source: trunk/python/scantable.py@ 2478

Last change on this file since 2478 was 2435, checked in by Kana Sugimoto, 13 years ago

New Development: Yes

JIRA Issue: Yes (CAS-2818)

Ready for Test: Yes

Interface Changes: Yes

What Interface Changed: Added methods and functions
scantable.regrid_channel, scantable._regrid_specchan (defined in python_Scantable.cpp),
Scantable::regridSpecChannel, and ScantableWrapper::regridSpecChannel

Test Programs: comming soon with sdsmooth

Put in Release Notes: No

Module(s): scantable

Description:

Enabled regridding of spectra in a scantable.

scantable.regrid_channel(width, insitu=True/False)

will do this.
width can be either in channel, frequency, or velocity unit.
verification is not available yet.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 142.1 KB
RevLine 
[1846]1"""This module defines the scantable class."""
2
[1697]3import os
[2315]4import tempfile
[1948]5import numpy
[1691]6try:
7 from functools import wraps as wraps_dec
8except ImportError:
9 from asap.compatibility import wraps as wraps_dec
10
[1824]11from asap.env import is_casapy
[876]12from asap._asap import Scantable
[2004]13from asap._asap import filler, msfiller
[1824]14from asap.parameters import rcParams
[1862]15from asap.logging import asaplog, asaplog_post_dec
[1824]16from asap.selector import selector
17from asap.linecatalog import linecatalog
[1600]18from asap.coordinate import coordinate
[1859]19from asap.utils import _n_bools, mask_not, mask_and, mask_or, page
[1907]20from asap.asapfitter import fitter
[102]21
[2411]22###############################################################
23### WK temporarily added these lines for testing 2011/11/28 ###
24###############################################################
25#from asap._asap import TestClass
[1689]26
[2411]27#class testclass(TestClass):
28# def __init__(self, nelem):
29# TestClass.__init__(self, nelem)
30
31###############################################################
32
33
[1689]34def preserve_selection(func):
[1691]35 @wraps_dec(func)
[1689]36 def wrap(obj, *args, **kw):
37 basesel = obj.get_selection()
[1857]38 try:
39 val = func(obj, *args, **kw)
40 finally:
41 obj.set_selection(basesel)
[1689]42 return val
43 return wrap
44
[1846]45def is_scantable(filename):
46 """Is the given file a scantable?
[1689]47
[1846]48 Parameters:
49
50 filename: the name of the file/directory to test
51
52 """
[1883]53 if ( os.path.isdir(filename)
54 and os.path.exists(filename+'/table.info')
55 and os.path.exists(filename+'/table.dat') ):
56 f=open(filename+'/table.info')
57 l=f.readline()
58 f.close()
59 #if ( l.find('Scantable') != -1 ):
60 if ( l.find('Measurement Set') == -1 ):
61 return True
62 else:
63 return False
64 else:
65 return False
66## return (os.path.isdir(filename)
67## and not os.path.exists(filename+'/table.f1')
68## and os.path.exists(filename+'/table.info'))
[1697]69
[1883]70def is_ms(filename):
71 """Is the given file a MeasurementSet?
[1697]72
[1883]73 Parameters:
74
75 filename: the name of the file/directory to test
76
77 """
78 if ( os.path.isdir(filename)
79 and os.path.exists(filename+'/table.info')
80 and os.path.exists(filename+'/table.dat') ):
81 f=open(filename+'/table.info')
82 l=f.readline()
83 f.close()
84 if ( l.find('Measurement Set') != -1 ):
85 return True
86 else:
87 return False
88 else:
89 return False
[2186]90
91def normalise_edge_param(edge):
92 """\
93 Convert a given edge value to a one-dimensional array that can be
94 given to baseline-fitting/subtraction functions.
95 The length of the output value will be an even because values for
96 the both sides of spectra are to be contained for each IF. When
97 the length is 2, the values will be applied to all IFs. If the length
98 is larger than 2, it will be 2*ifnos().
99 Accepted format of edge include:
100 * an integer - will be used for both sides of spectra of all IFs.
101 e.g. 10 is converted to [10,10]
[2277]102 * an empty list/tuple [] - converted to [0, 0] and used for all IFs.
[2186]103 * a list/tuple containing an integer - same as the above case.
104 e.g. [10] is converted to [10,10]
105 * a list/tuple containing two integers - will be used for all IFs.
106 e.g. [5,10] is output as it is. no need to convert.
107 * a list/tuple of lists/tuples containing TWO integers -
108 each element of edge will be used for each IF.
[2277]109 e.g. [[5,10],[15,20]] - [5,10] for IF[0] and [15,20] for IF[1].
110
111 If an element contains the same integer values, the input 'edge'
112 parameter can be given in a simpler shape in the following cases:
[2186]113 ** when len(edge)!=2
[2277]114 any elements containing the same values can be replaced
115 to single integers.
116 e.g. [[15,15]] can be simplified to [15] (or [15,15] or 15 also).
117 e.g. [[1,1],[2,2],[3,3]] can be simplified to [1,2,3].
[2186]118 ** when len(edge)=2
119 care is needed for this case: ONLY ONE of the
120 elements can be a single integer,
121 e.g. [[5,5],[10,10]] can be simplified to [5,[10,10]]
[2277]122 or [[5,5],10], but can NOT be simplified to [5,10].
[2186]123 when [5,10] given, it is interpreted as
[2277]124 [[5,10],[5,10],[5,10],...] instead, as shown before.
[2186]125 """
126 from asap import _is_sequence_or_number as _is_valid
127 if isinstance(edge, list) or isinstance(edge, tuple):
128 for edgepar in edge:
129 if not _is_valid(edgepar, int):
130 raise ValueError, "Each element of the 'edge' tuple has \
131 to be a pair of integers or an integer."
132 if isinstance(edgepar, list) or isinstance(edgepar, tuple):
133 if len(edgepar) != 2:
134 raise ValueError, "Each element of the 'edge' tuple has \
135 to be a pair of integers or an integer."
136 else:
137 if not _is_valid(edge, int):
138 raise ValueError, "Parameter 'edge' has to be an integer or a \
139 pair of integers specified as a tuple. \
140 Nested tuples are allowed \
141 to make individual selection for different IFs."
142
143
144 if isinstance(edge, int):
145 edge = [ edge, edge ] # e.g. 3 => [3,3]
146 elif isinstance(edge, list) or isinstance(edge, tuple):
147 if len(edge) == 0:
148 edge = [0, 0] # e.g. [] => [0,0]
149 elif len(edge) == 1:
150 if isinstance(edge[0], int):
151 edge = [ edge[0], edge[0] ] # e.g. [1] => [1,1]
152
153 commonedge = True
154 if len(edge) > 2: commonedge = False
155 else:
156 for edgepar in edge:
157 if isinstance(edgepar, list) or isinstance(edgepar, tuple):
158 commonedge = False
159 break
160
161 if commonedge:
162 if len(edge) > 1:
163 norm_edge = edge
164 else:
165 norm_edge = edge + edge
166 else:
167 norm_edge = []
168 for edgepar in edge:
169 if isinstance(edgepar, int):
170 norm_edge += [edgepar, edgepar]
171 else:
172 norm_edge += edgepar
173
174 return norm_edge
175
176def raise_fitting_failure_exception(e):
177 msg = "The fit failed, possibly because it didn't converge."
178 if rcParams["verbose"]:
179 asaplog.push(str(e))
180 asaplog.push(str(msg))
181 else:
182 raise RuntimeError(str(e)+'\n'+msg)
183
[2189]184def pack_progress_params(showprogress, minnrow):
185 return str(showprogress).lower() + ',' + str(minnrow)
186
[876]187class scantable(Scantable):
[1846]188 """\
189 The ASAP container for scans (single-dish data).
[102]190 """
[1819]191
[1862]192 @asaplog_post_dec
[2315]193 def __init__(self, filename, average=None, unit=None, parallactify=None,
194 **args):
[1846]195 """\
[102]196 Create a scantable from a saved one or make a reference
[1846]197
[102]198 Parameters:
[1846]199
200 filename: the name of an asap table on disk
201 or
202 the name of a rpfits/sdfits/ms file
203 (integrations within scans are auto averaged
204 and the whole file is read) or
205 [advanced] a reference to an existing scantable
206
207 average: average all integrations withinb a scan on read.
208 The default (True) is taken from .asaprc.
209
[484]210 unit: brightness unit; must be consistent with K or Jy.
[1846]211 Over-rides the default selected by the filler
212 (input rpfits/sdfits/ms) or replaces the value
213 in existing scantables
214
[1920]215 antenna: for MeasurementSet input data only:
[2349]216 Antenna selection. integer (id) or string
217 (name or id).
[1846]218
[2349]219 parallactify: Indicate that the data had been parallactified.
220 Default (false) is taken from rc file.
[1846]221
[710]222 """
[976]223 if average is None:
[710]224 average = rcParams['scantable.autoaverage']
[1593]225 parallactify = parallactify or rcParams['scantable.parallactify']
[1259]226 varlist = vars()
[876]227 from asap._asap import stmath
[1819]228 self._math = stmath( rcParams['insitu'] )
[876]229 if isinstance(filename, Scantable):
230 Scantable.__init__(self, filename)
[181]231 else:
[1697]232 if isinstance(filename, str):
[976]233 filename = os.path.expandvars(filename)
234 filename = os.path.expanduser(filename)
235 if not os.path.exists(filename):
236 s = "File '%s' not found." % (filename)
237 raise IOError(s)
[1697]238 if is_scantable(filename):
239 ondisk = rcParams['scantable.storage'] == 'disk'
240 Scantable.__init__(self, filename, ondisk)
241 if unit is not None:
242 self.set_fluxunit(unit)
[2008]243 if average:
244 self._assign( self.average_time( scanav=True ) )
[1819]245 # do not reset to the default freqframe
246 #self.set_freqframe(rcParams['scantable.freqframe'])
[1883]247 elif is_ms(filename):
[1916]248 # Measurement Set
249 opts={'ms': {}}
250 mskeys=['getpt','antenna']
251 for key in mskeys:
252 if key in args.keys():
253 opts['ms'][key] = args[key]
254 self._fill([filename], unit, average, opts)
[1893]255 elif os.path.isfile(filename):
[1916]256 self._fill([filename], unit, average)
[2350]257 # only apply to new data not "copy constructor"
258 self.parallactify(parallactify)
[1883]259 else:
[1819]260 msg = "The given file '%s'is not a valid " \
261 "asap table." % (filename)
[1859]262 raise IOError(msg)
[1118]263 elif (isinstance(filename, list) or isinstance(filename, tuple)) \
[976]264 and isinstance(filename[-1], str):
[1916]265 self._fill(filename, unit, average)
[1586]266 self.parallactify(parallactify)
[1259]267 self._add_history("scantable", varlist)
[102]268
[1862]269 @asaplog_post_dec
[876]270 def save(self, name=None, format=None, overwrite=False):
[1846]271 """\
[1280]272 Store the scantable on disk. This can be an asap (aips++) Table,
273 SDFITS or MS2 format.
[1846]274
[116]275 Parameters:
[1846]276
[2431]277 name: the name of the outputfile. For format 'ASCII'
[1093]278 this is the root file name (data in 'name'.txt
[497]279 and header in 'name'_header.txt)
[1855]280
[116]281 format: an optional file format. Default is ASAP.
[1855]282 Allowed are:
283
284 * 'ASAP' (save as ASAP [aips++] Table),
285 * 'SDFITS' (save as SDFITS file)
286 * 'ASCII' (saves as ascii text file)
287 * 'MS2' (saves as an casacore MeasurementSet V2)
[2315]288 * 'FITS' (save as image FITS - not readable by
289 class)
[1855]290 * 'CLASS' (save as FITS readable by CLASS)
291
[411]292 overwrite: If the file should be overwritten if it exists.
[256]293 The default False is to return with warning
[411]294 without writing the output. USE WITH CARE.
[1855]295
[1846]296 Example::
297
[116]298 scan.save('myscan.asap')
[1118]299 scan.save('myscan.sdfits', 'SDFITS')
[1846]300
[116]301 """
[411]302 from os import path
[1593]303 format = format or rcParams['scantable.save']
[256]304 suffix = '.'+format.lower()
[1118]305 if name is None or name == "":
[256]306 name = 'scantable'+suffix
[718]307 msg = "No filename given. Using default name %s..." % name
308 asaplog.push(msg)
[411]309 name = path.expandvars(name)
[256]310 if path.isfile(name) or path.isdir(name):
311 if not overwrite:
[718]312 msg = "File %s exists." % name
[1859]313 raise IOError(msg)
[451]314 format2 = format.upper()
315 if format2 == 'ASAP':
[116]316 self._save(name)
[2029]317 elif format2 == 'MS2':
318 msopt = {'ms': {'overwrite': overwrite } }
319 from asap._asap import mswriter
320 writer = mswriter( self )
321 writer.write( name, msopt )
[116]322 else:
[989]323 from asap._asap import stwriter as stw
[1118]324 writer = stw(format2)
325 writer.write(self, name)
[116]326 return
327
[102]328 def copy(self):
[1846]329 """Return a copy of this scantable.
330
331 *Note*:
332
[1348]333 This makes a full (deep) copy. scan2 = scan1 makes a reference.
[1846]334
335 Example::
336
[102]337 copiedscan = scan.copy()
[1846]338
[102]339 """
[876]340 sd = scantable(Scantable._copy(self))
[113]341 return sd
342
[1093]343 def drop_scan(self, scanid=None):
[1846]344 """\
[1093]345 Return a new scantable where the specified scan number(s) has(have)
346 been dropped.
[1846]347
[1093]348 Parameters:
[1846]349
[1093]350 scanid: a (list of) scan number(s)
[1846]351
[1093]352 """
353 from asap import _is_sequence_or_number as _is_valid
354 from asap import _to_list
355 from asap import unique
356 if not _is_valid(scanid):
[2315]357 raise RuntimeError( 'Please specify a scanno to drop from the'
358 ' scantable' )
[1859]359 scanid = _to_list(scanid)
360 allscans = unique([ self.getscan(i) for i in range(self.nrow())])
361 for sid in scanid: allscans.remove(sid)
362 if len(allscans) == 0:
363 raise ValueError("Can't remove all scans")
364 sel = selector(scans=allscans)
365 return self._select_copy(sel)
[1093]366
[1594]367 def _select_copy(self, selection):
368 orig = self.get_selection()
369 self.set_selection(orig+selection)
370 cp = self.copy()
371 self.set_selection(orig)
372 return cp
373
[102]374 def get_scan(self, scanid=None):
[1855]375 """\
[102]376 Return a specific scan (by scanno) or collection of scans (by
377 source name) in a new scantable.
[1846]378
379 *Note*:
380
[1348]381 See scantable.drop_scan() for the inverse operation.
[1846]382
[102]383 Parameters:
[1846]384
[513]385 scanid: a (list of) scanno or a source name, unix-style
386 patterns are accepted for source name matching, e.g.
387 '*_R' gets all 'ref scans
[1846]388
389 Example::
390
[513]391 # get all scans containing the source '323p459'
392 newscan = scan.get_scan('323p459')
393 # get all 'off' scans
394 refscans = scan.get_scan('*_R')
395 # get a susbset of scans by scanno (as listed in scan.summary())
[1118]396 newscan = scan.get_scan([0, 2, 7, 10])
[1846]397
[102]398 """
399 if scanid is None:
[1859]400 raise RuntimeError( 'Please specify a scan no or name to '
401 'retrieve from the scantable' )
[102]402 try:
[946]403 bsel = self.get_selection()
404 sel = selector()
[102]405 if type(scanid) is str:
[946]406 sel.set_name(scanid)
[1594]407 return self._select_copy(sel)
[102]408 elif type(scanid) is int:
[946]409 sel.set_scans([scanid])
[1594]410 return self._select_copy(sel)
[381]411 elif type(scanid) is list:
[946]412 sel.set_scans(scanid)
[1594]413 return self._select_copy(sel)
[381]414 else:
[718]415 msg = "Illegal scanid type, use 'int' or 'list' if ints."
[1859]416 raise TypeError(msg)
[102]417 except RuntimeError:
[1859]418 raise
[102]419
420 def __str__(self):
[2315]421 tempFile = tempfile.NamedTemporaryFile()
422 Scantable._summary(self, tempFile.name)
423 tempFile.seek(0)
424 asaplog.clear()
425 return tempFile.file.read()
[102]426
[2315]427 @asaplog_post_dec
[976]428 def summary(self, filename=None):
[1846]429 """\
[102]430 Print a summary of the contents of this scantable.
[1846]431
[102]432 Parameters:
[1846]433
[1931]434 filename: the name of a file to write the putput to
[102]435 Default - no file output
[1846]436
[102]437 """
[2286]438# info = Scantable._summary(self)
[102]439 if filename is not None:
[256]440 if filename is "":
441 filename = 'scantable_summary.txt'
[415]442 from os.path import expandvars, isdir
[411]443 filename = expandvars(filename)
[2286]444# if not isdir(filename):
445# data = open(filename, 'w')
446# data.write(info)
447# data.close()
448# else:
449 if isdir(filename):
[718]450 msg = "Illegal file name '%s'." % (filename)
[1859]451 raise IOError(msg)
[2286]452 else:
453 filename = ""
454 Scantable._summary(self, filename)
[2290]455# info = Scantable._summary(self, filename)
[2286]456# return page(info)
[710]457
[1512]458 def get_spectrum(self, rowno):
[1471]459 """Return the spectrum for the current row in the scantable as a list.
[1846]460
[1471]461 Parameters:
[1846]462
[1573]463 rowno: the row number to retrieve the spectrum from
[1846]464
[1471]465 """
466 return self._getspectrum(rowno)
[946]467
[1471]468 def get_mask(self, rowno):
469 """Return the mask for the current row in the scantable as a list.
