source: trunk/python/scantable.py@ 2000

Last change on this file since 2000 was 1994, checked in by Kana Sugimoto, 14 years ago

New Development: Yes

JIRA Issue: Yes (CAS-1306)

Ready for Test: Yes

Interface Changes: Yes

What Interface Changed: added row selection parameters to scantable.flag,

ScantableWrapper::flag and Scantable::flag.

Test Programs:

Put in Release Notes: No

Module(s): scantable class

Description:

Enabled a row selection in scantable.flag.

  • A parameter 'row' is added to scantable.flag. The default value -1 applies

specified channel flags to the all rows in the scantable (same as previous code).

  • A parameter 'whichrow' is also added to ScantableWrapper::flag and

Scantable::flag accordingly.

  • The actual flagg application part in the code Scantable::flag is moved to a new

private function Scantable::applyChanFlag(uInt whichrow, vector<bool> msk, uChar flagval).
The function applies flag with a value, 'flagval', to masked channels, 'msk',
in a selected row, 'whichrow'.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 93.5 KB
RevLine 
[1846]1"""This module defines the scantable class."""
2
[1697]3import os
[1948]4import numpy
[1691]5try:
6 from functools import wraps as wraps_dec
7except ImportError:
8 from asap.compatibility import wraps as wraps_dec
9
[1824]10from asap.env import is_casapy
[876]11from asap._asap import Scantable
[1843]12from asap._asap import filler
[1824]13from asap.parameters import rcParams
[1862]14from asap.logging import asaplog, asaplog_post_dec
[1824]15from asap.selector import selector
16from asap.linecatalog import linecatalog
[1600]17from asap.coordinate import coordinate
[1859]18from asap.utils import _n_bools, mask_not, mask_and, mask_or, page
[1907]19from asap.asapfitter import fitter
[102]20
[1689]21
22def preserve_selection(func):
[1691]23 @wraps_dec(func)
[1689]24 def wrap(obj, *args, **kw):
25 basesel = obj.get_selection()
[1857]26 try:
27 val = func(obj, *args, **kw)
28 finally:
29 obj.set_selection(basesel)
[1689]30 return val
31 return wrap
32
[1846]33def is_scantable(filename):
34 """Is the given file a scantable?
[1689]35
[1846]36 Parameters:
37
38 filename: the name of the file/directory to test
39
40 """
[1883]41 if ( os.path.isdir(filename)
42 and os.path.exists(filename+'/table.info')
43 and os.path.exists(filename+'/table.dat') ):
44 f=open(filename+'/table.info')
45 l=f.readline()
46 f.close()
47 #if ( l.find('Scantable') != -1 ):
48 if ( l.find('Measurement Set') == -1 ):
49 return True
50 else:
51 return False
52 else:
53 return False
54## return (os.path.isdir(filename)
55## and not os.path.exists(filename+'/table.f1')
56## and os.path.exists(filename+'/table.info'))
[1697]57
[1883]58def is_ms(filename):
59 """Is the given file a MeasurementSet?
[1697]60
[1883]61 Parameters:
62
63 filename: the name of the file/directory to test
64
65 """
66 if ( os.path.isdir(filename)
67 and os.path.exists(filename+'/table.info')
68 and os.path.exists(filename+'/table.dat') ):
69 f=open(filename+'/table.info')
70 l=f.readline()
71 f.close()
72 if ( l.find('Measurement Set') != -1 ):
73 return True
74 else:
75 return False
76 else:
77 return False
78
[876]79class scantable(Scantable):
[1846]80 """\
81 The ASAP container for scans (single-dish data).
[102]82 """
[1819]83
[1862]84 @asaplog_post_dec
[1916]85 #def __init__(self, filename, average=None, unit=None, getpt=None,
86 # antenna=None, parallactify=None):
87 def __init__(self, filename, average=None, unit=None, parallactify=None, **args):
[1846]88 """\
[102]89 Create a scantable from a saved one or make a reference
[1846]90
[102]91 Parameters:
[1846]92
93 filename: the name of an asap table on disk
94 or
95 the name of a rpfits/sdfits/ms file
96 (integrations within scans are auto averaged
97 and the whole file is read) or
98 [advanced] a reference to an existing scantable
99
100 average: average all integrations withinb a scan on read.
101 The default (True) is taken from .asaprc.
102
[484]103 unit: brightness unit; must be consistent with K or Jy.
[1846]104 Over-rides the default selected by the filler
105 (input rpfits/sdfits/ms) or replaces the value
106 in existing scantables
107
108 getpt: for MeasurementSet input data only:
109 If True, all pointing data are filled.
110 The deafult is False, which makes time to load
111 the MS data faster in some cases.
112
[1920]113 antenna: for MeasurementSet input data only:
114 Antenna selection. integer (id) or string (name or id).
[1846]115
116 parallactify: Indicate that the data had been parallatified. Default
117 is taken from rc file.
118
[710]119 """
[976]120 if average is None:
[710]121 average = rcParams['scantable.autoaverage']
[1916]122 #if getpt is None:
123 # getpt = True
124 #if antenna is not None:
125 # asaplog.push("Antenna selection currently unsupported."
126 # "Using ''")
127 # asaplog.post('WARN')
128 #if antenna is None:
129 # antenna = ''
130 #elif type(antenna) == int:
131 # antenna = '%s' % antenna
132 #elif type(antenna) == list:
133 # tmpstr = ''
134 # for i in range( len(antenna) ):
135 # if type(antenna[i]) == int:
136 # tmpstr = tmpstr + ('%s,'%(antenna[i]))
137 # elif type(antenna[i]) == str:
138 # tmpstr=tmpstr+antenna[i]+','
139 # else:
140 # raise TypeError('Bad antenna selection.')
141 # antenna = tmpstr.rstrip(',')
[1593]142 parallactify = parallactify or rcParams['scantable.parallactify']
[1259]143 varlist = vars()
[876]144 from asap._asap import stmath
[1819]145 self._math = stmath( rcParams['insitu'] )
[876]146 if isinstance(filename, Scantable):
147 Scantable.__init__(self, filename)
[181]148 else:
[1697]149 if isinstance(filename, str):
[976]150 filename = os.path.expandvars(filename)
151 filename = os.path.expanduser(filename)
152 if not os.path.exists(filename):
153 s = "File '%s' not found." % (filename)
154 raise IOError(s)
[1697]155 if is_scantable(filename):
156 ondisk = rcParams['scantable.storage'] == 'disk'
157 Scantable.__init__(self, filename, ondisk)
158 if unit is not None:
159 self.set_fluxunit(unit)
[1819]160 # do not reset to the default freqframe
161 #self.set_freqframe(rcParams['scantable.freqframe'])
[1883]162 #elif os.path.isdir(filename) \
163 # and not os.path.exists(filename+'/table.f1'):
164 elif is_ms(filename):
[1916]165 # Measurement Set
166 opts={'ms': {}}
167 mskeys=['getpt','antenna']
168 for key in mskeys:
169 if key in args.keys():
170 opts['ms'][key] = args[key]
171 #self._fill([filename], unit, average, getpt, antenna)
172 self._fill([filename], unit, average, opts)
[1893]173 elif os.path.isfile(filename):
[1916]174 #self._fill([filename], unit, average, getpt, antenna)
175 self._fill([filename], unit, average)
[1883]176 else:
[1819]177 msg = "The given file '%s'is not a valid " \
178 "asap table." % (filename)
[1859]179 raise IOError(msg)
[1118]180 elif (isinstance(filename, list) or isinstance(filename, tuple)) \
[976]181 and isinstance(filename[-1], str):
[1916]182 #self._fill(filename, unit, average, getpt, antenna)
183 self._fill(filename, unit, average)
[1586]184 self.parallactify(parallactify)
[1259]185 self._add_history("scantable", varlist)
[102]186
[1862]187 @asaplog_post_dec
[876]188 def save(self, name=None, format=None, overwrite=False):
[1846]189 """\
[1280]190 Store the scantable on disk. This can be an asap (aips++) Table,
191 SDFITS or MS2 format.
[1846]192
[116]193 Parameters:
[1846]194
[1093]195 name: the name of the outputfile. For format "ASCII"
196 this is the root file name (data in 'name'.txt
[497]197 and header in 'name'_header.txt)
[1855]198
[116]199 format: an optional file format. Default is ASAP.
[1855]200 Allowed are:
201
202 * 'ASAP' (save as ASAP [aips++] Table),
203 * 'SDFITS' (save as SDFITS file)
204 * 'ASCII' (saves as ascii text file)
205 * 'MS2' (saves as an casacore MeasurementSet V2)
206 * 'FITS' (save as image FITS - not readable by class)
207 * 'CLASS' (save as FITS readable by CLASS)
208
[411]209 overwrite: If the file should be overwritten if it exists.
[256]210 The default False is to return with warning
[411]211 without writing the output. USE WITH CARE.
[1855]212
[1846]213 Example::
214
[116]215 scan.save('myscan.asap')
[1118]216 scan.save('myscan.sdfits', 'SDFITS')
[1846]217
[116]218 """
[411]219 from os import path
[1593]220 format = format or rcParams['scantable.save']
[256]221 suffix = '.'+format.lower()
[1118]222 if name is None or name == "":
[256]223 name = 'scantable'+suffix
[718]224 msg = "No filename given. Using default name %s..." % name
225 asaplog.push(msg)
[411]226 name = path.expandvars(name)
[256]227 if path.isfile(name) or path.isdir(name):
228 if not overwrite:
[718]229 msg = "File %s exists." % name
[1859]230 raise IOError(msg)
[451]231 format2 = format.upper()
232 if format2 == 'ASAP':
[116]233 self._save(name)
234 else:
[989]235 from asap._asap import stwriter as stw
[1118]236 writer = stw(format2)
237 writer.write(self, name)
[116]238 return
239
[102]240 def copy(self):
[1846]241 """Return a copy of this scantable.
242
243 *Note*:
244
[1348]245 This makes a full (deep) copy. scan2 = scan1 makes a reference.
[1846]246
247 Example::
248
[102]249 copiedscan = scan.copy()
[1846]250
[102]251 """
[876]252 sd = scantable(Scantable._copy(self))
[113]253 return sd
254
[1093]255 def drop_scan(self, scanid=None):
[1846]256 """\
[1093]257 Return a new scantable where the specified scan number(s) has(have)
258 been dropped.
[1846]259
[1093]260 Parameters:
[1846]261
[1093]262 scanid: a (list of) scan number(s)
[1846]263
[1093]264 """
265 from asap import _is_sequence_or_number as _is_valid
266 from asap import _to_list
267 from asap import unique
268 if not _is_valid(scanid):
[1859]269 raise RuntimeError( 'Please specify a scanno to drop from the scantable' )
270 scanid = _to_list(scanid)
271 allscans = unique([ self.getscan(i) for i in range(self.nrow())])
272 for sid in scanid: allscans.remove(sid)
273 if len(allscans) == 0:
274 raise ValueError("Can't remove all scans")
275 sel = selector(scans=allscans)
276 return self._select_copy(sel)
[1093]277
[1594]278 def _select_copy(self, selection):
279 orig = self.get_selection()
280 self.set_selection(orig+selection)
281 cp = self.copy()
282 self.set_selection(orig)
283 return cp
284
[102]285 def get_scan(self, scanid=None):
[1855]286 """\
[102]287 Return a specific scan (by scanno) or collection of scans (by
288 source name) in a new scantable.
[1846]289
290 *Note*:
291
[1348]292 See scantable.drop_scan() for the inverse operation.
[1846]293
[102]294 Parameters:
[1846]295
[513]296 scanid: a (list of) scanno or a source name, unix-style
297 patterns are accepted for source name matching, e.g.
298 '*_R' gets all 'ref scans
[1846]299
300 Example::
301
[513]302 # get all scans containing the source '323p459'
303 newscan = scan.get_scan('323p459')
304 # get all 'off' scans
305 refscans = scan.get_scan('*_R')
306 # get a susbset of scans by scanno (as listed in scan.summary())
[1118]307 newscan = scan.get_scan([0, 2, 7, 10])
[1846]308
[102]309 """
310 if scanid is None:
[1859]311 raise RuntimeError( 'Please specify a scan no or name to '
312 'retrieve from the scantable' )
[102]313 try:
[946]314 bsel = self.get_selection()
315 sel = selector()
[102]316 if type(scanid) is str:
[946]317 sel.set_name(scanid)
