[1846] | 1 | """This module defines the scantable class."""
|
---|
| 2 |
|
---|
[1697] | 3 | import os
|
---|
[1948] | 4 | import numpy
|
---|
[1691] | 5 | try:
|
---|
| 6 | from functools import wraps as wraps_dec
|
---|
| 7 | except ImportError:
|
---|
| 8 | from asap.compatibility import wraps as wraps_dec
|
---|
| 9 |
|
---|
[1824] | 10 | from asap.env import is_casapy
|
---|
[876] | 11 | from asap._asap import Scantable
|
---|
[2004] | 12 | from asap._asap import filler, msfiller
|
---|
[1824] | 13 | from asap.parameters import rcParams
|
---|
[1862] | 14 | from asap.logging import asaplog, asaplog_post_dec
|
---|
[1824] | 15 | from asap.selector import selector
|
---|
| 16 | from asap.linecatalog import linecatalog
|
---|
[1600] | 17 | from asap.coordinate import coordinate
|
---|
[1859] | 18 | from asap.utils import _n_bools, mask_not, mask_and, mask_or, page
|
---|
[1907] | 19 | from asap.asapfitter import fitter
|
---|
[102] | 20 |
|
---|
[1689] | 21 |
|
---|
| 22 | def preserve_selection(func):
|
---|
[1691] | 23 | @wraps_dec(func)
|
---|
[1689] | 24 | def wrap(obj, *args, **kw):
|
---|
| 25 | basesel = obj.get_selection()
|
---|
[1857] | 26 | try:
|
---|
| 27 | val = func(obj, *args, **kw)
|
---|
| 28 | finally:
|
---|
| 29 | obj.set_selection(basesel)
|
---|
[1689] | 30 | return val
|
---|
| 31 | return wrap
|
---|
| 32 |
|
---|
[1846] | 33 | def is_scantable(filename):
|
---|
| 34 | """Is the given file a scantable?
|
---|
[1689] | 35 |
|
---|
[1846] | 36 | Parameters:
|
---|
| 37 |
|
---|
| 38 | filename: the name of the file/directory to test
|
---|
| 39 |
|
---|
| 40 | """
|
---|
[1883] | 41 | if ( os.path.isdir(filename)
|
---|
| 42 | and os.path.exists(filename+'/table.info')
|
---|
| 43 | and os.path.exists(filename+'/table.dat') ):
|
---|
| 44 | f=open(filename+'/table.info')
|
---|
| 45 | l=f.readline()
|
---|
| 46 | f.close()
|
---|
| 47 | #if ( l.find('Scantable') != -1 ):
|
---|
| 48 | if ( l.find('Measurement Set') == -1 ):
|
---|
| 49 | return True
|
---|
| 50 | else:
|
---|
| 51 | return False
|
---|
| 52 | else:
|
---|
| 53 | return False
|
---|
| 54 | ## return (os.path.isdir(filename)
|
---|
| 55 | ## and not os.path.exists(filename+'/table.f1')
|
---|
| 56 | ## and os.path.exists(filename+'/table.info'))
|
---|
[1697] | 57 |
|
---|
[1883] | 58 | def is_ms(filename):
|
---|
| 59 | """Is the given file a MeasurementSet?
|
---|
[1697] | 60 |
|
---|
[1883] | 61 | Parameters:
|
---|
| 62 |
|
---|
| 63 | filename: the name of the file/directory to test
|
---|
| 64 |
|
---|
| 65 | """
|
---|
| 66 | if ( os.path.isdir(filename)
|
---|
| 67 | and os.path.exists(filename+'/table.info')
|
---|
| 68 | and os.path.exists(filename+'/table.dat') ):
|
---|
| 69 | f=open(filename+'/table.info')
|
---|
| 70 | l=f.readline()
|
---|
| 71 | f.close()
|
---|
| 72 | if ( l.find('Measurement Set') != -1 ):
|
---|
| 73 | return True
|
---|
| 74 | else:
|
---|
| 75 | return False
|
---|
| 76 | else:
|
---|
| 77 | return False
|
---|
[2186] | 78 |
|
---|
| 79 | def normalise_edge_param(edge):
|
---|
| 80 | """\
|
---|
| 81 | Convert a given edge value to a one-dimensional array that can be
|
---|
| 82 | given to baseline-fitting/subtraction functions.
|
---|
| 83 | The length of the output value will be an even because values for
|
---|
| 84 | the both sides of spectra are to be contained for each IF. When
|
---|
| 85 | the length is 2, the values will be applied to all IFs. If the length
|
---|
| 86 | is larger than 2, it will be 2*ifnos().
|
---|
| 87 | Accepted format of edge include:
|
---|
| 88 | * an integer - will be used for both sides of spectra of all IFs.
|
---|
| 89 | e.g. 10 is converted to [10,10]
|
---|
[2277] | 90 | * an empty list/tuple [] - converted to [0, 0] and used for all IFs.
|
---|
[2186] | 91 | * a list/tuple containing an integer - same as the above case.
|
---|
| 92 | e.g. [10] is converted to [10,10]
|
---|
| 93 | * a list/tuple containing two integers - will be used for all IFs.
|
---|
| 94 | e.g. [5,10] is output as it is. no need to convert.
|
---|
| 95 | * a list/tuple of lists/tuples containing TWO integers -
|
---|
| 96 | each element of edge will be used for each IF.
|
---|
[2277] | 97 | e.g. [[5,10],[15,20]] - [5,10] for IF[0] and [15,20] for IF[1].
|
---|
| 98 |
|
---|
| 99 | If an element contains the same integer values, the input 'edge'
|
---|
| 100 | parameter can be given in a simpler shape in the following cases:
|
---|
[2186] | 101 | ** when len(edge)!=2
|
---|
[2277] | 102 | any elements containing the same values can be replaced
|
---|
| 103 | to single integers.
|
---|
| 104 | e.g. [[15,15]] can be simplified to [15] (or [15,15] or 15 also).
|
---|
| 105 | e.g. [[1,1],[2,2],[3,3]] can be simplified to [1,2,3].
|
---|
[2186] | 106 | ** when len(edge)=2
|
---|
| 107 | care is needed for this case: ONLY ONE of the
|
---|
| 108 | elements can be a single integer,
|
---|
| 109 | e.g. [[5,5],[10,10]] can be simplified to [5,[10,10]]
|
---|
[2277] | 110 | or [[5,5],10], but can NOT be simplified to [5,10].
|
---|
[2186] | 111 | when [5,10] given, it is interpreted as
|
---|
[2277] | 112 | [[5,10],[5,10],[5,10],...] instead, as shown before.
|
---|
[2186] | 113 | """
|
---|
| 114 | from asap import _is_sequence_or_number as _is_valid
|
---|
| 115 | if isinstance(edge, list) or isinstance(edge, tuple):
|
---|
| 116 | for edgepar in edge:
|
---|
| 117 | if not _is_valid(edgepar, int):
|
---|
| 118 | raise ValueError, "Each element of the 'edge' tuple has \
|
---|
| 119 | to be a pair of integers or an integer."
|
---|
| 120 | if isinstance(edgepar, list) or isinstance(edgepar, tuple):
|
---|
| 121 | if len(edgepar) != 2:
|
---|
| 122 | raise ValueError, "Each element of the 'edge' tuple has \
|
---|
| 123 | to be a pair of integers or an integer."
|
---|
| 124 | else:
|
---|
| 125 | if not _is_valid(edge, int):
|
---|
| 126 | raise ValueError, "Parameter 'edge' has to be an integer or a \
|
---|
| 127 | pair of integers specified as a tuple. \
|
---|
| 128 | Nested tuples are allowed \
|
---|
| 129 | to make individual selection for different IFs."
|
---|
| 130 |
|
---|
| 131 |
|
---|
| 132 | if isinstance(edge, int):
|
---|
| 133 | edge = [ edge, edge ] # e.g. 3 => [3,3]
|
---|
| 134 | elif isinstance(edge, list) or isinstance(edge, tuple):
|
---|
| 135 | if len(edge) == 0:
|
---|
| 136 | edge = [0, 0] # e.g. [] => [0,0]
|
---|
| 137 | elif len(edge) == 1:
|
---|
| 138 | if isinstance(edge[0], int):
|
---|
| 139 | edge = [ edge[0], edge[0] ] # e.g. [1] => [1,1]
|
---|
| 140 |
|
---|
| 141 | commonedge = True
|
---|
| 142 | if len(edge) > 2: commonedge = False
|
---|
| 143 | else:
|
---|
| 144 | for edgepar in edge:
|
---|
| 145 | if isinstance(edgepar, list) or isinstance(edgepar, tuple):
|
---|
| 146 | commonedge = False
|
---|
| 147 | break
|
---|
| 148 |
|
---|
| 149 | if commonedge:
|
---|
| 150 | if len(edge) > 1:
|
---|
| 151 | norm_edge = edge
|
---|
| 152 | else:
|
---|
| 153 | norm_edge = edge + edge
|
---|
| 154 | else:
|
---|
| 155 | norm_edge = []
|
---|
| 156 | for edgepar in edge:
|
---|
| 157 | if isinstance(edgepar, int):
|
---|
| 158 | norm_edge += [edgepar, edgepar]
|
---|
| 159 | else:
|
---|
| 160 | norm_edge += edgepar
|
---|
| 161 |
|
---|
| 162 | return norm_edge
|
---|
| 163 |
|
---|
| 164 | def raise_fitting_failure_exception(e):
|
---|
| 165 | msg = "The fit failed, possibly because it didn't converge."
|
---|
| 166 | if rcParams["verbose"]:
|
---|
| 167 | asaplog.push(str(e))
|
---|
| 168 | asaplog.push(str(msg))
|
---|
| 169 | else:
|
---|
| 170 | raise RuntimeError(str(e)+'\n'+msg)
|
---|
| 171 |
|
---|
[2189] | 172 | def pack_progress_params(showprogress, minnrow):
|
---|
| 173 | return str(showprogress).lower() + ',' + str(minnrow)
|
---|
| 174 |
|
---|
[876] | 175 | class scantable(Scantable):
|
---|
[1846] | 176 | """\
|
---|
| 177 | The ASAP container for scans (single-dish data).
|
---|
[102] | 178 | """
|
---|
[1819] | 179 |
|
---|
[1862] | 180 | @asaplog_post_dec
|
---|
[1916] | 181 | #def __init__(self, filename, average=None, unit=None, getpt=None,
|
---|
| 182 | # antenna=None, parallactify=None):
|
---|
[2277] | 183 | def __init__(self, filename, average=None, unit=None, parallactify=None, **args):
|
---|
[1846] | 184 | """\
|
---|
[102] | 185 | Create a scantable from a saved one or make a reference
|
---|
[1846] | 186 |
|
---|
[102] | 187 | Parameters:
|
---|
[1846] | 188 |
|
---|
| 189 | filename: the name of an asap table on disk
|
---|
| 190 | or
|
---|
| 191 | the name of a rpfits/sdfits/ms file
|
---|
| 192 | (integrations within scans are auto averaged
|
---|
| 193 | and the whole file is read) or
|
---|
| 194 | [advanced] a reference to an existing scantable
|
---|
| 195 |
|
---|
| 196 | average: average all integrations withinb a scan on read.
|
---|
| 197 | The default (True) is taken from .asaprc.
|
---|
| 198 |
|
---|
[484] | 199 | unit: brightness unit; must be consistent with K or Jy.
|
---|
[1846] | 200 | Over-rides the default selected by the filler
|
---|
| 201 | (input rpfits/sdfits/ms) or replaces the value
|
---|
| 202 | in existing scantables
|
---|
| 203 |
|
---|
| 204 | getpt: for MeasurementSet input data only:
|
---|
| 205 | If True, all pointing data are filled.
|
---|
| 206 | The deafult is False, which makes time to load
|
---|
| 207 | the MS data faster in some cases.
|
---|
| 208 |
|
---|
[1920] | 209 | antenna: for MeasurementSet input data only:
|
---|
[2277] | 210 | Antenna selection. integer (id) or string (name or id).
|
---|
[1846] | 211 |
|
---|
| 212 | parallactify: Indicate that the data had been parallatified. Default
|
---|
| 213 | is taken from rc file.
|
---|
| 214 |
|
---|
[710] | 215 | """
|
---|
[976] | 216 | if average is None:
|
---|
[710] | 217 | average = rcParams['scantable.autoaverage']
|
---|
[1916] | 218 | #if getpt is None:
|
---|
| 219 | # getpt = True
|
---|
| 220 | #if antenna is not None:
|
---|
| 221 | # asaplog.push("Antenna selection currently unsupported."
|
---|
| 222 | # "Using ''")
|
---|
| 223 | # asaplog.post('WARN')
|
---|
| 224 | #if antenna is None:
|
---|
| 225 | # antenna = ''
|
---|
| 226 | #elif type(antenna) == int:
|
---|
| 227 | # antenna = '%s' % antenna
|
---|
| 228 | #elif type(antenna) == list:
|
---|
| 229 | # tmpstr = ''
|
---|
| 230 | # for i in range( len(antenna) ):
|
---|
| 231 | # if type(antenna[i]) == int:
|
---|
| 232 | # tmpstr = tmpstr + ('%s,'%(antenna[i]))
|
---|
| 233 | # elif type(antenna[i]) == str:
|
---|
| 234 | # tmpstr=tmpstr+antenna[i]+','
|
---|
| 235 | # else:
|
---|
| 236 | # raise TypeError('Bad antenna selection.')
|
---|
| 237 | # antenna = tmpstr.rstrip(',')
|
---|
[1593] | 238 | parallactify = parallactify or rcParams['scantable.parallactify']
|
---|
[1259] | 239 | varlist = vars()
|
---|
[876] | 240 | from asap._asap import stmath
|
---|
[1819] | 241 | self._math = stmath( rcParams['insitu'] )
|
---|
[876] | 242 | if isinstance(filename, Scantable):
|
---|
| 243 | Scantable.__init__(self, filename)
|
---|
[181] | 244 | else:
|
---|
[1697] | 245 | if isinstance(filename, str):
|
---|
[976] | 246 | filename = os.path.expandvars(filename)
|
---|
| 247 | filename = os.path.expanduser(filename)
|
---|
| 248 | if not os.path.exists(filename):
|
---|
| 249 | s = "File '%s' not found." % (filename)
|
---|
| 250 | raise IOError(s)
|
---|
[1697] | 251 | if is_scantable(filename):
|
---|
| 252 | ondisk = rcParams['scantable.storage'] == 'disk'
|
---|
| 253 | Scantable.__init__(self, filename, ondisk)
|
---|
| 254 | if unit is not None:
|
---|
| 255 | self.set_fluxunit(unit)
|
---|
[2008] | 256 | if average:
|
---|
| 257 | self._assign( self.average_time( scanav=True ) )
|
---|
[1819] | 258 | # do not reset to the default freqframe
|
---|
| 259 | #self.set_freqframe(rcParams['scantable.freqframe'])
|
---|
[1883] | 260 | #elif os.path.isdir(filename) \
|
---|
| 261 | # and not os.path.exists(filename+'/table.f1'):
|
---|
| 262 | elif is_ms(filename):
|
---|
[1916] | 263 | # Measurement Set
|
---|
| 264 | opts={'ms': {}}
|
---|
| 265 | mskeys=['getpt','antenna']
|
---|
| 266 | for key in mskeys:
|
---|
| 267 | if key in args.keys():
|
---|
| 268 | opts['ms'][key] = args[key]
|
---|
| 269 | #self._fill([filename], unit, average, getpt, antenna)
|
---|
| 270 | self._fill([filename], unit, average, opts)
|
---|
[1893] | 271 | elif os.path.isfile(filename):
|
---|
[1916] | 272 | #self._fill([filename], unit, average, getpt, antenna)
|
---|
| 273 | self._fill([filename], unit, average)
|
---|
[1883] | 274 | else:
|
---|
[1819] | 275 | msg = "The given file '%s'is not a valid " \
|
---|
| 276 | "asap table." % (filename)
|
---|
[1859] | 277 | raise IOError(msg)
|
---|
[1118] | 278 | elif (isinstance(filename, list) or isinstance(filename, tuple)) \
|
---|
[976] | 279 | and isinstance(filename[-1], str):
|
---|
[1916] | 280 | #self._fill(filename, unit, average, getpt, antenna)
|
---|
| 281 | self._fill(filename, unit, average)
|
---|
[1586] | 282 | self.parallactify(parallactify)
|
---|
[1259] | 283 | self._add_history("scantable", varlist)
|
---|
[102] | 284 |
|
---|
[1862] | 285 | @asaplog_post_dec
|
---|
[876] | 286 | def save(self, name=None, format=None, overwrite=False):
|
---|
[1846] | 287 | """\
|
---|
[1280] | 288 | Store the scantable on disk. This can be an asap (aips++) Table,
|
---|
| 289 | SDFITS or MS2 format.
|
---|
[1846] | 290 |
|
---|
[116] | 291 | Parameters:
|
---|
[1846] | 292 |
|
---|
[1093] | 293 | name: the name of the outputfile. For format "ASCII"
|
---|
| 294 | this is the root file name (data in 'name'.txt
|
---|
[497] | 295 | and header in 'name'_header.txt)
|
---|
[1855] | 296 |
|
---|
[116] | 297 | format: an optional file format. Default is ASAP.
|
---|
[1855] | 298 | Allowed are:
|
---|
| 299 |
|
---|
| 300 | * 'ASAP' (save as ASAP [aips++] Table),
|
---|
| 301 | * 'SDFITS' (save as SDFITS file)
|
---|
| 302 | * 'ASCII' (saves as ascii text file)
|
---|
| 303 | * 'MS2' (saves as an casacore MeasurementSet V2)
|
---|
[2277] | 304 | * 'FITS' (save as image FITS - not readable by class)
|
---|
[1855] | 305 | * 'CLASS' (save as FITS readable by CLASS)
|
---|
| 306 |
|
---|
[411] | 307 | overwrite: If the file should be overwritten if it exists.
|
---|
[256] | 308 | The default False is to return with warning
|
---|
[411] | 309 | without writing the output. USE WITH CARE.
|
---|
[1855] | 310 |
|
---|
[1846] | 311 | Example::
|
---|
| 312 |
|
---|
[116] | 313 | scan.save('myscan.asap')
|
---|
[1118] | 314 | scan.save('myscan.sdfits', 'SDFITS')
|
---|
[1846] | 315 |
|
---|
[116] | 316 | """
|
---|
[411] | 317 | from os import path
|
---|
[1593] | 318 | format = format or rcParams['scantable.save']
|
---|
[256] | 319 | suffix = '.'+format.lower()
|
---|
[1118] | 320 | if name is None or name == "":
|
---|
[256] | 321 | name = 'scantable'+suffix
|
---|
[718] | 322 | msg = "No filename given. Using default name %s..." % name
|
---|
| 323 | asaplog.push(msg)
|
---|
[411] | 324 | name = path.expandvars(name)
|
---|
[256] | 325 | if path.isfile(name) or path.isdir(name):
|
---|
| 326 | if not overwrite:
|
---|
[718] | 327 | msg = "File %s exists." % name
|
---|
[1859] | 328 | raise IOError(msg)
|
---|
[451] | 329 | format2 = format.upper()
|
---|
| 330 | if format2 == 'ASAP':
|
---|
[116] | 331 | self._save(name)
|
---|
[2029] | 332 | elif format2 == 'MS2':
|
---|
| 333 | msopt = {'ms': {'overwrite': overwrite } }
|
---|
| 334 | from asap._asap import mswriter
|
---|
| 335 | writer = mswriter( self )
|
---|
| 336 | writer.write( name, msopt )
|
---|
[116] | 337 | else:
|
---|
[989] | 338 | from asap._asap import stwriter as stw
|
---|
[1118] | 339 | writer = stw(format2)
|
---|
| 340 | writer.write(self, name)
|
---|
[116] | 341 | return
|
---|
| 342 |
|
---|
[102] | 343 | def copy(self):
|
---|
[1846] | 344 | """Return a copy of this scantable.
|
---|
| 345 |
|
---|
| 346 | *Note*:
|
---|
| 347 |
|
---|
[1348] | 348 | This makes a full (deep) copy. scan2 = scan1 makes a reference.
|
---|
[1846] | 349 |
|
---|
| 350 | Example::
|
---|
| 351 |
|
---|
[102] | 352 | copiedscan = scan.copy()
|
---|
[1846] | 353 |
|
---|
[102] | 354 | """
|
---|
[876] | 355 | sd = scantable(Scantable._copy(self))
|
---|
[113] | 356 | return sd
|
---|
| 357 |
|
---|
[1093] | 358 | def drop_scan(self, scanid=None):
|
---|
[1846] | 359 | """\
|
---|
[1093] | 360 | Return a new scantable where the specified scan number(s) has(have)
|
---|
| 361 | been dropped.
|
---|
[1846] | 362 |
|
---|
[1093] | 363 | Parameters:
|
---|
[1846] | 364 |
|
---|
[1093] | 365 | scanid: a (list of) scan number(s)
|
---|
[1846] | 366 |
|
---|
[1093] | 367 | """
|
---|
| 368 | from asap import _is_sequence_or_number as _is_valid
|
---|
| 369 | from asap import _to_list
|
---|
| 370 | from asap import unique
|
---|
| 371 | if not _is_valid(scanid):
|
---|
[2277] | 372 | raise RuntimeError( 'Please specify a scanno to drop from the scantable' )
|
---|
[1859] | 373 | scanid = _to_list(scanid)
|
---|
| 374 | allscans = unique([ self.getscan(i) for i in range(self.nrow())])
|
---|
| 375 | for sid in scanid: allscans.remove(sid)
|
---|
| 376 | if len(allscans) == 0:
|
---|
| 377 | raise ValueError("Can't remove all scans")
|
---|
| 378 | sel = selector(scans=allscans)
|
---|
| 379 | return self._select_copy(sel)
|
---|
[1093] | 380 |
|
---|
[1594] | 381 | def _select_copy(self, selection):
|
---|
| 382 | orig = self.get_selection()
|
---|
| 383 | self.set_selection(orig+selection)
|
---|
| 384 | cp = self.copy()
|
---|
| 385 | self.set_selection(orig)
|
---|
| 386 | return cp
|
---|
| 387 |
|
---|
[102] | 388 | def get_scan(self, scanid=None):
|
---|
[1855] | 389 | """\
|
---|
[102] | 390 | Return a specific scan (by scanno) or collection of scans (by
|
---|
| 391 | source name) in a new scantable.
|
---|
[1846] | 392 |
|
---|
| 393 | *Note*:
|
---|
| 394 |
|
---|
[1348] | 395 | See scantable.drop_scan() for the inverse operation.
|
---|
[1846] | 396 |
|
---|
[102] | 397 | Parameters:
|
---|
[1846] | 398 |
|
---|
[513] | 399 | scanid: a (list of) scanno or a source name, unix-style
|
---|
| 400 | patterns are accepted for source name matching, e.g.
|
---|
| 401 | '*_R' gets all 'ref scans
|
---|
[1846] | 402 |
|
---|
| 403 | Example::
|
---|
| 404 |
|
---|
[513] | 405 | # get all scans containing the source '323p459'
|
---|
| 406 | newscan = scan.get_scan('323p459')
|
---|
| 407 | # get all 'off' scans
|
---|
| 408 | refscans = scan.get_scan('*_R')
|
---|
| 409 | # get a susbset of scans by scanno (as listed in scan.summary())
|
---|
[1118] | 410 | newscan = scan.get_scan([0, 2, 7, 10])
|
---|
[1846] | 411 |
|
---|
[102] | 412 | """
|
---|
| 413 | if scanid is None:
|
---|
[1859] | 414 | raise RuntimeError( 'Please specify a scan no or name to '
|
---|
| 415 | 'retrieve from the scantable' )
|
---|
[102] | 416 | try:
|
---|
[946] | 417 | bsel = self.get_selection()
|
---|
| 418 | sel = selector()
|
---|
[102] | 419 | if type(scanid) is str:
|
---|
[946] | 420 | sel.set_name(scanid)
|
---|
[1594] | 421 | return self._select_copy(sel)
|
---|
[102] | 422 | elif type(scanid) is int:
|
---|
[946] | 423 | sel.set_scans([scanid])
|
---|
[1594] | 424 | return self._select_copy(sel)
|
---|
[381] | 425 | elif type(scanid) is list:
|
---|
[946] | 426 | sel.set_scans(scanid)
|
---|
[1594] | 427 | return self._select_copy(sel)
|
---|
[381] | 428 | else:
|
---|
[718] | 429 | msg = "Illegal scanid type, use 'int' or 'list' if ints."
|
---|
[1859] | 430 | raise TypeError(msg)
|
---|
[102] | 431 | except RuntimeError:
|
---|
[1859] | 432 | raise
|
---|
[102] | 433 |
|
---|
| 434 | def __str__(self):
|
---|
[2178] | 435 | return Scantable._summary(self)
|
---|
[102] | 436 |
|
---|
[976] | 437 | def summary(self, filename=None):
|
---|
[1846] | 438 | """\
|
---|
[102] | 439 | Print a summary of the contents of this scantable.