[1846]470
[1471]471 Parameters:
[1846]472
[1573]473 rowno: the row number to retrieve the mask from
[1846]474
[1471]475 """
476 return self._getmask(rowno)
477
478 def set_spectrum(self, spec, rowno):
[1938]479 """Set the spectrum for the current row in the scantable.
[1846]480
[1471]481 Parameters:
[1846]482
[1855]483 spec: the new spectrum
[1846]484
[1855]485 rowno: the row number to set the spectrum for
486
[1471]487 """
[2348]488 assert(len(spec) == self.nchan(self.getif(rowno)))
[1471]489 return self._setspectrum(spec, rowno)
490
[1600]491 def get_coordinate(self, rowno):
492 """Return the (spectral) coordinate for a a given 'rowno'.
[1846]493
494 *Note*:
495
[1600]496 * This coordinate is only valid until a scantable method modifies
497 the frequency axis.
498 * This coordinate does contain the original frequency set-up
499 NOT the new frame. The conversions however are done using the user
500 specified frame (e.g. LSRK/TOPO). To get the 'real' coordinate,
501 use scantable.freq_align first. Without it there is no closure,
[1846]502 i.e.::
[1600]503
[1846]504 c = myscan.get_coordinate(0)
505 c.to_frequency(c.get_reference_pixel()) != c.get_reference_value()
506
[1600]507 Parameters:
[1846]508
[1600]509 rowno: the row number for the spectral coordinate
510
511 """
512 return coordinate(Scantable.get_coordinate(self, rowno))
513
[946]514 def get_selection(self):
[1846]515 """\
[1005]516 Get the selection object currently set on this scantable.
[1846]517
518 Example::
519
[1005]520 sel = scan.get_selection()
521 sel.set_ifs(0) # select IF 0
522 scan.set_selection(sel) # apply modified selection
[1846]523
[946]524 """
525 return selector(self._getselection())
526
[1576]527 def set_selection(self, selection=None, **kw):
[1846]528 """\
[1005]529 Select a subset of the data. All following operations on this scantable
530 are only applied to thi selection.
[1846]531
[1005]532 Parameters:
[1697]533
[1846]534 selection: a selector object (default unset the selection), or
[2431]535 any combination of 'pols', 'ifs', 'beams', 'scans',
536 'cycles', 'name', 'query'
[1697]537
[1846]538 Examples::
[1697]539
[1005]540 sel = selector() # create a selection object
[1118]541 self.set_scans([0, 3]) # select SCANNO 0 and 3
[1005]542 scan.set_selection(sel) # set the selection
543 scan.summary() # will only print summary of scanno 0 an 3
544 scan.set_selection() # unset the selection
[1697]545 # or the equivalent
546 scan.set_selection(scans=[0,3])
547 scan.summary() # will only print summary of scanno 0 an 3
548 scan.set_selection() # unset the selection
[1846]549
[946]550 """
[1576]551 if selection is None:
552 # reset
553 if len(kw) == 0:
554 selection = selector()
555 else:
556 # try keywords
557 for k in kw:
558 if k not in selector.fields:
[2320]559 raise KeyError("Invalid selection key '%s', "
560 "valid keys are %s" % (k,
561 selector.fields))
[1576]562 selection = selector(**kw)
[946]563 self._setselection(selection)
564
[1819]565 def get_row(self, row=0, insitu=None):
[1846]566 """\
[1819]567 Select a row in the scantable.
568 Return a scantable with single row.
[1846]569
[1819]570 Parameters:
[1846]571
572 row: row no of integration, default is 0.
573 insitu: if False a new scantable is returned. Otherwise, the
574 scaling is done in-situ. The default is taken from .asaprc
575 (False)
576
[1819]577 """
[2349]578 if insitu is None:
579 insitu = rcParams['insitu']
[1819]580 if not insitu:
581 workscan = self.copy()
582 else:
583 workscan = self
584 # Select a row
[2349]585 sel = selector()
[1992]586 sel.set_rows([row])
[1819]587 workscan.set_selection(sel)
588 if not workscan.nrow() == 1:
[2349]589 msg = "Could not identify single row. %d rows selected." \
590 % (workscan.nrow())
[1819]591 raise RuntimeError(msg)
592 if insitu:
593 self._assign(workscan)
594 else:
595 return workscan
596
[1862]597 @asaplog_post_dec
[1907]598 def stats(self, stat='stddev', mask=None, form='3.3f', row=None):
[1846]599 """\
[135]600 Determine the specified statistic of the current beam/if/pol
[102]601 Takes a 'mask' as an optional parameter to specify which
602 channels should be excluded.
[1846]603
[102]604 Parameters:
[1846]605
[1819]606 stat: 'min', 'max', 'min_abc', 'max_abc', 'sumsq', 'sum',
607 'mean', 'var', 'stddev', 'avdev', 'rms', 'median'
[1855]608
[135]609 mask: an optional mask specifying where the statistic
[102]610 should be determined.
[1855]611
[1819]612 form: format string to print statistic values
[1846]613
[1907]614 row: row number of spectrum to process.
615 (default is None: for all rows)
[1846]616
[1907]617 Example:
[113]618 scan.set_unit('channel')
[1118]619 msk = scan.create_mask([100, 200], [500, 600])
[135]620 scan.stats(stat='mean', mask=m)
[1846]621
[102]622 """
[1593]623 mask = mask or []
[876]624 if not self._check_ifs():
[1118]625 raise ValueError("Cannot apply mask as the IFs have different "
626 "number of channels. Please use setselection() "
627 "to select individual IFs")
[1819]628 rtnabc = False
629 if stat.lower().endswith('_abc'): rtnabc = True
630 getchan = False
631 if stat.lower().startswith('min') or stat.lower().startswith('max'):
632 chan = self._math._minmaxchan(self, mask, stat)
633 getchan = True
634 statvals = []
[1907]635 if not rtnabc:
636 if row == None:
637 statvals = self._math._stats(self, mask, stat)
638 else:
639 statvals = self._math._statsrow(self, mask, stat, int(row))
[256]640
[1819]641 #def cb(i):
642 # return statvals[i]
[256]643
[1819]644 #return self._row_callback(cb, stat)
[102]645
[1819]646 label=stat
647 #callback=cb
648 out = ""
649 #outvec = []
650 sep = '-'*50
[1907]651
652 if row == None:
653 rows = xrange(self.nrow())
654 elif isinstance(row, int):
655 rows = [ row ]
656
657 for i in rows:
[1819]658 refstr = ''
659 statunit= ''
660 if getchan:
661 qx, qy = self.chan2data(rowno=i, chan=chan[i])
662 if rtnabc:
663 statvals.append(qx['value'])
664 refstr = ('(value: %'+form) % (qy['value'])+' ['+qy['unit']+'])'
665 statunit= '['+qx['unit']+']'
666 else:
667 refstr = ('(@ %'+form) % (qx['value'])+' ['+qx['unit']+'])'
668
669 tm = self._gettime(i)
670 src = self._getsourcename(i)
671 out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
672 out += 'Time[%s]:\n' % (tm)
[1907]673 if self.nbeam(-1) > 1: out += ' Beam[%d] ' % (self.getbeam(i))
674 if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
675 if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
[1819]676 #outvec.append(callback(i))
[1907]677 if len(rows) > 1:
678 # out += ('= %'+form) % (outvec[i]) +' '+refstr+'\n'
679 out += ('= %'+form) % (statvals[i]) +' '+refstr+'\n'
680 else:
681 # out += ('= %'+form) % (outvec[0]) +' '+refstr+'\n'
682 out += ('= %'+form) % (statvals[0]) +' '+refstr+'\n'
[1819]683 out += sep+"\n"
684
[1859]685 import os
686 if os.environ.has_key( 'USER' ):
687 usr = os.environ['USER']
688 else:
689 import commands
690 usr = commands.getoutput( 'whoami' )
691 tmpfile = '/tmp/tmp_'+usr+'_casapy_asap_scantable_stats'
692 f = open(tmpfile,'w')
693 print >> f, sep
694 print >> f, ' %s %s' % (label, statunit)
695 print >> f, sep
696 print >> f, out
697 f.close()
698 f = open(tmpfile,'r')
699 x = f.readlines()
700 f.close()
701 asaplog.push(''.join(x), False)
702
[1819]703 return statvals
704
705 def chan2data(self, rowno=0, chan=0):
[1846]706 """\
[1819]707 Returns channel/frequency/velocity and spectral value
708 at an arbitrary row and channel in the scantable.
[1846]709
[1819]710 Parameters:
[1846]711
[1819]712 rowno: a row number in the scantable. Default is the
713 first row, i.e. rowno=0
[1855]714
[1819]715 chan: a channel in the scantable. Default is the first
716 channel, i.e. pos=0
[1846]717
[1819]718 """
719 if isinstance(rowno, int) and isinstance(chan, int):
720 qx = {'unit': self.get_unit(),
721 'value': self._getabcissa(rowno)[chan]}
722 qy = {'unit': self.get_fluxunit(),
723 'value': self._getspectrum(rowno)[chan]}
724 return qx, qy
725
[1118]726 def stddev(self, mask=None):
[1846]727 """\
[135]728 Determine the standard deviation of the current beam/if/pol
729 Takes a 'mask' as an optional parameter to specify which
730 channels should be excluded.
[1846]731
[135]732 Parameters:
[1846]733
[135]734 mask: an optional mask specifying where the standard
735 deviation should be determined.
736
[1846]737 Example::
738
[135]739 scan.set_unit('channel')
[1118]740 msk = scan.create_mask([100, 200], [500, 600])
[135]741 scan.stddev(mask=m)
[1846]742
[135]743 """
[1118]744 return self.stats(stat='stddev', mask=mask);
[135]745
[1003]746
[1259]747 def get_column_names(self):
[1846]748 """\
[1003]749 Return a list of column names, which can be used for selection.
750 """
[1259]751 return list(Scantable.get_column_names(self))
[1003]752
[1730]753 def get_tsys(self, row=-1):
[1846]754 """\
[113]755 Return the System temperatures.
[1846]756
757 Parameters:
758
759 row: the rowno to get the information for. (default all rows)
760
[113]761 Returns:
[1846]762
[876]763 a list of Tsys values for the current selection
[1846]764
[113]765 """
[1730]766 if row > -1:
767 return self._get_column(self._gettsys, row)
[876]768 return self._row_callback(self._gettsys, "Tsys")
[256]769
[2406]770 def get_tsysspectrum(self, row=-1):
771 """\
772 Return the channel dependent system temperatures.
[1730]773
[2406]774 Parameters:
775
776 row: the rowno to get the information for. (default all rows)
777
778 Returns:
779
780 a list of Tsys values for the current selection
781
782 """
783 return self._get_column( self._gettsysspectrum, row )
784
[1730]785 def get_weather(self, row=-1):
[1846]786 """\
787 Return the weather informations.
788
789 Parameters:
790
791 row: the rowno to get the information for. (default all rows)
792
793 Returns:
794
795 a dict or list of of dicts of values for the current selection
796
797 """
798
[1730]799 values = self._get_column(self._get_weather, row)
800 if row > -1:
801 return {'temperature': values[0],
802 'pressure': values[1], 'humidity' : values[2],
803 'windspeed' : values[3], 'windaz' : values[4]
804 }
805 else:
806 out = []
807 for r in values:
808
809 out.append({'temperature': r[0],
810 'pressure': r[1], 'humidity' : r[2],
811 'windspeed' : r[3], 'windaz' : r[4]
812 })
813 return out
814
[876]815 def _row_callback(self, callback, label):
816 out = ""
[1118]817 outvec = []
[1590]818 sep = '-'*50
[876]819 for i in range(self.nrow()):
820 tm = self._gettime(i)
821 src = self._getsourcename(i)
[1590]822 out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
[876]823 out += 'Time[%s]:\n' % (tm)
[1590]824 if self.nbeam(-1) > 1:
825 out += ' Beam[%d] ' % (self.getbeam(i))
826 if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
827 if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
[876]828 outvec.append(callback(i))
829 out += '= %3.3f\n' % (outvec[i])
[1590]830 out += sep+'\n'
[1859]831
832 asaplog.push(sep)
833 asaplog.push(" %s" % (label))
834 asaplog.push(sep)
835 asaplog.push(out)
[1861]836 asaplog.post()
[1175]837 return outvec
[256]838
[1947]839 def _get_column(self, callback, row=-1, *args):
[1070]840 """
841 """
842 if row == -1:
[1947]843 return [callback(i, *args) for i in range(self.nrow())]
[1070]844 else:
[1819]845 if 0 <= row < self.nrow():
[1947]846 return callback(row, *args)
[256]847
[1070]848
[1948]849 def get_time(self, row=-1, asdatetime=False, prec=-1):
[1846]850 """\
[113]851 Get a list of time stamps for the observations.
[1938]852 Return a datetime object or a string (default) for each
853 integration time stamp in the scantable.
[1846]854
[113]855 Parameters:
[1846]856
[1348]857 row: row no of integration. Default -1 return all rows
[1855]858
[1348]859 asdatetime: return values as datetime objects rather than strings
[1846]860
[2349]861 prec: number of digits shown. Default -1 to automatic
862 calculation.
[1948]863 Note this number is equals to the digits of MVTime,
864 i.e., 0<prec<3: dates with hh:: only,
865 <5: with hh:mm:, <7 or 0: with hh:mm:ss,
[1947]866 and 6> : with hh:mm:ss.tt... (prec-6 t's added)
867
[113]868 """
[1175]869 from datetime import datetime
[1948]870 if prec < 0:
871 # automagically set necessary precision +1
[2349]872 prec = 7 - \
873 numpy.floor(numpy.log10(numpy.min(self.get_inttime(row))))
[1948]874 prec = max(6, int(prec))
875 else:
876 prec = max(0, prec)
877 if asdatetime:
878 #precision can be 1 millisecond at max
879 prec = min(12, prec)
880
[1947]881 times = self._get_column(self._gettime, row, prec)
[1348]882 if not asdatetime:
[1392]883 return times
[1947]884 format = "%Y/%m/%d/%H:%M:%S.%f"
885 if prec < 7:
886 nsub = 1 + (((6-prec)/2) % 3)
887 substr = [".%f","%S","%M"]
888 for i in range(nsub):
889 format = format.replace(substr[i],"")
[1175]890 if isinstance(times, list):
[1947]891 return [datetime.strptime(i, format) for i in times]
[1175]892 else:
[1947]893 return datetime.strptime(times, format)
[102]894
[1348]895
896 def get_inttime(self, row=-1):
[1846]897 """\
[1348]898 Get a list of integration times for the observations.
899 Return a time in seconds for each integration in the scantable.
[1846]900
[1348]901 Parameters:
[1846]902
[1348]903 row: row no of integration. Default -1 return all rows.
[1846]904
[1348]905 """
[1573]906 return self._get_column(self._getinttime, row)
[1348]907
[1573]908
[714]909 def get_sourcename(self, row=-1):
[1846]910 """\
[794]911 Get a list source names for the observations.
[714]912 Return a string for each integration in the scantable.
913 Parameters:
[1846]914
[1348]915 row: row no of integration. Default -1 return all rows.
[1846]916
[714]917 """
[1070]918 return self._get_column(self._getsourcename, row)
[714]919
[794]920 def get_elevation(self, row=-1):
[1846]921 """\
[794]922 Get a list of elevations for the observations.
923 Return a float for each integration in the scantable.
[1846]924
[794]925 Parameters:
[1846]926
[1348]927 row: row no of integration. Default -1 return all rows.
[1846]928
[794]929 """
[1070]930 return self._get_column(self._getelevation, row)
[794]931
932 def get_azimuth(self, row=-1):
[1846]933 """\
[794]934 Get a list of azimuths for the observations.
935 Return a float for each integration in the scantable.
[1846]936
[794]937 Parameters:
[1348]938 row: row no of integration. Default -1 return all rows.
[1846]939
[794]940 """
[1070]941 return self._get_column(self._getazimuth, row)
[794]942
943 def get_parangle(self, row=-1):
[1846]944 """\
[794]945 Get a list of parallactic angles for the observations.
946 Return a float for each integration in the scantable.
[1846]947
[794]948 Parameters:
[1846]949
[1348]950 row: row no of integration. Default -1 return all rows.
[1846]951
[794]952 """
[1070]953 return self._get_column(self._getparangle, row)
[794]954
[1070]955 def get_direction(self, row=-1):
956 """
957 Get a list of Positions on the sky (direction) for the observations.
[1594]958 Return a string for each integration in the scantable.
[1855]959
[1070]960 Parameters:
[1855]961
[1070]962 row: row no of integration. Default -1 return all rows
[1855]963
[1070]964 """
965 return self._get_column(self._getdirection, row)
966
[1391]967 def get_directionval(self, row=-1):
[1846]968 """\
[1391]969 Get a list of Positions on the sky (direction) for the observations.
970 Return a float for each integration in the scantable.
[1846]971
[1391]972 Parameters:
[1846]973
[1391]974 row: row no of integration. Default -1 return all rows
[1846]975
[1391]976 """
977 return self._get_column(self._getdirectionvec, row)
978
[1862]979 @asaplog_post_dec
[102]980 def set_unit(self, unit='channel'):
[1846]981 """\
[102]982 Set the unit for all following operations on this scantable
[1846]983
[102]984 Parameters:
[1846]985
986 unit: optional unit, default is 'channel'. Use one of '*Hz',
987 'km/s', 'channel' or equivalent ''
988
[102]989 """
[484]990 varlist = vars()
[1118]991 if unit in ['', 'pixel', 'channel']:
[113]992 unit = ''
993 inf = list(self._getcoordinfo())
994 inf[0] = unit
995 self._setcoordinfo(inf)
[1118]996 self._add_history("set_unit", varlist)
[113]997
[1862]998 @asaplog_post_dec
[484]999 def set_instrument(self, instr):
[1846]1000 """\
[1348]1001 Set the instrument for subsequent processing.
