| 1 | from asap import rcParams, print_log, selector
|
|---|
| 2 | from asap import NUM
|
|---|
| 3 | import matplotlib.axes
|
|---|
| 4 |
|
|---|
| 5 | class asapplotter:
|
|---|
| 6 | """
|
|---|
| 7 | The ASAP plotter.
|
|---|
| 8 | By default the plotter is set up to plot polarisations
|
|---|
| 9 | 'colour stacked' and scantables across panels.
|
|---|
| 10 | Note:
|
|---|
| 11 | Currenly it only plots 'spectra' not Tsys or
|
|---|
| 12 | other variables.
|
|---|
| 13 | """
|
|---|
| 14 | def __init__(self, visible=None):
|
|---|
| 15 | self._visible = rcParams['plotter.gui']
|
|---|
| 16 | if visible is not None:
|
|---|
| 17 | self._visible = visible
|
|---|
| 18 | self._plotter = self._newplotter()
|
|---|
| 19 |
|
|---|
| 20 | self._panelling = None
|
|---|
| 21 | self._stacking = None
|
|---|
| 22 | self.set_panelling()
|
|---|
| 23 | self.set_stacking()
|
|---|
| 24 | self._rows = None
|
|---|
| 25 | self._cols = None
|
|---|
| 26 | self._autoplot = False
|
|---|
| 27 | self._minmaxx = None
|
|---|
| 28 | self._minmaxy = None
|
|---|
| 29 | self._datamask = None
|
|---|
| 30 | self._data = None
|
|---|
| 31 | self._lmap = None
|
|---|
| 32 | self._title = None
|
|---|
| 33 | self._ordinate = None
|
|---|
| 34 | self._abcissa = None
|
|---|
| 35 | self._abcunit = None
|
|---|
| 36 | self._usermask = []
|
|---|
| 37 | self._maskselection = None
|
|---|
| 38 | self._selection = selector()
|
|---|
| 39 | self._hist = rcParams['plotter.histogram']
|
|---|
| 40 |
|
|---|
| 41 | def _translate(self, instr):
|
|---|
| 42 | keys = "s b i p t".split()
|
|---|
| 43 | if isinstance(instr, str):
|
|---|
| 44 | for key in keys:
|
|---|
| 45 | if instr.lower().startswith(key):
|
|---|
| 46 | return key
|
|---|
| 47 | return None
|
|---|
| 48 |
|
|---|
| 49 | def _newplotter(self):
|
|---|
| 50 | if self._visible:
|
|---|
| 51 | from asap.asaplotgui import asaplotgui as asaplot
|
|---|
| 52 | else:
|
|---|
| 53 | from asap.asaplot import asaplot
|
|---|
| 54 | return asaplot()
|
|---|
| 55 |
|
|---|
| 56 |
|
|---|
| 57 | def plot(self, scan=None):
|
|---|
| 58 | """
|
|---|
| 59 | Plot a scantable.
|
|---|
| 60 | Parameters:
|
|---|
| 61 | scan: a scantable
|
|---|
| 62 | Note:
|
|---|
| 63 | If a scantable was specified in a previous call
|
|---|
| 64 | to plot, no argument has to be given to 'replot'
|
|---|
| 65 | NO checking is done that the abcissas of the scantable
|
|---|
| 66 | are consistent e.g. all 'channel' or all 'velocity' etc.
