source: trunk/python/scantable.py@ 1890

Last change on this file since 1890 was 1883, checked in by Takeshi Nakazato, 14 years ago

New Development: No

JIRA Issue: No

Ready for Test: Yes

Interface Changes: No

What Interface Changed: Please list interface changes

Test Programs: read MS in reference table

Put in Release Notes: Yes/No

Module(s): Module Names change impacts.

Description: Describe your changes here...

Bug fix on is_scantable() and similar routine in the codes.
They are now able to recognize reference table correctly.

splitant() is working with reference table. Thus, performance
is a bit improved since deep copy is no longer necessary.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 86.6 KB
RevLine 
[1846]1"""This module defines the scantable class."""
2
[1697]3import os
[1691]4try:
5 from functools import wraps as wraps_dec
6except ImportError:
7 from asap.compatibility import wraps as wraps_dec
8
[1824]9from asap.env import is_casapy
[876]10from asap._asap import Scantable
[1843]11from asap._asap import filler
[1824]12from asap.parameters import rcParams
[1862]13from asap.logging import asaplog, asaplog_post_dec
[1824]14from asap.selector import selector
15from asap.linecatalog import linecatalog
[1600]16from asap.coordinate import coordinate
[1859]17from asap.utils import _n_bools, mask_not, mask_and, mask_or, page
[102]18
[1689]19
20def preserve_selection(func):
[1691]21 @wraps_dec(func)
[1689]22 def wrap(obj, *args, **kw):
23 basesel = obj.get_selection()
[1857]24 try:
25 val = func(obj, *args, **kw)
26 finally:
27 obj.set_selection(basesel)
[1689]28 return val
29 return wrap
30
[1846]31def is_scantable(filename):
32 """Is the given file a scantable?
[1689]33
[1846]34 Parameters:
35
36 filename: the name of the file/directory to test
37
38 """
[1883]39 if ( os.path.isdir(filename)
40 and os.path.exists(filename+'/table.info')
41 and os.path.exists(filename+'/table.dat') ):
42 f=open(filename+'/table.info')
43 l=f.readline()
44 f.close()
45 #if ( l.find('Scantable') != -1 ):
46 if ( l.find('Measurement Set') == -1 ):
47 return True
48 else:
49 return False
50 else:
51 return False
52## return (os.path.isdir(filename)
53## and not os.path.exists(filename+'/table.f1')
54## and os.path.exists(filename+'/table.info'))
[1697]55
[1883]56def is_ms(filename):
57 """Is the given file a MeasurementSet?
[1697]58
[1883]59 Parameters:
60
61 filename: the name of the file/directory to test
62
63 """
64 if ( os.path.isdir(filename)
65 and os.path.exists(filename+'/table.info')
66 and os.path.exists(filename+'/table.dat') ):
67 f=open(filename+'/table.info')
68 l=f.readline()
69 f.close()
70 if ( l.find('Measurement Set') != -1 ):
71 return True
72 else:
73 return False
74 else:
75 return False
76
[876]77class scantable(Scantable):
[1846]78 """\
79 The ASAP container for scans (single-dish data).
[102]80 """
[1819]81
[1862]82 @asaplog_post_dec
[1824]83 def __init__(self, filename, average=None, unit=None, getpt=None,
84 antenna=None, parallactify=None):
[1846]85 """\
[102]86 Create a scantable from a saved one or make a reference
[1846]87
[102]88 Parameters:
[1846]89
90 filename: the name of an asap table on disk
91 or
92 the name of a rpfits/sdfits/ms file
93 (integrations within scans are auto averaged
94 and the whole file is read) or
95 [advanced] a reference to an existing scantable
96
97 average: average all integrations withinb a scan on read.
98 The default (True) is taken from .asaprc.
99
[484]100 unit: brightness unit; must be consistent with K or Jy.
[1846]101 Over-rides the default selected by the filler
102 (input rpfits/sdfits/ms) or replaces the value
103 in existing scantables
104
105 getpt: for MeasurementSet input data only:
106 If True, all pointing data are filled.
107 The deafult is False, which makes time to load
108 the MS data faster in some cases.
109
110 antenna: Antenna selection. integer (id) or string (name or id).
111
112 parallactify: Indicate that the data had been parallatified. Default
113 is taken from rc file.
114
[710]115 """
[976]116 if average is None:
[710]117 average = rcParams['scantable.autoaverage']
[1819]118 if getpt is None:
119 getpt = True
[1843]120 if antenna is not None:
121 asaplog.push("Antenna selection currently unsupported."
[1883]122 "Using ''")
[1861]123 asaplog.post('WARN')
[1819]124 if antenna is None:
125 antenna = ''
126 elif type(antenna) == int:
[1843]127 antenna = '%s' % antenna
[1819]128 elif type(antenna) == list:
129 tmpstr = ''
130 for i in range( len(antenna) ):
131 if type(antenna[i]) == int:
132 tmpstr = tmpstr + ('%s,'%(antenna[i]))
133 elif type(antenna[i]) == str:
134 tmpstr=tmpstr+antenna[i]+','
135 else:
[1859]136 raise TypeError('Bad antenna selection.')
[1819]137 antenna = tmpstr.rstrip(',')
[1593]138 parallactify = parallactify or rcParams['scantable.parallactify']
[1259]139 varlist = vars()
[876]140 from asap._asap import stmath
[1819]141 self._math = stmath( rcParams['insitu'] )
[876]142 if isinstance(filename, Scantable):
143 Scantable.__init__(self, filename)
[181]144 else:
[1697]145 if isinstance(filename, str):
[976]146 filename = os.path.expandvars(filename)
147 filename = os.path.expanduser(filename)
148 if not os.path.exists(filename):
149 s = "File '%s' not found." % (filename)
150 raise IOError(s)
[1697]151 if is_scantable(filename):
152 ondisk = rcParams['scantable.storage'] == 'disk'
153 Scantable.__init__(self, filename, ondisk)
154 if unit is not None:
155 self.set_fluxunit(unit)
[1819]156 # do not reset to the default freqframe
157 #self.set_freqframe(rcParams['scantable.freqframe'])
[1883]158 #elif os.path.isdir(filename) \
159 # and not os.path.exists(filename+'/table.f1'):
160 elif is_ms(filename):
161 self._fill([filename], unit, average, getpt, antenna)
162 else:
[1819]163 msg = "The given file '%s'is not a valid " \
164 "asap table." % (filename)
[1859]165 raise IOError(msg)
[1118]166 elif (isinstance(filename, list) or isinstance(filename, tuple)) \
[976]167 and isinstance(filename[-1], str):
[1819]168 self._fill(filename, unit, average, getpt, antenna)
[1586]169 self.parallactify(parallactify)
[1259]170 self._add_history("scantable", varlist)
[102]171
[1862]172 @asaplog_post_dec
[876]173 def save(self, name=None, format=None, overwrite=False):
[1846]174 """\
[1280]175 Store the scantable on disk. This can be an asap (aips++) Table,
176 SDFITS or MS2 format.
[1846]177
[116]178 Parameters:
[1846]179
[1093]180 name: the name of the outputfile. For format "ASCII"
181 this is the root file name (data in 'name'.txt
[497]182 and header in 'name'_header.txt)
[1855]183
[116]184 format: an optional file format. Default is ASAP.
[1855]185 Allowed are:
186
187 * 'ASAP' (save as ASAP [aips++] Table),
188 * 'SDFITS' (save as SDFITS file)
189 * 'ASCII' (saves as ascii text file)
190 * 'MS2' (saves as an casacore MeasurementSet V2)
191 * 'FITS' (save as image FITS - not readable by class)
192 * 'CLASS' (save as FITS readable by CLASS)
193
[411]194 overwrite: If the file should be overwritten if it exists.
[256]195 The default False is to return with warning
[411]196 without writing the output. USE WITH CARE.
[1855]197
[1846]198 Example::
199
[116]200 scan.save('myscan.asap')
[1118]201 scan.save('myscan.sdfits', 'SDFITS')
[1846]202
[116]203 """
[411]204 from os import path
[1593]205 format = format or rcParams['scantable.save']
[256]206 suffix = '.'+format.lower()
[1118]207 if name is None or name == "":
[256]208 name = 'scantable'+suffix
[718]209 msg = "No filename given. Using default name %s..." % name
210 asaplog.push(msg)
[411]211 name = path.expandvars(name)
[256]212 if path.isfile(name) or path.isdir(name):
213 if not overwrite:
[718]214 msg = "File %s exists." % name
[1859]215 raise IOError(msg)
[451]216 format2 = format.upper()
217 if format2 == 'ASAP':
[116]218 self._save(name)
219 else:
[989]220 from asap._asap import stwriter as stw
[1118]221 writer = stw(format2)
222 writer.write(self, name)
[116]223 return
224
[102]225 def copy(self):
[1846]226 """Return a copy of this scantable.
227
228 *Note*:
229
[1348]230 This makes a full (deep) copy. scan2 = scan1 makes a reference.
[1846]231
232 Example::
233
[102]234 copiedscan = scan.copy()
[1846]235
[102]236 """
[876]237 sd = scantable(Scantable._copy(self))
[113]238 return sd
239
[1093]240 def drop_scan(self, scanid=None):
[1846]241 """\
[1093]242 Return a new scantable where the specified scan number(s) has(have)
243 been dropped.
[1846]244
[1093]245 Parameters:
[1846]246
[1093]247 scanid: a (list of) scan number(s)
[1846]248
[1093]249 """
250 from asap import _is_sequence_or_number as _is_valid
251 from asap import _to_list
252 from asap import unique
253 if not _is_valid(scanid):
[1859]254 raise RuntimeError( 'Please specify a scanno to drop from the scantable' )
255 scanid = _to_list(scanid)
256 allscans = unique([ self.getscan(i) for i in range(self.nrow())])
257 for sid in scanid: allscans.remove(sid)
258 if len(allscans) == 0:
259 raise ValueError("Can't remove all scans")
260 sel = selector(scans=allscans)
261 return self._select_copy(sel)
[1093]262
[1594]263 def _select_copy(self, selection):
264 orig = self.get_selection()
265 self.set_selection(orig+selection)
266 cp = self.copy()
267 self.set_selection(orig)
268 return cp
269
[102]270 def get_scan(self, scanid=None):
[1855]271 """\
[102]272 Return a specific scan (by scanno) or collection of scans (by
273 source name) in a new scantable.
[1846]274
275 *Note*:
276
[1348]277 See scantable.drop_scan() for the inverse operation.
[1846]278
[102]279 Parameters:
[1846]280
[513]281 scanid: a (list of) scanno or a source name, unix-style
282 patterns are accepted for source name matching, e.g.
283 '*_R' gets all 'ref scans
[1846]284
285 Example::
286
[513]287 # get all scans containing the source '323p459'
288 newscan = scan.get_scan('323p459')
289 # get all 'off' scans
290 refscans = scan.get_scan('*_R')
291 # get a susbset of scans by scanno (as listed in scan.summary())
[1118]292 newscan = scan.get_scan([0, 2, 7, 10])
[1846]293
[102]294 """
295 if scanid is None:
[1859]296 raise RuntimeError( 'Please specify a scan no or name to '
297 'retrieve from the scantable' )
[102]298 try:
[946]299 bsel = self.get_selection()
300 sel = selector()
[102]301 if type(scanid) is str:
[946]302 sel.set_name(scanid)
[1594]303 return self._select_copy(sel)
[102]304 elif type(scanid) is int:
[946]305 sel.set_scans([scanid])
[1594]306 return self._select_copy(sel)
[381]307 elif type(scanid) is list:
[946]308 sel.set_scans(scanid)
[1594]309 return self._select_copy(sel)
[381]310 else:
[718]311 msg = "Illegal scanid type, use 'int' or 'list' if ints."
[1859]312 raise TypeError(msg)
[102]313 except RuntimeError:
[1859]314 raise
[102]315
316 def __str__(self):
[1118]317 return Scantable._summary(self, True)
[102]318
[976]319 def summary(self, filename=None):
[1846]320 """\
[102]321 Print a summary of the contents of this scantable.
