename: the name of a file to write the putput to
|
---|
[102] | 435 | Default - no file output
|
---|
[1846] | 436 |
|
---|
[102] | 437 | """
|
---|
| 438 | if filename is not None:
|
---|
[256] | 439 | if filename is "":
|
---|
| 440 | filename = 'scantable_summary.txt'
|
---|
[415] | 441 | from os.path import expandvars, isdir
|
---|
[411] | 442 | filename = expandvars(filename)
|
---|
[2286] | 443 | if isdir(filename):
|
---|
[718] | 444 | msg = "Illegal file name '%s'." % (filename)
|
---|
[1859] | 445 | raise IOError(msg)
|
---|
[2286] | 446 | else:
|
---|
| 447 | filename = ""
|
---|
| 448 | Scantable._summary(self, filename)
|
---|
[710] | 449 |
|
---|
[1512] | 450 | def get_spectrum(self, rowno):
|
---|
[1471] | 451 | """Return the spectrum for the current row in the scantable as a list.
|
---|
[1846] | 452 |
|
---|
[1471] | 453 | Parameters:
|
---|
[1846] | 454 |
|
---|
[1573] | 455 | rowno: the row number to retrieve the spectrum from
|
---|
[1846] | 456 |
|
---|
[1471] | 457 | """
|
---|
| 458 | return self._getspectrum(rowno)
|
---|
[946] | 459 |
|
---|
[1471] | 460 | def get_mask(self, rowno):
|
---|
| 461 | """Return the mask for the current row in the scantable as a list.
|
---|
[1846] | 462 |
|
---|
[1471] | 463 | Parameters:
|
---|
[1846] | 464 |
|
---|
[1573] | 465 | rowno: the row number to retrieve the mask from
|
---|
[1846] | 466 |
|
---|
[1471] | 467 | """
|
---|
| 468 | return self._getmask(rowno)
|
---|
| 469 |
|
---|
| 470 | def set_spectrum(self, spec, rowno):
|
---|
[1938] | 471 | """Set the spectrum for the current row in the scantable.
|
---|
[1846] | 472 |
|
---|
[1471] | 473 | Parameters:
|
---|
[1846] | 474 |
|
---|
[1855] | 475 | spec: the new spectrum
|
---|
[1846] | 476 |
|
---|
[1855] | 477 | rowno: the row number to set the spectrum for
|
---|
| 478 |
|
---|
[1471] | 479 | """
|
---|
[2348] | 480 | assert(len(spec) == self.nchan(self.getif(rowno)))
|
---|
[1471] | 481 | return self._setspectrum(spec, rowno)
|
---|
| 482 |
|
---|
[1600] | 483 | def get_coordinate(self, rowno):
|
---|
| 484 | """Return the (spectral) coordinate for a a given 'rowno'.
|
---|
[1846] | 485 |
|
---|
| 486 | *Note*:
|
---|
| 487 |
|
---|
[1600] | 488 | * This coordinate is only valid until a scantable method modifies
|
---|
| 489 | the frequency axis.
|
---|
| 490 | * This coordinate does contain the original frequency set-up
|
---|
| 491 | NOT the new frame. The conversions however are done using the user
|
---|
| 492 | specified frame (e.g. LSRK/TOPO). To get the 'real' coordinate,
|
---|
| 493 | use scantable.freq_align first. Without it there is no closure,
|
---|
[1846] | 494 | i.e.::
|
---|
[1600] | 495 |
|
---|
[1846] | 496 | c = myscan.get_coordinate(0)
|
---|
| 497 | c.to_frequency(c.get_reference_pixel()) != c.get_reference_value()
|
---|
| 498 |
|
---|
[1600] | 499 | Parameters:
|
---|
[1846] | 500 |
|
---|
[1600] | 501 | rowno: the row number for the spectral coordinate
|
---|
| 502 |
|
---|
| 503 | """
|
---|
| 504 | return coordinate(Scantable.get_coordinate(self, rowno))
|
---|
| 505 |
|
---|
[946] | 506 | def get_selection(self):
|
---|
[1846] | 507 | """\
|
---|
[1005] | 508 | Get the selection object currently set on this scantable.
|
---|
[1846] | 509 |
|
---|
| 510 | Example::
|
---|
| 511 |
|
---|
[1005] | 512 | sel = scan.get_selection()
|
---|
| 513 | sel.set_ifs(0) # select IF 0
|
---|
| 514 | scan.set_selection(sel) # apply modified selection
|
---|
[1846] | 515 |
|
---|
[946] | 516 | """
|
---|
| 517 | return selector(self._getselection())
|
---|
| 518 |
|
---|
[1576] | 519 | def set_selection(self, selection=None, **kw):
|
---|
[1846] | 520 | """\
|
---|
[1005] | 521 | Select a subset of the data. All following operations on this scantable
|
---|
| 522 | are only applied to thi selection.
|
---|
[1846] | 523 |
|
---|
[1005] | 524 | Parameters:
|
---|
[1697] | 525 |
|
---|
[1846] | 526 | selection: a selector object (default unset the selection), or
|
---|
[2431] | 527 | any combination of 'pols', 'ifs', 'beams', 'scans',
|
---|
| 528 | 'cycles', 'name', 'query'
|
---|
[1697] | 529 |
|
---|
[1846] | 530 | Examples::
|
---|
[1697] | 531 |
|
---|
[1005] | 532 | sel = selector() # create a selection object
|
---|
[1118] | 533 | self.set_scans([0, 3]) # select SCANNO 0 and 3
|
---|
[1005] | 534 | scan.set_selection(sel) # set the selection
|
---|
| 535 | scan.summary() # will only print summary of scanno 0 an 3
|
---|
| 536 | scan.set_selection() # unset the selection
|
---|
[1697] | 537 | # or the equivalent
|
---|
| 538 | scan.set_selection(scans=[0,3])
|
---|
| 539 | scan.summary() # will only print summary of scanno 0 an 3
|
---|
| 540 | scan.set_selection() # unset the selection
|
---|
[1846] | 541 |
|
---|
[946] | 542 | """
|
---|
[1576] | 543 | if selection is None:
|
---|
| 544 | # reset
|
---|
| 545 | if len(kw) == 0:
|
---|
| 546 | selection = selector()
|
---|
| 547 | else:
|
---|
| 548 | # try keywords
|
---|
| 549 | for k in kw:
|
---|
| 550 | if k not in selector.fields:
|
---|
[2320] | 551 | raise KeyError("Invalid selection key '%s', "
|
---|
| 552 | "valid keys are %s" % (k,
|
---|
| 553 | selector.fields))
|
---|
[1576] | 554 | selection = selector(**kw)
|
---|
[946] | 555 | self._setselection(selection)
|
---|
| 556 |
|
---|
[1819] | 557 | def get_row(self, row=0, insitu=None):
|
---|
[1846] | 558 | """\
|
---|
[1819] | 559 | Select a row in the scantable.
|
---|
| 560 | Return a scantable with single row.
|
---|
[1846] | 561 |
|
---|
[1819] | 562 | Parameters:
|
---|
[1846] | 563 |
|
---|
| 564 | row: row no of integration, default is 0.
|
---|
| 565 | insitu: if False a new scantable is returned. Otherwise, the
|
---|
| 566 | scaling is done in-situ. The default is taken from .asaprc
|
---|
| 567 | (False)
|
---|
| 568 |
|
---|
[1819] | 569 | """
|
---|
[2349] | 570 | if insitu is None:
|
---|
| 571 | insitu = rcParams['insitu']
|
---|
[1819] | 572 | if not insitu:
|
---|
| 573 | workscan = self.copy()
|
---|
| 574 | else:
|
---|
| 575 | workscan = self
|
---|
| 576 | # Select a row
|
---|
[2349] | 577 | sel = selector()
|
---|
[1992] | 578 | sel.set_rows([row])
|
---|
[1819] | 579 | workscan.set_selection(sel)
|
---|
| 580 | if not workscan.nrow() == 1:
|
---|
[2349] | 581 | msg = "Could not identify single row. %d rows selected." \
|
---|
| 582 | % (workscan.nrow())
|
---|
[1819] | 583 | raise RuntimeError(msg)
|
---|
| 584 | if insitu:
|
---|
| 585 | self._assign(workscan)
|
---|
| 586 | else:
|
---|
| 587 | return workscan
|
---|
| 588 |
|
---|
[1862] | 589 | @asaplog_post_dec
|
---|
[1907] | 590 | def stats(self, stat='stddev', mask=None, form='3.3f', row=None):
|
---|
[1846] | 591 | """\
|
---|
[135] | 592 | Determine the specified statistic of the current beam/if/pol
|
---|
[102] | 593 | Takes a 'mask' as an optional parameter to specify which
|
---|
| 594 | channels should be excluded.
|
---|
[1846] | 595 |
|
---|
[102] | 596 | Parameters:
|
---|
[1846] | 597 |
|
---|
[1819] | 598 | stat: 'min', 'max', 'min_abc', 'max_abc', 'sumsq', 'sum',
|
---|
| 599 | 'mean', 'var', 'stddev', 'avdev', 'rms', 'median'
|
---|
[1855] | 600 |
|
---|
[135] | 601 | mask: an optional mask specifying where the statistic
|
---|
[102] | 602 | should be determined.
|
---|
[1855] | 603 |
|
---|
[1819] | 604 | form: format string to print statistic values
|
---|
[1846] | 605 |
|
---|
[1907] | 606 | row: row number of spectrum to process.
|
---|
| 607 | (default is None: for all rows)
|
---|
[1846] | 608 |
|
---|
[1907] | 609 | Example:
|
---|
[113] | 610 | scan.set_unit('channel')
|
---|
[1118] | 611 | msk = scan.create_mask([100, 200], [500, 600])
|
---|
[135] | 612 | scan.stats(stat='mean', mask=m)
|
---|
[1846] | 613 |
|
---|
[102] | 614 | """
|
---|
[1593] | 615 | mask = mask or []
|
---|
[876] | 616 | if not self._check_ifs():
|
---|
[1118] | 617 | raise ValueError("Cannot apply mask as the IFs have different "
|
---|
| 618 | "number of channels. Please use setselection() "
|
---|
| 619 | "to select individual IFs")
|
---|
[1819] | 620 | rtnabc = False
|
---|
| 621 | if stat.lower().endswith('_abc'): rtnabc = True
|
---|
| 622 | getchan = False
|
---|
| 623 | if stat.lower().startswith('min') or stat.lower().startswith('max'):
|
---|
| 624 | chan = self._math._minmaxchan(self, mask, stat)
|
---|
| 625 | getchan = True
|
---|
| 626 | statvals = []
|
---|
[1907] | 627 | if not rtnabc:
|
---|
| 628 | if row == None:
|
---|
| 629 | statvals = self._math._stats(self, mask, stat)
|
---|
| 630 | else:
|
---|
| 631 | statvals = self._math._statsrow(self, mask, stat, int(row))
|
---|
[256] | 632 |
|
---|
[1819] | 633 | #def cb(i):
|
---|
| 634 | # return statvals[i]
|
---|
[256] | 635 |
|
---|
[1819] | 636 | #return self._row_callback(cb, stat)
|
---|
[102] | 637 |
|
---|
[1819] | 638 | label=stat
|
---|
| 639 | #callback=cb
|
---|
| 640 | out = ""
|
---|
| 641 | #outvec = []
|
---|
| 642 | sep = '-'*50
|
---|
[1907] | 643 |
|
---|
| 644 | if row == None:
|
---|
| 645 | rows = xrange(self.nrow())
|
---|
| 646 | elif isinstance(row, int):
|
---|
| 647 | rows = [ row ]
|
---|
| 648 |
|
---|
| 649 | for i in rows:
|
---|
[1819] | 650 | refstr = ''
|
---|
| 651 | statunit= ''
|
---|
| 652 | if getchan:
|
---|
| 653 | qx, qy = self.chan2data(rowno=i, chan=chan[i])
|
---|
| 654 | if rtnabc:
|
---|
| 655 | statvals.append(qx['value'])
|
---|
| 656 | refstr = ('(value: %'+form) % (qy['value'])+' ['+qy['unit']+'])'
|
---|
| 657 | statunit= '['+qx['unit']+']'
|
---|
| 658 | else:
|
---|
| 659 | refstr = ('(@ %'+form) % (qx['value'])+' ['+qx['unit']+'])'
|
---|
| 660 |
|
---|
| 661 | tm = self._gettime(i)
|
---|
| 662 | src = self._getsourcename(i)
|
---|
| 663 | out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
|
---|
| 664 | out += 'Time[%s]:\n' % (tm)
|
---|
[1907] | 665 | if self.nbeam(-1) > 1: out += ' Beam[%d] ' % (self.getbeam(i))
|
---|
| 666 | if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
|
---|
| 667 | if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
|
---|
[1819] | 668 | #outvec.append(callback(i))
|
---|
[1907] | 669 | if len(rows) > 1:
|
---|
| 670 | # out += ('= %'+form) % (outvec[i]) +' '+refstr+'\n'
|
---|
| 671 | out += ('= %'+form) % (statvals[i]) +' '+refstr+'\n'
|
---|
| 672 | else:
|
---|
| 673 | # out += ('= %'+form) % (outvec[0]) +' '+refstr+'\n'
|
---|
| 674 | out += ('= %'+form) % (statvals[0]) +' '+refstr+'\n'
|
---|
[1819] | 675 | out += sep+"\n"
|
---|
| 676 |
|
---|
[1859] | 677 | import os
|
---|
| 678 | if os.environ.has_key( 'USER' ):
|
---|
| 679 | usr = os.environ['USER']
|
---|
| 680 | else:
|
---|
| 681 | import commands
|
---|
| 682 | usr = commands.getoutput( 'whoami' )
|
---|
| 683 | tmpfile = '/tmp/tmp_'+usr+'_casapy_asap_scantable_stats'
|
---|
| 684 | f = open(tmpfile,'w')
|
---|
| 685 | print >> f, sep
|
---|
| 686 | print >> f, ' %s %s' % (label, statunit)
|
---|
| 687 | print >> f, sep
|
---|
| 688 | print >> f, out
|
---|
| 689 | f.close()
|
---|
| 690 | f = open(tmpfile,'r')
|
---|
| 691 | x = f.readlines()
|
---|
| 692 | f.close()
|
---|
| 693 | asaplog.push(''.join(x), False)
|
---|
| 694 |
|
---|
[1819] | 695 | return statvals
|
---|
| 696 |
|
---|
| 697 | def chan2data(self, rowno=0, chan=0):
|
---|
[1846] | 698 | """\
|
---|
[1819] | 699 | Returns channel/frequency/velocity and spectral value
|
---|
| 700 | at an arbitrary row and channel in the scantable.
|
---|
[1846] | 701 |
|
---|
[1819] | 702 | Parameters:
|
---|
[1846] | 703 |
|
---|
[1819] | 704 | rowno: a row number in the scantable. Default is the
|
---|
| 705 | first row, i.e. rowno=0
|
---|
[1855] | 706 |
|
---|
[1819] | 707 | chan: a channel in the scantable. Default is the first
|
---|
| 708 | channel, i.e. pos=0
|
---|
[1846] | 709 |
|
---|
[1819] | 710 | """
|
---|
| 711 | if isinstance(rowno, int) and isinstance(chan, int):
|
---|
| 712 | qx = {'unit': self.get_unit(),
|
---|
| 713 | 'value': self._getabcissa(rowno)[chan]}
|
---|
| 714 | qy = {'unit': self.get_fluxunit(),
|
---|
| 715 | 'value': self._getspectrum(rowno)[chan]}
|
---|
| 716 | return qx, qy
|
---|
| 717 |
|
---|
[1118] | 718 | def stddev(self, mask=None):
|
---|
[1846] | 719 | """\
|
---|
[135] | 720 | Determine the standard deviation of the current beam/if/pol
|
---|
| 721 | Takes a 'mask' as an optional parameter to specify which
|
---|
| 722 | channels should be excluded.
|
---|
[1846] | 723 |
|
---|
[135] | 724 | Parameters:
|
---|
[1846] | 725 |
|
---|
[135] | 726 | mask: an optional mask specifying where the standard
|
---|
| 727 | deviation should be determined.
|
---|
| 728 |
|
---|
[1846] | 729 | Example::
|
---|
| 730 |
|
---|
[135] | 731 | scan.set_unit('channel')
|
---|
[1118] | 732 | msk = scan.create_mask([100, 200], [500, 600])
|
---|
[135] | 733 | scan.stddev(mask=m)
|
---|
[1846] | 734 |
|
---|
[135] | 735 | """
|
---|
[1118] | 736 | return self.stats(stat='stddev', mask=mask);
|
---|
[135] | 737 |
|
---|
[1003] | 738 |
|
---|
[1259] | 739 | def get_column_names(self):
|
---|
[1846] | 740 | """\
|
---|
[1003] | 741 | Return a list of column names, which can be used for selection.
|
---|
| 742 | """
|
---|
[1259] | 743 | return list(Scantable.get_column_names(self))
|
---|
[1003] | 744 |
|
---|
[1730] | 745 | def get_tsys(self, row=-1):
|
---|
[1846] | 746 | """\
|
---|
[113] | 747 | Return the System temperatures.
|
---|
[1846] | 748 |
|
---|
| 749 | Parameters:
|
---|
| 750 |
|
---|
| 751 | row: the rowno to get the information for. (default all rows)
|
---|
| 752 |
|
---|
[113] | 753 | Returns:
|
---|
[1846] | 754 |
|
---|
[876] | 755 | a list of Tsys values for the current selection
|
---|
[1846] | 756 |
|
---|
[113] | 757 | """
|
---|
[1730] | 758 | if row > -1:
|
---|
| 759 | return self._get_column(self._gettsys, row)
|
---|
[876] | 760 | return self._row_callback(self._gettsys, "Tsys")
|
---|
[256] | 761 |
|
---|
[2406] | 762 | def get_tsysspectrum(self, row=-1):
|
---|
| 763 | """\
|
---|
| 764 | Return the channel dependent system temperatures.
|
---|
[1730] | 765 |
|
---|
[2406] | 766 | Parameters:
|
---|
| 767 |
|
---|
| 768 | row: the rowno to get the information for. (default all rows)
|
---|
| 769 |
|
---|
| 770 | Returns:
|
---|
| 771 |
|
---|
| 772 | a list of Tsys values for the current selection
|
---|
| 773 |
|
---|
| 774 | """
|
---|
| 775 | return self._get_column( self._gettsysspectrum, row )
|
---|
| 776 |
|
---|
[1730] | 777 | def get_weather(self, row=-1):
|
---|
[1846] | 778 | """\
|
---|
| 779 | Return the weather informations.
|
---|
| 780 |
|
---|
| 781 | Parameters:
|
---|
| 782 |
|
---|
| 783 | row: the rowno to get the information for. (default all rows)
|
---|
| 784 |
|
---|
| 785 | Returns:
|
---|
| 786 |
|
---|
| 787 | a dict or list of of dicts of values for the current selection
|
---|
| 788 |
|
---|
| 789 | """
|
---|
| 790 |
|
---|
[1730] | 791 | values = self._get_column(self._get_weather, row)
|
---|
| 792 | if row > -1:
|
---|
| 793 | return {'temperature': values[0],
|
---|
| 794 | 'pressure': values[1], 'humidity' : values[2],
|
---|
| 795 | 'windspeed' : values[3], 'windaz' : values[4]
|
---|
| 796 | }
|
---|
| 797 | else:
|
---|
| 798 | out = []
|
---|
| 799 | for r in values:
|
---|
| 800 |
|
---|
| 801 | out.append({'temperature': r[0],
|
---|
| 802 | 'pressure': r[1], 'humidity' : r[2],
|
---|
| 803 | 'windspeed' : r[3], 'windaz' : r[4]
|
---|
| 804 | })
|
---|
| 805 | return out
|
---|
| 806 |
|
---|
[876] | 807 | def _row_callback(self, callback, label):
|
---|
| 808 | out = ""
|
---|
[1118] | 809 | outvec = []
|
---|
[1590] | 810 | sep = '-'*50
|
---|
[876] | 811 | for i in range(self.nrow()):
|
---|
| 812 | tm = self._gettime(i)
|
---|
| 813 | src = self._getsourcename(i)
|
---|
[1590] | 814 | out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
|
---|
[876] | 815 | out += 'Time[%s]:\n' % (tm)
|
---|
[1590] | 816 | if self.nbeam(-1) > 1:
|
---|
| 817 | out += ' Beam[%d] ' % (self.getbeam(i))
|
---|
| 818 | if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
|
---|
| 819 | if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
|
---|
[876] | 820 | outvec.append(callback(i))
|
---|
| 821 | out += '= %3.3f\n' % (outvec[i])
|
---|
[1590] | 822 | out += sep+'\n'
|
---|
[1859] | 823 |
|
---|
| 824 | asaplog.push(sep)
|
---|
| 825 | asaplog.push(" %s" % (label))
|
---|
| 826 | asaplog.push(sep)
|
---|
| 827 | asaplog.push(out)
|
---|
[1861] | 828 | asaplog.post()
|
---|
[1175] | 829 | return outvec
|
---|
[256] | 830 |
|
---|
[1947] | 831 | def _get_column(self, callback, row=-1, *args):
|
---|
[1070] | 832 | """
|
---|
| 833 | """
|
---|
| 834 | if row == -1:
|
---|
[1947] | 835 | return [callback(i, *args) for i in range(self.nrow())]
|
---|
[1070] | 836 | else:
|
---|
[1819] | 837 | if 0 <= row < self.nrow():
|
---|
[1947] | 838 | return callback(row, *args)
|
---|
[256] | 839 |
|
---|
[1070] | 840 |
|
---|
[1948] | 841 | def get_time(self, row=-1, asdatetime=False, prec=-1):
|
---|
[1846] | 842 | """\
|
---|
[113] | 843 | Get a list of time stamps for the observations.
|
---|
[1938] | 844 | Return a datetime object or a string (default) for each
|
---|
| 845 | integration time stamp in the scantable.
|
---|
[1846] | 846 |
|
---|
[113] | 847 | Parameters:
|
---|
[1846] | 848 |
|
---|
[1348] | 849 | row: row no of integration. Default -1 return all rows
|
---|
[1855] | 850 |
|
---|
[1348] | 851 | asdatetime: return values as datetime objects rather than strings
|
---|
[1846] | 852 |
|
---|
[2349] | 853 | prec: number of digits shown. Default -1 to automatic
|
---|
| 854 | calculation.
|
---|
[1948] | 855 | Note this number is equals to the digits of MVTime,
|
---|
| 856 | i.e., 0<prec<3: dates with hh:: only,
|
---|
| 857 | <5: with hh:mm:, <7 or 0: with hh:mm:ss,
|
---|
[1947] | 858 | and 6> : with hh:mm:ss.tt... (prec-6 t's added)
|
---|
| 859 |
|
---|
[113] | 860 | """
|
---|
[1175] | 861 | from datetime import datetime
|
---|
[1948] | 862 | if prec < 0:
|
---|
| 863 | # automagically set necessary precision +1
|
---|
[2349] | 864 | prec = 7 - \
|
---|
| 865 | numpy.floor(numpy.log10(numpy.min(self.get_inttime(row))))
|
---|
[1948] | 866 | prec = max(6, int(prec))
|
---|
| 867 | else:
|
---|
| 868 | prec = max(0, prec)
|
---|
| 869 | if asdatetime:
|
---|
| 870 | #precision can be 1 millisecond at max
|
---|
| 871 | prec = min(12, prec)
|
---|
| 872 |
|
---|
[1947] | 873 | times = self._get_column(self._gettime, row, prec)
|
---|
[1348] | 874 | if not asdatetime:
|
---|
[1392] | 875 | return times
|
---|
[1947] | 876 | format = "%Y/%m/%d/%H:%M:%S.%f"
|
---|
| 877 | if prec < 7:
|
---|
| 878 | nsub = 1 + (((6-prec)/2) % 3)
|
---|
| 879 | substr = [".%f","%S","%M"]
|
---|
| 880 | for i in range(nsub):
|
---|
| 881 | format = format.replace(substr[i],"")
|
---|
[1175] | 882 | if isinstance(times, list):
|
---|
[1947] | 883 | return [datetime.strptime(i, format) for i in times]
|
---|
[1175] | 884 | else:
|
---|
[1947] | 885 | return datetime.strptime(times, format)
|
---|
[102] | 886 |
|
---|
[1348] | 887 |
|
---|
| 888 | def get_inttime(self, row=-1):
|
---|
[1846] | 889 | """\
|
---|
[1348] | 890 | Get a list of integration times for the observations.