|
|---|
| 67 | """
|
|---|
| 68 | if self._plotter.is_dead:
|
|---|
| 69 | self._plotter = self._newplotter()
|
|---|
| 70 | self._plotter.hold()
|
|---|
| 71 | self._plotter.clear()
|
|---|
| 72 | from asap import scantable
|
|---|
| 73 | if not self._data and not scan:
|
|---|
| 74 | msg = "Input is not a scantable"
|
|---|
| 75 | if rcParams['verbose']:
|
|---|
| 76 | print msg
|
|---|
| 77 | return
|
|---|
| 78 | raise TypeError(msg)
|
|---|
| 79 | if isinstance(scan, scantable):
|
|---|
| 80 | if self._data is not None:
|
|---|
| 81 | if scan != self._data:
|
|---|
| 82 | self._data = scan
|
|---|
| 83 | # reset
|
|---|
| 84 | self._reset()
|
|---|
| 85 | else:
|
|---|
| 86 | self._data = scan
|
|---|
| 87 | self._reset()
|
|---|
| 88 | # ranges become invalid when unit changes
|
|---|
| 89 | if self._abcunit and self._abcunit != self._data.get_unit():
|
|---|
| 90 | self._minmaxx = None
|
|---|
| 91 | self._minmaxy = None
|
|---|
| 92 | self._abcunit = self._data.get_unit()
|
|---|
| 93 | self._datamask = None
|
|---|
| 94 | self._plot(self._data)
|
|---|
| 95 | if self._minmaxy is not None:
|
|---|
| 96 | self._plotter.set_limits(ylim=self._minmaxy)
|
|---|
| 97 | self._plotter.release()
|
|---|
| 98 | self._plotter.tidy()
|
|---|
| 99 | self._plotter.show(hardrefresh=False)
|
|---|
| 100 | print_log()
|
|---|
| 101 | return
|
|---|
| 102 |
|
|---|
| 103 |
|
|---|
| 104 | # forwards to matplotlib axes
|
|---|
| 105 | def text(self, *args, **kwargs):
|
|---|
| 106 | self._axes_callback("text", *args, **kwargs)
|
|---|
| 107 | text. __doc__ = matplotlib.axes.Axes.text.__doc__
|
|---|
| 108 | def arrow(self, *args, **kwargs):
|
|---|
| 109 | self._axes_callback("arrow", *args, **kwargs)
|
|---|
| 110 | arrow. __doc__ = matplotlib.axes.Axes.arrow.__doc__
|
|---|
| 111 | def axvline(self, *args, **kwargs):
|
|---|
| 112 | self._axes_callback("axvline", *args, **kwargs)
|
|---|
| 113 | axvline. __doc__ = matplotlib.axes.Axes.axvline.__doc__
|
|---|
| 114 | def axhline(self, *args, **kwargs):
|
|---|
| 115 | self._axes_callback("axhline", *args, **kwargs)
|
|---|
| 116 | axhline. __doc__ = matplotlib.axes.Axes.axhline.__doc__
|
|---|
| 117 | def axvspan(self, *args, **kwargs):
|
|---|
| 118 | self._axes_callback("axvspan", *args, **kwargs)
|
|---|
| 119 | # hack to preventy mpl from redrawing the patch
|
|---|
| 120 | # it seem to convert the patch into lines on every draw.
|
|---|
| 121 | # This doesn't happen in a test script???
|
|---|
| 122 | del self._plotter.axes.patches[-1]
|
|---|
| 123 | axvspan. __doc__ = matplotlib.axes.Axes.axvspan.__doc__
|
|---|
| 124 | def axhspan(self, *args, **kwargs):
|
|---|
| 125 | self._axes_callback("ahvspan", *args, **kwargs)
|
|---|
| 126 | # hack to preventy mpl from redrawing the patch
|
|---|
| 127 | # it seem to convert the patch into lines on every draw.
|
|---|
| 128 | # This doesn't happen in a test script???
|
|---|
| 129 | del self._plotter.axes.patches[-1]
|
|---|
| 130 | axhspan. __doc__ = matplotlib.axes.Axes.axhspan.__doc__
|
|---|
| 131 |
|
|---|
| 132 | def _axes_callback(self, axesfunc, *args, **kwargs):
|
|---|
| 133 | panel = 0
|
|---|
| 134 | if kwargs.has_key("panel"):
|
|---|
| 135 | panel = kwargs.pop("panel")
|
|---|
| 136 | coords = None
|
|---|
| 137 | if kwargs.has_key("coords"):
|
|---|
| 138 | coords = kwargs.pop("coords")
|
|---|
| 139 | if coords.lower() == 'world':
|
|---|
| 140 | kwargs["transform"] = self._plotter.axes.transData
|
|---|
| 141 | elif coords.lower() == 'relative':
|
|---|
| 142 | kwargs["transform"] = self._plotter.axes.transAxes
|
|---|
| 143 | self._plotter.subplot(panel)
|
|---|
| 144 | self._plotter.axes.set_autoscale_on(False)
|
|---|
| 145 | getattr(self._plotter.axes, axesfunc)(*args, **kwargs)
|
|---|
| 146 | self._plotter.show(False)
|
|---|
| 147 | self._plotter.axes.set_autoscale_on(True)
|
|---|
| 148 | # end matplotlib.axes fowarding functions
|
|---|
| 149 |
|
|---|
| 150 | def set_mode(self, stacking=None, panelling=None):
|
|---|
| 151 | """
|
|---|
| 152 | Set the plots look and feel, i.e. what you want to see on the plot.