[1846]1002
[358]1003 Parameters:
[1846]1004
[710]1005 instr: Select from 'ATPKSMB', 'ATPKSHOH', 'ATMOPRA',
[407]1006 'DSS-43' (Tid), 'CEDUNA', and 'HOBART'
[1846]1007
[358]1008 """
1009 self._setInstrument(instr)
[1118]1010 self._add_history("set_instument", vars())
[358]1011
[1862]1012 @asaplog_post_dec
[1190]1013 def set_feedtype(self, feedtype):
[1846]1014 """\
[1190]1015 Overwrite the feed type, which might not be set correctly.
[1846]1016
[1190]1017 Parameters:
[1846]1018
[1190]1019 feedtype: 'linear' or 'circular'
[1846]1020
[1190]1021 """
1022 self._setfeedtype(feedtype)
1023 self._add_history("set_feedtype", vars())
1024
[1862]1025 @asaplog_post_dec
[276]1026 def set_doppler(self, doppler='RADIO'):
[1846]1027 """\
[276]1028 Set the doppler for all following operations on this scantable.
[1846]1029
[276]1030 Parameters:
[1846]1031
[276]1032 doppler: One of 'RADIO', 'OPTICAL', 'Z', 'BETA', 'GAMMA'
[1846]1033
[276]1034 """
[484]1035 varlist = vars()
[276]1036 inf = list(self._getcoordinfo())
1037 inf[2] = doppler
1038 self._setcoordinfo(inf)
[1118]1039 self._add_history("set_doppler", vars())
[710]1040
[1862]1041 @asaplog_post_dec
[226]1042 def set_freqframe(self, frame=None):
[1846]1043 """\
[113]1044 Set the frame type of the Spectral Axis.
[1846]1045
[113]1046 Parameters:
[1846]1047
[591]1048 frame: an optional frame type, default 'LSRK'. Valid frames are:
[1819]1049 'TOPO', 'LSRD', 'LSRK', 'BARY',
[1118]1050 'GEO', 'GALACTO', 'LGROUP', 'CMB'
[1846]1051
1052 Example::
1053
[113]1054 scan.set_freqframe('BARY')
[1846]1055
[113]1056 """
[1593]1057 frame = frame or rcParams['scantable.freqframe']
[484]1058 varlist = vars()
[1819]1059 # "REST" is not implemented in casacore
1060 #valid = ['REST', 'TOPO', 'LSRD', 'LSRK', 'BARY', \
1061 # 'GEO', 'GALACTO', 'LGROUP', 'CMB']
1062 valid = ['TOPO', 'LSRD', 'LSRK', 'BARY', \
[1118]1063 'GEO', 'GALACTO', 'LGROUP', 'CMB']
[591]1064
[989]1065 if frame in valid:
[113]1066 inf = list(self._getcoordinfo())
1067 inf[1] = frame
1068 self._setcoordinfo(inf)
[1118]1069 self._add_history("set_freqframe", varlist)
[102]1070 else:
[1118]1071 msg = "Please specify a valid freq type. Valid types are:\n", valid
[1859]1072 raise TypeError(msg)
[710]1073
[1862]1074 @asaplog_post_dec
[989]1075 def set_dirframe(self, frame=""):
[1846]1076 """\
[989]1077 Set the frame type of the Direction on the sky.
[1846]1078
[989]1079 Parameters:
[1846]1080
[989]1081 frame: an optional frame type, default ''. Valid frames are:
1082 'J2000', 'B1950', 'GALACTIC'
[1846]1083
1084 Example:
1085
[989]1086 scan.set_dirframe('GALACTIC')
[1846]1087
[989]1088 """
1089 varlist = vars()
[1859]1090 Scantable.set_dirframe(self, frame)
[1118]1091 self._add_history("set_dirframe", varlist)
[989]1092
[113]1093 def get_unit(self):
[1846]1094 """\
[113]1095 Get the default unit set in this scantable
[1846]1096
[113]1097 Returns:
[1846]1098
[113]1099 A unit string
[1846]1100
[113]1101 """
1102 inf = self._getcoordinfo()
1103 unit = inf[0]
1104 if unit == '': unit = 'channel'
1105 return unit
[102]1106
[1862]1107 @asaplog_post_dec
[158]1108 def get_abcissa(self, rowno=0):
[1846]1109 """\
[158]1110 Get the abcissa in the current coordinate setup for the currently
[113]1111 selected Beam/IF/Pol
[1846]1112
[113]1113 Parameters:
[1846]1114
[226]1115 rowno: an optional row number in the scantable. Default is the
1116 first row, i.e. rowno=0
[1846]1117
[113]1118 Returns:
[1846]1119
[1348]1120 The abcissa values and the format string (as a dictionary)
[1846]1121
[113]1122 """
[256]1123 abc = self._getabcissa(rowno)
[710]1124 lbl = self._getabcissalabel(rowno)
[158]1125 return abc, lbl
[113]1126
[1862]1127 @asaplog_post_dec
[2322]1128 def flag(self, mask=None, unflag=False, row=-1):
[1846]1129 """\
[1001]1130 Flag the selected data using an optional channel mask.
[1846]1131
[1001]1132 Parameters:
[1846]1133
[1001]1134 mask: an optional channel mask, created with create_mask. Default
1135 (no mask) is all channels.
[1855]1136
[1819]1137 unflag: if True, unflag the data
[1846]1138
[2322]1139 row: an optional row number in the scantable.
1140 Default -1 flags all rows
1141
[1001]1142 """
1143 varlist = vars()
[1593]1144 mask = mask or []
[1994]1145 self._flag(row, mask, unflag)
[1001]1146 self._add_history("flag", varlist)
1147
[1862]1148 @asaplog_post_dec
[2322]1149 def flag_row(self, rows=None, unflag=False):
[1846]1150 """\
[1819]1151 Flag the selected data in row-based manner.
[1846]1152
[1819]1153 Parameters:
[1846]1154
[1843]1155 rows: list of row numbers to be flagged. Default is no row
[2322]1156 (must be explicitly specified to execute row-based
1157 flagging).
[1855]1158
[1819]1159 unflag: if True, unflag the data.
[1846]1160
[1819]1161 """
1162 varlist = vars()
[2322]1163 if rows is None:
1164 rows = []
[1859]1165 self._flag_row(rows, unflag)
[1819]1166 self._add_history("flag_row", varlist)
1167
[1862]1168 @asaplog_post_dec
[1819]1169 def clip(self, uthres=None, dthres=None, clipoutside=True, unflag=False):
[1846]1170 """\
[1819]1171 Flag the selected data outside a specified range (in channel-base)
[1846]1172
[1819]1173 Parameters:
[1846]1174
[1819]1175 uthres: upper threshold.
[1855]1176
[1819]1177 dthres: lower threshold
[1846]1178
[2322]1179 clipoutside: True for flagging data outside the range
1180 [dthres:uthres].
[1928]1181 False for flagging data inside the range.
[1855]1182
[1846]1183 unflag: if True, unflag the data.
1184
[1819]1185 """
1186 varlist = vars()
[1859]1187 self._clip(uthres, dthres, clipoutside, unflag)
[1819]1188 self._add_history("clip", varlist)
1189
[1862]1190 @asaplog_post_dec
[1584]1191 def lag_flag(self, start, end, unit="MHz", insitu=None):
[1846]1192 """\
[1192]1193 Flag the data in 'lag' space by providing a frequency to remove.
[2177]1194 Flagged data in the scantable get interpolated over the region.
[1192]1195 No taper is applied.
[1846]1196
[1192]1197 Parameters:
[1846]1198
[1579]1199 start: the start frequency (really a period within the
1200 bandwidth) or period to remove
[1855]1201
[1579]1202 end: the end frequency or period to remove
[1855]1203
[2431]1204 unit: the frequency unit (default 'MHz') or '' for
[1579]1205 explicit lag channels
[1846]1206
1207 *Notes*:
1208
[1579]1209 It is recommended to flag edges of the band or strong
[1348]1210 signals beforehand.
[1846]1211
[1192]1212 """
1213 if insitu is None: insitu = rcParams['insitu']
1214 self._math._setinsitu(insitu)
1215 varlist = vars()
[1579]1216 base = { "GHz": 1000000000., "MHz": 1000000., "kHz": 1000., "Hz": 1.}
1217 if not (unit == "" or base.has_key(unit)):
[1192]1218 raise ValueError("%s is not a valid unit." % unit)
[1859]1219 if unit == "":
1220 s = scantable(self._math._lag_flag(self, start, end, "lags"))
1221 else:
1222 s = scantable(self._math._lag_flag(self, start*base[unit],
1223 end*base[unit], "frequency"))
[1192]1224 s._add_history("lag_flag", varlist)
1225 if insitu:
1226 self._assign(s)
1227 else:
1228 return s
[1001]1229
[1862]1230 @asaplog_post_dec
[2349]1231 def fft(self, rowno=None, mask=None, getrealimag=False):
[2177]1232 """\
1233 Apply FFT to the spectra.
1234 Flagged data in the scantable get interpolated over the region.
1235
1236 Parameters:
[2186]1237
1238 rowno: The row number(s) to be processed. int, list
[2349]1239 and tuple are accepted. By default (None), FFT
[2186]1240 is applied to the whole data.
1241
1242 mask: Auxiliary channel mask(s). Given as a boolean
1243 list, it is applied to all specified rows.
1244 A list of boolean lists can also be used to
1245 apply different masks. In the latter case, the
1246 length of 'mask' must be the same as that of
[2349]1247 'rowno'. The default is None.
[2177]1248
1249 getrealimag: If True, returns the real and imaginary part
1250 values of the complex results.
1251 If False (the default), returns the amplitude
1252 (absolute value) normalised with Ndata/2 and
1253 phase (argument, in unit of radian).
1254
1255 Returns:
1256
[2186]1257 A list of dictionaries containing the results for each spectrum.
1258 Each dictionary contains two values, the real and the imaginary
1259 parts when getrealimag = True, or the amplitude(absolute value)
1260 and the phase(argument) when getrealimag = False. The key for
1261 these values are 'real' and 'imag', or 'ampl' and 'phase',
[2177]1262 respectively.
1263 """
[2349]1264 if rowno is None:
1265 rowno = []
[2177]1266 if isinstance(rowno, int):
1267 rowno = [rowno]
1268 elif not (isinstance(rowno, list) or isinstance(rowno, tuple)):
[2186]1269 raise TypeError("The row number(s) must be int, list or tuple.")
1270 if len(rowno) == 0: rowno = [i for i in xrange(self.nrow())]
1271
[2411]1272 usecommonmask = True
1273
1274 if mask is None:
1275 mask = []
1276 if isinstance(mask, list) or isinstance(mask, tuple):
1277 if len(mask) == 0:
1278 mask = [[]]
1279 else:
1280 if isinstance(mask[0], bool):
1281 if len(mask) != self.nchan(self.getif(rowno[0])):
1282 raise ValueError("The spectra and the mask have "
1283 "different length.")
1284 mask = [mask]
1285 elif isinstance(mask[0], list) or isinstance(mask[0], tuple):
1286 usecommonmask = False
1287 if len(mask) != len(rowno):
1288 raise ValueError("When specifying masks for each "
1289 "spectrum, the numbers of them "
1290 "must be identical.")
1291 for i in xrange(mask):
1292 if len(mask[i]) != self.nchan(self.getif(rowno[i])):
1293 raise ValueError("The spectra and the mask have "
1294 "different length.")
1295 else:
1296 raise TypeError("The mask must be a boolean list or "
1297 "a list of boolean list.")
1298 else:
[2349]1299 raise TypeError("The mask must be a boolean list or a list of "
1300 "boolean list.")
[2186]1301
1302 res = []
1303
1304 imask = 0
1305 for whichrow in rowno:
1306 fspec = self._fft(whichrow, mask[imask], getrealimag)
1307 nspec = len(fspec)
[2177]1308
[2349]1309 i = 0
1310 v1 = []
1311 v2 = []
1312 reselem = {"real":[],"imag":[]} if getrealimag \
1313 else {"ampl":[],"phase":[]}
[2177]1314
[2186]1315 while (i < nspec):
1316 v1.append(fspec[i])
1317 v2.append(fspec[i+1])
[2349]1318 i += 2
[2186]1319
[2177]1320 if getrealimag:
[2186]1321 reselem["real"] += v1
1322 reselem["imag"] += v2
[2177]1323 else:
[2186]1324 reselem["ampl"] += v1
1325 reselem["phase"] += v2
[2177]1326
[2186]1327 res.append(reselem)
1328
[2349]1329 if not usecommonmask:
1330 imask += 1
[2186]1331
[2177]1332 return res
1333
1334 @asaplog_post_dec
[113]1335 def create_mask(self, *args, **kwargs):
[1846]1336 """\
[1118]1337 Compute and return a mask based on [min, max] windows.
[189]1338 The specified windows are to be INCLUDED, when the mask is
[113]1339 applied.
[1846]1340
[102]1341 Parameters:
[1846]1342
[1118]1343 [min, max], [min2, max2], ...
[1024]1344 Pairs of start/end points (inclusive)specifying the regions
[102]1345 to be masked
[1855]1346
[189]1347 invert: optional argument. If specified as True,
1348 return an inverted mask, i.e. the regions
1349 specified are EXCLUDED
[1855]1350
[513]1351 row: create the mask using the specified row for
1352 unit conversions, default is row=0
1353 only necessary if frequency varies over rows.
[1846]1354
1355 Examples::
1356
[113]1357 scan.set_unit('channel')
[1846]1358 # a)
[1118]1359 msk = scan.create_mask([400, 500], [800, 900])
[189]1360 # masks everything outside 400 and 500
[113]1361 # and 800 and 900 in the unit 'channel'
1362
[1846]1363 # b)
[1118]1364 msk = scan.create_mask([400, 500], [800, 900], invert=True)
[189]1365 # masks the regions between 400 and 500
[113]1366 # and 800 and 900 in the unit 'channel'
[1846]1367
1368 # c)
1369 #mask only channel 400
[1554]1370 msk = scan.create_mask([400])
[1846]1371
[102]1372 """
[1554]1373 row = kwargs.get("row", 0)
[513]1374 data = self._getabcissa(row)
[113]1375 u = self._getcoordinfo()[0]
[1859]1376 if u == "":
1377 u = "channel"
1378 msg = "The current mask window unit is %s" % u
1379 i = self._check_ifs()
1380 if not i:
1381 msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
1382 asaplog.push(msg)
[2348]1383 n = len(data)
[1295]1384 msk = _n_bools(n, False)
[710]1385 # test if args is a 'list' or a 'normal *args - UGLY!!!
1386
[2349]1387 ws = (isinstance(args[-1][-1], int)
1388 or isinstance(args[-1][-1], float)) and args or args[0]
[710]1389 for window in ws:
[1554]1390 if len(window) == 1:
1391 window = [window[0], window[0]]
1392 if len(window) == 0 or len(window) > 2:
[2349]1393 raise ValueError("A window needs to be defined as "
1394 "[start(, end)]")
[1545]1395 if window[0] > window[1]:
1396 tmp = window[0]
1397 window[0] = window[1]
1398 window[1] = tmp
[102]1399 for i in range(n):
[1024]1400 if data[i] >= window[0] and data[i] <= window[1]:
[1295]1401 msk[i] = True
[113]1402 if kwargs.has_key('invert'):
1403 if kwargs.get('invert'):
[1295]1404 msk = mask_not(msk)
[102]1405 return msk
[710]1406
[1931]1407 def get_masklist(self, mask=None, row=0, silent=False):
[1846]1408 """\
[1819]1409 Compute and return a list of mask windows, [min, max].
[1846]1410
[1819]1411 Parameters:
[1846]1412
[1819]1413 mask: channel mask, created with create_mask.
[1855]1414
[1819]1415 row: calcutate the masklist using the specified row
1416 for unit conversions, default is row=0
1417 only necessary if frequency varies over rows.
[1846]1418
[1819]1419 Returns:
[1846]1420
[1819]1421 [min, max], [min2, max2], ...
1422 Pairs of start/end points (inclusive)specifying
1423 the masked regions
[1846]1424
[1819]1425 """
1426 if not (isinstance(mask,list) or isinstance(mask, tuple)):
1427 raise TypeError("The mask should be list or tuple.")
[2427]1428 if len(mask) <= 0:
1429 raise TypeError("The mask elements should be > 0")
[2348]1430 data = self._getabcissa(row)
1431 if len(data) != len(mask):
[1819]1432 msg = "Number of channels in scantable != number of mask elements"
1433 raise TypeError(msg)
1434 u = self._getcoordinfo()[0]
[1859]1435 if u == "":
1436 u = "channel"
1437 msg = "The current mask window unit is %s" % u
1438 i = self._check_ifs()
1439 if not i:
1440 msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
[1931]1441 if not silent:
1442 asaplog.push(msg)
[2349]1443 masklist = []
[1819]1444 ist, ien = None, None
1445 ist, ien=self.get_mask_indices(mask)
1446 if ist is not None and ien is not None:
1447 for i in xrange(len(ist)):
1448 range=[data[ist[i]],data[ien[i]]]
1449 range.sort()
1450 masklist.append([range[0],range[1]])
1451 return masklist
1452
1453 def get_mask_indices(self, mask=None):
[1846]1454 """\
[1819]1455 Compute and Return lists of mask start indices and mask end indices.
[1855]1456
1457 Parameters:
1458
[1819]1459 mask: channel mask, created with create_mask.
[1846]1460
[1819]1461 Returns:
[1846]1462
[1819]1463 List of mask start indices and that of mask end indices,
1464 i.e., [istart1,istart2,....], [iend1,iend2,....].
[1846]1465
[1819]1466 """
1467 if not (isinstance(mask,list) or isinstance(mask, tuple)):
1468 raise TypeError("The mask should be list or tuple.")