|
---|
| 891 | Return a time in seconds for each integration in the scantable.
|
---|
[1846] | 892 |
|
---|
[1348] | 893 | Parameters:
|
---|
[1846] | 894 |
|
---|
[1348] | 895 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 896 |
|
---|
[1348] | 897 | """
|
---|
[1573] | 898 | return self._get_column(self._getinttime, row)
|
---|
[1348] | 899 |
|
---|
[1573] | 900 |
|
---|
[714] | 901 | def get_sourcename(self, row=-1):
|
---|
[1846] | 902 | """\
|
---|
[794] | 903 | Get a list source names for the observations.
|
---|
[714] | 904 | Return a string for each integration in the scantable.
|
---|
| 905 | Parameters:
|
---|
[1846] | 906 |
|
---|
[1348] | 907 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 908 |
|
---|
[714] | 909 | """
|
---|
[1070] | 910 | return self._get_column(self._getsourcename, row)
|
---|
[714] | 911 |
|
---|
[794] | 912 | def get_elevation(self, row=-1):
|
---|
[1846] | 913 | """\
|
---|
[794] | 914 | Get a list of elevations for the observations.
|
---|
| 915 | Return a float for each integration in the scantable.
|
---|
[1846] | 916 |
|
---|
[794] | 917 | Parameters:
|
---|
[1846] | 918 |
|
---|
[1348] | 919 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 920 |
|
---|
[794] | 921 | """
|
---|
[1070] | 922 | return self._get_column(self._getelevation, row)
|
---|
[794] | 923 |
|
---|
| 924 | def get_azimuth(self, row=-1):
|
---|
[1846] | 925 | """\
|
---|
[794] | 926 | Get a list of azimuths for the observations.
|
---|
| 927 | Return a float for each integration in the scantable.
|
---|
[1846] | 928 |
|
---|
[794] | 929 | Parameters:
|
---|
[1348] | 930 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 931 |
|
---|
[794] | 932 | """
|
---|
[1070] | 933 | return self._get_column(self._getazimuth, row)
|
---|
[794] | 934 |
|
---|
| 935 | def get_parangle(self, row=-1):
|
---|
[1846] | 936 | """\
|
---|
[794] | 937 | Get a list of parallactic angles for the observations.
|
---|
| 938 | Return a float for each integration in the scantable.
|
---|
[1846] | 939 |
|
---|
[794] | 940 | Parameters:
|
---|
[1846] | 941 |
|
---|
[1348] | 942 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 943 |
|
---|
[794] | 944 | """
|
---|
[1070] | 945 | return self._get_column(self._getparangle, row)
|
---|
[794] | 946 |
|
---|
[1070] | 947 | def get_direction(self, row=-1):
|
---|
| 948 | """
|
---|
| 949 | Get a list of Positions on the sky (direction) for the observations.
|
---|
[1594] | 950 | Return a string for each integration in the scantable.
|
---|
[1855] | 951 |
|
---|
[1070] | 952 | Parameters:
|
---|
[1855] | 953 |
|
---|
[1070] | 954 | row: row no of integration. Default -1 return all rows
|
---|
[1855] | 955 |
|
---|
[1070] | 956 | """
|
---|
| 957 | return self._get_column(self._getdirection, row)
|
---|
| 958 |
|
---|
[1391] | 959 | def get_directionval(self, row=-1):
|
---|
[1846] | 960 | """\
|
---|
[1391] | 961 | Get a list of Positions on the sky (direction) for the observations.
|
---|
| 962 | Return a float for each integration in the scantable.
|
---|
[1846] | 963 |
|
---|
[1391] | 964 | Parameters:
|
---|
[1846] | 965 |
|
---|
[1391] | 966 | row: row no of integration. Default -1 return all rows
|
---|
[1846] | 967 |
|
---|
[1391] | 968 | """
|
---|
| 969 | return self._get_column(self._getdirectionvec, row)
|
---|
| 970 |
|
---|
[1862] | 971 | @asaplog_post_dec
|
---|
[102] | 972 | def set_unit(self, unit='channel'):
|
---|
[1846] | 973 | """\
|
---|
[102] | 974 | Set the unit for all following operations on this scantable
|
---|
[1846] | 975 |
|
---|
[102] | 976 | Parameters:
|
---|
[1846] | 977 |
|
---|
| 978 | unit: optional unit, default is 'channel'. Use one of '*Hz',
|
---|
| 979 | 'km/s', 'channel' or equivalent ''
|
---|
| 980 |
|
---|
[102] | 981 | """
|
---|
[484] | 982 | varlist = vars()
|
---|
[1118] | 983 | if unit in ['', 'pixel', 'channel']:
|
---|
[113] | 984 | unit = ''
|
---|
| 985 | inf = list(self._getcoordinfo())
|
---|
| 986 | inf[0] = unit
|
---|
| 987 | self._setcoordinfo(inf)
|
---|
[1118] | 988 | self._add_history("set_unit", varlist)
|
---|
[113] | 989 |
|
---|
[1862] | 990 | @asaplog_post_dec
|
---|
[484] | 991 | def set_instrument(self, instr):
|
---|
[1846] | 992 | """\
|
---|
[1348] | 993 | Set the instrument for subsequent processing.
|
---|
[1846] | 994 |
|
---|
[358] | 995 | Parameters:
|
---|
[1846] | 996 |
|
---|
[710] | 997 | instr: Select from 'ATPKSMB', 'ATPKSHOH', 'ATMOPRA',
|
---|
[407] | 998 | 'DSS-43' (Tid), 'CEDUNA', and 'HOBART'
|
---|
[1846] | 999 |
|
---|
[358] | 1000 | """
|
---|
| 1001 | self._setInstrument(instr)
|
---|
[1118] | 1002 | self._add_history("set_instument", vars())
|
---|
[358] | 1003 |
|
---|
[1862] | 1004 | @asaplog_post_dec
|
---|
[1190] | 1005 | def set_feedtype(self, feedtype):
|
---|
[1846] | 1006 | """\
|
---|
[1190] | 1007 | Overwrite the feed type, which might not be set correctly.
|
---|
[1846] | 1008 |
|
---|
[1190] | 1009 | Parameters:
|
---|
[1846] | 1010 |
|
---|
[1190] | 1011 | feedtype: 'linear' or 'circular'
|
---|
[1846] | 1012 |
|
---|
[1190] | 1013 | """
|
---|
| 1014 | self._setfeedtype(feedtype)
|
---|
| 1015 | self._add_history("set_feedtype", vars())
|
---|
| 1016 |
|
---|
[1862] | 1017 | @asaplog_post_dec
|
---|
[276] | 1018 | def set_doppler(self, doppler='RADIO'):
|
---|
[1846] | 1019 | """\
|
---|
[276] | 1020 | Set the doppler for all following operations on this scantable.
|
---|
[1846] | 1021 |
|
---|
[276] | 1022 | Parameters:
|
---|
[1846] | 1023 |
|
---|
[276] | 1024 | doppler: One of 'RADIO', 'OPTICAL', 'Z', 'BETA', 'GAMMA'
|
---|
[1846] | 1025 |
|
---|
[276] | 1026 | """
|
---|
[484] | 1027 | varlist = vars()
|
---|
[276] | 1028 | inf = list(self._getcoordinfo())
|
---|
| 1029 | inf[2] = doppler
|
---|
| 1030 | self._setcoordinfo(inf)
|
---|
[1118] | 1031 | self._add_history("set_doppler", vars())
|
---|
[710] | 1032 |
|
---|
[1862] | 1033 | @asaplog_post_dec
|
---|
[226] | 1034 | def set_freqframe(self, frame=None):
|
---|
[1846] | 1035 | """\
|
---|
[113] | 1036 | Set the frame type of the Spectral Axis.
|
---|
[1846] | 1037 |
|
---|
[113] | 1038 | Parameters:
|
---|
[1846] | 1039 |
|
---|
[591] | 1040 | frame: an optional frame type, default 'LSRK'. Valid frames are:
|
---|
[1819] | 1041 | 'TOPO', 'LSRD', 'LSRK', 'BARY',
|
---|
[1118] | 1042 | 'GEO', 'GALACTO', 'LGROUP', 'CMB'
|
---|
[1846] | 1043 |
|
---|
| 1044 | Example::
|
---|
| 1045 |
|
---|
[113] | 1046 | scan.set_freqframe('BARY')
|
---|
[1846] | 1047 |
|
---|
[113] | 1048 | """
|
---|
[1593] | 1049 | frame = frame or rcParams['scantable.freqframe']
|
---|
[484] | 1050 | varlist = vars()
|
---|
[1819] | 1051 | # "REST" is not implemented in casacore
|
---|
| 1052 | #valid = ['REST', 'TOPO', 'LSRD', 'LSRK', 'BARY', \
|
---|
| 1053 | # 'GEO', 'GALACTO', 'LGROUP', 'CMB']
|
---|
| 1054 | valid = ['TOPO', 'LSRD', 'LSRK', 'BARY', \
|
---|
[1118] | 1055 | 'GEO', 'GALACTO', 'LGROUP', 'CMB']
|
---|
[591] | 1056 |
|
---|
[989] | 1057 | if frame in valid:
|
---|
[113] | 1058 | inf = list(self._getcoordinfo())
|
---|
| 1059 | inf[1] = frame
|
---|
| 1060 | self._setcoordinfo(inf)
|
---|
[1118] | 1061 | self._add_history("set_freqframe", varlist)
|
---|
[102] | 1062 | else:
|
---|
[1118] | 1063 | msg = "Please specify a valid freq type. Valid types are:\n", valid
|
---|
[1859] | 1064 | raise TypeError(msg)
|
---|
[710] | 1065 |
|
---|
[1862] | 1066 | @asaplog_post_dec
|
---|
[989] | 1067 | def set_dirframe(self, frame=""):
|
---|
[1846] | 1068 | """\
|
---|
[989] | 1069 | Set the frame type of the Direction on the sky.
|
---|
[1846] | 1070 |
|
---|
[989] | 1071 | Parameters:
|
---|
[1846] | 1072 |
|
---|
[989] | 1073 | frame: an optional frame type, default ''. Valid frames are:
|
---|
| 1074 | 'J2000', 'B1950', 'GALACTIC'
|
---|
[1846] | 1075 |
|
---|
| 1076 | Example:
|
---|
| 1077 |
|
---|
[989] | 1078 | scan.set_dirframe('GALACTIC')
|
---|
[1846] | 1079 |
|
---|
[989] | 1080 | """
|
---|
| 1081 | varlist = vars()
|
---|
[1859] | 1082 | Scantable.set_dirframe(self, frame)
|
---|
[1118] | 1083 | self._add_history("set_dirframe", varlist)
|
---|
[989] | 1084 |
|
---|
[113] | 1085 | def get_unit(self):
|
---|
[1846] | 1086 | """\
|
---|
[113] | 1087 | Get the default unit set in this scantable
|
---|
[1846] | 1088 |
|
---|
[113] | 1089 | Returns:
|
---|
[1846] | 1090 |
|
---|
[113] | 1091 | A unit string
|
---|
[1846] | 1092 |
|
---|
[113] | 1093 | """
|
---|
| 1094 | inf = self._getcoordinfo()
|
---|
| 1095 | unit = inf[0]
|
---|
| 1096 | if unit == '': unit = 'channel'
|
---|
| 1097 | return unit
|
---|
[102] | 1098 |
|
---|
[1862] | 1099 | @asaplog_post_dec
|
---|
[158] | 1100 | def get_abcissa(self, rowno=0):
|
---|
[1846] | 1101 | """\
|
---|
[158] | 1102 | Get the abcissa in the current coordinate setup for the currently
|
---|
[113] | 1103 | selected Beam/IF/Pol
|
---|
[1846] | 1104 |
|
---|
[113] | 1105 | Parameters:
|
---|
[1846] | 1106 |
|
---|
[226] | 1107 | rowno: an optional row number in the scantable. Default is the
|
---|
| 1108 | first row, i.e. rowno=0
|
---|
[1846] | 1109 |
|
---|
[113] | 1110 | Returns:
|
---|
[1846] | 1111 |
|
---|
[1348] | 1112 | The abcissa values and the format string (as a dictionary)
|
---|
[1846] | 1113 |
|
---|
[113] | 1114 | """
|
---|
[256] | 1115 | abc = self._getabcissa(rowno)
|
---|
[710] | 1116 | lbl = self._getabcissalabel(rowno)
|
---|
[158] | 1117 | return abc, lbl
|
---|
[113] | 1118 |
|
---|
[1862] | 1119 | @asaplog_post_dec
|
---|
[2322] | 1120 | def flag(self, mask=None, unflag=False, row=-1):
|
---|
[1846] | 1121 | """\
|
---|
[1001] | 1122 | Flag the selected data using an optional channel mask.
|
---|
[1846] | 1123 |
|
---|
[1001] | 1124 | Parameters:
|
---|
[1846] | 1125 |
|
---|
[1001] | 1126 | mask: an optional channel mask, created with create_mask. Default
|
---|
| 1127 | (no mask) is all channels.
|
---|
[1855] | 1128 |
|
---|
[1819] | 1129 | unflag: if True, unflag the data
|
---|
[1846] | 1130 |
|
---|
[2322] | 1131 | row: an optional row number in the scantable.
|
---|
| 1132 | Default -1 flags all rows
|
---|
| 1133 |
|
---|
[1001] | 1134 | """
|
---|
| 1135 | varlist = vars()
|
---|
[1593] | 1136 | mask = mask or []
|
---|
[1994] | 1137 | self._flag(row, mask, unflag)
|
---|
[1001] | 1138 | self._add_history("flag", varlist)
|
---|
| 1139 |
|
---|
[1862] | 1140 | @asaplog_post_dec
|
---|
[2322] | 1141 | def flag_row(self, rows=None, unflag=False):
|
---|
[1846] | 1142 | """\
|
---|
[1819] | 1143 | Flag the selected data in row-based manner.
|
---|
[1846] | 1144 |
|
---|
[1819] | 1145 | Parameters:
|
---|
[1846] | 1146 |
|
---|
[1843] | 1147 | rows: list of row numbers to be flagged. Default is no row
|
---|
[2322] | 1148 | (must be explicitly specified to execute row-based
|
---|
| 1149 | flagging).
|
---|
[1855] | 1150 |
|
---|
[1819] | 1151 | unflag: if True, unflag the data.
|
---|
[1846] | 1152 |
|
---|
[1819] | 1153 | """
|
---|
| 1154 | varlist = vars()
|
---|
[2322] | 1155 | if rows is None:
|
---|
| 1156 | rows = []
|
---|
[1859] | 1157 | self._flag_row(rows, unflag)
|
---|
[1819] | 1158 | self._add_history("flag_row", varlist)
|
---|
| 1159 |
|
---|
[1862] | 1160 | @asaplog_post_dec
|
---|
[1819] | 1161 | def clip(self, uthres=None, dthres=None, clipoutside=True, unflag=False):
|
---|
[1846] | 1162 | """\
|
---|
[1819] | 1163 | Flag the selected data outside a specified range (in channel-base)
|
---|
[1846] | 1164 |
|
---|
[1819] | 1165 | Parameters:
|
---|
[1846] | 1166 |
|
---|
[1819] | 1167 | uthres: upper threshold.
|
---|
[1855] | 1168 |
|
---|
[1819] | 1169 | dthres: lower threshold
|
---|
[1846] | 1170 |
|
---|
[2322] | 1171 | clipoutside: True for flagging data outside the range
|
---|
| 1172 | [dthres:uthres].
|
---|
[1928] | 1173 | False for flagging data inside the range.
|
---|
[1855] | 1174 |
|
---|
[1846] | 1175 | unflag: if True, unflag the data.
|
---|
| 1176 |
|
---|
[1819] | 1177 | """
|
---|
| 1178 | varlist = vars()
|
---|
[1859] | 1179 | self._clip(uthres, dthres, clipoutside, unflag)
|
---|
[1819] | 1180 | self._add_history("clip", varlist)
|
---|
| 1181 |
|
---|
[1862] | 1182 | @asaplog_post_dec
|
---|
[1584] | 1183 | def lag_flag(self, start, end, unit="MHz", insitu=None):
|
---|
[1846] | 1184 | """\
|
---|
[1192] | 1185 | Flag the data in 'lag' space by providing a frequency to remove.
|
---|
[2177] | 1186 | Flagged data in the scantable get interpolated over the region.
|
---|
[1192] | 1187 | No taper is applied.
|
---|
[1846] | 1188 |
|
---|
[1192] | 1189 | Parameters:
|
---|
[1846] | 1190 |
|
---|
[1579] | 1191 | start: the start frequency (really a period within the
|
---|
| 1192 | bandwidth) or period to remove
|
---|
[1855] | 1193 |
|
---|
[1579] | 1194 | end: the end frequency or period to remove
|
---|
[1855] | 1195 |
|
---|
[2431] | 1196 | unit: the frequency unit (default 'MHz') or '' for
|
---|
[1579] | 1197 | explicit lag channels
|
---|
[1846] | 1198 |
|
---|
| 1199 | *Notes*:
|
---|
| 1200 |
|
---|
[1579] | 1201 | It is recommended to flag edges of the band or strong
|
---|
[1348] | 1202 | signals beforehand.
|
---|
[1846] | 1203 |
|
---|
[1192] | 1204 | """
|
---|
| 1205 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 1206 | self._math._setinsitu(insitu)
|
---|
| 1207 | varlist = vars()
|
---|
[1579] | 1208 | base = { "GHz": 1000000000., "MHz": 1000000., "kHz": 1000., "Hz": 1.}
|
---|
| 1209 | if not (unit == "" or base.has_key(unit)):
|
---|
[1192] | 1210 | raise ValueError("%s is not a valid unit." % unit)
|
---|
[1859] | 1211 | if unit == "":
|
---|
| 1212 | s = scantable(self._math._lag_flag(self, start, end, "lags"))
|
---|
| 1213 | else:
|
---|
| 1214 | s = scantable(self._math._lag_flag(self, start*base[unit],
|
---|
| 1215 | end*base[unit], "frequency"))
|
---|
[1192] | 1216 | s._add_history("lag_flag", varlist)
|
---|
| 1217 | if insitu:
|
---|
| 1218 | self._assign(s)
|
---|
| 1219 | else:
|
---|
| 1220 | return s
|
---|
[1001] | 1221 |
|
---|
[1862] | 1222 | @asaplog_post_dec
|
---|
[2349] | 1223 | def fft(self, rowno=None, mask=None, getrealimag=False):
|
---|
[2177] | 1224 | """\
|
---|
| 1225 | Apply FFT to the spectra.
|
---|
| 1226 | Flagged data in the scantable get interpolated over the region.
|
---|
| 1227 |
|
---|
| 1228 | Parameters:
|
---|
[2186] | 1229 |
|
---|
| 1230 | rowno: The row number(s) to be processed. int, list
|
---|
[2349] | 1231 | and tuple are accepted. By default (None), FFT
|
---|
[2186] | 1232 | is applied to the whole data.
|
---|
| 1233 |
|
---|
| 1234 | mask: Auxiliary channel mask(s). Given as a boolean
|
---|
| 1235 | list, it is applied to all specified rows.
|
---|
| 1236 | A list of boolean lists can also be used to
|
---|
| 1237 | apply different masks. In the latter case, the
|
---|
| 1238 | length of 'mask' must be the same as that of
|
---|
[2349] | 1239 | 'rowno'. The default is None.
|
---|
[2177] | 1240 |
|
---|
| 1241 | getrealimag: If True, returns the real and imaginary part
|
---|
| 1242 | values of the complex results.
|
---|
| 1243 | If False (the default), returns the amplitude
|
---|
| 1244 | (absolute value) normalised with Ndata/2 and
|
---|
| 1245 | phase (argument, in unit of radian).
|
---|
| 1246 |
|
---|
| 1247 | Returns:
|
---|
| 1248 |
|
---|
[2186] | 1249 | A list of dictionaries containing the results for each spectrum.
|
---|
| 1250 | Each dictionary contains two values, the real and the imaginary
|
---|
| 1251 | parts when getrealimag = True, or the amplitude(absolute value)
|
---|
| 1252 | and the phase(argument) when getrealimag = False. The key for
|
---|
| 1253 | these values are 'real' and 'imag', or 'ampl' and 'phase',
|
---|
[2177] | 1254 | respectively.
|
---|
| 1255 | """
|
---|
[2349] | 1256 | if rowno is None:
|
---|
| 1257 | rowno = []
|
---|
[2177] | 1258 | if isinstance(rowno, int):
|
---|
| 1259 | rowno = [rowno]
|
---|
| 1260 | elif not (isinstance(rowno, list) or isinstance(rowno, tuple)):
|
---|
[2186] | 1261 | raise TypeError("The row number(s) must be int, list or tuple.")
|
---|
| 1262 | if len(rowno) == 0: rowno = [i for i in xrange(self.nrow())]
|
---|
| 1263 |
|
---|
[2411] | 1264 | usecommonmask = True
|
---|
| 1265 |
|
---|
| 1266 | if mask is None:
|
---|
| 1267 | mask = []
|
---|
| 1268 | if isinstance(mask, list) or isinstance(mask, tuple):
|
---|
| 1269 | if len(mask) == 0:
|
---|
| 1270 | mask = [[]]
|
---|
| 1271 | else:
|
---|
| 1272 | if isinstance(mask[0], bool):
|
---|
| 1273 | if len(mask) != self.nchan(self.getif(rowno[0])):
|
---|
| 1274 | raise ValueError("The spectra and the mask have "
|
---|
| 1275 | "different length.")
|
---|
| 1276 | mask = [mask]
|
---|
| 1277 | elif isinstance(mask[0], list) or isinstance(mask[0], tuple):
|
---|
| 1278 | usecommonmask = False
|
---|
| 1279 | if len(mask) != len(rowno):
|
---|
| 1280 | raise ValueError("When specifying masks for each "
|
---|
| 1281 | "spectrum, the numbers of them "
|
---|
| 1282 | "must be identical.")
|
---|
| 1283 | for i in xrange(mask):
|
---|
| 1284 | if len(mask[i]) != self.nchan(self.getif(rowno[i])):
|
---|
| 1285 | raise ValueError("The spectra and the mask have "
|
---|
| 1286 | "different length.")
|
---|
| 1287 | else:
|
---|
| 1288 | raise TypeError("The mask must be a boolean list or "
|
---|
| 1289 | "a list of boolean list.")
|
---|
| 1290 | else:
|
---|
[2349] | 1291 | raise TypeError("The mask must be a boolean list or a list of "
|
---|
| 1292 | "boolean list.")