|
|---|
| 153 | Parameters:
|
|---|
| 154 | stacking: tell the plotter which variable to plot
|
|---|
| 155 | as line color overlays (default 'pol')
|
|---|
| 156 | panelling: tell the plotter which variable to plot
|
|---|
| 157 | across multiple panels (default 'scan'
|
|---|
| 158 | Note:
|
|---|
| 159 | Valid modes are:
|
|---|
| 160 | 'beam' 'Beam' 'b': Beams
|
|---|
| 161 | 'if' 'IF' 'i': IFs
|
|---|
| 162 | 'pol' 'Pol' 'p': Polarisations
|
|---|
| 163 | 'scan' 'Scan' 's': Scans
|
|---|
| 164 | 'time' 'Time' 't': Times
|
|---|
| 165 | """
|
|---|
| 166 | msg = "Invalid mode"
|
|---|
| 167 | if not self.set_panelling(panelling) or \
|
|---|
| 168 | not self.set_stacking(stacking):
|
|---|
| 169 | if rcParams['verbose']:
|
|---|
| 170 | print msg
|
|---|
| 171 | return
|
|---|
| 172 | else:
|
|---|
| 173 | raise TypeError(msg)
|
|---|
| 174 | if self._data: self.plot(self._data)
|
|---|
| 175 | return
|
|---|
| 176 |
|
|---|
| 177 | def set_panelling(self, what=None):
|
|---|
| 178 | mode = what
|
|---|
| 179 | if mode is None:
|
|---|
| 180 | mode = rcParams['plotter.panelling']
|
|---|
| 181 | md = self._translate(mode)
|
|---|
| 182 | if md:
|
|---|
| 183 | self._panelling = md
|
|---|
| 184 | self._title = None
|
|---|
| 185 | return True
|
|---|
| 186 | return False
|
|---|
| 187 |
|
|---|
| 188 | def set_layout(self,rows=None,cols=None):
|
|---|
| 189 | """
|
|---|
| 190 | Set the multi-panel layout, i.e. how many rows and columns plots
|
|---|
| 191 | are visible.
|
|---|
| 192 | Parameters:
|
|---|
| 193 | rows: The number of rows of plots
|
|---|
| 194 | cols: The number of columns of plots
|
|---|
| 195 | Note:
|
|---|
| 196 | If no argument is given, the potter reverts to its auto-plot
|
|---|
| 197 | behaviour.
|
|---|
| 198 | """
|
|---|
| 199 | self._rows = rows
|
|---|
| 200 | self._cols = cols
|
|---|
| 201 | if self._data: self.plot(self._data)
|
|---|
| 202 | return
|
|---|
| 203 |
|
|---|
| 204 | def set_stacking(self, what=None):
|
|---|
| 205 | mode = what
|
|---|
| 206 | if mode is None:
|
|---|
| 207 | mode = rcParams['plotter.stacking']
|
|---|
| 208 | md = self._translate(mode)
|
|---|
| 209 | if md:
|
|---|
| 210 | self._stacking = md
|
|---|
| 211 | self._lmap = None
|
|---|
| 212 | return True
|
|---|
| 213 | return False
|
|---|
| 214 |
|
|---|
| 215 | def set_range(self,xstart=None,xend=None,ystart=None,yend=None):
|
|---|
| 216 | """
|
|---|
| 217 | Set the range of interest on the abcissa of the plot
|
|---|
| 218 | Parameters:
|
|---|
| 219 | [x,y]start,[x,y]end: The start and end points of the 'zoom' window
|
|---|
| 220 | Note:
|
|---|
| 221 | These become non-sensical when the unit changes.