[2427]1469 if len(mask) <= 0:
1470 raise TypeError("The mask elements should be > 0")
[2349]1471 istart = []
1472 iend = []
1473 if mask[0]:
1474 istart.append(0)
[1819]1475 for i in range(len(mask)-1):
1476 if not mask[i] and mask[i+1]:
1477 istart.append(i+1)
1478 elif mask[i] and not mask[i+1]:
1479 iend.append(i)
[2349]1480 if mask[len(mask)-1]:
1481 iend.append(len(mask)-1)
[1819]1482 if len(istart) != len(iend):
1483 raise RuntimeError("Numbers of mask start != mask end.")
1484 for i in range(len(istart)):
1485 if istart[i] > iend[i]:
1486 raise RuntimeError("Mask start index > mask end index")
1487 break
1488 return istart,iend
1489
[2013]1490 @asaplog_post_dec
[2349]1491 def parse_maskexpr(self, maskstring):
[2013]1492 """
1493 Parse CASA type mask selection syntax (IF dependent).
1494
1495 Parameters:
1496 maskstring : A string mask selection expression.
1497 A comma separated selections mean different IF -
1498 channel combinations. IFs and channel selections
1499 are partitioned by a colon, ':'.
1500 examples:
[2015]1501 '' = all IFs (all channels)
[2013]1502 '<2,4~6,9' = IFs 0,1,4,5,6,9 (all channels)
1503 '3:3~45;60' = channels 3 to 45 and 60 in IF 3
1504 '0~1:2~6,8' = channels 2 to 6 in IFs 0,1, and
1505 all channels in IF8
1506 Returns:
1507 A dictionary of selected (valid) IF and masklist pairs,
1508 e.g. {'0': [[50,250],[350,462]], '2': [[100,400],[550,974]]}
1509 """
1510 if not isinstance(maskstring,str):
1511 asaplog.post()
1512 asaplog.push("Invalid mask expression")
1513 asaplog.post("ERROR")
1514
1515 valid_ifs = self.getifnos()
1516 frequnit = self.get_unit()
1517 seldict = {}
[2015]1518 if maskstring == "":
1519 maskstring = str(valid_ifs)[1:-1]
[2013]1520 ## split each selection
1521 sellist = maskstring.split(',')
1522 for currselstr in sellist:
1523 selset = currselstr.split(':')
1524 # spw and mask string (may include ~, < or >)
[2349]1525 spwmasklist = self._parse_selection(selset[0], typestr='integer',
1526 offset=1, minval=min(valid_ifs),
1527 maxval=max(valid_ifs))
[2013]1528 for spwlist in spwmasklist:
1529 selspws = []
1530 for ispw in range(spwlist[0],spwlist[1]+1):
1531 # Put into the list only if ispw exists
1532 if valid_ifs.count(ispw):
1533 selspws.append(ispw)
1534 del spwmasklist, spwlist
1535
1536 # parse frequency mask list
1537 if len(selset) > 1:
[2349]1538 freqmasklist = self._parse_selection(selset[1], typestr='float',
1539 offset=0.)
[2013]1540 else:
1541 # want to select the whole spectrum
1542 freqmasklist = [None]
1543
1544 ## define a dictionary of spw - masklist combination
1545 for ispw in selspws:
1546 #print "working on", ispw
1547 spwstr = str(ispw)
1548 if len(selspws) == 0:
1549 # empty spw
1550 continue
1551 else:
1552 ## want to get min and max of the spw and
1553 ## offset to set for '<' and '>'
1554 if frequnit == 'channel':
1555 minfreq = 0
1556 maxfreq = self.nchan(ifno=ispw)
1557 offset = 0.5
1558 else:
1559 ## This is ugly part. need improvement
1560 for ifrow in xrange(self.nrow()):
1561 if self.getif(ifrow) == ispw:
1562 #print "IF",ispw,"found in row =",ifrow
1563 break
1564 freqcoord = self.get_coordinate(ifrow)
1565 freqs = self._getabcissa(ifrow)
1566 minfreq = min(freqs)
1567 maxfreq = max(freqs)
1568 if len(freqs) == 1:
1569 offset = 0.5
1570 elif frequnit.find('Hz') > 0:
[2349]1571 offset = abs(freqcoord.to_frequency(1,
1572 unit=frequnit)
1573 -freqcoord.to_frequency(0,
1574 unit=frequnit)
1575 )*0.5
[2013]1576 elif frequnit.find('m/s') > 0:
[2349]1577 offset = abs(freqcoord.to_velocity(1,
1578 unit=frequnit)
1579 -freqcoord.to_velocity(0,
1580 unit=frequnit)
1581 )*0.5
[2013]1582 else:
1583 asaplog.post()
1584 asaplog.push("Invalid frequency unit")
1585 asaplog.post("ERROR")
1586 del freqs, freqcoord, ifrow
1587 for freq in freqmasklist:
1588 selmask = freq or [minfreq, maxfreq]
1589 if selmask[0] == None:
1590 ## selection was "<freq[1]".
1591 if selmask[1] < minfreq:
1592 ## avoid adding region selection
1593 selmask = None
1594 else:
1595 selmask = [minfreq,selmask[1]-offset]
1596 elif selmask[1] == None:
1597 ## selection was ">freq[0]"
1598 if selmask[0] > maxfreq:
1599 ## avoid adding region selection
1600 selmask = None
1601 else:
1602 selmask = [selmask[0]+offset,maxfreq]
1603 if selmask:
1604 if not seldict.has_key(spwstr):
1605 # new spw selection
1606 seldict[spwstr] = []
1607 seldict[spwstr] += [selmask]
1608 del minfreq,maxfreq,offset,freq,selmask
1609 del spwstr
1610 del freqmasklist
1611 del valid_ifs
1612 if len(seldict) == 0:
1613 asaplog.post()
[2349]1614 asaplog.push("No valid selection in the mask expression: "
1615 +maskstring)
[2013]1616 asaplog.post("WARN")
1617 return None
1618 msg = "Selected masklist:\n"
1619 for sif, lmask in seldict.iteritems():
1620 msg += " IF"+sif+" - "+str(lmask)+"\n"
1621 asaplog.push(msg)
1622 return seldict
1623
[2349]1624 def _parse_selection(self, selstr, typestr='float', offset=0.,
[2351]1625 minval=None, maxval=None):
[2013]1626 """
1627 Parameters:
1628 selstr : The Selection string, e.g., '<3;5~7;100~103;9'
1629 typestr : The type of the values in returned list
1630 ('integer' or 'float')
1631 offset : The offset value to subtract from or add to
1632 the boundary value if the selection string
1633 includes '<' or '>'
1634 minval, maxval : The minimum/maximum values to set if the
1635 selection string includes '<' or '>'.
1636 The list element is filled with None by default.
1637 Returns:
1638 A list of min/max pair of selections.
1639 Example:
1640 _parseSelection('<3;5~7;9',typestr='int',offset=1,minval=0)
1641 returns [[0,2],[5,7],[9,9]]
1642 """
1643 selgroups = selstr.split(';')
1644 sellists = []
1645 if typestr.lower().startswith('int'):
1646 formatfunc = int
1647 else:
1648 formatfunc = float
1649
1650 for currsel in selgroups:
1651 if currsel.find('~') > 0:
1652 minsel = formatfunc(currsel.split('~')[0].strip())
1653 maxsel = formatfunc(currsel.split('~')[1].strip())
1654 elif currsel.strip().startswith('<'):
1655 minsel = minval
1656 maxsel = formatfunc(currsel.split('<')[1].strip()) \
1657 - formatfunc(offset)
1658 elif currsel.strip().startswith('>'):
1659 minsel = formatfunc(currsel.split('>')[1].strip()) \
1660 + formatfunc(offset)
1661 maxsel = maxval
1662 else:
1663 minsel = formatfunc(currsel)
1664 maxsel = formatfunc(currsel)
1665 sellists.append([minsel,maxsel])
1666 return sellists
1667
[1819]1668# def get_restfreqs(self):
1669# """
1670# Get the restfrequency(s) stored in this scantable.
1671# The return value(s) are always of unit 'Hz'
1672# Parameters:
1673# none
1674# Returns:
1675# a list of doubles
1676# """
1677# return list(self._getrestfreqs())
1678
1679 def get_restfreqs(self, ids=None):
[1846]1680 """\
[256]1681 Get the restfrequency(s) stored in this scantable.
1682 The return value(s) are always of unit 'Hz'
[1846]1683
[256]1684 Parameters:
[1846]1685
[1819]1686 ids: (optional) a list of MOLECULE_ID for that restfrequency(s) to
1687 be retrieved
[1846]1688
[256]1689 Returns:
[1846]1690
[1819]1691 dictionary containing ids and a list of doubles for each id
[1846]1692
[256]1693 """
[1819]1694 if ids is None:
[2349]1695 rfreqs = {}
[1819]1696 idlist = self.getmolnos()
1697 for i in idlist:
[2349]1698 rfreqs[i] = list(self._getrestfreqs(i))
[1819]1699 return rfreqs
1700 else:
[2349]1701 if type(ids) == list or type(ids) == tuple:
1702 rfreqs = {}
[1819]1703 for i in ids:
[2349]1704 rfreqs[i] = list(self._getrestfreqs(i))
[1819]1705 return rfreqs
1706 else:
1707 return list(self._getrestfreqs(ids))
[102]1708
[2349]1709 @asaplog_post_dec
[931]1710 def set_restfreqs(self, freqs=None, unit='Hz'):
[1846]1711 """\
[931]1712 Set or replace the restfrequency specified and
[1938]1713 if the 'freqs' argument holds a scalar,
[931]1714 then that rest frequency will be applied to all the selected
1715 data. If the 'freqs' argument holds
1716 a vector, then it MUST be of equal or smaller length than
1717 the number of IFs (and the available restfrequencies will be
1718 replaced by this vector). In this case, *all* data have
1719 the restfrequency set per IF according
1720 to the corresponding value you give in the 'freqs' vector.
[1118]1721 E.g. 'freqs=[1e9, 2e9]' would mean IF 0 gets restfreq 1e9 and
[931]1722 IF 1 gets restfreq 2e9.
[1846]1723
[1395]1724 You can also specify the frequencies via a linecatalog.
[1153]1725
[931]1726 Parameters:
[1846]1727
[931]1728 freqs: list of rest frequency values or string idenitfiers
[1855]1729
[931]1730 unit: unit for rest frequency (default 'Hz')
[402]1731
[1846]1732
1733 Example::
1734
[1819]1735 # set the given restfrequency for the all currently selected IFs
[931]1736 scan.set_restfreqs(freqs=1.4e9)
[1845]1737 # set restfrequencies for the n IFs (n > 1) in the order of the
1738 # list, i.e
1739 # IF0 -> 1.4e9, IF1 -> 1.41e9, IF3 -> 1.42e9
1740 # len(list_of_restfreqs) == nIF
1741 # for nIF == 1 the following will set multiple restfrequency for
1742 # that IF
[1819]1743 scan.set_restfreqs(freqs=[1.4e9, 1.41e9, 1.42e9])
[1845]1744 # set multiple restfrequencies per IF. as a list of lists where
1745 # the outer list has nIF elements, the inner s arbitrary
1746 scan.set_restfreqs(freqs=[[1.4e9, 1.41e9], [1.67e9]])
[391]1747
[1846]1748 *Note*:
[1845]1749
[931]1750 To do more sophisticate Restfrequency setting, e.g. on a
1751 source and IF basis, use scantable.set_selection() before using
[1846]1752 this function::
[931]1753
[1846]1754 # provided your scantable is called scan
1755 selection = selector()
[2431]1756 selection.set_name('ORION*')
[1846]1757 selection.set_ifs([1])
1758 scan.set_selection(selection)
1759 scan.set_restfreqs(freqs=86.6e9)
1760
[931]1761 """
1762 varlist = vars()
[1157]1763 from asap import linecatalog
1764 # simple value
[1118]1765 if isinstance(freqs, int) or isinstance(freqs, float):
[1845]1766 self._setrestfreqs([freqs], [""], unit)
[1157]1767 # list of values
[1118]1768 elif isinstance(freqs, list) or isinstance(freqs, tuple):
[1157]1769 # list values are scalars
[1118]1770 if isinstance(freqs[-1], int) or isinstance(freqs[-1], float):
[1845]1771 if len(freqs) == 1:
1772 self._setrestfreqs(freqs, [""], unit)
1773 else:
1774 # allow the 'old' mode of setting mulitple IFs
1775 sel = selector()
1776 savesel = self._getselection()
1777 iflist = self.getifnos()
1778 if len(freqs)>len(iflist):
1779 raise ValueError("number of elements in list of list "
1780 "exeeds the current IF selections")
1781 iflist = self.getifnos()
1782 for i, fval in enumerate(freqs):
1783 sel.set_ifs(iflist[i])
1784 self._setselection(sel)
1785 self._setrestfreqs([fval], [""], unit)
1786 self._setselection(savesel)
1787
1788 # list values are dict, {'value'=, 'name'=)
[1157]1789 elif isinstance(freqs[-1], dict):
[1845]1790 values = []
1791 names = []
1792 for d in freqs:
1793 values.append(d["value"])
1794 names.append(d["name"])
1795 self._setrestfreqs(values, names, unit)
[1819]1796 elif isinstance(freqs[-1], list) or isinstance(freqs[-1], tuple):
[1157]1797 sel = selector()
1798 savesel = self._getselection()
[1322]1799 iflist = self.getifnos()
[1819]1800 if len(freqs)>len(iflist):
[1845]1801 raise ValueError("number of elements in list of list exeeds"
1802 " the current IF selections")
1803 for i, fval in enumerate(freqs):
[1322]1804 sel.set_ifs(iflist[i])
[1259]1805 self._setselection(sel)
[1845]1806 self._setrestfreqs(fval, [""], unit)
[1157]1807 self._setselection(savesel)
1808 # freqs are to be taken from a linecatalog
[1153]1809 elif isinstance(freqs, linecatalog):
1810 sel = selector()
1811 savesel = self._getselection()
1812 for i in xrange(freqs.nrow()):
[1322]1813 sel.set_ifs(iflist[i])
[1153]1814 self._setselection(sel)
[1845]1815 self._setrestfreqs([freqs.get_frequency(i)],
1816 [freqs.get_name(i)], "MHz")
[1153]1817 # ensure that we are not iterating past nIF
1818 if i == self.nif()-1: break
1819 self._setselection(savesel)
[931]1820 else:
1821 return
1822 self._add_history("set_restfreqs", varlist)
1823
[2349]1824 @asaplog_post_dec
[1360]1825 def shift_refpix(self, delta):
[1846]1826 """\
[1589]1827 Shift the reference pixel of the Spectra Coordinate by an
1828 integer amount.
[1846]1829
[1589]1830 Parameters:
[1846]1831
[1589]1832 delta: the amount to shift by
[1846]1833
1834 *Note*:
1835
[1589]1836 Be careful using this with broadband data.
[1846]1837
[1360]1838 """
[2349]1839 varlist = vars()
[1731]1840 Scantable.shift_refpix(self, delta)
[2349]1841 s._add_history("shift_refpix", varlist)
[931]1842
[1862]1843 @asaplog_post_dec
[1259]1844 def history(self, filename=None):
[1846]1845 """\
[1259]1846 Print the history. Optionally to a file.
[1846]1847
[1348]1848 Parameters:
[1846]1849
[1928]1850 filename: The name of the file to save the history to.
[1846]1851
[1259]1852 """
[484]1853 hist = list(self._gethistory())
[794]1854 out = "-"*80
[484]1855 for h in hist:
[489]1856 if h.startswith("---"):
[1857]1857 out = "\n".join([out, h])
[489]1858 else:
1859 items = h.split("##")
1860 date = items[0]
1861 func = items[1]
1862 items = items[2:]
[794]1863 out += "\n"+date+"\n"
1864 out += "Function: %s\n Parameters:" % (func)
[489]1865 for i in items:
[1938]1866 if i == '':
1867 continue
[489]1868 s = i.split("=")
[1118]1869 out += "\n %s = %s" % (s[0], s[1])
[1857]1870 out = "\n".join([out, "-"*80])
[1259]1871 if filename is not None:
1872 if filename is "":
1873 filename = 'scantable_history.txt'
1874 import os
1875 filename = os.path.expandvars(os.path.expanduser(filename))
1876 if not os.path.isdir(filename):
1877 data = open(filename, 'w')
1878 data.write(out)
1879 data.close()
1880 else:
1881 msg = "Illegal file name '%s'." % (filename)
[1859]1882 raise IOError(msg)
1883 return page(out)
[2349]1884
[513]1885 #
1886 # Maths business
1887 #
[1862]1888 @asaplog_post_dec
[931]1889 def average_time(self, mask=None, scanav=False, weight='tint', align=False):
[1846]1890 """\
[2349]1891 Return the (time) weighted average of a scan. Scans will be averaged
1892 only if the source direction (RA/DEC) is within 1' otherwise
[1846]1893
1894 *Note*:
1895
[1070]1896 in channels only - align if necessary
[1846]1897
[513]1898 Parameters:
[1846]1899
[513]1900 mask: an optional mask (only used for 'var' and 'tsys'
1901 weighting)
[1855]1902
[558]1903 scanav: True averages each scan separately
1904 False (default) averages all scans together,
[1855]1905
[1099]1906 weight: Weighting scheme.
1907 'none' (mean no weight)
1908 'var' (1/var(spec) weighted)
1909 'tsys' (1/Tsys**2 weighted)
1910 'tint' (integration time weighted)
1911 'tintsys' (Tint/Tsys**2)
1912 'median' ( median averaging)
[535]1913 The default is 'tint'
[1855]1914
[931]1915 align: align the spectra in velocity before averaging. It takes
1916 the time of the first spectrum as reference time.