|
---|
[1846] | 440 |
|
---|
[102] | 441 | Parameters:
|
---|
[1846] | 442 |
|
---|
[1931] | 443 | filename: the name of a file to write the putput to
|
---|
[102] | 444 | Default - no file output
|
---|
[1846] | 445 |
|
---|
[102] | 446 | """
|
---|
[2286] | 447 | # info = Scantable._summary(self)
|
---|
[102] | 448 | if filename is not None:
|
---|
[256] | 449 | if filename is "":
|
---|
| 450 | filename = 'scantable_summary.txt'
|
---|
[415] | 451 | from os.path import expandvars, isdir
|
---|
[411] | 452 | filename = expandvars(filename)
|
---|
[2286] | 453 | # if not isdir(filename):
|
---|
| 454 | # data = open(filename, 'w')
|
---|
| 455 | # data.write(info)
|
---|
| 456 | # data.close()
|
---|
| 457 | # else:
|
---|
| 458 | if isdir(filename):
|
---|
[718] | 459 | msg = "Illegal file name '%s'." % (filename)
|
---|
[1859] | 460 | raise IOError(msg)
|
---|
[2286] | 461 | else:
|
---|
| 462 | filename = ""
|
---|
| 463 | Scantable._summary(self, filename)
|
---|
| 464 | # return page(info)
|
---|
[710] | 465 |
|
---|
[1512] | 466 | def get_spectrum(self, rowno):
|
---|
[1471] | 467 | """Return the spectrum for the current row in the scantable as a list.
|
---|
[1846] | 468 |
|
---|
[1471] | 469 | Parameters:
|
---|
[1846] | 470 |
|
---|
[1573] | 471 | rowno: the row number to retrieve the spectrum from
|
---|
[1846] | 472 |
|
---|
[1471] | 473 | """
|
---|
| 474 | return self._getspectrum(rowno)
|
---|
[946] | 475 |
|
---|
[1471] | 476 | def get_mask(self, rowno):
|
---|
| 477 | """Return the mask for the current row in the scantable as a list.
|
---|
[1846] | 478 |
|
---|
[1471] | 479 | Parameters:
|
---|
[1846] | 480 |
|
---|
[1573] | 481 | rowno: the row number to retrieve the mask from
|
---|
[1846] | 482 |
|
---|
[1471] | 483 | """
|
---|
| 484 | return self._getmask(rowno)
|
---|
| 485 |
|
---|
| 486 | def set_spectrum(self, spec, rowno):
|
---|
[1938] | 487 | """Set the spectrum for the current row in the scantable.
|
---|
[1846] | 488 |
|
---|
[1471] | 489 | Parameters:
|
---|
[1846] | 490 |
|
---|
[1855] | 491 | spec: the new spectrum
|
---|
[1846] | 492 |
|
---|
[1855] | 493 | rowno: the row number to set the spectrum for
|
---|
| 494 |
|
---|
[1471] | 495 | """
|
---|
| 496 | assert(len(spec) == self.nchan())
|
---|
| 497 | return self._setspectrum(spec, rowno)
|
---|
| 498 |
|
---|
[1600] | 499 | def get_coordinate(self, rowno):
|
---|
| 500 | """Return the (spectral) coordinate for a a given 'rowno'.
|
---|
[1846] | 501 |
|
---|
| 502 | *Note*:
|
---|
| 503 |
|
---|
[1600] | 504 | * This coordinate is only valid until a scantable method modifies
|
---|
| 505 | the frequency axis.
|
---|
| 506 | * This coordinate does contain the original frequency set-up
|
---|
| 507 | NOT the new frame. The conversions however are done using the user
|
---|
| 508 | specified frame (e.g. LSRK/TOPO). To get the 'real' coordinate,
|
---|
| 509 | use scantable.freq_align first. Without it there is no closure,
|
---|
[1846] | 510 | i.e.::
|
---|
[1600] | 511 |
|
---|
[1846] | 512 | c = myscan.get_coordinate(0)
|
---|
| 513 | c.to_frequency(c.get_reference_pixel()) != c.get_reference_value()
|
---|
| 514 |
|
---|
[1600] | 515 | Parameters:
|
---|
[1846] | 516 |
|
---|
[1600] | 517 | rowno: the row number for the spectral coordinate
|
---|
| 518 |
|
---|
| 519 | """
|
---|
| 520 | return coordinate(Scantable.get_coordinate(self, rowno))
|
---|
| 521 |
|
---|
[946] | 522 | def get_selection(self):
|
---|
[1846] | 523 | """\
|
---|
[1005] | 524 | Get the selection object currently set on this scantable.
|
---|
[1846] | 525 |
|
---|
| 526 | Example::
|
---|
| 527 |
|
---|
[1005] | 528 | sel = scan.get_selection()
|
---|
| 529 | sel.set_ifs(0) # select IF 0
|
---|
| 530 | scan.set_selection(sel) # apply modified selection
|
---|
[1846] | 531 |
|
---|
[946] | 532 | """
|
---|
| 533 | return selector(self._getselection())
|
---|
| 534 |
|
---|
[1576] | 535 | def set_selection(self, selection=None, **kw):
|
---|
[1846] | 536 | """\
|
---|
[1005] | 537 | Select a subset of the data. All following operations on this scantable
|
---|
| 538 | are only applied to thi selection.
|
---|
[1846] | 539 |
|
---|
[1005] | 540 | Parameters:
|
---|
[1697] | 541 |
|
---|
[1846] | 542 | selection: a selector object (default unset the selection), or
|
---|
| 543 | any combination of "pols", "ifs", "beams", "scans",
|
---|
| 544 | "cycles", "name", "query"
|
---|
[1697] | 545 |
|
---|
[1846] | 546 | Examples::
|
---|
[1697] | 547 |
|
---|
[1005] | 548 | sel = selector() # create a selection object
|
---|
[1118] | 549 | self.set_scans([0, 3]) # select SCANNO 0 and 3
|
---|
[1005] | 550 | scan.set_selection(sel) # set the selection
|
---|
| 551 | scan.summary() # will only print summary of scanno 0 an 3
|
---|
| 552 | scan.set_selection() # unset the selection
|
---|
[1697] | 553 | # or the equivalent
|
---|
| 554 | scan.set_selection(scans=[0,3])
|
---|
| 555 | scan.summary() # will only print summary of scanno 0 an 3
|
---|
| 556 | scan.set_selection() # unset the selection
|
---|
[1846] | 557 |
|
---|
[946] | 558 | """
|
---|
[1576] | 559 | if selection is None:
|
---|
| 560 | # reset
|
---|
| 561 | if len(kw) == 0:
|
---|
| 562 | selection = selector()
|
---|
| 563 | else:
|
---|
| 564 | # try keywords
|
---|
| 565 | for k in kw:
|
---|
| 566 | if k not in selector.fields:
|
---|
| 567 | raise KeyError("Invalid selection key '%s', valid keys are %s" % (k, selector.fields))
|
---|
| 568 | selection = selector(**kw)
|
---|
[946] | 569 | self._setselection(selection)
|
---|
| 570 |
|
---|
[1819] | 571 | def get_row(self, row=0, insitu=None):
|
---|
[1846] | 572 | """\
|
---|
[1819] | 573 | Select a row in the scantable.
|
---|
| 574 | Return a scantable with single row.
|
---|
[1846] | 575 |
|
---|
[1819] | 576 | Parameters:
|
---|
[1846] | 577 |
|
---|
| 578 | row: row no of integration, default is 0.
|
---|
| 579 | insitu: if False a new scantable is returned. Otherwise, the
|
---|
| 580 | scaling is done in-situ. The default is taken from .asaprc
|
---|
| 581 | (False)
|
---|
| 582 |
|
---|
[1819] | 583 | """
|
---|
| 584 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 585 | if not insitu:
|
---|
| 586 | workscan = self.copy()
|
---|
| 587 | else:
|
---|
| 588 | workscan = self
|
---|
| 589 | # Select a row
|
---|
| 590 | sel=selector()
|
---|
[1992] | 591 | sel.set_rows([row])
|
---|
| 592 | #sel.set_scans([workscan.getscan(row)])
|
---|
| 593 | #sel.set_cycles([workscan.getcycle(row)])
|
---|
| 594 | #sel.set_beams([workscan.getbeam(row)])
|
---|
| 595 | #sel.set_ifs([workscan.getif(row)])
|
---|
| 596 | #sel.set_polarisations([workscan.getpol(row)])
|
---|
| 597 | #sel.set_name(workscan._getsourcename(row))
|
---|
[1819] | 598 | workscan.set_selection(sel)
|
---|
| 599 | if not workscan.nrow() == 1:
|
---|
| 600 | msg = "Cloud not identify single row. %d rows selected."%(workscan.nrow())
|
---|
| 601 | raise RuntimeError(msg)
|
---|
| 602 | del sel
|
---|
| 603 | if insitu:
|
---|
| 604 | self._assign(workscan)
|
---|
| 605 | else:
|
---|
| 606 | return workscan
|
---|
| 607 |
|
---|
[1862] | 608 | @asaplog_post_dec
|
---|
[1907] | 609 | def stats(self, stat='stddev', mask=None, form='3.3f', row=None):
|
---|
[1846] | 610 | """\
|
---|
[135] | 611 | Determine the specified statistic of the current beam/if/pol
|
---|
[102] | 612 | Takes a 'mask' as an optional parameter to specify which
|
---|
| 613 | channels should be excluded.
|
---|
[1846] | 614 |
|
---|
[102] | 615 | Parameters:
|
---|
[1846] | 616 |
|
---|
[1819] | 617 | stat: 'min', 'max', 'min_abc', 'max_abc', 'sumsq', 'sum',
|
---|
| 618 | 'mean', 'var', 'stddev', 'avdev', 'rms', 'median'
|
---|
[1855] | 619 |
|
---|
[135] | 620 | mask: an optional mask specifying where the statistic
|
---|
[102] | 621 | should be determined.
|
---|
[1855] | 622 |
|
---|
[1819] | 623 | form: format string to print statistic values
|
---|
[1846] | 624 |
|
---|
[1907] | 625 | row: row number of spectrum to process.
|
---|
| 626 | (default is None: for all rows)
|
---|
[1846] | 627 |
|
---|
[1907] | 628 | Example:
|
---|
[113] | 629 | scan.set_unit('channel')
|
---|
[1118] | 630 | msk = scan.create_mask([100, 200], [500, 600])
|
---|
[135] | 631 | scan.stats(stat='mean', mask=m)
|
---|
[1846] | 632 |
|
---|
[102] | 633 | """
|
---|
[1593] | 634 | mask = mask or []
|
---|
[876] | 635 | if not self._check_ifs():
|
---|
[1118] | 636 | raise ValueError("Cannot apply mask as the IFs have different "
|
---|
| 637 | "number of channels. Please use setselection() "
|
---|
| 638 | "to select individual IFs")
|
---|
[1819] | 639 | rtnabc = False
|
---|
| 640 | if stat.lower().endswith('_abc'): rtnabc = True
|
---|
| 641 | getchan = False
|
---|
| 642 | if stat.lower().startswith('min') or stat.lower().startswith('max'):
|
---|
| 643 | chan = self._math._minmaxchan(self, mask, stat)
|
---|
| 644 | getchan = True
|
---|
| 645 | statvals = []
|
---|
[1907] | 646 | if not rtnabc:
|
---|
| 647 | if row == None:
|
---|
| 648 | statvals = self._math._stats(self, mask, stat)
|
---|
| 649 | else:
|
---|
| 650 | statvals = self._math._statsrow(self, mask, stat, int(row))
|
---|
[256] | 651 |
|
---|
[1819] | 652 | #def cb(i):
|
---|
| 653 | # return statvals[i]
|
---|
[256] | 654 |
|
---|
[1819] | 655 | #return self._row_callback(cb, stat)
|
---|
[102] | 656 |
|
---|
[1819] | 657 | label=stat
|
---|
| 658 | #callback=cb
|
---|
| 659 | out = ""
|
---|
| 660 | #outvec = []
|
---|
| 661 | sep = '-'*50
|
---|
[1907] | 662 |
|
---|
| 663 | if row == None:
|
---|
| 664 | rows = xrange(self.nrow())
|
---|
| 665 | elif isinstance(row, int):
|
---|
| 666 | rows = [ row ]
|
---|
| 667 |
|
---|
| 668 | for i in rows:
|
---|
[1819] | 669 | refstr = ''
|
---|
| 670 | statunit= ''
|
---|
| 671 | if getchan:
|
---|
| 672 | qx, qy = self.chan2data(rowno=i, chan=chan[i])
|
---|
| 673 | if rtnabc:
|
---|
| 674 | statvals.append(qx['value'])
|
---|
| 675 | refstr = ('(value: %'+form) % (qy['value'])+' ['+qy['unit']+'])'
|
---|
| 676 | statunit= '['+qx['unit']+']'
|
---|
| 677 | else:
|
---|
| 678 | refstr = ('(@ %'+form) % (qx['value'])+' ['+qx['unit']+'])'
|
---|
| 679 |
|
---|
| 680 | tm = self._gettime(i)
|
---|
| 681 | src = self._getsourcename(i)
|
---|
| 682 | out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
|
---|
| 683 | out += 'Time[%s]:\n' % (tm)
|
---|
[1907] | 684 | if self.nbeam(-1) > 1: out += ' Beam[%d] ' % (self.getbeam(i))
|
---|
| 685 | if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
|
---|
| 686 | if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
|
---|
[1819] | 687 | #outvec.append(callback(i))
|
---|
[1907] | 688 | if len(rows) > 1:
|
---|
| 689 | # out += ('= %'+form) % (outvec[i]) +' '+refstr+'\n'
|
---|
| 690 | out += ('= %'+form) % (statvals[i]) +' '+refstr+'\n'
|
---|
| 691 | else:
|
---|
| 692 | # out += ('= %'+form) % (outvec[0]) +' '+refstr+'\n'
|
---|
| 693 | out += ('= %'+form) % (statvals[0]) +' '+refstr+'\n'
|
---|
[1819] | 694 | out += sep+"\n"
|
---|
| 695 |
|
---|
[1859] | 696 | import os
|
---|
| 697 | if os.environ.has_key( 'USER' ):
|
---|
| 698 | usr = os.environ['USER']
|
---|
| 699 | else:
|
---|
| 700 | import commands
|
---|
| 701 | usr = commands.getoutput( 'whoami' )
|
---|
| 702 | tmpfile = '/tmp/tmp_'+usr+'_casapy_asap_scantable_stats'
|
---|
| 703 | f = open(tmpfile,'w')
|
---|
| 704 | print >> f, sep
|
---|
| 705 | print >> f, ' %s %s' % (label, statunit)
|
---|
| 706 | print >> f, sep
|
---|
| 707 | print >> f, out
|
---|
| 708 | f.close()
|
---|
| 709 | f = open(tmpfile,'r')
|
---|
| 710 | x = f.readlines()
|
---|
| 711 | f.close()
|
---|
| 712 | asaplog.push(''.join(x), False)
|
---|
| 713 |
|
---|
[1819] | 714 | return statvals
|
---|
| 715 |
|
---|
| 716 | def chan2data(self, rowno=0, chan=0):
|
---|
[1846] | 717 | """\
|
---|
[1819] | 718 | Returns channel/frequency/velocity and spectral value
|
---|
| 719 | at an arbitrary row and channel in the scantable.
|
---|
[1846] | 720 |
|
---|
[1819] | 721 | Parameters:
|
---|
[1846] | 722 |
|
---|
[1819] | 723 | rowno: a row number in the scantable. Default is the
|
---|
| 724 | first row, i.e. rowno=0
|
---|
[1855] | 725 |
|
---|
[1819] | 726 | chan: a channel in the scantable. Default is the first
|
---|
| 727 | channel, i.e. pos=0
|
---|
[1846] | 728 |
|
---|
[1819] | 729 | """
|
---|
| 730 | if isinstance(rowno, int) and isinstance(chan, int):
|
---|
| 731 | qx = {'unit': self.get_unit(),
|
---|
| 732 | 'value': self._getabcissa(rowno)[chan]}
|
---|
| 733 | qy = {'unit': self.get_fluxunit(),
|
---|
| 734 | 'value': self._getspectrum(rowno)[chan]}
|
---|
| 735 | return qx, qy
|
---|
| 736 |
|
---|
[1118] | 737 | def stddev(self, mask=None):
|
---|
[1846] | 738 | """\
|
---|
[135] | 739 | Determine the standard deviation of the current beam/if/pol
|
---|
| 740 | Takes a 'mask' as an optional parameter to specify which
|
---|
| 741 | channels should be excluded.
|
---|
[1846] | 742 |
|
---|
[135] | 743 | Parameters:
|
---|
[1846] | 744 |
|
---|
[135] | 745 | mask: an optional mask specifying where the standard
|
---|
| 746 | deviation should be determined.
|
---|
| 747 |
|
---|
[1846] | 748 | Example::
|
---|
| 749 |
|
---|
[135] | 750 | scan.set_unit('channel')
|
---|
[1118] | 751 | msk = scan.create_mask([100, 200], [500, 600])
|
---|
[135] | 752 | scan.stddev(mask=m)
|
---|
[1846] | 753 |
|
---|
[135] | 754 | """
|
---|
[1118] | 755 | return self.stats(stat='stddev', mask=mask);
|
---|
[135] | 756 |
|
---|
[1003] | 757 |
|
---|
[1259] | 758 | def get_column_names(self):
|
---|
[1846] | 759 | """\
|
---|
[1003] | 760 | Return a list of column names, which can be used for selection.
|
---|
| 761 | """
|
---|
[1259] | 762 | return list(Scantable.get_column_names(self))
|
---|
[1003] | 763 |
|
---|
[1730] | 764 | def get_tsys(self, row=-1):
|
---|
[1846] | 765 | """\
|
---|
[113] | 766 | Return the System temperatures.
|
---|
[1846] | 767 |
|
---|
| 768 | Parameters:
|
---|
| 769 |
|
---|
| 770 | row: the rowno to get the information for. (default all rows)
|
---|
| 771 |
|
---|
[113] | 772 | Returns:
|
---|
[1846] | 773 |
|
---|
[876] | 774 | a list of Tsys values for the current selection
|
---|
[1846] | 775 |
|
---|
[113] | 776 | """
|
---|
[1730] | 777 | if row > -1:
|
---|
| 778 | return self._get_column(self._gettsys, row)
|
---|
[876] | 779 | return self._row_callback(self._gettsys, "Tsys")
|
---|
[256] | 780 |
|
---|
[1730] | 781 |
|
---|
| 782 | def get_weather(self, row=-1):
|
---|
[1846] | 783 | """\
|
---|
| 784 | Return the weather informations.
|
---|
| 785 |
|
---|
| 786 | Parameters:
|
---|
| 787 |
|
---|
| 788 | row: the rowno to get the information for. (default all rows)
|
---|
| 789 |
|
---|
| 790 | Returns:
|
---|
| 791 |
|
---|
| 792 | a dict or list of of dicts of values for the current selection
|
---|
| 793 |
|
---|
| 794 | """
|
---|
| 795 |
|
---|
[1730] | 796 | values = self._get_column(self._get_weather, row)
|
---|
| 797 | if row > -1:
|
---|
| 798 | return {'temperature': values[0],
|
---|
| 799 | 'pressure': values[1], 'humidity' : values[2],
|
---|
| 800 | 'windspeed' : values[3], 'windaz' : values[4]
|
---|
| 801 | }
|
---|
| 802 | else:
|
---|
| 803 | out = []
|
---|
| 804 | for r in values:
|
---|
| 805 |
|
---|
| 806 | out.append({'temperature': r[0],
|
---|
| 807 | 'pressure': r[1], 'humidity' : r[2],
|
---|
| 808 | 'windspeed' : r[3], 'windaz' : r[4]
|
---|
| 809 | })
|
---|
| 810 | return out
|
---|
| 811 |
|
---|
[876] | 812 | def _row_callback(self, callback, label):
|
---|
| 813 | out = ""
|
---|
[1118] | 814 | outvec = []
|
---|
[1590] | 815 | sep = '-'*50
|
---|
[876] | 816 | for i in range(self.nrow()):
|
---|
| 817 | tm = self._gettime(i)
|
---|
| 818 | src = self._getsourcename(i)
|
---|
[1590] | 819 | out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
|
---|
[876] | 820 | out += 'Time[%s]:\n' % (tm)
|
---|
[1590] | 821 | if self.nbeam(-1) > 1:
|
---|
| 822 | out += ' Beam[%d] ' % (self.getbeam(i))
|
---|
| 823 | if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
|
---|
| 824 | if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
|
---|
[876] | 825 | outvec.append(callback(i))
|
---|
| 826 | out += '= %3.3f\n' % (outvec[i])
|
---|
[1590] | 827 | out += sep+'\n'
|
---|
[1859] | 828 |
|
---|
| 829 | asaplog.push(sep)
|
---|
| 830 | asaplog.push(" %s" % (label))
|
---|
| 831 | asaplog.push(sep)
|
---|
| 832 | asaplog.push(out)
|
---|
[1861] | 833 | asaplog.post()
|
---|
[1175] | 834 | return outvec
|
---|
[256] | 835 |
|
---|
[1947] | 836 | def _get_column(self, callback, row=-1, *args):
|
---|
[1070] | 837 | """
|
---|
| 838 | """
|
---|
| 839 | if row == -1:
|
---|
[1947] | 840 | return [callback(i, *args) for i in range(self.nrow())]
|
---|
[1070] | 841 | else:
|
---|
[1819] | 842 | if 0 <= row < self.nrow():
|
---|
[1947] | 843 | return callback(row, *args)
|
---|
[256] | 844 |
|
---|
[1070] | 845 |
|
---|
[1948] | 846 | def get_time(self, row=-1, asdatetime=False, prec=-1):
|
---|
[1846] | 847 | """\
|
---|
[113] | 848 | Get a list of time stamps for the observations.
|
---|
[1938] | 849 | Return a datetime object or a string (default) for each
|
---|
| 850 | integration time stamp in the scantable.
|
---|
[1846] | 851 |
|
---|
[113] | 852 | Parameters:
|
---|
[1846] | 853 |
|
---|
[1348] | 854 | row: row no of integration. Default -1 return all rows
|
---|
[1855] | 855 |
|
---|
[1348] | 856 | asdatetime: return values as datetime objects rather than strings
|
---|
[1846] | 857 |
|
---|
[2277] | 858 | prec: number of digits shown. Default -1 to automatic calculation.
|
---|
[1948] | 859 | Note this number is equals to the digits of MVTime,
|
---|
| 860 | i.e., 0<prec<3: dates with hh:: only,
|
---|
| 861 | <5: with hh:mm:, <7 or 0: with hh:mm:ss,
|
---|
[1947] | 862 | and 6> : with hh:mm:ss.tt... (prec-6 t's added)
|
---|
| 863 |
|
---|
[113] | 864 | """
|
---|
[1175] | 865 | from datetime import datetime
|
---|
[1948] | 866 | if prec < 0:
|
---|
| 867 | # automagically set necessary precision +1
|
---|
[1950] | 868 | prec = 7 - numpy.floor(numpy.log10(numpy.min(self.get_inttime(row))))
|
---|
[1948] | 869 | prec = max(6, int(prec))
|
---|
| 870 | else:
|
---|
| 871 | prec = max(0, prec)
|
---|
| 872 | if asdatetime:
|
---|
| 873 | #precision can be 1 millisecond at max
|
---|
| 874 | prec = min(12, prec)
|
---|
| 875 |
|
---|
[1947] | 876 | times = self._get_column(self._gettime, row, prec)
|
---|
[1348] | 877 | if not asdatetime:
|
---|
[1392] | 878 | return times
|
---|
[1947] | 879 | format = "%Y/%m/%d/%H:%M:%S.%f"
|
---|
| 880 | if prec < 7:
|
---|
| 881 | nsub = 1 + (((6-prec)/2) % 3)
|
---|
| 882 | substr = [".%f","%S","%M"]
|
---|
| 883 | for i in range(nsub):
|
---|
| 884 | format = format.replace(substr[i],"")
|
---|
[1175] | 885 | if isinstance(times, list):
|
---|
[1947] | 886 | return [datetime.strptime(i, format) for i in times]
|
---|
[1175] | 887 | else:
|
---|
[1947] | 888 | return datetime.strptime(times, format)
|
---|
[102] | 889 |
|
---|
[1348] | 890 |
|
---|
| 891 | def get_inttime(self, row=-1):
|
---|
[1846] | 892 | """\
|
---|
[1348] | 893 | Get a list of integration times for the observations.
|
---|
| 894 | Return a time in seconds for each integration in the scantable.
|
---|
[1846] | 895 |
|
---|
[1348] | 896 | Parameters:
|
---|
[1846] | 897 |
|
---|
[1348] | 898 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 899 |
|
---|
[1348] | 900 | """
|
---|
[1573] | 901 | return self._get_column(self._getinttime, row)
|
---|
[1348] | 902 |
|
---|
[1573] | 903 |
|
---|
[714] | 904 | def get_sourcename(self, row=-1):
|
---|
[1846] | 905 | """\
|
---|
[794] | 906 | Get a list source names for the observations.
|
---|
[714] | 907 | Return a string for each integration in the scantable.
|
---|
| 908 | Parameters:
|
---|
[1846] | 909 |
|
---|
[1348] | 910 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 911 |
|
---|
[714] | 912 | """
|
---|
[1070] | 913 | return self._get_column(self._getsourcename, row)
|
---|
[714] | 914 |
|
---|
[794] | 915 | def get_elevation(self, row=-1):
|
---|
[1846] | 916 | """\
|
---|
[794] | 917 | Get a list of elevations for the observations.
|
---|
| 918 | Return a float for each integration in the scantable.
|
---|
[1846] | 919 |
|
---|
[794] | 920 | Parameters:
|
---|
[1846] | 921 |
|
---|
[1348] | 922 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 923 |
|
---|
[794] | 924 | """
|
---|
[1070] | 925 | return self._get_column(self._getelevation, row)
|
---|
[794] | 926 |
|
---|
| 927 | def get_azimuth(self, row=-1):
|
---|
[1846] | 928 | """\
|
---|
[794] | 929 | Get a list of azimuths for the observations.