[1594]318 return self._select_copy(sel)
[102]319 elif type(scanid) is int:
[946]320 sel.set_scans([scanid])
[1594]321 return self._select_copy(sel)
[381]322 elif type(scanid) is list:
[946]323 sel.set_scans(scanid)
[1594]324 return self._select_copy(sel)
[381]325 else:
[718]326 msg = "Illegal scanid type, use 'int' or 'list' if ints."
[1859]327 raise TypeError(msg)
[102]328 except RuntimeError:
[1859]329 raise
[102]330
331 def __str__(self):
[1118]332 return Scantable._summary(self, True)
[102]333
[976]334 def summary(self, filename=None):
[1846]335 """\
[102]336 Print a summary of the contents of this scantable.
[1846]337
[102]338 Parameters:
[1846]339
[1931]340 filename: the name of a file to write the putput to
[102]341 Default - no file output
[1846]342
[102]343 """
[976]344 info = Scantable._summary(self, True)
[102]345 if filename is not None:
[256]346 if filename is "":
347 filename = 'scantable_summary.txt'
[415]348 from os.path import expandvars, isdir
[411]349 filename = expandvars(filename)
[415]350 if not isdir(filename):
[413]351 data = open(filename, 'w')
352 data.write(info)
353 data.close()
354 else:
[718]355 msg = "Illegal file name '%s'." % (filename)
[1859]356 raise IOError(msg)
357 return page(info)
[710]358
[1512]359 def get_spectrum(self, rowno):
[1471]360 """Return the spectrum for the current row in the scantable as a list.
[1846]361
[1471]362 Parameters:
[1846]363
[1573]364 rowno: the row number to retrieve the spectrum from
[1846]365
[1471]366 """
367 return self._getspectrum(rowno)
[946]368
[1471]369 def get_mask(self, rowno):
370 """Return the mask for the current row in the scantable as a list.
[1846]371
[1471]372 Parameters:
[1846]373
[1573]374 rowno: the row number to retrieve the mask from
[1846]375
[1471]376 """
377 return self._getmask(rowno)
378
379 def set_spectrum(self, spec, rowno):
[1938]380 """Set the spectrum for the current row in the scantable.
[1846]381
[1471]382 Parameters:
[1846]383
[1855]384 spec: the new spectrum
[1846]385
[1855]386 rowno: the row number to set the spectrum for
387
[1471]388 """
389 assert(len(spec) == self.nchan())
390 return self._setspectrum(spec, rowno)
391
[1600]392 def get_coordinate(self, rowno):
393 """Return the (spectral) coordinate for a a given 'rowno'.
[1846]394
395 *Note*:
396
[1600]397 * This coordinate is only valid until a scantable method modifies
398 the frequency axis.
399 * This coordinate does contain the original frequency set-up
400 NOT the new frame. The conversions however are done using the user
401 specified frame (e.g. LSRK/TOPO). To get the 'real' coordinate,
402 use scantable.freq_align first. Without it there is no closure,
[1846]403 i.e.::
[1600]404
[1846]405 c = myscan.get_coordinate(0)
406 c.to_frequency(c.get_reference_pixel()) != c.get_reference_value()
407
[1600]408 Parameters:
[1846]409
[1600]410 rowno: the row number for the spectral coordinate
411
412 """
413 return coordinate(Scantable.get_coordinate(self, rowno))
414
[946]415 def get_selection(self):
[1846]416 """\
[1005]417 Get the selection object currently set on this scantable.
[1846]418
419 Example::
420
[1005]421 sel = scan.get_selection()
422 sel.set_ifs(0) # select IF 0
423 scan.set_selection(sel) # apply modified selection
[1846]424
[946]425 """
426 return selector(self._getselection())
427
[1576]428 def set_selection(self, selection=None, **kw):
[1846]429 """\
[1005]430 Select a subset of the data. All following operations on this scantable
431 are only applied to thi selection.
[1846]432
[1005]433 Parameters:
[1697]434
[1846]435 selection: a selector object (default unset the selection), or
436 any combination of "pols", "ifs", "beams", "scans",
437 "cycles", "name", "query"
[1697]438
[1846]439 Examples::
[1697]440
[1005]441 sel = selector() # create a selection object
[1118]442 self.set_scans([0, 3]) # select SCANNO 0 and 3
[1005]443 scan.set_selection(sel) # set the selection
444 scan.summary() # will only print summary of scanno 0 an 3
445 scan.set_selection() # unset the selection
[1697]446 # or the equivalent
447 scan.set_selection(scans=[0,3])
448 scan.summary() # will only print summary of scanno 0 an 3
449 scan.set_selection() # unset the selection
[1846]450
[946]451 """
[1576]452 if selection is None:
453 # reset
454 if len(kw) == 0:
455 selection = selector()
456 else:
457 # try keywords
458 for k in kw:
459 if k not in selector.fields:
460 raise KeyError("Invalid selection key '%s', valid keys are %s" % (k, selector.fields))
461 selection = selector(**kw)
[946]462 self._setselection(selection)
463
[1819]464 def get_row(self, row=0, insitu=None):
[1846]465 """\
[1819]466 Select a row in the scantable.
467 Return a scantable with single row.
[1846]468
[1819]469 Parameters:
[1846]470
471 row: row no of integration, default is 0.
472 insitu: if False a new scantable is returned. Otherwise, the
473 scaling is done in-situ. The default is taken from .asaprc
474 (False)
475
[1819]476 """
477 if insitu is None: insitu = rcParams['insitu']
478 if not insitu:
479 workscan = self.copy()
480 else:
481 workscan = self
482 # Select a row
483 sel=selector()
[1992]484 sel.set_rows([row])
485 #sel.set_scans([workscan.getscan(row)])
486 #sel.set_cycles([workscan.getcycle(row)])
487 #sel.set_beams([workscan.getbeam(row)])
488 #sel.set_ifs([workscan.getif(row)])
489 #sel.set_polarisations([workscan.getpol(row)])
490 #sel.set_name(workscan._getsourcename(row))
[1819]491 workscan.set_selection(sel)
492 if not workscan.nrow() == 1:
493 msg = "Cloud not identify single row. %d rows selected."%(workscan.nrow())
494 raise RuntimeError(msg)
495 del sel
496 if insitu:
497 self._assign(workscan)
498 else:
499 return workscan
500
[1862]501 @asaplog_post_dec
[1907]502 def stats(self, stat='stddev', mask=None, form='3.3f', row=None):
[1846]503 """\
[135]504 Determine the specified statistic of the current beam/if/pol
[102]505 Takes a 'mask' as an optional parameter to specify which
506 channels should be excluded.
[1846]507
[102]508 Parameters:
[1846]509
[1819]510 stat: 'min', 'max', 'min_abc', 'max_abc', 'sumsq', 'sum',
511 'mean', 'var', 'stddev', 'avdev', 'rms', 'median'
[1855]512
[135]513 mask: an optional mask specifying where the statistic
[102]514 should be determined.
[1855]515
[1819]516 form: format string to print statistic values
[1846]517
[1907]518 row: row number of spectrum to process.
519 (default is None: for all rows)
[1846]520
[1907]521 Example:
[113]522 scan.set_unit('channel')
[1118]523 msk = scan.create_mask([100, 200], [500, 600])
[135]524 scan.stats(stat='mean', mask=m)
[1846]525
[102]526 """
[1593]527 mask = mask or []
[876]528 if not self._check_ifs():
[1118]529 raise ValueError("Cannot apply mask as the IFs have different "
530 "number of channels. Please use setselection() "
531 "to select individual IFs")
[1819]532 rtnabc = False
533 if stat.lower().endswith('_abc'): rtnabc = True
534 getchan = False
535 if stat.lower().startswith('min') or stat.lower().startswith('max'):
536 chan = self._math._minmaxchan(self, mask, stat)
537 getchan = True
538 statvals = []
[1907]539 if not rtnabc:
540 if row == None:
541 statvals = self._math._stats(self, mask, stat)
542 else:
543 statvals = self._math._statsrow(self, mask, stat, int(row))
[256]544
[1819]545 #def cb(i):
546 # return statvals[i]
[256]547
[1819]548 #return self._row_callback(cb, stat)
[102]549
[1819]550 label=stat
551 #callback=cb
552 out = ""
553 #outvec = []
554 sep = '-'*50
[1907]555
556 if row == None:
557 rows = xrange(self.nrow())
558 elif isinstance(row, int):
559 rows = [ row ]
560
561 for i in rows:
[1819]562 refstr = ''
563 statunit= ''
564 if getchan:
565 qx, qy = self.chan2data(rowno=i, chan=chan[i])
566 if rtnabc:
567 statvals.append(qx['value'])
568 refstr = ('(value: %'+form) % (qy['value'])+' ['+qy['unit']+'])'
569 statunit= '['+qx['unit']+']'
570 else:
571 refstr = ('(@ %'+form) % (qx['value'])+' ['+qx['unit']+'])'
572
573 tm = self._gettime(i)
574 src = self._getsourcename(i)
575 out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
576 out += 'Time[%s]:\n' % (tm)
[1907]577 if self.nbeam(-1) > 1: out += ' Beam[%d] ' % (self.getbeam(i))
578 if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
579 if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
[1819]580 #outvec.append(callback(i))
[1907]581 if len(rows) > 1:
582 # out += ('= %'+form) % (outvec[i]) +' '+refstr+'\n'
583 out += ('= %'+form) % (statvals[i]) +' '+refstr+'\n'
584 else:
585 # out += ('= %'+form) % (outvec[0]) +' '+refstr+'\n'
586 out += ('= %'+form) % (statvals[0]) +' '+refstr+'\n'
[1819]587 out += sep+"\n"
588
[1859]589 import os
590 if os.environ.has_key( 'USER' ):
591 usr = os.environ['USER']
592 else:
593 import commands
594 usr = commands.getoutput( 'whoami' )
595 tmpfile = '/tmp/tmp_'+usr+'_casapy_asap_scantable_stats'
596 f = open(tmpfile,'w')
597 print >> f, sep
598 print >> f, ' %s %s' % (label, statunit)
599 print >> f, sep
600 print >> f, out
601 f.close()
602 f = open(tmpfile,'r')
603 x = f.readlines()
604 f.close()
605 asaplog.push(''.join(x), False)
606
[1819]607 return statvals
608
609 def chan2data(self, rowno=0, chan=0):
[1846]610 """\
[1819]611 Returns channel/frequency/velocity and spectral value
612 at an arbitrary row and channel in the scantable.
[1846]613
[1819]614 Parameters:
[1846]615
[1819]616 rowno: a row number in the scantable. Default is the
617 first row, i.e. rowno=0
[1855]618
[1819]619 chan: a channel in the scantable. Default is the first
620 channel, i.e. pos=0
[1846]621
[1819]622 """
623 if isinstance(rowno, int) and isinstance(chan, int):
624 qx = {'unit': self.get_unit(),
625 'value': self._getabcissa(rowno)[chan]}
626 qy = {'unit': self.get_fluxunit(),
627 'value': self._getspectrum(rowno)[chan]}
628 return qx, qy
629
[1118]630 def stddev(self, mask=None):
[1846]631 """\
[135]632 Determine the standard deviation of the current beam/if/pol
633 Takes a 'mask' as an optional parameter to specify which
634 channels should be excluded.
[1846]635
[135]636 Parameters:
[1846]637
[135]638 mask: an optional mask specifying where the standard
639 deviation should be determined.
640
[1846]641 Example::
642
[135]643 scan.set_unit('channel')
[1118]644 msk = scan.create_mask([100, 200], [500, 600])
[135]645 scan.stddev(mask=m)
[1846]646
[135]647 """
[1118]648 return self.stats(stat='stddev', mask=mask);
[135]649
[1003]650
[1259]651 def get_column_names(self):
[1846]652 """\
[1003]653 Return a list of column names, which can be used for selection.
654 """
[1259]655 return list(Scantable.get_column_names(self))
[1003]656
[1730]657 def get_tsys(self, row=-1):
[1846]658 """\
[113]659 Return the System temperatures.
[1846]660
661 Parameters:
662
663 row: the rowno to get the information for. (default all rows)
664
[113]665 Returns:
[1846]666
[876]667 a list of Tsys values for the current selection
[1846]668
[113]669 """
[1730]670 if row > -1:
671 return self._get_column(self._gettsys, row)
[876]672 return self._row_callback(self._gettsys, "Tsys")
[256]673
[1730]674
675 def get_weather(self, row=-1):
[1846]676 """\
677 Return the weather informations.
678
679 Parameters:
680
681 row: the rowno to get the information for. (default all rows)
682
683 Returns:
684
685 a dict or list of of dicts of values for the current selection
686
687 """