[1846]1917
1918 Example::
1919
[513]1920 # time average the scantable without using a mask
[710]1921 newscan = scan.average_time()
[1846]1922
[513]1923 """
1924 varlist = vars()
[1593]1925 weight = weight or 'TINT'
1926 mask = mask or ()
1927 scanav = (scanav and 'SCAN') or 'NONE'
[1118]1928 scan = (self, )
[1859]1929
1930 if align:
1931 scan = (self.freq_align(insitu=False), )
1932 s = None
1933 if weight.upper() == 'MEDIAN':
1934 s = scantable(self._math._averagechannel(scan[0], 'MEDIAN',
1935 scanav))
1936 else:
1937 s = scantable(self._math._average(scan, mask, weight.upper(),
1938 scanav))
[1099]1939 s._add_history("average_time", varlist)
[513]1940 return s
[710]1941
[1862]1942 @asaplog_post_dec
[876]1943 def convert_flux(self, jyperk=None, eta=None, d=None, insitu=None):
[1846]1944 """\
[513]1945 Return a scan where all spectra are converted to either
1946 Jansky or Kelvin depending upon the flux units of the scan table.
1947 By default the function tries to look the values up internally.
1948 If it can't find them (or if you want to over-ride), you must
1949 specify EITHER jyperk OR eta (and D which it will try to look up
1950 also if you don't set it). jyperk takes precedence if you set both.
[1846]1951
[513]1952 Parameters:
[1846]1953
[513]1954 jyperk: the Jy / K conversion factor
[1855]1955
[513]1956 eta: the aperture efficiency
[1855]1957
[1928]1958 d: the geometric diameter (metres)
[1855]1959
[513]1960 insitu: if False a new scantable is returned.
1961 Otherwise, the scaling is done in-situ
1962 The default is taken from .asaprc (False)
[1846]1963
[513]1964 """
1965 if insitu is None: insitu = rcParams['insitu']
[876]1966 self._math._setinsitu(insitu)
[513]1967 varlist = vars()
[1593]1968 jyperk = jyperk or -1.0
1969 d = d or -1.0
1970 eta = eta or -1.0
[876]1971 s = scantable(self._math._convertflux(self, d, eta, jyperk))
1972 s._add_history("convert_flux", varlist)
1973 if insitu: self._assign(s)
1974 else: return s
[513]1975
[1862]1976 @asaplog_post_dec
[876]1977 def gain_el(self, poly=None, filename="", method="linear", insitu=None):
[1846]1978 """\
[513]1979 Return a scan after applying a gain-elevation correction.
1980 The correction can be made via either a polynomial or a
1981 table-based interpolation (and extrapolation if necessary).
1982 You specify polynomial coefficients, an ascii table or neither.
1983 If you specify neither, then a polynomial correction will be made
1984 with built in coefficients known for certain telescopes (an error
1985 will occur if the instrument is not known).
1986 The data and Tsys are *divided* by the scaling factors.
[1846]1987
[513]1988 Parameters:
[1846]1989
[513]1990 poly: Polynomial coefficients (default None) to compute a
1991 gain-elevation correction as a function of
1992 elevation (in degrees).
[1855]1993
[513]1994 filename: The name of an ascii file holding correction factors.
1995 The first row of the ascii file must give the column
1996 names and these MUST include columns
[2431]1997 'ELEVATION' (degrees) and 'FACTOR' (multiply data
[513]1998 by this) somewhere.
1999 The second row must give the data type of the
2000 column. Use 'R' for Real and 'I' for Integer.
2001 An example file would be
2002 (actual factors are arbitrary) :
2003
2004 TIME ELEVATION FACTOR
2005 R R R
2006 0.1 0 0.8
2007 0.2 20 0.85
2008 0.3 40 0.9
2009 0.4 60 0.85
2010 0.5 80 0.8
2011 0.6 90 0.75
[1855]2012
[513]2013 method: Interpolation method when correcting from a table.
[2431]2014 Values are 'nearest', 'linear' (default), 'cubic'
2015 and 'spline'
[1855]2016
[513]2017 insitu: if False a new scantable is returned.
2018 Otherwise, the scaling is done in-situ
2019 The default is taken from .asaprc (False)
[1846]2020
[513]2021 """
2022
2023 if insitu is None: insitu = rcParams['insitu']
[876]2024 self._math._setinsitu(insitu)
[513]2025 varlist = vars()
[1593]2026 poly = poly or ()
[513]2027 from os.path import expandvars
2028 filename = expandvars(filename)
[876]2029 s = scantable(self._math._gainel(self, poly, filename, method))
2030 s._add_history("gain_el", varlist)
[1593]2031 if insitu:
2032 self._assign(s)
2033 else:
2034 return s
[710]2035
[1862]2036 @asaplog_post_dec
[931]2037 def freq_align(self, reftime=None, method='cubic', insitu=None):
[1846]2038 """\
[513]2039 Return a scan where all rows have been aligned in frequency/velocity.
2040 The alignment frequency frame (e.g. LSRK) is that set by function
2041 set_freqframe.
[1846]2042
[513]2043 Parameters:
[1855]2044
[513]2045 reftime: reference time to align at. By default, the time of
2046 the first row of data is used.
[1855]2047
[513]2048 method: Interpolation method for regridding the spectra.
[2431]2049 Choose from 'nearest', 'linear', 'cubic' (default)
2050 and 'spline'
[1855]2051
[513]2052 insitu: if False a new scantable is returned.
2053 Otherwise, the scaling is done in-situ
2054 The default is taken from .asaprc (False)
[1846]2055
[513]2056 """
[931]2057 if insitu is None: insitu = rcParams["insitu"]
[2429]2058 oldInsitu = self._math._insitu()
[876]2059 self._math._setinsitu(insitu)
[513]2060 varlist = vars()
[1593]2061 reftime = reftime or ""
[931]2062 s = scantable(self._math._freq_align(self, reftime, method))
[876]2063 s._add_history("freq_align", varlist)
[2429]2064 self._math._setinsitu(oldInsitu)
[2349]2065 if insitu:
2066 self._assign(s)
2067 else:
2068 return s
[513]2069
[1862]2070 @asaplog_post_dec
[1725]2071 def opacity(self, tau=None, insitu=None):
[1846]2072 """\
[513]2073 Apply an opacity correction. The data
2074 and Tsys are multiplied by the correction factor.
[1846]2075
[513]2076 Parameters:
[1855]2077
[1689]2078 tau: (list of) opacity from which the correction factor is
[513]2079 exp(tau*ZD)
[1689]2080 where ZD is the zenith-distance.
2081 If a list is provided, it has to be of length nIF,
2082 nIF*nPol or 1 and in order of IF/POL, e.g.
2083 [opif0pol0, opif0pol1, opif1pol0 ...]
[1725]2084 if tau is `None` the opacities are determined from a
2085 model.
[1855]2086
[513]2087 insitu: if False a new scantable is returned.
2088 Otherwise, the scaling is done in-situ
2089 The default is taken from .asaprc (False)
[1846]2090
[513]2091 """
[2349]2092 if insitu is None:
2093 insitu = rcParams['insitu']
[876]2094 self._math._setinsitu(insitu)
[513]2095 varlist = vars()
[1689]2096 if not hasattr(tau, "__len__"):
2097 tau = [tau]
[876]2098 s = scantable(self._math._opacity(self, tau))
2099 s._add_history("opacity", varlist)
[2349]2100 if insitu:
2101 self._assign(s)
2102 else:
2103 return s
[513]2104
[1862]2105 @asaplog_post_dec
[513]2106 def bin(self, width=5, insitu=None):
[1846]2107 """\
[513]2108 Return a scan where all spectra have been binned up.
[1846]2109
[1348]2110 Parameters:
[1846]2111
[513]2112 width: The bin width (default=5) in pixels
[1855]2113
[513]2114 insitu: if False a new scantable is returned.
2115 Otherwise, the scaling is done in-situ
2116 The default is taken from .asaprc (False)
[1846]2117
[513]2118 """
[2349]2119 if insitu is None:
2120 insitu = rcParams['insitu']
[876]2121 self._math._setinsitu(insitu)
[513]2122 varlist = vars()
[876]2123 s = scantable(self._math._bin(self, width))
[1118]2124 s._add_history("bin", varlist)
[1589]2125 if insitu:
2126 self._assign(s)
2127 else:
2128 return s
[513]2129
[1862]2130 @asaplog_post_dec
[513]2131 def resample(self, width=5, method='cubic', insitu=None):
[1846]2132 """\
[1348]2133 Return a scan where all spectra have been binned up.
[1573]2134
[1348]2135 Parameters:
[1846]2136
[513]2137 width: The bin width (default=5) in pixels
[1855]2138
[513]2139 method: Interpolation method when correcting from a table.
[2431]2140 Values are 'nearest', 'linear', 'cubic' (default)
2141 and 'spline'
[1855]2142
[513]2143 insitu: if False a new scantable is returned.
2144 Otherwise, the scaling is done in-situ
2145 The default is taken from .asaprc (False)
[1846]2146
[513]2147 """
[2349]2148 if insitu is None:
2149 insitu = rcParams['insitu']
[876]2150 self._math._setinsitu(insitu)
[513]2151 varlist = vars()
[876]2152 s = scantable(self._math._resample(self, method, width))
[1118]2153 s._add_history("resample", varlist)
[2349]2154 if insitu:
2155 self._assign(s)
2156 else:
2157 return s
[513]2158
[1862]2159 @asaplog_post_dec
[946]2160 def average_pol(self, mask=None, weight='none'):
[1846]2161 """\
[946]2162 Average the Polarisations together.
[1846]2163
[946]2164 Parameters:
[1846]2165
[946]2166 mask: An optional mask defining the region, where the
2167 averaging will be applied. The output will have all
2168 specified points masked.
[1855]2169
[946]2170 weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
2171 weighted), or 'tsys' (1/Tsys**2 weighted)
[1846]2172
[946]2173 """
2174 varlist = vars()
[1593]2175 mask = mask or ()
[1010]2176 s = scantable(self._math._averagepol(self, mask, weight.upper()))
[1118]2177 s._add_history("average_pol", varlist)
[992]2178 return s
[513]2179
[1862]2180 @asaplog_post_dec
[1145]2181 def average_beam(self, mask=None, weight='none'):
[1846]2182 """\
[1145]2183 Average the Beams together.
[1846]2184
[1145]2185 Parameters:
2186 mask: An optional mask defining the region, where the
2187 averaging will be applied. The output will have all
2188 specified points masked.
[1855]2189
[1145]2190 weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
2191 weighted), or 'tsys' (1/Tsys**2 weighted)
[1846]2192
[1145]2193 """
2194 varlist = vars()
[1593]2195 mask = mask or ()
[1145]2196 s = scantable(self._math._averagebeams(self, mask, weight.upper()))
2197 s._add_history("average_beam", varlist)
2198 return s
2199
[1586]2200 def parallactify(self, pflag):
[1846]2201 """\
[1843]2202 Set a flag to indicate whether this data should be treated as having
[1617]2203 been 'parallactified' (total phase == 0.0)
[1846]2204
[1617]2205 Parameters:
[1855]2206
[1843]2207 pflag: Bool indicating whether to turn this on (True) or
[1617]2208 off (False)
[1846]2209
[1617]2210 """
[1586]2211 varlist = vars()
2212 self._parallactify(pflag)
2213 self._add_history("parallactify", varlist)
2214
[1862]2215 @asaplog_post_dec
[992]2216 def convert_pol(self, poltype=None):
[1846]2217 """\
[992]2218 Convert the data to a different polarisation type.
[1565]2219 Note that you will need cross-polarisation terms for most conversions.
[1846]2220
[992]2221 Parameters:
[1855]2222
[992]2223 poltype: The new polarisation type. Valid types are:
[2431]2224 'linear', 'circular', 'stokes' and 'linpol'
[1846]2225
[992]2226 """
2227 varlist = vars()
[1859]2228 s = scantable(self._math._convertpol(self, poltype))
[1118]2229 s._add_history("convert_pol", varlist)
[992]2230 return s
2231
[1862]2232 @asaplog_post_dec
[2269]2233 def smooth(self, kernel="hanning", width=5.0, order=2, plot=False,
2234 insitu=None):
[1846]2235 """\
[513]2236 Smooth the spectrum by the specified kernel (conserving flux).
[1846]2237
[513]2238 Parameters:
[1846]2239
[513]2240 kernel: The type of smoothing kernel. Select from
[1574]2241 'hanning' (default), 'gaussian', 'boxcar', 'rmedian'
2242 or 'poly'
[1855]2243
[513]2244 width: The width of the kernel in pixels. For hanning this is
2245 ignored otherwise it defauls to 5 pixels.
2246 For 'gaussian' it is the Full Width Half
2247 Maximum. For 'boxcar' it is the full width.
[1574]2248 For 'rmedian' and 'poly' it is the half width.
[1855]2249
[1574]2250 order: Optional parameter for 'poly' kernel (default is 2), to
2251 specify the order of the polnomial. Ignored by all other
2252 kernels.
[1855]2253
[1819]2254 plot: plot the original and the smoothed spectra.
2255 In this each indivual fit has to be approved, by
2256 typing 'y' or 'n'
[1855]2257
[513]2258 insitu: if False a new scantable is returned.
2259 Otherwise, the scaling is done in-situ
2260 The default is taken from .asaprc (False)
[1846]2261
[513]2262 """
2263 if insitu is None: insitu = rcParams['insitu']
[876]2264 self._math._setinsitu(insitu)
[513]2265 varlist = vars()
[1819]2266
2267 if plot: orgscan = self.copy()
2268
[1574]2269 s = scantable(self._math._smooth(self, kernel.lower(), width, order))
[876]2270 s._add_history("smooth", varlist)
[1819]2271
2272 if plot:
[2150]2273 from asap.asapplotter import new_asaplot
2274 theplot = new_asaplot(rcParams['plotter.gui'])
2275 theplot.set_panels()
[1819]2276 ylab=s._get_ordinate_label()
[2150]2277 #theplot.palette(0,["#777777","red"])
[1819]2278 for r in xrange(s.nrow()):
2279 xsm=s._getabcissa(r)
2280 ysm=s._getspectrum(r)
2281 xorg=orgscan._getabcissa(r)
2282 yorg=orgscan._getspectrum(r)
[2150]2283 theplot.clear()
2284 theplot.hold()
2285 theplot.set_axes('ylabel',ylab)
2286 theplot.set_axes('xlabel',s._getabcissalabel(r))
2287 theplot.set_axes('title',s._getsourcename(r))
2288 theplot.set_line(label='Original',color="#777777")
2289 theplot.plot(xorg,yorg)
2290 theplot.set_line(label='Smoothed',color="red")
2291 theplot.plot(xsm,ysm)
[1819]2292 ### Ugly part for legend
2293 for i in [0,1]:
[2349]2294 theplot.subplots[0]['lines'].append(
2295 [theplot.subplots[0]['axes'].lines[i]]
2296 )
[2150]2297 theplot.release()
[1819]2298 ### Ugly part for legend
[2150]2299 theplot.subplots[0]['lines']=[]
[1819]2300 res = raw_input("Accept smoothing ([y]/n): ")
2301 if res.upper() == 'N':
2302 s._setspectrum(yorg, r)
[2150]2303 theplot.quit()
2304 del theplot
[1819]2305 del orgscan
2306
[876]2307 if insitu: self._assign(s)
2308 else: return s
[513]2309
[2186]2310 @asaplog_post_dec
[2435]2311 def regrid_channel(self, width=5, plot=False, insitu=None):
2312 """\
2313 Regrid the spectra by the specified channel width
2314
2315 Parameters:
2316
2317 width: The channel width (float) of regridded spectra
2318 in the current spectral unit.
2319
2320 plot: [NOT IMPLEMENTED YET]
2321 plot the original and the regridded spectra.
2322 In this each indivual fit has to be approved, by
2323 typing 'y' or 'n'
2324
2325 insitu: if False a new scantable is returned.
2326 Otherwise, the scaling is done in-situ
2327 The default is taken from .asaprc (False)
2328
2329 """
2330 if insitu is None: insitu = rcParams['insitu']
2331 varlist = vars()
2332
2333 if plot:
2334 asaplog.post()
2335 asaplog.push("Verification plot is not implemtnetd yet.")