[1846]322
[102]323 Parameters:
[1846]324
[102]325 filename: the name of a file to write the putput to
326 Default - no file output
[1846]327
[102]328 """
[976]329 info = Scantable._summary(self, True)
[102]330 if filename is not None:
[256]331 if filename is "":
332 filename = 'scantable_summary.txt'
[415]333 from os.path import expandvars, isdir
[411]334 filename = expandvars(filename)
[415]335 if not isdir(filename):
[413]336 data = open(filename, 'w')
337 data.write(info)
338 data.close()
339 else:
[718]340 msg = "Illegal file name '%s'." % (filename)
[1859]341 raise IOError(msg)
342 return page(info)
[710]343
[1512]344 def get_spectrum(self, rowno):
[1471]345 """Return the spectrum for the current row in the scantable as a list.
[1846]346
[1471]347 Parameters:
[1846]348
[1573]349 rowno: the row number to retrieve the spectrum from
[1846]350
[1471]351 """
352 return self._getspectrum(rowno)
[946]353
[1471]354 def get_mask(self, rowno):
355 """Return the mask for the current row in the scantable as a list.
[1846]356
[1471]357 Parameters:
[1846]358
[1573]359 rowno: the row number to retrieve the mask from
[1846]360
[1471]361 """
362 return self._getmask(rowno)
363
364 def set_spectrum(self, spec, rowno):
365 """Return the spectrum for the current row in the scantable as a list.
[1846]366
[1471]367 Parameters:
[1846]368
[1855]369 spec: the new spectrum
[1846]370
[1855]371 rowno: the row number to set the spectrum for
372
[1471]373 """
374 assert(len(spec) == self.nchan())
375 return self._setspectrum(spec, rowno)
376
[1600]377 def get_coordinate(self, rowno):
378 """Return the (spectral) coordinate for a a given 'rowno'.
[1846]379
380 *Note*:
381
[1600]382 * This coordinate is only valid until a scantable method modifies
383 the frequency axis.
384 * This coordinate does contain the original frequency set-up
385 NOT the new frame. The conversions however are done using the user
386 specified frame (e.g. LSRK/TOPO). To get the 'real' coordinate,
387 use scantable.freq_align first. Without it there is no closure,
[1846]388 i.e.::
[1600]389
[1846]390 c = myscan.get_coordinate(0)
391 c.to_frequency(c.get_reference_pixel()) != c.get_reference_value()
392
[1600]393 Parameters:
[1846]394
[1600]395 rowno: the row number for the spectral coordinate
396
397 """
398 return coordinate(Scantable.get_coordinate(self, rowno))
399
[946]400 def get_selection(self):
[1846]401 """\
[1005]402 Get the selection object currently set on this scantable.
[1846]403
404 Example::
405
[1005]406 sel = scan.get_selection()
407 sel.set_ifs(0) # select IF 0
408 scan.set_selection(sel) # apply modified selection
[1846]409
[946]410 """
411 return selector(self._getselection())
412
[1576]413 def set_selection(self, selection=None, **kw):
[1846]414 """\
[1005]415 Select a subset of the data. All following operations on this scantable
416 are only applied to thi selection.
[1846]417
[1005]418 Parameters:
[1697]419
[1846]420 selection: a selector object (default unset the selection), or
421 any combination of "pols", "ifs", "beams", "scans",
422 "cycles", "name", "query"
[1697]423
[1846]424 Examples::
[1697]425
[1005]426 sel = selector() # create a selection object
[1118]427 self.set_scans([0, 3]) # select SCANNO 0 and 3
[1005]428 scan.set_selection(sel) # set the selection
429 scan.summary() # will only print summary of scanno 0 an 3
430 scan.set_selection() # unset the selection
[1697]431 # or the equivalent
432 scan.set_selection(scans=[0,3])
433 scan.summary() # will only print summary of scanno 0 an 3
434 scan.set_selection() # unset the selection
[1846]435
[946]436 """
[1576]437 if selection is None:
438 # reset
439 if len(kw) == 0:
440 selection = selector()
441 else:
442 # try keywords
443 for k in kw:
444 if k not in selector.fields:
445 raise KeyError("Invalid selection key '%s', valid keys are %s" % (k, selector.fields))
446 selection = selector(**kw)
[946]447 self._setselection(selection)
448
[1819]449 def get_row(self, row=0, insitu=None):
[1846]450 """\
[1819]451 Select a row in the scantable.
452 Return a scantable with single row.
[1846]453
[1819]454 Parameters:
[1846]455
456 row: row no of integration, default is 0.
457 insitu: if False a new scantable is returned. Otherwise, the
458 scaling is done in-situ. The default is taken from .asaprc
459 (False)
460
[1819]461 """
462 if insitu is None: insitu = rcParams['insitu']
463 if not insitu:
464 workscan = self.copy()
465 else:
466 workscan = self
467 # Select a row
468 sel=selector()
469 sel.set_scans([workscan.getscan(row)])
470 sel.set_cycles([workscan.getcycle(row)])
471 sel.set_beams([workscan.getbeam(row)])
472 sel.set_ifs([workscan.getif(row)])
473 sel.set_polarisations([workscan.getpol(row)])
474 sel.set_name(workscan._getsourcename(row))
475 workscan.set_selection(sel)
476 if not workscan.nrow() == 1:
477 msg = "Cloud not identify single row. %d rows selected."%(workscan.nrow())
478 raise RuntimeError(msg)
479 del sel
480 if insitu:
481 self._assign(workscan)
482 else:
483 return workscan
484
[1862]485 @asaplog_post_dec
[1819]486 def stats(self, stat='stddev', mask=None, form='3.3f'):
[1846]487 """\
[135]488 Determine the specified statistic of the current beam/if/pol
[102]489 Takes a 'mask' as an optional parameter to specify which
490 channels should be excluded.
[1846]491
[102]492 Parameters:
[1846]493
[1819]494 stat: 'min', 'max', 'min_abc', 'max_abc', 'sumsq', 'sum',
495 'mean', 'var', 'stddev', 'avdev', 'rms', 'median'
[1855]496
[135]497 mask: an optional mask specifying where the statistic
[102]498 should be determined.
[1855]499
[1819]500 form: format string to print statistic values
[1846]501
502 Example::
503
[113]504 scan.set_unit('channel')
[1118]505 msk = scan.create_mask([100, 200], [500, 600])
[135]506 scan.stats(stat='mean', mask=m)
[1846]507
[102]508 """
[1593]509 mask = mask or []
[876]510 if not self._check_ifs():
[1118]511 raise ValueError("Cannot apply mask as the IFs have different "
512 "number of channels. Please use setselection() "
513 "to select individual IFs")
[1819]514 rtnabc = False
515 if stat.lower().endswith('_abc'): rtnabc = True
516 getchan = False
517 if stat.lower().startswith('min') or stat.lower().startswith('max'):
518 chan = self._math._minmaxchan(self, mask, stat)
519 getchan = True
520 statvals = []
521 if not rtnabc: statvals = self._math._stats(self, mask, stat)
[256]522
[1819]523 #def cb(i):
524 # return statvals[i]
[256]525
[1819]526 #return self._row_callback(cb, stat)
[102]527
[1819]528 label=stat
529 #callback=cb
530 out = ""
531 #outvec = []
532 sep = '-'*50
533 for i in range(self.nrow()):
534 refstr = ''
535 statunit= ''
536 if getchan:
537 qx, qy = self.chan2data(rowno=i, chan=chan[i])
538 if rtnabc:
539 statvals.append(qx['value'])
540 refstr = ('(value: %'+form) % (qy['value'])+' ['+qy['unit']+'])'
541 statunit= '['+qx['unit']+']'
542 else:
543 refstr = ('(@ %'+form) % (qx['value'])+' ['+qx['unit']+'])'
544
545 tm = self._gettime(i)
546 src = self._getsourcename(i)
547 out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
548 out += 'Time[%s]:\n' % (tm)
549 if self.nbeam(-1) > 1:
550 out += ' Beam[%d] ' % (self.getbeam(i))
551 if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
552 if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
553 #outvec.append(callback(i))
554 #out += ('= %'+form) % (outvec[i]) +' '+refstr+'\n'
555 out += ('= %'+form) % (statvals[i]) +' '+refstr+'\n'
556 out += sep+"\n"
557
[1859]558
559 import os
560 if os.environ.has_key( 'USER' ):
561 usr = os.environ['USER']
562 else:
563 import commands
564 usr = commands.getoutput( 'whoami' )
565 tmpfile = '/tmp/tmp_'+usr+'_casapy_asap_scantable_stats'
566 f = open(tmpfile,'w')
567 print >> f, sep
568 print >> f, ' %s %s' % (label, statunit)
569 print >> f, sep
570 print >> f, out
571 f.close()
572 f = open(tmpfile,'r')
573 x = f.readlines()
574 f.close()
575 asaplog.push(''.join(x), False)
576
[1819]577 return statvals
578
579 def chan2data(self, rowno=0, chan=0):
[1846]580 """\
[1819]581 Returns channel/frequency/velocity and spectral value
582 at an arbitrary row and channel in the scantable.
[1846]583
[1819]584 Parameters:
[1846]585
[1819]586 rowno: a row number in the scantable. Default is the
587 first row, i.e. rowno=0
[1855]588
[1819]589 chan: a channel in the scantable. Default is the first
590 channel, i.e. pos=0
[1846]591
[1819]592 """
593 if isinstance(rowno, int) and isinstance(chan, int):
594 qx = {'unit': self.get_unit(),
595 'value': self._getabcissa(rowno)[chan]}
596 qy = {'unit': self.get_fluxunit(),
597 'value': self._getspectrum(rowno)[chan]}
598 return qx, qy
599
[1118]600 def stddev(self, mask=None):
[1846]601 """\
[135]602 Determine the standard deviation of the current beam/if/pol
603 Takes a 'mask' as an optional parameter to specify which
604 channels should be excluded.
[1846]605
[135]606 Parameters:
[1846]607
[135]608 mask: an optional mask specifying where the standard
609 deviation should be determined.
610
[1846]611 Example::
612
[135]613 scan.set_unit('channel')
[1118]614 msk = scan.create_mask([100, 200], [500, 600])
[135]615 scan.stddev(mask=m)
[1846]616
[135]617 """
[1118]618 return self.stats(stat='stddev', mask=mask);
[135]619
[1003]620
[1259]621 def get_column_names(self):
[1846]622 """\
[1003]623 Return a list of column names, which can be used for selection.
624 """
[1259]625 return list(Scantable.get_column_names(self))
[1003]626
[1730]627 def get_tsys(self, row=-1):
[1846]628 """\
[113]629 Return the System temperatures.
[1846]630
631 Parameters:
632
633 row: the rowno to get the information for. (default all rows)
634
[113]635 Returns:
[1846]636
[876]637 a list of Tsys values for the current selection
[1846]638
[113]639 """
[1730]640 if row > -1:
641 return self._get_column(self._gettsys, row)
[876]642 return self._row_callback(self._gettsys, "Tsys")
[256]643
[1730]644
645 def get_weather(self, row=-1):
[1846]646 """\
647 Return the weather informations.
648
649 Parameters:
650
651 row: the rowno to get the information for. (default all rows)
652
653 Returns:
654
655 a dict or list of of dicts of values for the current selection
656
657 """
658
[1730]659 values = self._get_column(self._get_weather, row)
660 if row > -1:
661 return {'temperature': values[0],
662 'pressure': values[1], 'humidity' : values[2],
663 'windspeed' : values[3], 'windaz' : values[4]
664 }
665 else:
666 out = []
667 for r in values:
668
669 out.append({'temperature': r[0],
670 'pressure': r[1], 'humidity' : r[2],
671 'windspeed' : r[3], 'windaz' : r[4]
672 })
673 return out
674
[876]675 def _row_callback(self, callback, label):
676 out = ""
[1118]677 outvec = []
[1590]678 sep = '-'*50
[876]679 for i in range(self.nrow()):
680 tm = self._gettime(i)
681 src = self._getsourcename(i)
[1590]682 out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
[876]683 out += 'Time[%s]:\n' % (tm)
[1590]684 if self.nbeam(-1) > 1:
685 out += ' Beam[%d] ' % (self.getbeam(i))
686 if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
687 if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
[876]688 outvec.append(callback(i))
689 out += '= %3.3f\n' % (outvec[i])
[1590]690 out += sep+'\n'
[1859]691
692 asaplog.push(sep)
693 asaplog.push(" %s" % (label))
694 asaplog.push(sep)
695 asaplog.push(out)
[1861]696 asaplog.post()
[1175]697 return outvec
[256]698
[1070]699 def _get_column(self, callback, row=-1):
700 """
701 """
702 if row == -1:
703 return [callback(i) for i in range(self.nrow())]
704 else:
[1819]705 if 0 <= row < self.nrow():
[1070]706 return callback(row)
[256]707
[1070]708
[1348]709 def get_time(self, row=-1, asdatetime=False):
[1846]710 """\
[113]711 Get a list of time stamps for the observations.