688
[1730]689 values = self._get_column(self._get_weather, row)
690 if row > -1:
691 return {'temperature': values[0],
692 'pressure': values[1], 'humidity' : values[2],
693 'windspeed' : values[3], 'windaz' : values[4]
694 }
695 else:
696 out = []
697 for r in values:
698
699 out.append({'temperature': r[0],
700 'pressure': r[1], 'humidity' : r[2],
701 'windspeed' : r[3], 'windaz' : r[4]
702 })
703 return out
704
[876]705 def _row_callback(self, callback, label):
706 out = ""
[1118]707 outvec = []
[1590]708 sep = '-'*50
[876]709 for i in range(self.nrow()):
710 tm = self._gettime(i)
711 src = self._getsourcename(i)
[1590]712 out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
[876]713 out += 'Time[%s]:\n' % (tm)
[1590]714 if self.nbeam(-1) > 1:
715 out += ' Beam[%d] ' % (self.getbeam(i))
716 if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
717 if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
[876]718 outvec.append(callback(i))
719 out += '= %3.3f\n' % (outvec[i])
[1590]720 out += sep+'\n'
[1859]721
722 asaplog.push(sep)
723 asaplog.push(" %s" % (label))
724 asaplog.push(sep)
725 asaplog.push(out)
[1861]726 asaplog.post()
[1175]727 return outvec
[256]728
[1947]729 def _get_column(self, callback, row=-1, *args):
[1070]730 """
731 """
732 if row == -1:
[1947]733 return [callback(i, *args) for i in range(self.nrow())]
[1070]734 else:
[1819]735 if 0 <= row < self.nrow():
[1947]736 return callback(row, *args)
[256]737
[1070]738
[1948]739 def get_time(self, row=-1, asdatetime=False, prec=-1):
[1846]740 """\
[113]741 Get a list of time stamps for the observations.
[1938]742 Return a datetime object or a string (default) for each
743 integration time stamp in the scantable.
[1846]744
[113]745 Parameters:
[1846]746
[1348]747 row: row no of integration. Default -1 return all rows
[1855]748
[1348]749 asdatetime: return values as datetime objects rather than strings
[1846]750
[1948]751 prec: number of digits shown. Default -1 to automatic calculation.
752 Note this number is equals to the digits of MVTime,
753 i.e., 0<prec<3: dates with hh:: only,
754 <5: with hh:mm:, <7 or 0: with hh:mm:ss,
[1947]755 and 6> : with hh:mm:ss.tt... (prec-6 t's added)
756
[113]757 """
[1175]758 from datetime import datetime
[1948]759 if prec < 0:
760 # automagically set necessary precision +1
[1950]761 prec = 7 - numpy.floor(numpy.log10(numpy.min(self.get_inttime(row))))
[1948]762 prec = max(6, int(prec))
763 else:
764 prec = max(0, prec)
765 if asdatetime:
766 #precision can be 1 millisecond at max
767 prec = min(12, prec)
768
[1947]769 times = self._get_column(self._gettime, row, prec)
[1348]770 if not asdatetime:
[1392]771 return times
[1947]772 format = "%Y/%m/%d/%H:%M:%S.%f"
773 if prec < 7:
774 nsub = 1 + (((6-prec)/2) % 3)
775 substr = [".%f","%S","%M"]
776 for i in range(nsub):
777 format = format.replace(substr[i],"")
[1175]778 if isinstance(times, list):
[1947]779 return [datetime.strptime(i, format) for i in times]
[1175]780 else:
[1947]781 return datetime.strptime(times, format)
[102]782
[1348]783
784 def get_inttime(self, row=-1):
[1846]785 """\
[1348]786 Get a list of integration times for the observations.
787 Return a time in seconds for each integration in the scantable.
[1846]788
[1348]789 Parameters:
[1846]790
[1348]791 row: row no of integration. Default -1 return all rows.
[1846]792
[1348]793 """
[1573]794 return self._get_column(self._getinttime, row)
[1348]795
[1573]796
[714]797 def get_sourcename(self, row=-1):
[1846]798 """\
[794]799 Get a list source names for the observations.
[714]800 Return a string for each integration in the scantable.
801 Parameters:
[1846]802
[1348]803 row: row no of integration. Default -1 return all rows.
[1846]804
[714]805 """
[1070]806 return self._get_column(self._getsourcename, row)
[714]807
[794]808 def get_elevation(self, row=-1):
[1846]809 """\
[794]810 Get a list of elevations for the observations.
811 Return a float for each integration in the scantable.
[1846]812
[794]813 Parameters:
[1846]814
[1348]815 row: row no of integration. Default -1 return all rows.
[1846]816
[794]817 """
[1070]818 return self._get_column(self._getelevation, row)
[794]819
820 def get_azimuth(self, row=-1):
[1846]821 """\
[794]822 Get a list of azimuths for the observations.
823 Return a float for each integration in the scantable.
[1846]824
[794]825 Parameters:
[1348]826 row: row no of integration. Default -1 return all rows.
[1846]827
[794]828 """
[1070]829 return self._get_column(self._getazimuth, row)
[794]830
831 def get_parangle(self, row=-1):
[1846]832 """\
[794]833 Get a list of parallactic angles for the observations.
834 Return a float for each integration in the scantable.
[1846]835
[794]836 Parameters:
[1846]837
[1348]838 row: row no of integration. Default -1 return all rows.
[1846]839
[794]840 """
[1070]841 return self._get_column(self._getparangle, row)
[794]842
[1070]843 def get_direction(self, row=-1):
844 """
845 Get a list of Positions on the sky (direction) for the observations.
[1594]846 Return a string for each integration in the scantable.
[1855]847
[1070]848 Parameters:
[1855]849
[1070]850 row: row no of integration. Default -1 return all rows
[1855]851
[1070]852 """
853 return self._get_column(self._getdirection, row)
854
[1391]855 def get_directionval(self, row=-1):
[1846]856 """\
[1391]857 Get a list of Positions on the sky (direction) for the observations.
858 Return a float for each integration in the scantable.
[1846]859
[1391]860 Parameters:
[1846]861
[1391]862 row: row no of integration. Default -1 return all rows
[1846]863
[1391]864 """
865 return self._get_column(self._getdirectionvec, row)
866
[1862]867 @asaplog_post_dec
[102]868 def set_unit(self, unit='channel'):
[1846]869 """\
[102]870 Set the unit for all following operations on this scantable
[1846]871
[102]872 Parameters:
[1846]873
874 unit: optional unit, default is 'channel'. Use one of '*Hz',
875 'km/s', 'channel' or equivalent ''
876
[102]877 """
[484]878 varlist = vars()
[1118]879 if unit in ['', 'pixel', 'channel']:
[113]880 unit = ''
881 inf = list(self._getcoordinfo())
882 inf[0] = unit
883 self._setcoordinfo(inf)
[1118]884 self._add_history("set_unit", varlist)
[113]885
[1862]886 @asaplog_post_dec
[484]887 def set_instrument(self, instr):
[1846]888 """\
[1348]889 Set the instrument for subsequent processing.
[1846]890
[358]891 Parameters:
[1846]892
[710]893 instr: Select from 'ATPKSMB', 'ATPKSHOH', 'ATMOPRA',
[407]894 'DSS-43' (Tid), 'CEDUNA', and 'HOBART'
[1846]895
[358]896 """
897 self._setInstrument(instr)
[1118]898 self._add_history("set_instument", vars())
[358]899
[1862]900 @asaplog_post_dec
[1190]901 def set_feedtype(self, feedtype):
[1846]902 """\
[1190]903 Overwrite the feed type, which might not be set correctly.
[1846]904
[1190]905 Parameters:
[1846]906
[1190]907 feedtype: 'linear' or 'circular'
[1846]908
[1190]909 """
910 self._setfeedtype(feedtype)
911 self._add_history("set_feedtype", vars())
912
[1862]913 @asaplog_post_dec
[276]914 def set_doppler(self, doppler='RADIO'):
[1846]915 """\
[276]916 Set the doppler for all following operations on this scantable.
[1846]917
[276]918 Parameters:
[1846]919
[276]920 doppler: One of 'RADIO', 'OPTICAL', 'Z', 'BETA', 'GAMMA'
[1846]921
[276]922 """
[484]923 varlist = vars()
[276]924 inf = list(self._getcoordinfo())
925 inf[2] = doppler
926 self._setcoordinfo(inf)
[1118]927 self._add_history("set_doppler", vars())
[710]928
[1862]929 @asaplog_post_dec
[226]930 def set_freqframe(self, frame=None):
[1846]931 """\
[113]932 Set the frame type of the Spectral Axis.
[1846]933
[113]934 Parameters:
[1846]935
[591]936 frame: an optional frame type, default 'LSRK'. Valid frames are:
[1819]937 'TOPO', 'LSRD', 'LSRK', 'BARY',
[1118]938 'GEO', 'GALACTO', 'LGROUP', 'CMB'
[1846]939
940 Example::
941
[113]942 scan.set_freqframe('BARY')
[1846]943
[113]944 """
[1593]945 frame = frame or rcParams['scantable.freqframe']
[484]946 varlist = vars()
[1819]947 # "REST" is not implemented in casacore
948 #valid = ['REST', 'TOPO', 'LSRD', 'LSRK', 'BARY', \
949 # 'GEO', 'GALACTO', 'LGROUP', 'CMB']
950 valid = ['TOPO', 'LSRD', 'LSRK', 'BARY', \
[1118]951 'GEO', 'GALACTO', 'LGROUP', 'CMB']
[591]952
[989]953 if frame in valid:
[113]954 inf = list(self._getcoordinfo())
955 inf[1] = frame
956 self._setcoordinfo(inf)
[1118]957 self._add_history("set_freqframe", varlist)
[102]958 else:
[1118]959 msg = "Please specify a valid freq type. Valid types are:\n", valid
[1859]960 raise TypeError(msg)
[710]961
[1862]962 @asaplog_post_dec
[989]963 def set_dirframe(self, frame=""):
[1846]964 """\
[989]965 Set the frame type of the Direction on the sky.
[1846]966
[989]967 Parameters:
[1846]968
[989]969 frame: an optional frame type, default ''. Valid frames are:
970 'J2000', 'B1950', 'GALACTIC'
[1846]971
972 Example:
973
[989]974 scan.set_dirframe('GALACTIC')
[1846]975
[989]976 """
977 varlist = vars()
[1859]978 Scantable.set_dirframe(self, frame)
[1118]979 self._add_history("set_dirframe", varlist)
[989]980
[113]981 def get_unit(self):
[1846]982 """\
[113]983 Get the default unit set in this scantable
[1846]984
[113]985 Returns:
[1846]986
[113]987 A unit string
[1846]988
[113]989 """
990 inf = self._getcoordinfo()
991 unit = inf[0]
992 if unit == '': unit = 'channel'
993 return unit
[102]994
[1862]995 @asaplog_post_dec
[158]996 def get_abcissa(self, rowno=0):
[1846]997 """\
[158]998 Get the abcissa in the current coordinate setup for the currently
[113]999 selected Beam/IF/Pol
[1846]1000
[113]1001 Parameters:
[1846]1002
[226]1003 rowno: an optional row number in the scantable. Default is the
1004 first row, i.e. rowno=0
[1846]1005
[113]1006 Returns:
[1846]1007
[1348]1008 The abcissa values and the format string (as a dictionary)
[1846]1009
[113]1010 """
[256]1011 abc = self._getabcissa(rowno)
[710]1012 lbl = self._getabcissalabel(rowno)
[158]1013 return abc, lbl
[113]1014
[1862]1015 @asaplog_post_dec
[1994]1016 def flag(self, row=-1, mask=None, unflag=False):
[1846]1017 """\
[1001]1018 Flag the selected data using an optional channel mask.
[1846]1019
[1001]1020 Parameters:
[1846]1021
[1994]1022 row: an optional row number in the scantable.
1023 Default -1 flags all rows
1024
[1001]1025 mask: an optional channel mask, created with create_mask. Default
1026 (no mask) is all channels.
[1855]1027
[1819]1028 unflag: if True, unflag the data
[1846]1029
[1001]1030 """
1031 varlist = vars()
[1593]1032 mask = mask or []
[1994]1033 self._flag(row, mask, unflag)
[1001]1034 self._add_history("flag", varlist)
1035
[1862]1036 @asaplog_post_dec
[1819]1037 def flag_row(self, rows=[], unflag=False):
[1846]1038 """\
[1819]1039 Flag the selected data in row-based manner.
[1846]1040
[1819]1041 Parameters:
[1846]1042
[1843]1043 rows: list of row numbers to be flagged. Default is no row
1044 (must be explicitly specified to execute row-based flagging).
[1855]1045
[1819]1046 unflag: if True, unflag the data.
[1846]1047
[1819]1048 """
1049 varlist = vars()
[1859]1050 self._flag_row(rows, unflag)
[1819]1051 self._add_history("flag_row", varlist)
1052
[1862]1053 @asaplog_post_dec
[1819]1054 def clip(self, uthres=None, dthres=None, clipoutside=True, unflag=False):
[1846]1055 """\
[1819]1056 Flag the selected data outside a specified range (in channel-base)
[1846]1057