|
---|
[2186] | 1293 |
|
---|
| 1294 | res = []
|
---|
| 1295 |
|
---|
| 1296 | imask = 0
|
---|
| 1297 | for whichrow in rowno:
|
---|
| 1298 | fspec = self._fft(whichrow, mask[imask], getrealimag)
|
---|
| 1299 | nspec = len(fspec)
|
---|
[2177] | 1300 |
|
---|
[2349] | 1301 | i = 0
|
---|
| 1302 | v1 = []
|
---|
| 1303 | v2 = []
|
---|
| 1304 | reselem = {"real":[],"imag":[]} if getrealimag \
|
---|
| 1305 | else {"ampl":[],"phase":[]}
|
---|
[2177] | 1306 |
|
---|
[2186] | 1307 | while (i < nspec):
|
---|
| 1308 | v1.append(fspec[i])
|
---|
| 1309 | v2.append(fspec[i+1])
|
---|
[2349] | 1310 | i += 2
|
---|
[2186] | 1311 |
|
---|
[2177] | 1312 | if getrealimag:
|
---|
[2186] | 1313 | reselem["real"] += v1
|
---|
| 1314 | reselem["imag"] += v2
|
---|
[2177] | 1315 | else:
|
---|
[2186] | 1316 | reselem["ampl"] += v1
|
---|
| 1317 | reselem["phase"] += v2
|
---|
[2177] | 1318 |
|
---|
[2186] | 1319 | res.append(reselem)
|
---|
| 1320 |
|
---|
[2349] | 1321 | if not usecommonmask:
|
---|
| 1322 | imask += 1
|
---|
[2186] | 1323 |
|
---|
[2177] | 1324 | return res
|
---|
| 1325 |
|
---|
| 1326 | @asaplog_post_dec
|
---|
[113] | 1327 | def create_mask(self, *args, **kwargs):
|
---|
[1846] | 1328 | """\
|
---|
[1118] | 1329 | Compute and return a mask based on [min, max] windows.
|
---|
[189] | 1330 | The specified windows are to be INCLUDED, when the mask is
|
---|
[113] | 1331 | applied.
|
---|
[1846] | 1332 |
|
---|
[102] | 1333 | Parameters:
|
---|
[1846] | 1334 |
|
---|
[1118] | 1335 | [min, max], [min2, max2], ...
|
---|
[1024] | 1336 | Pairs of start/end points (inclusive)specifying the regions
|
---|
[102] | 1337 | to be masked
|
---|
[1855] | 1338 |
|
---|
[189] | 1339 | invert: optional argument. If specified as True,
|
---|
| 1340 | return an inverted mask, i.e. the regions
|
---|
| 1341 | specified are EXCLUDED
|
---|
[1855] | 1342 |
|
---|
[513] | 1343 | row: create the mask using the specified row for
|
---|
| 1344 | unit conversions, default is row=0
|
---|
| 1345 | only necessary if frequency varies over rows.
|
---|
[1846] | 1346 |
|
---|
| 1347 | Examples::
|
---|
| 1348 |
|
---|
[113] | 1349 | scan.set_unit('channel')
|
---|
[1846] | 1350 | # a)
|
---|
[1118] | 1351 | msk = scan.create_mask([400, 500], [800, 900])
|
---|
[189] | 1352 | # masks everything outside 400 and 500
|
---|
[113] | 1353 | # and 800 and 900 in the unit 'channel'
|
---|
| 1354 |
|
---|
[1846] | 1355 | # b)
|
---|
[1118] | 1356 | msk = scan.create_mask([400, 500], [800, 900], invert=True)
|
---|
[189] | 1357 | # masks the regions between 400 and 500
|
---|
[113] | 1358 | # and 800 and 900 in the unit 'channel'
|
---|
[1846] | 1359 |
|
---|
| 1360 | # c)
|
---|
| 1361 | #mask only channel 400
|
---|
[1554] | 1362 | msk = scan.create_mask([400])
|
---|
[1846] | 1363 |
|
---|
[102] | 1364 | """
|
---|
[1554] | 1365 | row = kwargs.get("row", 0)
|
---|
[513] | 1366 | data = self._getabcissa(row)
|
---|
[113] | 1367 | u = self._getcoordinfo()[0]
|
---|
[1859] | 1368 | if u == "":
|
---|
| 1369 | u = "channel"
|
---|
| 1370 | msg = "The current mask window unit is %s" % u
|
---|
| 1371 | i = self._check_ifs()
|
---|
| 1372 | if not i:
|
---|
| 1373 | msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
|
---|
| 1374 | asaplog.push(msg)
|
---|
[2348] | 1375 | n = len(data)
|
---|
[1295] | 1376 | msk = _n_bools(n, False)
|
---|
[710] | 1377 | # test if args is a 'list' or a 'normal *args - UGLY!!!
|
---|
| 1378 |
|
---|
[2349] | 1379 | ws = (isinstance(args[-1][-1], int)
|
---|
| 1380 | or isinstance(args[-1][-1], float)) and args or args[0]
|
---|
[710] | 1381 | for window in ws:
|
---|
[1554] | 1382 | if len(window) == 1:
|
---|
| 1383 | window = [window[0], window[0]]
|
---|
| 1384 | if len(window) == 0 or len(window) > 2:
|
---|
[2349] | 1385 | raise ValueError("A window needs to be defined as "
|
---|
| 1386 | "[start(, end)]")
|
---|
[1545] | 1387 | if window[0] > window[1]:
|
---|
| 1388 | tmp = window[0]
|
---|
| 1389 | window[0] = window[1]
|
---|
| 1390 | window[1] = tmp
|
---|
[102] | 1391 | for i in range(n):
|
---|
[1024] | 1392 | if data[i] >= window[0] and data[i] <= window[1]:
|
---|
[1295] | 1393 | msk[i] = True
|
---|
[113] | 1394 | if kwargs.has_key('invert'):
|
---|
| 1395 | if kwargs.get('invert'):
|
---|
[1295] | 1396 | msk = mask_not(msk)
|
---|
[102] | 1397 | return msk
|
---|
[710] | 1398 |
|
---|
[1931] | 1399 | def get_masklist(self, mask=None, row=0, silent=False):
|
---|
[1846] | 1400 | """\
|
---|
[1819] | 1401 | Compute and return a list of mask windows, [min, max].
|
---|
[1846] | 1402 |
|
---|
[1819] | 1403 | Parameters:
|
---|
[1846] | 1404 |
|
---|
[1819] | 1405 | mask: channel mask, created with create_mask.
|
---|
[1855] | 1406 |
|
---|
[1819] | 1407 | row: calcutate the masklist using the specified row
|
---|
| 1408 | for unit conversions, default is row=0
|
---|
| 1409 | only necessary if frequency varies over rows.
|
---|
[1846] | 1410 |
|
---|
[1819] | 1411 | Returns:
|
---|
[1846] | 1412 |
|
---|
[1819] | 1413 | [min, max], [min2, max2], ...
|
---|
| 1414 | Pairs of start/end points (inclusive)specifying
|
---|
| 1415 | the masked regions
|
---|
[1846] | 1416 |
|
---|
[1819] | 1417 | """
|
---|
| 1418 | if not (isinstance(mask,list) or isinstance(mask, tuple)):
|
---|
| 1419 | raise TypeError("The mask should be list or tuple.")
|
---|
[2427] | 1420 | if len(mask) <= 0:
|
---|
| 1421 | raise TypeError("The mask elements should be > 0")
|
---|
[2348] | 1422 | data = self._getabcissa(row)
|
---|
| 1423 | if len(data) != len(mask):
|
---|
[1819] | 1424 | msg = "Number of channels in scantable != number of mask elements"
|
---|
| 1425 | raise TypeError(msg)
|
---|
| 1426 | u = self._getcoordinfo()[0]
|
---|
[1859] | 1427 | if u == "":
|
---|
| 1428 | u = "channel"
|
---|
| 1429 | msg = "The current mask window unit is %s" % u
|
---|
| 1430 | i = self._check_ifs()
|
---|
| 1431 | if not i:
|
---|
| 1432 | msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
|
---|
[1931] | 1433 | if not silent:
|
---|
| 1434 | asaplog.push(msg)
|
---|
[2349] | 1435 | masklist = []
|
---|
[1819] | 1436 | ist, ien = None, None
|
---|
| 1437 | ist, ien=self.get_mask_indices(mask)
|
---|
| 1438 | if ist is not None and ien is not None:
|
---|
| 1439 | for i in xrange(len(ist)):
|
---|
| 1440 | range=[data[ist[i]],data[ien[i]]]
|
---|
| 1441 | range.sort()
|
---|
| 1442 | masklist.append([range[0],range[1]])
|
---|
| 1443 | return masklist
|
---|
| 1444 |
|
---|
| 1445 | def get_mask_indices(self, mask=None):
|
---|
[1846] | 1446 | """\
|
---|
[1819] | 1447 | Compute and Return lists of mask start indices and mask end indices.
|
---|
[1855] | 1448 |
|
---|
| 1449 | Parameters:
|
---|
| 1450 |
|
---|
[1819] | 1451 | mask: channel mask, created with create_mask.
|
---|
[1846] | 1452 |
|
---|
[1819] | 1453 | Returns:
|
---|
[1846] | 1454 |
|
---|
[1819] | 1455 | List of mask start indices and that of mask end indices,
|
---|
| 1456 | i.e., [istart1,istart2,....], [iend1,iend2,....].
|
---|
[1846] | 1457 |
|
---|
[1819] | 1458 | """
|
---|
| 1459 | if not (isinstance(mask,list) or isinstance(mask, tuple)):
|
---|
| 1460 | raise TypeError("The mask should be list or tuple.")
|
---|
[2427] | 1461 | if len(mask) <= 0:
|
---|
| 1462 | raise TypeError("The mask elements should be > 0")
|
---|
[2349] | 1463 | istart = []
|
---|
| 1464 | iend = []
|
---|
| 1465 | if mask[0]:
|
---|
| 1466 | istart.append(0)
|
---|
[1819] | 1467 | for i in range(len(mask)-1):
|
---|
| 1468 | if not mask[i] and mask[i+1]:
|
---|
| 1469 | istart.append(i+1)
|
---|
| 1470 | elif mask[i] and not mask[i+1]:
|
---|
| 1471 | iend.append(i)
|
---|
[2349] | 1472 | if mask[len(mask)-1]:
|
---|
| 1473 | iend.append(len(mask)-1)
|
---|
[1819] | 1474 | if len(istart) != len(iend):
|
---|
| 1475 | raise RuntimeError("Numbers of mask start != mask end.")
|
---|
| 1476 | for i in range(len(istart)):
|
---|
| 1477 | if istart[i] > iend[i]:
|
---|
| 1478 | raise RuntimeError("Mask start index > mask end index")
|
---|
| 1479 | break
|
---|
| 1480 | return istart,iend
|
---|
| 1481 |
|
---|
[2013] | 1482 | @asaplog_post_dec
|
---|
[2349] | 1483 | def parse_maskexpr(self, maskstring):
|
---|
[2013] | 1484 | """
|
---|
| 1485 | Parse CASA type mask selection syntax (IF dependent).
|
---|
| 1486 |
|
---|
| 1487 | Parameters:
|
---|
| 1488 | maskstring : A string mask selection expression.
|
---|
| 1489 | A comma separated selections mean different IF -
|
---|
| 1490 | channel combinations. IFs and channel selections
|
---|
| 1491 | are partitioned by a colon, ':'.
|
---|
| 1492 | examples:
|
---|
[2015] | 1493 | '' = all IFs (all channels)
|
---|
[2013] | 1494 | '<2,4~6,9' = IFs 0,1,4,5,6,9 (all channels)
|
---|
| 1495 | '3:3~45;60' = channels 3 to 45 and 60 in IF 3
|
---|
| 1496 | '0~1:2~6,8' = channels 2 to 6 in IFs 0,1, and
|
---|
| 1497 | all channels in IF8
|
---|
| 1498 | Returns:
|
---|
| 1499 | A dictionary of selected (valid) IF and masklist pairs,
|
---|
| 1500 | e.g. {'0': [[50,250],[350,462]], '2': [[100,400],[550,974]]}
|
---|
| 1501 | """
|
---|
| 1502 | if not isinstance(maskstring,str):
|
---|
| 1503 | asaplog.post()
|
---|
| 1504 | asaplog.push("Invalid mask expression")
|
---|
| 1505 | asaplog.post("ERROR")
|
---|
| 1506 |
|
---|
| 1507 | valid_ifs = self.getifnos()
|
---|
| 1508 | frequnit = self.get_unit()
|
---|
| 1509 | seldict = {}
|
---|
[2015] | 1510 | if maskstring == "":
|
---|
| 1511 | maskstring = str(valid_ifs)[1:-1]
|
---|
[2013] | 1512 | ## split each selection
|
---|
| 1513 | sellist = maskstring.split(',')
|
---|
| 1514 | for currselstr in sellist:
|
---|
| 1515 | selset = currselstr.split(':')
|
---|
| 1516 | # spw and mask string (may include ~, < or >)
|
---|
[2349] | 1517 | spwmasklist = self._parse_selection(selset[0], typestr='integer',
|
---|
| 1518 | offset=1, minval=min(valid_ifs),
|
---|
| 1519 | maxval=max(valid_ifs))
|
---|
[2013] | 1520 | for spwlist in spwmasklist:
|
---|
| 1521 | selspws = []
|
---|
| 1522 | for ispw in range(spwlist[0],spwlist[1]+1):
|
---|
| 1523 | # Put into the list only if ispw exists
|
---|
| 1524 | if valid_ifs.count(ispw):
|
---|
| 1525 | selspws.append(ispw)
|
---|
| 1526 | del spwmasklist, spwlist
|
---|
| 1527 |
|
---|
| 1528 | # parse frequency mask list
|
---|
| 1529 | if len(selset) > 1:
|
---|
[2349] | 1530 | freqmasklist = self._parse_selection(selset[1], typestr='float',
|
---|
| 1531 | offset=0.)
|
---|
[2013] | 1532 | else:
|
---|
| 1533 | # want to select the whole spectrum
|
---|
| 1534 | freqmasklist = [None]
|
---|
| 1535 |
|
---|
| 1536 | ## define a dictionary of spw - masklist combination
|
---|
| 1537 | for ispw in selspws:
|
---|
| 1538 | #print "working on", ispw
|
---|
| 1539 | spwstr = str(ispw)
|
---|
| 1540 | if len(selspws) == 0:
|
---|
| 1541 | # empty spw
|
---|
| 1542 | continue
|
---|
| 1543 | else:
|
---|
| 1544 | ## want to get min and max of the spw and
|
---|
| 1545 | ## offset to set for '<' and '>'
|
---|
| 1546 | if frequnit == 'channel':
|
---|
| 1547 | minfreq = 0
|
---|
| 1548 | maxfreq = self.nchan(ifno=ispw)
|
---|
| 1549 | offset = 0.5
|
---|
| 1550 | else:
|
---|
| 1551 | ## This is ugly part. need improvement
|
---|
| 1552 | for ifrow in xrange(self.nrow()):
|
---|
| 1553 | if self.getif(ifrow) == ispw:
|
---|
| 1554 | #print "IF",ispw,"found in row =",ifrow
|
---|
| 1555 | break
|
---|
| 1556 | freqcoord = self.get_coordinate(ifrow)
|
---|
| 1557 | freqs = self._getabcissa(ifrow)
|
---|
| 1558 | minfreq = min(freqs)
|
---|
| 1559 | maxfreq = max(freqs)
|
---|
| 1560 | if len(freqs) == 1:
|
---|
| 1561 | offset = 0.5
|
---|
| 1562 | elif frequnit.find('Hz') > 0:
|
---|
[2349] | 1563 | offset = abs(freqcoord.to_frequency(1,
|
---|
| 1564 | unit=frequnit)
|
---|
| 1565 | -freqcoord.to_frequency(0,
|
---|
| 1566 | unit=frequnit)
|
---|
| 1567 | )*0.5
|
---|
[2013] | 1568 | elif frequnit.find('m/s') > 0:
|
---|
[2349] | 1569 | offset = abs(freqcoord.to_velocity(1,
|
---|
| 1570 | unit=frequnit)
|
---|
| 1571 | -freqcoord.to_velocity(0,
|
---|
| 1572 | unit=frequnit)
|
---|
| 1573 | )*0.5
|
---|
[2013] | 1574 | else:
|
---|
| 1575 | asaplog.post()
|
---|
| 1576 | asaplog.push("Invalid frequency unit")
|
---|
| 1577 | asaplog.post("ERROR")
|
---|
| 1578 | del freqs, freqcoord, ifrow
|
---|
| 1579 | for freq in freqmasklist:
|
---|
| 1580 | selmask = freq or [minfreq, maxfreq]
|
---|
| 1581 | if selmask[0] == None:
|
---|
| 1582 | ## selection was "<freq[1]".
|
---|
| 1583 | if selmask[1] < minfreq:
|
---|
| 1584 | ## avoid adding region selection
|
---|
| 1585 | selmask = None
|
---|
| 1586 | else:
|
---|
| 1587 | selmask = [minfreq,selmask[1]-offset]
|
---|
| 1588 | elif selmask[1] == None:
|
---|
| 1589 | ## selection was ">freq[0]"
|
---|
| 1590 | if selmask[0] > maxfreq:
|
---|
| 1591 | ## avoid adding region selection
|
---|
| 1592 | selmask = None
|
---|
| 1593 | else:
|
---|
| 1594 | selmask = [selmask[0]+offset,maxfreq]
|
---|
| 1595 | if selmask:
|
---|
| 1596 | if not seldict.has_key(spwstr):
|
---|
| 1597 | # new spw selection
|
---|
| 1598 | seldict[spwstr] = []
|
---|
| 1599 | seldict[spwstr] += [selmask]
|
---|
| 1600 | del minfreq,maxfreq,offset,freq,selmask
|
---|
| 1601 | del spwstr
|
---|
| 1602 | del freqmasklist
|
---|
| 1603 | del valid_ifs
|
---|
| 1604 | if len(seldict) == 0:
|
---|
| 1605 | asaplog.post()
|
---|
[2349] | 1606 | asaplog.push("No valid selection in the mask expression: "
|
---|
| 1607 | +maskstring)
|
---|
[2013] | 1608 | asaplog.post("WARN")
|
---|
| 1609 | return None
|
---|
| 1610 | msg = "Selected masklist:\n"
|
---|
| 1611 | for sif, lmask in seldict.iteritems():
|
---|
| 1612 | msg += " IF"+sif+" - "+str(lmask)+"\n"
|
---|
| 1613 | asaplog.push(msg)
|
---|
| 1614 | return seldict
|
---|
| 1615 |
|
---|
[2349] | 1616 | def _parse_selection(self, selstr, typestr='float', offset=0.,
|
---|
[2351] | 1617 | minval=None, maxval=None):
|
---|
[2013] | 1618 | """
|
---|
| 1619 | Parameters:
|
---|
| 1620 | selstr : The Selection string, e.g., '<3;5~7;100~103;9'
|
---|
| 1621 | typestr : The type of the values in returned list
|
---|
| 1622 | ('integer' or 'float')
|
---|
| 1623 | offset : The offset value to subtract from or add to
|
---|
| 1624 | the boundary value if the selection string
|
---|
| 1625 | includes '<' or '>'
|
---|
| 1626 | minval, maxval : The minimum/maximum values to set if the
|
---|
| 1627 | selection string includes '<' or '>'.
|
---|
| 1628 | The list element is filled with None by default.
|
---|
| 1629 | Returns:
|
---|
| 1630 | A list of min/max pair of selections.
|
---|
| 1631 | Example:
|
---|
| 1632 | _parseSelection('<3;5~7;9',typestr='int',offset=1,minval=0)
|
---|
| 1633 | returns [[0,2],[5,7],[9,9]]
|
---|
| 1634 | """
|
---|
| 1635 | selgroups = selstr.split(';')
|
---|
| 1636 | sellists = []
|
---|
| 1637 | if typestr.lower().startswith('int'):
|
---|
| 1638 | formatfunc = int
|
---|
| 1639 | else:
|
---|
| 1640 | formatfunc = float
|
---|
| 1641 |
|
---|
| 1642 | for currsel in selgroups:
|
---|
| 1643 | if currsel.find('~') > 0:
|
---|
| 1644 | minsel = formatfunc(currsel.split('~')[0].strip())
|
---|
| 1645 | maxsel = formatfunc(currsel.split('~')[1].strip())
|
---|
| 1646 | elif currsel.strip().startswith('<'):
|
---|
| 1647 | minsel = minval
|
---|
| 1648 | maxsel = formatfunc(currsel.split('<')[1].strip()) \
|
---|
| 1649 | - formatfunc(offset)
|
---|
| 1650 | elif currsel.strip().startswith('>'):
|
---|
| 1651 | minsel = formatfunc(currsel.split('>')[1].strip()) \
|
---|
| 1652 | + formatfunc(offset)
|
---|
| 1653 | maxsel = maxval
|
---|
| 1654 | else:
|
---|
| 1655 | minsel = formatfunc(currsel)
|
---|
| 1656 | maxsel = formatfunc(currsel)
|
---|
| 1657 | sellists.append([minsel,maxsel])
|
---|
| 1658 | return sellists
|
---|
| 1659 |
|
---|
[1819] | 1660 | # def get_restfreqs(self):
|
---|
| 1661 | # """
|
---|
| 1662 | # Get the restfrequency(s) stored in this scantable.
|
---|
| 1663 | # The return value(s) are always of unit 'Hz'
|
---|
| 1664 | # Parameters:
|
---|
| 1665 | # none
|
---|
| 1666 | # Returns:
|
---|
| 1667 | # a list of doubles
|
---|
| 1668 | # """
|
---|
| 1669 | # return list(self._getrestfreqs())
|
---|
| 1670 |
|
---|
| 1671 | def get_restfreqs(self, ids=None):
|
---|
[1846] | 1672 | """\
|
---|
[256] | 1673 | Get the restfrequency(s) stored in this scantable.
|
---|
| 1674 | The return value(s) are always of unit 'Hz'
|
---|
[1846] | 1675 |
|
---|
[256] | 1676 | Parameters:
|
---|
[1846] | 1677 |
|
---|
[1819] | 1678 | ids: (optional) a list of MOLECULE_ID for that restfrequency(s) to
|
---|
| 1679 | be retrieved
|
---|
[1846] | 1680 |
|
---|
[256] | 1681 | Returns:
|
---|
[1846] | 1682 |
|
---|
[1819] | 1683 | dictionary containing ids and a list of doubles for each id
|
---|
[1846] | 1684 |
|
---|
[256] | 1685 | """
|
---|
[1819] | 1686 | if ids is None:
|
---|
[2349] | 1687 | rfreqs = {}
|
---|
[1819] | 1688 | idlist = self.getmolnos()
|
---|
| 1689 | for i in idlist:
|
---|
[2349] | 1690 | rfreqs[i] = list(self._getrestfreqs(i))
|
---|
[1819] | 1691 | return rfreqs
|
---|
| 1692 | else:
|
---|
[2349] | 1693 | if type(ids) == list or type(ids) == tuple:
|
---|
| 1694 | rfreqs = {}
|
---|
[1819] | 1695 | for i in ids:
|
---|
[2349] | 1696 | rfreqs[i] = list(self._getrestfreqs(i))
|
---|
[1819] | 1697 | return rfreqs
|
---|
| 1698 | else:
|
---|
| 1699 | return list(self._getrestfreqs(ids))
|
---|
[102] | 1700 |
|
---|
[2349] | 1701 | @asaplog_post_dec
|
---|
[931] | 1702 | def set_restfreqs(self, freqs=None, unit='Hz'):
|
---|
[1846] | 1703 | """\
|
---|
[931] | 1704 | Set or replace the restfrequency specified and
|
---|
[1938] | 1705 | if the 'freqs' argument holds a scalar,
|
---|
[931] | 1706 | then that rest frequency will be applied to all the selected
|
---|
| 1707 | data. If the 'freqs' argument holds
|
---|
| 1708 | a vector, then it MUST be of equal or smaller length than
|
---|
| 1709 | the number of IFs (and the available restfrequencies will be
|
---|
| 1710 | replaced by this vector). In this case, *all* data have
|
---|
| 1711 | the restfrequency set per IF according
|
---|
| 1712 | to the corresponding value you give in the 'freqs' vector.