|
---|
| 930 | Return a float for each integration in the scantable.
|
---|
[1846] | 931 |
|
---|
[794] | 932 | Parameters:
|
---|
[1348] | 933 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 934 |
|
---|
[794] | 935 | """
|
---|
[1070] | 936 | return self._get_column(self._getazimuth, row)
|
---|
[794] | 937 |
|
---|
| 938 | def get_parangle(self, row=-1):
|
---|
[1846] | 939 | """\
|
---|
[794] | 940 | Get a list of parallactic angles for the observations.
|
---|
| 941 | Return a float for each integration in the scantable.
|
---|
[1846] | 942 |
|
---|
[794] | 943 | Parameters:
|
---|
[1846] | 944 |
|
---|
[1348] | 945 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 946 |
|
---|
[794] | 947 | """
|
---|
[1070] | 948 | return self._get_column(self._getparangle, row)
|
---|
[794] | 949 |
|
---|
[1070] | 950 | def get_direction(self, row=-1):
|
---|
| 951 | """
|
---|
| 952 | Get a list of Positions on the sky (direction) for the observations.
|
---|
[1594] | 953 | Return a string for each integration in the scantable.
|
---|
[1855] | 954 |
|
---|
[1070] | 955 | Parameters:
|
---|
[1855] | 956 |
|
---|
[1070] | 957 | row: row no of integration. Default -1 return all rows
|
---|
[1855] | 958 |
|
---|
[1070] | 959 | """
|
---|
| 960 | return self._get_column(self._getdirection, row)
|
---|
| 961 |
|
---|
[1391] | 962 | def get_directionval(self, row=-1):
|
---|
[1846] | 963 | """\
|
---|
[1391] | 964 | Get a list of Positions on the sky (direction) for the observations.
|
---|
| 965 | Return a float for each integration in the scantable.
|
---|
[1846] | 966 |
|
---|
[1391] | 967 | Parameters:
|
---|
[1846] | 968 |
|
---|
[1391] | 969 | row: row no of integration. Default -1 return all rows
|
---|
[1846] | 970 |
|
---|
[1391] | 971 | """
|
---|
| 972 | return self._get_column(self._getdirectionvec, row)
|
---|
| 973 |
|
---|
[1862] | 974 | @asaplog_post_dec
|
---|
[102] | 975 | def set_unit(self, unit='channel'):
|
---|
[1846] | 976 | """\
|
---|
[102] | 977 | Set the unit for all following operations on this scantable
|
---|
[1846] | 978 |
|
---|
[102] | 979 | Parameters:
|
---|
[1846] | 980 |
|
---|
| 981 | unit: optional unit, default is 'channel'. Use one of '*Hz',
|
---|
| 982 | 'km/s', 'channel' or equivalent ''
|
---|
| 983 |
|
---|
[102] | 984 | """
|
---|
[484] | 985 | varlist = vars()
|
---|
[1118] | 986 | if unit in ['', 'pixel', 'channel']:
|
---|
[113] | 987 | unit = ''
|
---|
| 988 | inf = list(self._getcoordinfo())
|
---|
| 989 | inf[0] = unit
|
---|
| 990 | self._setcoordinfo(inf)
|
---|
[1118] | 991 | self._add_history("set_unit", varlist)
|
---|
[113] | 992 |
|
---|
[1862] | 993 | @asaplog_post_dec
|
---|
[484] | 994 | def set_instrument(self, instr):
|
---|
[1846] | 995 | """\
|
---|
[1348] | 996 | Set the instrument for subsequent processing.
|
---|
[1846] | 997 |
|
---|
[358] | 998 | Parameters:
|
---|
[1846] | 999 |
|
---|
[710] | 1000 | instr: Select from 'ATPKSMB', 'ATPKSHOH', 'ATMOPRA',
|
---|
[407] | 1001 | 'DSS-43' (Tid), 'CEDUNA', and 'HOBART'
|
---|
[1846] | 1002 |
|
---|
[358] | 1003 | """
|
---|
| 1004 | self._setInstrument(instr)
|
---|
[1118] | 1005 | self._add_history("set_instument", vars())
|
---|
[358] | 1006 |
|
---|
[1862] | 1007 | @asaplog_post_dec
|
---|
[1190] | 1008 | def set_feedtype(self, feedtype):
|
---|
[1846] | 1009 | """\
|
---|
[1190] | 1010 | Overwrite the feed type, which might not be set correctly.
|
---|
[1846] | 1011 |
|
---|
[1190] | 1012 | Parameters:
|
---|
[1846] | 1013 |
|
---|
[1190] | 1014 | feedtype: 'linear' or 'circular'
|
---|
[1846] | 1015 |
|
---|
[1190] | 1016 | """
|
---|
| 1017 | self._setfeedtype(feedtype)
|
---|
| 1018 | self._add_history("set_feedtype", vars())
|
---|
| 1019 |
|
---|
[1862] | 1020 | @asaplog_post_dec
|
---|
[276] | 1021 | def set_doppler(self, doppler='RADIO'):
|
---|
[1846] | 1022 | """\
|
---|
[276] | 1023 | Set the doppler for all following operations on this scantable.
|
---|
[1846] | 1024 |
|
---|
[276] | 1025 | Parameters:
|
---|
[1846] | 1026 |
|
---|
[276] | 1027 | doppler: One of 'RADIO', 'OPTICAL', 'Z', 'BETA', 'GAMMA'
|
---|
[1846] | 1028 |
|
---|
[276] | 1029 | """
|
---|
[484] | 1030 | varlist = vars()
|
---|
[276] | 1031 | inf = list(self._getcoordinfo())
|
---|
| 1032 | inf[2] = doppler
|
---|
| 1033 | self._setcoordinfo(inf)
|
---|
[1118] | 1034 | self._add_history("set_doppler", vars())
|
---|
[710] | 1035 |
|
---|
[1862] | 1036 | @asaplog_post_dec
|
---|
[226] | 1037 | def set_freqframe(self, frame=None):
|
---|
[1846] | 1038 | """\
|
---|
[113] | 1039 | Set the frame type of the Spectral Axis.
|
---|
[1846] | 1040 |
|
---|
[113] | 1041 | Parameters:
|
---|
[1846] | 1042 |
|
---|
[591] | 1043 | frame: an optional frame type, default 'LSRK'. Valid frames are:
|
---|
[1819] | 1044 | 'TOPO', 'LSRD', 'LSRK', 'BARY',
|
---|
[1118] | 1045 | 'GEO', 'GALACTO', 'LGROUP', 'CMB'
|
---|
[1846] | 1046 |
|
---|
| 1047 | Example::
|
---|
| 1048 |
|
---|
[113] | 1049 | scan.set_freqframe('BARY')
|
---|
[1846] | 1050 |
|
---|
[113] | 1051 | """
|
---|
[1593] | 1052 | frame = frame or rcParams['scantable.freqframe']
|
---|
[484] | 1053 | varlist = vars()
|
---|
[1819] | 1054 | # "REST" is not implemented in casacore
|
---|
| 1055 | #valid = ['REST', 'TOPO', 'LSRD', 'LSRK', 'BARY', \
|
---|
| 1056 | # 'GEO', 'GALACTO', 'LGROUP', 'CMB']
|
---|
| 1057 | valid = ['TOPO', 'LSRD', 'LSRK', 'BARY', \
|
---|
[1118] | 1058 | 'GEO', 'GALACTO', 'LGROUP', 'CMB']
|
---|
[591] | 1059 |
|
---|
[989] | 1060 | if frame in valid:
|
---|
[113] | 1061 | inf = list(self._getcoordinfo())
|
---|
| 1062 | inf[1] = frame
|
---|
| 1063 | self._setcoordinfo(inf)
|
---|
[1118] | 1064 | self._add_history("set_freqframe", varlist)
|
---|
[102] | 1065 | else:
|
---|
[1118] | 1066 | msg = "Please specify a valid freq type. Valid types are:\n", valid
|
---|
[1859] | 1067 | raise TypeError(msg)
|
---|
[710] | 1068 |
|
---|
[1862] | 1069 | @asaplog_post_dec
|
---|
[989] | 1070 | def set_dirframe(self, frame=""):
|
---|
[1846] | 1071 | """\
|
---|
[989] | 1072 | Set the frame type of the Direction on the sky.
|
---|
[1846] | 1073 |
|
---|
[989] | 1074 | Parameters:
|
---|
[1846] | 1075 |
|
---|
[989] | 1076 | frame: an optional frame type, default ''. Valid frames are:
|
---|
| 1077 | 'J2000', 'B1950', 'GALACTIC'
|
---|
[1846] | 1078 |
|
---|
| 1079 | Example:
|
---|
| 1080 |
|
---|
[989] | 1081 | scan.set_dirframe('GALACTIC')
|
---|
[1846] | 1082 |
|
---|
[989] | 1083 | """
|
---|
| 1084 | varlist = vars()
|
---|
[1859] | 1085 | Scantable.set_dirframe(self, frame)
|
---|
[1118] | 1086 | self._add_history("set_dirframe", varlist)
|
---|
[989] | 1087 |
|
---|
[113] | 1088 | def get_unit(self):
|
---|
[1846] | 1089 | """\
|
---|
[113] | 1090 | Get the default unit set in this scantable
|
---|
[1846] | 1091 |
|
---|
[113] | 1092 | Returns:
|
---|
[1846] | 1093 |
|
---|
[113] | 1094 | A unit string
|
---|
[1846] | 1095 |
|
---|
[113] | 1096 | """
|
---|
| 1097 | inf = self._getcoordinfo()
|
---|
| 1098 | unit = inf[0]
|
---|
| 1099 | if unit == '': unit = 'channel'
|
---|
| 1100 | return unit
|
---|
[102] | 1101 |
|
---|
[1862] | 1102 | @asaplog_post_dec
|
---|
[158] | 1103 | def get_abcissa(self, rowno=0):
|
---|
[1846] | 1104 | """\
|
---|
[158] | 1105 | Get the abcissa in the current coordinate setup for the currently
|
---|
[113] | 1106 | selected Beam/IF/Pol
|
---|
[1846] | 1107 |
|
---|
[113] | 1108 | Parameters:
|
---|
[1846] | 1109 |
|
---|
[226] | 1110 | rowno: an optional row number in the scantable. Default is the
|
---|
| 1111 | first row, i.e. rowno=0
|
---|
[1846] | 1112 |
|
---|
[113] | 1113 | Returns:
|
---|
[1846] | 1114 |
|
---|
[1348] | 1115 | The abcissa values and the format string (as a dictionary)
|
---|
[1846] | 1116 |
|
---|
[113] | 1117 | """
|
---|
[256] | 1118 | abc = self._getabcissa(rowno)
|
---|
[710] | 1119 | lbl = self._getabcissalabel(rowno)
|
---|
[158] | 1120 | return abc, lbl
|
---|
[113] | 1121 |
|
---|
[1862] | 1122 | @asaplog_post_dec
|
---|
[1994] | 1123 | def flag(self, row=-1, mask=None, unflag=False):
|
---|
[1846] | 1124 | """\
|
---|
[1001] | 1125 | Flag the selected data using an optional channel mask.
|
---|
[1846] | 1126 |
|
---|
[1001] | 1127 | Parameters:
|
---|
[1846] | 1128 |
|
---|
[1994] | 1129 | row: an optional row number in the scantable.
|
---|
| 1130 | Default -1 flags all rows
|
---|
| 1131 |
|
---|
[1001] | 1132 | mask: an optional channel mask, created with create_mask. Default
|
---|
| 1133 | (no mask) is all channels.
|
---|
[1855] | 1134 |
|
---|
[1819] | 1135 | unflag: if True, unflag the data
|
---|
[1846] | 1136 |
|
---|
[1001] | 1137 | """
|
---|
| 1138 | varlist = vars()
|
---|
[1593] | 1139 | mask = mask or []
|
---|
[1994] | 1140 | self._flag(row, mask, unflag)
|
---|
[1001] | 1141 | self._add_history("flag", varlist)
|
---|
| 1142 |
|
---|
[1862] | 1143 | @asaplog_post_dec
|
---|
[1819] | 1144 | def flag_row(self, rows=[], unflag=False):
|
---|
[1846] | 1145 | """\
|
---|
[1819] | 1146 | Flag the selected data in row-based manner.
|
---|
[1846] | 1147 |
|
---|
[1819] | 1148 | Parameters:
|
---|
[1846] | 1149 |
|
---|
[1843] | 1150 | rows: list of row numbers to be flagged. Default is no row
|
---|
[2277] | 1151 | (must be explicitly specified to execute row-based flagging).
|
---|
[1855] | 1152 |
|
---|
[1819] | 1153 | unflag: if True, unflag the data.
|
---|
[1846] | 1154 |
|
---|
[1819] | 1155 | """
|
---|
| 1156 | varlist = vars()
|
---|
[1859] | 1157 | self._flag_row(rows, unflag)
|
---|
[1819] | 1158 | self._add_history("flag_row", varlist)
|
---|
| 1159 |
|
---|
[1862] | 1160 | @asaplog_post_dec
|
---|
[1819] | 1161 | def clip(self, uthres=None, dthres=None, clipoutside=True, unflag=False):
|
---|
[1846] | 1162 | """\
|
---|
[1819] | 1163 | Flag the selected data outside a specified range (in channel-base)
|
---|
[1846] | 1164 |
|
---|
[1819] | 1165 | Parameters:
|
---|
[1846] | 1166 |
|
---|
[1819] | 1167 | uthres: upper threshold.
|
---|
[1855] | 1168 |
|
---|
[1819] | 1169 | dthres: lower threshold
|
---|
[1846] | 1170 |
|
---|
[2277] | 1171 | clipoutside: True for flagging data outside the range [dthres:uthres].
|
---|
[1928] | 1172 | False for flagging data inside the range.
|
---|
[1855] | 1173 |
|
---|
[1846] | 1174 | unflag: if True, unflag the data.
|
---|
| 1175 |
|
---|
[1819] | 1176 | """
|
---|
| 1177 | varlist = vars()
|
---|
[1859] | 1178 | self._clip(uthres, dthres, clipoutside, unflag)
|
---|
[1819] | 1179 | self._add_history("clip", varlist)
|
---|
| 1180 |
|
---|
[1862] | 1181 | @asaplog_post_dec
|
---|
[1584] | 1182 | def lag_flag(self, start, end, unit="MHz", insitu=None):
|
---|
[1846] | 1183 | """\
|
---|
[1192] | 1184 | Flag the data in 'lag' space by providing a frequency to remove.
|
---|
[2177] | 1185 | Flagged data in the scantable get interpolated over the region.
|
---|
[1192] | 1186 | No taper is applied.
|
---|
[1846] | 1187 |
|
---|
[1192] | 1188 | Parameters:
|
---|
[1846] | 1189 |
|
---|
[1579] | 1190 | start: the start frequency (really a period within the
|
---|
| 1191 | bandwidth) or period to remove
|
---|
[1855] | 1192 |
|
---|
[1579] | 1193 | end: the end frequency or period to remove
|
---|
[1855] | 1194 |
|
---|
[1584] | 1195 | unit: the frequency unit (default "MHz") or "" for
|
---|
[1579] | 1196 | explicit lag channels
|
---|
[1846] | 1197 |
|
---|
| 1198 | *Notes*:
|
---|
| 1199 |
|
---|
[1579] | 1200 | It is recommended to flag edges of the band or strong
|
---|
[1348] | 1201 | signals beforehand.
|
---|
[1846] | 1202 |
|
---|
[1192] | 1203 | """
|
---|
| 1204 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 1205 | self._math._setinsitu(insitu)
|
---|
| 1206 | varlist = vars()
|
---|
[1579] | 1207 | base = { "GHz": 1000000000., "MHz": 1000000., "kHz": 1000., "Hz": 1.}
|
---|
| 1208 | if not (unit == "" or base.has_key(unit)):
|
---|
[1192] | 1209 | raise ValueError("%s is not a valid unit." % unit)
|
---|
[1859] | 1210 | if unit == "":
|
---|
| 1211 | s = scantable(self._math._lag_flag(self, start, end, "lags"))
|
---|
| 1212 | else:
|
---|
| 1213 | s = scantable(self._math._lag_flag(self, start*base[unit],
|
---|
| 1214 | end*base[unit], "frequency"))
|
---|
[1192] | 1215 | s._add_history("lag_flag", varlist)
|
---|
| 1216 | if insitu:
|
---|
| 1217 | self._assign(s)
|
---|
| 1218 | else:
|
---|
| 1219 | return s
|
---|
[1001] | 1220 |
|
---|
[1862] | 1221 | @asaplog_post_dec
|
---|
[2186] | 1222 | def fft(self, rowno=[], mask=[], getrealimag=False):
|
---|
[2177] | 1223 | """\
|
---|
| 1224 | Apply FFT to the spectra.
|
---|
| 1225 | Flagged data in the scantable get interpolated over the region.
|
---|
| 1226 |
|
---|
| 1227 | Parameters:
|
---|
[2186] | 1228 |
|
---|
| 1229 | rowno: The row number(s) to be processed. int, list
|
---|
| 1230 | and tuple are accepted. By default ([]), FFT
|
---|
| 1231 | is applied to the whole data.
|
---|
| 1232 |
|
---|
| 1233 | mask: Auxiliary channel mask(s). Given as a boolean
|
---|
| 1234 | list, it is applied to all specified rows.
|
---|
| 1235 | A list of boolean lists can also be used to
|
---|
| 1236 | apply different masks. In the latter case, the
|
---|
| 1237 | length of 'mask' must be the same as that of
|
---|
| 1238 | 'rowno'. The default is [].
|
---|
[2177] | 1239 |
|
---|
| 1240 | getrealimag: If True, returns the real and imaginary part
|
---|
| 1241 | values of the complex results.
|
---|
| 1242 | If False (the default), returns the amplitude
|
---|
| 1243 | (absolute value) normalised with Ndata/2 and
|
---|
| 1244 | phase (argument, in unit of radian).
|
---|
| 1245 |
|
---|
| 1246 | Returns:
|
---|
| 1247 |
|
---|
[2186] | 1248 | A list of dictionaries containing the results for each spectrum.
|
---|
| 1249 | Each dictionary contains two values, the real and the imaginary
|
---|
| 1250 | parts when getrealimag = True, or the amplitude(absolute value)
|
---|
| 1251 | and the phase(argument) when getrealimag = False. The key for
|
---|
| 1252 | these values are 'real' and 'imag', or 'ampl' and 'phase',
|
---|
[2177] | 1253 | respectively.
|
---|
| 1254 | """
|
---|
| 1255 | if isinstance(rowno, int):
|
---|
| 1256 | rowno = [rowno]
|
---|
| 1257 | elif not (isinstance(rowno, list) or isinstance(rowno, tuple)):
|
---|
[2186] | 1258 | raise TypeError("The row number(s) must be int, list or tuple.")
|
---|
| 1259 |
|
---|
| 1260 | if len(rowno) == 0: rowno = [i for i in xrange(self.nrow())]
|
---|
| 1261 |
|
---|
| 1262 | if not (isinstance(mask, list) or isinstance(mask, tuple)):
|
---|
| 1263 | raise TypeError("The mask must be a boolean list or a list of boolean list.")
|
---|
| 1264 | if len(mask) == 0: mask = [True for i in xrange(self.nchan())]
|
---|
| 1265 | if isinstance(mask[0], bool): mask = [mask]
|
---|
| 1266 | elif not (isinstance(mask[0], list) or isinstance(mask[0], tuple)):
|
---|
| 1267 | raise TypeError("The mask must be a boolean list or a list of boolean list.")
|
---|
| 1268 |
|
---|
| 1269 | usecommonmask = (len(mask) == 1)
|
---|
| 1270 | if not usecommonmask:
|
---|
| 1271 | if len(mask) != len(rowno):
|
---|
| 1272 | raise ValueError("When specifying masks for each spectrum, the numbers of them must be identical.")
|
---|
| 1273 | for amask in mask:
|
---|
| 1274 | if len(amask) != self.nchan():
|
---|
| 1275 | raise ValueError("The spectra and the mask have different length.")
|
---|
[2177] | 1276 |
|
---|
[2186] | 1277 | res = []
|
---|
| 1278 |
|
---|
| 1279 | imask = 0
|
---|
| 1280 | for whichrow in rowno:
|
---|
| 1281 | fspec = self._fft(whichrow, mask[imask], getrealimag)
|
---|
| 1282 | nspec = len(fspec)
|
---|
[2177] | 1283 |
|
---|
[2186] | 1284 | i=0
|
---|
| 1285 | v1=[]
|
---|
| 1286 | v2=[]
|
---|
| 1287 | reselem = {"real":[],"imag":[]} if getrealimag else {"ampl":[],"phase":[]}
|
---|
[2177] | 1288 |
|
---|
[2186] | 1289 | while (i < nspec):
|
---|
| 1290 | v1.append(fspec[i])
|
---|
| 1291 | v2.append(fspec[i+1])
|
---|
| 1292 | i+=2
|
---|
| 1293 |
|
---|
[2177] | 1294 | if getrealimag:
|
---|
[2186] | 1295 | reselem["real"] += v1
|
---|
| 1296 | reselem["imag"] += v2
|
---|
[2177] | 1297 | else:
|
---|
[2186] | 1298 | reselem["ampl"] += v1
|
---|
| 1299 | reselem["phase"] += v2
|
---|
[2177] | 1300 |
|
---|
[2186] | 1301 | res.append(reselem)
|
---|
| 1302 |
|
---|
| 1303 | if not usecommonmask: imask += 1
|
---|
| 1304 |
|
---|
[2177] | 1305 | return res
|
---|
| 1306 |
|
---|
| 1307 | @asaplog_post_dec
|
---|
[113] | 1308 | def create_mask(self, *args, **kwargs):
|
---|
[1846] | 1309 | """\
|
---|
[1118] | 1310 | Compute and return a mask based on [min, max] windows.
|
---|
[189] | 1311 | The specified windows are to be INCLUDED, when the mask is
|
---|
[113] | 1312 | applied.
|
---|
[1846] | 1313 |
|
---|
[102] | 1314 | Parameters:
|
---|
[1846] | 1315 |
|
---|
[1118] | 1316 | [min, max], [min2, max2], ...
|
---|
[1024] | 1317 | Pairs of start/end points (inclusive)specifying the regions
|
---|
[102] | 1318 | to be masked
|
---|
[1855] | 1319 |
|
---|
[189] | 1320 | invert: optional argument. If specified as True,
|
---|
| 1321 | return an inverted mask, i.e. the regions
|
---|
| 1322 | specified are EXCLUDED
|
---|
[1855] | 1323 |
|
---|
[513] | 1324 | row: create the mask using the specified row for
|
---|
| 1325 | unit conversions, default is row=0
|
---|
| 1326 | only necessary if frequency varies over rows.
|
---|
[1846] | 1327 |
|
---|
| 1328 | Examples::
|
---|
| 1329 |
|
---|
[113] | 1330 | scan.set_unit('channel')
|
---|
[1846] | 1331 | # a)
|
---|
[1118] | 1332 | msk = scan.create_mask([400, 500], [800, 900])
|
---|
[189] | 1333 | # masks everything outside 400 and 500
|
---|
[113] | 1334 | # and 800 and 900 in the unit 'channel'
|
---|
| 1335 |
|
---|
[1846] | 1336 | # b)
|
---|
[1118] | 1337 | msk = scan.create_mask([400, 500], [800, 900], invert=True)
|
---|
[189] | 1338 | # masks the regions between 400 and 500
|
---|
[113] | 1339 | # and 800 and 900 in the unit 'channel'
|
---|
[1846] | 1340 |
|
---|
| 1341 | # c)
|
---|
| 1342 | #mask only channel 400
|
---|
[1554] | 1343 | msk = scan.create_mask([400])
|
---|
[1846] | 1344 |
|
---|
[102] | 1345 | """
|
---|
[1554] | 1346 | row = kwargs.get("row", 0)
|
---|
[513] | 1347 | data = self._getabcissa(row)
|
---|
[113] | 1348 | u = self._getcoordinfo()[0]
|
---|
[1859] | 1349 | if u == "":
|
---|
| 1350 | u = "channel"
|
---|
| 1351 | msg = "The current mask window unit is %s" % u
|
---|
| 1352 | i = self._check_ifs()
|
---|
| 1353 | if not i:
|
---|
| 1354 | msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
|
---|
| 1355 | asaplog.push(msg)
|
---|
[102] | 1356 | n = self.nchan()
|
---|
[1295] | 1357 | msk = _n_bools(n, False)
|
---|
[710] | 1358 | # test if args is a 'list' or a 'normal *args - UGLY!!!
|
---|
| 1359 |
|
---|
[1118] | 1360 | ws = (isinstance(args[-1][-1], int) or isinstance(args[-1][-1], float)) \
|
---|
| 1361 | and args or args[0]
|
---|
[710] | 1362 | for window in ws:
|
---|
[1554] | 1363 | if len(window) == 1:
|
---|
| 1364 | window = [window[0], window[0]]
|
---|
| 1365 | if len(window) == 0 or len(window) > 2:
|
---|
| 1366 | raise ValueError("A window needs to be defined as [start(, end)]")
|
---|
[1545] | 1367 | if window[0] > window[1]:
|
---|
| 1368 | tmp = window[0]
|
---|
| 1369 | window[0] = window[1]
|
---|
| 1370 | window[1] = tmp
|
---|
[102] | 1371 | for i in range(n):
|
---|
[1024] | 1372 | if data[i] >= window[0] and data[i] <= window[1]:
|
---|
[1295] | 1373 | msk[i] = True
|
---|
[113] | 1374 | if kwargs.has_key('invert'):
|
---|
| 1375 | if kwargs.get('invert'):
|
---|
[1295] | 1376 | msk = mask_not(msk)
|
---|
[102] | 1377 | return msk
|
---|
[710] | 1378 |
|
---|
[1931] | 1379 | def get_masklist(self, mask=None, row=0, silent=False):
|
---|
[1846] | 1380 | """\
|
---|
[1819] | 1381 | Compute and return a list of mask windows, [min, max].