[1819]1058 Parameters:
[1846]1059
[1819]1060 uthres: upper threshold.
[1855]1061
[1819]1062 dthres: lower threshold
[1846]1063
[1819]1064 clipoutside: True for flagging data outside the range [dthres:uthres].
[1928]1065 False for flagging data inside the range.
[1855]1066
[1846]1067 unflag: if True, unflag the data.
1068
[1819]1069 """
1070 varlist = vars()
[1859]1071 self._clip(uthres, dthres, clipoutside, unflag)
[1819]1072 self._add_history("clip", varlist)
1073
[1862]1074 @asaplog_post_dec
[1584]1075 def lag_flag(self, start, end, unit="MHz", insitu=None):
[1846]1076 """\
[1192]1077 Flag the data in 'lag' space by providing a frequency to remove.
[1584]1078 Flagged data in the scantable gets interpolated over the region.
[1192]1079 No taper is applied.
[1846]1080
[1192]1081 Parameters:
[1846]1082
[1579]1083 start: the start frequency (really a period within the
1084 bandwidth) or period to remove
[1855]1085
[1579]1086 end: the end frequency or period to remove
[1855]1087
[1584]1088 unit: the frequency unit (default "MHz") or "" for
[1579]1089 explicit lag channels
[1846]1090
1091 *Notes*:
1092
[1579]1093 It is recommended to flag edges of the band or strong
[1348]1094 signals beforehand.
[1846]1095
[1192]1096 """
1097 if insitu is None: insitu = rcParams['insitu']
1098 self._math._setinsitu(insitu)
1099 varlist = vars()
[1579]1100 base = { "GHz": 1000000000., "MHz": 1000000., "kHz": 1000., "Hz": 1.}
1101 if not (unit == "" or base.has_key(unit)):
[1192]1102 raise ValueError("%s is not a valid unit." % unit)
[1859]1103 if unit == "":
1104 s = scantable(self._math._lag_flag(self, start, end, "lags"))
1105 else:
1106 s = scantable(self._math._lag_flag(self, start*base[unit],
1107 end*base[unit], "frequency"))
[1192]1108 s._add_history("lag_flag", varlist)
1109 if insitu:
1110 self._assign(s)
1111 else:
1112 return s
[1001]1113
[1862]1114 @asaplog_post_dec
[113]1115 def create_mask(self, *args, **kwargs):
[1846]1116 """\
[1118]1117 Compute and return a mask based on [min, max] windows.
[189]1118 The specified windows are to be INCLUDED, when the mask is
[113]1119 applied.
[1846]1120
[102]1121 Parameters:
[1846]1122
[1118]1123 [min, max], [min2, max2], ...
[1024]1124 Pairs of start/end points (inclusive)specifying the regions
[102]1125 to be masked
[1855]1126
[189]1127 invert: optional argument. If specified as True,
1128 return an inverted mask, i.e. the regions
1129 specified are EXCLUDED
[1855]1130
[513]1131 row: create the mask using the specified row for
1132 unit conversions, default is row=0
1133 only necessary if frequency varies over rows.
[1846]1134
1135 Examples::
1136
[113]1137 scan.set_unit('channel')
[1846]1138 # a)
[1118]1139 msk = scan.create_mask([400, 500], [800, 900])
[189]1140 # masks everything outside 400 and 500
[113]1141 # and 800 and 900 in the unit 'channel'
1142
[1846]1143 # b)
[1118]1144 msk = scan.create_mask([400, 500], [800, 900], invert=True)
[189]1145 # masks the regions between 400 and 500
[113]1146 # and 800 and 900 in the unit 'channel'
[1846]1147
1148 # c)
1149 #mask only channel 400
[1554]1150 msk = scan.create_mask([400])
[1846]1151
[102]1152 """
[1554]1153 row = kwargs.get("row", 0)
[513]1154 data = self._getabcissa(row)
[113]1155 u = self._getcoordinfo()[0]
[1859]1156 if u == "":
1157 u = "channel"
1158 msg = "The current mask window unit is %s" % u
1159 i = self._check_ifs()
1160 if not i:
1161 msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
1162 asaplog.push(msg)
[102]1163 n = self.nchan()
[1295]1164 msk = _n_bools(n, False)
[710]1165 # test if args is a 'list' or a 'normal *args - UGLY!!!
1166
[1118]1167 ws = (isinstance(args[-1][-1], int) or isinstance(args[-1][-1], float)) \
1168 and args or args[0]
[710]1169 for window in ws:
[1554]1170 if len(window) == 1:
1171 window = [window[0], window[0]]
1172 if len(window) == 0 or len(window) > 2:
1173 raise ValueError("A window needs to be defined as [start(, end)]")
[1545]1174 if window[0] > window[1]:
1175 tmp = window[0]
1176 window[0] = window[1]
1177 window[1] = tmp
[102]1178 for i in range(n):
[1024]1179 if data[i] >= window[0] and data[i] <= window[1]:
[1295]1180 msk[i] = True
[113]1181 if kwargs.has_key('invert'):
1182 if kwargs.get('invert'):
[1295]1183 msk = mask_not(msk)
[102]1184 return msk
[710]1185
[1931]1186 def get_masklist(self, mask=None, row=0, silent=False):
[1846]1187 """\
[1819]1188 Compute and return a list of mask windows, [min, max].
[1846]1189
[1819]1190 Parameters:
[1846]1191
[1819]1192 mask: channel mask, created with create_mask.
[1855]1193
[1819]1194 row: calcutate the masklist using the specified row
1195 for unit conversions, default is row=0
1196 only necessary if frequency varies over rows.
[1846]1197
[1819]1198 Returns:
[1846]1199
[1819]1200 [min, max], [min2, max2], ...
1201 Pairs of start/end points (inclusive)specifying
1202 the masked regions
[1846]1203
[1819]1204 """
1205 if not (isinstance(mask,list) or isinstance(mask, tuple)):
1206 raise TypeError("The mask should be list or tuple.")
1207 if len(mask) < 2:
1208 raise TypeError("The mask elements should be > 1")
1209 if self.nchan() != len(mask):
1210 msg = "Number of channels in scantable != number of mask elements"
1211 raise TypeError(msg)
1212 data = self._getabcissa(row)
1213 u = self._getcoordinfo()[0]
[1859]1214 if u == "":
1215 u = "channel"
1216 msg = "The current mask window unit is %s" % u
1217 i = self._check_ifs()
1218 if not i:
1219 msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
[1931]1220 if not silent:
1221 asaplog.push(msg)
[1819]1222 masklist=[]
1223 ist, ien = None, None
1224 ist, ien=self.get_mask_indices(mask)
1225 if ist is not None and ien is not None:
1226 for i in xrange(len(ist)):
1227 range=[data[ist[i]],data[ien[i]]]
1228 range.sort()
1229 masklist.append([range[0],range[1]])
1230 return masklist
1231
1232 def get_mask_indices(self, mask=None):
[1846]1233 """\
[1819]1234 Compute and Return lists of mask start indices and mask end indices.
[1855]1235
1236 Parameters:
1237
[1819]1238 mask: channel mask, created with create_mask.
[1846]1239
[1819]1240 Returns:
[1846]1241
[1819]1242 List of mask start indices and that of mask end indices,
1243 i.e., [istart1,istart2,....], [iend1,iend2,....].
[1846]1244
[1819]1245 """
1246 if not (isinstance(mask,list) or isinstance(mask, tuple)):
1247 raise TypeError("The mask should be list or tuple.")
1248 if len(mask) < 2:
1249 raise TypeError("The mask elements should be > 1")
1250 istart=[]
1251 iend=[]
1252 if mask[0]: istart.append(0)
1253 for i in range(len(mask)-1):
1254 if not mask[i] and mask[i+1]:
1255 istart.append(i+1)
1256 elif mask[i] and not mask[i+1]:
1257 iend.append(i)
1258 if mask[len(mask)-1]: iend.append(len(mask)-1)
1259 if len(istart) != len(iend):
1260 raise RuntimeError("Numbers of mask start != mask end.")
1261 for i in range(len(istart)):
1262 if istart[i] > iend[i]:
1263 raise RuntimeError("Mask start index > mask end index")
1264 break
1265 return istart,iend
1266
1267# def get_restfreqs(self):
1268# """
1269# Get the restfrequency(s) stored in this scantable.
1270# The return value(s) are always of unit 'Hz'
1271# Parameters:
1272# none
1273# Returns:
1274# a list of doubles
1275# """
1276# return list(self._getrestfreqs())
1277
1278 def get_restfreqs(self, ids=None):
[1846]1279 """\
[256]1280 Get the restfrequency(s) stored in this scantable.
1281 The return value(s) are always of unit 'Hz'
[1846]1282
[256]1283 Parameters:
[1846]1284
[1819]1285 ids: (optional) a list of MOLECULE_ID for that restfrequency(s) to
1286 be retrieved
[1846]1287
[256]1288 Returns:
[1846]1289
[1819]1290 dictionary containing ids and a list of doubles for each id
[1846]1291
[256]1292 """
[1819]1293 if ids is None:
1294 rfreqs={}
1295 idlist = self.getmolnos()
1296 for i in idlist:
1297 rfreqs[i]=list(self._getrestfreqs(i))
1298 return rfreqs
1299 else:
1300 if type(ids)==list or type(ids)==tuple:
1301 rfreqs={}
1302 for i in ids:
1303 rfreqs[i]=list(self._getrestfreqs(i))
1304 return rfreqs
1305 else:
1306 return list(self._getrestfreqs(ids))
1307 #return list(self._getrestfreqs(ids))
[102]1308
[931]1309 def set_restfreqs(self, freqs=None, unit='Hz'):
[1846]1310 """\
[931]1311 Set or replace the restfrequency specified and
[1938]1312 if the 'freqs' argument holds a scalar,
[931]1313 then that rest frequency will be applied to all the selected
1314 data. If the 'freqs' argument holds
1315 a vector, then it MUST be of equal or smaller length than
1316 the number of IFs (and the available restfrequencies will be
1317 replaced by this vector). In this case, *all* data have
1318 the restfrequency set per IF according
1319 to the corresponding value you give in the 'freqs' vector.
[1118]1320 E.g. 'freqs=[1e9, 2e9]' would mean IF 0 gets restfreq 1e9 and
[931]1321 IF 1 gets restfreq 2e9.
[1846]1322
[1395]1323 You can also specify the frequencies via a linecatalog.
[1153]1324
[931]1325 Parameters:
[1846]1326
[931]1327 freqs: list of rest frequency values or string idenitfiers
[1855]1328
[931]1329 unit: unit for rest frequency (default 'Hz')
[402]1330
[1846]1331
1332 Example::
1333
[1819]1334 # set the given restfrequency for the all currently selected IFs
[931]1335 scan.set_restfreqs(freqs=1.4e9)
[1845]1336 # set restfrequencies for the n IFs (n > 1) in the order of the
1337 # list, i.e
1338 # IF0 -> 1.4e9, IF1 -> 1.41e9, IF3 -> 1.42e9
1339 # len(list_of_restfreqs) == nIF
1340 # for nIF == 1 the following will set multiple restfrequency for
1341 # that IF
[1819]1342 scan.set_restfreqs(freqs=[1.4e9, 1.41e9, 1.42e9])
[1845]1343 # set multiple restfrequencies per IF. as a list of lists where
1344 # the outer list has nIF elements, the inner s arbitrary
1345 scan.set_restfreqs(freqs=[[1.4e9, 1.41e9], [1.67e9]])
[391]1346
[1846]1347 *Note*:
[1845]1348
[931]1349 To do more sophisticate Restfrequency setting, e.g. on a
1350 source and IF basis, use scantable.set_selection() before using
[1846]1351 this function::
[931]1352
[1846]1353 # provided your scantable is called scan
1354 selection = selector()
1355 selection.set_name("ORION*")
1356 selection.set_ifs([1])
1357 scan.set_selection(selection)
1358 scan.set_restfreqs(freqs=86.6e9)
1359
[931]1360 """
1361 varlist = vars()
[1157]1362 from asap import linecatalog
1363 # simple value
[1118]1364 if isinstance(freqs, int) or isinstance(freqs, float):
[1845]1365 self._setrestfreqs([freqs], [""], unit)
[1157]1366 # list of values
[1118]1367 elif isinstance(freqs, list) or isinstance(freqs, tuple):
[1157]1368 # list values are scalars
[1118]1369 if isinstance(freqs[-1], int) or isinstance(freqs[-1], float):
[1845]1370 if len(freqs) == 1:
1371 self._setrestfreqs(freqs, [""], unit)
1372 else:
1373 # allow the 'old' mode of setting mulitple IFs
1374 sel = selector()
1375 savesel = self._getselection()
1376 iflist = self.getifnos()
1377 if len(freqs)>len(iflist):
1378 raise ValueError("number of elements in list of list "
1379 "exeeds the current IF selections")
1380 iflist = self.getifnos()
1381 for i, fval in enumerate(freqs):
1382 sel.set_ifs(iflist[i])
1383 self._setselection(sel)
1384 self._setrestfreqs([fval], [""], unit)
1385 self._setselection(savesel)
1386
1387 # list values are dict, {'value'=, 'name'=)
[1157]1388 elif isinstance(freqs[-1], dict):
[1845]1389 values = []
