source: trunk/python/asapplotter.py@ 1163

Last change on this file since 1163 was 1158, checked in by mar637, 18 years ago

help for plot_lines

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 28.1 KB
Line 
1from asap import rcParams, print_log, selector
2from asap import NUM
3import matplotlib.axes
4
5class asapplotter:
6 """
7 The ASAP plotter.
8 By default the plotter is set up to plot polarisations
9 'colour stacked' and scantables across panels.
10 Note:
11 Currenly it only plots 'spectra' not Tsys or
12 other variables.
13 """
14 def __init__(self, visible=None):
15 self._visible = rcParams['plotter.gui']
16 if visible is not None:
17 self._visible = visible
18 self._plotter = self._newplotter()
19
20 self._panelling = None
21 self._stacking = None
22 self.set_panelling()
23 self.set_stacking()
24 self._rows = None
25 self._cols = None
26 self._autoplot = False
27 self._minmaxx = None
28 self._minmaxy = None
29 self._datamask = None
30 self._data = None
31 self._lmap = None
32 self._title = None
33 self._ordinate = None
34 self._abcissa = None
35 self._abcunit = None
36 self._usermask = []
37 self._maskselection = None
38 self._selection = selector()
39 self._hist = rcParams['plotter.histogram']
40
41 def _translate(self, instr):
42 keys = "s b i p t".split()
43 if isinstance(instr, str):
44 for key in keys:
45 if instr.lower().startswith(key):
46 return key
47 return None
48
49 def _newplotter(self):
50 if self._visible:
51 from asap.asaplotgui import asaplotgui as asaplot
52 else:
53 from asap.asaplot import asaplot
54 return asaplot()
55
56
57 def plot(self, scan=None):
58 """
59 Plot a scantable.
60 Parameters:
61 scan: a scantable
62 Note:
63 If a scantable was specified in a previous call
64 to plot, no argument has to be given to 'replot'
65 NO checking is done that the abcissas of the scantable
66 are consistent e.g. all 'channel' or all 'velocity' etc.
67 """
68 if self._plotter.is_dead:
69 self._plotter = self._newplotter()
70 self._plotter.hold()
71 self._plotter.clear()
72 from asap import scantable
73 if not self._data and not scan:
74 msg = "Input is not a scantable"
75 if rcParams['verbose']:
76 print msg
77 return
78 raise TypeError(msg)
79 if isinstance(scan, scantable):
80 if self._data is not None:
81 if scan != self._data:
82 self._data = scan
83 # reset
84 self._reset()
85 else:
86 self._data = scan
87 self._reset()
88 # ranges become invalid when unit changes
89 if self._abcunit and self._abcunit != self._data.get_unit():
90 self._minmaxx = None
91 self._minmaxy = None
92 self._abcunit = self._data.get_unit()
93 self._datamask = None
94 self._plot(self._data)
95 if self._minmaxy is not None:
96 self._plotter.set_limits(ylim=self._minmaxy)
97 self._plotter.release()
98 self._plotter.tidy()
99 self._plotter.show(hardrefresh=False)
100 print_log()
101 return
102
103
104 # forwards to matplotlib axes
105 def text(self, *args, **kwargs):
106 self._axes_callback("text", *args, **kwargs)
107 text. __doc__ = matplotlib.axes.Axes.text.__doc__
108 def arrow(self, *args, **kwargs):
109 self._axes_callback("arrow", *args, **kwargs)
110 arrow. __doc__ = matplotlib.axes.Axes.arrow.__doc__
111 def axvline(self, *args, **kwargs):
112 self._axes_callback("axvline", *args, **kwargs)
113 axvline. __doc__ = matplotlib.axes.Axes.axvline.__doc__
114 def axhline(self, *args, **kwargs):
115 self._axes_callback("axhline", *args, **kwargs)
116 axhline. __doc__ = matplotlib.axes.Axes.axhline.__doc__
117 def axvspan(self, *args, **kwargs):
118 self._axes_callback("axvspan", *args, **kwargs)
119 # hack to preventy mpl from redrawing the patch
120 # it seem to convert the patch into lines on every draw.
121 # This doesn't happen in a test script???
122 del self._plotter.axes.patches[-1]
123 axvspan. __doc__ = matplotlib.axes.Axes.axvspan.__doc__
124 def axhspan(self, *args, **kwargs):
125 self._axes_callback("ahvspan", *args, **kwargs)
126 # hack to preventy mpl from redrawing the patch
127 # it seem to convert the patch into lines on every draw.