|
---|
[1846] | 1382 |
|
---|
[1819] | 1383 | Parameters:
|
---|
[1846] | 1384 |
|
---|
[1819] | 1385 | mask: channel mask, created with create_mask.
|
---|
[1855] | 1386 |
|
---|
[1819] | 1387 | row: calcutate the masklist using the specified row
|
---|
| 1388 | for unit conversions, default is row=0
|
---|
| 1389 | only necessary if frequency varies over rows.
|
---|
[1846] | 1390 |
|
---|
[1819] | 1391 | Returns:
|
---|
[1846] | 1392 |
|
---|
[1819] | 1393 | [min, max], [min2, max2], ...
|
---|
| 1394 | Pairs of start/end points (inclusive)specifying
|
---|
| 1395 | the masked regions
|
---|
[1846] | 1396 |
|
---|
[1819] | 1397 | """
|
---|
| 1398 | if not (isinstance(mask,list) or isinstance(mask, tuple)):
|
---|
| 1399 | raise TypeError("The mask should be list or tuple.")
|
---|
| 1400 | if len(mask) < 2:
|
---|
| 1401 | raise TypeError("The mask elements should be > 1")
|
---|
| 1402 | if self.nchan() != len(mask):
|
---|
| 1403 | msg = "Number of channels in scantable != number of mask elements"
|
---|
| 1404 | raise TypeError(msg)
|
---|
| 1405 | data = self._getabcissa(row)
|
---|
| 1406 | u = self._getcoordinfo()[0]
|
---|
[1859] | 1407 | if u == "":
|
---|
| 1408 | u = "channel"
|
---|
| 1409 | msg = "The current mask window unit is %s" % u
|
---|
| 1410 | i = self._check_ifs()
|
---|
| 1411 | if not i:
|
---|
| 1412 | msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
|
---|
[1931] | 1413 | if not silent:
|
---|
| 1414 | asaplog.push(msg)
|
---|
[1819] | 1415 | masklist=[]
|
---|
| 1416 | ist, ien = None, None
|
---|
| 1417 | ist, ien=self.get_mask_indices(mask)
|
---|
| 1418 | if ist is not None and ien is not None:
|
---|
| 1419 | for i in xrange(len(ist)):
|
---|
| 1420 | range=[data[ist[i]],data[ien[i]]]
|
---|
| 1421 | range.sort()
|
---|
| 1422 | masklist.append([range[0],range[1]])
|
---|
| 1423 | return masklist
|
---|
| 1424 |
|
---|
| 1425 | def get_mask_indices(self, mask=None):
|
---|
[1846] | 1426 | """\
|
---|
[1819] | 1427 | Compute and Return lists of mask start indices and mask end indices.
|
---|
[1855] | 1428 |
|
---|
| 1429 | Parameters:
|
---|
| 1430 |
|
---|
[1819] | 1431 | mask: channel mask, created with create_mask.
|
---|
[1846] | 1432 |
|
---|
[1819] | 1433 | Returns:
|
---|
[1846] | 1434 |
|
---|
[1819] | 1435 | List of mask start indices and that of mask end indices,
|
---|
| 1436 | i.e., [istart1,istart2,....], [iend1,iend2,....].
|
---|
[1846] | 1437 |
|
---|
[1819] | 1438 | """
|
---|
| 1439 | if not (isinstance(mask,list) or isinstance(mask, tuple)):
|
---|
| 1440 | raise TypeError("The mask should be list or tuple.")
|
---|
| 1441 | if len(mask) < 2:
|
---|
| 1442 | raise TypeError("The mask elements should be > 1")
|
---|
| 1443 | istart=[]
|
---|
| 1444 | iend=[]
|
---|
| 1445 | if mask[0]: istart.append(0)
|
---|
| 1446 | for i in range(len(mask)-1):
|
---|
| 1447 | if not mask[i] and mask[i+1]:
|
---|
| 1448 | istart.append(i+1)
|
---|
| 1449 | elif mask[i] and not mask[i+1]:
|
---|
| 1450 | iend.append(i)
|
---|
| 1451 | if mask[len(mask)-1]: iend.append(len(mask)-1)
|
---|
| 1452 | if len(istart) != len(iend):
|
---|
| 1453 | raise RuntimeError("Numbers of mask start != mask end.")
|
---|
| 1454 | for i in range(len(istart)):
|
---|
| 1455 | if istart[i] > iend[i]:
|
---|
| 1456 | raise RuntimeError("Mask start index > mask end index")
|
---|
| 1457 | break
|
---|
| 1458 | return istart,iend
|
---|
| 1459 |
|
---|
[2013] | 1460 | @asaplog_post_dec
|
---|
| 1461 | def parse_maskexpr(self,maskstring):
|
---|
| 1462 | """
|
---|
| 1463 | Parse CASA type mask selection syntax (IF dependent).
|
---|
| 1464 |
|
---|
| 1465 | Parameters:
|
---|
| 1466 | maskstring : A string mask selection expression.
|
---|
| 1467 | A comma separated selections mean different IF -
|
---|
| 1468 | channel combinations. IFs and channel selections
|
---|
| 1469 | are partitioned by a colon, ':'.
|
---|
| 1470 | examples:
|
---|
[2015] | 1471 | '' = all IFs (all channels)
|
---|
[2013] | 1472 | '<2,4~6,9' = IFs 0,1,4,5,6,9 (all channels)
|
---|
| 1473 | '3:3~45;60' = channels 3 to 45 and 60 in IF 3
|
---|
| 1474 | '0~1:2~6,8' = channels 2 to 6 in IFs 0,1, and
|
---|
| 1475 | all channels in IF8
|
---|
| 1476 | Returns:
|
---|
| 1477 | A dictionary of selected (valid) IF and masklist pairs,
|
---|
| 1478 | e.g. {'0': [[50,250],[350,462]], '2': [[100,400],[550,974]]}
|
---|
| 1479 | """
|
---|
| 1480 | if not isinstance(maskstring,str):
|
---|
| 1481 | asaplog.post()
|
---|
| 1482 | asaplog.push("Invalid mask expression")
|
---|
| 1483 | asaplog.post("ERROR")
|
---|
| 1484 |
|
---|
| 1485 | valid_ifs = self.getifnos()
|
---|
| 1486 | frequnit = self.get_unit()
|
---|
| 1487 | seldict = {}
|
---|
[2015] | 1488 | if maskstring == "":
|
---|
| 1489 | maskstring = str(valid_ifs)[1:-1]
|
---|
[2013] | 1490 | ## split each selection
|
---|
| 1491 | sellist = maskstring.split(',')
|
---|
| 1492 | for currselstr in sellist:
|
---|
| 1493 | selset = currselstr.split(':')
|
---|
| 1494 | # spw and mask string (may include ~, < or >)
|
---|
| 1495 | spwmasklist = self._parse_selection(selset[0],typestr='integer',
|
---|
| 1496 | offset=1,minval=min(valid_ifs),
|
---|
| 1497 | maxval=max(valid_ifs))
|
---|
| 1498 | for spwlist in spwmasklist:
|
---|
| 1499 | selspws = []
|
---|
| 1500 | for ispw in range(spwlist[0],spwlist[1]+1):
|
---|
| 1501 | # Put into the list only if ispw exists
|
---|
| 1502 | if valid_ifs.count(ispw):
|
---|
| 1503 | selspws.append(ispw)
|
---|
| 1504 | del spwmasklist, spwlist
|
---|
| 1505 |
|
---|
| 1506 | # parse frequency mask list
|
---|
| 1507 | if len(selset) > 1:
|
---|
| 1508 | freqmasklist = self._parse_selection(selset[1],typestr='float',
|
---|
| 1509 | offset=0.)
|
---|
| 1510 | else:
|
---|
| 1511 | # want to select the whole spectrum
|
---|
| 1512 | freqmasklist = [None]
|
---|
| 1513 |
|
---|
| 1514 | ## define a dictionary of spw - masklist combination
|
---|
| 1515 | for ispw in selspws:
|
---|
| 1516 | #print "working on", ispw
|
---|
| 1517 | spwstr = str(ispw)
|
---|
| 1518 | if len(selspws) == 0:
|
---|
| 1519 | # empty spw
|
---|
| 1520 | continue
|
---|
| 1521 | else:
|
---|
| 1522 | ## want to get min and max of the spw and
|
---|
| 1523 | ## offset to set for '<' and '>'
|
---|
| 1524 | if frequnit == 'channel':
|
---|
| 1525 | minfreq = 0
|
---|
| 1526 | maxfreq = self.nchan(ifno=ispw)
|
---|
| 1527 | offset = 0.5
|
---|
| 1528 | else:
|
---|
| 1529 | ## This is ugly part. need improvement
|
---|
| 1530 | for ifrow in xrange(self.nrow()):
|
---|
| 1531 | if self.getif(ifrow) == ispw:
|
---|
| 1532 | #print "IF",ispw,"found in row =",ifrow
|
---|
| 1533 | break
|
---|
| 1534 | freqcoord = self.get_coordinate(ifrow)
|
---|
| 1535 | freqs = self._getabcissa(ifrow)
|
---|
| 1536 | minfreq = min(freqs)
|
---|
| 1537 | maxfreq = max(freqs)
|
---|
| 1538 | if len(freqs) == 1:
|
---|
| 1539 | offset = 0.5
|
---|
| 1540 | elif frequnit.find('Hz') > 0:
|
---|
| 1541 | offset = abs(freqcoord.to_frequency(1,unit=frequnit)
|
---|
| 1542 | -freqcoord.to_frequency(0,unit=frequnit))*0.5
|
---|
| 1543 | elif frequnit.find('m/s') > 0:
|
---|
| 1544 | offset = abs(freqcoord.to_velocity(1,unit=frequnit)
|
---|
| 1545 | -freqcoord.to_velocity(0,unit=frequnit))*0.5
|
---|
| 1546 | else:
|
---|
| 1547 | asaplog.post()
|
---|
| 1548 | asaplog.push("Invalid frequency unit")
|
---|
| 1549 | asaplog.post("ERROR")
|
---|
| 1550 | del freqs, freqcoord, ifrow
|
---|
| 1551 | for freq in freqmasklist:
|
---|
| 1552 | selmask = freq or [minfreq, maxfreq]
|
---|
| 1553 | if selmask[0] == None:
|
---|
| 1554 | ## selection was "<freq[1]".
|
---|
| 1555 | if selmask[1] < minfreq:
|
---|
| 1556 | ## avoid adding region selection
|
---|
| 1557 | selmask = None
|
---|
| 1558 | else:
|
---|
| 1559 | selmask = [minfreq,selmask[1]-offset]
|
---|
| 1560 | elif selmask[1] == None:
|
---|
| 1561 | ## selection was ">freq[0]"
|
---|
| 1562 | if selmask[0] > maxfreq:
|
---|
| 1563 | ## avoid adding region selection
|
---|
| 1564 | selmask = None
|
---|
| 1565 | else:
|
---|
| 1566 | selmask = [selmask[0]+offset,maxfreq]
|
---|
| 1567 | if selmask:
|
---|
| 1568 | if not seldict.has_key(spwstr):
|
---|
| 1569 | # new spw selection
|
---|
| 1570 | seldict[spwstr] = []
|
---|
| 1571 | seldict[spwstr] += [selmask]
|
---|
| 1572 | del minfreq,maxfreq,offset,freq,selmask
|
---|
| 1573 | del spwstr
|
---|
| 1574 | del freqmasklist
|
---|
| 1575 | del valid_ifs
|
---|
| 1576 | if len(seldict) == 0:
|
---|
| 1577 | asaplog.post()
|
---|
| 1578 | asaplog.push("No valid selection in the mask expression: "+maskstring)
|
---|
| 1579 | asaplog.post("WARN")
|
---|
| 1580 | return None
|
---|
| 1581 | msg = "Selected masklist:\n"
|
---|
| 1582 | for sif, lmask in seldict.iteritems():
|
---|
| 1583 | msg += " IF"+sif+" - "+str(lmask)+"\n"
|
---|
| 1584 | asaplog.push(msg)
|
---|
| 1585 | return seldict
|
---|
| 1586 |
|
---|
| 1587 | def _parse_selection(self,selstr,typestr='float',offset=0.,minval=None,maxval=None):
|
---|
| 1588 | """
|
---|
| 1589 | Parameters:
|
---|
| 1590 | selstr : The Selection string, e.g., '<3;5~7;100~103;9'
|
---|
| 1591 | typestr : The type of the values in returned list
|
---|
| 1592 | ('integer' or 'float')
|
---|
| 1593 | offset : The offset value to subtract from or add to
|
---|
| 1594 | the boundary value if the selection string
|
---|
| 1595 | includes '<' or '>'
|
---|
| 1596 | minval, maxval : The minimum/maximum values to set if the
|
---|
| 1597 | selection string includes '<' or '>'.
|
---|
| 1598 | The list element is filled with None by default.
|
---|
| 1599 | Returns:
|
---|
| 1600 | A list of min/max pair of selections.
|
---|
| 1601 | Example:
|
---|
| 1602 | _parseSelection('<3;5~7;9',typestr='int',offset=1,minval=0)
|
---|
| 1603 | returns [[0,2],[5,7],[9,9]]
|
---|
| 1604 | """
|
---|
| 1605 | selgroups = selstr.split(';')
|
---|
| 1606 | sellists = []
|
---|
| 1607 | if typestr.lower().startswith('int'):
|
---|
| 1608 | formatfunc = int
|
---|
| 1609 | else:
|
---|
| 1610 | formatfunc = float
|
---|
| 1611 |
|
---|
| 1612 | for currsel in selgroups:
|
---|
| 1613 | if currsel.find('~') > 0:
|
---|
| 1614 | minsel = formatfunc(currsel.split('~')[0].strip())
|
---|
| 1615 | maxsel = formatfunc(currsel.split('~')[1].strip())
|
---|
| 1616 | elif currsel.strip().startswith('<'):
|
---|
| 1617 | minsel = minval
|
---|
| 1618 | maxsel = formatfunc(currsel.split('<')[1].strip()) \
|
---|
| 1619 | - formatfunc(offset)
|
---|
| 1620 | elif currsel.strip().startswith('>'):
|
---|
| 1621 | minsel = formatfunc(currsel.split('>')[1].strip()) \
|
---|
| 1622 | + formatfunc(offset)
|
---|
| 1623 | maxsel = maxval
|
---|
| 1624 | else:
|
---|
| 1625 | minsel = formatfunc(currsel)
|
---|
| 1626 | maxsel = formatfunc(currsel)
|
---|
| 1627 | sellists.append([minsel,maxsel])
|
---|
| 1628 | return sellists
|
---|
| 1629 |
|
---|
[1819] | 1630 | # def get_restfreqs(self):
|
---|
| 1631 | # """
|
---|
| 1632 | # Get the restfrequency(s) stored in this scantable.
|
---|
| 1633 | # The return value(s) are always of unit 'Hz'
|
---|
| 1634 | # Parameters:
|
---|
| 1635 | # none
|
---|
| 1636 | # Returns:
|
---|
| 1637 | # a list of doubles
|
---|
| 1638 | # """
|
---|
| 1639 | # return list(self._getrestfreqs())
|
---|
| 1640 |
|
---|
| 1641 | def get_restfreqs(self, ids=None):
|
---|
[1846] | 1642 | """\
|
---|
[256] | 1643 | Get the restfrequency(s) stored in this scantable.
|
---|
| 1644 | The return value(s) are always of unit 'Hz'
|
---|
[1846] | 1645 |
|
---|
[256] | 1646 | Parameters:
|
---|
[1846] | 1647 |
|
---|
[1819] | 1648 | ids: (optional) a list of MOLECULE_ID for that restfrequency(s) to
|
---|
| 1649 | be retrieved
|
---|
[1846] | 1650 |
|
---|
[256] | 1651 | Returns:
|
---|
[1846] | 1652 |
|
---|
[1819] | 1653 | dictionary containing ids and a list of doubles for each id
|
---|
[1846] | 1654 |
|
---|
[256] | 1655 | """
|
---|
[1819] | 1656 | if ids is None:
|
---|
| 1657 | rfreqs={}
|
---|
| 1658 | idlist = self.getmolnos()
|
---|
| 1659 | for i in idlist:
|
---|
| 1660 | rfreqs[i]=list(self._getrestfreqs(i))
|
---|
| 1661 | return rfreqs
|
---|
| 1662 | else:
|
---|
| 1663 | if type(ids)==list or type(ids)==tuple:
|
---|
| 1664 | rfreqs={}
|
---|
| 1665 | for i in ids:
|
---|
| 1666 | rfreqs[i]=list(self._getrestfreqs(i))
|
---|
| 1667 | return rfreqs
|
---|
| 1668 | else:
|
---|
| 1669 | return list(self._getrestfreqs(ids))
|
---|
| 1670 | #return list(self._getrestfreqs(ids))
|
---|
[102] | 1671 |
|
---|
[931] | 1672 | def set_restfreqs(self, freqs=None, unit='Hz'):
|
---|
[1846] | 1673 | """\
|
---|
[931] | 1674 | Set or replace the restfrequency specified and
|
---|
[1938] | 1675 | if the 'freqs' argument holds a scalar,
|
---|
[931] | 1676 | then that rest frequency will be applied to all the selected
|
---|
| 1677 | data. If the 'freqs' argument holds
|
---|
| 1678 | a vector, then it MUST be of equal or smaller length than
|
---|
| 1679 | the number of IFs (and the available restfrequencies will be
|
---|
| 1680 | replaced by this vector). In this case, *all* data have
|
---|
| 1681 | the restfrequency set per IF according
|
---|
| 1682 | to the corresponding value you give in the 'freqs' vector.
|
---|
[1118] | 1683 | E.g. 'freqs=[1e9, 2e9]' would mean IF 0 gets restfreq 1e9 and
|
---|
[931] | 1684 | IF 1 gets restfreq 2e9.
|
---|
[1846] | 1685 |
|
---|
[1395] | 1686 | You can also specify the frequencies via a linecatalog.
|
---|
[1153] | 1687 |
|
---|
[931] | 1688 | Parameters:
|
---|
[1846] | 1689 |
|
---|
[931] | 1690 | freqs: list of rest frequency values or string idenitfiers
|
---|
[1855] | 1691 |
|
---|
[931] | 1692 | unit: unit for rest frequency (default 'Hz')
|
---|
[402] | 1693 |
|
---|
[1846] | 1694 |
|
---|
| 1695 | Example::
|
---|
| 1696 |
|
---|
[1819] | 1697 | # set the given restfrequency for the all currently selected IFs
|
---|
[931] | 1698 | scan.set_restfreqs(freqs=1.4e9)
|
---|
[1845] | 1699 | # set restfrequencies for the n IFs (n > 1) in the order of the
|
---|
| 1700 | # list, i.e
|
---|
| 1701 | # IF0 -> 1.4e9, IF1 -> 1.41e9, IF3 -> 1.42e9
|
---|
| 1702 | # len(list_of_restfreqs) == nIF
|
---|
| 1703 | # for nIF == 1 the following will set multiple restfrequency for
|
---|
| 1704 | # that IF
|
---|
[1819] | 1705 | scan.set_restfreqs(freqs=[1.4e9, 1.41e9, 1.42e9])
|
---|
[1845] | 1706 | # set multiple restfrequencies per IF. as a list of lists where
|
---|
| 1707 | # the outer list has nIF elements, the inner s arbitrary
|
---|
| 1708 | scan.set_restfreqs(freqs=[[1.4e9, 1.41e9], [1.67e9]])
|
---|
[391] | 1709 |
|
---|
[1846] | 1710 | *Note*:
|
---|
[1845] | 1711 |
|
---|
[931] | 1712 | To do more sophisticate Restfrequency setting, e.g. on a
|
---|
| 1713 | source and IF basis, use scantable.set_selection() before using
|
---|
[1846] | 1714 | this function::
|
---|
[931] | 1715 |
|
---|
[1846] | 1716 | # provided your scantable is called scan
|
---|
| 1717 | selection = selector()
|
---|
| 1718 | selection.set_name("ORION*")
|
---|
| 1719 | selection.set_ifs([1])
|
---|
| 1720 | scan.set_selection(selection)
|
---|
| 1721 | scan.set_restfreqs(freqs=86.6e9)
|
---|
| 1722 |
|
---|
[931] | 1723 | """
|
---|
| 1724 | varlist = vars()
|
---|
[1157] | 1725 | from asap import linecatalog
|
---|
| 1726 | # simple value
|
---|
[1118] | 1727 | if isinstance(freqs, int) or isinstance(freqs, float):
|
---|
[1845] | 1728 | self._setrestfreqs([freqs], [""], unit)
|
---|
[1157] | 1729 | # list of values
|
---|
[1118] | 1730 | elif isinstance(freqs, list) or isinstance(freqs, tuple):
|
---|
[1157] | 1731 | # list values are scalars
|
---|
[1118] | 1732 | if isinstance(freqs[-1], int) or isinstance(freqs[-1], float):
|
---|
[1845] | 1733 | if len(freqs) == 1:
|
---|
| 1734 | self._setrestfreqs(freqs, [""], unit)
|
---|
| 1735 | else:
|
---|
| 1736 | # allow the 'old' mode of setting mulitple IFs
|
---|
| 1737 | sel = selector()
|
---|
| 1738 | savesel = self._getselection()
|
---|
| 1739 | iflist = self.getifnos()
|
---|
| 1740 | if len(freqs)>len(iflist):
|
---|
| 1741 | raise ValueError("number of elements in list of list "
|
---|
| 1742 | "exeeds the current IF selections")
|
---|
| 1743 | iflist = self.getifnos()
|
---|
| 1744 | for i, fval in enumerate(freqs):
|
---|
| 1745 | sel.set_ifs(iflist[i])
|
---|
| 1746 | self._setselection(sel)
|
---|
| 1747 | self._setrestfreqs([fval], [""], unit)
|
---|
| 1748 | self._setselection(savesel)
|
---|
| 1749 |
|
---|
| 1750 | # list values are dict, {'value'=, 'name'=)
|
---|
[1157] | 1751 | elif isinstance(freqs[-1], dict):
|
---|
[1845] | 1752 | values = []
|
---|
| 1753 | names = []
|
---|
| 1754 | for d in freqs:
|
---|
| 1755 | values.append(d["value"])
|
---|
| 1756 | names.append(d["name"])
|
---|
| 1757 | self._setrestfreqs(values, names, unit)
|
---|
[1819] | 1758 | elif isinstance(freqs[-1], list) or isinstance(freqs[-1], tuple):
|
---|
[1157] | 1759 | sel = selector()
|
---|
| 1760 | savesel = self._getselection()
|
---|
[1322] | 1761 | iflist = self.getifnos()
|
---|
[1819] | 1762 | if len(freqs)>len(iflist):
|
---|
[1845] | 1763 | raise ValueError("number of elements in list of list exeeds"
|
---|
| 1764 | " the current IF selections")
|
---|
| 1765 | for i, fval in enumerate(freqs):
|
---|
[1322] | 1766 | sel.set_ifs(iflist[i])
|
---|
[1259] | 1767 | self._setselection(sel)
|
---|
[1845] | 1768 | self._setrestfreqs(fval, [""], unit)
|
---|
[1157] | 1769 | self._setselection(savesel)
|
---|
| 1770 | # freqs are to be taken from a linecatalog
|
---|
[1153] | 1771 | elif isinstance(freqs, linecatalog):
|
---|
| 1772 | sel = selector()
|
---|
| 1773 | savesel = self._getselection()
|
---|
| 1774 | for i in xrange(freqs.nrow()):
|
---|
[1322] | 1775 | sel.set_ifs(iflist[i])
|
---|
[1153] | 1776 | self._setselection(sel)
|
---|
[1845] | 1777 | self._setrestfreqs([freqs.get_frequency(i)],
|
---|
| 1778 | [freqs.get_name(i)], "MHz")
|
---|
[1153] | 1779 | # ensure that we are not iterating past nIF
|
---|
| 1780 | if i == self.nif()-1: break
|
---|
| 1781 | self._setselection(savesel)
|
---|
[931] | 1782 | else:
|
---|
| 1783 | return
|
---|
| 1784 | self._add_history("set_restfreqs", varlist)
|
---|
| 1785 |
|
---|
[1360] | 1786 | def shift_refpix(self, delta):
|
---|
[1846] | 1787 | """\
|
---|
[1589] | 1788 | Shift the reference pixel of the Spectra Coordinate by an
|
---|
| 1789 | integer amount.
|
---|
[1846] | 1790 |
|
---|
[1589] | 1791 | Parameters:
|
---|
[1846] | 1792 |
|
---|
[1589] | 1793 | delta: the amount to shift by
|
---|
[1846] | 1794 |
|
---|
| 1795 | *Note*:
|
---|
| 1796 |
|
---|
[1589] | 1797 | Be careful using this with broadband data.
|
---|
[1846] | 1798 |
|
---|
[1360] | 1799 | """
|
---|
[1731] | 1800 | Scantable.shift_refpix(self, delta)
|
---|
[931] | 1801 |
|
---|
[1862] | 1802 | @asaplog_post_dec
|
---|
[1259] | 1803 | def history(self, filename=None):
|
---|
[1846] | 1804 | """\
|
---|
[1259] | 1805 | Print the history. Optionally to a file.