1390 names = []
1391 for d in freqs:
1392 values.append(d["value"])
1393 names.append(d["name"])
1394 self._setrestfreqs(values, names, unit)
[1819]1395 elif isinstance(freqs[-1], list) or isinstance(freqs[-1], tuple):
[1157]1396 sel = selector()
1397 savesel = self._getselection()
[1322]1398 iflist = self.getifnos()
[1819]1399 if len(freqs)>len(iflist):
[1845]1400 raise ValueError("number of elements in list of list exeeds"
1401 " the current IF selections")
1402 for i, fval in enumerate(freqs):
[1322]1403 sel.set_ifs(iflist[i])
[1259]1404 self._setselection(sel)
[1845]1405 self._setrestfreqs(fval, [""], unit)
[1157]1406 self._setselection(savesel)
1407 # freqs are to be taken from a linecatalog
[1153]1408 elif isinstance(freqs, linecatalog):
1409 sel = selector()
1410 savesel = self._getselection()
1411 for i in xrange(freqs.nrow()):
[1322]1412 sel.set_ifs(iflist[i])
[1153]1413 self._setselection(sel)
[1845]1414 self._setrestfreqs([freqs.get_frequency(i)],
1415 [freqs.get_name(i)], "MHz")
[1153]1416 # ensure that we are not iterating past nIF
1417 if i == self.nif()-1: break
1418 self._setselection(savesel)
[931]1419 else:
1420 return
1421 self._add_history("set_restfreqs", varlist)
1422
[1360]1423 def shift_refpix(self, delta):
[1846]1424 """\
[1589]1425 Shift the reference pixel of the Spectra Coordinate by an
1426 integer amount.
[1846]1427
[1589]1428 Parameters:
[1846]1429
[1589]1430 delta: the amount to shift by
[1846]1431
1432 *Note*:
1433
[1589]1434 Be careful using this with broadband data.
[1846]1435
[1360]1436 """
[1731]1437 Scantable.shift_refpix(self, delta)
[931]1438
[1862]1439 @asaplog_post_dec
[1259]1440 def history(self, filename=None):
[1846]1441 """\
[1259]1442 Print the history. Optionally to a file.
[1846]1443
[1348]1444 Parameters:
[1846]1445
[1928]1446 filename: The name of the file to save the history to.
[1846]1447
[1259]1448 """
[484]1449 hist = list(self._gethistory())
[794]1450 out = "-"*80
[484]1451 for h in hist:
[489]1452 if h.startswith("---"):
[1857]1453 out = "\n".join([out, h])
[489]1454 else:
1455 items = h.split("##")
1456 date = items[0]
1457 func = items[1]
1458 items = items[2:]
[794]1459 out += "\n"+date+"\n"
1460 out += "Function: %s\n Parameters:" % (func)
[489]1461 for i in items:
[1938]1462 if i == '':
1463 continue
[489]1464 s = i.split("=")
[1118]1465 out += "\n %s = %s" % (s[0], s[1])
[1857]1466 out = "\n".join([out, "-"*80])
[1259]1467 if filename is not None:
1468 if filename is "":
1469 filename = 'scantable_history.txt'
1470 import os
1471 filename = os.path.expandvars(os.path.expanduser(filename))
1472 if not os.path.isdir(filename):
1473 data = open(filename, 'w')
1474 data.write(out)
1475 data.close()
1476 else:
1477 msg = "Illegal file name '%s'." % (filename)
[1859]1478 raise IOError(msg)
1479 return page(out)
[513]1480 #
1481 # Maths business
1482 #
[1862]1483 @asaplog_post_dec
[931]1484 def average_time(self, mask=None, scanav=False, weight='tint', align=False):
[1846]1485 """\
[1070]1486 Return the (time) weighted average of a scan.
[1846]1487
1488 *Note*:
1489
[1070]1490 in channels only - align if necessary
[1846]1491
[513]1492 Parameters:
[1846]1493
[513]1494 mask: an optional mask (only used for 'var' and 'tsys'
1495 weighting)
[1855]1496
[558]1497 scanav: True averages each scan separately
1498 False (default) averages all scans together,
[1855]1499
[1099]1500 weight: Weighting scheme.
1501 'none' (mean no weight)
1502 'var' (1/var(spec) weighted)
1503 'tsys' (1/Tsys**2 weighted)
1504 'tint' (integration time weighted)
1505 'tintsys' (Tint/Tsys**2)
1506 'median' ( median averaging)
[535]1507 The default is 'tint'
[1855]1508
[931]1509 align: align the spectra in velocity before averaging. It takes
1510 the time of the first spectrum as reference time.
[1846]1511
1512 Example::
1513
[513]1514 # time average the scantable without using a mask
[710]1515 newscan = scan.average_time()
[1846]1516
[513]1517 """
1518 varlist = vars()
[1593]1519 weight = weight or 'TINT'
1520 mask = mask or ()
1521 scanav = (scanav and 'SCAN') or 'NONE'
[1118]1522 scan = (self, )
[1859]1523
1524 if align:
1525 scan = (self.freq_align(insitu=False), )
1526 s = None
1527 if weight.upper() == 'MEDIAN':
1528 s = scantable(self._math._averagechannel(scan[0], 'MEDIAN',
1529 scanav))
1530 else:
1531 s = scantable(self._math._average(scan, mask, weight.upper(),
1532 scanav))
[1099]1533 s._add_history("average_time", varlist)
[513]1534 return s
[710]1535
[1862]1536 @asaplog_post_dec
[876]1537 def convert_flux(self, jyperk=None, eta=None, d=None, insitu=None):
[1846]1538 """\
[513]1539 Return a scan where all spectra are converted to either
1540 Jansky or Kelvin depending upon the flux units of the scan table.
1541 By default the function tries to look the values up internally.
1542 If it can't find them (or if you want to over-ride), you must
1543 specify EITHER jyperk OR eta (and D which it will try to look up
1544 also if you don't set it). jyperk takes precedence if you set both.
[1846]1545
[513]1546 Parameters:
[1846]1547
[513]1548 jyperk: the Jy / K conversion factor
[1855]1549
[513]1550 eta: the aperture efficiency
[1855]1551
[1928]1552 d: the geometric diameter (metres)
[1855]1553
[513]1554 insitu: if False a new scantable is returned.
1555 Otherwise, the scaling is done in-situ
1556 The default is taken from .asaprc (False)
[1846]1557
[513]1558 """
1559 if insitu is None: insitu = rcParams['insitu']
[876]1560 self._math._setinsitu(insitu)
[513]1561 varlist = vars()
[1593]1562 jyperk = jyperk or -1.0
1563 d = d or -1.0
1564 eta = eta or -1.0
[876]1565 s = scantable(self._math._convertflux(self, d, eta, jyperk))
1566 s._add_history("convert_flux", varlist)
1567 if insitu: self._assign(s)
1568 else: return s
[513]1569
[1862]1570 @asaplog_post_dec
[876]1571 def gain_el(self, poly=None, filename="", method="linear", insitu=None):
[1846]1572 """\
[513]1573 Return a scan after applying a gain-elevation correction.
1574 The correction can be made via either a polynomial or a
1575 table-based interpolation (and extrapolation if necessary).
1576 You specify polynomial coefficients, an ascii table or neither.
1577 If you specify neither, then a polynomial correction will be made
1578 with built in coefficients known for certain telescopes (an error
1579 will occur if the instrument is not known).
1580 The data and Tsys are *divided* by the scaling factors.
[1846]1581
[513]1582 Parameters:
[1846]1583
[513]1584 poly: Polynomial coefficients (default None) to compute a
1585 gain-elevation correction as a function of
1586 elevation (in degrees).
[1855]1587
[513]1588 filename: The name of an ascii file holding correction factors.
1589 The first row of the ascii file must give the column
1590 names and these MUST include columns
1591 "ELEVATION" (degrees) and "FACTOR" (multiply data
1592 by this) somewhere.
1593 The second row must give the data type of the
1594 column. Use 'R' for Real and 'I' for Integer.
1595 An example file would be
1596 (actual factors are arbitrary) :
1597
1598 TIME ELEVATION FACTOR
1599 R R R
1600 0.1 0 0.8
1601 0.2 20 0.85
1602 0.3 40 0.9
1603 0.4 60 0.85
1604 0.5 80 0.8
1605 0.6 90 0.75
[1855]1606
[513]1607 method: Interpolation method when correcting from a table.
1608 Values are "nearest", "linear" (default), "cubic"
1609 and "spline"
[1855]1610
[513]1611 insitu: if False a new scantable is returned.
1612 Otherwise, the scaling is done in-situ
1613 The default is taken from .asaprc (False)
[1846]1614
[513]1615 """
1616
1617 if insitu is None: insitu = rcParams['insitu']
[876]1618 self._math._setinsitu(insitu)
[513]1619 varlist = vars()
[1593]1620 poly = poly or ()
[513]1621 from os.path import expandvars
1622 filename = expandvars(filename)
[876]1623 s = scantable(self._math._gainel(self, poly, filename, method))
1624 s._add_history("gain_el", varlist)
[1593]1625 if insitu:
1626 self._assign(s)
1627 else:
1628 return s
[710]1629
[1862]1630 @asaplog_post_dec
[931]1631 def freq_align(self, reftime=None, method='cubic', insitu=None):
[1846]1632 """\
[513]1633 Return a scan where all rows have been aligned in frequency/velocity.
1634 The alignment frequency frame (e.g. LSRK) is that set by function
1635 set_freqframe.
[1846]1636
[513]1637 Parameters:
[1855]1638
[513]1639 reftime: reference time to align at. By default, the time of
1640 the first row of data is used.
[1855]1641
[513]1642 method: Interpolation method for regridding the spectra.
1643 Choose from "nearest", "linear", "cubic" (default)
1644 and "spline"
[1855]1645
[513]1646 insitu: if False a new scantable is returned.
1647 Otherwise, the scaling is done in-situ
1648 The default is taken from .asaprc (False)
[1846]1649
[513]1650 """
[931]1651 if insitu is None: insitu = rcParams["insitu"]
[876]1652 self._math._setinsitu(insitu)
[513]1653 varlist = vars()
[1593]1654 reftime = reftime or ""
[931]1655 s = scantable(self._math._freq_align(self, reftime, method))
[876]1656 s._add_history("freq_align", varlist)
1657 if insitu: self._assign(s)
1658 else: return s
[513]1659
[1862]1660 @asaplog_post_dec
[1725]1661 def opacity(self, tau=None, insitu=None):
[1846]1662 """\
[513]1663 Apply an opacity correction. The data
1664 and Tsys are multiplied by the correction factor.
[1846]1665
[513]1666 Parameters:
[1855]1667
[1689]1668 tau: (list of) opacity from which the correction factor is
[513]1669 exp(tau*ZD)
[1689]1670 where ZD is the zenith-distance.
1671 If a list is provided, it has to be of length nIF,
1672 nIF*nPol or 1 and in order of IF/POL, e.g.
1673 [opif0pol0, opif0pol1, opif1pol0 ...]
[1725]1674 if tau is `None` the opacities are determined from a
1675 model.
[1855]1676
[513]1677 insitu: if False a new scantable is returned.
1678 Otherwise, the scaling is done in-situ
1679 The default is taken from .asaprc (False)
[1846]1680
[513]1681 """
1682 if insitu is None: insitu = rcParams['insitu']
[876]1683 self._math._setinsitu(insitu)
[513]1684 varlist = vars()
[1689]1685 if not hasattr(tau, "__len__"):
1686 tau = [tau]
[876]1687 s = scantable(self._math._opacity(self, tau))
1688 s._add_history("opacity", varlist)
1689 if insitu: self._assign(s)
1690 else: return s
[513]1691
[1862]1692 @asaplog_post_dec
[513]1693 def bin(self, width=5, insitu=None):
[1846]1694 """\
[513]1695 Return a scan where all spectra have been binned up.
[1846]1696
[1348]1697 Parameters:
[1846]1698
[513]1699 width: The bin width (default=5) in pixels
[1855]1700
[513]1701 insitu: if False a new scantable is returned.
1702 Otherwise, the scaling is done in-situ
1703 The default is taken from .asaprc (False)
[1846]1704
[513]1705 """
1706 if insitu is None: insitu = rcParams['insitu']
[876]1707 self._math._setinsitu(insitu)
[513]1708 varlist = vars()
[876]1709 s = scantable(self._math._bin(self, width))
[1118]1710 s._add_history("bin", varlist)
[1589]1711 if insitu:
1712 self._assign(s)
1713 else:
1714 return s
[513]1715
[1862]1716 @asaplog_post_dec
[513]1717 def resample(self, width=5, method='cubic', insitu=None):
[1846]1718 """\
[1348]1719 Return a scan where all spectra have been binned up.
[1573]1720
[1348]1721 Parameters:
[1846]1722
[513]1723 width: The bin width (default=5) in pixels
[1855]1724
[513]1725 method: Interpolation method when correcting from a table.