[1348]712 Return a datetime object for each integration time stamp in the scantable.
[1846]713
[113]714 Parameters:
[1846]715
[1348]716 row: row no of integration. Default -1 return all rows
[1855]717
[1348]718 asdatetime: return values as datetime objects rather than strings
[1846]719
[113]720 """
[1175]721 from time import strptime
722 from datetime import datetime
[1392]723 times = self._get_column(self._gettime, row)
[1348]724 if not asdatetime:
[1392]725 return times
[1175]726 format = "%Y/%m/%d/%H:%M:%S"
727 if isinstance(times, list):
728 return [datetime(*strptime(i, format)[:6]) for i in times]
729 else:
730 return datetime(*strptime(times, format)[:6])
[102]731
[1348]732
733 def get_inttime(self, row=-1):
[1846]734 """\
[1348]735 Get a list of integration times for the observations.
736 Return a time in seconds for each integration in the scantable.
[1846]737
[1348]738 Parameters:
[1846]739
[1348]740 row: row no of integration. Default -1 return all rows.
[1846]741
[1348]742 """
[1573]743 return self._get_column(self._getinttime, row)
[1348]744
[1573]745
[714]746 def get_sourcename(self, row=-1):
[1846]747 """\
[794]748 Get a list source names for the observations.
[714]749 Return a string for each integration in the scantable.
750 Parameters:
[1846]751
[1348]752 row: row no of integration. Default -1 return all rows.
[1846]753
[714]754 """
[1070]755 return self._get_column(self._getsourcename, row)
[714]756
[794]757 def get_elevation(self, row=-1):
[1846]758 """\
[794]759 Get a list of elevations for the observations.
760 Return a float for each integration in the scantable.
[1846]761
[794]762 Parameters:
[1846]763
[1348]764 row: row no of integration. Default -1 return all rows.
[1846]765
[794]766 """
[1070]767 return self._get_column(self._getelevation, row)
[794]768
769 def get_azimuth(self, row=-1):
[1846]770 """\
[794]771 Get a list of azimuths for the observations.
772 Return a float for each integration in the scantable.
[1846]773
[794]774 Parameters:
[1348]775 row: row no of integration. Default -1 return all rows.
[1846]776
[794]777 """
[1070]778 return self._get_column(self._getazimuth, row)
[794]779
780 def get_parangle(self, row=-1):
[1846]781 """\
[794]782 Get a list of parallactic angles for the observations.
783 Return a float for each integration in the scantable.
[1846]784
[794]785 Parameters:
[1846]786
[1348]787 row: row no of integration. Default -1 return all rows.
[1846]788
[794]789 """
[1070]790 return self._get_column(self._getparangle, row)
[794]791
[1070]792 def get_direction(self, row=-1):
793 """
794 Get a list of Positions on the sky (direction) for the observations.
[1594]795 Return a string for each integration in the scantable.
[1855]796
[1070]797 Parameters:
[1855]798
[1070]799 row: row no of integration. Default -1 return all rows
[1855]800
[1070]801 """
802 return self._get_column(self._getdirection, row)
803
[1391]804 def get_directionval(self, row=-1):
[1846]805 """\
[1391]806 Get a list of Positions on the sky (direction) for the observations.
807 Return a float for each integration in the scantable.
[1846]808
[1391]809 Parameters:
[1846]810
[1391]811 row: row no of integration. Default -1 return all rows
[1846]812
[1391]813 """
814 return self._get_column(self._getdirectionvec, row)
815
[1862]816 @asaplog_post_dec
[102]817 def set_unit(self, unit='channel'):
[1846]818 """\
[102]819 Set the unit for all following operations on this scantable
[1846]820
[102]821 Parameters:
[1846]822
823 unit: optional unit, default is 'channel'. Use one of '*Hz',
824 'km/s', 'channel' or equivalent ''
825
[102]826 """
[484]827 varlist = vars()
[1118]828 if unit in ['', 'pixel', 'channel']:
[113]829 unit = ''
830 inf = list(self._getcoordinfo())
831 inf[0] = unit
832 self._setcoordinfo(inf)
[1118]833 self._add_history("set_unit", varlist)
[113]834
[1862]835 @asaplog_post_dec
[484]836 def set_instrument(self, instr):
[1846]837 """\
[1348]838 Set the instrument for subsequent processing.
[1846]839
[358]840 Parameters:
[1846]841
[710]842 instr: Select from 'ATPKSMB', 'ATPKSHOH', 'ATMOPRA',
[407]843 'DSS-43' (Tid), 'CEDUNA', and 'HOBART'
[1846]844
[358]845 """
846 self._setInstrument(instr)
[1118]847 self._add_history("set_instument", vars())
[358]848
[1862]849 @asaplog_post_dec
[1190]850 def set_feedtype(self, feedtype):
[1846]851 """\
[1190]852 Overwrite the feed type, which might not be set correctly.
[1846]853
[1190]854 Parameters:
[1846]855
[1190]856 feedtype: 'linear' or 'circular'
[1846]857
[1190]858 """
859 self._setfeedtype(feedtype)
860 self._add_history("set_feedtype", vars())
861
[1862]862 @asaplog_post_dec
[276]863 def set_doppler(self, doppler='RADIO'):
[1846]864 """\
[276]865 Set the doppler for all following operations on this scantable.
[1846]866
[276]867 Parameters:
[1846]868
[276]869 doppler: One of 'RADIO', 'OPTICAL', 'Z', 'BETA', 'GAMMA'
[1846]870
[276]871 """
[484]872 varlist = vars()
[276]873 inf = list(self._getcoordinfo())
874 inf[2] = doppler
875 self._setcoordinfo(inf)
[1118]876 self._add_history("set_doppler", vars())
[710]877
[1862]878 @asaplog_post_dec
[226]879 def set_freqframe(self, frame=None):
[1846]880 """\
[113]881 Set the frame type of the Spectral Axis.
[1846]882
[113]883 Parameters:
[1846]884
[591]885 frame: an optional frame type, default 'LSRK'. Valid frames are:
[1819]886 'TOPO', 'LSRD', 'LSRK', 'BARY',
[1118]887 'GEO', 'GALACTO', 'LGROUP', 'CMB'
[1846]888
889 Example::
890
[113]891 scan.set_freqframe('BARY')
[1846]892
[113]893 """
[1593]894 frame = frame or rcParams['scantable.freqframe']
[484]895 varlist = vars()
[1819]896 # "REST" is not implemented in casacore
897 #valid = ['REST', 'TOPO', 'LSRD', 'LSRK', 'BARY', \
898 # 'GEO', 'GALACTO', 'LGROUP', 'CMB']
899 valid = ['TOPO', 'LSRD', 'LSRK', 'BARY', \
[1118]900 'GEO', 'GALACTO', 'LGROUP', 'CMB']
[591]901
[989]902 if frame in valid:
[113]903 inf = list(self._getcoordinfo())
904 inf[1] = frame
905 self._setcoordinfo(inf)
[1118]906 self._add_history("set_freqframe", varlist)
[102]907 else:
[1118]908 msg = "Please specify a valid freq type. Valid types are:\n", valid
[1859]909 raise TypeError(msg)
[710]910
[1862]911 @asaplog_post_dec
[989]912 def set_dirframe(self, frame=""):
[1846]913 """\
[989]914 Set the frame type of the Direction on the sky.
[1846]915
[989]916 Parameters:
[1846]917
[989]918 frame: an optional frame type, default ''. Valid frames are:
919 'J2000', 'B1950', 'GALACTIC'
[1846]920
921 Example:
922
[989]923 scan.set_dirframe('GALACTIC')
[1846]924
[989]925 """
926 varlist = vars()
[1859]927 Scantable.set_dirframe(self, frame)
[1118]928 self._add_history("set_dirframe", varlist)
[989]929
[113]930 def get_unit(self):
[1846]931 """\
[113]932 Get the default unit set in this scantable
[1846]933
[113]934 Returns:
[1846]935
[113]936 A unit string
[1846]937
[113]938 """
939 inf = self._getcoordinfo()
940 unit = inf[0]
941 if unit == '': unit = 'channel'
942 return unit
[102]943
[1862]944 @asaplog_post_dec
[158]945 def get_abcissa(self, rowno=0):
[1846]946 """\
[158]947 Get the abcissa in the current coordinate setup for the currently
[113]948 selected Beam/IF/Pol
[1846]949
[113]950 Parameters:
[1846]951
[226]952 rowno: an optional row number in the scantable. Default is the
953 first row, i.e. rowno=0
[1846]954
[113]955 Returns:
[1846]956
[1348]957 The abcissa values and the format string (as a dictionary)
[1846]958
[113]959 """
[256]960 abc = self._getabcissa(rowno)
[710]961 lbl = self._getabcissalabel(rowno)
[158]962 return abc, lbl
[113]963
[1862]964 @asaplog_post_dec
[1819]965 def flag(self, mask=None, unflag=False):
[1846]966 """\
[1001]967 Flag the selected data using an optional channel mask.
[1846]968
[1001]969 Parameters:
[1846]970
[1001]971 mask: an optional channel mask, created with create_mask. Default
972 (no mask) is all channels.
[1855]973
[1819]974 unflag: if True, unflag the data
[1846]975
[1001]976 """
977 varlist = vars()
[1593]978 mask = mask or []
[1859]979 self._flag(mask, unflag)
[1001]980 self._add_history("flag", varlist)
981
[1862]982 @asaplog_post_dec
[1819]983 def flag_row(self, rows=[], unflag=False):
[1846]984 """\
[1819]985 Flag the selected data in row-based manner.
[1846]986
[1819]987 Parameters:
[1846]988
[1843]989 rows: list of row numbers to be flagged. Default is no row
990 (must be explicitly specified to execute row-based flagging).
[1855]991
[1819]992 unflag: if True, unflag the data.
[1846]993
[1819]994 """
995 varlist = vars()
[1859]996 self._flag_row(rows, unflag)
[1819]997 self._add_history("flag_row", varlist)
998
[1862]999 @asaplog_post_dec
[1819]1000 def clip(self, uthres=None, dthres=None, clipoutside=True, unflag=False):
[1846]1001 """\
[1819]1002 Flag the selected data outside a specified range (in channel-base)
[1846]1003
[1819]1004 Parameters:
[1846]1005
[1819]1006 uthres: upper threshold.
[1855]1007
[1819]1008 dthres: lower threshold
[1846]1009
[1819]1010 clipoutside: True for flagging data outside the range [dthres:uthres].
1011 False for glagging data inside the range.
[1855]1012
[1846]1013 unflag: if True, unflag the data.
1014
[1819]1015 """
1016 varlist = vars()
[1859]1017 self._clip(uthres, dthres, clipoutside, unflag)
[1819]1018 self._add_history("clip", varlist)
1019
[1862]1020 @asaplog_post_dec
[1584]1021 def lag_flag(self, start, end, unit="MHz", insitu=None):
[1846]1022 """\
[1192]1023 Flag the data in 'lag' space by providing a frequency to remove.
[1584]1024 Flagged data in the scantable gets interpolated over the region.
[1192]1025 No taper is applied.