|
---|
[1846] | 1806 |
|
---|
[1348] | 1807 | Parameters:
|
---|
[1846] | 1808 |
|
---|
[1928] | 1809 | filename: The name of the file to save the history to.
|
---|
[1846] | 1810 |
|
---|
[1259] | 1811 | """
|
---|
[484] | 1812 | hist = list(self._gethistory())
|
---|
[794] | 1813 | out = "-"*80
|
---|
[484] | 1814 | for h in hist:
|
---|
[489] | 1815 | if h.startswith("---"):
|
---|
[1857] | 1816 | out = "\n".join([out, h])
|
---|
[489] | 1817 | else:
|
---|
| 1818 | items = h.split("##")
|
---|
| 1819 | date = items[0]
|
---|
| 1820 | func = items[1]
|
---|
| 1821 | items = items[2:]
|
---|
[794] | 1822 | out += "\n"+date+"\n"
|
---|
| 1823 | out += "Function: %s\n Parameters:" % (func)
|
---|
[489] | 1824 | for i in items:
|
---|
[1938] | 1825 | if i == '':
|
---|
| 1826 | continue
|
---|
[489] | 1827 | s = i.split("=")
|
---|
[1118] | 1828 | out += "\n %s = %s" % (s[0], s[1])
|
---|
[1857] | 1829 | out = "\n".join([out, "-"*80])
|
---|
[1259] | 1830 | if filename is not None:
|
---|
| 1831 | if filename is "":
|
---|
| 1832 | filename = 'scantable_history.txt'
|
---|
| 1833 | import os
|
---|
| 1834 | filename = os.path.expandvars(os.path.expanduser(filename))
|
---|
| 1835 | if not os.path.isdir(filename):
|
---|
| 1836 | data = open(filename, 'w')
|
---|
| 1837 | data.write(out)
|
---|
| 1838 | data.close()
|
---|
| 1839 | else:
|
---|
| 1840 | msg = "Illegal file name '%s'." % (filename)
|
---|
[1859] | 1841 | raise IOError(msg)
|
---|
| 1842 | return page(out)
|
---|
[513] | 1843 | #
|
---|
| 1844 | # Maths business
|
---|
| 1845 | #
|
---|
[1862] | 1846 | @asaplog_post_dec
|
---|
[931] | 1847 | def average_time(self, mask=None, scanav=False, weight='tint', align=False):
|
---|
[1846] | 1848 | """\
|
---|
[1070] | 1849 | Return the (time) weighted average of a scan.
|
---|
[1846] | 1850 |
|
---|
| 1851 | *Note*:
|
---|
| 1852 |
|
---|
[1070] | 1853 | in channels only - align if necessary
|
---|
[1846] | 1854 |
|
---|
[513] | 1855 | Parameters:
|
---|
[1846] | 1856 |
|
---|
[513] | 1857 | mask: an optional mask (only used for 'var' and 'tsys'
|
---|
| 1858 | weighting)
|
---|
[1855] | 1859 |
|
---|
[558] | 1860 | scanav: True averages each scan separately
|
---|
| 1861 | False (default) averages all scans together,
|
---|
[1855] | 1862 |
|
---|
[1099] | 1863 | weight: Weighting scheme.
|
---|
| 1864 | 'none' (mean no weight)
|
---|
| 1865 | 'var' (1/var(spec) weighted)
|
---|
| 1866 | 'tsys' (1/Tsys**2 weighted)
|
---|
| 1867 | 'tint' (integration time weighted)
|
---|
| 1868 | 'tintsys' (Tint/Tsys**2)
|
---|
| 1869 | 'median' ( median averaging)
|
---|
[535] | 1870 | The default is 'tint'
|
---|
[1855] | 1871 |
|
---|
[931] | 1872 | align: align the spectra in velocity before averaging. It takes
|
---|
| 1873 | the time of the first spectrum as reference time.
|
---|
[1846] | 1874 |
|
---|
| 1875 | Example::
|
---|
| 1876 |
|
---|
[513] | 1877 | # time average the scantable without using a mask
|
---|
[710] | 1878 | newscan = scan.average_time()
|
---|
[1846] | 1879 |
|
---|
[513] | 1880 | """
|
---|
| 1881 | varlist = vars()
|
---|
[1593] | 1882 | weight = weight or 'TINT'
|
---|
| 1883 | mask = mask or ()
|
---|
| 1884 | scanav = (scanav and 'SCAN') or 'NONE'
|
---|
[1118] | 1885 | scan = (self, )
|
---|
[1859] | 1886 |
|
---|
| 1887 | if align:
|
---|
| 1888 | scan = (self.freq_align(insitu=False), )
|
---|
| 1889 | s = None
|
---|
| 1890 | if weight.upper() == 'MEDIAN':
|
---|
| 1891 | s = scantable(self._math._averagechannel(scan[0], 'MEDIAN',
|
---|
| 1892 | scanav))
|
---|
| 1893 | else:
|
---|
| 1894 | s = scantable(self._math._average(scan, mask, weight.upper(),
|
---|
| 1895 | scanav))
|
---|
[1099] | 1896 | s._add_history("average_time", varlist)
|
---|
[513] | 1897 | return s
|
---|
[710] | 1898 |
|
---|
[1862] | 1899 | @asaplog_post_dec
|
---|
[876] | 1900 | def convert_flux(self, jyperk=None, eta=None, d=None, insitu=None):
|
---|
[1846] | 1901 | """\
|
---|
[513] | 1902 | Return a scan where all spectra are converted to either
|
---|
| 1903 | Jansky or Kelvin depending upon the flux units of the scan table.
|
---|
| 1904 | By default the function tries to look the values up internally.
|
---|
| 1905 | If it can't find them (or if you want to over-ride), you must
|
---|
| 1906 | specify EITHER jyperk OR eta (and D which it will try to look up
|
---|
| 1907 | also if you don't set it). jyperk takes precedence if you set both.
|
---|
[1846] | 1908 |
|
---|
[513] | 1909 | Parameters:
|
---|
[1846] | 1910 |
|
---|
[513] | 1911 | jyperk: the Jy / K conversion factor
|
---|
[1855] | 1912 |
|
---|
[513] | 1913 | eta: the aperture efficiency
|
---|
[1855] | 1914 |
|
---|
[1928] | 1915 | d: the geometric diameter (metres)
|
---|
[1855] | 1916 |
|
---|
[513] | 1917 | insitu: if False a new scantable is returned.
|
---|
| 1918 | Otherwise, the scaling is done in-situ
|
---|
| 1919 | The default is taken from .asaprc (False)
|
---|
[1846] | 1920 |
|
---|
[513] | 1921 | """
|
---|
| 1922 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 1923 | self._math._setinsitu(insitu)
|
---|
[513] | 1924 | varlist = vars()
|
---|
[1593] | 1925 | jyperk = jyperk or -1.0
|
---|
| 1926 | d = d or -1.0
|
---|
| 1927 | eta = eta or -1.0
|
---|
[876] | 1928 | s = scantable(self._math._convertflux(self, d, eta, jyperk))
|
---|
| 1929 | s._add_history("convert_flux", varlist)
|
---|
| 1930 | if insitu: self._assign(s)
|
---|
| 1931 | else: return s
|
---|
[513] | 1932 |
|
---|
[1862] | 1933 | @asaplog_post_dec
|
---|
[876] | 1934 | def gain_el(self, poly=None, filename="", method="linear", insitu=None):
|
---|
[1846] | 1935 | """\
|
---|
[513] | 1936 | Return a scan after applying a gain-elevation correction.
|
---|
| 1937 | The correction can be made via either a polynomial or a
|
---|
| 1938 | table-based interpolation (and extrapolation if necessary).
|
---|
| 1939 | You specify polynomial coefficients, an ascii table or neither.
|
---|
| 1940 | If you specify neither, then a polynomial correction will be made
|
---|
| 1941 | with built in coefficients known for certain telescopes (an error
|
---|
| 1942 | will occur if the instrument is not known).
|
---|
| 1943 | The data and Tsys are *divided* by the scaling factors.
|
---|
[1846] | 1944 |
|
---|
[513] | 1945 | Parameters:
|
---|
[1846] | 1946 |
|
---|
[513] | 1947 | poly: Polynomial coefficients (default None) to compute a
|
---|
| 1948 | gain-elevation correction as a function of
|
---|
| 1949 | elevation (in degrees).
|
---|
[1855] | 1950 |
|
---|
[513] | 1951 | filename: The name of an ascii file holding correction factors.
|
---|
| 1952 | The first row of the ascii file must give the column
|
---|
| 1953 | names and these MUST include columns
|
---|
| 1954 | "ELEVATION" (degrees) and "FACTOR" (multiply data
|
---|
| 1955 | by this) somewhere.
|
---|
| 1956 | The second row must give the data type of the
|
---|
| 1957 | column. Use 'R' for Real and 'I' for Integer.
|
---|
| 1958 | An example file would be
|
---|
| 1959 | (actual factors are arbitrary) :
|
---|
| 1960 |
|
---|
| 1961 | TIME ELEVATION FACTOR
|
---|
| 1962 | R R R
|
---|
| 1963 | 0.1 0 0.8
|
---|
| 1964 | 0.2 20 0.85
|
---|
| 1965 | 0.3 40 0.9
|
---|
| 1966 | 0.4 60 0.85
|
---|
| 1967 | 0.5 80 0.8
|
---|
| 1968 | 0.6 90 0.75
|
---|
[1855] | 1969 |
|
---|
[513] | 1970 | method: Interpolation method when correcting from a table.
|
---|
| 1971 | Values are "nearest", "linear" (default), "cubic"
|
---|
| 1972 | and "spline"
|
---|
[1855] | 1973 |
|
---|
[513] | 1974 | insitu: if False a new scantable is returned.
|
---|
| 1975 | Otherwise, the scaling is done in-situ
|
---|
| 1976 | The default is taken from .asaprc (False)
|
---|
[1846] | 1977 |
|
---|
[513] | 1978 | """
|
---|
| 1979 |
|
---|
| 1980 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 1981 | self._math._setinsitu(insitu)
|
---|
[513] | 1982 | varlist = vars()
|
---|
[1593] | 1983 | poly = poly or ()
|
---|
[513] | 1984 | from os.path import expandvars
|
---|
| 1985 | filename = expandvars(filename)
|
---|
[876] | 1986 | s = scantable(self._math._gainel(self, poly, filename, method))
|
---|
| 1987 | s._add_history("gain_el", varlist)
|
---|
[1593] | 1988 | if insitu:
|
---|
| 1989 | self._assign(s)
|
---|
| 1990 | else:
|
---|
| 1991 | return s
|
---|
[710] | 1992 |
|
---|
[1862] | 1993 | @asaplog_post_dec
|
---|
[931] | 1994 | def freq_align(self, reftime=None, method='cubic', insitu=None):
|
---|
[1846] | 1995 | """\
|
---|
[513] | 1996 | Return a scan where all rows have been aligned in frequency/velocity.
|
---|
| 1997 | The alignment frequency frame (e.g. LSRK) is that set by function
|
---|
| 1998 | set_freqframe.
|
---|
[1846] | 1999 |
|
---|
[513] | 2000 | Parameters:
|
---|
[1855] | 2001 |
|
---|
[513] | 2002 | reftime: reference time to align at. By default, the time of
|
---|
| 2003 | the first row of data is used.
|
---|
[1855] | 2004 |
|
---|
[513] | 2005 | method: Interpolation method for regridding the spectra.
|
---|
| 2006 | Choose from "nearest", "linear", "cubic" (default)
|
---|
| 2007 | and "spline"
|
---|
[1855] | 2008 |
|
---|
[513] | 2009 | insitu: if False a new scantable is returned.
|
---|
| 2010 | Otherwise, the scaling is done in-situ
|
---|
| 2011 | The default is taken from .asaprc (False)
|
---|
[1846] | 2012 |
|
---|
[513] | 2013 | """
|
---|
[931] | 2014 | if insitu is None: insitu = rcParams["insitu"]
|
---|
[876] | 2015 | self._math._setinsitu(insitu)
|
---|
[513] | 2016 | varlist = vars()
|
---|
[1593] | 2017 | reftime = reftime or ""
|
---|
[931] | 2018 | s = scantable(self._math._freq_align(self, reftime, method))
|
---|
[876] | 2019 | s._add_history("freq_align", varlist)
|
---|
| 2020 | if insitu: self._assign(s)
|
---|
| 2021 | else: return s
|
---|
[513] | 2022 |
|
---|
[1862] | 2023 | @asaplog_post_dec
|
---|
[1725] | 2024 | def opacity(self, tau=None, insitu=None):
|
---|
[1846] | 2025 | """\
|
---|
[513] | 2026 | Apply an opacity correction. The data
|
---|
| 2027 | and Tsys are multiplied by the correction factor.
|
---|
[1846] | 2028 |
|
---|
[513] | 2029 | Parameters:
|
---|
[1855] | 2030 |
|
---|
[1689] | 2031 | tau: (list of) opacity from which the correction factor is
|
---|
[513] | 2032 | exp(tau*ZD)
|
---|
[1689] | 2033 | where ZD is the zenith-distance.
|
---|
| 2034 | If a list is provided, it has to be of length nIF,
|
---|
| 2035 | nIF*nPol or 1 and in order of IF/POL, e.g.
|
---|
| 2036 | [opif0pol0, opif0pol1, opif1pol0 ...]
|
---|
[1725] | 2037 | if tau is `None` the opacities are determined from a
|
---|
| 2038 | model.
|
---|
[1855] | 2039 |
|
---|
[513] | 2040 | insitu: if False a new scantable is returned.
|
---|
| 2041 | Otherwise, the scaling is done in-situ
|
---|
| 2042 | The default is taken from .asaprc (False)
|
---|
[1846] | 2043 |
|
---|
[513] | 2044 | """
|
---|
| 2045 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 2046 | self._math._setinsitu(insitu)
|
---|
[513] | 2047 | varlist = vars()
|
---|
[1689] | 2048 | if not hasattr(tau, "__len__"):
|
---|
| 2049 | tau = [tau]
|
---|
[876] | 2050 | s = scantable(self._math._opacity(self, tau))
|
---|
| 2051 | s._add_history("opacity", varlist)
|
---|
| 2052 | if insitu: self._assign(s)
|
---|
| 2053 | else: return s
|
---|
[513] | 2054 |
|
---|
[1862] | 2055 | @asaplog_post_dec
|
---|
[513] | 2056 | def bin(self, width=5, insitu=None):
|
---|
[1846] | 2057 | """\
|
---|
[513] | 2058 | Return a scan where all spectra have been binned up.
|
---|
[1846] | 2059 |
|
---|
[1348] | 2060 | Parameters:
|
---|
[1846] | 2061 |
|
---|
[513] | 2062 | width: The bin width (default=5) in pixels
|
---|
[1855] | 2063 |
|
---|
[513] | 2064 | insitu: if False a new scantable is returned.
|
---|
| 2065 | Otherwise, the scaling is done in-situ
|
---|
| 2066 | The default is taken from .asaprc (False)
|
---|
[1846] | 2067 |
|
---|
[513] | 2068 | """
|
---|
| 2069 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 2070 | self._math._setinsitu(insitu)
|
---|
[513] | 2071 | varlist = vars()
|
---|
[876] | 2072 | s = scantable(self._math._bin(self, width))
|
---|
[1118] | 2073 | s._add_history("bin", varlist)
|
---|
[1589] | 2074 | if insitu:
|
---|
| 2075 | self._assign(s)
|
---|
| 2076 | else:
|
---|
| 2077 | return s
|
---|
[513] | 2078 |
|
---|
[1862] | 2079 | @asaplog_post_dec
|
---|
[513] | 2080 | def resample(self, width=5, method='cubic', insitu=None):
|
---|
[1846] | 2081 | """\
|
---|
[1348] | 2082 | Return a scan where all spectra have been binned up.
|
---|
[1573] | 2083 |
|
---|
[1348] | 2084 | Parameters:
|
---|
[1846] | 2085 |
|
---|
[513] | 2086 | width: The bin width (default=5) in pixels
|
---|
[1855] | 2087 |
|
---|
[513] | 2088 | method: Interpolation method when correcting from a table.
|
---|
| 2089 | Values are "nearest", "linear", "cubic" (default)
|
---|
| 2090 | and "spline"
|
---|
[1855] | 2091 |
|
---|
[513] | 2092 | insitu: if False a new scantable is returned.
|
---|
| 2093 | Otherwise, the scaling is done in-situ
|
---|
| 2094 | The default is taken from .asaprc (False)
|
---|
[1846] | 2095 |
|
---|
[513] | 2096 | """
|
---|
| 2097 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 2098 | self._math._setinsitu(insitu)
|
---|
[513] | 2099 | varlist = vars()
|
---|
[876] | 2100 | s = scantable(self._math._resample(self, method, width))
|
---|
[1118] | 2101 | s._add_history("resample", varlist)
|
---|
[876] | 2102 | if insitu: self._assign(s)
|
---|
| 2103 | else: return s
|
---|
[513] | 2104 |
|
---|
[1862] | 2105 | @asaplog_post_dec
|
---|
[946] | 2106 | def average_pol(self, mask=None, weight='none'):
|
---|
[1846] | 2107 | """\
|
---|
[946] | 2108 | Average the Polarisations together.
|
---|
[1846] | 2109 |
|
---|
[946] | 2110 | Parameters:
|
---|
[1846] | 2111 |
|
---|
[946] | 2112 | mask: An optional mask defining the region, where the
|
---|
| 2113 | averaging will be applied. The output will have all
|
---|
| 2114 | specified points masked.
|
---|
[1855] | 2115 |
|
---|
[946] | 2116 | weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
|
---|
| 2117 | weighted), or 'tsys' (1/Tsys**2 weighted)
|
---|
[1846] | 2118 |
|
---|
[946] | 2119 | """
|
---|
| 2120 | varlist = vars()
|
---|
[1593] | 2121 | mask = mask or ()
|
---|
[1010] | 2122 | s = scantable(self._math._averagepol(self, mask, weight.upper()))
|
---|
[1118] | 2123 | s._add_history("average_pol", varlist)
|
---|
[992] | 2124 | return s
|
---|
[513] | 2125 |
|
---|
[1862] | 2126 | @asaplog_post_dec
|
---|
[1145] | 2127 | def average_beam(self, mask=None, weight='none'):
|
---|
[1846] | 2128 | """\
|
---|
[1145] | 2129 | Average the Beams together.
|
---|
[1846] | 2130 |
|
---|
[1145] | 2131 | Parameters:
|
---|
| 2132 | mask: An optional mask defining the region, where the
|
---|
| 2133 | averaging will be applied. The output will have all
|
---|
| 2134 | specified points masked.
|
---|
[1855] | 2135 |
|
---|
[1145] | 2136 | weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
|
---|
| 2137 | weighted), or 'tsys' (1/Tsys**2 weighted)
|
---|
[1846] | 2138 |
|
---|
[1145] | 2139 | """
|
---|
| 2140 | varlist = vars()
|
---|
[1593] | 2141 | mask = mask or ()
|
---|
[1145] | 2142 | s = scantable(self._math._averagebeams(self, mask, weight.upper()))
|
---|
| 2143 | s._add_history("average_beam", varlist)
|
---|
| 2144 | return s
|
---|
| 2145 |
|
---|
[1586] | 2146 | def parallactify(self, pflag):
|
---|
[1846] | 2147 | """\
|
---|
[1843] | 2148 | Set a flag to indicate whether this data should be treated as having
|
---|
[1617] | 2149 | been 'parallactified' (total phase == 0.0)
|
---|
[1846] | 2150 |
|
---|
[1617] | 2151 | Parameters:
|
---|
[1855] | 2152 |
|
---|
[1843] | 2153 | pflag: Bool indicating whether to turn this on (True) or
|
---|
[1617] | 2154 | off (False)
|
---|
[1846] | 2155 |
|
---|
[1617] | 2156 | """
|
---|
[1586] | 2157 | varlist = vars()
|
---|
| 2158 | self._parallactify(pflag)
|
---|
| 2159 | self._add_history("parallactify", varlist)
|
---|
| 2160 |
|
---|
[1862] | 2161 | @asaplog_post_dec
|
---|
[992] | 2162 | def convert_pol(self, poltype=None):
|
---|
[1846] | 2163 | """\
|
---|
[992] | 2164 | Convert the data to a different polarisation type.
|
---|
[1565] | 2165 | Note that you will need cross-polarisation terms for most conversions.
|
---|
[1846] | 2166 |
|
---|
[992] | 2167 | Parameters:
|
---|
[1855] | 2168 |
|
---|
[992] | 2169 | poltype: The new polarisation type. Valid types are:
|
---|
[1565] | 2170 | "linear", "circular", "stokes" and "linpol"
|
---|
[1846] | 2171 |
|
---|
[992] | 2172 | """
|
---|
| 2173 | varlist = vars()
|
---|
[1859] | 2174 | s = scantable(self._math._convertpol(self, poltype))
|
---|
[1118] | 2175 | s._add_history("convert_pol", varlist)
|
---|
[992] | 2176 | return s
|
---|
| 2177 |
|
---|
[1862] | 2178 | @asaplog_post_dec
|
---|
[2269] | 2179 | def smooth(self, kernel="hanning", width=5.0, order=2, plot=False,
|
---|
| 2180 | insitu=None):
|
---|
[1846] | 2181 | """\
|
---|
[513] | 2182 | Smooth the spectrum by the specified kernel (conserving flux).
|
---|
[1846] | 2183 |
|
---|
[513] | 2184 | Parameters:
|
---|
[1846] | 2185 |
|
---|
[513] | 2186 | kernel: The type of smoothing kernel. Select from
|
---|
[1574] | 2187 | 'hanning' (default), 'gaussian', 'boxcar', 'rmedian'
|
---|
| 2188 | or 'poly'
|
---|
[1855] | 2189 |
|
---|
[513] | 2190 | width: The width of the kernel in pixels. For hanning this is
|
---|
| 2191 | ignored otherwise it defauls to 5 pixels.
|
---|
| 2192 | For 'gaussian' it is the Full Width Half
|
---|
| 2193 | Maximum. For 'boxcar' it is the full width.
|
---|
[1574] | 2194 | For 'rmedian' and 'poly' it is the half width.
|
---|
[1855] | 2195 |
|
---|
[1574] | 2196 | order: Optional parameter for 'poly' kernel (default is 2), to
|
---|
| 2197 | specify the order of the polnomial. Ignored by all other
|
---|
| 2198 | kernels.
|
---|
[1855] | 2199 |
|
---|
[1819] | 2200 | plot: plot the original and the smoothed spectra.
|
---|
| 2201 | In this each indivual fit has to be approved, by
|
---|
| 2202 | typing 'y' or 'n'
|
---|
[1855] | 2203 |
|
---|
[513] | 2204 | insitu: if False a new scantable is returned.