|
|---|
| 222 | use plotter.set_range() without parameters to reset
|
|---|
| 223 |
|
|---|
| 224 | """
|
|---|
| 225 | if xstart is None and xend is None:
|
|---|
| 226 | self._minmaxx = None
|
|---|
| 227 | else:
|
|---|
| 228 | self._minmaxx = [xstart,xend]
|
|---|
| 229 | if ystart is None and yend is None:
|
|---|
| 230 | self._minmaxy = None
|
|---|
| 231 | else:
|
|---|
| 232 | self._minmaxy = [ystart,yend]
|
|---|
| 233 | if self._data: self.plot(self._data)
|
|---|
| 234 | return
|
|---|
| 235 |
|
|---|
| 236 | def set_legend(self, mp=None, fontsize = None, mode = 0):
|
|---|
| 237 | """
|
|---|
| 238 | Specify a mapping for the legend instead of using the default
|
|---|
| 239 | indices:
|
|---|
| 240 | Parameters:
|
|---|
| 241 | mp: a list of 'strings'. This should have the same length
|
|---|
| 242 | as the number of elements on the legend and then maps
|
|---|
| 243 | to the indeces in order. It is possible to uses latex
|
|---|
| 244 | math expression. These have to be enclosed in r'',
|
|---|
| 245 | e.g. r'$x^{2}$'
|
|---|
| 246 | fontsize: The font size of the label (default None)
|
|---|
| 247 | mode: where to display the legend
|
|---|
| 248 | Any other value for loc else disables the legend:
|
|---|
| 249 | 0: auto
|
|---|
| 250 | 1: upper right
|
|---|
| 251 | 2: upper left
|
|---|
| 252 | 3: lower left
|
|---|
| 253 | 4: lower right
|
|---|
| 254 | 5: right
|
|---|
| 255 | 6: center left
|
|---|
| 256 | 7: center right
|
|---|
| 257 | 8: lower center
|
|---|
| 258 | 9: upper center
|
|---|
| 259 | 10: center
|
|---|
| 260 |
|
|---|
| 261 | Example:
|
|---|
| 262 | If the data has two IFs/rest frequencies with index 0 and 1
|
|---|
| 263 | for CO and SiO:
|
|---|
| 264 | plotter.set_stacking('i')
|
|---|
| 265 | plotter.set_legend(['CO','SiO'])
|
|---|
| 266 | plotter.plot()
|
|---|
| 267 | plotter.set_legend([r'$^{12}CO$', r'SiO'])
|
|---|
| 268 | """
|
|---|
| 269 | self._lmap = mp
|
|---|
| 270 | self._plotter.legend(mode)
|
|---|
| 271 | if isinstance(fontsize, int):
|
|---|
| 272 | from matplotlib import rc as rcp
|
|---|
| 273 | rcp('legend', fontsize=fontsize)
|
|---|
| 274 | if self._data:
|
|---|
| 275 | self.plot(self._data)
|
|---|
| 276 | return
|
|---|
| 277 |
|
|---|
| 278 | def set_title(self, title=None, fontsize=None):
|
|---|
| 279 | """
|
|---|
| 280 | Set the title of the plot. If multiple panels are plotted,
|
|---|
| 281 | multiple titles have to be specified.
|
|---|
| 282 | Example:
|
|---|
| 283 | # two panels are visible on the plotter
|
|---|
| 284 | plotter.set_title(["First Panel","Second Panel"])
|
|---|
| 285 | """
|
|---|
| 286 | self._title = title
|
|---|
| 287 | if isinstance(fontsize, int):
|
|---|
| 288 | from matplotlib import rc as rcp
|
|---|
| 289 | rcp('axes', titlesize=fontsize)
|
|---|
| 290 | if self._data: self.plot(self._data)
|
|---|
| 291 | return
|
|---|
| 292 |
|
|---|
| 293 | def set_ordinate(self, ordinate=None, fontsize=None):
|
|---|
| 294 | """
|
|---|
| 295 | Set the y-axis label of the plot. If multiple panels are plotted,
|
|---|
| 296 | multiple labels have to be specified.
|
|---|
| 297 | Parameters:
|
|---|
| 298 | ordinate: a list of ordinate labels. None (default) let
|
|---|
| 299 | data determine the labels
|
|---|
| 300 | Example:
|
|---|
| 301 | # two panels are visible on the plotter
|
|---|
| 302 | plotter.set_ordinate(["First Y-Axis","Second Y-Axis"])
|
|---|
| 303 | """
|
|---|
| 304 | self._ordinate = ordinate
|
|---|
| 305 | if isinstance(fontsize, int):
|
|---|
| 306 | from matplotlib import rc as rcp
|
|---|
| 307 | rcp('axes', labelsize=fontsize)
|
|---|
| 308 | rcp('ytick', labelsize=fontsize)
|
|---|
| 309 | if self._data: self.plot(self._data)
|
|---|
| 310 | return
|
|---|
| 311 |
|
|---|
| 312 | def set_abcissa(self, abcissa=None, fontsize=None):
|
|---|
| 313 | """
|
|---|
| 314 | Set the x-axis label of the plot. If multiple panels are plotted,
|
|---|
| 315 | multiple labels have to be specified.
|
|---|
| 316 | Parameters:
|
|---|
| 317 | abcissa: a list of abcissa labels. None (default) let
|
|---|
| 318 | data determine the labels
|
|---|
| 319 | Example:
|
|---|
| 320 | # two panels are visible on the plotter
|
|---|
| 321 | plotter.set_ordinate(["First X-Axis","Second X-Axis"])
|
|---|
| 322 | """
|
|---|
| 323 | self._abcissa = abcissa
|
|---|
| 324 | if isinstance(fontsize, int):
|
|---|
| 325 | from matplotlib import rc as rcp
|
|---|
| 326 | rcp('axes', labelsize=fontsize)
|
|---|
| 327 | rcp('xtick', labelsize=fontsize)
|
|---|
| 328 | if self._data: self.plot(self._data)
|
|---|
| 329 | return
|
|---|
| 330 |
|
|---|
| 331 | def set_colors(self, colormap):
|
|---|
| 332 | """
|
|---|
| 333 | Set the colors to be used. The plotter will cycle through
|
|---|
| 334 | these colors when lines are overlaid (stacking mode).