[1846]1026
[1192]1027 Parameters:
[1846]1028
[1579]1029 start: the start frequency (really a period within the
1030 bandwidth) or period to remove
[1855]1031
[1579]1032 end: the end frequency or period to remove
[1855]1033
[1584]1034 unit: the frequency unit (default "MHz") or "" for
[1579]1035 explicit lag channels
[1846]1036
1037 *Notes*:
1038
[1579]1039 It is recommended to flag edges of the band or strong
[1348]1040 signals beforehand.
[1846]1041
[1192]1042 """
1043 if insitu is None: insitu = rcParams['insitu']
1044 self._math._setinsitu(insitu)
1045 varlist = vars()
[1579]1046 base = { "GHz": 1000000000., "MHz": 1000000., "kHz": 1000., "Hz": 1.}
1047 if not (unit == "" or base.has_key(unit)):
[1192]1048 raise ValueError("%s is not a valid unit." % unit)
[1859]1049 if unit == "":
1050 s = scantable(self._math._lag_flag(self, start, end, "lags"))
1051 else:
1052 s = scantable(self._math._lag_flag(self, start*base[unit],
1053 end*base[unit], "frequency"))
[1192]1054 s._add_history("lag_flag", varlist)
1055 if insitu:
1056 self._assign(s)
1057 else:
1058 return s
[1001]1059
[1862]1060 @asaplog_post_dec
[113]1061 def create_mask(self, *args, **kwargs):
[1846]1062 """\
[1118]1063 Compute and return a mask based on [min, max] windows.
[189]1064 The specified windows are to be INCLUDED, when the mask is
[113]1065 applied.
[1846]1066
[102]1067 Parameters:
[1846]1068
[1118]1069 [min, max], [min2, max2], ...
[1024]1070 Pairs of start/end points (inclusive)specifying the regions
[102]1071 to be masked
[1855]1072
[189]1073 invert: optional argument. If specified as True,
1074 return an inverted mask, i.e. the regions
1075 specified are EXCLUDED
[1855]1076
[513]1077 row: create the mask using the specified row for
1078 unit conversions, default is row=0
1079 only necessary if frequency varies over rows.
[1846]1080
1081 Examples::
1082
[113]1083 scan.set_unit('channel')
[1846]1084 # a)
[1118]1085 msk = scan.create_mask([400, 500], [800, 900])
[189]1086 # masks everything outside 400 and 500
[113]1087 # and 800 and 900 in the unit 'channel'
1088
[1846]1089 # b)
[1118]1090 msk = scan.create_mask([400, 500], [800, 900], invert=True)
[189]1091 # masks the regions between 400 and 500
[113]1092 # and 800 and 900 in the unit 'channel'
[1846]1093
1094 # c)
1095 #mask only channel 400
[1554]1096 msk = scan.create_mask([400])
[1846]1097
[102]1098 """
[1554]1099 row = kwargs.get("row", 0)
[513]1100 data = self._getabcissa(row)
[113]1101 u = self._getcoordinfo()[0]
[1859]1102 if u == "":
1103 u = "channel"
1104 msg = "The current mask window unit is %s" % u
1105 i = self._check_ifs()
1106 if not i:
1107 msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
1108 asaplog.push(msg)
[102]1109 n = self.nchan()
[1295]1110 msk = _n_bools(n, False)
[710]1111 # test if args is a 'list' or a 'normal *args - UGLY!!!
1112
[1118]1113 ws = (isinstance(args[-1][-1], int) or isinstance(args[-1][-1], float)) \
1114 and args or args[0]
[710]1115 for window in ws:
[1554]1116 if len(window) == 1:
1117 window = [window[0], window[0]]
1118 if len(window) == 0 or len(window) > 2:
1119 raise ValueError("A window needs to be defined as [start(, end)]")
[1545]1120 if window[0] > window[1]:
1121 tmp = window[0]
1122 window[0] = window[1]
1123 window[1] = tmp
[102]1124 for i in range(n):
[1024]1125 if data[i] >= window[0] and data[i] <= window[1]:
[1295]1126 msk[i] = True
[113]1127 if kwargs.has_key('invert'):
1128 if kwargs.get('invert'):
[1295]1129 msk = mask_not(msk)
[102]1130 return msk
[710]1131
[1819]1132 def get_masklist(self, mask=None, row=0):
[1846]1133 """\
[1819]1134 Compute and return a list of mask windows, [min, max].
[1846]1135
[1819]1136 Parameters:
[1846]1137
[1819]1138 mask: channel mask, created with create_mask.
[1855]1139
[1819]1140 row: calcutate the masklist using the specified row
1141 for unit conversions, default is row=0
1142 only necessary if frequency varies over rows.
[1846]1143
[1819]1144 Returns:
[1846]1145
[1819]1146 [min, max], [min2, max2], ...
1147 Pairs of start/end points (inclusive)specifying
1148 the masked regions
[1846]1149
[1819]1150 """
1151 if not (isinstance(mask,list) or isinstance(mask, tuple)):
1152 raise TypeError("The mask should be list or tuple.")
1153 if len(mask) < 2:
1154 raise TypeError("The mask elements should be > 1")
1155 if self.nchan() != len(mask):
1156 msg = "Number of channels in scantable != number of mask elements"
1157 raise TypeError(msg)
1158 data = self._getabcissa(row)
1159 u = self._getcoordinfo()[0]
[1859]1160 if u == "":
1161 u = "channel"
1162 msg = "The current mask window unit is %s" % u
1163 i = self._check_ifs()
1164 if not i:
1165 msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
1166 asaplog.push(msg)
[1819]1167 masklist=[]
1168 ist, ien = None, None
1169 ist, ien=self.get_mask_indices(mask)
1170 if ist is not None and ien is not None:
1171 for i in xrange(len(ist)):
1172 range=[data[ist[i]],data[ien[i]]]
1173 range.sort()
1174 masklist.append([range[0],range[1]])
1175 return masklist
1176
1177 def get_mask_indices(self, mask=None):
[1846]1178 """\
[1819]1179 Compute and Return lists of mask start indices and mask end indices.
[1855]1180
1181 Parameters:
1182
[1819]1183 mask: channel mask, created with create_mask.
[1846]1184
[1819]1185 Returns:
[1846]1186
[1819]1187 List of mask start indices and that of mask end indices,
1188 i.e., [istart1,istart2,....], [iend1,iend2,....].
[1846]1189
[1819]1190 """
1191 if not (isinstance(mask,list) or isinstance(mask, tuple)):
1192 raise TypeError("The mask should be list or tuple.")
1193 if len(mask) < 2:
1194 raise TypeError("The mask elements should be > 1")
1195 istart=[]
1196 iend=[]
1197 if mask[0]: istart.append(0)
1198 for i in range(len(mask)-1):
1199 if not mask[i] and mask[i+1]:
1200 istart.append(i+1)
1201 elif mask[i] and not mask[i+1]:
1202 iend.append(i)
1203 if mask[len(mask)-1]: iend.append(len(mask)-1)
1204 if len(istart) != len(iend):
1205 raise RuntimeError("Numbers of mask start != mask end.")
1206 for i in range(len(istart)):
1207 if istart[i] > iend[i]:
1208 raise RuntimeError("Mask start index > mask end index")
1209 break
1210 return istart,iend
1211
1212# def get_restfreqs(self):
1213# """
1214# Get the restfrequency(s) stored in this scantable.
1215# The return value(s) are always of unit 'Hz'
1216# Parameters:
1217# none
1218# Returns:
1219# a list of doubles
1220# """
1221# return list(self._getrestfreqs())
1222
1223 def get_restfreqs(self, ids=None):
[1846]1224 """\
[256]1225 Get the restfrequency(s) stored in this scantable.
1226 The return value(s) are always of unit 'Hz'
[1846]1227
[256]1228 Parameters:
[1846]1229
[1819]1230 ids: (optional) a list of MOLECULE_ID for that restfrequency(s) to
1231 be retrieved
[1846]1232
[256]1233 Returns:
[1846]1234
[1819]1235 dictionary containing ids and a list of doubles for each id
[1846]1236
[256]1237 """
[1819]1238 if ids is None:
1239 rfreqs={}
1240 idlist = self.getmolnos()
1241 for i in idlist:
1242 rfreqs[i]=list(self._getrestfreqs(i))
1243 return rfreqs
1244 else:
1245 if type(ids)==list or type(ids)==tuple:
1246 rfreqs={}
1247 for i in ids:
1248 rfreqs[i]=list(self._getrestfreqs(i))
1249 return rfreqs
1250 else:
1251 return list(self._getrestfreqs(ids))
1252 #return list(self._getrestfreqs(ids))
[102]1253
[931]1254 def set_restfreqs(self, freqs=None, unit='Hz'):
[1846]1255 """\
[931]1256 Set or replace the restfrequency specified and
1257 If the 'freqs' argument holds a scalar,
1258 then that rest frequency will be applied to all the selected
1259 data. If the 'freqs' argument holds
1260 a vector, then it MUST be of equal or smaller length than
1261 the number of IFs (and the available restfrequencies will be
1262 replaced by this vector). In this case, *all* data have
1263 the restfrequency set per IF according
1264 to the corresponding value you give in the 'freqs' vector.
[1118]1265 E.g. 'freqs=[1e9, 2e9]' would mean IF 0 gets restfreq 1e9 and
[931]1266 IF 1 gets restfreq 2e9.
[1846]1267
[1395]1268 You can also specify the frequencies via a linecatalog.
[1153]1269
[931]1270 Parameters:
[1846]1271
[931]1272 freqs: list of rest frequency values or string idenitfiers
[1855]1273
[931]1274 unit: unit for rest frequency (default 'Hz')
[402]1275
[1846]1276
1277 Example::
1278
[1819]1279 # set the given restfrequency for the all currently selected IFs
[931]1280 scan.set_restfreqs(freqs=1.4e9)
[1845]1281 # set restfrequencies for the n IFs (n > 1) in the order of the
1282 # list, i.e
1283 # IF0 -> 1.4e9, IF1 -> 1.41e9, IF3 -> 1.42e9
1284 # len(list_of_restfreqs) == nIF
1285 # for nIF == 1 the following will set multiple restfrequency for
1286 # that IF
[1819]1287 scan.set_restfreqs(freqs=[1.4e9, 1.41e9, 1.42e9])
[1845]1288 # set multiple restfrequencies per IF. as a list of lists where
1289 # the outer list has nIF elements, the inner s arbitrary
1290 scan.set_restfreqs(freqs=[[1.4e9, 1.41e9], [1.67e9]])
[391]1291
[1846]1292 *Note*:
[1845]1293
[931]1294 To do more sophisticate Restfrequency setting, e.g. on a
1295 source and IF basis, use scantable.set_selection() before using
[1846]1296 this function::
[931]1297
[1846]1298 # provided your scantable is called scan
1299 selection = selector()
1300 selection.set_name("ORION*")
1301 selection.set_ifs([1])
1302 scan.set_selection(selection)
1303 scan.set_restfreqs(freqs=86.6e9)
1304
[931]1305 """
1306 varlist = vars()
[1157]1307 from asap import linecatalog
1308 # simple value
[1118]1309 if isinstance(freqs, int) or isinstance(freqs, float):
[1845]1310 self._setrestfreqs([freqs], [""], unit)
[1157]1311 # list of values
[1118]1312 elif isinstance(freqs, list) or isinstance(freqs, tuple):
[1157]1313 # list values are scalars
[1118]1314 if isinstance(freqs[-1], int) or isinstance(freqs[-1], float):
[1845]1315 if len(freqs) == 1:
1316 self._setrestfreqs(freqs, [""], unit)
1317 else:
1318 # allow the 'old' mode of setting mulitple IFs
1319 sel = selector()
1320 savesel = self._getselection()
1321 iflist = self.getifnos()
1322 if len(freqs)>len(iflist):
1323 raise ValueError("number of elements in list of list "
1324 "exeeds the current IF selections")
1325 iflist = self.getifnos()
1326 for i, fval in enumerate(freqs):
1327 sel.set_ifs(iflist[i])
1328 self._setselection(sel)
1329 self._setrestfreqs([fval], [""], unit)
1330 self._setselection(savesel)
1331
1332 # list values are dict, {'value'=, 'name'=)
[1157]1333 elif isinstance(freqs[-1], dict):
[1845]1334 values = []
1335 names = []
1336 for d in freqs:
1337 values.append(d["value"])
1338 names.append(d["name"])
1339 self._setrestfreqs(values, names, unit)
[1819]1340 elif isinstance(freqs[-1], list) or isinstance(freqs[-1], tuple):
[1157]1341 sel = selector()
1342 savesel = self._getselection()
[1322]1343 iflist = self.getifnos()
[1819]1344 if len(freqs)>len(iflist):
[1845]1345 raise ValueError("number of elements in list of list exeeds"
1346 " the current IF selections")
1347 for i, fval in enumerate(freqs):
[1322]1348 sel.set_ifs(iflist[i])
[1259]1349 self._setselection(sel)
[1845]1350 self._setrestfreqs(fval, [""], unit)
[1157]1351 self._setselection(savesel)
1352 # freqs are to be taken from a linecatalog
[1153]1353 elif isinstance(freqs, linecatalog):
1354 sel = selector()
1355 savesel = self._getselection()
1356 for i in xrange(freqs.nrow()):
[1322]1357 sel.set_ifs(iflist[i])
[1153]1358 self._setselection(sel)
[1845]1359 self._setrestfreqs([freqs.get_frequency(i)],
1360 [freqs.get_name(i)], "MHz")
[1153]1361 # ensure that we are not iterating past nIF
1362 if i == self.nif()-1: break
1363 self._setselection(savesel)
[931]1364 else:
1365 return
1366 self._add_history("set_restfreqs", varlist)
1367
[1360]1368 def shift_refpix(self, delta):
[1846]1369 """\
[1589]1370 Shift the reference pixel of the Spectra Coordinate by an
1371 integer amount.