2336 asaplog.post("WARN")
2337
2338 s = self.copy()
2339 s._regrid_specchan(width)
2340
2341 s._add_history("regrid_channel", varlist)
2342
2343# if plot:
2344# from asap.asapplotter import new_asaplot
2345# theplot = new_asaplot(rcParams['plotter.gui'])
2346# theplot.set_panels()
2347# ylab=s._get_ordinate_label()
2348# #theplot.palette(0,["#777777","red"])
2349# for r in xrange(s.nrow()):
2350# xsm=s._getabcissa(r)
2351# ysm=s._getspectrum(r)
2352# xorg=orgscan._getabcissa(r)
2353# yorg=orgscan._getspectrum(r)
2354# theplot.clear()
2355# theplot.hold()
2356# theplot.set_axes('ylabel',ylab)
2357# theplot.set_axes('xlabel',s._getabcissalabel(r))
2358# theplot.set_axes('title',s._getsourcename(r))
2359# theplot.set_line(label='Original',color="#777777")
2360# theplot.plot(xorg,yorg)
2361# theplot.set_line(label='Smoothed',color="red")
2362# theplot.plot(xsm,ysm)
2363# ### Ugly part for legend
2364# for i in [0,1]:
2365# theplot.subplots[0]['lines'].append(
2366# [theplot.subplots[0]['axes'].lines[i]]
2367# )
2368# theplot.release()
2369# ### Ugly part for legend
2370# theplot.subplots[0]['lines']=[]
2371# res = raw_input("Accept smoothing ([y]/n): ")
2372# if res.upper() == 'N':
2373# s._setspectrum(yorg, r)
2374# theplot.quit()
2375# del theplot
2376# del orgscan
2377
2378 if insitu: self._assign(s)
2379 else: return s
2380
2381 @asaplog_post_dec
[2186]2382 def _parse_wn(self, wn):
2383 if isinstance(wn, list) or isinstance(wn, tuple):
2384 return wn
2385 elif isinstance(wn, int):
2386 return [ wn ]
2387 elif isinstance(wn, str):
[2277]2388 if '-' in wn: # case 'a-b' : return [a,a+1,...,b-1,b]
[2186]2389 val = wn.split('-')
2390 val = [int(val[0]), int(val[1])]
2391 val.sort()
2392 res = [i for i in xrange(val[0], val[1]+1)]
[2277]2393 elif wn[:2] == '<=' or wn[:2] == '=<': # cases '<=a','=<a' : return [0,1,...,a-1,a]
[2186]2394 val = int(wn[2:])+1
2395 res = [i for i in xrange(val)]
[2277]2396 elif wn[-2:] == '>=' or wn[-2:] == '=>': # cases 'a>=','a=>' : return [0,1,...,a-1,a]
[2186]2397 val = int(wn[:-2])+1
2398 res = [i for i in xrange(val)]
[2277]2399 elif wn[0] == '<': # case '<a' : return [0,1,...,a-2,a-1]
[2186]2400 val = int(wn[1:])
2401 res = [i for i in xrange(val)]
[2277]2402 elif wn[-1] == '>': # case 'a>' : return [0,1,...,a-2,a-1]
[2186]2403 val = int(wn[:-1])
2404 res = [i for i in xrange(val)]
[2411]2405 elif wn[:2] == '>=' or wn[:2] == '=>': # cases '>=a','=>a' : return [a,-999], which is
2406 # then interpreted in C++
2407 # side as [a,a+1,...,a_nyq]
2408 # (CAS-3759)
[2186]2409 val = int(wn[2:])
[2411]2410 res = [val, -999]
2411 #res = [i for i in xrange(val, self.nchan()/2+1)]
2412 elif wn[-2:] == '<=' or wn[-2:] == '=<': # cases 'a<=','a=<' : return [a,-999], which is
2413 # then interpreted in C++
2414 # side as [a,a+1,...,a_nyq]
2415 # (CAS-3759)
[2186]2416 val = int(wn[:-2])
[2411]2417 res = [val, -999]
2418 #res = [i for i in xrange(val, self.nchan()/2+1)]
2419 elif wn[0] == '>': # case '>a' : return [a+1,-999], which is
2420 # then interpreted in C++
2421 # side as [a+1,a+2,...,a_nyq]
2422 # (CAS-3759)
[2186]2423 val = int(wn[1:])+1
[2411]2424 res = [val, -999]
2425 #res = [i for i in xrange(val, self.nchan()/2+1)]
2426 elif wn[-1] == '<': # case 'a<' : return [a+1,-999], which is
2427 # then interpreted in C++
2428 # side as [a+1,a+2,...,a_nyq]
2429 # (CAS-3759)
[2186]2430 val = int(wn[:-1])+1
[2411]2431 res = [val, -999]
2432 #res = [i for i in xrange(val, self.nchan()/2+1)]
[2012]2433
[2186]2434 return res
2435 else:
2436 msg = 'wrong value given for addwn/rejwn'
2437 raise RuntimeError(msg)
2438
2439
[1862]2440 @asaplog_post_dec
[2277]2441 def sinusoid_baseline(self, insitu=None, mask=None, applyfft=None,
[2269]2442 fftmethod=None, fftthresh=None,
2443 addwn=None, rejwn=None, clipthresh=None,
2444 clipniter=None, plot=None,
2445 getresidual=None, showprogress=None,
2446 minnrow=None, outlog=None, blfile=None):
[2047]2447 """\
[2349]2448 Return a scan which has been baselined (all rows) with sinusoidal
2449 functions.
2450
[2047]2451 Parameters:
[2186]2452 insitu: if False a new scantable is returned.
[2081]2453 Otherwise, the scaling is done in-situ
2454 The default is taken from .asaprc (False)
[2186]2455 mask: an optional mask
2456 applyfft: if True use some method, such as FFT, to find
2457 strongest sinusoidal components in the wavenumber
2458 domain to be used for baseline fitting.
2459 default is True.
2460 fftmethod: method to find the strong sinusoidal components.
2461 now only 'fft' is available and it is the default.
2462 fftthresh: the threshold to select wave numbers to be used for
2463 fitting from the distribution of amplitudes in the
2464 wavenumber domain.
2465 both float and string values accepted.
2466 given a float value, the unit is set to sigma.
2467 for string values, allowed formats include:
[2349]2468 'xsigma' or 'x' (= x-sigma level. e.g.,
2469 '3sigma'), or
[2186]2470 'topx' (= the x strongest ones, e.g. 'top5').
2471 default is 3.0 (unit: sigma).
2472 addwn: the additional wave numbers to be used for fitting.
2473 list or integer value is accepted to specify every
2474 wave numbers. also string value can be used in case
2475 you need to specify wave numbers in a certain range,
2476 e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b),
2477 '<a' (= 0,1,...,a-2,a-1),
2478 '>=a' (= a, a+1, ... up to the maximum wave
2479 number corresponding to the Nyquist
2480 frequency for the case of FFT).
[2411]2481 default is [0].
[2186]2482 rejwn: the wave numbers NOT to be used for fitting.
2483 can be set just as addwn but has higher priority:
2484 wave numbers which are specified both in addwn
2485 and rejwn will NOT be used. default is [].
[2081]2486 clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
[2349]2487 clipniter: maximum number of iteration of 'clipthresh'-sigma
2488 clipping (default is 0)
[2081]2489 plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
2490 plot the fit and the residual. In this each
2491 indivual fit has to be approved, by typing 'y'
2492 or 'n'
2493 getresidual: if False, returns best-fit values instead of
2494 residual. (default is True)
[2189]2495 showprogress: show progress status for large data.
2496 default is True.
2497 minnrow: minimum number of input spectra to show.
2498 default is 1000.
[2081]2499 outlog: Output the coefficients of the best-fit
2500 function to logger (default is False)
2501 blfile: Name of a text file in which the best-fit
2502 parameter values to be written
[2186]2503 (default is '': no file/logger output)
[2047]2504
2505 Example:
[2349]2506 # return a scan baselined by a combination of sinusoidal curves
2507 # having wave numbers in spectral window up to 10,
[2047]2508 # also with 3-sigma clipping, iteration up to 4 times
[2186]2509 bscan = scan.sinusoid_baseline(addwn='<=10',clipthresh=3.0,clipniter=4)
[2081]2510
2511 Note:
2512 The best-fit parameter values output in logger and/or blfile are now
2513 based on specunit of 'channel'.
[2047]2514 """
2515
[2186]2516 try:
2517 varlist = vars()
[2047]2518
[2186]2519 if insitu is None: insitu = rcParams['insitu']
2520 if insitu:
2521 workscan = self
2522 else:
2523 workscan = self.copy()
2524
[2410]2525 #if mask is None: mask = [True for i in xrange(workscan.nchan())]
2526 if mask is None: mask = []
[2186]2527 if applyfft is None: applyfft = True
2528 if fftmethod is None: fftmethod = 'fft'
2529 if fftthresh is None: fftthresh = 3.0
[2411]2530 if addwn is None: addwn = [0]
[2186]2531 if rejwn is None: rejwn = []
2532 if clipthresh is None: clipthresh = 3.0
2533 if clipniter is None: clipniter = 0
2534 if plot is None: plot = False
2535 if getresidual is None: getresidual = True
[2189]2536 if showprogress is None: showprogress = True
2537 if minnrow is None: minnrow = 1000
[2186]2538 if outlog is None: outlog = False
2539 if blfile is None: blfile = ''
[2047]2540
[2081]2541 #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method.
[2349]2542 workscan._sinusoid_baseline(mask, applyfft, fftmethod.lower(),
2543 str(fftthresh).lower(),
2544 workscan._parse_wn(addwn),
2545 workscan._parse_wn(rejwn), clipthresh,
2546 clipniter, getresidual,
2547 pack_progress_params(showprogress,
2548 minnrow), outlog,
2549 blfile)
[2186]2550 workscan._add_history('sinusoid_baseline', varlist)
[2047]2551
2552 if insitu:
2553 self._assign(workscan)
2554 else:
2555 return workscan
2556
2557 except RuntimeError, e:
[2186]2558 raise_fitting_failure_exception(e)
[2047]2559
2560
[2186]2561 @asaplog_post_dec
[2349]2562 def auto_sinusoid_baseline(self, insitu=None, mask=None, applyfft=None,
2563 fftmethod=None, fftthresh=None,
2564 addwn=None, rejwn=None, clipthresh=None,
2565 clipniter=None, edge=None, threshold=None,
2566 chan_avg_limit=None, plot=None,
2567 getresidual=None, showprogress=None,
2568 minnrow=None, outlog=None, blfile=None):
[2047]2569 """\
[2349]2570 Return a scan which has been baselined (all rows) with sinusoidal
2571 functions.
[2047]2572 Spectral lines are detected first using linefinder and masked out
2573 to avoid them affecting the baseline solution.
2574
2575 Parameters:
[2189]2576 insitu: if False a new scantable is returned.
2577 Otherwise, the scaling is done in-situ
2578 The default is taken from .asaprc (False)
2579 mask: an optional mask retreived from scantable
2580 applyfft: if True use some method, such as FFT, to find
2581 strongest sinusoidal components in the wavenumber
2582 domain to be used for baseline fitting.
2583 default is True.
2584 fftmethod: method to find the strong sinusoidal components.
2585 now only 'fft' is available and it is the default.
2586 fftthresh: the threshold to select wave numbers to be used for
2587 fitting from the distribution of amplitudes in the
2588 wavenumber domain.
2589 both float and string values accepted.
2590 given a float value, the unit is set to sigma.
2591 for string values, allowed formats include:
[2349]2592 'xsigma' or 'x' (= x-sigma level. e.g.,
2593 '3sigma'), or
[2189]2594 'topx' (= the x strongest ones, e.g. 'top5').
2595 default is 3.0 (unit: sigma).
2596 addwn: the additional wave numbers to be used for fitting.
2597 list or integer value is accepted to specify every
2598 wave numbers. also string value can be used in case
2599 you need to specify wave numbers in a certain range,
2600 e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b),
2601 '<a' (= 0,1,...,a-2,a-1),
2602 '>=a' (= a, a+1, ... up to the maximum wave
2603 number corresponding to the Nyquist
2604 frequency for the case of FFT).
[2411]2605 default is [0].
[2189]2606 rejwn: the wave numbers NOT to be used for fitting.
2607 can be set just as addwn but has higher priority:
2608 wave numbers which are specified both in addwn
2609 and rejwn will NOT be used. default is [].
2610 clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
[2349]2611 clipniter: maximum number of iteration of 'clipthresh'-sigma
2612 clipping (default is 0)
[2189]2613 edge: an optional number of channel to drop at
2614 the edge of spectrum. If only one value is
2615 specified, the same number will be dropped
2616 from both sides of the spectrum. Default
2617 is to keep all channels. Nested tuples
2618 represent individual edge selection for
2619 different IFs (a number of spectral channels
2620 can be different)
2621 threshold: the threshold used by line finder. It is
2622 better to keep it large as only strong lines
2623 affect the baseline solution.
2624 chan_avg_limit: a maximum number of consequtive spectral
2625 channels to average during the search of
2626 weak and broad lines. The default is no
2627 averaging (and no search for weak lines).
2628 If such lines can affect the fitted baseline
2629 (e.g. a high order polynomial is fitted),
2630 increase this parameter (usually values up
2631 to 8 are reasonable). Most users of this
2632 method should find the default value sufficient.
2633 plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
2634 plot the fit and the residual. In this each
2635 indivual fit has to be approved, by typing 'y'
2636 or 'n'
2637 getresidual: if False, returns best-fit values instead of
2638 residual. (default is True)
2639 showprogress: show progress status for large data.
2640 default is True.
2641 minnrow: minimum number of input spectra to show.
2642 default is 1000.
2643 outlog: Output the coefficients of the best-fit
2644 function to logger (default is False)
2645 blfile: Name of a text file in which the best-fit
2646 parameter values to be written
2647 (default is "": no file/logger output)
[2047]2648
2649 Example:
[2186]2650 bscan = scan.auto_sinusoid_baseline(addwn='<=10', insitu=False)
[2081]2651
2652 Note:
2653 The best-fit parameter values output in logger and/or blfile are now
2654 based on specunit of 'channel'.
[2047]2655 """
2656
[2186]2657 try:
2658 varlist = vars()
[2047]2659
[2186]2660 if insitu is None: insitu = rcParams['insitu']
2661 if insitu:
2662 workscan = self
[2047]2663 else:
[2186]2664 workscan = self.copy()
2665
[2410]2666 #if mask is None: mask = [True for i in xrange(workscan.nchan())]
2667 if mask is None: mask = []
[2186]2668 if applyfft is None: applyfft = True
2669 if fftmethod is None: fftmethod = 'fft'
2670 if fftthresh is None: fftthresh = 3.0
[2411]2671 if addwn is None: addwn = [0]
[2186]2672 if rejwn is None: rejwn = []
2673 if clipthresh is None: clipthresh = 3.0
2674 if clipniter is None: clipniter = 0
2675 if edge is None: edge = (0,0)
2676 if threshold is None: threshold = 3
2677 if chan_avg_limit is None: chan_avg_limit = 1
2678 if plot is None: plot = False
2679 if getresidual is None: getresidual = True
[2189]2680 if showprogress is None: showprogress = True
2681 if minnrow is None: minnrow = 1000
[2186]2682 if outlog is None: outlog = False
2683 if blfile is None: blfile = ''
[2047]2684
[2277]2685 #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method.
[2349]2686 workscan._auto_sinusoid_baseline(mask, applyfft,
2687 fftmethod.lower(),
2688 str(fftthresh).lower(),
2689 workscan._parse_wn(addwn),
2690 workscan._parse_wn(rejwn),
2691 clipthresh, clipniter,
2692 normalise_edge_param(edge),
2693 threshold, chan_avg_limit,
2694 getresidual,
2695 pack_progress_params(showprogress,
2696 minnrow),
2697 outlog, blfile)
[2047]2698 workscan._add_history("auto_sinusoid_baseline", varlist)
2699
2700 if insitu:
2701 self._assign(workscan)
2702 else:
2703 return workscan
2704
2705 except RuntimeError, e:
[2186]2706 raise_fitting_failure_exception(e)
[2047]2707
2708 @asaplog_post_dec
[2349]2709 def cspline_baseline(self, insitu=None, mask=None, npiece=None,
2710 clipthresh=None, clipniter=None, plot=None,
2711 getresidual=None, showprogress=None, minnrow=None,
2712 outlog=None, blfile=None):
[1846]2713 """\
[2349]2714 Return a scan which has been baselined (all rows) by cubic spline
2715 function (piecewise cubic polynomial).
2716
[513]2717 Parameters:
[2189]2718 insitu: If False a new scantable is returned.
2719 Otherwise, the scaling is done in-situ
2720 The default is taken from .asaprc (False)
2721 mask: An optional mask
2722 npiece: Number of pieces. (default is 2)
2723 clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
[2349]2724 clipniter: maximum number of iteration of 'clipthresh'-sigma
2725 clipping (default is 0)
[2189]2726 plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
2727 plot the fit and the residual. In this each
2728 indivual fit has to be approved, by typing 'y'
2729 or 'n'
2730 getresidual: if False, returns best-fit values instead of
2731 residual. (default is True)
2732 showprogress: show progress status for large data.
2733 default is True.
2734 minnrow: minimum number of input spectra to show.
2735 default is 1000.
2736 outlog: Output the coefficients of the best-fit
2737 function to logger (default is False)
2738 blfile: Name of a text file in which the best-fit
2739 parameter values to be written
2740 (default is "": no file/logger output)
[1846]2741
[2012]2742 Example:
[2349]2743 # return a scan baselined by a cubic spline consisting of 2 pieces
2744 # (i.e., 1 internal knot),
[2012]2745 # also with 3-sigma clipping, iteration up to 4 times
2746 bscan = scan.cspline_baseline(npiece=2,clipthresh=3.0,clipniter=4)
[2081]2747
2748 Note:
2749 The best-fit parameter values output in logger and/or blfile are now
2750 based on specunit of 'channel'.
[2012]2751 """
2752
[2186]2753 try:
2754 varlist = vars()
2755
2756 if insitu is None: insitu = rcParams['insitu']
2757 if insitu:
2758 workscan = self
2759 else:
2760 workscan = self.copy()
[1855]2761
[2410]2762 #if mask is None: mask = [True for i in xrange(workscan.nchan())]
2763 if mask is None: mask = []
[2189]2764 if npiece is None: npiece = 2
2765 if clipthresh is None: clipthresh = 3.0
2766 if clipniter is None: clipniter = 0
2767 if plot is None: plot = False
2768 if getresidual is None: getresidual = True
2769 if showprogress is None: showprogress = True
2770 if minnrow is None: minnrow = 1000
2771 if outlog is None: outlog = False
2772 if blfile is None: blfile = ''
[1855]2773
[2012]2774 #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
[2349]2775 workscan._cspline_baseline(mask, npiece, clipthresh, clipniter,
2776 getresidual,
2777 pack_progress_params(showprogress,
2778 minnrow), outlog,
2779 blfile)
[2012]2780 workscan._add_history("cspline_baseline", varlist)
2781
2782 if insitu:
2783 self._assign(workscan)
2784 else:
2785 return workscan
2786
2787 except RuntimeError, e:
[2186]2788 raise_fitting_failure_exception(e)
[1855]2789
[2186]2790 @asaplog_post_dec
[2349]2791 def auto_cspline_baseline(self, insitu=None, mask=None, npiece=None,
2792 clipthresh=None, clipniter=None,
2793 edge=None, threshold=None, chan_avg_limit=None,
2794 getresidual=None, plot=None,
2795 showprogress=None, minnrow=None, outlog=None,
2796 blfile=None):
[2012]2797 """\
2798 Return a scan which has been baselined (all rows) by cubic spline
2799 function (piecewise cubic polynomial).
2800 Spectral lines are detected first using linefinder and masked out
2801 to avoid them affecting the baseline solution.
2802
2803 Parameters:
[2189]2804 insitu: if False a new scantable is returned.