|
|---|
| 335 | Parameters:
|
|---|
| 336 | colormap: a list of colour names
|
|---|
| 337 | Example:
|
|---|
| 338 | plotter.set_colors("red green blue")
|
|---|
| 339 | # If for example four lines are overlaid e.g I Q U V
|
|---|
| 340 | # 'I' will be 'red', 'Q' will be 'green', U will be 'blue'
|
|---|
| 341 | # and 'V' will be 'red' again.
|
|---|
| 342 | """
|
|---|
| 343 | if isinstance(colormap,str):
|
|---|
| 344 | colormap = colormap.split()
|
|---|
| 345 | self._plotter.palette(0,colormap=colormap)
|
|---|
| 346 | if self._data: self.plot(self._data)
|
|---|
| 347 |
|
|---|
| 348 | def set_histogram(self, hist=True, linewidth=None):
|
|---|
| 349 | """
|
|---|
| 350 | Enable/Disable histogram-like plotting.
|
|---|
| 351 | Parameters:
|
|---|
| 352 | hist: True (default) or False. The fisrt default
|
|---|
| 353 | is taken from the .asaprc setting
|
|---|
| 354 | plotter.histogram
|
|---|
| 355 | """
|
|---|
| 356 | self._hist = hist
|
|---|
| 357 | if isinstance(linewidth, float) or isinstance(linewidth, int):
|
|---|
| 358 | from matplotlib import rc as rcp
|
|---|
| 359 | rcp('lines', linewidth=linewidth)
|
|---|
| 360 | if self._data: self.plot(self._data)
|
|---|
| 361 |
|
|---|
| 362 | def set_linestyles(self, linestyles=None, linewidth=None):
|
|---|
| 363 | """
|
|---|
| 364 | Set the linestyles to be used. The plotter will cycle through
|
|---|
| 365 | these linestyles when lines are overlaid (stacking mode) AND
|
|---|
| 366 | only one color has been set.
|
|---|
| 367 | Parameters:
|
|---|
| 368 | linestyles: a list of linestyles to use.
|
|---|
| 369 | 'line', 'dashed', 'dotted', 'dashdot',
|
|---|
| 370 | 'dashdotdot' and 'dashdashdot' are
|
|---|
| 371 | possible
|
|---|
| 372 |
|
|---|
| 373 | Example:
|
|---|
| 374 | plotter.set_colors("black")
|
|---|
| 375 | plotter.set_linestyles("line dashed dotted dashdot")
|
|---|
| 376 | # If for example four lines are overlaid e.g I Q U V
|
|---|
| 377 | # 'I' will be 'solid', 'Q' will be 'dashed',
|
|---|
| 378 | # U will be 'dotted' and 'V' will be 'dashdot'.
|
|---|
| 379 | """
|
|---|
| 380 | if isinstance(linestyles,str):
|
|---|
| 381 | linestyles = linestyles.split()
|
|---|
| 382 | self._plotter.palette(color=0,linestyle=0,linestyles=linestyles)
|
|---|
| 383 | if isinstance(linewidth, float) or isinstance(linewidth, int):
|
|---|
| 384 | from matplotlib import rc as rcp
|
|---|
| 385 | rcp('lines', linewidth=linewidth)
|
|---|
| 386 | if self._data: self.plot(self._data)
|
|---|
| 387 |
|
|---|
| 388 | def set_font(self, family=None, style=None, weight=None, size=None):
|
|---|
| 389 | """
|
|---|
| 390 | Set font properties.