|
---|
[1118] | 1713 | E.g. 'freqs=[1e9, 2e9]' would mean IF 0 gets restfreq 1e9 and
|
---|
[931] | 1714 | IF 1 gets restfreq 2e9.
|
---|
[1846] | 1715 |
|
---|
[1395] | 1716 | You can also specify the frequencies via a linecatalog.
|
---|
[1153] | 1717 |
|
---|
[931] | 1718 | Parameters:
|
---|
[1846] | 1719 |
|
---|
[931] | 1720 | freqs: list of rest frequency values or string idenitfiers
|
---|
[1855] | 1721 |
|
---|
[931] | 1722 | unit: unit for rest frequency (default 'Hz')
|
---|
[402] | 1723 |
|
---|
[1846] | 1724 |
|
---|
| 1725 | Example::
|
---|
| 1726 |
|
---|
[1819] | 1727 | # set the given restfrequency for the all currently selected IFs
|
---|
[931] | 1728 | scan.set_restfreqs(freqs=1.4e9)
|
---|
[1845] | 1729 | # set restfrequencies for the n IFs (n > 1) in the order of the
|
---|
| 1730 | # list, i.e
|
---|
| 1731 | # IF0 -> 1.4e9, IF1 -> 1.41e9, IF3 -> 1.42e9
|
---|
| 1732 | # len(list_of_restfreqs) == nIF
|
---|
| 1733 | # for nIF == 1 the following will set multiple restfrequency for
|
---|
| 1734 | # that IF
|
---|
[1819] | 1735 | scan.set_restfreqs(freqs=[1.4e9, 1.41e9, 1.42e9])
|
---|
[1845] | 1736 | # set multiple restfrequencies per IF. as a list of lists where
|
---|
| 1737 | # the outer list has nIF elements, the inner s arbitrary
|
---|
| 1738 | scan.set_restfreqs(freqs=[[1.4e9, 1.41e9], [1.67e9]])
|
---|
[391] | 1739 |
|
---|
[1846] | 1740 | *Note*:
|
---|
[1845] | 1741 |
|
---|
[931] | 1742 | To do more sophisticate Restfrequency setting, e.g. on a
|
---|
| 1743 | source and IF basis, use scantable.set_selection() before using
|
---|
[1846] | 1744 | this function::
|
---|
[931] | 1745 |
|
---|
[1846] | 1746 | # provided your scantable is called scan
|
---|
| 1747 | selection = selector()
|
---|
[2431] | 1748 | selection.set_name('ORION*')
|
---|
[1846] | 1749 | selection.set_ifs([1])
|
---|
| 1750 | scan.set_selection(selection)
|
---|
| 1751 | scan.set_restfreqs(freqs=86.6e9)
|
---|
| 1752 |
|
---|
[931] | 1753 | """
|
---|
| 1754 | varlist = vars()
|
---|
[1157] | 1755 | from asap import linecatalog
|
---|
| 1756 | # simple value
|
---|
[1118] | 1757 | if isinstance(freqs, int) or isinstance(freqs, float):
|
---|
[1845] | 1758 | self._setrestfreqs([freqs], [""], unit)
|
---|
[1157] | 1759 | # list of values
|
---|
[1118] | 1760 | elif isinstance(freqs, list) or isinstance(freqs, tuple):
|
---|
[1157] | 1761 | # list values are scalars
|
---|
[1118] | 1762 | if isinstance(freqs[-1], int) or isinstance(freqs[-1], float):
|
---|
[1845] | 1763 | if len(freqs) == 1:
|
---|
| 1764 | self._setrestfreqs(freqs, [""], unit)
|
---|
| 1765 | else:
|
---|
| 1766 | # allow the 'old' mode of setting mulitple IFs
|
---|
| 1767 | sel = selector()
|
---|
| 1768 | savesel = self._getselection()
|
---|
| 1769 | iflist = self.getifnos()
|
---|
| 1770 | if len(freqs)>len(iflist):
|
---|
| 1771 | raise ValueError("number of elements in list of list "
|
---|
| 1772 | "exeeds the current IF selections")
|
---|
| 1773 | iflist = self.getifnos()
|
---|
| 1774 | for i, fval in enumerate(freqs):
|
---|
| 1775 | sel.set_ifs(iflist[i])
|
---|
| 1776 | self._setselection(sel)
|
---|
| 1777 | self._setrestfreqs([fval], [""], unit)
|
---|
| 1778 | self._setselection(savesel)
|
---|
| 1779 |
|
---|
| 1780 | # list values are dict, {'value'=, 'name'=)
|
---|
[1157] | 1781 | elif isinstance(freqs[-1], dict):
|
---|
[1845] | 1782 | values = []
|
---|
| 1783 | names = []
|
---|
| 1784 | for d in freqs:
|
---|
| 1785 | values.append(d["value"])
|
---|
| 1786 | names.append(d["name"])
|
---|
| 1787 | self._setrestfreqs(values, names, unit)
|
---|
[1819] | 1788 | elif isinstance(freqs[-1], list) or isinstance(freqs[-1], tuple):
|
---|
[1157] | 1789 | sel = selector()
|
---|
| 1790 | savesel = self._getselection()
|
---|
[1322] | 1791 | iflist = self.getifnos()
|
---|
[1819] | 1792 | if len(freqs)>len(iflist):
|
---|
[1845] | 1793 | raise ValueError("number of elements in list of list exeeds"
|
---|
| 1794 | " the current IF selections")
|
---|
| 1795 | for i, fval in enumerate(freqs):
|
---|
[1322] | 1796 | sel.set_ifs(iflist[i])
|
---|
[1259] | 1797 | self._setselection(sel)
|
---|
[1845] | 1798 | self._setrestfreqs(fval, [""], unit)
|
---|
[1157] | 1799 | self._setselection(savesel)
|
---|
| 1800 | # freqs are to be taken from a linecatalog
|
---|
[1153] | 1801 | elif isinstance(freqs, linecatalog):
|
---|
| 1802 | sel = selector()
|
---|
| 1803 | savesel = self._getselection()
|
---|
| 1804 | for i in xrange(freqs.nrow()):
|
---|
[1322] | 1805 | sel.set_ifs(iflist[i])
|
---|
[1153] | 1806 | self._setselection(sel)
|
---|
[1845] | 1807 | self._setrestfreqs([freqs.get_frequency(i)],
|
---|
| 1808 | [freqs.get_name(i)], "MHz")
|
---|
[1153] | 1809 | # ensure that we are not iterating past nIF
|
---|
| 1810 | if i == self.nif()-1: break
|
---|
| 1811 | self._setselection(savesel)
|
---|
[931] | 1812 | else:
|
---|
| 1813 | return
|
---|
| 1814 | self._add_history("set_restfreqs", varlist)
|
---|
| 1815 |
|
---|
[2349] | 1816 | @asaplog_post_dec
|
---|
[1360] | 1817 | def shift_refpix(self, delta):
|
---|
[1846] | 1818 | """\
|
---|
[1589] | 1819 | Shift the reference pixel of the Spectra Coordinate by an
|
---|
| 1820 | integer amount.
|
---|
[1846] | 1821 |
|
---|
[1589] | 1822 | Parameters:
|
---|
[1846] | 1823 |
|
---|
[1589] | 1824 | delta: the amount to shift by
|
---|
[1846] | 1825 |
|
---|
| 1826 | *Note*:
|
---|
| 1827 |
|
---|
[1589] | 1828 | Be careful using this with broadband data.
|
---|
[1846] | 1829 |
|
---|
[1360] | 1830 | """
|
---|
[2349] | 1831 | varlist = vars()
|
---|
[1731] | 1832 | Scantable.shift_refpix(self, delta)
|
---|
[2349] | 1833 | s._add_history("shift_refpix", varlist)
|
---|
[931] | 1834 |
|
---|
[1862] | 1835 | @asaplog_post_dec
|
---|
[1259] | 1836 | def history(self, filename=None):
|
---|
[1846] | 1837 | """\
|
---|
[1259] | 1838 | Print the history. Optionally to a file.
|
---|
[1846] | 1839 |
|
---|
[1348] | 1840 | Parameters:
|
---|
[1846] | 1841 |
|
---|
[1928] | 1842 | filename: The name of the file to save the history to.
|
---|
[1846] | 1843 |
|
---|
[1259] | 1844 | """
|
---|
[484] | 1845 | hist = list(self._gethistory())
|
---|
[794] | 1846 | out = "-"*80
|
---|
[484] | 1847 | for h in hist:
|
---|
[489] | 1848 | if h.startswith("---"):
|
---|
[1857] | 1849 | out = "\n".join([out, h])
|
---|
[489] | 1850 | else:
|
---|
| 1851 | items = h.split("##")
|
---|
| 1852 | date = items[0]
|
---|
| 1853 | func = items[1]
|
---|
| 1854 | items = items[2:]
|
---|
[794] | 1855 | out += "\n"+date+"\n"
|
---|
| 1856 | out += "Function: %s\n Parameters:" % (func)
|
---|
[489] | 1857 | for i in items:
|
---|
[1938] | 1858 | if i == '':
|
---|
| 1859 | continue
|
---|
[489] | 1860 | s = i.split("=")
|
---|
[1118] | 1861 | out += "\n %s = %s" % (s[0], s[1])
|
---|
[1857] | 1862 | out = "\n".join([out, "-"*80])
|
---|
[1259] | 1863 | if filename is not None:
|
---|
| 1864 | if filename is "":
|
---|
| 1865 | filename = 'scantable_history.txt'
|
---|
| 1866 | import os
|
---|
| 1867 | filename = os.path.expandvars(os.path.expanduser(filename))
|
---|
| 1868 | if not os.path.isdir(filename):
|
---|
| 1869 | data = open(filename, 'w')
|
---|
| 1870 | data.write(out)
|
---|
| 1871 | data.close()
|
---|
| 1872 | else:
|
---|
| 1873 | msg = "Illegal file name '%s'." % (filename)
|
---|
[1859] | 1874 | raise IOError(msg)
|
---|
| 1875 | return page(out)
|
---|
[2349] | 1876 |
|
---|
[513] | 1877 | #
|
---|
| 1878 | # Maths business
|
---|
| 1879 | #
|
---|
[1862] | 1880 | @asaplog_post_dec
|
---|
[931] | 1881 | def average_time(self, mask=None, scanav=False, weight='tint', align=False):
|
---|
[1846] | 1882 | """\
|
---|
[2349] | 1883 | Return the (time) weighted average of a scan. Scans will be averaged
|
---|
| 1884 | only if the source direction (RA/DEC) is within 1' otherwise
|
---|
[1846] | 1885 |
|
---|
| 1886 | *Note*:
|
---|
| 1887 |
|
---|
[1070] | 1888 | in channels only - align if necessary
|
---|
[1846] | 1889 |
|
---|
[513] | 1890 | Parameters:
|
---|
[1846] | 1891 |
|
---|
[513] | 1892 | mask: an optional mask (only used for 'var' and 'tsys'
|
---|
| 1893 | weighting)
|
---|
[1855] | 1894 |
|
---|
[558] | 1895 | scanav: True averages each scan separately
|
---|
| 1896 | False (default) averages all scans together,
|
---|
[1855] | 1897 |
|
---|
[1099] | 1898 | weight: Weighting scheme.
|
---|
| 1899 | 'none' (mean no weight)
|
---|
| 1900 | 'var' (1/var(spec) weighted)
|
---|
| 1901 | 'tsys' (1/Tsys**2 weighted)
|
---|
| 1902 | 'tint' (integration time weighted)
|
---|
| 1903 | 'tintsys' (Tint/Tsys**2)
|
---|
| 1904 | 'median' ( median averaging)
|
---|
[535] | 1905 | The default is 'tint'
|
---|
[1855] | 1906 |
|
---|
[931] | 1907 | align: align the spectra in velocity before averaging. It takes
|
---|
| 1908 | the time of the first spectrum as reference time.
|
---|
[1846] | 1909 |
|
---|
| 1910 | Example::
|
---|
| 1911 |
|
---|
[513] | 1912 | # time average the scantable without using a mask
|
---|
[710] | 1913 | newscan = scan.average_time()
|
---|
[1846] | 1914 |
|
---|
[513] | 1915 | """
|
---|
| 1916 | varlist = vars()
|
---|
[1593] | 1917 | weight = weight or 'TINT'
|
---|
| 1918 | mask = mask or ()
|
---|
| 1919 | scanav = (scanav and 'SCAN') or 'NONE'
|
---|
[1118] | 1920 | scan = (self, )
|
---|
[1859] | 1921 |
|
---|
| 1922 | if align:
|
---|
| 1923 | scan = (self.freq_align(insitu=False), )
|
---|
| 1924 | s = None
|
---|
| 1925 | if weight.upper() == 'MEDIAN':
|
---|
| 1926 | s = scantable(self._math._averagechannel(scan[0], 'MEDIAN',
|
---|
| 1927 | scanav))
|
---|
| 1928 | else:
|
---|
| 1929 | s = scantable(self._math._average(scan, mask, weight.upper(),
|
---|
| 1930 | scanav))
|
---|
[1099] | 1931 | s._add_history("average_time", varlist)
|
---|
[513] | 1932 | return s
|
---|
[710] | 1933 |
|
---|
[1862] | 1934 | @asaplog_post_dec
|
---|
[876] | 1935 | def convert_flux(self, jyperk=None, eta=None, d=None, insitu=None):
|
---|
[1846] | 1936 | """\
|
---|
[513] | 1937 | Return a scan where all spectra are converted to either
|
---|
| 1938 | Jansky or Kelvin depending upon the flux units of the scan table.
|
---|
| 1939 | By default the function tries to look the values up internally.
|
---|
| 1940 | If it can't find them (or if you want to over-ride), you must
|
---|
| 1941 | specify EITHER jyperk OR eta (and D which it will try to look up
|
---|
| 1942 | also if you don't set it). jyperk takes precedence if you set both.
|
---|
[1846] | 1943 |
|
---|
[513] | 1944 | Parameters:
|
---|
[1846] | 1945 |
|
---|
[513] | 1946 | jyperk: the Jy / K conversion factor
|
---|
[1855] | 1947 |
|
---|
[513] | 1948 | eta: the aperture efficiency
|
---|
[1855] | 1949 |
|
---|
[1928] | 1950 | d: the geometric diameter (metres)
|
---|
[1855] | 1951 |
|
---|
[513] | 1952 | insitu: if False a new scantable is returned.
|
---|
| 1953 | Otherwise, the scaling is done in-situ
|
---|
| 1954 | The default is taken from .asaprc (False)
|
---|
[1846] | 1955 |
|
---|
[513] | 1956 | """
|
---|
| 1957 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 1958 | self._math._setinsitu(insitu)
|
---|
[513] | 1959 | varlist = vars()
|
---|
[1593] | 1960 | jyperk = jyperk or -1.0
|
---|
| 1961 | d = d or -1.0
|
---|
| 1962 | eta = eta or -1.0
|
---|
[876] | 1963 | s = scantable(self._math._convertflux(self, d, eta, jyperk))
|
---|
| 1964 | s._add_history("convert_flux", varlist)
|
---|
| 1965 | if insitu: self._assign(s)
|
---|
| 1966 | else: return s
|
---|
[513] | 1967 |
|
---|
[1862] | 1968 | @asaplog_post_dec
|
---|
[876] | 1969 | def gain_el(self, poly=None, filename="", method="linear", insitu=None):
|
---|
[1846] | 1970 | """\
|
---|
[513] | 1971 | Return a scan after applying a gain-elevation correction.
|
---|
| 1972 | The correction can be made via either a polynomial or a
|
---|
| 1973 | table-based interpolation (and extrapolation if necessary).
|
---|
| 1974 | You specify polynomial coefficients, an ascii table or neither.
|
---|
| 1975 | If you specify neither, then a polynomial correction will be made
|
---|
| 1976 | with built in coefficients known for certain telescopes (an error
|
---|
| 1977 | will occur if the instrument is not known).
|
---|
| 1978 | The data and Tsys are *divided* by the scaling factors.
|
---|
[1846] | 1979 |
|
---|
[513] | 1980 | Parameters:
|
---|
[1846] | 1981 |
|
---|
[513] | 1982 | poly: Polynomial coefficients (default None) to compute a
|
---|
| 1983 | gain-elevation correction as a function of
|
---|
| 1984 | elevation (in degrees).
|
---|
[1855] | 1985 |
|
---|
[513] | 1986 | filename: The name of an ascii file holding correction factors.
|
---|
| 1987 | The first row of the ascii file must give the column
|
---|
| 1988 | names and these MUST include columns
|
---|
[2431] | 1989 | 'ELEVATION' (degrees) and 'FACTOR' (multiply data
|
---|
[513] | 1990 | by this) somewhere.
|
---|
| 1991 | The second row must give the data type of the
|
---|
| 1992 | column. Use 'R' for Real and 'I' for Integer.
|
---|
| 1993 | An example file would be
|
---|
| 1994 | (actual factors are arbitrary) :
|
---|
| 1995 |
|
---|
| 1996 | TIME ELEVATION FACTOR
|
---|
| 1997 | R R R
|
---|
| 1998 | 0.1 0 0.8
|
---|
| 1999 | 0.2 20 0.85
|
---|
| 2000 | 0.3 40 0.9
|
---|
| 2001 | 0.4 60 0.85
|
---|
| 2002 | 0.5 80 0.8
|
---|
| 2003 | 0.6 90 0.75
|
---|
[1855] | 2004 |
|
---|
[513] | 2005 | method: Interpolation method when correcting from a table.
|
---|
[2431] | 2006 | Values are 'nearest', 'linear' (default), 'cubic'
|
---|
| 2007 | and 'spline'
|
---|
[1855] | 2008 |
|
---|
[513] | 2009 | insitu: if False a new scantable is returned.
|
---|
| 2010 | Otherwise, the scaling is done in-situ
|
---|
| 2011 | The default is taken from .asaprc (False)
|
---|
[1846] | 2012 |
|
---|
[513] | 2013 | """
|
---|
| 2014 |
|
---|
| 2015 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 2016 | self._math._setinsitu(insitu)
|
---|
[513] | 2017 | varlist = vars()
|
---|
[1593] | 2018 | poly = poly or ()
|
---|
[513] | 2019 | from os.path import expandvars
|
---|
| 2020 | filename = expandvars(filename)
|
---|
[876] | 2021 | s = scantable(self._math._gainel(self, poly, filename, method))
|
---|
| 2022 | s._add_history("gain_el", varlist)
|
---|
[1593] | 2023 | if insitu:
|
---|
| 2024 | self._assign(s)
|
---|
| 2025 | else:
|
---|
| 2026 | return s
|
---|
[710] | 2027 |
|
---|
[1862] | 2028 | @asaplog_post_dec
|
---|
[931] | 2029 | def freq_align(self, reftime=None, method='cubic', insitu=None):
|
---|
[1846] | 2030 | """\
|
---|
[513] | 2031 | Return a scan where all rows have been aligned in frequency/velocity.
|
---|
| 2032 | The alignment frequency frame (e.g. LSRK) is that set by function
|
---|
| 2033 | set_freqframe.
|
---|
[1846] | 2034 |
|
---|
[513] | 2035 | Parameters:
|
---|
[1855] | 2036 |
|
---|
[513] | 2037 | reftime: reference time to align at. By default, the time of
|
---|
| 2038 | the first row of data is used.
|
---|
[1855] | 2039 |
|
---|
[513] | 2040 | method: Interpolation method for regridding the spectra.
|
---|
[2431] | 2041 | Choose from 'nearest', 'linear', 'cubic' (default)
|
---|
| 2042 | and 'spline'
|
---|
[1855] | 2043 |
|
---|
[513] | 2044 | insitu: if False a new scantable is returned.
|
---|
| 2045 | Otherwise, the scaling is done in-situ
|
---|
| 2046 | The default is taken from .asaprc (False)
|
---|
[1846] | 2047 |
|
---|
[513] | 2048 | """
|
---|
[931] | 2049 | if insitu is None: insitu = rcParams["insitu"]
|
---|
[2429] | 2050 | oldInsitu = self._math._insitu()
|
---|
[876] | 2051 | self._math._setinsitu(insitu)
|
---|
[513] | 2052 | varlist = vars()
|
---|
[1593] | 2053 | reftime = reftime or ""
|
---|
[931] | 2054 | s = scantable(self._math._freq_align(self, reftime, method))
|
---|
[876] | 2055 | s._add_history("freq_align", varlist)
|
---|
[2429] | 2056 | self._math._setinsitu(oldInsitu)
|
---|
[2349] | 2057 | if insitu:
|
---|
| 2058 | self._assign(s)
|
---|
| 2059 | else:
|
---|
| 2060 | return s
|
---|
[513] | 2061 |
|
---|
[1862] | 2062 | @asaplog_post_dec
|
---|
[1725] | 2063 | def opacity(self, tau=None, insitu=None):
|
---|
[1846] | 2064 | """\
|
---|
[513] | 2065 | Apply an opacity correction. The data
|
---|
| 2066 | and Tsys are multiplied by the correction factor.
|
---|
[1846] | 2067 |
|
---|
[513] | 2068 | Parameters:
|
---|
[1855] | 2069 |
|
---|
[1689] | 2070 | tau: (list of) opacity from which the correction factor is
|
---|
[513] | 2071 | exp(tau*ZD)
|
---|
[1689] | 2072 | where ZD is the zenith-distance.
|
---|
| 2073 | If a list is provided, it has to be of length nIF,
|
---|
| 2074 | nIF*nPol or 1 and in order of IF/POL, e.g.
|
---|
| 2075 | [opif0pol0, opif0pol1, opif1pol0 ...]
|
---|
[1725] | 2076 | if tau is `None` the opacities are determined from a
|
---|
| 2077 | model.
|
---|
[1855] | 2078 |
|
---|
[513] | 2079 | insitu: if False a new scantable is returned.
|
---|
| 2080 | Otherwise, the scaling is done in-situ
|
---|
| 2081 | The default is taken from .asaprc (False)
|
---|
[1846] | 2082 |
|
---|
[513] | 2083 | """
|
---|
[2349] | 2084 | if insitu is None:
|
---|
| 2085 | insitu = rcParams['insitu']
|
---|
[876] | 2086 | self._math._setinsitu(insitu)
|
---|
[513] | 2087 | varlist = vars()
|
---|
[1689] | 2088 | if not hasattr(tau, "__len__"):
|
---|
| 2089 | tau = [tau]
|
---|
[876] | 2090 | s = scantable(self._math._opacity(self, tau))
|
---|
| 2091 | s._add_history("opacity", varlist)
|
---|
[2349] | 2092 | if insitu:
|
---|
| 2093 | self._assign(s)
|
---|
| 2094 | else:
|
---|
| 2095 | return s
|
---|
[513] | 2096 |
|
---|
[1862] | 2097 | @asaplog_post_dec
|
---|
[513] | 2098 | def bin(self, width=5, insitu=None):
|
---|
[1846] | 2099 | """\
|
---|
[513] | 2100 | Return a scan where all spectra have been binned up.