128 # This doesn't happen in a test script???
129 del self._plotter.axes.patches[-1]
130 axhspan. __doc__ = matplotlib.axes.Axes.axhspan.__doc__
131
132 def _axes_callback(self, axesfunc, *args, **kwargs):
133 panel = 0
134 if kwargs.has_key("panel"):
135 panel = kwargs.pop("panel")
136 coords = None
137 if kwargs.has_key("coords"):
138 coords = kwargs.pop("coords")
139 if coords.lower() == 'world':
140 kwargs["transform"] = self._plotter.axes.transData
141 elif coords.lower() == 'relative':
142 kwargs["transform"] = self._plotter.axes.transAxes
143 self._plotter.subplot(panel)
144 self._plotter.axes.set_autoscale_on(False)
145 getattr(self._plotter.axes, axesfunc)(*args, **kwargs)
146 self._plotter.show(False)
147 self._plotter.axes.set_autoscale_on(True)
148 # end matplotlib.axes fowarding functions
149
150 def set_mode(self, stacking=None, panelling=None):
151 """
152 Set the plots look and feel, i.e. what you want to see on the plot.
153 Parameters:
154 stacking: tell the plotter which variable to plot
155 as line color overlays (default 'pol')
156 panelling: tell the plotter which variable to plot
157 across multiple panels (default 'scan'
158 Note:
159 Valid modes are:
160 'beam' 'Beam' 'b': Beams
161 'if' 'IF' 'i': IFs
162 'pol' 'Pol' 'p': Polarisations
163 'scan' 'Scan' 's': Scans
164 'time' 'Time' 't': Times
165 """
166 msg = "Invalid mode"
167 if not self.set_panelling(panelling) or \
168 not self.set_stacking(stacking):
169 if rcParams['verbose']:
170 print msg
171 return
172 else:
173 raise TypeError(msg)
174 if self._data: self.plot(self._data)
175 return
176
177 def set_panelling(self, what=None):
178 mode = what
179 if mode is None:
180 mode = rcParams['plotter.panelling']
181 md = self._translate(mode)
182 if md:
183 self._panelling = md
184 self._title = None
185 return True
186 return False
187
188 def set_layout(self,rows=None,cols=None):
189 """
190 Set the multi-panel layout, i.e. how many rows and columns plots
191 are visible.
192 Parameters:
193 rows: The number of rows of plots
194 cols: The number of columns of plots
195 Note:
196 If no argument is given, the potter reverts to its auto-plot
197 behaviour.
198 """
199 self._rows = rows
200 self._cols = cols
201 if self._data: self.plot(self._data)
202 return
203
204 def set_stacking(self, what=None):
205 mode = what
206 if mode is None:
207 mode = rcParams['plotter.stacking']
208 md = self._translate(mode)
209 if md:
210 self._stacking = md
211 self._lmap = None
212 return True
213 return False
214
215 def set_range(self,xstart=None,xend=None,ystart=None,yend=None):
216 """
217 Set the range of interest on the abcissa of the plot
218 Parameters:
219 [x,y]start,[x,y]end: The start and end points of the 'zoom' window
220 Note:
221 These become non-sensical when the unit changes.
222 use plotter.set_range() without parameters to reset
223
224 """
225 if xstart is None and xend is None:
226 self._minmaxx = None
227 else:
228 self._minmaxx = [xstart,xend]
229 if ystart is None and yend is None:
230 self._minmaxy = None
231 else:
232 self._minmaxy = [ystart,yend]
233 if self._data: self.plot(self._data)
234 return
235
236 def set_legend(self, mp=None, fontsize = None, mode = 0):
237 """
238 Specify a mapping for the legend instead of using the default
239 indices:
240 Parameters:
241 mp: a list of 'strings'. This should have the same length
242 as the number of elements on the legend and then maps
243 to the indeces in order. It is possible to uses latex
244 math expression. These have to be enclosed in r'',
245 e.g. r'$x^{2}$'
246 fontsize: The font size of the label (default None)
247 mode: where to display the legend
248 Any other value for loc else disables the legend:
249 0: auto
250 1: upper right
251 2: upper left
252 3: lower left
253 4: lower right
254 5: right
255 6: center left
256 7: center right
257 8: lower center
258 9: upper center
259 10: center
260
261 Example:
262 If the data has two IFs/rest frequencies with index 0 and 1
263 for CO and SiO:
264 plotter.set_stacking('i')
265 plotter.set_legend(['CO','SiO'])
266 plotter.plot()
267 plotter.set_legend([r'$^{12}CO$', r'SiO'])
268 """
269 self._lmap = mp
270 self._plotter.legend(mode)
271 if isinstance(fontsize, int):
272 from matplotlib import rc as rcp
273 rcp('legend', fontsize=fontsize)
274 if self._data:
275 self.plot(self._data)
276 return
277
278 def set_title(self, title=None, fontsize=None):
279 """
280 Set the title of the plot. If multiple panels are plotted,
281 multiple titles have to be specified.