1726 Values are "nearest", "linear", "cubic" (default)
1727 and "spline"
[1855]1728
[513]1729 insitu: if False a new scantable is returned.
1730 Otherwise, the scaling is done in-situ
1731 The default is taken from .asaprc (False)
[1846]1732
[513]1733 """
1734 if insitu is None: insitu = rcParams['insitu']
[876]1735 self._math._setinsitu(insitu)
[513]1736 varlist = vars()
[876]1737 s = scantable(self._math._resample(self, method, width))
[1118]1738 s._add_history("resample", varlist)
[876]1739 if insitu: self._assign(s)
1740 else: return s
[513]1741
[1862]1742 @asaplog_post_dec
[946]1743 def average_pol(self, mask=None, weight='none'):
[1846]1744 """\
[946]1745 Average the Polarisations together.
[1846]1746
[946]1747 Parameters:
[1846]1748
[946]1749 mask: An optional mask defining the region, where the
1750 averaging will be applied. The output will have all
1751 specified points masked.
[1855]1752
[946]1753 weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
1754 weighted), or 'tsys' (1/Tsys**2 weighted)
[1846]1755
[946]1756 """
1757 varlist = vars()
[1593]1758 mask = mask or ()
[1010]1759 s = scantable(self._math._averagepol(self, mask, weight.upper()))
[1118]1760 s._add_history("average_pol", varlist)
[992]1761 return s
[513]1762
[1862]1763 @asaplog_post_dec
[1145]1764 def average_beam(self, mask=None, weight='none'):
[1846]1765 """\
[1145]1766 Average the Beams together.
[1846]1767
[1145]1768 Parameters:
1769 mask: An optional mask defining the region, where the
1770 averaging will be applied. The output will have all
1771 specified points masked.
[1855]1772
[1145]1773 weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
1774 weighted), or 'tsys' (1/Tsys**2 weighted)
[1846]1775
[1145]1776 """
1777 varlist = vars()
[1593]1778 mask = mask or ()
[1145]1779 s = scantable(self._math._averagebeams(self, mask, weight.upper()))
1780 s._add_history("average_beam", varlist)
1781 return s
1782
[1586]1783 def parallactify(self, pflag):
[1846]1784 """\
[1843]1785 Set a flag to indicate whether this data should be treated as having
[1617]1786 been 'parallactified' (total phase == 0.0)
[1846]1787
[1617]1788 Parameters:
[1855]1789
[1843]1790 pflag: Bool indicating whether to turn this on (True) or
[1617]1791 off (False)
[1846]1792
[1617]1793 """
[1586]1794 varlist = vars()
1795 self._parallactify(pflag)
1796 self._add_history("parallactify", varlist)
1797
[1862]1798 @asaplog_post_dec
[992]1799 def convert_pol(self, poltype=None):
[1846]1800 """\
[992]1801 Convert the data to a different polarisation type.
[1565]1802 Note that you will need cross-polarisation terms for most conversions.
[1846]1803
[992]1804 Parameters:
[1855]1805
[992]1806 poltype: The new polarisation type. Valid types are:
[1565]1807 "linear", "circular", "stokes" and "linpol"
[1846]1808
[992]1809 """
1810 varlist = vars()
[1859]1811 s = scantable(self._math._convertpol(self, poltype))
[1118]1812 s._add_history("convert_pol", varlist)
[992]1813 return s
1814
[1862]1815 @asaplog_post_dec
[1819]1816 def smooth(self, kernel="hanning", width=5.0, order=2, plot=False, insitu=None):
[1846]1817 """\
[513]1818 Smooth the spectrum by the specified kernel (conserving flux).
[1846]1819
[513]1820 Parameters:
[1846]1821
[513]1822 kernel: The type of smoothing kernel. Select from
[1574]1823 'hanning' (default), 'gaussian', 'boxcar', 'rmedian'
1824 or 'poly'
[1855]1825
[513]1826 width: The width of the kernel in pixels. For hanning this is
1827 ignored otherwise it defauls to 5 pixels.
1828 For 'gaussian' it is the Full Width Half
1829 Maximum. For 'boxcar' it is the full width.
[1574]1830 For 'rmedian' and 'poly' it is the half width.
[1855]1831
[1574]1832 order: Optional parameter for 'poly' kernel (default is 2), to
1833 specify the order of the polnomial. Ignored by all other
1834 kernels.
[1855]1835
[1819]1836 plot: plot the original and the smoothed spectra.
1837 In this each indivual fit has to be approved, by
1838 typing 'y' or 'n'
[1855]1839
[513]1840 insitu: if False a new scantable is returned.
1841 Otherwise, the scaling is done in-situ
1842 The default is taken from .asaprc (False)
[1846]1843
[513]1844 """
1845 if insitu is None: insitu = rcParams['insitu']
[876]1846 self._math._setinsitu(insitu)
[513]1847 varlist = vars()
[1819]1848
1849 if plot: orgscan = self.copy()
1850
[1574]1851 s = scantable(self._math._smooth(self, kernel.lower(), width, order))
[876]1852 s._add_history("smooth", varlist)
[1819]1853
1854 if plot:
1855 if rcParams['plotter.gui']:
1856 from asap.asaplotgui import asaplotgui as asaplot
1857 else:
1858 from asap.asaplot import asaplot
1859 self._p=asaplot()
1860 self._p.set_panels()
1861 ylab=s._get_ordinate_label()
1862 #self._p.palette(0,["#777777","red"])
1863 for r in xrange(s.nrow()):
1864 xsm=s._getabcissa(r)
1865 ysm=s._getspectrum(r)
1866 xorg=orgscan._getabcissa(r)
1867 yorg=orgscan._getspectrum(r)
1868 self._p.clear()
1869 self._p.hold()
1870 self._p.set_axes('ylabel',ylab)
1871 self._p.set_axes('xlabel',s._getabcissalabel(r))
1872 self._p.set_axes('title',s._getsourcename(r))
1873 self._p.set_line(label='Original',color="#777777")
1874 self._p.plot(xorg,yorg)
1875 self._p.set_line(label='Smoothed',color="red")
1876 self._p.plot(xsm,ysm)
1877 ### Ugly part for legend
1878 for i in [0,1]:
1879 self._p.subplots[0]['lines'].append([self._p.subplots[0]['axes'].lines[i]])
1880 self._p.release()
1881 ### Ugly part for legend
1882 self._p.subplots[0]['lines']=[]
1883 res = raw_input("Accept smoothing ([y]/n): ")
1884 if res.upper() == 'N':
1885 s._setspectrum(yorg, r)
1886 self._p.unmap()
1887 self._p = None
1888 del orgscan
1889
[876]1890 if insitu: self._assign(s)
1891 else: return s
[513]1892
[1862]1893 @asaplog_post_dec
[1907]1894 def old_poly_baseline(self, mask=None, order=0, plot=False, uselin=False, insitu=None, rows=None):
[1846]1895 """\
[513]1896 Return a scan which has been baselined (all rows) by a polynomial.
[1907]1897
[513]1898 Parameters:
[1846]1899
[794]1900 mask: an optional mask
[1855]1901
[794]1902 order: the order of the polynomial (default is 0)
[1855]1903
[1061]1904 plot: plot the fit and the residual. In this each
1905 indivual fit has to be approved, by typing 'y'
1906 or 'n'
[1855]1907
[1391]1908 uselin: use linear polynomial fit
[1855]1909
[794]1910 insitu: if False a new scantable is returned.
1911 Otherwise, the scaling is done in-situ
1912 The default is taken from .asaprc (False)
[1846]1913
[1907]1914 rows: row numbers of spectra to be processed.
1915 (default is None: for all rows)
1916
1917 Example:
[513]1918 # return a scan baselined by a third order polynomial,
1919 # not using a mask
1920 bscan = scan.poly_baseline(order=3)
[1846]1921
[579]1922 """
[513]1923 if insitu is None: insitu = rcParams['insitu']
[1819]1924 if not insitu:
1925 workscan = self.copy()
1926 else:
1927 workscan = self
[513]1928 varlist = vars()
1929 if mask is None:
[1907]1930 mask = [True for i in xrange(self.nchan())]
[1819]1931
[1217]1932 try:
1933 f = fitter()
[1391]1934 if uselin:
1935 f.set_function(lpoly=order)
1936 else:
1937 f.set_function(poly=order)
[1819]1938
[1907]1939 if rows == None:
1940 rows = xrange(workscan.nrow())
1941 elif isinstance(rows, int):
1942 rows = [ rows ]
1943
[1819]1944 if len(rows) > 0:
1945 self.blpars = []
[1907]1946 self.masklists = []
1947 self.actualmask = []
1948
[1819]1949 for r in rows:
1950 f.x = workscan._getabcissa(r)
1951 f.y = workscan._getspectrum(r)
[1907]1952 f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
[1819]1953 f.data = None
1954 f.fit()
1955 if plot:
1956 f.plot(residual=True)
1957 x = raw_input("Accept fit ( [y]/n ): ")
1958 if x.upper() == 'N':
1959 self.blpars.append(None)
[1907]1960 self.masklists.append(None)
1961 self.actualmask.append(None)
[1819]1962 continue
1963 workscan._setspectrum(f.fitter.getresidual(), r)
1964 self.blpars.append(f.get_parameters())
[1931]1965 self.masklists.append(workscan.get_masklist(f.mask, row=r, silent=True))
[1907]1966 self.actualmask.append(f.mask)
[1819]1967
1968 if plot:
1969 f._p.unmap()
1970 f._p = None
1971 workscan._add_history("poly_baseline", varlist)
[1856]1972 if insitu:
1973 self._assign(workscan)
1974 else:
1975 return workscan
[1217]1976 except RuntimeError:
1977 msg = "The fit failed, possibly because it didn't converge."
[1859]1978 raise RuntimeError(msg)
[513]1979
[1931]1980 @asaplog_post_dec
[1907]1981 def poly_baseline(self, mask=None, order=0, plot=False, batch=False, insitu=None, rows=None):
1982 """\
1983 Return a scan which has been baselined (all rows) by a polynomial.
1984 Parameters:
1985 mask: an optional mask
1986 order: the order of the polynomial (default is 0)
1987 plot: plot the fit and the residual. In this each
1988 indivual fit has to be approved, by typing 'y'
1989 or 'n'. Ignored if batch = True.
1990 batch: if True a faster algorithm is used and logs
1991 including the fit results are not output
1992 (default is False)
1993 insitu: if False a new scantable is returned.
1994 Otherwise, the scaling is done in-situ
1995 The default is taken from .asaprc (False)
[1931]1996 rows: row numbers of spectra to be baselined.
[1907]1997 (default is None: for all rows)
1998 Example:
1999 # return a scan baselined by a third order polynomial,
2000 # not using a mask
2001 bscan = scan.poly_baseline(order=3)
2002 """
[1931]2003
2004 varlist = vars()
2005
[1907]2006 if insitu is None: insitu = rcParams["insitu"]
2007 if insitu:
2008 workscan = self
2009 else:
2010 workscan = self.copy()
2011
2012 nchan = workscan.nchan()
2013
2014 if mask is None:
2015 mask = [True for i in xrange(nchan)]
2016
2017 try:
2018 if rows == None:
2019 rows = xrange(workscan.nrow())
2020 elif isinstance(rows, int):
2021 rows = [ rows ]
2022
2023 if len(rows) > 0:
[1931]2024 workscan.blpars = []
2025 workscan.masklists = []
2026 workscan.actualmask = []
[1907]2027
2028 if batch:
[1931]2029 workscan._poly_baseline_batch(mask, order)
[1907]2030 elif plot:
2031 f = fitter()
2032 f.set_function(lpoly=order)
2033 for r in rows:
2034 f.x = workscan._getabcissa(r)
2035 f.y = workscan._getspectrum(r)
2036 f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
2037 f.data = None
2038 f.fit()
2039
2040 f.plot(residual=True)
2041 accept_fit = raw_input("Accept fit ( [y]/n ): ")
2042 if accept_fit.upper() == "N":
2043 self.blpars.append(None)
2044 self.masklists.append(None)
2045 self.actualmask.append(None)
2046 continue
2047 workscan._setspectrum(f.fitter.getresidual(), r)
[1931]2048 workscan.blpars.append(f.get_parameters())
2049 workscan.masklists.append(workscan.get_masklist(f.mask, row=r))
2050 workscan.actualmask.append(f.mask)
[1907]2051
2052 f._p.unmap()
2053 f._p = None
2054 else:
2055 for r in rows:
[1931]2056 fitparams = workscan._poly_baseline(mask, order, r)
2057 params = fitparams.getparameters()
2058 fmtd = ", ".join(["p%d = %3.6f" % (i, v) for i, v in enumerate(params)])
2059 errors = fitparams.geterrors()
2060 fmask = mask_and(mask, workscan._getmask(r))
2061
2062 workscan.blpars.append({"params":params,
2063 "fixed": fitparams.getfixedparameters(),
2064 "formatted":fmtd, "errors":errors})
2065 workscan.masklists.append(workscan.get_masklist(fmask, r, silent=True))
2066 workscan.actualmask.append(fmask)
[1907]2067
[1931]2068 asaplog.push(fmtd)
[1907]2069
2070 workscan._add_history("poly_baseline", varlist)