|
---|
[1846] | 2101 |
|
---|
[1348] | 2102 | Parameters:
|
---|
[1846] | 2103 |
|
---|
[513] | 2104 | width: The bin width (default=5) in pixels
|
---|
[1855] | 2105 |
|
---|
[513] | 2106 | insitu: if False a new scantable is returned.
|
---|
| 2107 | Otherwise, the scaling is done in-situ
|
---|
| 2108 | The default is taken from .asaprc (False)
|
---|
[1846] | 2109 |
|
---|
[513] | 2110 | """
|
---|
[2349] | 2111 | if insitu is None:
|
---|
| 2112 | insitu = rcParams['insitu']
|
---|
[876] | 2113 | self._math._setinsitu(insitu)
|
---|
[513] | 2114 | varlist = vars()
|
---|
[876] | 2115 | s = scantable(self._math._bin(self, width))
|
---|
[1118] | 2116 | s._add_history("bin", varlist)
|
---|
[1589] | 2117 | if insitu:
|
---|
| 2118 | self._assign(s)
|
---|
| 2119 | else:
|
---|
| 2120 | return s
|
---|
[513] | 2121 |
|
---|
[1862] | 2122 | @asaplog_post_dec
|
---|
[513] | 2123 | def resample(self, width=5, method='cubic', insitu=None):
|
---|
[1846] | 2124 | """\
|
---|
[1348] | 2125 | Return a scan where all spectra have been binned up.
|
---|
[1573] | 2126 |
|
---|
[1348] | 2127 | Parameters:
|
---|
[1846] | 2128 |
|
---|
[513] | 2129 | width: The bin width (default=5) in pixels
|
---|
[1855] | 2130 |
|
---|
[513] | 2131 | method: Interpolation method when correcting from a table.
|
---|
[2431] | 2132 | Values are 'nearest', 'linear', 'cubic' (default)
|
---|
| 2133 | and 'spline'
|
---|
[1855] | 2134 |
|
---|
[513] | 2135 | insitu: if False a new scantable is returned.
|
---|
| 2136 | Otherwise, the scaling is done in-situ
|
---|
| 2137 | The default is taken from .asaprc (False)
|
---|
[1846] | 2138 |
|
---|
[513] | 2139 | """
|
---|
[2349] | 2140 | if insitu is None:
|
---|
| 2141 | insitu = rcParams['insitu']
|
---|
[876] | 2142 | self._math._setinsitu(insitu)
|
---|
[513] | 2143 | varlist = vars()
|
---|
[876] | 2144 | s = scantable(self._math._resample(self, method, width))
|
---|
[1118] | 2145 | s._add_history("resample", varlist)
|
---|
[2349] | 2146 | if insitu:
|
---|
| 2147 | self._assign(s)
|
---|
| 2148 | else:
|
---|
| 2149 | return s
|
---|
[513] | 2150 |
|
---|
[1862] | 2151 | @asaplog_post_dec
|
---|
[946] | 2152 | def average_pol(self, mask=None, weight='none'):
|
---|
[1846] | 2153 | """\
|
---|
[946] | 2154 | Average the Polarisations together.
|
---|
[1846] | 2155 |
|
---|
[946] | 2156 | Parameters:
|
---|
[1846] | 2157 |
|
---|
[946] | 2158 | mask: An optional mask defining the region, where the
|
---|
| 2159 | averaging will be applied. The output will have all
|
---|
| 2160 | specified points masked.
|
---|
[1855] | 2161 |
|
---|
[946] | 2162 | weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
|
---|
| 2163 | weighted), or 'tsys' (1/Tsys**2 weighted)
|
---|
[1846] | 2164 |
|
---|
[946] | 2165 | """
|
---|
| 2166 | varlist = vars()
|
---|
[1593] | 2167 | mask = mask or ()
|
---|
[1010] | 2168 | s = scantable(self._math._averagepol(self, mask, weight.upper()))
|
---|
[1118] | 2169 | s._add_history("average_pol", varlist)
|
---|
[992] | 2170 | return s
|
---|
[513] | 2171 |
|
---|
[1862] | 2172 | @asaplog_post_dec
|
---|
[1145] | 2173 | def average_beam(self, mask=None, weight='none'):
|
---|
[1846] | 2174 | """\
|
---|
[1145] | 2175 | Average the Beams together.
|
---|
[1846] | 2176 |
|
---|
[1145] | 2177 | Parameters:
|
---|
| 2178 | mask: An optional mask defining the region, where the
|
---|
| 2179 | averaging will be applied. The output will have all
|
---|
| 2180 | specified points masked.
|
---|
[1855] | 2181 |
|
---|
[1145] | 2182 | weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
|
---|
| 2183 | weighted), or 'tsys' (1/Tsys**2 weighted)
|
---|
[1846] | 2184 |
|
---|
[1145] | 2185 | """
|
---|
| 2186 | varlist = vars()
|
---|
[1593] | 2187 | mask = mask or ()
|
---|
[1145] | 2188 | s = scantable(self._math._averagebeams(self, mask, weight.upper()))
|
---|
| 2189 | s._add_history("average_beam", varlist)
|
---|
| 2190 | return s
|
---|
| 2191 |
|
---|
[1586] | 2192 | def parallactify(self, pflag):
|
---|
[1846] | 2193 | """\
|
---|
[1843] | 2194 | Set a flag to indicate whether this data should be treated as having
|
---|
[1617] | 2195 | been 'parallactified' (total phase == 0.0)
|
---|
[1846] | 2196 |
|
---|
[1617] | 2197 | Parameters:
|
---|
[1855] | 2198 |
|
---|
[1843] | 2199 | pflag: Bool indicating whether to turn this on (True) or
|
---|
[1617] | 2200 | off (False)
|
---|
[1846] | 2201 |
|
---|
[1617] | 2202 | """
|
---|
[1586] | 2203 | varlist = vars()
|
---|
| 2204 | self._parallactify(pflag)
|
---|
| 2205 | self._add_history("parallactify", varlist)
|
---|
| 2206 |
|
---|
[1862] | 2207 | @asaplog_post_dec
|
---|
[992] | 2208 | def convert_pol(self, poltype=None):
|
---|
[1846] | 2209 | """\
|
---|
[992] | 2210 | Convert the data to a different polarisation type.
|
---|
[1565] | 2211 | Note that you will need cross-polarisation terms for most conversions.
|
---|
[1846] | 2212 |
|
---|
[992] | 2213 | Parameters:
|
---|
[1855] | 2214 |
|
---|
[992] | 2215 | poltype: The new polarisation type. Valid types are:
|
---|
[2431] | 2216 | 'linear', 'circular', 'stokes' and 'linpol'
|
---|
[1846] | 2217 |
|
---|
[992] | 2218 | """
|
---|
| 2219 | varlist = vars()
|
---|
[1859] | 2220 | s = scantable(self._math._convertpol(self, poltype))
|
---|
[1118] | 2221 | s._add_history("convert_pol", varlist)
|
---|
[992] | 2222 | return s
|
---|
| 2223 |
|
---|
[1862] | 2224 | @asaplog_post_dec
|
---|
[2269] | 2225 | def smooth(self, kernel="hanning", width=5.0, order=2, plot=False,
|
---|
| 2226 | insitu=None):
|
---|
[1846] | 2227 | """\
|
---|
[513] | 2228 | Smooth the spectrum by the specified kernel (conserving flux).
|
---|
[1846] | 2229 |
|
---|
[513] | 2230 | Parameters:
|
---|
[1846] | 2231 |
|
---|
[513] | 2232 | kernel: The type of smoothing kernel. Select from
|
---|
[1574] | 2233 | 'hanning' (default), 'gaussian', 'boxcar', 'rmedian'
|
---|
| 2234 | or 'poly'
|
---|
[1855] | 2235 |
|
---|
[513] | 2236 | width: The width of the kernel in pixels. For hanning this is
|
---|
| 2237 | ignored otherwise it defauls to 5 pixels.
|
---|
| 2238 | For 'gaussian' it is the Full Width Half
|
---|
| 2239 | Maximum. For 'boxcar' it is the full width.
|
---|
[1574] | 2240 | For 'rmedian' and 'poly' it is the half width.
|
---|
[1855] | 2241 |
|
---|
[1574] | 2242 | order: Optional parameter for 'poly' kernel (default is 2), to
|
---|
| 2243 | specify the order of the polnomial. Ignored by all other
|
---|
| 2244 | kernels.
|
---|
[1855] | 2245 |
|
---|
[1819] | 2246 | plot: plot the original and the smoothed spectra.
|
---|
| 2247 | In this each indivual fit has to be approved, by
|
---|
| 2248 | typing 'y' or 'n'
|
---|
[1855] | 2249 |
|
---|
[513] | 2250 | insitu: if False a new scantable is returned.
|
---|
| 2251 | Otherwise, the scaling is done in-situ
|
---|
| 2252 | The default is taken from .asaprc (False)
|
---|
[1846] | 2253 |
|
---|
[513] | 2254 | """
|
---|
| 2255 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 2256 | self._math._setinsitu(insitu)
|
---|
[513] | 2257 | varlist = vars()
|
---|
[1819] | 2258 |
|
---|
| 2259 | if plot: orgscan = self.copy()
|
---|
| 2260 |
|
---|
[1574] | 2261 | s = scantable(self._math._smooth(self, kernel.lower(), width, order))
|
---|
[876] | 2262 | s._add_history("smooth", varlist)
|
---|
[1819] | 2263 |
|
---|
| 2264 | if plot:
|
---|
[2150] | 2265 | from asap.asapplotter import new_asaplot
|
---|
| 2266 | theplot = new_asaplot(rcParams['plotter.gui'])
|
---|
[2535] | 2267 | from matplotlib import rc as rcp
|
---|
| 2268 | rcp('lines', linewidth=1)
|
---|
[2150] | 2269 | theplot.set_panels()
|
---|
[1819] | 2270 | ylab=s._get_ordinate_label()
|
---|
[2150] | 2271 | #theplot.palette(0,["#777777","red"])
|
---|
[1819] | 2272 | for r in xrange(s.nrow()):
|
---|
| 2273 | xsm=s._getabcissa(r)
|
---|
| 2274 | ysm=s._getspectrum(r)
|
---|
| 2275 | xorg=orgscan._getabcissa(r)
|
---|
| 2276 | yorg=orgscan._getspectrum(r)
|
---|
[2150] | 2277 | theplot.clear()
|
---|
| 2278 | theplot.hold()
|
---|
| 2279 | theplot.set_axes('ylabel',ylab)
|
---|
| 2280 | theplot.set_axes('xlabel',s._getabcissalabel(r))
|
---|
| 2281 | theplot.set_axes('title',s._getsourcename(r))
|
---|
| 2282 | theplot.set_line(label='Original',color="#777777")
|
---|
| 2283 | theplot.plot(xorg,yorg)
|
---|
| 2284 | theplot.set_line(label='Smoothed',color="red")
|
---|
| 2285 | theplot.plot(xsm,ysm)
|
---|
[1819] | 2286 | ### Ugly part for legend
|
---|
| 2287 | for i in [0,1]:
|
---|
[2349] | 2288 | theplot.subplots[0]['lines'].append(
|
---|
| 2289 | [theplot.subplots[0]['axes'].lines[i]]
|
---|
| 2290 | )
|
---|
[2150] | 2291 | theplot.release()
|
---|
[1819] | 2292 | ### Ugly part for legend
|
---|
[2150] | 2293 | theplot.subplots[0]['lines']=[]
|
---|
[1819] | 2294 | res = raw_input("Accept smoothing ([y]/n): ")
|
---|
| 2295 | if res.upper() == 'N':
|
---|
| 2296 | s._setspectrum(yorg, r)
|
---|
[2150] | 2297 | theplot.quit()
|
---|
| 2298 | del theplot
|
---|
[1819] | 2299 | del orgscan
|
---|
| 2300 |
|
---|
[876] | 2301 | if insitu: self._assign(s)
|
---|
| 2302 | else: return s
|
---|
[513] | 2303 |
|
---|
[2186] | 2304 | @asaplog_post_dec
|
---|
[2435] | 2305 | def regrid_channel(self, width=5, plot=False, insitu=None):
|
---|
| 2306 | """\
|
---|
| 2307 | Regrid the spectra by the specified channel width
|
---|
| 2308 |
|
---|
| 2309 | Parameters:
|
---|
| 2310 |
|
---|
| 2311 | width: The channel width (float) of regridded spectra
|
---|
| 2312 | in the current spectral unit.
|
---|
| 2313 |
|
---|
| 2314 | plot: [NOT IMPLEMENTED YET]
|
---|
| 2315 | plot the original and the regridded spectra.
|
---|
| 2316 | In this each indivual fit has to be approved, by
|
---|
| 2317 | typing 'y' or 'n'
|
---|
| 2318 |
|
---|
| 2319 | insitu: if False a new scantable is returned.
|
---|
| 2320 | Otherwise, the scaling is done in-situ
|
---|
| 2321 | The default is taken from .asaprc (False)
|
---|
| 2322 |
|
---|
| 2323 | """
|
---|
| 2324 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2325 | varlist = vars()
|
---|
| 2326 |
|
---|
| 2327 | if plot:
|
---|
| 2328 | asaplog.post()
|
---|
| 2329 | asaplog.push("Verification plot is not implemtnetd yet.")
|
---|
| 2330 | asaplog.post("WARN")
|
---|
| 2331 |
|
---|
| 2332 | s = self.copy()
|
---|
| 2333 | s._regrid_specchan(width)
|
---|
| 2334 |
|
---|
| 2335 | s._add_history("regrid_channel", varlist)
|
---|
| 2336 |
|
---|
| 2337 | # if plot:
|
---|
| 2338 | # from asap.asapplotter import new_asaplot
|
---|
| 2339 | # theplot = new_asaplot(rcParams['plotter.gui'])
|
---|
[2535] | 2340 | # from matplotlib import rc as rcp
|
---|
| 2341 | # rcp('lines', linewidth=1)
|
---|
[2435] | 2342 | # theplot.set_panels()
|
---|
| 2343 | # ylab=s._get_ordinate_label()
|
---|
| 2344 | # #theplot.palette(0,["#777777","red"])
|
---|
| 2345 | # for r in xrange(s.nrow()):
|
---|
| 2346 | # xsm=s._getabcissa(r)
|
---|
| 2347 | # ysm=s._getspectrum(r)
|
---|
| 2348 | # xorg=orgscan._getabcissa(r)
|
---|
| 2349 | # yorg=orgscan._getspectrum(r)
|
---|
| 2350 | # theplot.clear()
|
---|
| 2351 | # theplot.hold()
|
---|
| 2352 | # theplot.set_axes('ylabel',ylab)
|
---|
| 2353 | # theplot.set_axes('xlabel',s._getabcissalabel(r))
|
---|
| 2354 | # theplot.set_axes('title',s._getsourcename(r))
|
---|
| 2355 | # theplot.set_line(label='Original',color="#777777")
|
---|
| 2356 | # theplot.plot(xorg,yorg)
|
---|
| 2357 | # theplot.set_line(label='Smoothed',color="red")
|
---|
| 2358 | # theplot.plot(xsm,ysm)
|
---|
| 2359 | # ### Ugly part for legend
|
---|
| 2360 | # for i in [0,1]:
|
---|
| 2361 | # theplot.subplots[0]['lines'].append(
|
---|
| 2362 | # [theplot.subplots[0]['axes'].lines[i]]
|
---|
| 2363 | # )
|
---|
| 2364 | # theplot.release()
|
---|
| 2365 | # ### Ugly part for legend
|
---|
| 2366 | # theplot.subplots[0]['lines']=[]
|
---|
| 2367 | # res = raw_input("Accept smoothing ([y]/n): ")
|
---|
| 2368 | # if res.upper() == 'N':
|
---|
| 2369 | # s._setspectrum(yorg, r)
|
---|
| 2370 | # theplot.quit()
|
---|
| 2371 | # del theplot
|
---|
| 2372 | # del orgscan
|
---|
| 2373 |
|
---|
| 2374 | if insitu: self._assign(s)
|
---|
| 2375 | else: return s
|
---|
| 2376 |
|
---|
| 2377 | @asaplog_post_dec
|
---|
[2186] | 2378 | def _parse_wn(self, wn):
|
---|
| 2379 | if isinstance(wn, list) or isinstance(wn, tuple):
|
---|
| 2380 | return wn
|
---|
| 2381 | elif isinstance(wn, int):
|
---|
| 2382 | return [ wn ]
|
---|
| 2383 | elif isinstance(wn, str):
|
---|
[2277] | 2384 | if '-' in wn: # case 'a-b' : return [a,a+1,...,b-1,b]
|
---|
[2186] | 2385 | val = wn.split('-')
|
---|
| 2386 | val = [int(val[0]), int(val[1])]
|
---|
| 2387 | val.sort()
|
---|
| 2388 | res = [i for i in xrange(val[0], val[1]+1)]
|
---|
[2277] | 2389 | elif wn[:2] == '<=' or wn[:2] == '=<': # cases '<=a','=<a' : return [0,1,...,a-1,a]
|
---|
[2186] | 2390 | val = int(wn[2:])+1
|
---|
| 2391 | res = [i for i in xrange(val)]
|
---|
[2277] | 2392 | elif wn[-2:] == '>=' or wn[-2:] == '=>': # cases 'a>=','a=>' : return [0,1,...,a-1,a]
|
---|
[2186] | 2393 | val = int(wn[:-2])+1
|
---|
| 2394 | res = [i for i in xrange(val)]
|
---|
[2277] | 2395 | elif wn[0] == '<': # case '<a' : return [0,1,...,a-2,a-1]
|
---|
[2186] | 2396 | val = int(wn[1:])
|
---|
| 2397 | res = [i for i in xrange(val)]
|
---|
[2277] | 2398 | elif wn[-1] == '>': # case 'a>' : return [0,1,...,a-2,a-1]
|
---|
[2186] | 2399 | val = int(wn[:-1])
|
---|
| 2400 | res = [i for i in xrange(val)]
|
---|
[2411] | 2401 | elif wn[:2] == '>=' or wn[:2] == '=>': # cases '>=a','=>a' : return [a,-999], which is
|
---|
| 2402 | # then interpreted in C++
|
---|
| 2403 | # side as [a,a+1,...,a_nyq]
|
---|
| 2404 | # (CAS-3759)
|
---|
[2186] | 2405 | val = int(wn[2:])
|
---|
[2411] | 2406 | res = [val, -999]
|
---|
| 2407 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
| 2408 | elif wn[-2:] == '<=' or wn[-2:] == '=<': # cases 'a<=','a=<' : return [a,-999], which is
|
---|
| 2409 | # then interpreted in C++
|
---|
| 2410 | # side as [a,a+1,...,a_nyq]
|
---|
| 2411 | # (CAS-3759)
|
---|
[2186] | 2412 | val = int(wn[:-2])
|
---|
[2411] | 2413 | res = [val, -999]
|
---|
| 2414 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
| 2415 | elif wn[0] == '>': # case '>a' : return [a+1,-999], which is
|
---|
| 2416 | # then interpreted in C++
|
---|
| 2417 | # side as [a+1,a+2,...,a_nyq]
|
---|
| 2418 | # (CAS-3759)
|
---|
[2186] | 2419 | val = int(wn[1:])+1
|
---|
[2411] | 2420 | res = [val, -999]
|
---|
| 2421 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
| 2422 | elif wn[-1] == '<': # case 'a<' : return [a+1,-999], which is
|
---|
| 2423 | # then interpreted in C++
|
---|
| 2424 | # side as [a+1,a+2,...,a_nyq]
|
---|
| 2425 | # (CAS-3759)
|
---|
[2186] | 2426 | val = int(wn[:-1])+1
|
---|
[2411] | 2427 | res = [val, -999]
|
---|
| 2428 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
[2012] | 2429 |
|
---|
[2186] | 2430 | return res
|
---|
| 2431 | else:
|
---|
| 2432 | msg = 'wrong value given for addwn/rejwn'
|
---|
| 2433 | raise RuntimeError(msg)
|
---|
| 2434 |
|
---|
| 2435 |
|
---|
[1862] | 2436 | @asaplog_post_dec
|
---|
[2277] | 2437 | def sinusoid_baseline(self, insitu=None, mask=None, applyfft=None,
|
---|
[2269] | 2438 | fftmethod=None, fftthresh=None,
|
---|
| 2439 | addwn=None, rejwn=None, clipthresh=None,
|
---|
| 2440 | clipniter=None, plot=None,
|
---|
| 2441 | getresidual=None, showprogress=None,
|
---|
| 2442 | minnrow=None, outlog=None, blfile=None):
|
---|
[2047] | 2443 | """\
|
---|
[2349] | 2444 | Return a scan which has been baselined (all rows) with sinusoidal
|
---|
| 2445 | functions.
|
---|
| 2446 |
|
---|
[2047] | 2447 | Parameters:
|
---|
[2186] | 2448 | insitu: if False a new scantable is returned.
|
---|
[2081] | 2449 | Otherwise, the scaling is done in-situ
|
---|
| 2450 | The default is taken from .asaprc (False)
|
---|
[2186] | 2451 | mask: an optional mask
|
---|
| 2452 | applyfft: if True use some method, such as FFT, to find
|
---|
| 2453 | strongest sinusoidal components in the wavenumber
|
---|
| 2454 | domain to be used for baseline fitting.
|
---|
| 2455 | default is True.
|
---|
| 2456 | fftmethod: method to find the strong sinusoidal components.
|
---|
| 2457 | now only 'fft' is available and it is the default.
|
---|
| 2458 | fftthresh: the threshold to select wave numbers to be used for
|
---|
| 2459 | fitting from the distribution of amplitudes in the
|
---|
| 2460 | wavenumber domain.
|
---|
| 2461 | both float and string values accepted.
|
---|
| 2462 | given a float value, the unit is set to sigma.
|
---|
| 2463 | for string values, allowed formats include:
|
---|
[2349] | 2464 | 'xsigma' or 'x' (= x-sigma level. e.g.,
|
---|
| 2465 | '3sigma'), or
|
---|
[2186] | 2466 | 'topx' (= the x strongest ones, e.g. 'top5').
|
---|
| 2467 | default is 3.0 (unit: sigma).
|
---|
| 2468 | addwn: the additional wave numbers to be used for fitting.
|
---|
| 2469 | list or integer value is accepted to specify every
|
---|
| 2470 | wave numbers. also string value can be used in case
|
---|
| 2471 | you need to specify wave numbers in a certain range,
|
---|
| 2472 | e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b),
|
---|
| 2473 | '<a' (= 0,1,...,a-2,a-1),
|
---|
| 2474 | '>=a' (= a, a+1, ... up to the maximum wave
|
---|
| 2475 | number corresponding to the Nyquist
|
---|
| 2476 | frequency for the case of FFT).
|
---|
[2411] | 2477 | default is [0].
|
---|
[2186] | 2478 | rejwn: the wave numbers NOT to be used for fitting.
|
---|
| 2479 | can be set just as addwn but has higher priority:
|
---|
| 2480 | wave numbers which are specified both in addwn
|
---|
| 2481 | and rejwn will NOT be used. default is [].
|
---|
[2081] | 2482 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
[2349] | 2483 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 2484 | clipping (default is 0)
|
---|
[2081] | 2485 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 2486 | plot the fit and the residual. In this each
|
---|
| 2487 | indivual fit has to be approved, by typing 'y'
|
---|
| 2488 | or 'n'
|
---|
| 2489 | getresidual: if False, returns best-fit values instead of
|
---|
| 2490 | residual. (default is True)
|
---|
[2189] | 2491 | showprogress: show progress status for large data.
|
---|
| 2492 | default is True.
|
---|
| 2493 | minnrow: minimum number of input spectra to show.
|
---|
| 2494 | default is 1000.