282 Example:
283 # two panels are visible on the plotter
284 plotter.set_title(["First Panel","Second Panel"])
285 """
286 self._title = title
287 if isinstance(fontsize, int):
288 from matplotlib import rc as rcp
289 rcp('axes', titlesize=fontsize)
290 if self._data: self.plot(self._data)
291 return
292
293 def set_ordinate(self, ordinate=None, fontsize=None):
294 """
295 Set the y-axis label of the plot. If multiple panels are plotted,
296 multiple labels have to be specified.
297 Parameters:
298 ordinate: a list of ordinate labels. None (default) let
299 data determine the labels
300 Example:
301 # two panels are visible on the plotter
302 plotter.set_ordinate(["First Y-Axis","Second Y-Axis"])
303 """
304 self._ordinate = ordinate
305 if isinstance(fontsize, int):
306 from matplotlib import rc as rcp
307 rcp('axes', labelsize=fontsize)
308 rcp('ytick', labelsize=fontsize)
309 if self._data: self.plot(self._data)
310 return
311
312 def set_abcissa(self, abcissa=None, fontsize=None):
313 """
314 Set the x-axis label of the plot. If multiple panels are plotted,
315 multiple labels have to be specified.
316 Parameters:
317 abcissa: a list of abcissa labels. None (default) let
318 data determine the labels
319 Example:
320 # two panels are visible on the plotter
321 plotter.set_ordinate(["First X-Axis","Second X-Axis"])
322 """
323 self._abcissa = abcissa
324 if isinstance(fontsize, int):
325 from matplotlib import rc as rcp
326 rcp('axes', labelsize=fontsize)
327 rcp('xtick', labelsize=fontsize)
328 if self._data: self.plot(self._data)
329 return
330
331 def set_colors(self, colormap):
332 """
333 Set the colors to be used. The plotter will cycle through
334 these colors when lines are overlaid (stacking mode).
335 Parameters:
336 colormap: a list of colour names
337 Example:
338 plotter.set_colors("red green blue")
339 # If for example four lines are overlaid e.g I Q U V
340 # 'I' will be 'red', 'Q' will be 'green', U will be 'blue'
341 # and 'V' will be 'red' again.
342 """
343 if isinstance(colormap,str):
344 colormap = colormap.split()
345 self._plotter.palette(0,colormap=colormap)
346 if self._data: self.plot(self._data)
347
348 def set_histogram(self, hist=True, linewidth=None):
349 """
350 Enable/Disable histogram-like plotting.
351 Parameters:
352 hist: True (default) or False. The fisrt default
353 is taken from the .asaprc setting
354 plotter.histogram
355 """
356 self._hist = hist
357 if isinstance(linewidth, float) or isinstance(linewidth, int):
358 from matplotlib import rc as rcp
359 rcp('lines', linewidth=linewidth)
360 if self._data: self.plot(self._data)
361
362 def set_linestyles(self, linestyles=None, linewidth=None):
363 """
364 Set the linestyles to be used. The plotter will cycle through
365 these linestyles when lines are overlaid (stacking mode) AND
366 only one color has been set.
367 Parameters:
368 linestyles: a list of linestyles to use.
369 'line', 'dashed', 'dotted', 'dashdot',
370 'dashdotdot' and 'dashdashdot' are
371 possible
372
373 Example:
374 plotter.set_colors("black")
375 plotter.set_linestyles("line dashed dotted dashdot")
376 # If for example four lines are overlaid e.g I Q U V
377 # 'I' will be 'solid', 'Q' will be 'dashed',
378 # U will be 'dotted' and 'V' will be 'dashdot'.