|
|---|
| 391 | Parameters:
|
|---|
| 392 | family: one of 'sans-serif', 'serif', 'cursive', 'fantasy', 'monospace'
|
|---|
| 393 | style: one of 'normal' (or 'roman'), 'italic' or 'oblique'
|
|---|
| 394 | weight: one of 'normal or 'bold'
|
|---|
| 395 | size: the 'general' font size, individual elements can be adjusted
|
|---|
| 396 | seperately
|
|---|
| 397 | """
|
|---|
| 398 | from matplotlib import rc as rcp
|
|---|
| 399 | if isinstance(family, str):
|
|---|
| 400 | rcp('font', family=family)
|
|---|
| 401 | if isinstance(style, str):
|
|---|
| 402 | rcp('font', style=style)
|
|---|
| 403 | if isinstance(weight, str):
|
|---|
| 404 | rcp('font', weight=weight)
|
|---|
| 405 | if isinstance(size, float) or isinstance(size, int):
|
|---|
| 406 | rcp('font', size=size)
|
|---|
| 407 | if self._data: self.plot(self._data)
|
|---|
| 408 |
|
|---|
| 409 | def plot_lines(self, linecat=None, offset=0.0, deltachan=10, rotate=0.0,
|
|---|
| 410 | location=None):
|
|---|
| 411 | """
|
|---|
| 412 | """
|
|---|
| 413 | if not self._data: return
|
|---|
| 414 | from asap._asap import linecatalog
|
|---|
| 415 | if not isinstance(linecat, linecatalog): return
|
|---|
| 416 | if not self._data.get_unit().endswith("GHz"): return
|
|---|
| 417 | #self._plotter.hold()
|
|---|
| 418 | from matplotlib.numerix import ma
|
|---|
| 419 | for j in range(len(self._plotter.subplots)):
|
|---|
| 420 | self._plotter.subplot(j)
|
|---|
| 421 | lims = self._plotter.axes.get_xlim()
|
|---|
| 422 | for row in range(linecat.nrow()):
|
|---|
| 423 | freq = linecat.get_frequency(row)/1000.0 + offset
|
|---|
| 424 | if lims[0] < freq < lims[1]:
|
|---|
| 425 | if location is None:
|
|---|
| 426 | loc = 'bottom'
|
|---|
| 427 | if row%2: loc='top'
|
|---|
| 428 | else: loc = location
|
|---|
| 429 | maxys = []
|
|---|
| 430 | for line in self._plotter.axes.lines:
|
|---|
| 431 | v = line._x
|
|---|
| 432 | asc = v[0] < v[-1]
|
|---|
| 433 |
|
|---|
| 434 | idx = None
|
|---|
| 435 | if not asc:
|
|---|
| 436 | if v[len(v)-1] <= freq <= v[0]:
|
|---|
| 437 | i = len(v)-1
|
|---|
| 438 | while i>=0 and v[i] < freq:
|
|---|
| 439 | idx = i
|
|---|
| 440 | i-=1
|
|---|
| 441 | else:
|
|---|
| 442 | if v[0] <= freq <= v[len(v)-1]:
|
|---|
| 443 | i = 0
|
|---|
| 444 | while i<len(v) and v[i] < freq:
|
|---|
| 445 | idx = i
|
|---|
| 446 | i+=1
|
|---|
| 447 | if idx is not None:
|
|---|
| 448 | lower = idx - deltachan
|
|---|
| 449 | upper = idx + deltachan
|
|---|
| 450 | if lower < 0: lower = 0
|
|---|
| 451 | if upper > len(v): upper = len(v)
|
|---|
| 452 | s = slice(lower, upper)
|
|---|
| 453 | y = line._y_orig[s]
|
|---|
| 454 | maxys.append(ma.maximum(y))
|
|---|
| 455 | peak = max(maxys)
|
|---|
| 456 | self._plotter.vline_with_label(freq, peak,
|
|---|
| 457 | linecat.get_name(row),
|
|---|
| 458 | location=loc, rotate=rotate)
|
|---|
| 459 | # self._plotter.release()
|
|---|
| 460 | self._plotter.show(hardrefresh=False)
|
|---|
| 461 |
|
|---|
| 462 |
|
|---|
| 463 | def save(self, filename=None, orientation=None, dpi=None):
|
|---|
| 464 | """
|
|---|
| 465 | Save the plot to a file. The know formats are 'png', 'ps', 'eps'.
|
|---|
| 466 | Parameters:
|
|---|
| 467 | filename: The name of the output file. This is optional
|
|---|
| 468 | and autodetects the image format from the file
|
|---|
| 469 | suffix. If non filename is specified a file
|
|---|
| 470 | called 'yyyymmdd_hhmmss.png' is created in the
|
|---|
| 471 | current directory.
|
|---|
| 472 | orientation: optional parameter for postscript only (not eps).
|
|---|
| 473 | 'landscape', 'portrait' or None (default) are valid.
|
|---|
| 474 | If None is choosen for 'ps' output, the plot is
|
|---|
| 475 | automatically oriented to fill the page.