|
---|
[2081] | 2495 | outlog: Output the coefficients of the best-fit
|
---|
| 2496 | function to logger (default is False)
|
---|
| 2497 | blfile: Name of a text file in which the best-fit
|
---|
| 2498 | parameter values to be written
|
---|
[2186] | 2499 | (default is '': no file/logger output)
|
---|
[2047] | 2500 |
|
---|
| 2501 | Example:
|
---|
[2349] | 2502 | # return a scan baselined by a combination of sinusoidal curves
|
---|
| 2503 | # having wave numbers in spectral window up to 10,
|
---|
[2047] | 2504 | # also with 3-sigma clipping, iteration up to 4 times
|
---|
[2186] | 2505 | bscan = scan.sinusoid_baseline(addwn='<=10',clipthresh=3.0,clipniter=4)
|
---|
[2081] | 2506 |
|
---|
| 2507 | Note:
|
---|
| 2508 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 2509 | based on specunit of 'channel'.
|
---|
[2047] | 2510 | """
|
---|
| 2511 |
|
---|
[2186] | 2512 | try:
|
---|
| 2513 | varlist = vars()
|
---|
[2047] | 2514 |
|
---|
[2186] | 2515 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2516 | if insitu:
|
---|
| 2517 | workscan = self
|
---|
| 2518 | else:
|
---|
| 2519 | workscan = self.copy()
|
---|
| 2520 |
|
---|
[2410] | 2521 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
| 2522 | if mask is None: mask = []
|
---|
[2186] | 2523 | if applyfft is None: applyfft = True
|
---|
| 2524 | if fftmethod is None: fftmethod = 'fft'
|
---|
| 2525 | if fftthresh is None: fftthresh = 3.0
|
---|
[2411] | 2526 | if addwn is None: addwn = [0]
|
---|
[2186] | 2527 | if rejwn is None: rejwn = []
|
---|
| 2528 | if clipthresh is None: clipthresh = 3.0
|
---|
| 2529 | if clipniter is None: clipniter = 0
|
---|
| 2530 | if plot is None: plot = False
|
---|
| 2531 | if getresidual is None: getresidual = True
|
---|
[2189] | 2532 | if showprogress is None: showprogress = True
|
---|
| 2533 | if minnrow is None: minnrow = 1000
|
---|
[2186] | 2534 | if outlog is None: outlog = False
|
---|
| 2535 | if blfile is None: blfile = ''
|
---|
[2047] | 2536 |
|
---|
[2081] | 2537 | #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method.
|
---|
[2349] | 2538 | workscan._sinusoid_baseline(mask, applyfft, fftmethod.lower(),
|
---|
| 2539 | str(fftthresh).lower(),
|
---|
| 2540 | workscan._parse_wn(addwn),
|
---|
| 2541 | workscan._parse_wn(rejwn), clipthresh,
|
---|
| 2542 | clipniter, getresidual,
|
---|
| 2543 | pack_progress_params(showprogress,
|
---|
| 2544 | minnrow), outlog,
|
---|
| 2545 | blfile)
|
---|
[2186] | 2546 | workscan._add_history('sinusoid_baseline', varlist)
|
---|
[2047] | 2547 |
|
---|
| 2548 | if insitu:
|
---|
| 2549 | self._assign(workscan)
|
---|
| 2550 | else:
|
---|
| 2551 | return workscan
|
---|
| 2552 |
|
---|
| 2553 | except RuntimeError, e:
|
---|
[2186] | 2554 | raise_fitting_failure_exception(e)
|
---|
[2047] | 2555 |
|
---|
| 2556 |
|
---|
[2186] | 2557 | @asaplog_post_dec
|
---|
[2349] | 2558 | def auto_sinusoid_baseline(self, insitu=None, mask=None, applyfft=None,
|
---|
| 2559 | fftmethod=None, fftthresh=None,
|
---|
| 2560 | addwn=None, rejwn=None, clipthresh=None,
|
---|
| 2561 | clipniter=None, edge=None, threshold=None,
|
---|
| 2562 | chan_avg_limit=None, plot=None,
|
---|
| 2563 | getresidual=None, showprogress=None,
|
---|
| 2564 | minnrow=None, outlog=None, blfile=None):
|
---|
[2047] | 2565 | """\
|
---|
[2349] | 2566 | Return a scan which has been baselined (all rows) with sinusoidal
|
---|
| 2567 | functions.
|
---|
[2047] | 2568 | Spectral lines are detected first using linefinder and masked out
|
---|
| 2569 | to avoid them affecting the baseline solution.
|
---|
| 2570 |
|
---|
| 2571 | Parameters:
|
---|
[2189] | 2572 | insitu: if False a new scantable is returned.
|
---|
| 2573 | Otherwise, the scaling is done in-situ
|
---|
| 2574 | The default is taken from .asaprc (False)
|
---|
| 2575 | mask: an optional mask retreived from scantable
|
---|
| 2576 | applyfft: if True use some method, such as FFT, to find
|
---|
| 2577 | strongest sinusoidal components in the wavenumber
|
---|
| 2578 | domain to be used for baseline fitting.
|
---|
| 2579 | default is True.
|
---|
| 2580 | fftmethod: method to find the strong sinusoidal components.
|
---|
| 2581 | now only 'fft' is available and it is the default.
|
---|
| 2582 | fftthresh: the threshold to select wave numbers to be used for
|
---|
| 2583 | fitting from the distribution of amplitudes in the
|
---|
| 2584 | wavenumber domain.
|
---|
| 2585 | both float and string values accepted.
|
---|
| 2586 | given a float value, the unit is set to sigma.
|
---|
| 2587 | for string values, allowed formats include:
|
---|
[2349] | 2588 | 'xsigma' or 'x' (= x-sigma level. e.g.,
|
---|
| 2589 | '3sigma'), or
|
---|
[2189] | 2590 | 'topx' (= the x strongest ones, e.g. 'top5').
|
---|
| 2591 | default is 3.0 (unit: sigma).
|
---|
| 2592 | addwn: the additional wave numbers to be used for fitting.
|
---|
| 2593 | list or integer value is accepted to specify every
|
---|
| 2594 | wave numbers. also string value can be used in case
|
---|
| 2595 | you need to specify wave numbers in a certain range,
|
---|
| 2596 | e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b),
|
---|
| 2597 | '<a' (= 0,1,...,a-2,a-1),
|
---|
| 2598 | '>=a' (= a, a+1, ... up to the maximum wave
|
---|
| 2599 | number corresponding to the Nyquist
|
---|
| 2600 | frequency for the case of FFT).
|
---|
[2411] | 2601 | default is [0].
|
---|
[2189] | 2602 | rejwn: the wave numbers NOT to be used for fitting.
|
---|
| 2603 | can be set just as addwn but has higher priority:
|
---|
| 2604 | wave numbers which are specified both in addwn
|
---|
| 2605 | and rejwn will NOT be used. default is [].
|
---|
| 2606 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
[2349] | 2607 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 2608 | clipping (default is 0)
|
---|
[2189] | 2609 | edge: an optional number of channel to drop at
|
---|
| 2610 | the edge of spectrum. If only one value is
|
---|
| 2611 | specified, the same number will be dropped
|
---|
| 2612 | from both sides of the spectrum. Default
|
---|
| 2613 | is to keep all channels. Nested tuples
|
---|
| 2614 | represent individual edge selection for
|
---|
| 2615 | different IFs (a number of spectral channels
|
---|
| 2616 | can be different)
|
---|
| 2617 | threshold: the threshold used by line finder. It is
|
---|
| 2618 | better to keep it large as only strong lines
|
---|
| 2619 | affect the baseline solution.
|
---|
| 2620 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 2621 | channels to average during the search of
|
---|
| 2622 | weak and broad lines. The default is no
|
---|
| 2623 | averaging (and no search for weak lines).
|
---|
| 2624 | If such lines can affect the fitted baseline
|
---|
| 2625 | (e.g. a high order polynomial is fitted),
|
---|
| 2626 | increase this parameter (usually values up
|
---|
| 2627 | to 8 are reasonable). Most users of this
|
---|
| 2628 | method should find the default value sufficient.
|
---|
| 2629 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 2630 | plot the fit and the residual. In this each
|
---|
| 2631 | indivual fit has to be approved, by typing 'y'
|
---|
| 2632 | or 'n'
|
---|
| 2633 | getresidual: if False, returns best-fit values instead of
|
---|
| 2634 | residual. (default is True)
|
---|
| 2635 | showprogress: show progress status for large data.
|
---|
| 2636 | default is True.
|
---|
| 2637 | minnrow: minimum number of input spectra to show.
|
---|
| 2638 | default is 1000.
|
---|
| 2639 | outlog: Output the coefficients of the best-fit
|
---|
| 2640 | function to logger (default is False)
|
---|
| 2641 | blfile: Name of a text file in which the best-fit
|
---|
| 2642 | parameter values to be written
|
---|
| 2643 | (default is "": no file/logger output)
|
---|
[2047] | 2644 |
|
---|
| 2645 | Example:
|
---|
[2186] | 2646 | bscan = scan.auto_sinusoid_baseline(addwn='<=10', insitu=False)
|
---|
[2081] | 2647 |
|
---|
| 2648 | Note:
|
---|
| 2649 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 2650 | based on specunit of 'channel'.
|
---|
[2047] | 2651 | """
|
---|
| 2652 |
|
---|
[2186] | 2653 | try:
|
---|
| 2654 | varlist = vars()
|
---|
[2047] | 2655 |
|
---|
[2186] | 2656 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2657 | if insitu:
|
---|
| 2658 | workscan = self
|
---|
[2047] | 2659 | else:
|
---|
[2186] | 2660 | workscan = self.copy()
|
---|
| 2661 |
|
---|
[2410] | 2662 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
| 2663 | if mask is None: mask = []
|
---|
[2186] | 2664 | if applyfft is None: applyfft = True
|
---|
| 2665 | if fftmethod is None: fftmethod = 'fft'
|
---|
| 2666 | if fftthresh is None: fftthresh = 3.0
|
---|
[2411] | 2667 | if addwn is None: addwn = [0]
|
---|
[2186] | 2668 | if rejwn is None: rejwn = []
|
---|
| 2669 | if clipthresh is None: clipthresh = 3.0
|
---|
| 2670 | if clipniter is None: clipniter = 0
|
---|
| 2671 | if edge is None: edge = (0,0)
|
---|
| 2672 | if threshold is None: threshold = 3
|
---|
| 2673 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 2674 | if plot is None: plot = False
|
---|
| 2675 | if getresidual is None: getresidual = True
|
---|
[2189] | 2676 | if showprogress is None: showprogress = True
|
---|
| 2677 | if minnrow is None: minnrow = 1000
|
---|
[2186] | 2678 | if outlog is None: outlog = False
|
---|
| 2679 | if blfile is None: blfile = ''
|
---|
[2047] | 2680 |
|
---|
[2277] | 2681 | #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method.
|
---|
[2349] | 2682 | workscan._auto_sinusoid_baseline(mask, applyfft,
|
---|
| 2683 | fftmethod.lower(),
|
---|
| 2684 | str(fftthresh).lower(),
|
---|
| 2685 | workscan._parse_wn(addwn),
|
---|
| 2686 | workscan._parse_wn(rejwn),
|
---|
| 2687 | clipthresh, clipniter,
|
---|
| 2688 | normalise_edge_param(edge),
|
---|
| 2689 | threshold, chan_avg_limit,
|
---|
| 2690 | getresidual,
|
---|
| 2691 | pack_progress_params(showprogress,
|
---|
| 2692 | minnrow),
|
---|
| 2693 | outlog, blfile)
|
---|
[2047] | 2694 | workscan._add_history("auto_sinusoid_baseline", varlist)
|
---|
| 2695 |
|
---|
| 2696 | if insitu:
|
---|
| 2697 | self._assign(workscan)
|
---|
| 2698 | else:
|
---|
| 2699 | return workscan
|
---|
| 2700 |
|
---|
| 2701 | except RuntimeError, e:
|
---|
[2186] | 2702 | raise_fitting_failure_exception(e)
|
---|
[2047] | 2703 |
|
---|
| 2704 | @asaplog_post_dec
|
---|
[2349] | 2705 | def cspline_baseline(self, insitu=None, mask=None, npiece=None,
|
---|
| 2706 | clipthresh=None, clipniter=None, plot=None,
|
---|
| 2707 | getresidual=None, showprogress=None, minnrow=None,
|
---|
| 2708 | outlog=None, blfile=None):
|
---|
[1846] | 2709 | """\
|
---|
[2349] | 2710 | Return a scan which has been baselined (all rows) by cubic spline
|
---|
| 2711 | function (piecewise cubic polynomial).
|
---|
| 2712 |
|
---|
[513] | 2713 | Parameters:
|
---|
[2189] | 2714 | insitu: If False a new scantable is returned.
|
---|
| 2715 | Otherwise, the scaling is done in-situ
|
---|
| 2716 | The default is taken from .asaprc (False)
|
---|
| 2717 | mask: An optional mask
|
---|
| 2718 | npiece: Number of pieces. (default is 2)
|
---|
| 2719 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
[2349] | 2720 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 2721 | clipping (default is 0)
|
---|
[2189] | 2722 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 2723 | plot the fit and the residual. In this each
|
---|
| 2724 | indivual fit has to be approved, by typing 'y'
|
---|
| 2725 | or 'n'
|
---|
| 2726 | getresidual: if False, returns best-fit values instead of
|
---|
| 2727 | residual. (default is True)
|
---|
| 2728 | showprogress: show progress status for large data.
|
---|
| 2729 | default is True.
|
---|
| 2730 | minnrow: minimum number of input spectra to show.
|
---|
| 2731 | default is 1000.
|
---|
| 2732 | outlog: Output the coefficients of the best-fit
|
---|
| 2733 | function to logger (default is False)
|
---|
| 2734 | blfile: Name of a text file in which the best-fit
|
---|
| 2735 | parameter values to be written
|
---|
| 2736 | (default is "": no file/logger output)
|
---|
[1846] | 2737 |
|
---|
[2012] | 2738 | Example:
|
---|
[2349] | 2739 | # return a scan baselined by a cubic spline consisting of 2 pieces
|
---|
| 2740 | # (i.e., 1 internal knot),
|
---|
[2012] | 2741 | # also with 3-sigma clipping, iteration up to 4 times
|
---|
| 2742 | bscan = scan.cspline_baseline(npiece=2,clipthresh=3.0,clipniter=4)
|
---|
[2081] | 2743 |
|
---|
| 2744 | Note:
|
---|
| 2745 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 2746 | based on specunit of 'channel'.
|
---|
[2012] | 2747 | """
|
---|
| 2748 |
|
---|
[2186] | 2749 | try:
|
---|
| 2750 | varlist = vars()
|
---|
| 2751 |
|
---|
| 2752 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2753 | if insitu:
|
---|
| 2754 | workscan = self
|
---|
| 2755 | else:
|
---|
| 2756 | workscan = self.copy()
|
---|
[1855] | 2757 |
|
---|
[2410] | 2758 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
| 2759 | if mask is None: mask = []
|
---|
[2189] | 2760 | if npiece is None: npiece = 2
|
---|
| 2761 | if clipthresh is None: clipthresh = 3.0
|
---|
| 2762 | if clipniter is None: clipniter = 0
|
---|
| 2763 | if plot is None: plot = False
|
---|
| 2764 | if getresidual is None: getresidual = True
|
---|
| 2765 | if showprogress is None: showprogress = True
|
---|
| 2766 | if minnrow is None: minnrow = 1000
|
---|
| 2767 | if outlog is None: outlog = False
|
---|
| 2768 | if blfile is None: blfile = ''
|
---|
[1855] | 2769 |
|
---|
[2012] | 2770 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
[2349] | 2771 | workscan._cspline_baseline(mask, npiece, clipthresh, clipniter,
|
---|
| 2772 | getresidual,
|
---|
| 2773 | pack_progress_params(showprogress,
|
---|
| 2774 | minnrow), outlog,
|
---|
| 2775 | blfile)
|
---|
[2012] | 2776 | workscan._add_history("cspline_baseline", varlist)
|
---|
| 2777 |
|
---|
| 2778 | if insitu:
|
---|
| 2779 | self._assign(workscan)
|
---|
| 2780 | else:
|
---|
| 2781 | return workscan
|
---|
| 2782 |
|
---|
| 2783 | except RuntimeError, e:
|
---|
[2186] | 2784 | raise_fitting_failure_exception(e)
|
---|
[1855] | 2785 |
|
---|
[2186] | 2786 | @asaplog_post_dec
|
---|
[2349] | 2787 | def auto_cspline_baseline(self, insitu=None, mask=None, npiece=None,
|
---|
| 2788 | clipthresh=None, clipniter=None,
|
---|
| 2789 | edge=None, threshold=None, chan_avg_limit=None,
|
---|
| 2790 | getresidual=None, plot=None,
|
---|
| 2791 | showprogress=None, minnrow=None, outlog=None,
|
---|
| 2792 | blfile=None):
|
---|
[2012] | 2793 | """\
|
---|
| 2794 | Return a scan which has been baselined (all rows) by cubic spline
|
---|
| 2795 | function (piecewise cubic polynomial).
|
---|
| 2796 | Spectral lines are detected first using linefinder and masked out
|
---|
| 2797 | to avoid them affecting the baseline solution.
|
---|
| 2798 |
|
---|
| 2799 | Parameters:
|
---|
[2189] | 2800 | insitu: if False a new scantable is returned.
|
---|
| 2801 | Otherwise, the scaling is done in-situ
|
---|
| 2802 | The default is taken from .asaprc (False)
|
---|
| 2803 | mask: an optional mask retreived from scantable
|
---|
| 2804 | npiece: Number of pieces. (default is 2)
|
---|
| 2805 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
[2349] | 2806 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
| 2807 | clipping (default is 0)
|
---|
[2189] | 2808 | edge: an optional number of channel to drop at
|
---|
| 2809 | the edge of spectrum. If only one value is
|
---|
| 2810 | specified, the same number will be dropped
|
---|
| 2811 | from both sides of the spectrum. Default
|
---|
| 2812 | is to keep all channels. Nested tuples
|
---|
| 2813 | represent individual edge selection for
|
---|
| 2814 | different IFs (a number of spectral channels
|
---|
| 2815 | can be different)
|
---|
| 2816 | threshold: the threshold used by line finder. It is
|
---|
| 2817 | better to keep it large as only strong lines
|
---|
| 2818 | affect the baseline solution.
|
---|
| 2819 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 2820 | channels to average during the search of
|
---|
| 2821 | weak and broad lines. The default is no
|
---|
| 2822 | averaging (and no search for weak lines).
|
---|
| 2823 | If such lines can affect the fitted baseline
|
---|
| 2824 | (e.g. a high order polynomial is fitted),
|
---|
| 2825 | increase this parameter (usually values up
|
---|
| 2826 | to 8 are reasonable). Most users of this
|
---|
| 2827 | method should find the default value sufficient.
|
---|
| 2828 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 2829 | plot the fit and the residual. In this each
|
---|
| 2830 | indivual fit has to be approved, by typing 'y'
|
---|
| 2831 | or 'n'
|
---|
| 2832 | getresidual: if False, returns best-fit values instead of
|
---|
| 2833 | residual. (default is True)
|
---|
| 2834 | showprogress: show progress status for large data.
|
---|
| 2835 | default is True.
|
---|
| 2836 | minnrow: minimum number of input spectra to show.
|
---|
| 2837 | default is 1000.
|
---|
| 2838 | outlog: Output the coefficients of the best-fit
|
---|
| 2839 | function to logger (default is False)
|
---|
| 2840 | blfile: Name of a text file in which the best-fit
|
---|
| 2841 | parameter values to be written
|
---|
| 2842 | (default is "": no file/logger output)
|
---|
[1846] | 2843 |
|
---|
[1907] | 2844 | Example:
|
---|
[2012] | 2845 | bscan = scan.auto_cspline_baseline(npiece=3, insitu=False)
|
---|
[2081] | 2846 |
|
---|
| 2847 | Note:
|
---|
| 2848 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 2849 | based on specunit of 'channel'.
|
---|
[2012] | 2850 | """
|
---|
[1846] | 2851 |
|
---|
[2186] | 2852 | try:
|
---|
| 2853 | varlist = vars()
|
---|
[2012] | 2854 |
|
---|
[2186] | 2855 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2856 | if insitu:
|
---|
| 2857 | workscan = self
|
---|
[1391] | 2858 | else:
|
---|
[2186] | 2859 | workscan = self.copy()
|
---|
| 2860 |
|
---|
[2410] | 2861 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
| 2862 | if mask is None: mask = []
|
---|
[2186] | 2863 | if npiece is None: npiece = 2
|
---|
| 2864 | if clipthresh is None: clipthresh = 3.0
|
---|
| 2865 | if clipniter is None: clipniter = 0
|
---|
| 2866 | if edge is None: edge = (0, 0)
|
---|
| 2867 | if threshold is None: threshold = 3
|
---|
| 2868 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 2869 | if plot is None: plot = False
|
---|
| 2870 | if getresidual is None: getresidual = True
|
---|
[2189] | 2871 | if showprogress is None: showprogress = True
|
---|
| 2872 | if minnrow is None: minnrow = 1000
|
---|
[2186] | 2873 | if outlog is None: outlog = False
|
---|
| 2874 | if blfile is None: blfile = ''
|
---|
[1819] | 2875 |
|
---|
[2277] | 2876 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
[2269] | 2877 | workscan._auto_cspline_baseline(mask, npiece, clipthresh,
|
---|
| 2878 | clipniter,
|
---|
| 2879 | normalise_edge_param(edge),
|
---|
| 2880 | threshold,
|
---|
| 2881 | chan_avg_limit, getresidual,
|
---|
| 2882 | pack_progress_params(showprogress,
|
---|
| 2883 | minnrow),
|
---|
| 2884 | outlog, blfile)
|
---|
[2012] | 2885 | workscan._add_history("auto_cspline_baseline", varlist)
|
---|
[1907] | 2886 |
|
---|
[1856] | 2887 | if insitu:
|
---|
| 2888 | self._assign(workscan)
|
---|
| 2889 | else:
|
---|
| 2890 | return workscan
|
---|
[2012] | 2891 |
|
---|
| 2892 | except RuntimeError, e:
|
---|
[2186] | 2893 | raise_fitting_failure_exception(e)
|
---|
[513] | 2894 |
|
---|
[1931] | 2895 | @asaplog_post_dec
|
---|
[2269] | 2896 | def poly_baseline(self, mask=None, order=None, insitu=None, plot=None,
|
---|
| 2897 | getresidual=None, showprogress=None, minnrow=None,
|
---|
| 2898 | outlog=None, blfile=None):
|
---|
[1907] | 2899 | """\
|
---|
| 2900 | Return a scan which has been baselined (all rows) by a polynomial.
|
---|
| 2901 | Parameters:
|
---|
[2189] | 2902 | insitu: if False a new scantable is returned.
|
---|
| 2903 | Otherwise, the scaling is done in-situ
|
---|
| 2904 | The default is taken from .asaprc (False)
|
---|
| 2905 | mask: an optional mask
|
---|
| 2906 | order: the order of the polynomial (default is 0)
|
---|
| 2907 | plot: plot the fit and the residual. In this each
|
---|
| 2908 | indivual fit has to be approved, by typing 'y'
|
---|
| 2909 | or 'n'
|
---|
| 2910 | getresidual: if False, returns best-fit values instead of
|
---|
| 2911 | residual. (default is True)
|
---|
| 2912 | showprogress: show progress status for large data.
|
---|
| 2913 | default is True.
|
---|
| 2914 | minnrow: minimum number of input spectra to show.
|
---|
| 2915 | default is 1000.