2071
2072 if insitu:
2073 self._assign(workscan)
2074 else:
2075 return workscan
2076
[1919]2077 except RuntimeError, e:
[1907]2078 msg = "The fit failed, possibly because it didn't converge."
2079 if rcParams["verbose"]:
[1919]2080 asaplog.push(str(e))
[1907]2081 asaplog.push(str(msg))
2082 return
2083 else:
[1919]2084 raise RuntimeError(str(e)+'\n'+msg)
[1907]2085
2086
2087 def auto_poly_baseline(self, mask=None, edge=(0, 0), order=0,
[1280]2088 threshold=3, chan_avg_limit=1, plot=False,
[1907]2089 insitu=None, rows=None):
[1846]2090 """\
[1931]2091 Return a scan which has been baselined (all rows) by a polynomial.
[880]2092 Spectral lines are detected first using linefinder and masked out
2093 to avoid them affecting the baseline solution.
2094
2095 Parameters:
[1846]2096
[880]2097 mask: an optional mask retreived from scantable
[1846]2098
2099 edge: an optional number of channel to drop at the edge of
2100 spectrum. If only one value is
[880]2101 specified, the same number will be dropped from
2102 both sides of the spectrum. Default is to keep
[907]2103 all channels. Nested tuples represent individual
[976]2104 edge selection for different IFs (a number of spectral
2105 channels can be different)
[1846]2106
[880]2107 order: the order of the polynomial (default is 0)
[1846]2108
[880]2109 threshold: the threshold used by line finder. It is better to
2110 keep it large as only strong lines affect the
2111 baseline solution.
[1846]2112
[1280]2113 chan_avg_limit:
2114 a maximum number of consequtive spectral channels to
2115 average during the search of weak and broad lines.
2116 The default is no averaging (and no search for weak
2117 lines). If such lines can affect the fitted baseline
2118 (e.g. a high order polynomial is fitted), increase this
2119 parameter (usually values up to 8 are reasonable). Most
2120 users of this method should find the default value
2121 sufficient.
[1846]2122
[1061]2123 plot: plot the fit and the residual. In this each
2124 indivual fit has to be approved, by typing 'y'
2125 or 'n'
[1846]2126
[880]2127 insitu: if False a new scantable is returned.
2128 Otherwise, the scaling is done in-situ
2129 The default is taken from .asaprc (False)
[1907]2130 rows: row numbers of spectra to be processed.
2131 (default is None: for all rows)
[880]2132
[1846]2133
2134 Example::
2135
2136 scan2 = scan.auto_poly_baseline(order=7, insitu=False)
2137
[880]2138 """
2139 if insitu is None: insitu = rcParams['insitu']
2140 varlist = vars()
2141 from asap.asaplinefind import linefinder
2142 from asap import _is_sequence_or_number as _is_valid
2143
[976]2144 # check whether edge is set up for each IF individually
[1118]2145 individualedge = False;
2146 if len(edge) > 1:
2147 if isinstance(edge[0], list) or isinstance(edge[0], tuple):
2148 individualedge = True;
[907]2149
[1118]2150 if not _is_valid(edge, int) and not individualedge:
[909]2151 raise ValueError, "Parameter 'edge' has to be an integer or a \
[907]2152 pair of integers specified as a tuple. Nested tuples are allowed \
2153 to make individual selection for different IFs."
[919]2154
[1118]2155 curedge = (0, 0)
2156 if individualedge:
2157 for edgepar in edge:
2158 if not _is_valid(edgepar, int):
2159 raise ValueError, "Each element of the 'edge' tuple has \
2160 to be a pair of integers or an integer."
[907]2161 else:
[1118]2162 curedge = edge;
[880]2163
[1907]2164 if not insitu:
2165 workscan = self.copy()
2166 else:
2167 workscan = self
2168
[880]2169 # setup fitter
2170 f = fitter()
[1907]2171 f.set_function(lpoly=order)
[880]2172
2173 # setup line finder
[1118]2174 fl = linefinder()
[1268]2175 fl.set_options(threshold=threshold,avg_limit=chan_avg_limit)
[880]2176
[907]2177 fl.set_scan(workscan)
2178
[1907]2179 if mask is None:
2180 mask = _n_bools(workscan.nchan(), True)
2181
2182 if rows is None:
2183 rows = xrange(workscan.nrow())
2184 elif isinstance(rows, int):
2185 rows = [ rows ]
2186
[1819]2187 # Save parameters of baseline fits & masklists as a class attribute.
2188 # NOTICE: It does not reflect changes in scantable!
2189 if len(rows) > 0:
2190 self.blpars=[]
2191 self.masklists=[]
[1907]2192 self.actualmask=[]
[880]2193 asaplog.push("Processing:")
2194 for r in rows:
[1118]2195 msg = " Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % \
2196 (workscan.getscan(r), workscan.getbeam(r), workscan.getif(r), \
2197 workscan.getpol(r), workscan.getcycle(r))
[880]2198 asaplog.push(msg, False)
[907]2199
[976]2200 # figure out edge parameter
[1118]2201 if individualedge:
2202 if len(edge) >= workscan.getif(r):
2203 raise RuntimeError, "Number of edge elements appear to " \
2204 "be less than the number of IFs"
2205 curedge = edge[workscan.getif(r)]
[919]2206
[1907]2207 actualmask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
[1819]2208
[976]2209 # setup line finder
[1819]2210 fl.find_lines(r, actualmask, curedge)
[1907]2211
[1819]2212 f.x = workscan._getabcissa(r)
2213 f.y = workscan._getspectrum(r)
[1907]2214 f.mask = fl.get_mask()
[1819]2215 f.data = None
[880]2216 f.fit()
[1819]2217
2218 # Show mask list
[1931]2219 masklist=workscan.get_masklist(f.mask, row=r, silent=True)
[1819]2220 msg = "mask range: "+str(masklist)
2221 asaplog.push(msg, False)
2222
[1061]2223 if plot:
2224 f.plot(residual=True)
2225 x = raw_input("Accept fit ( [y]/n ): ")
2226 if x.upper() == 'N':
[1819]2227 self.blpars.append(None)
2228 self.masklists.append(None)
[1907]2229 self.actualmask.append(None)
[1061]2230 continue
[1819]2231
[880]2232 workscan._setspectrum(f.fitter.getresidual(), r)
[1819]2233 self.blpars.append(f.get_parameters())
2234 self.masklists.append(masklist)
[1907]2235 self.actualmask.append(f.mask)
[1061]2236 if plot:
2237 f._p.unmap()
2238 f._p = None
2239 workscan._add_history("auto_poly_baseline", varlist)
[880]2240 if insitu:
2241 self._assign(workscan)
2242 else:
2243 return workscan
2244
[1862]2245 @asaplog_post_dec
[914]2246 def rotate_linpolphase(self, angle):
[1846]2247 """\
[914]2248 Rotate the phase of the complex polarization O=Q+iU correlation.
2249 This is always done in situ in the raw data. So if you call this
2250 function more than once then each call rotates the phase further.
[1846]2251
[914]2252 Parameters:
[1846]2253
[914]2254 angle: The angle (degrees) to rotate (add) by.
[1846]2255
2256 Example::
2257
[914]2258 scan.rotate_linpolphase(2.3)
[1846]2259
[914]2260 """
2261 varlist = vars()
[936]2262 self._math._rotate_linpolphase(self, angle)
[914]2263 self._add_history("rotate_linpolphase", varlist)
2264 return
[710]2265
[1862]2266 @asaplog_post_dec
[914]2267 def rotate_xyphase(self, angle):
[1846]2268 """\
[914]2269 Rotate the phase of the XY correlation. This is always done in situ
2270 in the data. So if you call this function more than once
2271 then each call rotates the phase further.
[1846]2272
[914]2273 Parameters:
[1846]2274
[914]2275 angle: The angle (degrees) to rotate (add) by.
[1846]2276
2277 Example::
2278
[914]2279 scan.rotate_xyphase(2.3)
[1846]2280
[914]2281 """
2282 varlist = vars()
[936]2283 self._math._rotate_xyphase(self, angle)
[914]2284 self._add_history("rotate_xyphase", varlist)
2285 return
2286
[1862]2287 @asaplog_post_dec
[914]2288 def swap_linears(self):
[1846]2289 """\
[1573]2290 Swap the linear polarisations XX and YY, or better the first two
[1348]2291 polarisations as this also works for ciculars.
[914]2292 """
2293 varlist = vars()
[936]2294 self._math._swap_linears(self)
[914]2295 self._add_history("swap_linears", varlist)
2296 return
2297
[1862]2298 @asaplog_post_dec
[914]2299 def invert_phase(self):
[1846]2300 """\
[914]2301 Invert the phase of the complex polarisation
2302 """
2303 varlist = vars()
[936]2304 self._math._invert_phase(self)
[914]2305 self._add_history("invert_phase", varlist)
2306 return
2307
[1862]2308 @asaplog_post_dec
[876]2309 def add(self, offset, insitu=None):
[1846]2310 """\
[513]2311 Return a scan where all spectra have the offset added
[1846]2312
[513]2313 Parameters:
[1846]2314
[513]2315 offset: the offset
[1855]2316
[513]2317 insitu: if False a new scantable is returned.
2318 Otherwise, the scaling is done in-situ
2319 The default is taken from .asaprc (False)
[1846]2320
[513]2321 """
2322 if insitu is None: insitu = rcParams['insitu']
[876]2323 self._math._setinsitu(insitu)
[513]2324 varlist = vars()
[876]2325 s = scantable(self._math._unaryop(self, offset, "ADD", False))
[1118]2326 s._add_history("add", varlist)
[876]2327 if insitu:
2328 self._assign(s)
2329 else:
[513]2330 return s
2331
[1862]2332 @asaplog_post_dec
[1308]2333 def scale(self, factor, tsys=True, insitu=None):
[1846]2334 """\
2335
[1938]2336 Return a scan where all spectra are scaled by the given 'factor'
[1846]2337
[513]2338 Parameters:
[1846]2339
[1819]2340 factor: the scaling factor (float or 1D float list)
[1855]2341
[513]2342 insitu: if False a new scantable is returned.
2343 Otherwise, the scaling is done in-situ
2344 The default is taken from .asaprc (False)
[1855]2345
[513]2346 tsys: if True (default) then apply the operation to Tsys
2347 as well as the data
[1846]2348
[513]2349 """
2350 if insitu is None: insitu = rcParams['insitu']
[876]2351 self._math._setinsitu(insitu)
[513]2352 varlist = vars()
[1819]2353 s = None
2354 import numpy
2355 if isinstance(factor, list) or isinstance(factor, numpy.ndarray):
2356 if isinstance(factor[0], list) or isinstance(factor[0], numpy.ndarray):
2357 from asapmath import _array2dOp
2358 s = _array2dOp( self.copy(), factor, "MUL", tsys )
2359 else:
2360 s = scantable( self._math._arrayop( self.copy(), factor, "MUL", tsys ) )
2361 else:
2362 s = scantable(self._math._unaryop(self.copy(), factor, "MUL", tsys))
[1118]2363 s._add_history("scale", varlist)
[876]2364 if insitu:
2365 self._assign(s)
2366 else:
[513]2367 return s
2368
[1504]2369 def set_sourcetype(self, match, matchtype="pattern",
2370 sourcetype="reference"):
[1846]2371 """\
[1502]2372 Set the type of the source to be an source or reference scan
[1846]2373 using the provided pattern.
2374
[1502]2375 Parameters:
[1846]2376
[1504]2377 match: a Unix style pattern, regular expression or selector
[1855]2378
[1504]2379 matchtype: 'pattern' (default) UNIX style pattern or
2380 'regex' regular expression
[1855]2381
[1502]2382 sourcetype: the type of the source to use (source/reference)
[1846]2383
[1502]2384 """
2385 varlist = vars()
2386 basesel = self.get_selection()
2387 stype = -1
2388 if sourcetype.lower().startswith("r"):
2389 stype = 1
2390 elif sourcetype.lower().startswith("s"):
2391 stype = 0
[1504]2392 else:
[1502]2393 raise ValueError("Illegal sourcetype use s(ource) or r(eference)")
[1504]2394 if matchtype.lower().startswith("p"):
2395 matchtype = "pattern"
2396 elif matchtype.lower().startswith("r"):
2397 matchtype = "regex"
2398 else:
2399 raise ValueError("Illegal matchtype, use p(attern) or r(egex)")
[1502]2400 sel = selector()
2401 if isinstance(match, selector):
2402 sel = match
2403 else:
[1504]2404 sel.set_query("SRCNAME == %s('%s')" % (matchtype, match))
[1502]2405 self.set_selection(basesel+sel)
2406 self._setsourcetype(stype)
2407 self.set_selection(basesel)
[1573]2408 self._add_history("set_sourcetype", varlist)
[1502]2409
[1862]2410 @asaplog_post_dec
[1857]2411 @preserve_selection