2805 Otherwise, the scaling is done in-situ
2806 The default is taken from .asaprc (False)
2807 mask: an optional mask retreived from scantable
2808 npiece: Number of pieces. (default is 2)
2809 clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
[2349]2810 clipniter: maximum number of iteration of 'clipthresh'-sigma
2811 clipping (default is 0)
[2189]2812 edge: an optional number of channel to drop at
2813 the edge of spectrum. If only one value is
2814 specified, the same number will be dropped
2815 from both sides of the spectrum. Default
2816 is to keep all channels. Nested tuples
2817 represent individual edge selection for
2818 different IFs (a number of spectral channels
2819 can be different)
2820 threshold: the threshold used by line finder. It is
2821 better to keep it large as only strong lines
2822 affect the baseline solution.
2823 chan_avg_limit: a maximum number of consequtive spectral
2824 channels to average during the search of
2825 weak and broad lines. The default is no
2826 averaging (and no search for weak lines).
2827 If such lines can affect the fitted baseline
2828 (e.g. a high order polynomial is fitted),
2829 increase this parameter (usually values up
2830 to 8 are reasonable). Most users of this
2831 method should find the default value sufficient.
2832 plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
2833 plot the fit and the residual. In this each
2834 indivual fit has to be approved, by typing 'y'
2835 or 'n'
2836 getresidual: if False, returns best-fit values instead of
2837 residual. (default is True)
2838 showprogress: show progress status for large data.
2839 default is True.
2840 minnrow: minimum number of input spectra to show.
2841 default is 1000.
2842 outlog: Output the coefficients of the best-fit
2843 function to logger (default is False)
2844 blfile: Name of a text file in which the best-fit
2845 parameter values to be written
2846 (default is "": no file/logger output)
[1846]2847
[1907]2848 Example:
[2012]2849 bscan = scan.auto_cspline_baseline(npiece=3, insitu=False)
[2081]2850
2851 Note:
2852 The best-fit parameter values output in logger and/or blfile are now
2853 based on specunit of 'channel'.
[2012]2854 """
[1846]2855
[2186]2856 try:
2857 varlist = vars()
[2012]2858
[2186]2859 if insitu is None: insitu = rcParams['insitu']
2860 if insitu:
2861 workscan = self
[1391]2862 else:
[2186]2863 workscan = self.copy()
2864
[2410]2865 #if mask is None: mask = [True for i in xrange(workscan.nchan())]
2866 if mask is None: mask = []
[2186]2867 if npiece is None: npiece = 2
2868 if clipthresh is None: clipthresh = 3.0
2869 if clipniter is None: clipniter = 0
2870 if edge is None: edge = (0, 0)
2871 if threshold is None: threshold = 3
2872 if chan_avg_limit is None: chan_avg_limit = 1
2873 if plot is None: plot = False
2874 if getresidual is None: getresidual = True
[2189]2875 if showprogress is None: showprogress = True
2876 if minnrow is None: minnrow = 1000
[2186]2877 if outlog is None: outlog = False
2878 if blfile is None: blfile = ''
[1819]2879
[2277]2880 #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
[2269]2881 workscan._auto_cspline_baseline(mask, npiece, clipthresh,
2882 clipniter,
2883 normalise_edge_param(edge),
2884 threshold,
2885 chan_avg_limit, getresidual,
2886 pack_progress_params(showprogress,
2887 minnrow),
2888 outlog, blfile)
[2012]2889 workscan._add_history("auto_cspline_baseline", varlist)
[1907]2890
[1856]2891 if insitu:
2892 self._assign(workscan)
2893 else:
2894 return workscan
[2012]2895
2896 except RuntimeError, e:
[2186]2897 raise_fitting_failure_exception(e)
[513]2898
[1931]2899 @asaplog_post_dec
[2269]2900 def poly_baseline(self, mask=None, order=None, insitu=None, plot=None,
2901 getresidual=None, showprogress=None, minnrow=None,
2902 outlog=None, blfile=None):
[1907]2903 """\
2904 Return a scan which has been baselined (all rows) by a polynomial.
2905 Parameters:
[2189]2906 insitu: if False a new scantable is returned.
2907 Otherwise, the scaling is done in-situ
2908 The default is taken from .asaprc (False)
2909 mask: an optional mask
2910 order: the order of the polynomial (default is 0)
2911 plot: plot the fit and the residual. In this each
2912 indivual fit has to be approved, by typing 'y'
2913 or 'n'
2914 getresidual: if False, returns best-fit values instead of
2915 residual. (default is True)
2916 showprogress: show progress status for large data.
2917 default is True.
2918 minnrow: minimum number of input spectra to show.
2919 default is 1000.
2920 outlog: Output the coefficients of the best-fit
2921 function to logger (default is False)
2922 blfile: Name of a text file in which the best-fit
2923 parameter values to be written
2924 (default is "": no file/logger output)
[2012]2925
[1907]2926 Example:
2927 # return a scan baselined by a third order polynomial,
2928 # not using a mask
2929 bscan = scan.poly_baseline(order=3)
2930 """
[1931]2931
[2186]2932 try:
2933 varlist = vars()
[1931]2934
[2269]2935 if insitu is None:
2936 insitu = rcParams["insitu"]
[2186]2937 if insitu:
2938 workscan = self
2939 else:
2940 workscan = self.copy()
[1907]2941
[2410]2942 #if mask is None: mask = [True for i in \
2943 # xrange(workscan.nchan())]
2944 if mask is None: mask = []
[2189]2945 if order is None: order = 0
2946 if plot is None: plot = False
2947 if getresidual is None: getresidual = True
2948 if showprogress is None: showprogress = True
2949 if minnrow is None: minnrow = 1000
2950 if outlog is None: outlog = False
2951 if blfile is None: blfile = ""
[1907]2952
[2012]2953 if plot:
[2269]2954 outblfile = (blfile != "") and \
[2349]2955 os.path.exists(os.path.expanduser(
2956 os.path.expandvars(blfile))
2957 )
[2269]2958 if outblfile:
2959 blf = open(blfile, "a")
[2012]2960
[1907]2961 f = fitter()
2962 f.set_function(lpoly=order)
[2186]2963
2964 rows = xrange(workscan.nrow())
2965 #if len(rows) > 0: workscan._init_blinfo()
2966
[1907]2967 for r in rows:
2968 f.x = workscan._getabcissa(r)
2969 f.y = workscan._getspectrum(r)
2970 f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
2971 f.data = None
2972 f.fit()
2973
2974 f.plot(residual=True)
2975 accept_fit = raw_input("Accept fit ( [y]/n ): ")
2976 if accept_fit.upper() == "N":
[2012]2977 #workscan._append_blinfo(None, None, None)
[1907]2978 continue
[2012]2979
2980 blpars = f.get_parameters()
2981 masklist = workscan.get_masklist(f.mask, row=r, silent=True)
2982 #workscan._append_blinfo(blpars, masklist, f.mask)
[2269]2983 workscan._setspectrum((f.fitter.getresidual()
2984 if getresidual else f.fitter.getfit()), r)
[1907]2985
[2012]2986 if outblfile:
2987 rms = workscan.get_rms(f.mask, r)
[2269]2988 dataout = \
2989 workscan.format_blparams_row(blpars["params"],
2990 blpars["fixed"],
2991 rms, str(masklist),
2992 r, True)
[2012]2993 blf.write(dataout)
2994
[1907]2995 f._p.unmap()
2996 f._p = None
[2012]2997
[2349]2998 if outblfile:
2999 blf.close()
[1907]3000 else:
[2269]3001 workscan._poly_baseline(mask, order, getresidual,
3002 pack_progress_params(showprogress,
3003 minnrow),
3004 outlog, blfile)
[1907]3005
3006 workscan._add_history("poly_baseline", varlist)
3007
3008 if insitu:
3009 self._assign(workscan)
3010 else:
3011 return workscan
3012
[1919]3013 except RuntimeError, e:
[2186]3014 raise_fitting_failure_exception(e)
[1907]3015
[2186]3016 @asaplog_post_dec
[2269]3017 def auto_poly_baseline(self, mask=None, order=None, edge=None,
3018 threshold=None, chan_avg_limit=None,
3019 plot=None, insitu=None,
3020 getresidual=None, showprogress=None,
3021 minnrow=None, outlog=None, blfile=None):
[1846]3022 """\
[1931]3023 Return a scan which has been baselined (all rows) by a polynomial.
[880]3024 Spectral lines are detected first using linefinder and masked out
3025 to avoid them affecting the baseline solution.
3026
3027 Parameters:
[2189]3028 insitu: if False a new scantable is returned.
3029 Otherwise, the scaling is done in-situ
3030 The default is taken from .asaprc (False)
3031 mask: an optional mask retreived from scantable
3032 order: the order of the polynomial (default is 0)
3033 edge: an optional number of channel to drop at
3034 the edge of spectrum. If only one value is
3035 specified, the same number will be dropped
3036 from both sides of the spectrum. Default
3037 is to keep all channels. Nested tuples
3038 represent individual edge selection for
3039 different IFs (a number of spectral channels
3040 can be different)
3041 threshold: the threshold used by line finder. It is
3042 better to keep it large as only strong lines
3043 affect the baseline solution.
3044 chan_avg_limit: a maximum number of consequtive spectral
3045 channels to average during the search of
3046 weak and broad lines. The default is no
3047 averaging (and no search for weak lines).
3048 If such lines can affect the fitted baseline
3049 (e.g. a high order polynomial is fitted),
3050 increase this parameter (usually values up
3051 to 8 are reasonable). Most users of this
3052 method should find the default value sufficient.
3053 plot: plot the fit and the residual. In this each
3054 indivual fit has to be approved, by typing 'y'
3055 or 'n'
3056 getresidual: if False, returns best-fit values instead of
3057 residual. (default is True)
3058 showprogress: show progress status for large data.
3059 default is True.
3060 minnrow: minimum number of input spectra to show.
3061 default is 1000.
3062 outlog: Output the coefficients of the best-fit
3063 function to logger (default is False)
3064 blfile: Name of a text file in which the best-fit
3065 parameter values to be written
3066 (default is "": no file/logger output)
[1846]3067
[2012]3068 Example:
3069 bscan = scan.auto_poly_baseline(order=7, insitu=False)
3070 """
[880]3071
[2186]3072 try:
3073 varlist = vars()
[1846]3074
[2269]3075 if insitu is None:
3076 insitu = rcParams['insitu']
[2186]3077 if insitu:
3078 workscan = self
3079 else:
3080 workscan = self.copy()
[1846]3081
[2410]3082 #if mask is None: mask = [True for i in xrange(workscan.nchan())]
3083 if mask is None: mask = []
[2186]3084 if order is None: order = 0
3085 if edge is None: edge = (0, 0)
3086 if threshold is None: threshold = 3
3087 if chan_avg_limit is None: chan_avg_limit = 1
3088 if plot is None: plot = False
3089 if getresidual is None: getresidual = True
[2189]3090 if showprogress is None: showprogress = True
3091 if minnrow is None: minnrow = 1000
[2186]3092 if outlog is None: outlog = False
3093 if blfile is None: blfile = ''
[1846]3094
[2186]3095 edge = normalise_edge_param(edge)
[880]3096
[2012]3097 if plot:
[2269]3098 outblfile = (blfile != "") and \
3099 os.path.exists(os.path.expanduser(os.path.expandvars(blfile)))
[2012]3100 if outblfile: blf = open(blfile, "a")
3101
[2186]3102 from asap.asaplinefind import linefinder
[2012]3103 fl = linefinder()
[2269]3104 fl.set_options(threshold=threshold, avg_limit=chan_avg_limit)
[2012]3105 fl.set_scan(workscan)
[2186]3106
[2012]3107 f = fitter()
3108 f.set_function(lpoly=order)
[880]3109
[2186]3110 rows = xrange(workscan.nrow())
3111 #if len(rows) > 0: workscan._init_blinfo()
3112
[2012]3113 for r in rows:
[2186]3114 idx = 2*workscan.getif(r)
[2269]3115 fl.find_lines(r, mask_and(mask, workscan._getmask(r)),
3116 edge[idx:idx+2]) # (CAS-1434)
[907]3117
[2012]3118 f.x = workscan._getabcissa(r)
3119 f.y = workscan._getspectrum(r)
3120 f.mask = fl.get_mask()
3121 f.data = None
3122 f.fit()
3123
3124 f.plot(residual=True)
3125 accept_fit = raw_input("Accept fit ( [y]/n ): ")
3126 if accept_fit.upper() == "N":
3127 #workscan._append_blinfo(None, None, None)
3128 continue
3129
3130 blpars = f.get_parameters()
3131 masklist = workscan.get_masklist(f.mask, row=r, silent=True)
3132 #workscan._append_blinfo(blpars, masklist, f.mask)
[2349]3133 workscan._setspectrum(
3134 (f.fitter.getresidual() if getresidual
3135 else f.fitter.getfit()), r
3136 )
[2012]3137
3138 if outblfile:
3139 rms = workscan.get_rms(f.mask, r)
[2269]3140 dataout = \
3141 workscan.format_blparams_row(blpars["params"],
3142 blpars["fixed"],
3143 rms, str(masklist),
3144 r, True)
[2012]3145 blf.write(dataout)
3146
3147 f._p.unmap()
3148 f._p = None
3149
3150 if outblfile: blf.close()
3151 else:
[2269]3152 workscan._auto_poly_baseline(mask, order, edge, threshold,
3153 chan_avg_limit, getresidual,
3154 pack_progress_params(showprogress,
3155 minnrow),
3156 outlog, blfile)
[2012]3157
3158 workscan._add_history("auto_poly_baseline", varlist)
3159
3160 if insitu:
3161 self._assign(workscan)
3162 else:
3163 return workscan
3164
3165 except RuntimeError, e:
[2186]3166 raise_fitting_failure_exception(e)
[2012]3167
3168 def _init_blinfo(self):
3169 """\
3170 Initialise the following three auxiliary members:
3171 blpars : parameters of the best-fit baseline,
3172 masklists : mask data (edge positions of masked channels) and
3173 actualmask : mask data (in boolean list),
3174 to keep for use later (including output to logger/text files).
3175 Used by poly_baseline() and auto_poly_baseline() in case of
3176 'plot=True'.
3177 """
3178 self.blpars = []
3179 self.masklists = []
3180 self.actualmask = []
3181 return
[880]3182
[2012]3183 def _append_blinfo(self, data_blpars, data_masklists, data_actualmask):
3184 """\
3185 Append baseline-fitting related info to blpars, masklist and
3186 actualmask.
3187 """
3188 self.blpars.append(data_blpars)
3189 self.masklists.append(data_masklists)
3190 self.actualmask.append(data_actualmask)
3191 return
3192
[1862]3193 @asaplog_post_dec
[914]3194 def rotate_linpolphase(self, angle):
[1846]3195 """\
[914]3196 Rotate the phase of the complex polarization O=Q+iU correlation.
3197 This is always done in situ in the raw data. So if you call this
3198 function more than once then each call rotates the phase further.
[1846]3199
[914]3200 Parameters:
[1846]3201
[914]3202 angle: The angle (degrees) to rotate (add) by.
[1846]3203
3204 Example::
3205
[914]3206 scan.rotate_linpolphase(2.3)
[1846]3207
[914]3208 """
3209 varlist = vars()
[936]3210 self._math._rotate_linpolphase(self, angle)
[914]3211 self._add_history("rotate_linpolphase", varlist)
3212 return
[710]3213
[1862]3214 @asaplog_post_dec
[914]3215 def rotate_xyphase(self, angle):
[1846]3216 """\
[914]3217 Rotate the phase of the XY correlation. This is always done in situ
3218 in the data. So if you call this function more than once
3219 then each call rotates the phase further.
[1846]3220
[914]3221 Parameters:
[1846]3222
[914]3223 angle: The angle (degrees) to rotate (add) by.
[1846]3224
3225 Example::
3226
[914]3227 scan.rotate_xyphase(2.3)
[1846]3228
[914]3229 """
3230 varlist = vars()
[936]3231 self._math._rotate_xyphase(self, angle)
[914]3232 self._add_history("rotate_xyphase", varlist)
3233 return
3234
[1862]3235 @asaplog_post_dec
[914]3236 def swap_linears(self):
[1846]3237 """\
[1573]3238 Swap the linear polarisations XX and YY, or better the first two
[1348]3239 polarisations as this also works for ciculars.
[914]3240 """
3241 varlist = vars()
[936]3242 self._math._swap_linears(self)
[914]3243 self._add_history("swap_linears", varlist)
3244 return
3245
[1862]3246 @asaplog_post_dec
[914]3247 def invert_phase(self):
[1846]3248 """\
[914]3249 Invert the phase of the complex polarisation
3250 """
3251 varlist = vars()
[936]3252 self._math._invert_phase(self)
[914]3253 self._add_history("invert_phase", varlist)
3254 return
3255
[1862]3256 @asaplog_post_dec
[876]3257 def add(self, offset, insitu=None):
[1846]3258 """\
[513]3259 Return a scan where all spectra have the offset added
[1846]3260
[513]3261 Parameters:
[1846]3262
[513]3263 offset: the offset
[1855]3264
[513]3265 insitu: if False a new scantable is returned.
3266 Otherwise, the scaling is done in-situ
3267 The default is taken from .asaprc (False)
[1846]3268
[513]3269 """
3270 if insitu is None: insitu = rcParams['insitu']
[876]3271 self._math._setinsitu(insitu)
[513]3272 varlist = vars()
[876]3273 s = scantable(self._math._unaryop(self, offset, "ADD", False))
[1118]3274 s._add_history("add", varlist)
[876]3275 if insitu:
3276 self._assign(s)
3277 else:
[513]3278 return s
3279
[1862]3280 @asaplog_post_dec
[1308]3281 def scale(self, factor, tsys=True, insitu=None):
[1846]3282 """\
3283
[1938]3284 Return a scan where all spectra are scaled by the given 'factor'
[1846]3285
[513]3286 Parameters:
[1846]3287
[1819]3288 factor: the scaling factor (float or 1D float list)
[1855]3289
[513]3290 insitu: if False a new scantable is returned.