|
---|
| 2916 | outlog: Output the coefficients of the best-fit
|
---|
| 2917 | function to logger (default is False)
|
---|
| 2918 | blfile: Name of a text file in which the best-fit
|
---|
| 2919 | parameter values to be written
|
---|
| 2920 | (default is "": no file/logger output)
|
---|
[2012] | 2921 |
|
---|
[1907] | 2922 | Example:
|
---|
| 2923 | # return a scan baselined by a third order polynomial,
|
---|
| 2924 | # not using a mask
|
---|
| 2925 | bscan = scan.poly_baseline(order=3)
|
---|
| 2926 | """
|
---|
[1931] | 2927 |
|
---|
[2186] | 2928 | try:
|
---|
| 2929 | varlist = vars()
|
---|
[1931] | 2930 |
|
---|
[2269] | 2931 | if insitu is None:
|
---|
| 2932 | insitu = rcParams["insitu"]
|
---|
[2186] | 2933 | if insitu:
|
---|
| 2934 | workscan = self
|
---|
| 2935 | else:
|
---|
| 2936 | workscan = self.copy()
|
---|
[1907] | 2937 |
|
---|
[2410] | 2938 | #if mask is None: mask = [True for i in \
|
---|
| 2939 | # xrange(workscan.nchan())]
|
---|
| 2940 | if mask is None: mask = []
|
---|
[2189] | 2941 | if order is None: order = 0
|
---|
| 2942 | if plot is None: plot = False
|
---|
| 2943 | if getresidual is None: getresidual = True
|
---|
| 2944 | if showprogress is None: showprogress = True
|
---|
| 2945 | if minnrow is None: minnrow = 1000
|
---|
| 2946 | if outlog is None: outlog = False
|
---|
| 2947 | if blfile is None: blfile = ""
|
---|
[1907] | 2948 |
|
---|
[2012] | 2949 | if plot:
|
---|
[2269] | 2950 | outblfile = (blfile != "") and \
|
---|
[2349] | 2951 | os.path.exists(os.path.expanduser(
|
---|
| 2952 | os.path.expandvars(blfile))
|
---|
| 2953 | )
|
---|
[2269] | 2954 | if outblfile:
|
---|
| 2955 | blf = open(blfile, "a")
|
---|
[2012] | 2956 |
|
---|
[1907] | 2957 | f = fitter()
|
---|
| 2958 | f.set_function(lpoly=order)
|
---|
[2186] | 2959 |
|
---|
| 2960 | rows = xrange(workscan.nrow())
|
---|
| 2961 | #if len(rows) > 0: workscan._init_blinfo()
|
---|
| 2962 |
|
---|
[1907] | 2963 | for r in rows:
|
---|
| 2964 | f.x = workscan._getabcissa(r)
|
---|
| 2965 | f.y = workscan._getspectrum(r)
|
---|
[2541] | 2966 | if mask:
|
---|
| 2967 | f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
|
---|
| 2968 | else: # mask=None
|
---|
| 2969 | f.mask = workscan._getmask(r)
|
---|
| 2970 |
|
---|
[1907] | 2971 | f.data = None
|
---|
| 2972 | f.fit()
|
---|
[2541] | 2973 |
|
---|
[1907] | 2974 | f.plot(residual=True)
|
---|
| 2975 | accept_fit = raw_input("Accept fit ( [y]/n ): ")
|
---|
| 2976 | if accept_fit.upper() == "N":
|
---|
[2012] | 2977 | #workscan._append_blinfo(None, None, None)
|
---|
[1907] | 2978 | continue
|
---|
[2012] | 2979 |
|
---|
| 2980 | blpars = f.get_parameters()
|
---|
| 2981 | masklist = workscan.get_masklist(f.mask, row=r, silent=True)
|
---|
| 2982 | #workscan._append_blinfo(blpars, masklist, f.mask)
|
---|
[2269] | 2983 | workscan._setspectrum((f.fitter.getresidual()
|
---|
| 2984 | if getresidual else f.fitter.getfit()), r)
|
---|
[1907] | 2985 |
|
---|
[2012] | 2986 | if outblfile:
|
---|
| 2987 | rms = workscan.get_rms(f.mask, r)
|
---|
[2269] | 2988 | dataout = \
|
---|
| 2989 | workscan.format_blparams_row(blpars["params"],
|
---|
| 2990 | blpars["fixed"],
|
---|
| 2991 | rms, str(masklist),
|
---|
| 2992 | r, True)
|
---|
[2012] | 2993 | blf.write(dataout)
|
---|
| 2994 |
|
---|
[1907] | 2995 | f._p.unmap()
|
---|
| 2996 | f._p = None
|
---|
[2012] | 2997 |
|
---|
[2349] | 2998 | if outblfile:
|
---|
| 2999 | blf.close()
|
---|
[1907] | 3000 | else:
|
---|
[2269] | 3001 | workscan._poly_baseline(mask, order, getresidual,
|
---|
| 3002 | pack_progress_params(showprogress,
|
---|
| 3003 | minnrow),
|
---|
| 3004 | outlog, blfile)
|
---|
[1907] | 3005 |
|
---|
| 3006 | workscan._add_history("poly_baseline", varlist)
|
---|
| 3007 |
|
---|
| 3008 | if insitu:
|
---|
| 3009 | self._assign(workscan)
|
---|
| 3010 | else:
|
---|
| 3011 | return workscan
|
---|
| 3012 |
|
---|
[1919] | 3013 | except RuntimeError, e:
|
---|
[2186] | 3014 | raise_fitting_failure_exception(e)
|
---|
[1907] | 3015 |
|
---|
[2186] | 3016 | @asaplog_post_dec
|
---|
[2269] | 3017 | def auto_poly_baseline(self, mask=None, order=None, edge=None,
|
---|
| 3018 | threshold=None, chan_avg_limit=None,
|
---|
| 3019 | plot=None, insitu=None,
|
---|
| 3020 | getresidual=None, showprogress=None,
|
---|
| 3021 | minnrow=None, outlog=None, blfile=None):
|
---|
[1846] | 3022 | """\
|
---|
[1931] | 3023 | Return a scan which has been baselined (all rows) by a polynomial.
|
---|
[880] | 3024 | Spectral lines are detected first using linefinder and masked out
|
---|
| 3025 | to avoid them affecting the baseline solution.
|
---|
| 3026 |
|
---|
| 3027 | Parameters:
|
---|
[2189] | 3028 | insitu: if False a new scantable is returned.
|
---|
| 3029 | Otherwise, the scaling is done in-situ
|
---|
| 3030 | The default is taken from .asaprc (False)
|
---|
| 3031 | mask: an optional mask retreived from scantable
|
---|
| 3032 | order: the order of the polynomial (default is 0)
|
---|
| 3033 | edge: an optional number of channel to drop at
|
---|
| 3034 | the edge of spectrum. If only one value is
|
---|
| 3035 | specified, the same number will be dropped
|
---|
| 3036 | from both sides of the spectrum. Default
|
---|
| 3037 | is to keep all channels. Nested tuples
|
---|
| 3038 | represent individual edge selection for
|
---|
| 3039 | different IFs (a number of spectral channels
|
---|
| 3040 | can be different)
|
---|
| 3041 | threshold: the threshold used by line finder. It is
|
---|
| 3042 | better to keep it large as only strong lines
|
---|
| 3043 | affect the baseline solution.
|
---|
| 3044 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 3045 | channels to average during the search of
|
---|
| 3046 | weak and broad lines. The default is no
|
---|
| 3047 | averaging (and no search for weak lines).
|
---|
| 3048 | If such lines can affect the fitted baseline
|
---|
| 3049 | (e.g. a high order polynomial is fitted),
|
---|
| 3050 | increase this parameter (usually values up
|
---|
| 3051 | to 8 are reasonable). Most users of this
|
---|
| 3052 | method should find the default value sufficient.
|
---|
| 3053 | plot: plot the fit and the residual. In this each
|
---|
| 3054 | indivual fit has to be approved, by typing 'y'
|
---|
| 3055 | or 'n'
|
---|
| 3056 | getresidual: if False, returns best-fit values instead of
|
---|
| 3057 | residual. (default is True)
|
---|
| 3058 | showprogress: show progress status for large data.
|
---|
| 3059 | default is True.
|
---|
| 3060 | minnrow: minimum number of input spectra to show.
|
---|
| 3061 | default is 1000.
|
---|
| 3062 | outlog: Output the coefficients of the best-fit
|
---|
| 3063 | function to logger (default is False)
|
---|
| 3064 | blfile: Name of a text file in which the best-fit
|
---|
| 3065 | parameter values to be written
|
---|
| 3066 | (default is "": no file/logger output)
|
---|
[1846] | 3067 |
|
---|
[2012] | 3068 | Example:
|
---|
| 3069 | bscan = scan.auto_poly_baseline(order=7, insitu=False)
|
---|
| 3070 | """
|
---|
[880] | 3071 |
|
---|
[2186] | 3072 | try:
|
---|
| 3073 | varlist = vars()
|
---|
[1846] | 3074 |
|
---|
[2269] | 3075 | if insitu is None:
|
---|
| 3076 | insitu = rcParams['insitu']
|
---|
[2186] | 3077 | if insitu:
|
---|
| 3078 | workscan = self
|
---|
| 3079 | else:
|
---|
| 3080 | workscan = self.copy()
|
---|
[1846] | 3081 |
|
---|
[2410] | 3082 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
| 3083 | if mask is None: mask = []
|
---|
[2186] | 3084 | if order is None: order = 0
|
---|
| 3085 | if edge is None: edge = (0, 0)
|
---|
| 3086 | if threshold is None: threshold = 3
|
---|
| 3087 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 3088 | if plot is None: plot = False
|
---|
| 3089 | if getresidual is None: getresidual = True
|
---|
[2189] | 3090 | if showprogress is None: showprogress = True
|
---|
| 3091 | if minnrow is None: minnrow = 1000
|
---|
[2186] | 3092 | if outlog is None: outlog = False
|
---|
| 3093 | if blfile is None: blfile = ''
|
---|
[1846] | 3094 |
|
---|
[2186] | 3095 | edge = normalise_edge_param(edge)
|
---|
[880] | 3096 |
|
---|
[2012] | 3097 | if plot:
|
---|
[2269] | 3098 | outblfile = (blfile != "") and \
|
---|
| 3099 | os.path.exists(os.path.expanduser(os.path.expandvars(blfile)))
|
---|
[2012] | 3100 | if outblfile: blf = open(blfile, "a")
|
---|
| 3101 |
|
---|
[2186] | 3102 | from asap.asaplinefind import linefinder
|
---|
[2012] | 3103 | fl = linefinder()
|
---|
[2269] | 3104 | fl.set_options(threshold=threshold, avg_limit=chan_avg_limit)
|
---|
[2012] | 3105 | fl.set_scan(workscan)
|
---|
[2186] | 3106 |
|
---|
[2012] | 3107 | f = fitter()
|
---|
| 3108 | f.set_function(lpoly=order)
|
---|
[880] | 3109 |
|
---|
[2186] | 3110 | rows = xrange(workscan.nrow())
|
---|
| 3111 | #if len(rows) > 0: workscan._init_blinfo()
|
---|
| 3112 |
|
---|
[2012] | 3113 | for r in rows:
|
---|
[2186] | 3114 | idx = 2*workscan.getif(r)
|
---|
[2541] | 3115 | if mask:
|
---|
| 3116 | msk = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
|
---|
| 3117 | else: # mask=None
|
---|
| 3118 | msk = workscan._getmask(r)
|
---|
| 3119 | fl.find_lines(r, msk, edge[idx:idx+2])
|
---|
[907] | 3120 |
|
---|
[2012] | 3121 | f.x = workscan._getabcissa(r)
|
---|
| 3122 | f.y = workscan._getspectrum(r)
|
---|
| 3123 | f.mask = fl.get_mask()
|
---|
| 3124 | f.data = None
|
---|
| 3125 | f.fit()
|
---|
| 3126 |
|
---|
| 3127 | f.plot(residual=True)
|
---|
| 3128 | accept_fit = raw_input("Accept fit ( [y]/n ): ")
|
---|
| 3129 | if accept_fit.upper() == "N":
|
---|
| 3130 | #workscan._append_blinfo(None, None, None)
|
---|
| 3131 | continue
|
---|
| 3132 |
|
---|
| 3133 | blpars = f.get_parameters()
|
---|
| 3134 | masklist = workscan.get_masklist(f.mask, row=r, silent=True)
|
---|
| 3135 | #workscan._append_blinfo(blpars, masklist, f.mask)
|
---|
[2349] | 3136 | workscan._setspectrum(
|
---|
| 3137 | (f.fitter.getresidual() if getresidual
|
---|
| 3138 | else f.fitter.getfit()), r
|
---|
| 3139 | )
|
---|
[2012] | 3140 |
|
---|
| 3141 | if outblfile:
|
---|
| 3142 | rms = workscan.get_rms(f.mask, r)
|
---|
[2269] | 3143 | dataout = \
|
---|
| 3144 | workscan.format_blparams_row(blpars["params"],
|
---|
| 3145 | blpars["fixed"],
|
---|
| 3146 | rms, str(masklist),
|
---|
| 3147 | r, True)
|
---|
[2012] | 3148 | blf.write(dataout)
|
---|
| 3149 |
|
---|
| 3150 | f._p.unmap()
|
---|
| 3151 | f._p = None
|
---|
| 3152 |
|
---|
| 3153 | if outblfile: blf.close()
|
---|
| 3154 | else:
|
---|
[2269] | 3155 | workscan._auto_poly_baseline(mask, order, edge, threshold,
|
---|
| 3156 | chan_avg_limit, getresidual,
|
---|
| 3157 | pack_progress_params(showprogress,
|
---|
| 3158 | minnrow),
|
---|
| 3159 | outlog, blfile)
|
---|
[2012] | 3160 |
|
---|
| 3161 | workscan._add_history("auto_poly_baseline", varlist)
|
---|
| 3162 |
|
---|
| 3163 | if insitu:
|
---|
| 3164 | self._assign(workscan)
|
---|
| 3165 | else:
|
---|
| 3166 | return workscan
|
---|
| 3167 |
|
---|
| 3168 | except RuntimeError, e:
|
---|
[2186] | 3169 | raise_fitting_failure_exception(e)
|
---|
[2012] | 3170 |
|
---|
| 3171 | def _init_blinfo(self):
|
---|
| 3172 | """\
|
---|
| 3173 | Initialise the following three auxiliary members:
|
---|
| 3174 | blpars : parameters of the best-fit baseline,
|
---|
| 3175 | masklists : mask data (edge positions of masked channels) and
|
---|
| 3176 | actualmask : mask data (in boolean list),
|
---|
| 3177 | to keep for use later (including output to logger/text files).
|
---|
| 3178 | Used by poly_baseline() and auto_poly_baseline() in case of
|
---|
| 3179 | 'plot=True'.
|
---|
| 3180 | """
|
---|
| 3181 | self.blpars = []
|
---|
| 3182 | self.masklists = []
|
---|
| 3183 | self.actualmask = []
|
---|
| 3184 | return
|
---|
[880] | 3185 |
|
---|
[2012] | 3186 | def _append_blinfo(self, data_blpars, data_masklists, data_actualmask):
|
---|
| 3187 | """\
|
---|
| 3188 | Append baseline-fitting related info to blpars, masklist and
|
---|
| 3189 | actualmask.
|
---|
| 3190 | """
|
---|
| 3191 | self.blpars.append(data_blpars)
|
---|
| 3192 | self.masklists.append(data_masklists)
|
---|
| 3193 | self.actualmask.append(data_actualmask)
|
---|
| 3194 | return
|
---|
| 3195 |
|
---|
[1862] | 3196 | @asaplog_post_dec
|
---|
[914] | 3197 | def rotate_linpolphase(self, angle):
|
---|
[1846] | 3198 | """\
|
---|
[914] | 3199 | Rotate the phase of the complex polarization O=Q+iU correlation.
|
---|
| 3200 | This is always done in situ in the raw data. So if you call this
|
---|
| 3201 | function more than once then each call rotates the phase further.
|
---|
[1846] | 3202 |
|
---|
[914] | 3203 | Parameters:
|
---|
[1846] | 3204 |
|
---|
[914] | 3205 | angle: The angle (degrees) to rotate (add) by.
|
---|
[1846] | 3206 |
|
---|
| 3207 | Example::
|
---|
| 3208 |
|
---|
[914] | 3209 | scan.rotate_linpolphase(2.3)
|
---|
[1846] | 3210 |
|
---|
[914] | 3211 | """
|
---|
| 3212 | varlist = vars()
|
---|
[936] | 3213 | self._math._rotate_linpolphase(self, angle)
|
---|
[914] | 3214 | self._add_history("rotate_linpolphase", varlist)
|
---|
| 3215 | return
|
---|
[710] | 3216 |
|
---|
[1862] | 3217 | @asaplog_post_dec
|
---|
[914] | 3218 | def rotate_xyphase(self, angle):
|
---|
[1846] | 3219 | """\
|
---|
[914] | 3220 | Rotate the phase of the XY correlation. This is always done in situ
|
---|
| 3221 | in the data. So if you call this function more than once
|
---|
| 3222 | then each call rotates the phase further.
|
---|
[1846] | 3223 |
|
---|
[914] | 3224 | Parameters:
|
---|
[1846] | 3225 |
|
---|
[914] | 3226 | angle: The angle (degrees) to rotate (add) by.
|
---|
[1846] | 3227 |
|
---|
| 3228 | Example::
|
---|
| 3229 |
|
---|
[914] | 3230 | scan.rotate_xyphase(2.3)
|
---|
[1846] | 3231 |
|
---|
[914] | 3232 | """
|
---|
| 3233 | varlist = vars()
|
---|
[936] | 3234 | self._math._rotate_xyphase(self, angle)
|
---|
[914] | 3235 | self._add_history("rotate_xyphase", varlist)
|
---|
| 3236 | return
|
---|
| 3237 |
|
---|
[1862] | 3238 | @asaplog_post_dec
|
---|
[914] | 3239 | def swap_linears(self):
|
---|
[1846] | 3240 | """\
|
---|
[1573] | 3241 | Swap the linear polarisations XX and YY, or better the first two
|
---|
[1348] | 3242 | polarisations as this also works for ciculars.
|
---|
[914] | 3243 | """
|
---|
| 3244 | varlist = vars()
|
---|
[936] | 3245 | self._math._swap_linears(self)
|
---|
[914] | 3246 | self._add_history("swap_linears", varlist)
|
---|
| 3247 | return
|
---|
| 3248 |
|
---|
[1862] | 3249 | @asaplog_post_dec
|
---|
[914] | 3250 | def invert_phase(self):
|
---|
[1846] | 3251 | """\
|
---|
[914] | 3252 | Invert the phase of the complex polarisation
|
---|
| 3253 | """
|
---|
| 3254 | varlist = vars()
|
---|
[936] | 3255 | self._math._invert_phase(self)
|
---|
[914] | 3256 | self._add_history("invert_phase", varlist)
|
---|
| 3257 | return
|
---|
| 3258 |
|
---|
[1862] | 3259 | @asaplog_post_dec
|
---|
[876] | 3260 | def add(self, offset, insitu=None):
|
---|
[1846] | 3261 | """\
|
---|
[513] | 3262 | Return a scan where all spectra have the offset added
|
---|
[1846] | 3263 |
|
---|
[513] | 3264 | Parameters:
|
---|
[1846] | 3265 |
|
---|
[513] | 3266 | offset: the offset
|
---|
[1855] | 3267 |
|
---|
[513] | 3268 | insitu: if False a new scantable is returned.
|
---|
| 3269 | Otherwise, the scaling is done in-situ
|
---|
| 3270 | The default is taken from .asaprc (False)
|
---|
[1846] | 3271 |
|
---|
[513] | 3272 | """
|
---|
| 3273 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 3274 | self._math._setinsitu(insitu)
|
---|
[513] | 3275 | varlist = vars()
|
---|
[876] | 3276 | s = scantable(self._math._unaryop(self, offset, "ADD", False))
|
---|
[1118] | 3277 | s._add_history("add", varlist)
|
---|
[876] | 3278 | if insitu:
|
---|
| 3279 | self._assign(s)
|
---|
| 3280 | else:
|
---|
[513] | 3281 | return s
|
---|
| 3282 |
|
---|
[1862] | 3283 | @asaplog_post_dec
|
---|
[1308] | 3284 | def scale(self, factor, tsys=True, insitu=None):
|
---|
[1846] | 3285 | """\
|
---|
| 3286 |
|
---|
[1938] | 3287 | Return a scan where all spectra are scaled by the given 'factor'
|
---|
[1846] | 3288 |
|
---|
[513] | 3289 | Parameters:
|
---|
[1846] | 3290 |
|
---|
[1819] | 3291 | factor: the scaling factor (float or 1D float list)
|
---|
[1855] | 3292 |
|
---|
[513] | 3293 | insitu: if False a new scantable is returned.
|
---|
| 3294 | Otherwise, the scaling is done in-situ
|
---|
| 3295 | The default is taken from .asaprc (False)
|
---|
[1855] | 3296 |
|
---|
[513] | 3297 | tsys: if True (default) then apply the operation to Tsys
|
---|
| 3298 | as well as the data
|
---|
[1846] | 3299 |
|
---|
[513] | 3300 | """
|
---|
| 3301 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 3302 | self._math._setinsitu(insitu)
|
---|
[513] | 3303 | varlist = vars()
|
---|
[1819] | 3304 | s = None
|
---|
| 3305 | import numpy
|
---|
| 3306 | if isinstance(factor, list) or isinstance(factor, numpy.ndarray):
|
---|
[2320] | 3307 | if isinstance(factor[0], list) or isinstance(factor[0],
|
---|
| 3308 | numpy.ndarray):
|
---|
[1819] | 3309 | from asapmath import _array2dOp
|
---|
[2320] | 3310 | s = _array2dOp( self, factor, "MUL", tsys, insitu )
|
---|
[1819] | 3311 | else:
|
---|
[2320] | 3312 | s = scantable( self._math._arrayop( self, factor,
|
---|
| 3313 | "MUL", tsys ) )
|
---|
[1819] | 3314 | else:
|
---|
[2320] | 3315 | s = scantable(self._math._unaryop(self, factor, "MUL", tsys))
|
---|
[1118] | 3316 | s._add_history("scale", varlist)
|
---|
[876] | 3317 | if insitu:
|
---|
| 3318 | self._assign(s)
|
---|
| 3319 | else:
|
---|
[513] | 3320 | return s
|
---|
| 3321 |
|
---|
[2349] | 3322 | @preserve_selection
|
---|
| 3323 | def set_sourcetype(self, match, matchtype="pattern",
|
---|
[1504] | 3324 | sourcetype="reference"):
|
---|
[1846] | 3325 | """\
|
---|
[1502] | 3326 | Set the type of the source to be an source or reference scan
|
---|
[1846] | 3327 | using the provided pattern.