379 """
380 if isinstance(linestyles,str):
381 linestyles = linestyles.split()
382 self._plotter.palette(color=0,linestyle=0,linestyles=linestyles)
383 if isinstance(linewidth, float) or isinstance(linewidth, int):
384 from matplotlib import rc as rcp
385 rcp('lines', linewidth=linewidth)
386 if self._data: self.plot(self._data)
387
388 def set_font(self, family=None, style=None, weight=None, size=None):
389 """
390 Set font properties.
391 Parameters:
392 family: one of 'sans-serif', 'serif', 'cursive', 'fantasy', 'monospace'
393 style: one of 'normal' (or 'roman'), 'italic' or 'oblique'
394 weight: one of 'normal or 'bold'
395 size: the 'general' font size, individual elements can be adjusted
396 seperately
397 """
398 from matplotlib import rc as rcp
399 if isinstance(family, str):
400 rcp('font', family=family)
401 if isinstance(style, str):
402 rcp('font', style=style)
403 if isinstance(weight, str):
404 rcp('font', weight=weight)
405 if isinstance(size, float) or isinstance(size, int):
406 rcp('font', size=size)
407 if self._data: self.plot(self._data)
408
409 def plot_lines(self, linecat=None, offset=0.0, deltachan=10, rotate=0.0,
410 location=None):
411 """
412 Plot a line catalog.
413 Parameters:
414 linecat: the linecatalog to plot
415 offset: the shift in frequency to apply to the frequencies
416 deltachan: the number of channels to include each side of the
417 line to determine a local maximum/minimum
418 rotate: the rotation for the text label
419 location: the location of the line annotation from the 'top',
420 'bottom' or alternate (None - the default)
421 """
422 if not self._data: return
423 from asap._asap import linecatalog
424 if not isinstance(linecat, linecatalog): return
425 if not self._data.get_unit().endswith("GHz"): return
426 #self._plotter.hold()
427 from matplotlib.numerix import ma
428 for j in range(len(self._plotter.subplots)):
429 self._plotter.subplot(j)
430 lims = self._plotter.axes.get_xlim()
431 for row in range(linecat.nrow()):
432 freq = linecat.get_frequency(row)/1000.0 + offset
433 if lims[0] < freq < lims[1]:
434 if location is None:
435 loc = 'bottom'
436 if row%2: loc='top'
437 else: loc = location
438 maxys = []
439 for line in self._plotter.axes.lines:
440 v = line._x
441 asc = v[0] < v[-1]
442
443 idx = None
444 if not asc:
445 if v[len(v)-1] <= freq <= v[0]:
446 i = len(v)-1
447 while i>=0 and v[i] < freq:
448 idx = i
449 i-=1
450 else:
451 if v[0] <= freq <= v[len(v)-1]:
452 i = 0
453 while i<len(v) and v[i] < freq:
454 idx = i
455 i+=1
456 if idx is not None:
457 lower = idx - deltachan
458 upper = idx + deltachan
459 if lower < 0: lower = 0
460 if upper > len(v): upper = len(v)
461 s = slice(lower, upper)
462 y = line._y_orig[s]
463 maxys.append(ma.maximum(y))
464 peak = max(maxys)
465 self._plotter.vline_with_label(freq, peak,
466 linecat.get_name(row),
467 location=loc, rotate=rotate)
468 # self._plotter.release()
469 self._plotter.show(hardrefresh=False)
470
471
472 def save(self, filename=None, orientation=None, dpi=None):
473 """
474 Save the plot to a file. The know formats are 'png', 'ps', 'eps'.
475 Parameters:
476 filename: The name of the output file. This is optional
477 and autodetects the image format from the file
478 suffix. If non filename is specified a file
479 called 'yyyymmdd_hhmmss.png' is created in the
480 current directory.
481 orientation: optional parameter for postscript only (not eps).
482 'landscape', 'portrait' or None (default) are valid.
483 If None is choosen for 'ps' output, the plot is
484 automatically oriented to fill the page.
485 dpi: The dpi of the output non-ps plot
486 """
487 self._plotter.save(filename,orientation,dpi)
488 return
489
490
491 def set_mask(self, mask=None, selection=None):
492 """
493 Set a plotting mask for a specific polarization.
494 This is useful for masking out "noise" Pangle outside a source.
495 Parameters:
496 mask: a mask from scantable.create_mask
497 selection: the spectra to apply the mask to.