|
---|
| 2205 | Otherwise, the scaling is done in-situ
|
---|
| 2206 | The default is taken from .asaprc (False)
|
---|
[1846] | 2207 |
|
---|
[513] | 2208 | """
|
---|
| 2209 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 2210 | self._math._setinsitu(insitu)
|
---|
[513] | 2211 | varlist = vars()
|
---|
[1819] | 2212 |
|
---|
| 2213 | if plot: orgscan = self.copy()
|
---|
| 2214 |
|
---|
[1574] | 2215 | s = scantable(self._math._smooth(self, kernel.lower(), width, order))
|
---|
[876] | 2216 | s._add_history("smooth", varlist)
|
---|
[1819] | 2217 |
|
---|
| 2218 | if plot:
|
---|
[2150] | 2219 | from asap.asapplotter import new_asaplot
|
---|
| 2220 | theplot = new_asaplot(rcParams['plotter.gui'])
|
---|
| 2221 | theplot.set_panels()
|
---|
[1819] | 2222 | ylab=s._get_ordinate_label()
|
---|
[2150] | 2223 | #theplot.palette(0,["#777777","red"])
|
---|
[1819] | 2224 | for r in xrange(s.nrow()):
|
---|
| 2225 | xsm=s._getabcissa(r)
|
---|
| 2226 | ysm=s._getspectrum(r)
|
---|
| 2227 | xorg=orgscan._getabcissa(r)
|
---|
| 2228 | yorg=orgscan._getspectrum(r)
|
---|
[2150] | 2229 | theplot.clear()
|
---|
| 2230 | theplot.hold()
|
---|
| 2231 | theplot.set_axes('ylabel',ylab)
|
---|
| 2232 | theplot.set_axes('xlabel',s._getabcissalabel(r))
|
---|
| 2233 | theplot.set_axes('title',s._getsourcename(r))
|
---|
| 2234 | theplot.set_line(label='Original',color="#777777")
|
---|
| 2235 | theplot.plot(xorg,yorg)
|
---|
| 2236 | theplot.set_line(label='Smoothed',color="red")
|
---|
| 2237 | theplot.plot(xsm,ysm)
|
---|
[1819] | 2238 | ### Ugly part for legend
|
---|
| 2239 | for i in [0,1]:
|
---|
[2150] | 2240 | theplot.subplots[0]['lines'].append([theplot.subplots[0]['axes'].lines[i]])
|
---|
| 2241 | theplot.release()
|
---|
[1819] | 2242 | ### Ugly part for legend
|
---|
[2150] | 2243 | theplot.subplots[0]['lines']=[]
|
---|
[1819] | 2244 | res = raw_input("Accept smoothing ([y]/n): ")
|
---|
| 2245 | if res.upper() == 'N':
|
---|
| 2246 | s._setspectrum(yorg, r)
|
---|
[2150] | 2247 | theplot.quit()
|
---|
| 2248 | del theplot
|
---|
[1819] | 2249 | del orgscan
|
---|
| 2250 |
|
---|
[876] | 2251 | if insitu: self._assign(s)
|
---|
| 2252 | else: return s
|
---|
[513] | 2253 |
|
---|
[2186] | 2254 | @asaplog_post_dec
|
---|
| 2255 | def _parse_wn(self, wn):
|
---|
| 2256 | if isinstance(wn, list) or isinstance(wn, tuple):
|
---|
| 2257 | return wn
|
---|
| 2258 | elif isinstance(wn, int):
|
---|
| 2259 | return [ wn ]
|
---|
| 2260 | elif isinstance(wn, str):
|
---|
[2277] | 2261 | if '-' in wn: # case 'a-b' : return [a,a+1,...,b-1,b]
|
---|
[2186] | 2262 | val = wn.split('-')
|
---|
| 2263 | val = [int(val[0]), int(val[1])]
|
---|
| 2264 | val.sort()
|
---|
| 2265 | res = [i for i in xrange(val[0], val[1]+1)]
|
---|
[2277] | 2266 | elif wn[:2] == '<=' or wn[:2] == '=<': # cases '<=a','=<a' : return [0,1,...,a-1,a]
|
---|
[2186] | 2267 | val = int(wn[2:])+1
|
---|
| 2268 | res = [i for i in xrange(val)]
|
---|
[2277] | 2269 | elif wn[-2:] == '>=' or wn[-2:] == '=>': # cases 'a>=','a=>' : return [0,1,...,a-1,a]
|
---|
[2186] | 2270 | val = int(wn[:-2])+1
|
---|
| 2271 | res = [i for i in xrange(val)]
|
---|
[2277] | 2272 | elif wn[0] == '<': # case '<a' : return [0,1,...,a-2,a-1]
|
---|
[2186] | 2273 | val = int(wn[1:])
|
---|
| 2274 | res = [i for i in xrange(val)]
|
---|
[2277] | 2275 | elif wn[-1] == '>': # case 'a>' : return [0,1,...,a-2,a-1]
|
---|
[2186] | 2276 | val = int(wn[:-1])
|
---|
| 2277 | res = [i for i in xrange(val)]
|
---|
[2277] | 2278 | elif wn[:2] == '>=' or wn[:2] == '=>': # cases '>=a','=>a' : return [a,a+1,...,a_nyq]
|
---|
[2186] | 2279 | val = int(wn[2:])
|
---|
| 2280 | res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
[2277] | 2281 | elif wn[-2:] == '<=' or wn[-2:] == '=<': # cases 'a<=','a=<' : return [a,a+1,...,a_nyq]
|
---|
[2186] | 2282 | val = int(wn[:-2])
|
---|
| 2283 | res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
[2277] | 2284 | elif wn[0] == '>': # case '>a' : return [a+1,a+2,...,a_nyq]
|
---|
[2186] | 2285 | val = int(wn[1:])+1
|
---|
| 2286 | res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
[2277] | 2287 | elif wn[-1] == '<': # case 'a<' : return [a+1,a+2,...,a_nyq]
|
---|
[2186] | 2288 | val = int(wn[:-1])+1
|
---|
| 2289 | res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
[2012] | 2290 |
|
---|
[2186] | 2291 | return res
|
---|
| 2292 | else:
|
---|
| 2293 | msg = 'wrong value given for addwn/rejwn'
|
---|
| 2294 | raise RuntimeError(msg)
|
---|
| 2295 |
|
---|
| 2296 |
|
---|
[1862] | 2297 | @asaplog_post_dec
|
---|
[2277] | 2298 | def sinusoid_baseline(self, insitu=None, mask=None, applyfft=None,
|
---|
[2269] | 2299 | fftmethod=None, fftthresh=None,
|
---|
| 2300 | addwn=None, rejwn=None, clipthresh=None,
|
---|
| 2301 | clipniter=None, plot=None,
|
---|
| 2302 | getresidual=None, showprogress=None,
|
---|
| 2303 | minnrow=None, outlog=None, blfile=None):
|
---|
[2047] | 2304 | """\
|
---|
[2094] | 2305 | Return a scan which has been baselined (all rows) with sinusoidal functions.
|
---|
[2047] | 2306 | Parameters:
|
---|
[2186] | 2307 | insitu: if False a new scantable is returned.
|
---|
[2081] | 2308 | Otherwise, the scaling is done in-situ
|
---|
| 2309 | The default is taken from .asaprc (False)
|
---|
[2186] | 2310 | mask: an optional mask
|
---|
| 2311 | applyfft: if True use some method, such as FFT, to find
|
---|
| 2312 | strongest sinusoidal components in the wavenumber
|
---|
| 2313 | domain to be used for baseline fitting.
|
---|
| 2314 | default is True.
|
---|
| 2315 | fftmethod: method to find the strong sinusoidal components.
|
---|
| 2316 | now only 'fft' is available and it is the default.
|
---|
| 2317 | fftthresh: the threshold to select wave numbers to be used for
|
---|
| 2318 | fitting from the distribution of amplitudes in the
|
---|
| 2319 | wavenumber domain.
|
---|
| 2320 | both float and string values accepted.
|
---|
| 2321 | given a float value, the unit is set to sigma.
|
---|
| 2322 | for string values, allowed formats include:
|
---|
| 2323 | 'xsigma' or 'x' (= x-sigma level. e.g., '3sigma'), or
|
---|
| 2324 | 'topx' (= the x strongest ones, e.g. 'top5').
|
---|
| 2325 | default is 3.0 (unit: sigma).
|
---|
| 2326 | addwn: the additional wave numbers to be used for fitting.
|
---|
| 2327 | list or integer value is accepted to specify every
|
---|
| 2328 | wave numbers. also string value can be used in case
|
---|
| 2329 | you need to specify wave numbers in a certain range,
|
---|
| 2330 | e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b),
|
---|
| 2331 | '<a' (= 0,1,...,a-2,a-1),
|
---|
| 2332 | '>=a' (= a, a+1, ... up to the maximum wave
|
---|
| 2333 | number corresponding to the Nyquist
|
---|
| 2334 | frequency for the case of FFT).
|
---|
| 2335 | default is [].
|
---|
| 2336 | rejwn: the wave numbers NOT to be used for fitting.
|
---|
| 2337 | can be set just as addwn but has higher priority:
|
---|
| 2338 | wave numbers which are specified both in addwn
|
---|
| 2339 | and rejwn will NOT be used. default is [].
|
---|
[2081] | 2340 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
[2129] | 2341 | clipniter: maximum number of iteration of 'clipthresh'-sigma clipping (default is 0)
|
---|
[2081] | 2342 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 2343 | plot the fit and the residual. In this each
|
---|
| 2344 | indivual fit has to be approved, by typing 'y'
|
---|
| 2345 | or 'n'
|
---|
| 2346 | getresidual: if False, returns best-fit values instead of
|
---|
| 2347 | residual. (default is True)
|
---|
[2189] | 2348 | showprogress: show progress status for large data.
|
---|
| 2349 | default is True.
|
---|
| 2350 | minnrow: minimum number of input spectra to show.
|
---|
| 2351 | default is 1000.
|
---|
[2081] | 2352 | outlog: Output the coefficients of the best-fit
|
---|
| 2353 | function to logger (default is False)
|
---|
| 2354 | blfile: Name of a text file in which the best-fit
|
---|
| 2355 | parameter values to be written
|
---|
[2186] | 2356 | (default is '': no file/logger output)
|
---|
[2047] | 2357 |
|
---|
| 2358 | Example:
|
---|
| 2359 | # return a scan baselined by a combination of sinusoidal curves having
|
---|
[2081] | 2360 | # wave numbers in spectral window up to 10,
|
---|
[2047] | 2361 | # also with 3-sigma clipping, iteration up to 4 times
|
---|
[2186] | 2362 | bscan = scan.sinusoid_baseline(addwn='<=10',clipthresh=3.0,clipniter=4)
|
---|
[2081] | 2363 |
|
---|
| 2364 | Note:
|
---|
| 2365 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 2366 | based on specunit of 'channel'.
|
---|
[2047] | 2367 | """
|
---|
| 2368 |
|
---|
[2186] | 2369 | try:
|
---|
| 2370 | varlist = vars()
|
---|
[2047] | 2371 |
|
---|
[2186] | 2372 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2373 | if insitu:
|
---|
| 2374 | workscan = self
|
---|
| 2375 | else:
|
---|
| 2376 | workscan = self.copy()
|
---|
| 2377 |
|
---|
[2277] | 2378 | if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
[2186] | 2379 | if applyfft is None: applyfft = True
|
---|
| 2380 | if fftmethod is None: fftmethod = 'fft'
|
---|
| 2381 | if fftthresh is None: fftthresh = 3.0
|
---|
| 2382 | if addwn is None: addwn = []
|
---|
| 2383 | if rejwn is None: rejwn = []
|
---|
| 2384 | if clipthresh is None: clipthresh = 3.0
|
---|
| 2385 | if clipniter is None: clipniter = 0
|
---|
| 2386 | if plot is None: plot = False
|
---|
| 2387 | if getresidual is None: getresidual = True
|
---|
[2189] | 2388 | if showprogress is None: showprogress = True
|
---|
| 2389 | if minnrow is None: minnrow = 1000
|
---|
[2186] | 2390 | if outlog is None: outlog = False
|
---|
| 2391 | if blfile is None: blfile = ''
|
---|
[2047] | 2392 |
|
---|
[2081] | 2393 | #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method.
|
---|
[2277] | 2394 | workscan._sinusoid_baseline(mask, applyfft, fftmethod.lower(), str(fftthresh).lower(), workscan._parse_wn(addwn), workscan._parse_wn(rejwn), clipthresh, clipniter, getresidual, pack_progress_params(showprogress, minnrow), outlog, blfile)
|
---|
[2186] | 2395 | workscan._add_history('sinusoid_baseline', varlist)
|
---|
[2047] | 2396 |
|
---|
| 2397 | if insitu:
|
---|
| 2398 | self._assign(workscan)
|
---|
| 2399 | else:
|
---|
| 2400 | return workscan
|
---|
| 2401 |
|
---|
| 2402 | except RuntimeError, e:
|
---|
[2186] | 2403 | raise_fitting_failure_exception(e)
|
---|
[2047] | 2404 |
|
---|
| 2405 |
|
---|
[2186] | 2406 | @asaplog_post_dec
|
---|
[2277] | 2407 | def auto_sinusoid_baseline(self, insitu=None, mask=None, applyfft=None, fftmethod=None, fftthresh=None,
|
---|
| 2408 | addwn=None, rejwn=None, clipthresh=None, clipniter=None, edge=None, threshold=None,
|
---|
| 2409 | chan_avg_limit=None, plot=None, getresidual=None, showprogress=None, minnrow=None,
|
---|
[2189] | 2410 | outlog=None, blfile=None):
|
---|
[2047] | 2411 | """\
|
---|
[2277] | 2412 | Return a scan which has been baselined (all rows) with sinusoidal functions.
|
---|
[2047] | 2413 | Spectral lines are detected first using linefinder and masked out
|
---|
| 2414 | to avoid them affecting the baseline solution.
|
---|
| 2415 |
|
---|
| 2416 | Parameters:
|
---|
[2189] | 2417 | insitu: if False a new scantable is returned.
|
---|
| 2418 | Otherwise, the scaling is done in-situ
|
---|
| 2419 | The default is taken from .asaprc (False)
|
---|
| 2420 | mask: an optional mask retreived from scantable
|
---|
| 2421 | applyfft: if True use some method, such as FFT, to find
|
---|
| 2422 | strongest sinusoidal components in the wavenumber
|
---|
| 2423 | domain to be used for baseline fitting.
|
---|
| 2424 | default is True.
|
---|
| 2425 | fftmethod: method to find the strong sinusoidal components.
|
---|
| 2426 | now only 'fft' is available and it is the default.
|
---|
| 2427 | fftthresh: the threshold to select wave numbers to be used for
|
---|
| 2428 | fitting from the distribution of amplitudes in the
|
---|
| 2429 | wavenumber domain.
|
---|
| 2430 | both float and string values accepted.
|
---|
| 2431 | given a float value, the unit is set to sigma.
|
---|
| 2432 | for string values, allowed formats include:
|
---|
[2277] | 2433 | 'xsigma' or 'x' (= x-sigma level. e.g., '3sigma'), or
|
---|
[2189] | 2434 | 'topx' (= the x strongest ones, e.g. 'top5').
|
---|
| 2435 | default is 3.0 (unit: sigma).
|
---|
| 2436 | addwn: the additional wave numbers to be used for fitting.
|
---|
| 2437 | list or integer value is accepted to specify every
|
---|
| 2438 | wave numbers. also string value can be used in case
|
---|
| 2439 | you need to specify wave numbers in a certain range,
|
---|
| 2440 | e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b),
|
---|
| 2441 | '<a' (= 0,1,...,a-2,a-1),
|
---|
| 2442 | '>=a' (= a, a+1, ... up to the maximum wave
|
---|
| 2443 | number corresponding to the Nyquist
|
---|
| 2444 | frequency for the case of FFT).
|
---|
| 2445 | default is [].
|
---|
| 2446 | rejwn: the wave numbers NOT to be used for fitting.
|
---|
| 2447 | can be set just as addwn but has higher priority:
|
---|
| 2448 | wave numbers which are specified both in addwn
|
---|
| 2449 | and rejwn will NOT be used. default is [].
|
---|
| 2450 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
[2277] | 2451 | clipniter: maximum number of iteration of 'clipthresh'-sigma clipping (default is 0)
|
---|
[2189] | 2452 | edge: an optional number of channel to drop at
|
---|
| 2453 | the edge of spectrum. If only one value is
|
---|
| 2454 | specified, the same number will be dropped
|
---|
| 2455 | from both sides of the spectrum. Default
|
---|
| 2456 | is to keep all channels. Nested tuples
|
---|
| 2457 | represent individual edge selection for
|
---|
| 2458 | different IFs (a number of spectral channels
|
---|
| 2459 | can be different)
|
---|
| 2460 | threshold: the threshold used by line finder. It is
|
---|
| 2461 | better to keep it large as only strong lines
|
---|
| 2462 | affect the baseline solution.
|
---|
| 2463 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 2464 | channels to average during the search of
|
---|
| 2465 | weak and broad lines. The default is no
|
---|
| 2466 | averaging (and no search for weak lines).
|
---|
| 2467 | If such lines can affect the fitted baseline
|
---|
| 2468 | (e.g. a high order polynomial is fitted),
|
---|
| 2469 | increase this parameter (usually values up
|
---|
| 2470 | to 8 are reasonable). Most users of this
|
---|
| 2471 | method should find the default value sufficient.
|
---|
| 2472 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 2473 | plot the fit and the residual. In this each
|
---|
| 2474 | indivual fit has to be approved, by typing 'y'
|
---|
| 2475 | or 'n'
|
---|
| 2476 | getresidual: if False, returns best-fit values instead of
|
---|
| 2477 | residual. (default is True)
|
---|
| 2478 | showprogress: show progress status for large data.
|
---|
| 2479 | default is True.
|
---|
| 2480 | minnrow: minimum number of input spectra to show.
|
---|
| 2481 | default is 1000.
|
---|
| 2482 | outlog: Output the coefficients of the best-fit
|
---|
| 2483 | function to logger (default is False)
|
---|
| 2484 | blfile: Name of a text file in which the best-fit
|
---|
| 2485 | parameter values to be written
|
---|
| 2486 | (default is "": no file/logger output)
|
---|
[2047] | 2487 |
|
---|
| 2488 | Example:
|
---|
[2186] | 2489 | bscan = scan.auto_sinusoid_baseline(addwn='<=10', insitu=False)
|
---|
[2081] | 2490 |
|
---|
| 2491 | Note:
|
---|
| 2492 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 2493 | based on specunit of 'channel'.
|
---|
[2047] | 2494 | """
|
---|
| 2495 |
|
---|
[2186] | 2496 | try:
|
---|
| 2497 | varlist = vars()
|
---|
[2047] | 2498 |
|
---|
[2186] | 2499 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2500 | if insitu:
|
---|
| 2501 | workscan = self
|
---|
[2047] | 2502 | else:
|
---|
[2186] | 2503 | workscan = self.copy()
|
---|
| 2504 |
|
---|
[2277] | 2505 | if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
[2186] | 2506 | if applyfft is None: applyfft = True
|
---|
| 2507 | if fftmethod is None: fftmethod = 'fft'
|
---|
| 2508 | if fftthresh is None: fftthresh = 3.0
|
---|
| 2509 | if addwn is None: addwn = []
|
---|
| 2510 | if rejwn is None: rejwn = []
|
---|
| 2511 | if clipthresh is None: clipthresh = 3.0
|
---|
| 2512 | if clipniter is None: clipniter = 0
|
---|
| 2513 | if edge is None: edge = (0,0)
|
---|
| 2514 | if threshold is None: threshold = 3
|
---|
| 2515 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 2516 | if plot is None: plot = False
|
---|
| 2517 | if getresidual is None: getresidual = True
|
---|
[2189] | 2518 | if showprogress is None: showprogress = True
|
---|
| 2519 | if minnrow is None: minnrow = 1000
|
---|
[2186] | 2520 | if outlog is None: outlog = False
|
---|
| 2521 | if blfile is None: blfile = ''
|
---|
[2047] | 2522 |
|
---|
[2277] | 2523 | #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method.
|
---|
| 2524 | workscan._auto_sinusoid_baseline(mask, applyfft, fftmethod.lower(), str(fftthresh).lower(), workscan._parse_wn(addwn), workscan._parse_wn(rejwn), clipthresh, clipniter, normalise_edge_param(edge), threshold, chan_avg_limit, getresidual, pack_progress_params(showprogress, minnrow), outlog, blfile)
|
---|
[2047] | 2525 | workscan._add_history("auto_sinusoid_baseline", varlist)
|
---|
| 2526 |
|
---|
| 2527 | if insitu:
|
---|
| 2528 | self._assign(workscan)
|
---|
| 2529 | else:
|
---|
| 2530 | return workscan
|
---|
| 2531 |
|
---|
| 2532 | except RuntimeError, e:
|
---|
[2186] | 2533 | raise_fitting_failure_exception(e)
|
---|
[2047] | 2534 |
|
---|
| 2535 | @asaplog_post_dec
|
---|
[2277] | 2536 | def cspline_baseline(self, insitu=None, mask=None, npiece=None, clipthresh=None, clipniter=None,
|
---|
| 2537 | plot=None, getresidual=None, showprogress=None, minnrow=None, outlog=None, blfile=None):
|
---|
[1846] | 2538 | """\
|
---|
[2277] | 2539 | Return a scan which has been baselined (all rows) by cubic spline function (piecewise cubic polynomial).
|
---|
[513] | 2540 | Parameters:
|
---|
[2189] | 2541 | insitu: If False a new scantable is returned.
|
---|
| 2542 | Otherwise, the scaling is done in-situ
|
---|
| 2543 | The default is taken from .asaprc (False)
|
---|
| 2544 | mask: An optional mask
|
---|
| 2545 | npiece: Number of pieces. (default is 2)
|
---|
| 2546 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
[2277] | 2547 | clipniter: maximum number of iteration of 'clipthresh'-sigma clipping (default is 0)
|
---|
[2189] | 2548 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 2549 | plot the fit and the residual. In this each
|
---|
| 2550 | indivual fit has to be approved, by typing 'y'
|
---|
| 2551 | or 'n'
|
---|
| 2552 | getresidual: if False, returns best-fit values instead of
|
---|
| 2553 | residual. (default is True)
|
---|
| 2554 | showprogress: show progress status for large data.
|
---|
| 2555 | default is True.
|
---|
| 2556 | minnrow: minimum number of input spectra to show.
|
---|
| 2557 | default is 1000.
|
---|
| 2558 | outlog: Output the coefficients of the best-fit
|
---|
| 2559 | function to logger (default is False)
|
---|
| 2560 | blfile: Name of a text file in which the best-fit
|
---|
| 2561 | parameter values to be written
|
---|
| 2562 | (default is "": no file/logger output)
|
---|
[1846] | 2563 |
|
---|
[2012] | 2564 | Example:
|
---|
[2277] | 2565 | # return a scan baselined by a cubic spline consisting of 2 pieces (i.e., 1 internal knot),
|
---|
[2012] | 2566 | # also with 3-sigma clipping, iteration up to 4 times
|
---|
| 2567 | bscan = scan.cspline_baseline(npiece=2,clipthresh=3.0,clipniter=4)
|
---|
[2081] | 2568 |
|
---|
| 2569 | Note:
|
---|
| 2570 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 2571 | based on specunit of 'channel'.
|
---|
[2012] | 2572 | """
|
---|
| 2573 |
|
---|
[2186] | 2574 | try:
|
---|
| 2575 | varlist = vars()
|
---|
| 2576 |
|
---|
| 2577 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2578 | if insitu:
|
---|
| 2579 | workscan = self
|
---|
| 2580 | else:
|
---|
| 2581 | workscan = self.copy()
|
---|
[1855] | 2582 |
|
---|
[2277] | 2583 | if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
[2189] | 2584 | if npiece is None: npiece = 2
|
---|
| 2585 | if clipthresh is None: clipthresh = 3.0
|
---|
| 2586 | if clipniter is None: clipniter = 0
|
---|
| 2587 | if plot is None: plot = False
|
---|
| 2588 | if getresidual is None: getresidual = True
|
---|
| 2589 | if showprogress is None: showprogress = True
|
---|
| 2590 | if minnrow is None: minnrow = 1000
|
---|
| 2591 | if outlog is None: outlog = False
|
---|
| 2592 | if blfile is None: blfile = ''
|
---|
[1855] | 2593 |
|
---|
[2012] | 2594 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
[2277] | 2595 | workscan._cspline_baseline(mask, npiece, clipthresh, clipniter, getresidual, pack_progress_params(showprogress, minnrow), outlog, blfile)
|
---|
[2012] | 2596 | workscan._add_history("cspline_baseline", varlist)
|
---|
| 2597 |
|
---|
| 2598 | if insitu:
|
---|
| 2599 | self._assign(workscan)
|
---|
| 2600 | else:
|
---|
| 2601 | return workscan
|
---|
| 2602 |
|
---|
| 2603 | except RuntimeError, e:
|
---|
[2186] | 2604 | raise_fitting_failure_exception(e)
|
---|
[1855] | 2605 |
|
---|
[2186] | 2606 | @asaplog_post_dec
|
---|
[2277] | 2607 | def auto_cspline_baseline(self, insitu=None, mask=None, npiece=None, clipthresh=None, clipniter=None,
|
---|
| 2608 | edge=None, threshold=None, chan_avg_limit=None, getresidual=None, plot=None,
|
---|
| 2609 | showprogress=None, minnrow=None, outlog=None, blfile=None):
|
---|
[2012] | 2610 | """\
|
---|
| 2611 | Return a scan which has been baselined (all rows) by cubic spline
|
---|
| 2612 | function (piecewise cubic polynomial).
|
---|
| 2613 | Spectral lines are detected first using linefinder and masked out
|
---|
| 2614 | to avoid them affecting the baseline solution.
|
---|
| 2615 |
|
---|
| 2616 | Parameters:
|
---|
[2189] | 2617 | insitu: if False a new scantable is returned.
|
---|
| 2618 | Otherwise, the scaling is done in-situ
|
---|
| 2619 | The default is taken from .asaprc (False)
|
---|
| 2620 | mask: an optional mask retreived from scantable
|
---|
| 2621 | npiece: Number of pieces. (default is 2)
|
---|
| 2622 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
[2277] | 2623 | clipniter: maximum number of iteration of 'clipthresh'-sigma clipping (default is 0)
|
---|
[2189] | 2624 | edge: an optional number of channel to drop at
|
---|
| 2625 | the edge of spectrum. If only one value is
|
---|
| 2626 | specified, the same number will be dropped
|
---|
| 2627 | from both sides of the spectrum. Default
|
---|
| 2628 | is to keep all channels. Nested tuples
|
---|
| 2629 | represent individual edge selection for
|
---|
| 2630 | different IFs (a number of spectral channels
|
---|
| 2631 | can be different)
|
---|
| 2632 | threshold: the threshold used by line finder. It is
|
---|
| 2633 | better to keep it large as only strong lines
|
---|
| 2634 | affect the baseline solution.
|
---|
| 2635 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 2636 | channels to average during the search of
|
---|
| 2637 | weak and broad lines. The default is no
|
---|
| 2638 | averaging (and no search for weak lines).
|
---|
| 2639 | If such lines can affect the fitted baseline
|
---|
| 2640 | (e.g. a high order polynomial is fitted),
|
---|
| 2641 | increase this parameter (usually values up
|
---|
| 2642 | to 8 are reasonable). Most users of this
|
---|
| 2643 | method should find the default value sufficient.
|
---|
| 2644 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 2645 | plot the fit and the residual. In this each
|
---|
| 2646 | indivual fit has to be approved, by typing 'y'
|
---|
| 2647 | or 'n'
|
---|
| 2648 | getresidual: if False, returns best-fit values instead of
|
---|
| 2649 | residual. (default is True)
|
---|
| 2650 | showprogress: show progress status for large data.
|
---|
| 2651 | default is True.
|
---|
| 2652 | minnrow: minimum number of input spectra to show.
|
---|
| 2653 | default is 1000.