3291 Otherwise, the scaling is done in-situ
3292 The default is taken from .asaprc (False)
[1855]3293
[513]3294 tsys: if True (default) then apply the operation to Tsys
3295 as well as the data
[1846]3296
[513]3297 """
3298 if insitu is None: insitu = rcParams['insitu']
[876]3299 self._math._setinsitu(insitu)
[513]3300 varlist = vars()
[1819]3301 s = None
3302 import numpy
3303 if isinstance(factor, list) or isinstance(factor, numpy.ndarray):
[2320]3304 if isinstance(factor[0], list) or isinstance(factor[0],
3305 numpy.ndarray):
[1819]3306 from asapmath import _array2dOp
[2320]3307 s = _array2dOp( self, factor, "MUL", tsys, insitu )
[1819]3308 else:
[2320]3309 s = scantable( self._math._arrayop( self, factor,
3310 "MUL", tsys ) )
[1819]3311 else:
[2320]3312 s = scantable(self._math._unaryop(self, factor, "MUL", tsys))
[1118]3313 s._add_history("scale", varlist)
[876]3314 if insitu:
3315 self._assign(s)
3316 else:
[513]3317 return s
3318
[2349]3319 @preserve_selection
3320 def set_sourcetype(self, match, matchtype="pattern",
[1504]3321 sourcetype="reference"):
[1846]3322 """\
[1502]3323 Set the type of the source to be an source or reference scan
[1846]3324 using the provided pattern.
3325
[1502]3326 Parameters:
[1846]3327
[1504]3328 match: a Unix style pattern, regular expression or selector
[1855]3329
[1504]3330 matchtype: 'pattern' (default) UNIX style pattern or
3331 'regex' regular expression
[1855]3332
[1502]3333 sourcetype: the type of the source to use (source/reference)
[1846]3334
[1502]3335 """
3336 varlist = vars()
3337 basesel = self.get_selection()
3338 stype = -1
3339 if sourcetype.lower().startswith("r"):
3340 stype = 1
3341 elif sourcetype.lower().startswith("s"):
3342 stype = 0
[1504]3343 else:
[1502]3344 raise ValueError("Illegal sourcetype use s(ource) or r(eference)")
[1504]3345 if matchtype.lower().startswith("p"):
3346 matchtype = "pattern"
3347 elif matchtype.lower().startswith("r"):
3348 matchtype = "regex"
3349 else:
3350 raise ValueError("Illegal matchtype, use p(attern) or r(egex)")
[1502]3351 sel = selector()
3352 if isinstance(match, selector):
3353 sel = match
3354 else:
[1504]3355 sel.set_query("SRCNAME == %s('%s')" % (matchtype, match))
[1502]3356 self._setsourcetype(stype)
[1573]3357 self._add_history("set_sourcetype", varlist)
[1502]3358
[1862]3359 @asaplog_post_dec
[1857]3360 @preserve_selection
[1819]3361 def auto_quotient(self, preserve=True, mode='paired', verify=False):
[1846]3362 """\
[670]3363 This function allows to build quotients automatically.
[1819]3364 It assumes the observation to have the same number of
[670]3365 "ons" and "offs"
[1846]3366
[670]3367 Parameters:
[1846]3368
[710]3369 preserve: you can preserve (default) the continuum or
3370 remove it. The equations used are
[1857]3371
[670]3372 preserve: Output = Toff * (on/off) - Toff
[1857]3373
[1070]3374 remove: Output = Toff * (on/off) - Ton
[1855]3375
[1573]3376 mode: the on/off detection mode
[1348]3377 'paired' (default)
3378 identifies 'off' scans by the
3379 trailing '_R' (Mopra/Parkes) or
3380 '_e'/'_w' (Tid) and matches
3381 on/off pairs from the observing pattern
[1502]3382 'time'
3383 finds the closest off in time
[1348]3384
[1857]3385 .. todo:: verify argument is not implemented
3386
[670]3387 """
[1857]3388 varlist = vars()
[1348]3389 modes = ["time", "paired"]
[670]3390 if not mode in modes:
[876]3391 msg = "please provide valid mode. Valid modes are %s" % (modes)
3392 raise ValueError(msg)
[1348]3393 s = None
3394 if mode.lower() == "paired":
[1857]3395 sel = self.get_selection()
[1875]3396 sel.set_query("SRCTYPE==psoff")
[1356]3397 self.set_selection(sel)
[1348]3398 offs = self.copy()
[1875]3399 sel.set_query("SRCTYPE==pson")
[1356]3400 self.set_selection(sel)
[1348]3401 ons = self.copy()
3402 s = scantable(self._math._quotient(ons, offs, preserve))
3403 elif mode.lower() == "time":
3404 s = scantable(self._math._auto_quotient(self, mode, preserve))
[1118]3405 s._add_history("auto_quotient", varlist)
[876]3406 return s
[710]3407
[1862]3408 @asaplog_post_dec
[1145]3409 def mx_quotient(self, mask = None, weight='median', preserve=True):
[1846]3410 """\
[1143]3411 Form a quotient using "off" beams when observing in "MX" mode.
[1846]3412
[1143]3413 Parameters:
[1846]3414
[1145]3415 mask: an optional mask to be used when weight == 'stddev'
[1855]3416
[1143]3417 weight: How to average the off beams. Default is 'median'.
[1855]3418
[1145]3419 preserve: you can preserve (default) the continuum or
[1855]3420 remove it. The equations used are:
[1846]3421
[1855]3422 preserve: Output = Toff * (on/off) - Toff
3423
3424 remove: Output = Toff * (on/off) - Ton
3425
[1217]3426 """
[1593]3427 mask = mask or ()
[1141]3428 varlist = vars()
3429 on = scantable(self._math._mx_extract(self, 'on'))
[1143]3430 preoff = scantable(self._math._mx_extract(self, 'off'))
3431 off = preoff.average_time(mask=mask, weight=weight, scanav=False)
[1217]3432 from asapmath import quotient
[1145]3433 q = quotient(on, off, preserve)
[1143]3434 q._add_history("mx_quotient", varlist)
[1217]3435 return q
[513]3436
[1862]3437 @asaplog_post_dec
[718]3438 def freq_switch(self, insitu=None):
[1846]3439 """\
[718]3440 Apply frequency switching to the data.
[1846]3441
[718]3442 Parameters:
[1846]3443
[718]3444 insitu: if False a new scantable is returned.
3445 Otherwise, the swictching is done in-situ
3446 The default is taken from .asaprc (False)
[1846]3447
[718]3448 """
3449 if insitu is None: insitu = rcParams['insitu']
[876]3450 self._math._setinsitu(insitu)
[718]3451 varlist = vars()
[876]3452 s = scantable(self._math._freqswitch(self))
[1118]3453 s._add_history("freq_switch", varlist)
[1856]3454 if insitu:
3455 self._assign(s)
3456 else:
3457 return s
[718]3458
[1862]3459 @asaplog_post_dec
[780]3460 def recalc_azel(self):
[1846]3461 """Recalculate the azimuth and elevation for each position."""
[780]3462 varlist = vars()
[876]3463 self._recalcazel()
[780]3464 self._add_history("recalc_azel", varlist)
3465 return
3466
[1862]3467 @asaplog_post_dec
[513]3468 def __add__(self, other):
3469 varlist = vars()
3470 s = None
3471 if isinstance(other, scantable):
[1573]3472 s = scantable(self._math._binaryop(self, other, "ADD"))
[513]3473 elif isinstance(other, float):
[876]3474 s = scantable(self._math._unaryop(self, other, "ADD", False))
[2144]3475 elif isinstance(other, list) or isinstance(other, numpy.ndarray):
[2349]3476 if isinstance(other[0], list) \
3477 or isinstance(other[0], numpy.ndarray):
[2144]3478 from asapmath import _array2dOp
3479 s = _array2dOp( self.copy(), other, "ADD", False )
3480 else:
[2349]3481 s = scantable( self._math._arrayop( self.copy(), other,
3482 "ADD", False ) )
[513]3483 else:
[718]3484 raise TypeError("Other input is not a scantable or float value")
[513]3485 s._add_history("operator +", varlist)
3486 return s
3487
[1862]3488 @asaplog_post_dec
[513]3489 def __sub__(self, other):
3490 """
3491 implicit on all axes and on Tsys
3492 """
3493 varlist = vars()
3494 s = None
3495 if isinstance(other, scantable):
[1588]3496 s = scantable(self._math._binaryop(self, other, "SUB"))
[513]3497 elif isinstance(other, float):
[876]3498 s = scantable(self._math._unaryop(self, other, "SUB", False))
[2144]3499 elif isinstance(other, list) or isinstance(other, numpy.ndarray):
[2349]3500 if isinstance(other[0], list) \
3501 or isinstance(other[0], numpy.ndarray):
[2144]3502 from asapmath import _array2dOp
3503 s = _array2dOp( self.copy(), other, "SUB", False )
3504 else:
[2349]3505 s = scantable( self._math._arrayop( self.copy(), other,
3506 "SUB", False ) )
[513]3507 else:
[718]3508 raise TypeError("Other input is not a scantable or float value")
[513]3509 s._add_history("operator -", varlist)
3510 return s
[710]3511
[1862]3512 @asaplog_post_dec
[513]3513 def __mul__(self, other):
3514 """
3515 implicit on all axes and on Tsys
3516 """
3517 varlist = vars()
3518 s = None
3519 if isinstance(other, scantable):
[1588]3520 s = scantable(self._math._binaryop(self, other, "MUL"))
[513]3521 elif isinstance(other, float):
[876]3522 s = scantable(self._math._unaryop(self, other, "MUL", False))
[2144]3523 elif isinstance(other, list) or isinstance(other, numpy.ndarray):
[2349]3524 if isinstance(other[0], list) \
3525 or isinstance(other[0], numpy.ndarray):
[2144]3526 from asapmath import _array2dOp
3527 s = _array2dOp( self.copy(), other, "MUL", False )
3528 else:
[2349]3529 s = scantable( self._math._arrayop( self.copy(), other,
3530 "MUL", False ) )
[513]3531 else:
[718]3532 raise TypeError("Other input is not a scantable or float value")
[513]3533 s._add_history("operator *", varlist)
3534 return s
3535
[710]3536
[1862]3537 @asaplog_post_dec
[513]3538 def __div__(self, other):
3539 """
3540 implicit on all axes and on Tsys
3541 """
3542 varlist = vars()
3543 s = None
3544 if isinstance(other, scantable):
[1589]3545 s = scantable(self._math._binaryop(self, other, "DIV"))
[513]3546 elif isinstance(other, float):
3547 if other == 0.0:
[718]3548 raise ZeroDivisionError("Dividing by zero is not recommended")
[876]3549 s = scantable(self._math._unaryop(self, other, "DIV", False))
[2144]3550 elif isinstance(other, list) or isinstance(other, numpy.ndarray):
[2349]3551 if isinstance(other[0], list) \
3552 or isinstance(other[0], numpy.ndarray):
[2144]3553 from asapmath import _array2dOp
3554 s = _array2dOp( self.copy(), other, "DIV", False )
3555 else:
[2349]3556 s = scantable( self._math._arrayop( self.copy(), other,
3557 "DIV", False ) )
[513]3558 else:
[718]3559 raise TypeError("Other input is not a scantable or float value")
[513]3560 s._add_history("operator /", varlist)
3561 return s
3562
[1862]3563 @asaplog_post_dec
[530]3564 def get_fit(self, row=0):
[1846]3565 """\
[530]3566 Print or return the stored fits for a row in the scantable
[1846]3567
[530]3568 Parameters:
[1846]3569
[530]3570 row: the row which the fit has been applied to.
[1846]3571
[530]3572 """
3573 if row > self.nrow():
3574 return
[976]3575 from asap.asapfit import asapfit
[530]3576 fit = asapfit(self._getfit(row))
[1859]3577 asaplog.push( '%s' %(fit) )
3578 return fit.as_dict()
[530]3579
[2349]3580 @preserve_selection
[1483]3581 def flag_nans(self):
[1846]3582 """\
[1483]3583 Utility function to flag NaN values in the scantable.
3584 """
3585 import numpy
3586 basesel = self.get_selection()
3587 for i in range(self.nrow()):
[1589]3588 sel = self.get_row_selector(i)
3589 self.set_selection(basesel+sel)
[1483]3590 nans = numpy.isnan(self._getspectrum(0))
3591 if numpy.any(nans):
3592 bnans = [ bool(v) for v in nans]
3593 self.flag(bnans)
3594
[1588]3595 def get_row_selector(self, rowno):
[1992]3596 return selector(rows=[rowno])
[1573]3597
[484]3598 def _add_history(self, funcname, parameters):
[1435]3599 if not rcParams['scantable.history']:
3600 return
[484]3601 # create date
3602 sep = "##"
3603 from datetime import datetime
3604 dstr = datetime.now().strftime('%Y/%m/%d %H:%M:%S')
3605 hist = dstr+sep
3606 hist += funcname+sep#cdate+sep
[2349]3607 if parameters.has_key('self'):
3608 del parameters['self']
[1118]3609 for k, v in parameters.iteritems():
[484]3610 if type(v) is dict:
[1118]3611 for k2, v2 in v.iteritems():
[484]3612 hist += k2
3613 hist += "="
[1118]3614 if isinstance(v2, scantable):
[484]3615 hist += 'scantable'
3616 elif k2 == 'mask':
[1118]3617 if isinstance(v2, list) or isinstance(v2, tuple):
[513]3618 hist += str(self._zip_mask(v2))
3619 else:
3620 hist += str(v2)
[484]3621 else:
[513]3622 hist += str(v2)
[484]3623 else:
3624 hist += k
3625 hist += "="
[1118]3626 if isinstance(v, scantable):
[484]3627 hist += 'scantable'
3628 elif k == 'mask':
[1118]3629 if isinstance(v, list) or isinstance(v, tuple):
[513]3630 hist += str(self._zip_mask(v))
3631 else:
3632 hist += str(v)
[484]3633 else:
3634 hist += str(v)
3635 hist += sep
3636 hist = hist[:-2] # remove trailing '##'
3637 self._addhistory(hist)
3638
[710]3639
[484]3640 def _zip_mask(self, mask):
3641 mask = list(mask)
3642 i = 0
3643 segments = []
3644 while mask[i:].count(1):
3645 i += mask[i:].index(1)
3646 if mask[i:].count(0):
3647 j = i + mask[i:].index(0)
3648 else:
[710]3649 j = len(mask)
[1118]3650 segments.append([i, j])
[710]3651 i = j
[484]3652 return segments
[714]3653
[626]3654 def _get_ordinate_label(self):
3655 fu = "("+self.get_fluxunit()+")"
3656 import re
3657 lbl = "Intensity"
[1118]3658 if re.match(".K.", fu):
[626]3659 lbl = "Brightness Temperature "+ fu
[1118]3660 elif re.match(".Jy.", fu):
[626]3661 lbl = "Flux density "+ fu
3662 return lbl
[710]3663
[876]3664 def _check_ifs(self):
[2349]3665# return len(set([self.nchan(i) for i in self.getifnos()])) == 1
[1986]3666 nchans = [self.nchan(i) for i in self.getifnos()]
[2004]3667 nchans = filter(lambda t: t > 0, nchans)
[876]3668 return (sum(nchans)/len(nchans) == nchans[0])
[976]3669
[1862]3670 @asaplog_post_dec
[1916]3671 def _fill(self, names, unit, average, opts={}):
[976]3672 first = True
3673 fullnames = []
3674 for name in names:
3675 name = os.path.expandvars(name)
3676 name = os.path.expanduser(name)
3677 if not os.path.exists(name):
3678 msg = "File '%s' does not exists" % (name)
3679 raise IOError(msg)
3680 fullnames.append(name)
3681 if average:
3682 asaplog.push('Auto averaging integrations')
[1079]3683 stype = int(rcParams['scantable.storage'].lower() == 'disk')
[976]3684 for name in fullnames:
[1073]3685 tbl = Scantable(stype)
[2004]3686 if is_ms( name ):
3687 r = msfiller( tbl )
3688 else:
3689 r = filler( tbl )
3690 rx = rcParams['scantable.reference']
3691 r.setreferenceexpr(rx)
[976]3692 msg = "Importing %s..." % (name)
[1118]3693 asaplog.push(msg, False)
[2349]3694 r.open(name, opts)
[1843]3695 r.fill()
[976]3696 if average:
[1118]3697 tbl = self._math._average((tbl, ), (), 'NONE', 'SCAN')
[976]3698 if not first:
3699 tbl = self._math._merge([self, tbl])
3700 Scantable.__init__(self, tbl)
[1843]3701 r.close()
[1118]3702 del r, tbl
[976]3703 first = False
[1861]3704 #flush log
3705 asaplog.post()
[976]3706 if unit is not None:
3707 self.set_fluxunit(unit)
[1824]3708 if not is_casapy():
3709 self.set_freqframe(rcParams['scantable.freqframe'])
[976]3710
[2012]3711
[1402]3712 def __getitem__(self, key):
3713 if key < 0:
3714 key += self.nrow()
3715 if key >= self.nrow():
3716 raise IndexError("Row index out of range.")
3717 return self._getspectrum(key)
3718
3719 def __setitem__(self, key, value):
3720 if key < 0:
3721 key += self.nrow()
3722 if key >= self.nrow():
3723 raise IndexError("Row index out of range.")
3724 if not hasattr(value, "__len__") or \
3725 len(value) > self.nchan(self.getif(key)):
3726 raise ValueError("Spectrum length doesn't match.")
3727 return self._setspectrum(value, key)
3728
3729 def __len__(self):
3730 return self.nrow()
3731
3732 def __iter__(self):
3733 for i in range(len(self)):
3734 yield self[i]
Note: See TracBrowser for help on using the repository browser.