498 Example:
499 select = selector()
500 select.setpolstrings("Pangle")
501 plotter.set_mask(mymask, select)
502 """
503 if not self._data:
504 msg = "Can only set mask after a first call to plot()"
505 if rcParams['verbose']:
506 print msg
507 return
508 else:
509 raise RuntimeError(msg)
510 if len(mask):
511 if isinstance(mask, list) or isinstance(mask, tuple):
512 self._usermask = array(mask)
513 else:
514 self._usermask = mask
515 if mask is None and selection is None:
516 self._usermask = []
517 self._maskselection = None
518 if isinstance(selection, selector):
519 self._maskselection = {'b': selection.get_beams(),
520 's': selection.get_scans(),
521 'i': selection.get_ifs(),
522 'p': selection.get_pols(),
523 't': [] }
524 else:
525 self._maskselection = None
526 self.plot(self._data)
527
528 def _slice_indeces(self, data):
529 mn = self._minmaxx[0]
530 mx = self._minmaxx[1]
531 asc = data[0] < data[-1]
532 start=0
533 end = len(data)-1
534 inc = 1
535 if not asc:
536 start = len(data)-1
537 end = 0
538 inc = -1
539 # find min index
540 while start > 0 and data[start] < mn:
541 start+= inc
542 # find max index
543 while end > 0 and data[end] > mx:
544 end-=inc
545 if end > 0: end +=1
546 if start > end:
547 return end,start
548 return start,end
549
550 def _reset(self):
551 self._usermask = []
552 self._usermaskspectra = None
553 self.set_selection(None, False)
554
555 def _plot(self, scan):
556 savesel = scan.get_selection()
557 sel = savesel + self._selection
558 d0 = {'s': 'SCANNO', 'b': 'BEAMNO', 'i':'IFNO',
559 'p': 'POLNO', 'c': 'CYCLENO', 't' : 'TIME' }
560 order = [d0[self._panelling],d0[self._stacking]]
561 sel.set_order(order)
562 scan.set_selection(sel)
563 d = {'b': scan.getbeam, 's': scan.getscan,
564 'i': scan.getif, 'p': scan.getpol, 't': scan._gettime }
565
566 polmodes = dict(zip(self._selection.get_pols(),
567 self._selection.get_poltypes()))
568 # this returns either a tuple of numbers or a length (ncycles)
569 # convert this into lengths
570 n0,nstack0 = self._get_selected_n(scan)
571 n = len(n0)
572 if isinstance(n0, int): n = n0
573 nstack = len(nstack0)
574 if isinstance(nstack0, int): nstack = nstack0
575 maxpanel, maxstack = 16,8
576 if n > maxpanel or nstack > maxstack:
577 from asap import asaplog
578 maxn = 0
579 if nstack > maxstack: maxn = maxstack
580 if n > maxpanel: maxn = maxpanel
581 msg ="Scan to be plotted contains more than %d selections.\n" \
582 "Selecting first %d selections..." % (maxn, maxn)
583 asaplog.push(msg)
584 print_log()
585 n = min(n,maxpanel)
586 nstack = min(nstack,maxstack)
587 if n > 1:
588 ganged = rcParams['plotter.ganged']
589 if self._rows and self._cols:
590 n = min(n,self._rows*self._cols)
591 self._plotter.set_panels(rows=self._rows,cols=self._cols,
592 nplots=n,ganged=ganged)
593 else:
594 self._plotter.set_panels(rows=n,cols=0,nplots=n,ganged=ganged)
595 else:
596 self._plotter.set_panels()
597 r=0
598 nr = scan.nrow()
599 a0,b0 = -1,-1
600 allxlim = []
601 allylim = []
602 newpanel=True
603 panelcount,stackcount = 0,0
604 while r < nr:
605 a = d[self._panelling](r)
606 b = d[self._stacking](r)
607 if a > a0 and panelcount < n:
608 if n > 1:
609 self._plotter.subplot(panelcount)
610 self._plotter.palette(0)
611 #title
612 xlab = self._abcissa and self._abcissa[panelcount] \
613 or scan._getabcissalabel()
614 ylab = self._ordinate and self._ordinate[panelcount] \
615 or scan._get_ordinate_label()
616 self._plotter.set_axes('xlabel',xlab)
617 self._plotter.set_axes('ylabel',ylab)
618 lbl = self._get_label(scan, r, self._panelling, self._title)
619 if isinstance(lbl, list) or isinstance(lbl, tuple):
620 if 0 <= panelcount < len(lbl):
621 lbl = lbl[panelcount]