[1846]1372
[1589]1373 Parameters:
[1846]1374
[1589]1375 delta: the amount to shift by
[1846]1376
1377 *Note*:
1378
[1589]1379 Be careful using this with broadband data.
[1846]1380
[1360]1381 """
[1731]1382 Scantable.shift_refpix(self, delta)
[931]1383
[1862]1384 @asaplog_post_dec
[1259]1385 def history(self, filename=None):
[1846]1386 """\
[1259]1387 Print the history. Optionally to a file.
[1846]1388
[1348]1389 Parameters:
[1846]1390
[1348]1391 filename: The name of the file to save the history to.
[1846]1392
[1259]1393 """
[484]1394 hist = list(self._gethistory())
[794]1395 out = "-"*80
[484]1396 for h in hist:
[489]1397 if h.startswith("---"):
[1857]1398 out = "\n".join([out, h])
[489]1399 else:
1400 items = h.split("##")
1401 date = items[0]
1402 func = items[1]
1403 items = items[2:]
[794]1404 out += "\n"+date+"\n"
1405 out += "Function: %s\n Parameters:" % (func)
[489]1406 for i in items:
1407 s = i.split("=")
[1118]1408 out += "\n %s = %s" % (s[0], s[1])
[1857]1409 out = "\n".join([out, "-"*80])
[1259]1410 if filename is not None:
1411 if filename is "":
1412 filename = 'scantable_history.txt'
1413 import os
1414 filename = os.path.expandvars(os.path.expanduser(filename))
1415 if not os.path.isdir(filename):
1416 data = open(filename, 'w')
1417 data.write(out)
1418 data.close()
1419 else:
1420 msg = "Illegal file name '%s'." % (filename)
[1859]1421 raise IOError(msg)
1422 return page(out)
[513]1423 #
1424 # Maths business
1425 #
[1862]1426 @asaplog_post_dec
[931]1427 def average_time(self, mask=None, scanav=False, weight='tint', align=False):
[1846]1428 """\
[1070]1429 Return the (time) weighted average of a scan.
[1846]1430
1431 *Note*:
1432
[1070]1433 in channels only - align if necessary
[1846]1434
[513]1435 Parameters:
[1846]1436
[513]1437 mask: an optional mask (only used for 'var' and 'tsys'
1438 weighting)
[1855]1439
[558]1440 scanav: True averages each scan separately
1441 False (default) averages all scans together,
[1855]1442
[1099]1443 weight: Weighting scheme.
1444 'none' (mean no weight)
1445 'var' (1/var(spec) weighted)
1446 'tsys' (1/Tsys**2 weighted)
1447 'tint' (integration time weighted)
1448 'tintsys' (Tint/Tsys**2)
1449 'median' ( median averaging)
[535]1450 The default is 'tint'
[1855]1451
[931]1452 align: align the spectra in velocity before averaging. It takes
1453 the time of the first spectrum as reference time.
[1846]1454
1455 Example::
1456
[513]1457 # time average the scantable without using a mask
[710]1458 newscan = scan.average_time()
[1846]1459
[513]1460 """
1461 varlist = vars()
[1593]1462 weight = weight or 'TINT'
1463 mask = mask or ()
1464 scanav = (scanav and 'SCAN') or 'NONE'
[1118]1465 scan = (self, )
[1859]1466
1467 if align:
1468 scan = (self.freq_align(insitu=False), )
1469 s = None
1470 if weight.upper() == 'MEDIAN':
1471 s = scantable(self._math._averagechannel(scan[0], 'MEDIAN',
1472 scanav))
1473 else:
1474 s = scantable(self._math._average(scan, mask, weight.upper(),
1475 scanav))
[1099]1476 s._add_history("average_time", varlist)
[513]1477 return s
[710]1478
[1862]1479 @asaplog_post_dec
[876]1480 def convert_flux(self, jyperk=None, eta=None, d=None, insitu=None):
[1846]1481 """\
[513]1482 Return a scan where all spectra are converted to either
1483 Jansky or Kelvin depending upon the flux units of the scan table.
1484 By default the function tries to look the values up internally.
1485 If it can't find them (or if you want to over-ride), you must
1486 specify EITHER jyperk OR eta (and D which it will try to look up
1487 also if you don't set it). jyperk takes precedence if you set both.
[1846]1488
[513]1489 Parameters:
[1846]1490
[513]1491 jyperk: the Jy / K conversion factor
[1855]1492
[513]1493 eta: the aperture efficiency
[1855]1494
[513]1495 d: the geomtric diameter (metres)
[1855]1496
[513]1497 insitu: if False a new scantable is returned.
1498 Otherwise, the scaling is done in-situ
1499 The default is taken from .asaprc (False)
[1846]1500
[513]1501 """
1502 if insitu is None: insitu = rcParams['insitu']
[876]1503 self._math._setinsitu(insitu)
[513]1504 varlist = vars()
[1593]1505 jyperk = jyperk or -1.0
1506 d = d or -1.0
1507 eta = eta or -1.0
[876]1508 s = scantable(self._math._convertflux(self, d, eta, jyperk))
1509 s._add_history("convert_flux", varlist)
1510 if insitu: self._assign(s)
1511 else: return s
[513]1512
[1862]1513 @asaplog_post_dec
[876]1514 def gain_el(self, poly=None, filename="", method="linear", insitu=None):
[1846]1515 """\
[513]1516 Return a scan after applying a gain-elevation correction.
1517 The correction can be made via either a polynomial or a
1518 table-based interpolation (and extrapolation if necessary).
1519 You specify polynomial coefficients, an ascii table or neither.
1520 If you specify neither, then a polynomial correction will be made
1521 with built in coefficients known for certain telescopes (an error
1522 will occur if the instrument is not known).
1523 The data and Tsys are *divided* by the scaling factors.
[1846]1524
[513]1525 Parameters:
[1846]1526
[513]1527 poly: Polynomial coefficients (default None) to compute a
1528 gain-elevation correction as a function of
1529 elevation (in degrees).
[1855]1530
[513]1531 filename: The name of an ascii file holding correction factors.
1532 The first row of the ascii file must give the column
1533 names and these MUST include columns
1534 "ELEVATION" (degrees) and "FACTOR" (multiply data
1535 by this) somewhere.
1536 The second row must give the data type of the
1537 column. Use 'R' for Real and 'I' for Integer.
1538 An example file would be
1539 (actual factors are arbitrary) :
1540
1541 TIME ELEVATION FACTOR
1542 R R R
1543 0.1 0 0.8
1544 0.2 20 0.85
1545 0.3 40 0.9
1546 0.4 60 0.85
1547 0.5 80 0.8
1548 0.6 90 0.75
[1855]1549
[513]1550 method: Interpolation method when correcting from a table.
1551 Values are "nearest", "linear" (default), "cubic"
1552 and "spline"
[1855]1553
[513]1554 insitu: if False a new scantable is returned.
1555 Otherwise, the scaling is done in-situ
1556 The default is taken from .asaprc (False)
[1846]1557
[513]1558 """
1559
1560 if insitu is None: insitu = rcParams['insitu']
[876]1561 self._math._setinsitu(insitu)
[513]1562 varlist = vars()
[1593]1563 poly = poly or ()
[513]1564 from os.path import expandvars
1565 filename = expandvars(filename)
[876]1566 s = scantable(self._math._gainel(self, poly, filename, method))
1567 s._add_history("gain_el", varlist)
[1593]1568 if insitu:
1569 self._assign(s)
1570 else:
1571 return s
[710]1572
[1862]1573 @asaplog_post_dec
[931]1574 def freq_align(self, reftime=None, method='cubic', insitu=None):
[1846]1575 """\
[513]1576 Return a scan where all rows have been aligned in frequency/velocity.
1577 The alignment frequency frame (e.g. LSRK) is that set by function
1578 set_freqframe.
[1846]1579
[513]1580 Parameters:
[1855]1581
[513]1582 reftime: reference time to align at. By default, the time of
1583 the first row of data is used.
[1855]1584
[513]1585 method: Interpolation method for regridding the spectra.
1586 Choose from "nearest", "linear", "cubic" (default)
1587 and "spline"
[1855]1588
[513]1589 insitu: if False a new scantable is returned.
1590 Otherwise, the scaling is done in-situ
1591 The default is taken from .asaprc (False)
[1846]1592
[513]1593 """
[931]1594 if insitu is None: insitu = rcParams["insitu"]
[876]1595 self._math._setinsitu(insitu)
[513]1596 varlist = vars()
[1593]1597 reftime = reftime or ""
[931]1598 s = scantable(self._math._freq_align(self, reftime, method))
[876]1599 s._add_history("freq_align", varlist)
1600 if insitu: self._assign(s)
1601 else: return s
[513]1602
[1862]1603 @asaplog_post_dec
[1725]1604 def opacity(self, tau=None, insitu=None):
[1846]1605 """\
[513]1606 Apply an opacity correction. The data
1607 and Tsys are multiplied by the correction factor.
[1846]1608
[513]1609 Parameters:
[1855]1610
[1689]1611 tau: (list of) opacity from which the correction factor is
[513]1612 exp(tau*ZD)
[1689]1613 where ZD is the zenith-distance.
1614 If a list is provided, it has to be of length nIF,
1615 nIF*nPol or 1 and in order of IF/POL, e.g.
1616 [opif0pol0, opif0pol1, opif1pol0 ...]
[1725]1617 if tau is `None` the opacities are determined from a
1618 model.
[1855]1619
[513]1620 insitu: if False a new scantable is returned.
1621 Otherwise, the scaling is done in-situ
1622 The default is taken from .asaprc (False)
[1846]1623
[513]1624 """
1625 if insitu is None: insitu = rcParams['insitu']
[876]1626 self._math._setinsitu(insitu)
[513]1627 varlist = vars()
[1689]1628 if not hasattr(tau, "__len__"):
1629 tau = [tau]
[876]1630 s = scantable(self._math._opacity(self, tau))
1631 s._add_history("opacity", varlist)
1632 if insitu: self._assign(s)
1633 else: return s
[513]1634
[1862]1635 @asaplog_post_dec
[513]1636 def bin(self, width=5, insitu=None):
[1846]1637 """\
[513]1638 Return a scan where all spectra have been binned up.
[1846]1639
[1348]1640 Parameters:
[1846]1641
[513]1642 width: The bin width (default=5) in pixels
[1855]1643
[513]1644 insitu: if False a new scantable is returned.