|
---|
| 2654 | outlog: Output the coefficients of the best-fit
|
---|
| 2655 | function to logger (default is False)
|
---|
| 2656 | blfile: Name of a text file in which the best-fit
|
---|
| 2657 | parameter values to be written
|
---|
| 2658 | (default is "": no file/logger output)
|
---|
[1846] | 2659 |
|
---|
[1907] | 2660 | Example:
|
---|
[2012] | 2661 | bscan = scan.auto_cspline_baseline(npiece=3, insitu=False)
|
---|
[2081] | 2662 |
|
---|
| 2663 | Note:
|
---|
| 2664 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 2665 | based on specunit of 'channel'.
|
---|
[2012] | 2666 | """
|
---|
[1846] | 2667 |
|
---|
[2186] | 2668 | try:
|
---|
| 2669 | varlist = vars()
|
---|
[2012] | 2670 |
|
---|
[2186] | 2671 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2672 | if insitu:
|
---|
| 2673 | workscan = self
|
---|
[1391] | 2674 | else:
|
---|
[2186] | 2675 | workscan = self.copy()
|
---|
| 2676 |
|
---|
[2277] | 2677 | if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
[2186] | 2678 | if npiece is None: npiece = 2
|
---|
| 2679 | if clipthresh is None: clipthresh = 3.0
|
---|
| 2680 | if clipniter is None: clipniter = 0
|
---|
| 2681 | if edge is None: edge = (0, 0)
|
---|
| 2682 | if threshold is None: threshold = 3
|
---|
| 2683 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 2684 | if plot is None: plot = False
|
---|
| 2685 | if getresidual is None: getresidual = True
|
---|
[2189] | 2686 | if showprogress is None: showprogress = True
|
---|
| 2687 | if minnrow is None: minnrow = 1000
|
---|
[2186] | 2688 | if outlog is None: outlog = False
|
---|
| 2689 | if blfile is None: blfile = ''
|
---|
[1819] | 2690 |
|
---|
[2277] | 2691 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
[2269] | 2692 | workscan._auto_cspline_baseline(mask, npiece, clipthresh,
|
---|
| 2693 | clipniter,
|
---|
| 2694 | normalise_edge_param(edge),
|
---|
| 2695 | threshold,
|
---|
| 2696 | chan_avg_limit, getresidual,
|
---|
| 2697 | pack_progress_params(showprogress,
|
---|
| 2698 | minnrow),
|
---|
| 2699 | outlog, blfile)
|
---|
[2012] | 2700 | workscan._add_history("auto_cspline_baseline", varlist)
|
---|
[1907] | 2701 |
|
---|
[1856] | 2702 | if insitu:
|
---|
| 2703 | self._assign(workscan)
|
---|
| 2704 | else:
|
---|
| 2705 | return workscan
|
---|
[2012] | 2706 |
|
---|
| 2707 | except RuntimeError, e:
|
---|
[2186] | 2708 | raise_fitting_failure_exception(e)
|
---|
[513] | 2709 |
|
---|
[1931] | 2710 | @asaplog_post_dec
|
---|
[2269] | 2711 | def poly_baseline(self, mask=None, order=None, insitu=None, plot=None,
|
---|
| 2712 | getresidual=None, showprogress=None, minnrow=None,
|
---|
| 2713 | outlog=None, blfile=None):
|
---|
[1907] | 2714 | """\
|
---|
| 2715 | Return a scan which has been baselined (all rows) by a polynomial.
|
---|
| 2716 | Parameters:
|
---|
[2189] | 2717 | insitu: if False a new scantable is returned.
|
---|
| 2718 | Otherwise, the scaling is done in-situ
|
---|
| 2719 | The default is taken from .asaprc (False)
|
---|
| 2720 | mask: an optional mask
|
---|
| 2721 | order: the order of the polynomial (default is 0)
|
---|
| 2722 | plot: plot the fit and the residual. In this each
|
---|
| 2723 | indivual fit has to be approved, by typing 'y'
|
---|
| 2724 | or 'n'
|
---|
| 2725 | getresidual: if False, returns best-fit values instead of
|
---|
| 2726 | residual. (default is True)
|
---|
| 2727 | showprogress: show progress status for large data.
|
---|
| 2728 | default is True.
|
---|
| 2729 | minnrow: minimum number of input spectra to show.
|
---|
| 2730 | default is 1000.
|
---|
| 2731 | outlog: Output the coefficients of the best-fit
|
---|
| 2732 | function to logger (default is False)
|
---|
| 2733 | blfile: Name of a text file in which the best-fit
|
---|
| 2734 | parameter values to be written
|
---|
| 2735 | (default is "": no file/logger output)
|
---|
[2012] | 2736 |
|
---|
[1907] | 2737 | Example:
|
---|
| 2738 | # return a scan baselined by a third order polynomial,
|
---|
| 2739 | # not using a mask
|
---|
| 2740 | bscan = scan.poly_baseline(order=3)
|
---|
| 2741 | """
|
---|
[1931] | 2742 |
|
---|
[2186] | 2743 | try:
|
---|
| 2744 | varlist = vars()
|
---|
[1931] | 2745 |
|
---|
[2269] | 2746 | if insitu is None:
|
---|
| 2747 | insitu = rcParams["insitu"]
|
---|
[2186] | 2748 | if insitu:
|
---|
| 2749 | workscan = self
|
---|
| 2750 | else:
|
---|
| 2751 | workscan = self.copy()
|
---|
[1907] | 2752 |
|
---|
[2277] | 2753 | if mask is None: mask = [True for i in \
|
---|
| 2754 | xrange(workscan.nchan())]
|
---|
[2189] | 2755 | if order is None: order = 0
|
---|
| 2756 | if plot is None: plot = False
|
---|
| 2757 | if getresidual is None: getresidual = True
|
---|
| 2758 | if showprogress is None: showprogress = True
|
---|
| 2759 | if minnrow is None: minnrow = 1000
|
---|
| 2760 | if outlog is None: outlog = False
|
---|
| 2761 | if blfile is None: blfile = ""
|
---|
[1907] | 2762 |
|
---|
[2012] | 2763 | if plot:
|
---|
[2269] | 2764 | outblfile = (blfile != "") and \
|
---|
| 2765 | os.path.exists(os.path.expanduser(os.path.expandvars(blfile)))
|
---|
| 2766 | if outblfile:
|
---|
| 2767 | blf = open(blfile, "a")
|
---|
[2012] | 2768 |
|
---|
[1907] | 2769 | f = fitter()
|
---|
| 2770 | f.set_function(lpoly=order)
|
---|
[2186] | 2771 |
|
---|
| 2772 | rows = xrange(workscan.nrow())
|
---|
| 2773 | #if len(rows) > 0: workscan._init_blinfo()
|
---|
| 2774 |
|
---|
[1907] | 2775 | for r in rows:
|
---|
| 2776 | f.x = workscan._getabcissa(r)
|
---|
| 2777 | f.y = workscan._getspectrum(r)
|
---|
| 2778 | f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
|
---|
| 2779 | f.data = None
|
---|
| 2780 | f.fit()
|
---|
| 2781 |
|
---|
| 2782 | f.plot(residual=True)
|
---|
| 2783 | accept_fit = raw_input("Accept fit ( [y]/n ): ")
|
---|
| 2784 | if accept_fit.upper() == "N":
|
---|
[2012] | 2785 | #workscan._append_blinfo(None, None, None)
|
---|
[1907] | 2786 | continue
|
---|
[2012] | 2787 |
|
---|
| 2788 | blpars = f.get_parameters()
|
---|
| 2789 | masklist = workscan.get_masklist(f.mask, row=r, silent=True)
|
---|
| 2790 | #workscan._append_blinfo(blpars, masklist, f.mask)
|
---|
[2269] | 2791 | workscan._setspectrum((f.fitter.getresidual()
|
---|
| 2792 | if getresidual else f.fitter.getfit()), r)
|
---|
[1907] | 2793 |
|
---|
[2012] | 2794 | if outblfile:
|
---|
| 2795 | rms = workscan.get_rms(f.mask, r)
|
---|
[2269] | 2796 | dataout = \
|
---|
| 2797 | workscan.format_blparams_row(blpars["params"],
|
---|
| 2798 | blpars["fixed"],
|
---|
| 2799 | rms, str(masklist),
|
---|
| 2800 | r, True)
|
---|
[2012] | 2801 | blf.write(dataout)
|
---|
| 2802 |
|
---|
[1907] | 2803 | f._p.unmap()
|
---|
| 2804 | f._p = None
|
---|
[2012] | 2805 |
|
---|
| 2806 | if outblfile: blf.close()
|
---|
[1907] | 2807 | else:
|
---|
[2269] | 2808 | workscan._poly_baseline(mask, order, getresidual,
|
---|
| 2809 | pack_progress_params(showprogress,
|
---|
| 2810 | minnrow),
|
---|
| 2811 | outlog, blfile)
|
---|
[1907] | 2812 |
|
---|
| 2813 | workscan._add_history("poly_baseline", varlist)
|
---|
| 2814 |
|
---|
| 2815 | if insitu:
|
---|
| 2816 | self._assign(workscan)
|
---|
| 2817 | else:
|
---|
| 2818 | return workscan
|
---|
| 2819 |
|
---|
[1919] | 2820 | except RuntimeError, e:
|
---|
[2186] | 2821 | raise_fitting_failure_exception(e)
|
---|
[1907] | 2822 |
|
---|
[2186] | 2823 | @asaplog_post_dec
|
---|
[2269] | 2824 | def auto_poly_baseline(self, mask=None, order=None, edge=None,
|
---|
| 2825 | threshold=None, chan_avg_limit=None,
|
---|
| 2826 | plot=None, insitu=None,
|
---|
| 2827 | getresidual=None, showprogress=None,
|
---|
| 2828 | minnrow=None, outlog=None, blfile=None):
|
---|
[1846] | 2829 | """\
|
---|
[1931] | 2830 | Return a scan which has been baselined (all rows) by a polynomial.
|
---|
[880] | 2831 | Spectral lines are detected first using linefinder and masked out
|
---|
| 2832 | to avoid them affecting the baseline solution.
|
---|
| 2833 |
|
---|
| 2834 | Parameters:
|
---|
[2189] | 2835 | insitu: if False a new scantable is returned.
|
---|
| 2836 | Otherwise, the scaling is done in-situ
|
---|
| 2837 | The default is taken from .asaprc (False)
|
---|
| 2838 | mask: an optional mask retreived from scantable
|
---|
| 2839 | order: the order of the polynomial (default is 0)
|
---|
| 2840 | edge: an optional number of channel to drop at
|
---|
| 2841 | the edge of spectrum. If only one value is
|
---|
| 2842 | specified, the same number will be dropped
|
---|
| 2843 | from both sides of the spectrum. Default
|
---|
| 2844 | is to keep all channels. Nested tuples
|
---|
| 2845 | represent individual edge selection for
|
---|
| 2846 | different IFs (a number of spectral channels
|
---|
| 2847 | can be different)
|
---|
| 2848 | threshold: the threshold used by line finder. It is
|
---|
| 2849 | better to keep it large as only strong lines
|
---|
| 2850 | affect the baseline solution.
|
---|
| 2851 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
| 2852 | channels to average during the search of
|
---|
| 2853 | weak and broad lines. The default is no
|
---|
| 2854 | averaging (and no search for weak lines).
|
---|
| 2855 | If such lines can affect the fitted baseline
|
---|
| 2856 | (e.g. a high order polynomial is fitted),
|
---|
| 2857 | increase this parameter (usually values up
|
---|
| 2858 | to 8 are reasonable). Most users of this
|
---|
| 2859 | method should find the default value sufficient.
|
---|
| 2860 | plot: plot the fit and the residual. In this each
|
---|
| 2861 | indivual fit has to be approved, by typing 'y'
|
---|
| 2862 | or 'n'
|
---|
| 2863 | getresidual: if False, returns best-fit values instead of
|
---|
| 2864 | residual. (default is True)
|
---|
| 2865 | showprogress: show progress status for large data.
|
---|
| 2866 | default is True.
|
---|
| 2867 | minnrow: minimum number of input spectra to show.
|
---|
| 2868 | default is 1000.
|
---|
| 2869 | outlog: Output the coefficients of the best-fit
|
---|
| 2870 | function to logger (default is False)
|
---|
| 2871 | blfile: Name of a text file in which the best-fit
|
---|
| 2872 | parameter values to be written
|
---|
| 2873 | (default is "": no file/logger output)
|
---|
[1846] | 2874 |
|
---|
[2012] | 2875 | Example:
|
---|
| 2876 | bscan = scan.auto_poly_baseline(order=7, insitu=False)
|
---|
| 2877 | """
|
---|
[880] | 2878 |
|
---|
[2186] | 2879 | try:
|
---|
| 2880 | varlist = vars()
|
---|
[1846] | 2881 |
|
---|
[2269] | 2882 | if insitu is None:
|
---|
| 2883 | insitu = rcParams['insitu']
|
---|
[2186] | 2884 | if insitu:
|
---|
| 2885 | workscan = self
|
---|
| 2886 | else:
|
---|
| 2887 | workscan = self.copy()
|
---|
[1846] | 2888 |
|
---|
[2277] | 2889 | if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
[2186] | 2890 | if order is None: order = 0
|
---|
| 2891 | if edge is None: edge = (0, 0)
|
---|
| 2892 | if threshold is None: threshold = 3
|
---|
| 2893 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 2894 | if plot is None: plot = False
|
---|
| 2895 | if getresidual is None: getresidual = True
|
---|
[2189] | 2896 | if showprogress is None: showprogress = True
|
---|
| 2897 | if minnrow is None: minnrow = 1000
|
---|
[2186] | 2898 | if outlog is None: outlog = False
|
---|
| 2899 | if blfile is None: blfile = ''
|
---|
[1846] | 2900 |
|
---|
[2186] | 2901 | edge = normalise_edge_param(edge)
|
---|
[880] | 2902 |
|
---|
[2012] | 2903 | if plot:
|
---|
[2269] | 2904 | outblfile = (blfile != "") and \
|
---|
| 2905 | os.path.exists(os.path.expanduser(os.path.expandvars(blfile)))
|
---|
[2012] | 2906 | if outblfile: blf = open(blfile, "a")
|
---|
| 2907 |
|
---|
[2186] | 2908 | from asap.asaplinefind import linefinder
|
---|
[2012] | 2909 | fl = linefinder()
|
---|
[2269] | 2910 | fl.set_options(threshold=threshold, avg_limit=chan_avg_limit)
|
---|
[2012] | 2911 | fl.set_scan(workscan)
|
---|
[2186] | 2912 |
|
---|
[2012] | 2913 | f = fitter()
|
---|
| 2914 | f.set_function(lpoly=order)
|
---|
[880] | 2915 |
|
---|
[2186] | 2916 | rows = xrange(workscan.nrow())
|
---|
| 2917 | #if len(rows) > 0: workscan._init_blinfo()
|
---|
| 2918 |
|
---|
[2012] | 2919 | for r in rows:
|
---|
[2186] | 2920 | idx = 2*workscan.getif(r)
|
---|
[2269] | 2921 | fl.find_lines(r, mask_and(mask, workscan._getmask(r)),
|
---|
| 2922 | edge[idx:idx+2]) # (CAS-1434)
|
---|
[907] | 2923 |
|
---|
[2012] | 2924 | f.x = workscan._getabcissa(r)
|
---|
| 2925 | f.y = workscan._getspectrum(r)
|
---|
| 2926 | f.mask = fl.get_mask()
|
---|
| 2927 | f.data = None
|
---|
| 2928 | f.fit()
|
---|
| 2929 |
|
---|
| 2930 | f.plot(residual=True)
|
---|
| 2931 | accept_fit = raw_input("Accept fit ( [y]/n ): ")
|
---|
| 2932 | if accept_fit.upper() == "N":
|
---|
| 2933 | #workscan._append_blinfo(None, None, None)
|
---|
| 2934 | continue
|
---|
| 2935 |
|
---|
| 2936 | blpars = f.get_parameters()
|
---|
| 2937 | masklist = workscan.get_masklist(f.mask, row=r, silent=True)
|
---|
| 2938 | #workscan._append_blinfo(blpars, masklist, f.mask)
|
---|
[2269] | 2939 | workscan._setspectrum((f.fitter.getresidual() \
|
---|
| 2940 | if getresidual else f.fitter.getfit()), r)
|
---|
[2012] | 2941 |
|
---|
| 2942 | if outblfile:
|
---|
| 2943 | rms = workscan.get_rms(f.mask, r)
|
---|
[2269] | 2944 | dataout = \
|
---|
| 2945 | workscan.format_blparams_row(blpars["params"],
|
---|
| 2946 | blpars["fixed"],
|
---|
| 2947 | rms, str(masklist),
|
---|
| 2948 | r, True)
|
---|
[2012] | 2949 | blf.write(dataout)
|
---|
| 2950 |
|
---|
| 2951 | f._p.unmap()
|
---|
| 2952 | f._p = None
|
---|
| 2953 |
|
---|
| 2954 | if outblfile: blf.close()
|
---|
| 2955 | else:
|
---|
[2269] | 2956 | workscan._auto_poly_baseline(mask, order, edge, threshold,
|
---|
| 2957 | chan_avg_limit, getresidual,
|
---|
| 2958 | pack_progress_params(showprogress,
|
---|
| 2959 | minnrow),
|
---|
| 2960 | outlog, blfile)
|
---|
[2012] | 2961 |
|
---|
| 2962 | workscan._add_history("auto_poly_baseline", varlist)
|
---|
| 2963 |
|
---|
| 2964 | if insitu:
|
---|
| 2965 | self._assign(workscan)
|
---|
| 2966 | else:
|
---|
| 2967 | return workscan
|
---|
| 2968 |
|
---|
| 2969 | except RuntimeError, e:
|
---|
[2186] | 2970 | raise_fitting_failure_exception(e)
|
---|
[2012] | 2971 |
|
---|
| 2972 | def _init_blinfo(self):
|
---|
| 2973 | """\
|
---|
| 2974 | Initialise the following three auxiliary members:
|
---|
| 2975 | blpars : parameters of the best-fit baseline,
|
---|
| 2976 | masklists : mask data (edge positions of masked channels) and
|
---|
| 2977 | actualmask : mask data (in boolean list),
|
---|
| 2978 | to keep for use later (including output to logger/text files).
|
---|
| 2979 | Used by poly_baseline() and auto_poly_baseline() in case of
|
---|
| 2980 | 'plot=True'.
|
---|
| 2981 | """
|
---|
| 2982 | self.blpars = []
|
---|
| 2983 | self.masklists = []
|
---|
| 2984 | self.actualmask = []
|
---|
| 2985 | return
|
---|
[880] | 2986 |
|
---|
[2012] | 2987 | def _append_blinfo(self, data_blpars, data_masklists, data_actualmask):
|
---|
| 2988 | """\
|
---|
| 2989 | Append baseline-fitting related info to blpars, masklist and
|
---|
| 2990 | actualmask.
|
---|
| 2991 | """
|
---|
| 2992 | self.blpars.append(data_blpars)
|
---|
| 2993 | self.masklists.append(data_masklists)
|
---|
| 2994 | self.actualmask.append(data_actualmask)
|
---|
| 2995 | return
|
---|
| 2996 |
|
---|
[1862] | 2997 | @asaplog_post_dec
|
---|
[914] | 2998 | def rotate_linpolphase(self, angle):
|
---|
[1846] | 2999 | """\
|
---|
[914] | 3000 | Rotate the phase of the complex polarization O=Q+iU correlation.
|
---|
| 3001 | This is always done in situ in the raw data. So if you call this
|
---|
| 3002 | function more than once then each call rotates the phase further.
|
---|
[1846] | 3003 |
|
---|
[914] | 3004 | Parameters:
|
---|
[1846] | 3005 |
|
---|
[914] | 3006 | angle: The angle (degrees) to rotate (add) by.
|
---|
[1846] | 3007 |
|
---|
| 3008 | Example::
|
---|
| 3009 |
|
---|
[914] | 3010 | scan.rotate_linpolphase(2.3)
|
---|
[1846] | 3011 |
|
---|
[914] | 3012 | """
|
---|
| 3013 | varlist = vars()
|
---|
[936] | 3014 | self._math._rotate_linpolphase(self, angle)
|
---|
[914] | 3015 | self._add_history("rotate_linpolphase", varlist)
|
---|
| 3016 | return
|
---|
[710] | 3017 |
|
---|
[1862] | 3018 | @asaplog_post_dec
|
---|
[914] | 3019 | def rotate_xyphase(self, angle):
|
---|
[1846] | 3020 | """\
|
---|
[914] | 3021 | Rotate the phase of the XY correlation. This is always done in situ
|
---|
| 3022 | in the data. So if you call this function more than once
|
---|
| 3023 | then each call rotates the phase further.
|
---|
[1846] | 3024 |
|
---|
[914] | 3025 | Parameters:
|
---|
[1846] | 3026 |
|
---|
[914] | 3027 | angle: The angle (degrees) to rotate (add) by.
|
---|
[1846] | 3028 |
|
---|
| 3029 | Example::
|
---|
| 3030 |
|
---|
[914] | 3031 | scan.rotate_xyphase(2.3)
|
---|
[1846] | 3032 |
|
---|
[914] | 3033 | """
|
---|
| 3034 | varlist = vars()
|
---|
[936] | 3035 | self._math._rotate_xyphase(self, angle)
|
---|
[914] | 3036 | self._add_history("rotate_xyphase", varlist)
|
---|
| 3037 | return
|
---|
| 3038 |
|
---|
[1862] | 3039 | @asaplog_post_dec
|
---|
[914] | 3040 | def swap_linears(self):
|
---|
[1846] | 3041 | """\
|
---|
[1573] | 3042 | Swap the linear polarisations XX and YY, or better the first two
|
---|
[1348] | 3043 | polarisations as this also works for ciculars.
|
---|
[914] | 3044 | """
|
---|
| 3045 | varlist = vars()
|
---|
[936] | 3046 | self._math._swap_linears(self)
|
---|
[914] | 3047 | self._add_history("swap_linears", varlist)
|
---|
| 3048 | return
|
---|
| 3049 |
|
---|
[1862] | 3050 | @asaplog_post_dec
|
---|
[914] | 3051 | def invert_phase(self):
|
---|
[1846] | 3052 | """\
|
---|
[914] | 3053 | Invert the phase of the complex polarisation
|
---|
| 3054 | """
|
---|
| 3055 | varlist = vars()
|
---|
[936] | 3056 | self._math._invert_phase(self)
|
---|
[914] | 3057 | self._add_history("invert_phase", varlist)
|
---|
| 3058 | return
|
---|
| 3059 |
|
---|
[1862] | 3060 | @asaplog_post_dec
|
---|
[876] | 3061 | def add(self, offset, insitu=None):
|
---|
[1846] | 3062 | """\
|
---|
[513] | 3063 | Return a scan where all spectra have the offset added
|
---|
[1846] | 3064 |
|
---|
[513] | 3065 | Parameters:
|
---|
[1846] | 3066 |
|
---|
[513] | 3067 | offset: the offset
|
---|
[1855] | 3068 |
|
---|
[513] | 3069 | insitu: if False a new scantable is returned.
|
---|
| 3070 | Otherwise, the scaling is done in-situ
|
---|
| 3071 | The default is taken from .asaprc (False)
|
---|
[1846] | 3072 |
|
---|
[513] | 3073 | """
|
---|
| 3074 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 3075 | self._math._setinsitu(insitu)
|
---|
[513] | 3076 | varlist = vars()
|
---|
[876] | 3077 | s = scantable(self._math._unaryop(self, offset, "ADD", False))
|
---|
[1118] | 3078 | s._add_history("add", varlist)
|
---|
[876] | 3079 | if insitu:
|
---|
| 3080 | self._assign(s)
|
---|
| 3081 | else:
|
---|
[513] | 3082 | return s
|
---|
| 3083 |
|
---|
[1862] | 3084 | @asaplog_post_dec
|
---|
[1308] | 3085 | def scale(self, factor, tsys=True, insitu=None):
|
---|
[1846] | 3086 | """\
|
---|
| 3087 |
|
---|
[1938] | 3088 | Return a scan where all spectra are scaled by the given 'factor'
|
---|
[1846] | 3089 |
|
---|
[513] | 3090 | Parameters:
|
---|
[1846] | 3091 |
|
---|
[1819] | 3092 | factor: the scaling factor (float or 1D float list)
|
---|
[1855] | 3093 |
|
---|
[513] | 3094 | insitu: if False a new scantable is returned.
|
---|
| 3095 | Otherwise, the scaling is done in-situ
|
---|
| 3096 | The default is taken from .asaprc (False)
|
---|
[1855] | 3097 |
|
---|
[513] | 3098 | tsys: if True (default) then apply the operation to Tsys
|
---|
| 3099 | as well as the data
|
---|
[1846] | 3100 |
|
---|
[513] | 3101 | """
|
---|
| 3102 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 3103 | self._math._setinsitu(insitu)
|
---|
[513] | 3104 | varlist = vars()
|
---|
[1819] | 3105 | s = None
|
---|
| 3106 | import numpy
|
---|
| 3107 | if isinstance(factor, list) or isinstance(factor, numpy.ndarray):
|
---|
| 3108 | if isinstance(factor[0], list) or isinstance(factor[0], numpy.ndarray):
|
---|
| 3109 | from asapmath import _array2dOp
|
---|
| 3110 | s = _array2dOp( self.copy(), factor, "MUL", tsys )
|
---|
| 3111 | else:
|
---|
| 3112 | s = scantable( self._math._arrayop( self.copy(), factor, "MUL", tsys ) )
|
---|
| 3113 | else:
|
---|
| 3114 | s = scantable(self._math._unaryop(self.copy(), factor, "MUL", tsys))
|
---|
[1118] | 3115 | s._add_history("scale", varlist)
|
---|
[876] | 3116 | if insitu:
|
---|
| 3117 | self._assign(s)
|
---|
| 3118 | else:
|
---|
[513] | 3119 | return s
|
---|
| 3120 |
|
---|
[1504] | 3121 | def set_sourcetype(self, match, matchtype="pattern",
|
---|
| 3122 | sourcetype="reference"):
|
---|
[1846] | 3123 | """\
|
---|
[1502] | 3124 | Set the type of the source to be an source or reference scan
|
---|
[1846] | 3125 | using the provided pattern.