622 else:
623 # get default label
624 lbl = self._get_label(scan, r, self._panelling, None)
625 self._plotter.set_axes('title',lbl)
626 newpanel = True
627 stackcount =0
628 panelcount += 1
629 if (b > b0 or newpanel) and stackcount < nstack:
630 y = []
631 if len(polmodes):
632 y = scan._getspectrum(r, polmodes[scan.getpol(r)])
633 else:
634 y = scan._getspectrum(r)
635 m = scan._getmask(r)
636 from matplotlib.numerix import logical_not, logical_and
637 if self._maskselection and len(self._usermask) == len(m):
638 if d[self._stacking](r) in self._maskselection[self._stacking]:
639 m = logical_and(m, self._usermask)
640 x = scan._getabcissa(r)
641 from matplotlib.numerix import ma, array
642 y = ma.masked_array(y,mask=logical_not(array(m,copy=False)))
643 if self._minmaxx is not None:
644 s,e = self._slice_indeces(x)
645 x = x[s:e]
646 y = y[s:e]
647 if len(x) > 1024 and rcParams['plotter.decimate']:
648 fac = len(x)/1024
649 x = x[::fac]
650 y = y[::fac]
651 llbl = self._get_label(scan, r, self._stacking, self._lmap)
652 if isinstance(llbl, list) or isinstance(llbl, tuple):
653 if 0 <= stackcount < len(llbl):
654 # use user label
655 llbl = llbl[stackcount]
656 else:
657 # get default label
658 llbl = self._get_label(scan, r, self._stacking, None)
659 self._plotter.set_line(label=llbl)
660 plotit = self._plotter.plot
661 if self._hist: plotit = self._plotter.hist
662 if len(x) > 0:
663 plotit(x,y)
664 xlim= self._minmaxx or [min(x),max(x)]
665 allxlim += xlim
666 ylim= self._minmaxy or [ma.minimum(y),ma.maximum(y)]
667 allylim += ylim
668 stackcount += 1
669 # last in colour stack -> autoscale x
670 if stackcount == nstack:
671 allxlim.sort()
672 self._plotter.axes.set_xlim([allxlim[0],allxlim[-1]])
673 # clear
674 allxlim =[]
675
676 newpanel = False
677 a0=a
678 b0=b
679 # ignore following rows
680 if (panelcount == n) and (stackcount == nstack):
681 # last panel -> autoscale y if ganged
682 if rcParams['plotter.ganged']:
683 allylim.sort()
684 self._plotter.set_limits(ylim=[allylim[0],allylim[-1]])
685 break
686 r+=1 # next row
687 #reset the selector to the scantable's original
688 scan.set_selection(savesel)
689
690 def set_selection(self, selection=None, refresh=True):
691 self._selection = isinstance(selection,selector) and selection or selector()
692 d0 = {'s': 'SCANNO', 'b': 'BEAMNO', 'i':'IFNO',
693 'p': 'POLNO', 'c': 'CYCLENO', 't' : 'TIME' }
694 order = [d0[self._panelling],d0[self._stacking]]
695 self._selection.set_order(order)
696 if self._data and refresh: self.plot(self._data)
697
698 def _get_selected_n(self, scan):
699 d1 = {'b': scan.getbeamnos, 's': scan.getscannos,
700 'i': scan.getifnos, 'p': scan.getpolnos, 't': scan.ncycle }
701 d2 = { 'b': self._selection.get_beams(),
702 's': self._selection.get_scans(),
703 'i': self._selection.get_ifs(),
704 'p': self._selection.get_pols(),
705 't': self._selection.get_cycles() }
706 n = d2[self._panelling] or d1[self._panelling]()
707 nstack = d2[self._stacking] or d1[self._stacking]()
708 return n,nstack
709
710 def _get_label(self, scan, row, mode, userlabel=None):
711 if isinstance(userlabel, list) and len(userlabel) == 0:
712 userlabel = " "
713 pms = dict(zip(self._selection.get_pols(),self._selection.get_poltypes()))
714 if len(pms):
715 poleval = scan._getpollabel(scan.getpol(row),pms[scan.getpol(row)])
716 else:
717 poleval = scan._getpollabel(scan.getpol(row),scan.poltype())
718 d = {'b': "Beam "+str(scan.getbeam(row)),
719 's': scan._getsourcename(row),
720 'i': "IF"+str(scan.getif(row)),
721 'p': poleval,
722 't': scan._gettime(row) }
723 return userlabel or d[mode]
724
Note: See TracBrowser for help on using the repository browser.