1645 Otherwise, the scaling is done in-situ
1646 The default is taken from .asaprc (False)
[1846]1647
[513]1648 """
1649 if insitu is None: insitu = rcParams['insitu']
[876]1650 self._math._setinsitu(insitu)
[513]1651 varlist = vars()
[876]1652 s = scantable(self._math._bin(self, width))
[1118]1653 s._add_history("bin", varlist)
[1589]1654 if insitu:
1655 self._assign(s)
1656 else:
1657 return s
[513]1658
[1862]1659 @asaplog_post_dec
[513]1660 def resample(self, width=5, method='cubic', insitu=None):
[1846]1661 """\
[1348]1662 Return a scan where all spectra have been binned up.
[1573]1663
[1348]1664 Parameters:
[1846]1665
[513]1666 width: The bin width (default=5) in pixels
[1855]1667
[513]1668 method: Interpolation method when correcting from a table.
1669 Values are "nearest", "linear", "cubic" (default)
1670 and "spline"
[1855]1671
[513]1672 insitu: if False a new scantable is returned.
1673 Otherwise, the scaling is done in-situ
1674 The default is taken from .asaprc (False)
[1846]1675
[513]1676 """
1677 if insitu is None: insitu = rcParams['insitu']
[876]1678 self._math._setinsitu(insitu)
[513]1679 varlist = vars()
[876]1680 s = scantable(self._math._resample(self, method, width))
[1118]1681 s._add_history("resample", varlist)
[876]1682 if insitu: self._assign(s)
1683 else: return s
[513]1684
[1862]1685 @asaplog_post_dec
[946]1686 def average_pol(self, mask=None, weight='none'):
[1846]1687 """\
[946]1688 Average the Polarisations together.
[1846]1689
[946]1690 Parameters:
[1846]1691
[946]1692 mask: An optional mask defining the region, where the
1693 averaging will be applied. The output will have all
1694 specified points masked.
[1855]1695
[946]1696 weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
1697 weighted), or 'tsys' (1/Tsys**2 weighted)
[1846]1698
[946]1699 """
1700 varlist = vars()
[1593]1701 mask = mask or ()
[1010]1702 s = scantable(self._math._averagepol(self, mask, weight.upper()))
[1118]1703 s._add_history("average_pol", varlist)
[992]1704 return s
[513]1705
[1862]1706 @asaplog_post_dec
[1145]1707 def average_beam(self, mask=None, weight='none'):
[1846]1708 """\
[1145]1709 Average the Beams together.
[1846]1710
[1145]1711 Parameters:
1712 mask: An optional mask defining the region, where the
1713 averaging will be applied. The output will have all
1714 specified points masked.
[1855]1715
[1145]1716 weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
1717 weighted), or 'tsys' (1/Tsys**2 weighted)
[1846]1718
[1145]1719 """
1720 varlist = vars()
[1593]1721 mask = mask or ()
[1145]1722 s = scantable(self._math._averagebeams(self, mask, weight.upper()))
1723 s._add_history("average_beam", varlist)
1724 return s
1725
[1586]1726 def parallactify(self, pflag):
[1846]1727 """\
[1843]1728 Set a flag to indicate whether this data should be treated as having
[1617]1729 been 'parallactified' (total phase == 0.0)
[1846]1730
[1617]1731 Parameters:
[1855]1732
[1843]1733 pflag: Bool indicating whether to turn this on (True) or
[1617]1734 off (False)
[1846]1735
[1617]1736 """
[1586]1737 varlist = vars()
1738 self._parallactify(pflag)
1739 self._add_history("parallactify", varlist)
1740
[1862]1741 @asaplog_post_dec
[992]1742 def convert_pol(self, poltype=None):
[1846]1743 """\
[992]1744 Convert the data to a different polarisation type.
[1565]1745 Note that you will need cross-polarisation terms for most conversions.
[1846]1746
[992]1747 Parameters:
[1855]1748
[992]1749 poltype: The new polarisation type. Valid types are:
[1565]1750 "linear", "circular", "stokes" and "linpol"
[1846]1751
[992]1752 """
1753 varlist = vars()
[1859]1754 s = scantable(self._math._convertpol(self, poltype))
[1118]1755 s._add_history("convert_pol", varlist)
[992]1756 return s
1757
[1862]1758 @asaplog_post_dec
[1819]1759 def smooth(self, kernel="hanning", width=5.0, order=2, plot=False, insitu=None):
[1846]1760 """\
[513]1761 Smooth the spectrum by the specified kernel (conserving flux).
[1846]1762
[513]1763 Parameters:
[1846]1764
[513]1765 kernel: The type of smoothing kernel. Select from
[1574]1766 'hanning' (default), 'gaussian', 'boxcar', 'rmedian'
1767 or 'poly'
[1855]1768
[513]1769 width: The width of the kernel in pixels. For hanning this is
1770 ignored otherwise it defauls to 5 pixels.
1771 For 'gaussian' it is the Full Width Half
1772 Maximum. For 'boxcar' it is the full width.
[1574]1773 For 'rmedian' and 'poly' it is the half width.
[1855]1774
[1574]1775 order: Optional parameter for 'poly' kernel (default is 2), to
1776 specify the order of the polnomial. Ignored by all other
1777 kernels.
[1855]1778
[1819]1779 plot: plot the original and the smoothed spectra.
1780 In this each indivual fit has to be approved, by
1781 typing 'y' or 'n'
[1855]1782
[513]1783 insitu: if False a new scantable is returned.
1784 Otherwise, the scaling is done in-situ
1785 The default is taken from .asaprc (False)
[1846]1786
[513]1787 """
1788 if insitu is None: insitu = rcParams['insitu']
[876]1789 self._math._setinsitu(insitu)
[513]1790 varlist = vars()
[1819]1791
1792 if plot: orgscan = self.copy()
1793
[1574]1794 s = scantable(self._math._smooth(self, kernel.lower(), width, order))
[876]1795 s._add_history("smooth", varlist)
[1819]1796
1797 if plot:
1798 if rcParams['plotter.gui']:
1799 from asap.asaplotgui import asaplotgui as asaplot
1800 else:
1801 from asap.asaplot import asaplot
1802 self._p=asaplot()
1803 self._p.set_panels()
1804 ylab=s._get_ordinate_label()
1805 #self._p.palette(0,["#777777","red"])
1806 for r in xrange(s.nrow()):
1807 xsm=s._getabcissa(r)
1808 ysm=s._getspectrum(r)
1809 xorg=orgscan._getabcissa(r)
1810 yorg=orgscan._getspectrum(r)
1811 self._p.clear()
1812 self._p.hold()
1813 self._p.set_axes('ylabel',ylab)
1814 self._p.set_axes('xlabel',s._getabcissalabel(r))
1815 self._p.set_axes('title',s._getsourcename(r))
1816 self._p.set_line(label='Original',color="#777777")
1817 self._p.plot(xorg,yorg)
1818 self._p.set_line(label='Smoothed',color="red")
1819 self._p.plot(xsm,ysm)
1820 ### Ugly part for legend
1821 for i in [0,1]:
1822 self._p.subplots[0]['lines'].append([self._p.subplots[0]['axes'].lines[i]])
1823 self._p.release()
1824 ### Ugly part for legend
1825 self._p.subplots[0]['lines']=[]
1826 res = raw_input("Accept smoothing ([y]/n): ")
1827 if res.upper() == 'N':
1828 s._setspectrum(yorg, r)
1829 self._p.unmap()
1830 self._p = None
1831 del orgscan
1832
[876]1833 if insitu: self._assign(s)
1834 else: return s
[513]1835
[1862]1836 @asaplog_post_dec
[1617]1837 def poly_baseline(self, mask=None, order=0, plot=False, uselin=False,
1838 insitu=None):
[1846]1839 """\
[513]1840 Return a scan which has been baselined (all rows) by a polynomial.
[1846]1841
[513]1842 Parameters:
[1846]1843
[794]1844 mask: an optional mask
[1855]1845
[794]1846 order: the order of the polynomial (default is 0)
[1855]1847
[1061]1848 plot: plot the fit and the residual. In this each
1849 indivual fit has to be approved, by typing 'y'
1850 or 'n'
[1855]1851
[1391]1852 uselin: use linear polynomial fit
[1855]1853
[794]1854 insitu: if False a new scantable is returned.
1855 Otherwise, the scaling is done in-situ
1856 The default is taken from .asaprc (False)
[1846]1857
1858 Example::
1859
[513]1860 # return a scan baselined by a third order polynomial,
1861 # not using a mask
1862 bscan = scan.poly_baseline(order=3)
[1846]1863
[579]1864 """
[513]1865 if insitu is None: insitu = rcParams['insitu']
[1819]1866 if not insitu:
1867 workscan = self.copy()
1868 else:
1869 workscan = self
[513]1870 varlist = vars()
1871 if mask is None:
[1295]1872 mask = [True for i in xrange(self.nchan(-1))]
[1819]1873
[513]1874 from asap.asapfitter import fitter
[1217]1875 try:
1876 f = fitter()
[1391]1877 if uselin:
1878 f.set_function(lpoly=order)
1879 else:
1880 f.set_function(poly=order)
[1819]1881
1882 rows = range(workscan.nrow())
1883 if len(rows) > 0:
1884 self.blpars = []
1885
1886 for r in rows:
1887 # take into account flagtra info (CAS-1434)
1888 flagtra = workscan._getmask(r)
1889 actualmask = mask[:]
1890 if len(actualmask) == 0:
1891 actualmask = list(flagtra[:])
1892 else:
1893 if len(actualmask) != len(flagtra):
1894 raise RuntimeError, "Mask and flagtra have different length"
1895 else:
1896 for i in range(0, len(actualmask)):
1897 actualmask[i] = actualmask[i] and flagtra[i]
1898 f.set_scan(workscan, actualmask)
1899 f.x = workscan._getabcissa(r)
1900 f.y = workscan._getspectrum(r)
1901 f.data = None
1902 f.fit()
1903 if plot:
1904 f.plot(residual=True)
1905 x = raw_input("Accept fit ( [y]/n ): ")
1906 if x.upper() == 'N':
1907 self.blpars.append(None)
1908 continue
1909 workscan._setspectrum(f.fitter.getresidual(), r)
1910 self.blpars.append(f.get_parameters())
1911
1912 if plot:
1913 f._p.unmap()
1914 f._p = None
1915 workscan._add_history("poly_baseline", varlist)
[1856]1916 if insitu:
1917 self._assign(workscan)
1918 else:
1919 return workscan
[1217]1920 except RuntimeError:
1921 msg = "The fit failed, possibly because it didn't converge."
[1859]1922 raise RuntimeError(msg)
[513]1923
[1819]1924
[1118]1925 def auto_poly_baseline(self, mask=[], edge=(0, 0), order=0,
[1280]1926 threshold=3, chan_avg_limit=1, plot=False,
1927 insitu=None):
[1846]1928 """\
[880]1929 Return a scan which has been baselined (all rows) by a polynomial.
1930 Spectral lines are detected first using linefinder and masked out
1931 to avoid them affecting the baseline solution.
1932
1933 Parameters:
[1846]1934
[880]1935 mask: an optional mask retreived from scantable
[1846]1936
1937 edge: an optional number of channel to drop at the edge of
1938 spectrum. If only one value is
[880]1939 specified, the same number will be dropped from
1940 both sides of the spectrum. Default is to keep
[907]1941 all channels. Nested tuples represent individual
[976]1942 edge selection for different IFs (a number of spectral
1943 channels can be different)
[1846]1944
[880]1945 order: the order of the polynomial (default is 0)
[1846]1946
[880]1947 threshold: the threshold used by line finder. It is better to
1948 keep it large as only strong lines affect the
1949 baseline solution.
[1846]1950
[1280]1951 chan_avg_limit:
1952 a maximum number of consequtive spectral channels to
1953 average during the search of weak and broad lines.
1954 The default is no averaging (and no search for weak
1955 lines). If such lines can affect the fitted baseline
1956 (e.g. a high order polynomial is fitted), increase this
1957 parameter (usually values up to 8 are reasonable). Most
1958 users of this method should find the default value
1959 sufficient.