|
---|
| 3126 |
|
---|
[1502] | 3127 | Parameters:
|
---|
[1846] | 3128 |
|
---|
[1504] | 3129 | match: a Unix style pattern, regular expression or selector
|
---|
[1855] | 3130 |
|
---|
[1504] | 3131 | matchtype: 'pattern' (default) UNIX style pattern or
|
---|
| 3132 | 'regex' regular expression
|
---|
[1855] | 3133 |
|
---|
[1502] | 3134 | sourcetype: the type of the source to use (source/reference)
|
---|
[1846] | 3135 |
|
---|
[1502] | 3136 | """
|
---|
| 3137 | varlist = vars()
|
---|
| 3138 | basesel = self.get_selection()
|
---|
| 3139 | stype = -1
|
---|
| 3140 | if sourcetype.lower().startswith("r"):
|
---|
| 3141 | stype = 1
|
---|
| 3142 | elif sourcetype.lower().startswith("s"):
|
---|
| 3143 | stype = 0
|
---|
[1504] | 3144 | else:
|
---|
[1502] | 3145 | raise ValueError("Illegal sourcetype use s(ource) or r(eference)")
|
---|
[1504] | 3146 | if matchtype.lower().startswith("p"):
|
---|
| 3147 | matchtype = "pattern"
|
---|
| 3148 | elif matchtype.lower().startswith("r"):
|
---|
| 3149 | matchtype = "regex"
|
---|
| 3150 | else:
|
---|
| 3151 | raise ValueError("Illegal matchtype, use p(attern) or r(egex)")
|
---|
[1502] | 3152 | sel = selector()
|
---|
| 3153 | if isinstance(match, selector):
|
---|
| 3154 | sel = match
|
---|
| 3155 | else:
|
---|
[1504] | 3156 | sel.set_query("SRCNAME == %s('%s')" % (matchtype, match))
|
---|
[1502] | 3157 | self.set_selection(basesel+sel)
|
---|
| 3158 | self._setsourcetype(stype)
|
---|
| 3159 | self.set_selection(basesel)
|
---|
[1573] | 3160 | self._add_history("set_sourcetype", varlist)
|
---|
[1502] | 3161 |
|
---|
[1862] | 3162 | @asaplog_post_dec
|
---|
[1857] | 3163 | @preserve_selection
|
---|
[1819] | 3164 | def auto_quotient(self, preserve=True, mode='paired', verify=False):
|
---|
[1846] | 3165 | """\
|
---|
[670] | 3166 | This function allows to build quotients automatically.
|
---|
[1819] | 3167 | It assumes the observation to have the same number of
|
---|
[670] | 3168 | "ons" and "offs"
|
---|
[1846] | 3169 |
|
---|
[670] | 3170 | Parameters:
|
---|
[1846] | 3171 |
|
---|
[710] | 3172 | preserve: you can preserve (default) the continuum or
|
---|
| 3173 | remove it. The equations used are
|
---|
[1857] | 3174 |
|
---|
[670] | 3175 | preserve: Output = Toff * (on/off) - Toff
|
---|
[1857] | 3176 |
|
---|
[1070] | 3177 | remove: Output = Toff * (on/off) - Ton
|
---|
[1855] | 3178 |
|
---|
[1573] | 3179 | mode: the on/off detection mode
|
---|
[1348] | 3180 | 'paired' (default)
|
---|
| 3181 | identifies 'off' scans by the
|
---|
| 3182 | trailing '_R' (Mopra/Parkes) or
|
---|
| 3183 | '_e'/'_w' (Tid) and matches
|
---|
| 3184 | on/off pairs from the observing pattern
|
---|
[1502] | 3185 | 'time'
|
---|
| 3186 | finds the closest off in time
|
---|
[1348] | 3187 |
|
---|
[1857] | 3188 | .. todo:: verify argument is not implemented
|
---|
| 3189 |
|
---|
[670] | 3190 | """
|
---|
[1857] | 3191 | varlist = vars()
|
---|
[1348] | 3192 | modes = ["time", "paired"]
|
---|
[670] | 3193 | if not mode in modes:
|
---|
[876] | 3194 | msg = "please provide valid mode. Valid modes are %s" % (modes)
|
---|
| 3195 | raise ValueError(msg)
|
---|
[1348] | 3196 | s = None
|
---|
| 3197 | if mode.lower() == "paired":
|
---|
[1857] | 3198 | sel = self.get_selection()
|
---|
[1875] | 3199 | sel.set_query("SRCTYPE==psoff")
|
---|
[1356] | 3200 | self.set_selection(sel)
|
---|
[1348] | 3201 | offs = self.copy()
|
---|
[1875] | 3202 | sel.set_query("SRCTYPE==pson")
|
---|
[1356] | 3203 | self.set_selection(sel)
|
---|
[1348] | 3204 | ons = self.copy()
|
---|
| 3205 | s = scantable(self._math._quotient(ons, offs, preserve))
|
---|
| 3206 | elif mode.lower() == "time":
|
---|
| 3207 | s = scantable(self._math._auto_quotient(self, mode, preserve))
|
---|
[1118] | 3208 | s._add_history("auto_quotient", varlist)
|
---|
[876] | 3209 | return s
|
---|
[710] | 3210 |
|
---|
[1862] | 3211 | @asaplog_post_dec
|
---|
[1145] | 3212 | def mx_quotient(self, mask = None, weight='median', preserve=True):
|
---|
[1846] | 3213 | """\
|
---|
[1143] | 3214 | Form a quotient using "off" beams when observing in "MX" mode.
|
---|
[1846] | 3215 |
|
---|
[1143] | 3216 | Parameters:
|
---|
[1846] | 3217 |
|
---|
[1145] | 3218 | mask: an optional mask to be used when weight == 'stddev'
|
---|
[1855] | 3219 |
|
---|
[1143] | 3220 | weight: How to average the off beams. Default is 'median'.
|
---|
[1855] | 3221 |
|
---|
[1145] | 3222 | preserve: you can preserve (default) the continuum or
|
---|
[1855] | 3223 | remove it. The equations used are:
|
---|
[1846] | 3224 |
|
---|
[1855] | 3225 | preserve: Output = Toff * (on/off) - Toff
|
---|
| 3226 |
|
---|
| 3227 | remove: Output = Toff * (on/off) - Ton
|
---|
| 3228 |
|
---|
[1217] | 3229 | """
|
---|
[1593] | 3230 | mask = mask or ()
|
---|
[1141] | 3231 | varlist = vars()
|
---|
| 3232 | on = scantable(self._math._mx_extract(self, 'on'))
|
---|
[1143] | 3233 | preoff = scantable(self._math._mx_extract(self, 'off'))
|
---|
| 3234 | off = preoff.average_time(mask=mask, weight=weight, scanav=False)
|
---|
[1217] | 3235 | from asapmath import quotient
|
---|
[1145] | 3236 | q = quotient(on, off, preserve)
|
---|
[1143] | 3237 | q._add_history("mx_quotient", varlist)
|
---|
[1217] | 3238 | return q
|
---|
[513] | 3239 |
|
---|
[1862] | 3240 | @asaplog_post_dec
|
---|
[718] | 3241 | def freq_switch(self, insitu=None):
|
---|
[1846] | 3242 | """\
|
---|
[718] | 3243 | Apply frequency switching to the data.
|
---|
[1846] | 3244 |
|
---|
[718] | 3245 | Parameters:
|
---|
[1846] | 3246 |
|
---|
[718] | 3247 | insitu: if False a new scantable is returned.
|
---|
| 3248 | Otherwise, the swictching is done in-situ
|
---|
| 3249 | The default is taken from .asaprc (False)
|
---|
[1846] | 3250 |
|
---|
[718] | 3251 | """
|
---|
| 3252 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 3253 | self._math._setinsitu(insitu)
|
---|
[718] | 3254 | varlist = vars()
|
---|
[876] | 3255 | s = scantable(self._math._freqswitch(self))
|
---|
[1118] | 3256 | s._add_history("freq_switch", varlist)
|
---|
[1856] | 3257 | if insitu:
|
---|
| 3258 | self._assign(s)
|
---|
| 3259 | else:
|
---|
| 3260 | return s
|
---|
[718] | 3261 |
|
---|
[1862] | 3262 | @asaplog_post_dec
|
---|
[780] | 3263 | def recalc_azel(self):
|
---|
[1846] | 3264 | """Recalculate the azimuth and elevation for each position."""
|
---|
[780] | 3265 | varlist = vars()
|
---|
[876] | 3266 | self._recalcazel()
|
---|
[780] | 3267 | self._add_history("recalc_azel", varlist)
|
---|
| 3268 | return
|
---|
| 3269 |
|
---|
[1862] | 3270 | @asaplog_post_dec
|
---|
[513] | 3271 | def __add__(self, other):
|
---|
| 3272 | varlist = vars()
|
---|
| 3273 | s = None
|
---|
| 3274 | if isinstance(other, scantable):
|
---|
[1573] | 3275 | s = scantable(self._math._binaryop(self, other, "ADD"))
|
---|
[513] | 3276 | elif isinstance(other, float):
|
---|
[876] | 3277 | s = scantable(self._math._unaryop(self, other, "ADD", False))
|
---|
[2144] | 3278 | elif isinstance(other, list) or isinstance(other, numpy.ndarray):
|
---|
| 3279 | if isinstance(other[0], list) or isinstance(other[0], numpy.ndarray):
|
---|
| 3280 | from asapmath import _array2dOp
|
---|
| 3281 | s = _array2dOp( self.copy(), other, "ADD", False )
|
---|
| 3282 | else:
|
---|
| 3283 | s = scantable( self._math._arrayop( self.copy(), other, "ADD", False ) )
|
---|
[513] | 3284 | else:
|
---|
[718] | 3285 | raise TypeError("Other input is not a scantable or float value")
|
---|
[513] | 3286 | s._add_history("operator +", varlist)
|
---|
| 3287 | return s
|
---|
| 3288 |
|
---|
[1862] | 3289 | @asaplog_post_dec
|
---|
[513] | 3290 | def __sub__(self, other):
|
---|
| 3291 | """
|
---|
| 3292 | implicit on all axes and on Tsys
|
---|
| 3293 | """
|
---|
| 3294 | varlist = vars()
|
---|
| 3295 | s = None
|
---|
| 3296 | if isinstance(other, scantable):
|
---|
[1588] | 3297 | s = scantable(self._math._binaryop(self, other, "SUB"))
|
---|
[513] | 3298 | elif isinstance(other, float):
|
---|
[876] | 3299 | s = scantable(self._math._unaryop(self, other, "SUB", False))
|
---|
[2144] | 3300 | elif isinstance(other, list) or isinstance(other, numpy.ndarray):
|
---|
[2277] | 3301 | if isinstance(other[0], list) or isinstance(other[0], numpy.ndarray):
|
---|
[2144] | 3302 | from asapmath import _array2dOp
|
---|
| 3303 | s = _array2dOp( self.copy(), other, "SUB", False )
|
---|
| 3304 | else:
|
---|
[2277] | 3305 | s = scantable( self._math._arrayop( self.copy(), other, "SUB", False ) )
|
---|
[513] | 3306 | else:
|
---|
[718] | 3307 | raise TypeError("Other input is not a scantable or float value")
|
---|
[513] | 3308 | s._add_history("operator -", varlist)
|
---|
| 3309 | return s
|
---|
[710] | 3310 |
|
---|
[1862] | 3311 | @asaplog_post_dec
|
---|
[513] | 3312 | def __mul__(self, other):
|
---|
| 3313 | """
|
---|
| 3314 | implicit on all axes and on Tsys
|
---|
| 3315 | """
|
---|
| 3316 | varlist = vars()
|
---|
| 3317 | s = None
|
---|
| 3318 | if isinstance(other, scantable):
|
---|
[1588] | 3319 | s = scantable(self._math._binaryop(self, other, "MUL"))
|
---|
[513] | 3320 | elif isinstance(other, float):
|
---|
[876] | 3321 | s = scantable(self._math._unaryop(self, other, "MUL", False))
|
---|
[2144] | 3322 | elif isinstance(other, list) or isinstance(other, numpy.ndarray):
|
---|
[2277] | 3323 | if isinstance(other[0], list) or isinstance(other[0], numpy.ndarray):
|
---|
[2144] | 3324 | from asapmath import _array2dOp
|
---|
| 3325 | s = _array2dOp( self.copy(), other, "MUL", False )
|
---|
| 3326 | else:
|
---|
[2277] | 3327 | s = scantable( self._math._arrayop( self.copy(), other, "MUL", False ) )
|
---|
[513] | 3328 | else:
|
---|
[718] | 3329 | raise TypeError("Other input is not a scantable or float value")
|
---|
[513] | 3330 | s._add_history("operator *", varlist)
|
---|
| 3331 | return s
|
---|
| 3332 |
|
---|
[710] | 3333 |
|
---|
[1862] | 3334 | @asaplog_post_dec
|
---|
[513] | 3335 | def __div__(self, other):
|
---|
| 3336 | """
|
---|
| 3337 | implicit on all axes and on Tsys
|
---|
| 3338 | """
|
---|
| 3339 | varlist = vars()
|
---|
| 3340 | s = None
|
---|
| 3341 | if isinstance(other, scantable):
|
---|
[1589] | 3342 | s = scantable(self._math._binaryop(self, other, "DIV"))
|
---|
[513] | 3343 | elif isinstance(other, float):
|
---|
| 3344 | if other == 0.0:
|
---|
[718] | 3345 | raise ZeroDivisionError("Dividing by zero is not recommended")
|
---|
[876] | 3346 | s = scantable(self._math._unaryop(self, other, "DIV", False))
|
---|
[2144] | 3347 | elif isinstance(other, list) or isinstance(other, numpy.ndarray):
|
---|
[2277] | 3348 | if isinstance(other[0], list) or isinstance(other[0], numpy.ndarray):
|
---|
[2144] | 3349 | from asapmath import _array2dOp
|
---|
| 3350 | s = _array2dOp( self.copy(), other, "DIV", False )
|
---|
| 3351 | else:
|
---|
[2277] | 3352 | s = scantable( self._math._arrayop( self.copy(), other, "DIV", False ) )
|
---|
[513] | 3353 | else:
|
---|
[718] | 3354 | raise TypeError("Other input is not a scantable or float value")
|
---|
[513] | 3355 | s._add_history("operator /", varlist)
|
---|
| 3356 | return s
|
---|
| 3357 |
|
---|
[1862] | 3358 | @asaplog_post_dec
|
---|
[530] | 3359 | def get_fit(self, row=0):
|
---|
[1846] | 3360 | """\
|
---|
[530] | 3361 | Print or return the stored fits for a row in the scantable
|
---|
[1846] | 3362 |
|
---|
[530] | 3363 | Parameters:
|
---|
[1846] | 3364 |
|
---|
[530] | 3365 | row: the row which the fit has been applied to.
|
---|
[1846] | 3366 |
|
---|
[530] | 3367 | """
|
---|
| 3368 | if row > self.nrow():
|
---|
| 3369 | return
|
---|
[976] | 3370 | from asap.asapfit import asapfit
|
---|
[530] | 3371 | fit = asapfit(self._getfit(row))
|
---|
[1859] | 3372 | asaplog.push( '%s' %(fit) )
|
---|
| 3373 | return fit.as_dict()
|
---|
[530] | 3374 |
|
---|
[1483] | 3375 | def flag_nans(self):
|
---|
[1846] | 3376 | """\
|
---|
[1483] | 3377 | Utility function to flag NaN values in the scantable.
|
---|
| 3378 | """
|
---|
| 3379 | import numpy
|
---|
| 3380 | basesel = self.get_selection()
|
---|
| 3381 | for i in range(self.nrow()):
|
---|
[1589] | 3382 | sel = self.get_row_selector(i)
|
---|
| 3383 | self.set_selection(basesel+sel)
|
---|
[1483] | 3384 | nans = numpy.isnan(self._getspectrum(0))
|
---|
| 3385 | if numpy.any(nans):
|
---|
| 3386 | bnans = [ bool(v) for v in nans]
|
---|
| 3387 | self.flag(bnans)
|
---|
| 3388 | self.set_selection(basesel)
|
---|
| 3389 |
|
---|
[1588] | 3390 | def get_row_selector(self, rowno):
|
---|
[1992] | 3391 | #return selector(beams=self.getbeam(rowno),
|
---|
| 3392 | # ifs=self.getif(rowno),
|
---|
| 3393 | # pols=self.getpol(rowno),
|
---|
| 3394 | # scans=self.getscan(rowno),
|
---|
| 3395 | # cycles=self.getcycle(rowno))
|
---|
| 3396 | return selector(rows=[rowno])
|
---|
[1573] | 3397 |
|
---|
[484] | 3398 | def _add_history(self, funcname, parameters):
|
---|
[1435] | 3399 | if not rcParams['scantable.history']:
|
---|
| 3400 | return
|
---|
[484] | 3401 | # create date
|
---|
| 3402 | sep = "##"
|
---|
| 3403 | from datetime import datetime
|
---|
| 3404 | dstr = datetime.now().strftime('%Y/%m/%d %H:%M:%S')
|
---|
| 3405 | hist = dstr+sep
|
---|
| 3406 | hist += funcname+sep#cdate+sep
|
---|
| 3407 | if parameters.has_key('self'): del parameters['self']
|
---|
[1118] | 3408 | for k, v in parameters.iteritems():
|
---|
[484] | 3409 | if type(v) is dict:
|
---|
[1118] | 3410 | for k2, v2 in v.iteritems():
|
---|
[484] | 3411 | hist += k2
|
---|
| 3412 | hist += "="
|
---|
[1118] | 3413 | if isinstance(v2, scantable):
|
---|
[484] | 3414 | hist += 'scantable'
|
---|
| 3415 | elif k2 == 'mask':
|
---|
[1118] | 3416 | if isinstance(v2, list) or isinstance(v2, tuple):
|
---|
[513] | 3417 | hist += str(self._zip_mask(v2))
|
---|
| 3418 | else:
|
---|
| 3419 | hist += str(v2)
|
---|
[484] | 3420 | else:
|
---|
[513] | 3421 | hist += str(v2)
|
---|
[484] | 3422 | else:
|
---|
| 3423 | hist += k
|
---|
| 3424 | hist += "="
|
---|
[1118] | 3425 | if isinstance(v, scantable):
|
---|
[484] | 3426 | hist += 'scantable'
|
---|
| 3427 | elif k == 'mask':
|
---|
[1118] | 3428 | if isinstance(v, list) or isinstance(v, tuple):
|
---|
[513] | 3429 | hist += str(self._zip_mask(v))
|
---|
| 3430 | else:
|
---|
| 3431 | hist += str(v)
|
---|
[484] | 3432 | else:
|
---|
| 3433 | hist += str(v)
|
---|
| 3434 | hist += sep
|
---|
| 3435 | hist = hist[:-2] # remove trailing '##'
|
---|
| 3436 | self._addhistory(hist)
|
---|
| 3437 |
|
---|
[710] | 3438 |
|
---|
[484] | 3439 | def _zip_mask(self, mask):
|
---|
| 3440 | mask = list(mask)
|
---|
| 3441 | i = 0
|
---|
| 3442 | segments = []
|
---|
| 3443 | while mask[i:].count(1):
|
---|
| 3444 | i += mask[i:].index(1)
|
---|
| 3445 | if mask[i:].count(0):
|
---|
| 3446 | j = i + mask[i:].index(0)
|
---|
| 3447 | else:
|
---|
[710] | 3448 | j = len(mask)
|
---|
[1118] | 3449 | segments.append([i, j])
|
---|
[710] | 3450 | i = j
|
---|
[484] | 3451 | return segments
|
---|
[714] | 3452 |
|
---|
[626] | 3453 | def _get_ordinate_label(self):
|
---|
| 3454 | fu = "("+self.get_fluxunit()+")"
|
---|
| 3455 | import re
|
---|
| 3456 | lbl = "Intensity"
|
---|
[1118] | 3457 | if re.match(".K.", fu):
|
---|
[626] | 3458 | lbl = "Brightness Temperature "+ fu
|
---|
[1118] | 3459 | elif re.match(".Jy.", fu):
|
---|
[626] | 3460 | lbl = "Flux density "+ fu
|
---|
| 3461 | return lbl
|
---|
[710] | 3462 |
|
---|
[876] | 3463 | def _check_ifs(self):
|
---|
[1986] | 3464 | #nchans = [self.nchan(i) for i in range(self.nif(-1))]
|
---|
| 3465 | nchans = [self.nchan(i) for i in self.getifnos()]
|
---|
[2004] | 3466 | nchans = filter(lambda t: t > 0, nchans)
|
---|
[876] | 3467 | return (sum(nchans)/len(nchans) == nchans[0])
|
---|
[976] | 3468 |
|
---|
[1862] | 3469 | @asaplog_post_dec
|
---|
[1916] | 3470 | #def _fill(self, names, unit, average, getpt, antenna):
|
---|
| 3471 | def _fill(self, names, unit, average, opts={}):
|
---|
[976] | 3472 | first = True
|
---|
| 3473 | fullnames = []
|
---|
| 3474 | for name in names:
|
---|
| 3475 | name = os.path.expandvars(name)
|
---|
| 3476 | name = os.path.expanduser(name)
|
---|
| 3477 | if not os.path.exists(name):
|
---|
| 3478 | msg = "File '%s' does not exists" % (name)
|
---|
| 3479 | raise IOError(msg)
|
---|
| 3480 | fullnames.append(name)
|
---|
| 3481 | if average:
|
---|
| 3482 | asaplog.push('Auto averaging integrations')
|
---|
[1079] | 3483 | stype = int(rcParams['scantable.storage'].lower() == 'disk')
|
---|
[976] | 3484 | for name in fullnames:
|
---|
[1073] | 3485 | tbl = Scantable(stype)
|
---|
[2004] | 3486 | if is_ms( name ):
|
---|
| 3487 | r = msfiller( tbl )
|
---|
| 3488 | else:
|
---|
| 3489 | r = filler( tbl )
|
---|
| 3490 | rx = rcParams['scantable.reference']
|
---|
| 3491 | r.setreferenceexpr(rx)
|
---|
| 3492 | #r = filler(tbl)
|
---|
| 3493 | #rx = rcParams['scantable.reference']
|
---|
| 3494 | #r.setreferenceexpr(rx)
|
---|
[976] | 3495 | msg = "Importing %s..." % (name)
|
---|
[1118] | 3496 | asaplog.push(msg, False)
|
---|
[1916] | 3497 | #opts = {'ms': {'antenna' : antenna, 'getpt': getpt} }
|
---|
[1904] | 3498 | r.open(name, opts)# antenna, -1, -1, getpt)
|
---|
[1843] | 3499 | r.fill()
|
---|
[976] | 3500 | if average:
|
---|
[1118] | 3501 | tbl = self._math._average((tbl, ), (), 'NONE', 'SCAN')
|
---|
[976] | 3502 | if not first:
|
---|
| 3503 | tbl = self._math._merge([self, tbl])
|
---|
| 3504 | Scantable.__init__(self, tbl)
|
---|
[1843] | 3505 | r.close()
|
---|
[1118] | 3506 | del r, tbl
|
---|
[976] | 3507 | first = False
|
---|
[1861] | 3508 | #flush log
|
---|
| 3509 | asaplog.post()
|
---|
[976] | 3510 | if unit is not None:
|
---|
| 3511 | self.set_fluxunit(unit)
|
---|
[1824] | 3512 | if not is_casapy():
|
---|
| 3513 | self.set_freqframe(rcParams['scantable.freqframe'])
|
---|
[976] | 3514 |
|
---|
[2012] | 3515 |
|
---|
[1402] | 3516 | def __getitem__(self, key):
|
---|
| 3517 | if key < 0:
|
---|
| 3518 | key += self.nrow()
|
---|
| 3519 | if key >= self.nrow():
|
---|
| 3520 | raise IndexError("Row index out of range.")
|
---|
| 3521 | return self._getspectrum(key)
|
---|
| 3522 |
|
---|
| 3523 | def __setitem__(self, key, value):
|
---|
| 3524 | if key < 0:
|
---|
| 3525 | key += self.nrow()
|
---|
| 3526 | if key >= self.nrow():
|
---|
| 3527 | raise IndexError("Row index out of range.")
|
---|
| 3528 | if not hasattr(value, "__len__") or \
|
---|
| 3529 | len(value) > self.nchan(self.getif(key)):
|
---|
| 3530 | raise ValueError("Spectrum length doesn't match.")
|
---|
| 3531 | return self._setspectrum(value, key)
|
---|
| 3532 |
|
---|
| 3533 | def __len__(self):
|
---|
| 3534 | return self.nrow()
|
---|
| 3535 |
|
---|
| 3536 | def __iter__(self):
|
---|
| 3537 | for i in range(len(self)):
|
---|
| 3538 | yield self[i]
|
---|