|
|---|
| 476 | dpi: The dpi of the output non-ps plot
|
|---|
| 477 | """
|
|---|
| 478 | self._plotter.save(filename,orientation,dpi)
|
|---|
| 479 | return
|
|---|
| 480 |
|
|---|
| 481 |
|
|---|
| 482 | def set_mask(self, mask=None, selection=None):
|
|---|
| 483 | """
|
|---|
| 484 | Set a plotting mask for a specific polarization.
|
|---|
| 485 | This is useful for masking out "noise" Pangle outside a source.
|
|---|
| 486 | Parameters:
|
|---|
| 487 | mask: a mask from scantable.create_mask
|
|---|
| 488 | selection: the spectra to apply the mask to.
|
|---|
| 489 | Example:
|
|---|
| 490 | select = selector()
|
|---|
| 491 | select.setpolstrings("Pangle")
|
|---|
| 492 | plotter.set_mask(mymask, select)
|
|---|
| 493 | """
|
|---|
| 494 | if not self._data:
|
|---|
| 495 | msg = "Can only set mask after a first call to plot()"
|
|---|
| 496 | if rcParams['verbose']:
|
|---|
| 497 | print msg
|
|---|
| 498 | return
|
|---|
| 499 | else:
|
|---|
| 500 | raise RuntimeError(msg)
|
|---|
| 501 | if len(mask):
|
|---|
| 502 | if isinstance(mask, list) or isinstance(mask, tuple):
|
|---|
| 503 | self._usermask = array(mask)
|
|---|
| 504 | else:
|
|---|
| 505 | self._usermask = mask
|
|---|
| 506 | if mask is None and selection is None:
|
|---|
| 507 | self._usermask = []
|
|---|
| 508 | self._maskselection = None
|
|---|
| 509 | if isinstance(selection, selector):
|
|---|
| 510 | self._maskselection = {'b': selection.get_beams(),
|
|---|
| 511 | 's': selection.get_scans(),
|
|---|
| 512 | 'i': selection.get_ifs(),
|
|---|
| 513 | 'p': selection.get_pols(),
|
|---|
| 514 | 't': [] }
|
|---|
| 515 | else:
|
|---|
| 516 | self._maskselection = None
|
|---|
| 517 | self.plot(self._data)
|
|---|
| 518 |
|
|---|
| 519 | def _slice_indeces(self, data):
|
|---|
| 520 | mn = self._minmaxx[0]
|
|---|
| 521 | mx = self._minmaxx[1]
|
|---|
| 522 | asc = data[0] < data[-1]
|
|---|
| 523 | start=0
|
|---|
| 524 | end = len(data)-1
|
|---|
| 525 | inc = 1
|
|---|
| 526 | if not asc:
|
|---|
| 527 | start = len(data)-1
|
|---|
| 528 | end = 0
|
|---|
| 529 | inc = -1
|
|---|
| 530 | # find min index
|
|---|
| 531 | while start > 0 and data[start] < mn:
|
|---|
| 532 | start+= inc
|
|---|
| 533 | # find max index
|
|---|
| 534 | while end > 0 and data[end] > mx:
|
|---|
| 535 | end-=inc
|
|---|
| 536 | if end > 0: end +=1
|
|---|
| 537 | if start > end:
|
|---|
| 538 | return end,start
|
|---|
| 539 | return start,end
|
|---|
| 540 |
|
|---|
| 541 | def _reset(self):
|
|---|
| 542 | self._usermask = []
|
|---|
| 543 | self._usermaskspectra = None
|
|---|
| 544 | self.set_selection(None, False)
|
|---|
| 545 |
|
|---|
| 546 | def _plot(self, scan):
|
|---|
| 547 | savesel = scan.get_selection()
|
|---|
| 548 | sel = savesel + self._selection
|
|---|
| 549 | d0 = {'s': 'SCANNO', 'b': 'BEAMNO', 'i':'IFNO',
|
|---|
| 550 | 'p': 'POLNO', 'c': 'CYCLENO', 't' : 'TIME' }
|
|---|
| 551 | order = [d0[self._panelling],d0[self._stacking]]
|
|---|
| 552 | sel.set_order(order)
|
|---|
| 553 | scan.set_selection(sel)
|
|---|
| 554 | d = {'b': scan.getbeam, 's': scan.getscan,
|
|---|
| 555 | 'i': scan.getif, 'p': scan.getpol, 't': scan._gettime }
|
|---|
| 556 |
|
|---|
| 557 | polmodes = dict(zip(self._selection.get_pols(),
|
|---|
| 558 | self._selection.get_poltypes()))
|
|---|