[1819]2412 def auto_quotient(self, preserve=True, mode='paired', verify=False):
[1846]2413 """\
[670]2414 This function allows to build quotients automatically.
[1819]2415 It assumes the observation to have the same number of
[670]2416 "ons" and "offs"
[1846]2417
[670]2418 Parameters:
[1846]2419
[710]2420 preserve: you can preserve (default) the continuum or
2421 remove it. The equations used are
[1857]2422
[670]2423 preserve: Output = Toff * (on/off) - Toff
[1857]2424
[1070]2425 remove: Output = Toff * (on/off) - Ton
[1855]2426
[1573]2427 mode: the on/off detection mode
[1348]2428 'paired' (default)
2429 identifies 'off' scans by the
2430 trailing '_R' (Mopra/Parkes) or
2431 '_e'/'_w' (Tid) and matches
2432 on/off pairs from the observing pattern
[1502]2433 'time'
2434 finds the closest off in time
[1348]2435
[1857]2436 .. todo:: verify argument is not implemented
2437
[670]2438 """
[1857]2439 varlist = vars()
[1348]2440 modes = ["time", "paired"]
[670]2441 if not mode in modes:
[876]2442 msg = "please provide valid mode. Valid modes are %s" % (modes)
2443 raise ValueError(msg)
[1348]2444 s = None
2445 if mode.lower() == "paired":
[1857]2446 sel = self.get_selection()
[1875]2447 sel.set_query("SRCTYPE==psoff")
[1356]2448 self.set_selection(sel)
[1348]2449 offs = self.copy()
[1875]2450 sel.set_query("SRCTYPE==pson")
[1356]2451 self.set_selection(sel)
[1348]2452 ons = self.copy()
2453 s = scantable(self._math._quotient(ons, offs, preserve))
2454 elif mode.lower() == "time":
2455 s = scantable(self._math._auto_quotient(self, mode, preserve))
[1118]2456 s._add_history("auto_quotient", varlist)
[876]2457 return s
[710]2458
[1862]2459 @asaplog_post_dec
[1145]2460 def mx_quotient(self, mask = None, weight='median', preserve=True):
[1846]2461 """\
[1143]2462 Form a quotient using "off" beams when observing in "MX" mode.
[1846]2463
[1143]2464 Parameters:
[1846]2465
[1145]2466 mask: an optional mask to be used when weight == 'stddev'
[1855]2467
[1143]2468 weight: How to average the off beams. Default is 'median'.
[1855]2469
[1145]2470 preserve: you can preserve (default) the continuum or
[1855]2471 remove it. The equations used are:
[1846]2472
[1855]2473 preserve: Output = Toff * (on/off) - Toff
2474
2475 remove: Output = Toff * (on/off) - Ton
2476
[1217]2477 """
[1593]2478 mask = mask or ()
[1141]2479 varlist = vars()
2480 on = scantable(self._math._mx_extract(self, 'on'))
[1143]2481 preoff = scantable(self._math._mx_extract(self, 'off'))
2482 off = preoff.average_time(mask=mask, weight=weight, scanav=False)
[1217]2483 from asapmath import quotient
[1145]2484 q = quotient(on, off, preserve)
[1143]2485 q._add_history("mx_quotient", varlist)
[1217]2486 return q
[513]2487
[1862]2488 @asaplog_post_dec
[718]2489 def freq_switch(self, insitu=None):
[1846]2490 """\
[718]2491 Apply frequency switching to the data.
[1846]2492
[718]2493 Parameters:
[1846]2494
[718]2495 insitu: if False a new scantable is returned.
2496 Otherwise, the swictching is done in-situ
2497 The default is taken from .asaprc (False)
[1846]2498
[718]2499 """
2500 if insitu is None: insitu = rcParams['insitu']
[876]2501 self._math._setinsitu(insitu)
[718]2502 varlist = vars()
[876]2503 s = scantable(self._math._freqswitch(self))
[1118]2504 s._add_history("freq_switch", varlist)
[1856]2505 if insitu:
2506 self._assign(s)
2507 else:
2508 return s
[718]2509
[1862]2510 @asaplog_post_dec
[780]2511 def recalc_azel(self):
[1846]2512 """Recalculate the azimuth and elevation for each position."""
[780]2513 varlist = vars()
[876]2514 self._recalcazel()
[780]2515 self._add_history("recalc_azel", varlist)
2516 return
2517
[1862]2518 @asaplog_post_dec
[513]2519 def __add__(self, other):
2520 varlist = vars()
2521 s = None
2522 if isinstance(other, scantable):
[1573]2523 s = scantable(self._math._binaryop(self, other, "ADD"))
[513]2524 elif isinstance(other, float):
[876]2525 s = scantable(self._math._unaryop(self, other, "ADD", False))
[513]2526 else:
[718]2527 raise TypeError("Other input is not a scantable or float value")
[513]2528 s._add_history("operator +", varlist)
2529 return s
2530
[1862]2531 @asaplog_post_dec
[513]2532 def __sub__(self, other):
2533 """
2534 implicit on all axes and on Tsys
2535 """
2536 varlist = vars()
2537 s = None
2538 if isinstance(other, scantable):
[1588]2539 s = scantable(self._math._binaryop(self, other, "SUB"))
[513]2540 elif isinstance(other, float):
[876]2541 s = scantable(self._math._unaryop(self, other, "SUB", False))
[513]2542 else:
[718]2543 raise TypeError("Other input is not a scantable or float value")
[513]2544 s._add_history("operator -", varlist)
2545 return s
[710]2546
[1862]2547 @asaplog_post_dec
[513]2548 def __mul__(self, other):
2549 """
2550 implicit on all axes and on Tsys
2551 """
2552 varlist = vars()
2553 s = None
2554 if isinstance(other, scantable):
[1588]2555 s = scantable(self._math._binaryop(self, other, "MUL"))
[513]2556 elif isinstance(other, float):
[876]2557 s = scantable(self._math._unaryop(self, other, "MUL", False))
[513]2558 else:
[718]2559 raise TypeError("Other input is not a scantable or float value")
[513]2560 s._add_history("operator *", varlist)
2561 return s
2562
[710]2563
[1862]2564 @asaplog_post_dec
[513]2565 def __div__(self, other):
2566 """
2567 implicit on all axes and on Tsys
2568 """
2569 varlist = vars()
2570 s = None
2571 if isinstance(other, scantable):
[1589]2572 s = scantable(self._math._binaryop(self, other, "DIV"))
[513]2573 elif isinstance(other, float):
2574 if other == 0.0:
[718]2575 raise ZeroDivisionError("Dividing by zero is not recommended")
[876]2576 s = scantable(self._math._unaryop(self, other, "DIV", False))
[513]2577 else:
[718]2578 raise TypeError("Other input is not a scantable or float value")
[513]2579 s._add_history("operator /", varlist)
2580 return s
2581
[1862]2582 @asaplog_post_dec
[530]2583 def get_fit(self, row=0):
[1846]2584 """\
[530]2585 Print or return the stored fits for a row in the scantable
[1846]2586
[530]2587 Parameters:
[1846]2588
[530]2589 row: the row which the fit has been applied to.
[1846]2590
[530]2591 """
2592 if row > self.nrow():
2593 return
[976]2594 from asap.asapfit import asapfit
[530]2595 fit = asapfit(self._getfit(row))
[1859]2596 asaplog.push( '%s' %(fit) )
2597 return fit.as_dict()
[530]2598
[1483]2599 def flag_nans(self):
[1846]2600 """\
[1483]2601 Utility function to flag NaN values in the scantable.
2602 """
2603 import numpy
2604 basesel = self.get_selection()
2605 for i in range(self.nrow()):
[1589]2606 sel = self.get_row_selector(i)
2607 self.set_selection(basesel+sel)
[1483]2608 nans = numpy.isnan(self._getspectrum(0))
2609 if numpy.any(nans):
2610 bnans = [ bool(v) for v in nans]
2611 self.flag(bnans)
2612 self.set_selection(basesel)
2613
[1588]2614 def get_row_selector(self, rowno):
[1992]2615 #return selector(beams=self.getbeam(rowno),
2616 # ifs=self.getif(rowno),
2617 # pols=self.getpol(rowno),
2618 # scans=self.getscan(rowno),
2619 # cycles=self.getcycle(rowno))
2620 return selector(rows=[rowno])
[1573]2621
[484]2622 def _add_history(self, funcname, parameters):
[1435]2623 if not rcParams['scantable.history']:
2624 return
[484]2625 # create date
2626 sep = "##"
2627 from datetime import datetime
2628 dstr = datetime.now().strftime('%Y/%m/%d %H:%M:%S')
2629 hist = dstr+sep
2630 hist += funcname+sep#cdate+sep
2631 if parameters.has_key('self'): del parameters['self']
[1118]2632 for k, v in parameters.iteritems():
[484]2633 if type(v) is dict:
[1118]2634 for k2, v2 in v.iteritems():
[484]2635 hist += k2
2636 hist += "="
[1118]2637 if isinstance(v2, scantable):
[484]2638 hist += 'scantable'
2639 elif k2 == 'mask':
[1118]2640 if isinstance(v2, list) or isinstance(v2, tuple):
[513]2641 hist += str(self._zip_mask(v2))
2642 else:
2643 hist += str(v2)
[484]2644 else:
[513]2645 hist += str(v2)
[484]2646 else:
2647 hist += k
2648 hist += "="
[1118]2649 if isinstance(v, scantable):
[484]2650 hist += 'scantable'
2651 elif k == 'mask':
[1118]2652 if isinstance(v, list) or isinstance(v, tuple):
[513]2653 hist += str(self._zip_mask(v))
2654 else:
2655 hist += str(v)
[484]2656 else:
2657 hist += str(v)
2658 hist += sep
2659 hist = hist[:-2] # remove trailing '##'
2660 self._addhistory(hist)
2661
[710]2662
[484]2663 def _zip_mask(self, mask):
2664 mask = list(mask)
2665 i = 0
2666 segments = []
2667 while mask[i:].count(1):
2668 i += mask[i:].index(1)
2669 if mask[i:].count(0):
2670 j = i + mask[i:].index(0)
2671 else:
[710]2672 j = len(mask)
[1118]2673 segments.append([i, j])
[710]2674 i = j
[484]2675 return segments
[714]2676
[626]2677 def _get_ordinate_label(self):
2678 fu = "("+self.get_fluxunit()+")"
2679 import re
2680 lbl = "Intensity"
[1118]2681 if re.match(".K.", fu):
[626]2682 lbl = "Brightness Temperature "+ fu
[1118]2683 elif re.match(".Jy.", fu):
[626]2684 lbl = "Flux density "+ fu
2685 return lbl
[710]2686
[876]2687 def _check_ifs(self):
[1986]2688 #nchans = [self.nchan(i) for i in range(self.nif(-1))]
2689 #nchans = filter(lambda t: t > 0, nchans)
2690 nchans = [self.nchan(i) for i in self.getifnos()]
[876]2691 return (sum(nchans)/len(nchans) == nchans[0])
[976]2692
[1862]2693 @asaplog_post_dec
[1916]2694 #def _fill(self, names, unit, average, getpt, antenna):
2695 def _fill(self, names, unit, average, opts={}):
[976]2696 first = True
2697 fullnames = []
2698 for name in names:
2699 name = os.path.expandvars(name)
2700 name = os.path.expanduser(name)
2701 if not os.path.exists(name):
2702 msg = "File '%s' does not exists" % (name)
2703 raise IOError(msg)
2704 fullnames.append(name)
2705 if average:
2706 asaplog.push('Auto averaging integrations')
[1079]2707 stype = int(rcParams['scantable.storage'].lower() == 'disk')
[976]2708 for name in fullnames:
[1073]2709 tbl = Scantable(stype)
[1843]2710 r = filler(tbl)
[1504]2711 rx = rcParams['scantable.reference']
[1843]2712 r.setreferenceexpr(rx)
[976]2713 msg = "Importing %s..." % (name)
[1118]2714 asaplog.push(msg, False)
[1916]2715 #opts = {'ms': {'antenna' : antenna, 'getpt': getpt} }
[1904]2716 r.open(name, opts)# antenna, -1, -1, getpt)
[1843]2717 r.fill()
[976]2718 if average:
[1118]2719 tbl = self._math._average((tbl, ), (), 'NONE', 'SCAN')
[976]2720 if not first:
2721 tbl = self._math._merge([self, tbl])
2722 Scantable.__init__(self, tbl)
[1843]2723 r.close()
[1118]2724 del r, tbl
[976]2725 first = False
[1861]2726 #flush log
2727 asaplog.post()
[976]2728 if unit is not None:
2729 self.set_fluxunit(unit)
[1824]2730 if not is_casapy():
2731 self.set_freqframe(rcParams['scantable.freqframe'])
[976]2732
[1402]2733 def __getitem__(self, key):
2734 if key < 0:
2735 key += self.nrow()
2736 if key >= self.nrow():
2737 raise IndexError("Row index out of range.")
2738 return self._getspectrum(key)
2739
2740 def __setitem__(self, key, value):
2741 if key < 0:
2742 key += self.nrow()
2743 if key >= self.nrow():
2744 raise IndexError("Row index out of range.")
2745 if not hasattr(value, "__len__") or \
2746 len(value) > self.nchan(self.getif(key)):
2747 raise ValueError("Spectrum length doesn't match.")
2748 return self._setspectrum(value, key)
2749
2750 def __len__(self):
2751 return self.nrow()
2752
2753 def __iter__(self):
2754 for i in range(len(self)):
2755 yield self[i]
Note: See TracBrowser for help on using the repository browser.