|
---|
| 3328 |
|
---|
[1502] | 3329 | Parameters:
|
---|
[1846] | 3330 |
|
---|
[1504] | 3331 | match: a Unix style pattern, regular expression or selector
|
---|
[1855] | 3332 |
|
---|
[1504] | 3333 | matchtype: 'pattern' (default) UNIX style pattern or
|
---|
| 3334 | 'regex' regular expression
|
---|
[1855] | 3335 |
|
---|
[1502] | 3336 | sourcetype: the type of the source to use (source/reference)
|
---|
[1846] | 3337 |
|
---|
[1502] | 3338 | """
|
---|
| 3339 | varlist = vars()
|
---|
| 3340 | stype = -1
|
---|
[2480] | 3341 | if sourcetype.lower().startswith("r") or sourcetype.lower() == "off":
|
---|
[1502] | 3342 | stype = 1
|
---|
[2480] | 3343 | elif sourcetype.lower().startswith("s") or sourcetype.lower() == "on":
|
---|
[1502] | 3344 | stype = 0
|
---|
[1504] | 3345 | else:
|
---|
[2480] | 3346 | raise ValueError("Illegal sourcetype use s(ource)/on or r(eference)/off")
|
---|
[1504] | 3347 | if matchtype.lower().startswith("p"):
|
---|
| 3348 | matchtype = "pattern"
|
---|
| 3349 | elif matchtype.lower().startswith("r"):
|
---|
| 3350 | matchtype = "regex"
|
---|
| 3351 | else:
|
---|
| 3352 | raise ValueError("Illegal matchtype, use p(attern) or r(egex)")
|
---|
[1502] | 3353 | sel = selector()
|
---|
| 3354 | if isinstance(match, selector):
|
---|
| 3355 | sel = match
|
---|
| 3356 | else:
|
---|
[2480] | 3357 | sel.set_query("SRCNAME=%s('%s')" % (matchtype, match))
|
---|
| 3358 | self.set_selection(sel)
|
---|
[1502] | 3359 | self._setsourcetype(stype)
|
---|
[1573] | 3360 | self._add_history("set_sourcetype", varlist)
|
---|
[1502] | 3361 |
|
---|
[1862] | 3362 | @asaplog_post_dec
|
---|
[1857] | 3363 | @preserve_selection
|
---|
[1819] | 3364 | def auto_quotient(self, preserve=True, mode='paired', verify=False):
|
---|
[1846] | 3365 | """\
|
---|
[670] | 3366 | This function allows to build quotients automatically.
|
---|
[1819] | 3367 | It assumes the observation to have the same number of
|
---|
[670] | 3368 | "ons" and "offs"
|
---|
[1846] | 3369 |
|
---|
[670] | 3370 | Parameters:
|
---|
[1846] | 3371 |
|
---|
[710] | 3372 | preserve: you can preserve (default) the continuum or
|
---|
| 3373 | remove it. The equations used are
|
---|
[1857] | 3374 |
|
---|
[670] | 3375 | preserve: Output = Toff * (on/off) - Toff
|
---|
[1857] | 3376 |
|
---|
[1070] | 3377 | remove: Output = Toff * (on/off) - Ton
|
---|
[1855] | 3378 |
|
---|
[1573] | 3379 | mode: the on/off detection mode
|
---|
[1348] | 3380 | 'paired' (default)
|
---|
| 3381 | identifies 'off' scans by the
|
---|
| 3382 | trailing '_R' (Mopra/Parkes) or
|
---|
| 3383 | '_e'/'_w' (Tid) and matches
|
---|
| 3384 | on/off pairs from the observing pattern
|
---|
[1502] | 3385 | 'time'
|
---|
| 3386 | finds the closest off in time
|
---|
[1348] | 3387 |
|
---|
[1857] | 3388 | .. todo:: verify argument is not implemented
|
---|
| 3389 |
|
---|
[670] | 3390 | """
|
---|
[1857] | 3391 | varlist = vars()
|
---|
[1348] | 3392 | modes = ["time", "paired"]
|
---|
[670] | 3393 | if not mode in modes:
|
---|
[876] | 3394 | msg = "please provide valid mode. Valid modes are %s" % (modes)
|
---|
| 3395 | raise ValueError(msg)
|
---|
[1348] | 3396 | s = None
|
---|
| 3397 | if mode.lower() == "paired":
|
---|
[1857] | 3398 | sel = self.get_selection()
|
---|
[1875] | 3399 | sel.set_query("SRCTYPE==psoff")
|
---|
[1356] | 3400 | self.set_selection(sel)
|
---|
[1348] | 3401 | offs = self.copy()
|
---|
[1875] | 3402 | sel.set_query("SRCTYPE==pson")
|
---|
[1356] | 3403 | self.set_selection(sel)
|
---|
[1348] | 3404 | ons = self.copy()
|
---|
| 3405 | s = scantable(self._math._quotient(ons, offs, preserve))
|
---|
| 3406 | elif mode.lower() == "time":
|
---|
| 3407 | s = scantable(self._math._auto_quotient(self, mode, preserve))
|
---|
[1118] | 3408 | s._add_history("auto_quotient", varlist)
|
---|
[876] | 3409 | return s
|
---|
[710] | 3410 |
|
---|
[1862] | 3411 | @asaplog_post_dec
|
---|
[1145] | 3412 | def mx_quotient(self, mask = None, weight='median', preserve=True):
|
---|
[1846] | 3413 | """\
|
---|
[1143] | 3414 | Form a quotient using "off" beams when observing in "MX" mode.
|
---|
[1846] | 3415 |
|
---|
[1143] | 3416 | Parameters:
|
---|
[1846] | 3417 |
|
---|
[1145] | 3418 | mask: an optional mask to be used when weight == 'stddev'
|
---|
[1855] | 3419 |
|
---|
[1143] | 3420 | weight: How to average the off beams. Default is 'median'.
|
---|
[1855] | 3421 |
|
---|
[1145] | 3422 | preserve: you can preserve (default) the continuum or
|
---|
[1855] | 3423 | remove it. The equations used are:
|
---|
[1846] | 3424 |
|
---|
[1855] | 3425 | preserve: Output = Toff * (on/off) - Toff
|
---|
| 3426 |
|
---|
| 3427 | remove: Output = Toff * (on/off) - Ton
|
---|
| 3428 |
|
---|
[1217] | 3429 | """
|
---|
[1593] | 3430 | mask = mask or ()
|
---|
[1141] | 3431 | varlist = vars()
|
---|
| 3432 | on = scantable(self._math._mx_extract(self, 'on'))
|
---|
[1143] | 3433 | preoff = scantable(self._math._mx_extract(self, 'off'))
|
---|
| 3434 | off = preoff.average_time(mask=mask, weight=weight, scanav=False)
|
---|
[1217] | 3435 | from asapmath import quotient
|
---|
[1145] | 3436 | q = quotient(on, off, preserve)
|
---|
[1143] | 3437 | q._add_history("mx_quotient", varlist)
|
---|
[1217] | 3438 | return q
|
---|
[513] | 3439 |
|
---|
[1862] | 3440 | @asaplog_post_dec
|
---|
[718] | 3441 | def freq_switch(self, insitu=None):
|
---|
[1846] | 3442 | """\
|
---|
[718] | 3443 | Apply frequency switching to the data.
|
---|
[1846] | 3444 |
|
---|
[718] | 3445 | Parameters:
|
---|
[1846] | 3446 |
|
---|
[718] | 3447 | insitu: if False a new scantable is returned.
|
---|
| 3448 | Otherwise, the swictching is done in-situ
|
---|
| 3449 | The default is taken from .asaprc (False)
|
---|
[1846] | 3450 |
|
---|
[718] | 3451 | """
|
---|
| 3452 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 3453 | self._math._setinsitu(insitu)
|
---|
[718] | 3454 | varlist = vars()
|
---|
[876] | 3455 | s = scantable(self._math._freqswitch(self))
|
---|
[1118] | 3456 | s._add_history("freq_switch", varlist)
|
---|
[1856] | 3457 | if insitu:
|
---|
| 3458 | self._assign(s)
|
---|
| 3459 | else:
|
---|
| 3460 | return s
|
---|
[718] | 3461 |
|
---|
[1862] | 3462 | @asaplog_post_dec
|
---|
[780] | 3463 | def recalc_azel(self):
|
---|
[1846] | 3464 | """Recalculate the azimuth and elevation for each position."""
|
---|
[780] | 3465 | varlist = vars()
|
---|
[876] | 3466 | self._recalcazel()
|
---|
[780] | 3467 | self._add_history("recalc_azel", varlist)
|
---|
| 3468 | return
|
---|
| 3469 |
|
---|
[1862] | 3470 | @asaplog_post_dec
|
---|
[513] | 3471 | def __add__(self, other):
|
---|
| 3472 | varlist = vars()
|
---|
| 3473 | s = None
|
---|
| 3474 | if isinstance(other, scantable):
|
---|
[1573] | 3475 | s = scantable(self._math._binaryop(self, other, "ADD"))
|
---|
[513] | 3476 | elif isinstance(other, float):
|
---|
[876] | 3477 | s = scantable(self._math._unaryop(self, other, "ADD", False))
|
---|
[2144] | 3478 | elif isinstance(other, list) or isinstance(other, numpy.ndarray):
|
---|
[2349] | 3479 | if isinstance(other[0], list) \
|
---|
| 3480 | or isinstance(other[0], numpy.ndarray):
|
---|
[2144] | 3481 | from asapmath import _array2dOp
|
---|
| 3482 | s = _array2dOp( self.copy(), other, "ADD", False )
|
---|
| 3483 | else:
|
---|
[2349] | 3484 | s = scantable( self._math._arrayop( self.copy(), other,
|
---|
| 3485 | "ADD", False ) )
|
---|
[513] | 3486 | else:
|
---|
[718] | 3487 | raise TypeError("Other input is not a scantable or float value")
|
---|
[513] | 3488 | s._add_history("operator +", varlist)
|
---|
| 3489 | return s
|
---|
| 3490 |
|
---|
[1862] | 3491 | @asaplog_post_dec
|
---|
[513] | 3492 | def __sub__(self, other):
|
---|
| 3493 | """
|
---|
| 3494 | implicit on all axes and on Tsys
|
---|
| 3495 | """
|
---|
| 3496 | varlist = vars()
|
---|
| 3497 | s = None
|
---|
| 3498 | if isinstance(other, scantable):
|
---|
[1588] | 3499 | s = scantable(self._math._binaryop(self, other, "SUB"))
|
---|
[513] | 3500 | elif isinstance(other, float):
|
---|
[876] | 3501 | s = scantable(self._math._unaryop(self, other, "SUB", False))
|
---|
[2144] | 3502 | elif isinstance(other, list) or isinstance(other, numpy.ndarray):
|
---|
[2349] | 3503 | if isinstance(other[0], list) \
|
---|
| 3504 | or isinstance(other[0], numpy.ndarray):
|
---|
[2144] | 3505 | from asapmath import _array2dOp
|
---|
| 3506 | s = _array2dOp( self.copy(), other, "SUB", False )
|
---|
| 3507 | else:
|
---|
[2349] | 3508 | s = scantable( self._math._arrayop( self.copy(), other,
|
---|
| 3509 | "SUB", False ) )
|
---|
[513] | 3510 | else:
|
---|
[718] | 3511 | raise TypeError("Other input is not a scantable or float value")
|
---|
[513] | 3512 | s._add_history("operator -", varlist)
|
---|
| 3513 | return s
|
---|
[710] | 3514 |
|
---|
[1862] | 3515 | @asaplog_post_dec
|
---|
[513] | 3516 | def __mul__(self, other):
|
---|
| 3517 | """
|
---|
| 3518 | implicit on all axes and on Tsys
|
---|
| 3519 | """
|
---|
| 3520 | varlist = vars()
|
---|
| 3521 | s = None
|
---|
| 3522 | if isinstance(other, scantable):
|
---|
[1588] | 3523 | s = scantable(self._math._binaryop(self, other, "MUL"))
|
---|
[513] | 3524 | elif isinstance(other, float):
|
---|
[876] | 3525 | s = scantable(self._math._unaryop(self, other, "MUL", False))
|
---|
[2144] | 3526 | elif isinstance(other, list) or isinstance(other, numpy.ndarray):
|
---|
[2349] | 3527 | if isinstance(other[0], list) \
|
---|
| 3528 | or isinstance(other[0], numpy.ndarray):
|
---|
[2144] | 3529 | from asapmath import _array2dOp
|
---|
| 3530 | s = _array2dOp( self.copy(), other, "MUL", False )
|
---|
| 3531 | else:
|
---|
[2349] | 3532 | s = scantable( self._math._arrayop( self.copy(), other,
|
---|
| 3533 | "MUL", False ) )
|
---|
[513] | 3534 | else:
|
---|
[718] | 3535 | raise TypeError("Other input is not a scantable or float value")
|
---|
[513] | 3536 | s._add_history("operator *", varlist)
|
---|
| 3537 | return s
|
---|
| 3538 |
|
---|
[710] | 3539 |
|
---|
[1862] | 3540 | @asaplog_post_dec
|
---|
[513] | 3541 | def __div__(self, other):
|
---|
| 3542 | """
|
---|
| 3543 | implicit on all axes and on Tsys
|
---|
| 3544 | """
|
---|
| 3545 | varlist = vars()
|
---|
| 3546 | s = None
|
---|
| 3547 | if isinstance(other, scantable):
|
---|
[1589] | 3548 | s = scantable(self._math._binaryop(self, other, "DIV"))
|
---|
[513] | 3549 | elif isinstance(other, float):
|
---|
| 3550 | if other == 0.0:
|
---|
[718] | 3551 | raise ZeroDivisionError("Dividing by zero is not recommended")
|
---|
[876] | 3552 | s = scantable(self._math._unaryop(self, other, "DIV", False))
|
---|
[2144] | 3553 | elif isinstance(other, list) or isinstance(other, numpy.ndarray):
|
---|
[2349] | 3554 | if isinstance(other[0], list) \
|
---|
| 3555 | or isinstance(other[0], numpy.ndarray):
|
---|
[2144] | 3556 | from asapmath import _array2dOp
|
---|
| 3557 | s = _array2dOp( self.copy(), other, "DIV", False )
|
---|
| 3558 | else:
|
---|
[2349] | 3559 | s = scantable( self._math._arrayop( self.copy(), other,
|
---|
| 3560 | "DIV", False ) )
|
---|
[513] | 3561 | else:
|
---|
[718] | 3562 | raise TypeError("Other input is not a scantable or float value")
|
---|
[513] | 3563 | s._add_history("operator /", varlist)
|
---|
| 3564 | return s
|
---|
| 3565 |
|
---|
[1862] | 3566 | @asaplog_post_dec
|
---|
[530] | 3567 | def get_fit(self, row=0):
|
---|
[1846] | 3568 | """\
|
---|
[530] | 3569 | Print or return the stored fits for a row in the scantable
|
---|
[1846] | 3570 |
|
---|
[530] | 3571 | Parameters:
|
---|
[1846] | 3572 |
|
---|
[530] | 3573 | row: the row which the fit has been applied to.
|
---|
[1846] | 3574 |
|
---|
[530] | 3575 | """
|
---|
| 3576 | if row > self.nrow():
|
---|
| 3577 | return
|
---|
[976] | 3578 | from asap.asapfit import asapfit
|
---|
[530] | 3579 | fit = asapfit(self._getfit(row))
|
---|
[1859] | 3580 | asaplog.push( '%s' %(fit) )
|
---|
| 3581 | return fit.as_dict()
|
---|
[530] | 3582 |
|
---|
[2349] | 3583 | @preserve_selection
|
---|
[1483] | 3584 | def flag_nans(self):
|
---|
[1846] | 3585 | """\
|
---|
[1483] | 3586 | Utility function to flag NaN values in the scantable.
|
---|
| 3587 | """
|
---|
| 3588 | import numpy
|
---|
| 3589 | basesel = self.get_selection()
|
---|
| 3590 | for i in range(self.nrow()):
|
---|
[1589] | 3591 | sel = self.get_row_selector(i)
|
---|
| 3592 | self.set_selection(basesel+sel)
|
---|
[1483] | 3593 | nans = numpy.isnan(self._getspectrum(0))
|
---|
| 3594 | if numpy.any(nans):
|
---|
| 3595 | bnans = [ bool(v) for v in nans]
|
---|
| 3596 | self.flag(bnans)
|
---|
| 3597 |
|
---|
[1588] | 3598 | def get_row_selector(self, rowno):
|
---|
[1992] | 3599 | return selector(rows=[rowno])
|
---|
[1573] | 3600 |
|
---|
[484] | 3601 | def _add_history(self, funcname, parameters):
|
---|
[1435] | 3602 | if not rcParams['scantable.history']:
|
---|
| 3603 | return
|
---|
[484] | 3604 | # create date
|
---|
| 3605 | sep = "##"
|
---|
| 3606 | from datetime import datetime
|
---|
| 3607 | dstr = datetime.now().strftime('%Y/%m/%d %H:%M:%S')
|
---|
| 3608 | hist = dstr+sep
|
---|
| 3609 | hist += funcname+sep#cdate+sep
|
---|
[2349] | 3610 | if parameters.has_key('self'):
|
---|
| 3611 | del parameters['self']
|
---|
[1118] | 3612 | for k, v in parameters.iteritems():
|
---|
[484] | 3613 | if type(v) is dict:
|
---|
[1118] | 3614 | for k2, v2 in v.iteritems():
|
---|
[484] | 3615 | hist += k2
|
---|
| 3616 | hist += "="
|
---|
[1118] | 3617 | if isinstance(v2, scantable):
|
---|
[484] | 3618 | hist += 'scantable'
|
---|
| 3619 | elif k2 == 'mask':
|
---|
[1118] | 3620 | if isinstance(v2, list) or isinstance(v2, tuple):
|
---|
[513] | 3621 | hist += str(self._zip_mask(v2))
|
---|
| 3622 | else:
|
---|
| 3623 | hist += str(v2)
|
---|
[484] | 3624 | else:
|
---|
[513] | 3625 | hist += str(v2)
|
---|
[484] | 3626 | else:
|
---|
| 3627 | hist += k
|
---|
| 3628 | hist += "="
|
---|
[1118] | 3629 | if isinstance(v, scantable):
|
---|
[484] | 3630 | hist += 'scantable'
|
---|
| 3631 | elif k == 'mask':
|
---|
[1118] | 3632 | if isinstance(v, list) or isinstance(v, tuple):
|
---|
[513] | 3633 | hist += str(self._zip_mask(v))
|
---|
| 3634 | else:
|
---|
| 3635 | hist += str(v)
|
---|
[484] | 3636 | else:
|
---|
| 3637 | hist += str(v)
|
---|
| 3638 | hist += sep
|
---|
| 3639 | hist = hist[:-2] # remove trailing '##'
|
---|
| 3640 | self._addhistory(hist)
|
---|
| 3641 |
|
---|
[710] | 3642 |
|
---|
[484] | 3643 | def _zip_mask(self, mask):
|
---|
| 3644 | mask = list(mask)
|
---|
| 3645 | i = 0
|
---|
| 3646 | segments = []
|
---|
| 3647 | while mask[i:].count(1):
|
---|
| 3648 | i += mask[i:].index(1)
|
---|
| 3649 | if mask[i:].count(0):
|
---|
| 3650 | j = i + mask[i:].index(0)
|
---|
| 3651 | else:
|
---|
[710] | 3652 | j = len(mask)
|
---|
[1118] | 3653 | segments.append([i, j])
|
---|
[710] | 3654 | i = j
|
---|
[484] | 3655 | return segments
|
---|
[714] | 3656 |
|
---|
[626] | 3657 | def _get_ordinate_label(self):
|
---|
| 3658 | fu = "("+self.get_fluxunit()+")"
|
---|
| 3659 | import re
|
---|
| 3660 | lbl = "Intensity"
|
---|
[1118] | 3661 | if re.match(".K.", fu):
|
---|
[626] | 3662 | lbl = "Brightness Temperature "+ fu
|
---|
[1118] | 3663 | elif re.match(".Jy.", fu):
|
---|
[626] | 3664 | lbl = "Flux density "+ fu
|
---|
| 3665 | return lbl
|
---|
[710] | 3666 |
|
---|
[876] | 3667 | def _check_ifs(self):
|
---|
[2349] | 3668 | # return len(set([self.nchan(i) for i in self.getifnos()])) == 1
|
---|
[1986] | 3669 | nchans = [self.nchan(i) for i in self.getifnos()]
|
---|
[2004] | 3670 | nchans = filter(lambda t: t > 0, nchans)
|
---|
[876] | 3671 | return (sum(nchans)/len(nchans) == nchans[0])
|
---|
[976] | 3672 |
|
---|
[1862] | 3673 | @asaplog_post_dec
|
---|
[1916] | 3674 | def _fill(self, names, unit, average, opts={}):
|
---|
[976] | 3675 | first = True
|
---|
| 3676 | fullnames = []
|
---|
| 3677 | for name in names:
|
---|
| 3678 | name = os.path.expandvars(name)
|
---|
| 3679 | name = os.path.expanduser(name)
|
---|
| 3680 | if not os.path.exists(name):
|
---|
| 3681 | msg = "File '%s' does not exists" % (name)
|
---|
| 3682 | raise IOError(msg)
|
---|
| 3683 | fullnames.append(name)
|
---|
| 3684 | if average:
|
---|
| 3685 | asaplog.push('Auto averaging integrations')
|
---|
[1079] | 3686 | stype = int(rcParams['scantable.storage'].lower() == 'disk')
|
---|
[976] | 3687 | for name in fullnames:
|
---|
[1073] | 3688 | tbl = Scantable(stype)
|
---|
[2004] | 3689 | if is_ms( name ):
|
---|
| 3690 | r = msfiller( tbl )
|
---|
| 3691 | else:
|
---|
| 3692 | r = filler( tbl )
|
---|
[976] | 3693 | msg = "Importing %s..." % (name)
|
---|
[1118] | 3694 | asaplog.push(msg, False)
|
---|
[2349] | 3695 | r.open(name, opts)
|
---|
[2480] | 3696 | rx = rcParams['scantable.reference']
|
---|
| 3697 | r.setreferenceexpr(rx)
|
---|
[1843] | 3698 | r.fill()
|
---|
[976] | 3699 | if average:
|
---|
[1118] | 3700 | tbl = self._math._average((tbl, ), (), 'NONE', 'SCAN')
|
---|
[976] | 3701 | if not first:
|
---|
| 3702 | tbl = self._math._merge([self, tbl])
|
---|
| 3703 | Scantable.__init__(self, tbl)
|
---|
[1843] | 3704 | r.close()
|
---|
[1118] | 3705 | del r, tbl
|
---|
[976] | 3706 | first = False
|
---|
[1861] | 3707 | #flush log
|
---|
| 3708 | asaplog.post()
|
---|
[976] | 3709 | if unit is not None:
|
---|
| 3710 | self.set_fluxunit(unit)
|
---|
[1824] | 3711 | if not is_casapy():
|
---|
| 3712 | self.set_freqframe(rcParams['scantable.freqframe'])
|
---|
[976] | 3713 |
|
---|
[2012] | 3714 |
|
---|
[1402] | 3715 | def __getitem__(self, key):
|
---|
| 3716 | if key < 0:
|
---|
| 3717 | key += self.nrow()
|
---|
| 3718 | if key >= self.nrow():
|
---|
| 3719 | raise IndexError("Row index out of range.")
|
---|
| 3720 | return self._getspectrum(key)
|
---|
| 3721 |
|
---|
| 3722 | def __setitem__(self, key, value):
|
---|
| 3723 | if key < 0:
|
---|
| 3724 | key += self.nrow()
|
---|
| 3725 | if key >= self.nrow():
|
---|
| 3726 | raise IndexError("Row index out of range.")
|
---|
| 3727 | if not hasattr(value, "__len__") or \
|
---|
| 3728 | len(value) > self.nchan(self.getif(key)):
|
---|
| 3729 | raise ValueError("Spectrum length doesn't match.")
|
---|
| 3730 | return self._setspectrum(value, key)
|
---|
| 3731 |
|
---|
| 3732 | def __len__(self):
|
---|
| 3733 | return self.nrow()
|
---|
| 3734 |
|
---|
| 3735 | def __iter__(self):
|
---|
| 3736 | for i in range(len(self)):
|
---|
| 3737 | yield self[i]
|
---|