[1846]1960
[1061]1961 plot: plot the fit and the residual. In this each
1962 indivual fit has to be approved, by typing 'y'
1963 or 'n'
[1846]1964
[880]1965 insitu: if False a new scantable is returned.
1966 Otherwise, the scaling is done in-situ
1967 The default is taken from .asaprc (False)
1968
[1846]1969
1970 Example::
1971
1972 scan2 = scan.auto_poly_baseline(order=7, insitu=False)
1973
[880]1974 """
1975 if insitu is None: insitu = rcParams['insitu']
1976 varlist = vars()
1977 from asap.asapfitter import fitter
1978 from asap.asaplinefind import linefinder
1979 from asap import _is_sequence_or_number as _is_valid
1980
[976]1981 # check whether edge is set up for each IF individually
[1118]1982 individualedge = False;
1983 if len(edge) > 1:
1984 if isinstance(edge[0], list) or isinstance(edge[0], tuple):
1985 individualedge = True;
[907]1986
[1118]1987 if not _is_valid(edge, int) and not individualedge:
[909]1988 raise ValueError, "Parameter 'edge' has to be an integer or a \
[907]1989 pair of integers specified as a tuple. Nested tuples are allowed \
1990 to make individual selection for different IFs."
[919]1991
[1118]1992 curedge = (0, 0)
1993 if individualedge:
1994 for edgepar in edge:
1995 if not _is_valid(edgepar, int):
1996 raise ValueError, "Each element of the 'edge' tuple has \
1997 to be a pair of integers or an integer."
[907]1998 else:
[1118]1999 curedge = edge;
[880]2000
2001 # setup fitter
2002 f = fitter()
2003 f.set_function(poly=order)
2004
2005 # setup line finder
[1118]2006 fl = linefinder()
[1268]2007 fl.set_options(threshold=threshold,avg_limit=chan_avg_limit)
[880]2008
2009 if not insitu:
[1118]2010 workscan = self.copy()
[880]2011 else:
[1118]2012 workscan = self
[880]2013
[907]2014 fl.set_scan(workscan)
2015
[1118]2016 rows = range(workscan.nrow())
[1819]2017 # Save parameters of baseline fits & masklists as a class attribute.
2018 # NOTICE: It does not reflect changes in scantable!
2019 if len(rows) > 0:
2020 self.blpars=[]
2021 self.masklists=[]
[880]2022 asaplog.push("Processing:")
2023 for r in rows:
[1118]2024 msg = " Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % \
2025 (workscan.getscan(r), workscan.getbeam(r), workscan.getif(r), \
2026 workscan.getpol(r), workscan.getcycle(r))
[880]2027 asaplog.push(msg, False)
[907]2028
[976]2029 # figure out edge parameter
[1118]2030 if individualedge:
2031 if len(edge) >= workscan.getif(r):
2032 raise RuntimeError, "Number of edge elements appear to " \
2033 "be less than the number of IFs"
2034 curedge = edge[workscan.getif(r)]
[919]2035
[1819]2036 # take into account flagtra info (CAS-1434)
2037 flagtra = workscan._getmask(r)
2038 actualmask = mask[:]
2039 if len(actualmask) == 0:
2040 actualmask = list(flagtra[:])
2041 else:
2042 if len(actualmask) != len(flagtra):
2043 raise RuntimeError, "Mask and flagtra have different length"
2044 else:
2045 for i in range(0, len(actualmask)):
2046 actualmask[i] = actualmask[i] and flagtra[i]
2047
[976]2048 # setup line finder
[1819]2049 fl.find_lines(r, actualmask, curedge)
2050 outmask=fl.get_mask()
2051 f.set_scan(workscan, fl.get_mask())
2052 f.x = workscan._getabcissa(r)
2053 f.y = workscan._getspectrum(r)
2054 f.data = None
[880]2055 f.fit()
[1819]2056
2057 # Show mask list
2058 masklist=workscan.get_masklist(fl.get_mask(),row=r)
2059 msg = "mask range: "+str(masklist)
2060 asaplog.push(msg, False)
2061
[1061]2062 if plot:
2063 f.plot(residual=True)
2064 x = raw_input("Accept fit ( [y]/n ): ")
2065 if x.upper() == 'N':
[1819]2066 self.blpars.append(None)
2067 self.masklists.append(None)
[1061]2068 continue
[1819]2069
[880]2070 workscan._setspectrum(f.fitter.getresidual(), r)
[1819]2071 self.blpars.append(f.get_parameters())
2072 self.masklists.append(masklist)
[1061]2073 if plot:
2074 f._p.unmap()
2075 f._p = None
2076 workscan._add_history("auto_poly_baseline", varlist)
[880]2077 if insitu:
2078 self._assign(workscan)
2079 else:
2080 return workscan
2081
[1862]2082 @asaplog_post_dec
[914]2083 def rotate_linpolphase(self, angle):
[1846]2084 """\
[914]2085 Rotate the phase of the complex polarization O=Q+iU correlation.
2086 This is always done in situ in the raw data. So if you call this
2087 function more than once then each call rotates the phase further.
[1846]2088
[914]2089 Parameters:
[1846]2090
[914]2091 angle: The angle (degrees) to rotate (add) by.
[1846]2092
2093 Example::
2094
[914]2095 scan.rotate_linpolphase(2.3)
[1846]2096
[914]2097 """
2098 varlist = vars()
[936]2099 self._math._rotate_linpolphase(self, angle)
[914]2100 self._add_history("rotate_linpolphase", varlist)
2101 return
[710]2102
[1862]2103 @asaplog_post_dec
[914]2104 def rotate_xyphase(self, angle):
[1846]2105 """\
[914]2106 Rotate the phase of the XY correlation. This is always done in situ
2107 in the data. So if you call this function more than once
2108 then each call rotates the phase further.
[1846]2109
[914]2110 Parameters:
[1846]2111
[914]2112 angle: The angle (degrees) to rotate (add) by.
[1846]2113
2114 Example::
2115
[914]2116 scan.rotate_xyphase(2.3)
[1846]2117
[914]2118 """
2119 varlist = vars()
[936]2120 self._math._rotate_xyphase(self, angle)
[914]2121 self._add_history("rotate_xyphase", varlist)
2122 return
2123
[1862]2124 @asaplog_post_dec
[914]2125 def swap_linears(self):
[1846]2126 """\
[1573]2127 Swap the linear polarisations XX and YY, or better the first two
[1348]2128 polarisations as this also works for ciculars.
[914]2129 """
2130 varlist = vars()
[936]2131 self._math._swap_linears(self)
[914]2132 self._add_history("swap_linears", varlist)
2133 return
2134
[1862]2135 @asaplog_post_dec
[914]2136 def invert_phase(self):
[1846]2137 """\
[914]2138 Invert the phase of the complex polarisation
2139 """
2140 varlist = vars()
[936]2141 self._math._invert_phase(self)
[914]2142 self._add_history("invert_phase", varlist)
2143 return
2144
[1862]2145 @asaplog_post_dec
[876]2146 def add(self, offset, insitu=None):
[1846]2147 """\
[513]2148 Return a scan where all spectra have the offset added
[1846]2149
[513]2150 Parameters:
[1846]2151
[513]2152 offset: the offset
[1855]2153
[513]2154 insitu: if False a new scantable is returned.
2155 Otherwise, the scaling is done in-situ
2156 The default is taken from .asaprc (False)
[1846]2157
[513]2158 """
2159 if insitu is None: insitu = rcParams['insitu']
[876]2160 self._math._setinsitu(insitu)
[513]2161 varlist = vars()
[876]2162 s = scantable(self._math._unaryop(self, offset, "ADD", False))
[1118]2163 s._add_history("add", varlist)
[876]2164 if insitu:
2165 self._assign(s)
2166 else:
[513]2167 return s
2168
[1862]2169 @asaplog_post_dec
[1308]2170 def scale(self, factor, tsys=True, insitu=None):
[1846]2171 """\
2172
[513]2173 Return a scan where all spectra are scaled by the give 'factor'
[1846]2174
[513]2175 Parameters:
[1846]2176
[1819]2177 factor: the scaling factor (float or 1D float list)
[1855]2178
[513]2179 insitu: if False a new scantable is returned.
2180 Otherwise, the scaling is done in-situ
2181 The default is taken from .asaprc (False)
[1855]2182
[513]2183 tsys: if True (default) then apply the operation to Tsys
2184 as well as the data
[1846]2185
[513]2186 """
2187 if insitu is None: insitu = rcParams['insitu']
[876]2188 self._math._setinsitu(insitu)
[513]2189 varlist = vars()
[1819]2190 s = None
2191 import numpy
2192 if isinstance(factor, list) or isinstance(factor, numpy.ndarray):
2193 if isinstance(factor[0], list) or isinstance(factor[0], numpy.ndarray):
2194 from asapmath import _array2dOp
2195 s = _array2dOp( self.copy(), factor, "MUL", tsys )
2196 else:
2197 s = scantable( self._math._arrayop( self.copy(), factor, "MUL", tsys ) )
2198 else:
2199 s = scantable(self._math._unaryop(self.copy(), factor, "MUL", tsys))
[1118]2200 s._add_history("scale", varlist)
[876]2201 if insitu:
2202 self._assign(s)
2203 else:
[513]2204 return s
2205
[1504]2206 def set_sourcetype(self, match, matchtype="pattern",
2207 sourcetype="reference"):
[1846]2208 """\
[1502]2209 Set the type of the source to be an source or reference scan
[1846]2210 using the provided pattern.
2211
[1502]2212 Parameters:
[1846]2213
[1504]2214 match: a Unix style pattern, regular expression or selector
[1855]2215
[1504]2216 matchtype: 'pattern' (default) UNIX style pattern or
2217 'regex' regular expression
[1855]2218
[1502]2219 sourcetype: the type of the source to use (source/reference)
[1846]2220
[1502]2221 """
2222 varlist = vars()
2223 basesel = self.get_selection()
2224 stype = -1
2225 if sourcetype.lower().startswith("r"):
2226 stype = 1
2227 elif sourcetype.lower().startswith("s"):
2228 stype = 0
[1504]2229 else:
[1502]2230 raise ValueError("Illegal sourcetype use s(ource) or r(eference)")
[1504]2231 if matchtype.lower().startswith("p"):
2232 matchtype = "pattern"
2233 elif matchtype.lower().startswith("r"):
2234 matchtype = "regex"
2235 else:
2236 raise ValueError("Illegal matchtype, use p(attern) or r(egex)")
[1502]2237 sel = selector()
2238 if isinstance(match, selector):
2239 sel = match
2240 else:
[1504]2241 sel.set_query("SRCNAME == %s('%s')" % (matchtype, match))
[1502]2242 self.set_selection(basesel+sel)
2243 self._setsourcetype(stype)
2244 self.set_selection(basesel)
[1573]2245 self._add_history("set_sourcetype", varlist)
[1502]2246
[1862]2247 @asaplog_post_dec
[1857]2248 @preserve_selection
[1819]2249 def auto_quotient(self, preserve=True, mode='paired', verify=False):
[1846]2250 """\
[670]2251 This function allows to build quotients automatically.
[1819]2252 It assumes the observation to have the same number of
[670]2253 "ons" and "offs"
[1846]2254
[670]2255 Parameters:
[1846]2256
[710]2257 preserve: you can preserve (default) the continuum or
2258 remove it. The equations used are
[1857]2259
[670]2260 preserve: Output = Toff * (on/off) - Toff
[1857]2261
[1070]2262 remove: Output = Toff * (on/off) - Ton
[1855]2263
[1573]2264 mode: the on/off detection mode
[1348]2265 'paired' (default)
2266 identifies 'off' scans by the
2267 trailing '_R' (Mopra/Parkes) or
2268 '_e'/'_w' (Tid) and matches
2269 on/off pairs from the observing pattern
[1502]2270 'time'
2271 finds the closest off in time
[1348]2272
[1857]2273 .. todo:: verify argument is not implemented
2274
[670]2275 """
[1857]2276 varlist = vars()
[1348]2277 modes = ["time", "paired"]
[670]2278 if not mode in modes:
[876]2279 msg = "please provide valid mode. Valid modes are %s" % (modes)
2280 raise ValueError(msg)
[1348]2281 s = None
2282 if mode.lower() == "paired":
[1857]2283 sel = self.get_selection()
[1875]2284 sel.set_query("SRCTYPE==psoff")
[1356]2285 self.set_selection(sel)
[1348]2286 offs = self.copy()
[1875]2287 sel.set_query("SRCTYPE==pson")
[1356]2288 self.set_selection(sel)
[1348]2289 ons = self.copy()
2290 s = scantable(self._math._quotient(ons, offs, preserve))
2291 elif mode.lower() == "time":
2292 s = scantable(self._math._auto_quotient(self, mode, preserve))
[1118]2293 s._add_history("auto_quotient", varlist)
[876]2294 return s
[710]2295
[1862]2296 @asaplog_post_dec
[1145]2297 def mx_quotient(self, mask = None, weight='median', preserve=True):
[1846]2298 """\
[1143]2299 Form a quotient using "off" beams when observing in "MX" mode.
[1846]2300
[1143]2301 Parameters:
[1846]2302
[1145]2303 mask: an optional mask to be used when weight == 'stddev'
[1855]2304
[1143]2305 weight: How to average the off beams. Default is 'median'.
[1855]2306
[1145]2307 preserve: you can preserve (default) the continuum or
[1855]2308 remove it. The equations used are:
[1846]2309
[1855]2310 preserve: Output = Toff * (on/off) - Toff
2311
2312 remove: Output = Toff * (on/off) - Ton
2313
[1217]2314 """
[1593]2315 mask = mask or ()
[1141]2316 varlist = vars()
2317 on = scantable(self._math._mx_extract(self, 'on'))
[1143]2318 preoff = scantable(self._math._mx_extract(self, 'off'))
2319 off = preoff.average_time(mask=mask, weight=weight, scanav=False)
[1217]2320 from asapmath import quotient
[1145]2321 q = quotient(on, off, preserve)
[1143]2322 q._add_history("mx_quotient", varlist)
[1217]2323 return q
[513]2324
[1862]2325 @asaplog_post_dec
[718]2326 def freq_switch(self, insitu=None):
[1846]2327 """\
[718]2328 Apply frequency switching to the data.
[1846]2329
[718]2330 Parameters:
[1846]2331
[718]2332 insitu: if False a new scantable is returned.
2333 Otherwise, the swictching is done in-situ
2334 The default is taken from .asaprc (False)
[1846]2335
[718]2336 """
2337 if insitu is None: insitu = rcParams['insitu']
[876]2338 self._math._setinsitu(insitu)
[718]2339 varlist = vars()
[876]2340 s = scantable(self._math._freqswitch(self))
[1118]2341 s._add_history("freq_switch", varlist)
[1856]2342 if insitu:
2343 self._assign(s)
2344 else:
2345 return s
[718]2346
[1862]2347 @asaplog_post_dec
[780]2348 def recalc_azel(self):
[1846]2349 """Recalculate the azimuth and elevation for each position."""
[780]2350 varlist = vars()
[876]2351 self._recalcazel()
[780]2352 self._add_history("recalc_azel", varlist)
2353 return
2354
[1862]2355 @asaplog_post_dec
[513]2356 def __add__(self, other):
2357 varlist = vars()
2358 s = None
2359 if isinstance(other, scantable):
[1573]2360 s = scantable(self._math._binaryop(self, other, "ADD"))
[513]2361 elif isinstance(other, float):
[876]2362 s = scantable(self._math._unaryop(self, other, "ADD", False))
[513]2363 else:
[718]2364 raise TypeError("Other input is not a scantable or float value")
[513]2365 s._add_history("operator +", varlist)
2366 return s
2367
[1862]2368 @asaplog_post_dec
[513]2369 def __sub__(self, other):
2370 """
2371 implicit on all axes and on Tsys
2372 """
2373 varlist = vars()
2374 s = None
2375 if isinstance(other, scantable):
[1588]2376 s = scantable(self._math._binaryop(self, other, "SUB"))
[513]2377 elif isinstance(other, float):
[876]2378 s = scantable(self._math._unaryop(self, other, "SUB", False))
[513]2379 else:
[718]2380 raise TypeError("Other input is not a scantable or float value")
[513]2381 s._add_history("operator -", varlist)
2382 return s
[710]2383
[1862]2384 @asaplog_post_dec
[513]2385 def __mul__(self, other):
2386 """
2387 implicit on all axes and on Tsys
2388 """
2389 varlist = vars()
2390 s = None
2391 if isinstance(other, scantable):
[1588]2392 s = scantable(self._math._binaryop(self, other, "MUL"))
[513]2393 elif isinstance(other, float):
[876]2394 s = scantable(self._math._unaryop(self, other, "MUL", False))
[513]2395 else:
[718]2396 raise TypeError("Other input is not a scantable or float value")
[513]2397 s._add_history("operator *", varlist)
2398 return s
2399
[710]2400
[1862]2401 @asaplog_post_dec
[513]2402 def __div__(self, other):
2403 """
2404 implicit on all axes and on Tsys
2405 """
2406 varlist = vars()
2407 s = None
2408 if isinstance(other, scantable):
[1589]2409 s = scantable(self._math._binaryop(self, other, "DIV"))
[513]2410 elif isinstance(other, float):
2411 if other == 0.0:
[718]2412 raise ZeroDivisionError("Dividing by zero is not recommended")
[876]2413 s = scantable(self._math._unaryop(self, other, "DIV", False))
[513]2414 else:
[718]2415 raise TypeError("Other input is not a scantable or float value")
[513]2416 s._add_history("operator /", varlist)
2417 return s
2418
[1862]2419 @asaplog_post_dec
[530]2420 def get_fit(self, row=0):
[1846]2421 """\
[530]2422 Print or return the stored fits for a row in the scantable
[1846]2423
[530]2424 Parameters:
[1846]2425
[530]2426 row: the row which the fit has been applied to.
[1846]2427
[530]2428 """
2429 if row > self.nrow():
2430 return
[976]2431 from asap.asapfit import asapfit
[530]2432 fit = asapfit(self._getfit(row))
[1859]2433 asaplog.push( '%s' %(fit) )
2434 return fit.as_dict()
[530]2435
[1483]2436 def flag_nans(self):
[1846]2437 """\
[1483]2438 Utility function to flag NaN values in the scantable.
2439 """
2440 import numpy
2441 basesel = self.get_selection()
2442 for i in range(self.nrow()):
[1589]2443 sel = self.get_row_selector(i)
2444 self.set_selection(basesel+sel)
[1483]2445 nans = numpy.isnan(self._getspectrum(0))
2446 if numpy.any(nans):
2447 bnans = [ bool(v) for v in nans]
2448 self.flag(bnans)
2449 self.set_selection(basesel)
2450
[1588]2451 def get_row_selector(self, rowno):
2452 return selector(beams=self.getbeam(rowno),
2453 ifs=self.getif(rowno),
2454 pols=self.getpol(rowno),
2455 scans=self.getscan(rowno),
2456 cycles=self.getcycle(rowno))
[1573]2457
[484]2458 def _add_history(self, funcname, parameters):
[1435]2459 if not rcParams['scantable.history']:
2460 return
[484]2461 # create date
2462 sep = "##"
2463 from datetime import datetime
2464 dstr = datetime.now().strftime('%Y/%m/%d %H:%M:%S')
2465 hist = dstr+sep
2466 hist += funcname+sep#cdate+sep
2467 if parameters.has_key('self'): del parameters['self']
[1118]2468 for k, v in parameters.iteritems():
[484]2469 if type(v) is dict:
[1118]2470 for k2, v2 in v.iteritems():
[484]2471 hist += k2
2472 hist += "="
[1118]2473 if isinstance(v2, scantable):
[484]2474 hist += 'scantable'
2475 elif k2 == 'mask':
[1118]2476 if isinstance(v2, list) or isinstance(v2, tuple):
[513]2477 hist += str(self._zip_mask(v2))
2478 else:
2479 hist += str(v2)
[484]2480 else:
[513]2481 hist += str(v2)
[484]2482 else:
2483 hist += k
2484 hist += "="
[1118]2485 if isinstance(v, scantable):
[484]2486 hist += 'scantable'
2487 elif k == 'mask':
[1118]2488 if isinstance(v, list) or isinstance(v, tuple):
[513]2489 hist += str(self._zip_mask(v))
2490 else:
2491 hist += str(v)
[484]2492 else:
2493 hist += str(v)
2494 hist += sep
2495 hist = hist[:-2] # remove trailing '##'
2496 self._addhistory(hist)
2497
[710]2498
[484]2499 def _zip_mask(self, mask):
2500 mask = list(mask)
2501 i = 0
2502 segments = []
2503 while mask[i:].count(1):
2504 i += mask[i:].index(1)
2505 if mask[i:].count(0):
2506 j = i + mask[i:].index(0)
2507 else:
[710]2508 j = len(mask)
[1118]2509 segments.append([i, j])
[710]2510 i = j
[484]2511 return segments
[714]2512
[626]2513 def _get_ordinate_label(self):
2514 fu = "("+self.get_fluxunit()+")"
2515 import re
2516 lbl = "Intensity"
[1118]2517 if re.match(".K.", fu):
[626]2518 lbl = "Brightness Temperature "+ fu
[1118]2519 elif re.match(".Jy.", fu):
[626]2520 lbl = "Flux density "+ fu
2521 return lbl
[710]2522
[876]2523 def _check_ifs(self):
2524 nchans = [self.nchan(i) for i in range(self.nif(-1))]
[889]2525 nchans = filter(lambda t: t > 0, nchans)
[876]2526 return (sum(nchans)/len(nchans) == nchans[0])
[976]2527
[1862]2528 @asaplog_post_dec
[1819]2529 def _fill(self, names, unit, average, getpt, antenna):
[976]2530 first = True
2531 fullnames = []
2532 for name in names:
2533 name = os.path.expandvars(name)
2534 name = os.path.expanduser(name)
2535 if not os.path.exists(name):
2536 msg = "File '%s' does not exists" % (name)
2537 raise IOError(msg)
2538 fullnames.append(name)
2539 if average:
2540 asaplog.push('Auto averaging integrations')
[1079]2541 stype = int(rcParams['scantable.storage'].lower() == 'disk')
[976]2542 for name in fullnames:
[1073]2543 tbl = Scantable(stype)
[1843]2544 r = filler(tbl)
[1504]2545 rx = rcParams['scantable.reference']
[1843]2546 r.setreferenceexpr(rx)
[976]2547 msg = "Importing %s..." % (name)
[1118]2548 asaplog.push(msg, False)
[1843]2549 r.open(name)# antenna, -1, -1, getpt)
2550 r.fill()
[976]2551 if average:
[1118]2552 tbl = self._math._average((tbl, ), (), 'NONE', 'SCAN')
[976]2553 if not first:
2554 tbl = self._math._merge([self, tbl])
2555 Scantable.__init__(self, tbl)
[1843]2556 r.close()
[1118]2557 del r, tbl
[976]2558 first = False
[1861]2559 #flush log
2560 asaplog.post()
[976]2561 if unit is not None:
2562 self.set_fluxunit(unit)
[1824]2563 if not is_casapy():
2564 self.set_freqframe(rcParams['scantable.freqframe'])
[976]2565
[1402]2566 def __getitem__(self, key):
2567 if key < 0:
2568 key += self.nrow()
2569 if key >= self.nrow():
2570 raise IndexError("Row index out of range.")
2571 return self._getspectrum(key)
2572
2573 def __setitem__(self, key, value):
2574 if key < 0:
2575 key += self.nrow()
2576 if key >= self.nrow():
2577 raise IndexError("Row index out of range.")
2578 if not hasattr(value, "__len__") or \
2579 len(value) > self.nchan(self.getif(key)):
2580 raise ValueError("Spectrum length doesn't match.")
2581 return self._setspectrum(value, key)
2582
2583 def __len__(self):
2584 return self.nrow()
2585
2586 def __iter__(self):
2587 for i in range(len(self)):
2588 yield self[i]
Note: See TracBrowser for help on using the repository browser.