| 559 | # this returns either a tuple of numbers or a length (ncycles)
|
|---|
| 560 | # convert this into lengths
|
|---|
| 561 | n0,nstack0 = self._get_selected_n(scan)
|
|---|
| 562 | n = len(n0)
|
|---|
| 563 | if isinstance(n0, int): n = n0
|
|---|
| 564 | nstack = len(nstack0)
|
|---|
| 565 | if isinstance(nstack0, int): nstack = nstack0
|
|---|
| 566 | maxpanel, maxstack = 16,8
|
|---|
| 567 | if n > maxpanel or nstack > maxstack:
|
|---|
| 568 | from asap import asaplog
|
|---|
| 569 | maxn = 0
|
|---|
| 570 | if nstack > maxstack: maxn = maxstack
|
|---|
| 571 | if n > maxpanel: maxn = maxpanel
|
|---|
| 572 | msg ="Scan to be plotted contains more than %d selections.\n" \
|
|---|
| 573 | "Selecting first %d selections..." % (maxn, maxn)
|
|---|
| 574 | asaplog.push(msg)
|
|---|
| 575 | print_log()
|
|---|
| 576 | n = min(n,maxpanel)
|
|---|
| 577 | nstack = min(nstack,maxstack)
|
|---|
| 578 | if n > 1:
|
|---|
| 579 | ganged = rcParams['plotter.ganged']
|
|---|
| 580 | if self._rows and self._cols:
|
|---|
| 581 | n = min(n,self._rows*self._cols)
|
|---|
| 582 | self._plotter.set_panels(rows=self._rows,cols=self._cols,
|
|---|
| 583 | nplots=n,ganged=ganged)
|
|---|
| 584 | else:
|
|---|
| 585 | self._plotter.set_panels(rows=n,cols=0,nplots=n,ganged=ganged)
|
|---|
| 586 | else:
|
|---|
| 587 | self._plotter.set_panels()
|
|---|
| 588 | r=0
|
|---|
| 589 | nr = scan.nrow()
|
|---|
| 590 | a0,b0 = -1,-1
|
|---|
| 591 | allxlim = []
|
|---|
| 592 | allylim = []
|
|---|
| 593 | newpanel=True
|
|---|
| 594 | panelcount,stackcount = 0,0
|
|---|
| 595 | while r < nr:
|
|---|
| 596 | a = d[self._panelling](r)
|
|---|
| 597 | b = d[self._stacking](r)
|
|---|
| 598 | if a > a0 and panelcount < n:
|
|---|
| 599 | if n > 1:
|
|---|
| 600 | self._plotter.subplot(panelcount)
|
|---|
| 601 | self._plotter.palette(0)
|
|---|
| 602 | #title
|
|---|
| 603 | xlab = self._abcissa and self._abcissa[panelcount] \
|
|---|
| 604 | or scan._getabcissalabel()
|
|---|
| 605 | ylab = self._ordinate and self._ordinate[panelcount] \
|
|---|
| 606 | or scan._get_ordinate_label()
|
|---|
| 607 | self._plotter.set_axes('xlabel',xlab)
|
|---|
| 608 | self._plotter.set_axes('ylabel',ylab)
|
|---|
| 609 | lbl = self._get_label(scan, r, self._panelling, self._title)
|
|---|
| 610 | if isinstance(lbl, list) or isinstance(lbl, tuple):
|
|---|
| 611 | if 0 <= panelcount < len(lbl):
|
|---|
| 612 | lbl = lbl[panelcount]
|
|---|
| 613 | else:
|
|---|
| 614 | # get default label
|
|---|
| 615 | lbl = self._get_label(scan, r, self._panelling, None)
|
|---|
| 616 | self._plotter.set_axes('title',lbl)
|
|---|
| 617 | newpanel = True
|
|---|
| 618 | stackcount =0
|
|---|
| 619 | panelcount += 1
|
|---|
| 620 | if (b > b0 or newpanel) and stackcount < nstack:
|
|---|
| 621 | y = []
|
|---|
| 622 | if len(polmodes):
|
|---|
| 623 | y = scan._getspectrum(r, polmodes[scan.getpol(r)])
|
|---|
| 624 | else:
|
|---|
| 625 | y = scan._getspectrum(r)
|
|---|
| 626 | m = scan._getmask(r)
|
|---|
| 627 | from matplotlib.numerix import logical_not, logical_and
|
|---|
| 628 | if self._maskselection and len(self._usermask) == len(m):
|
|---|
| 629 | if d[self._stacking](r) in self._maskselection[self._stacking]:
|
|---|
| 630 | m = logical_and(m, self._usermask)
|
|---|
| 631 | x = scan._getabcissa(r)
|
|---|
| 632 | from matplotlib.numerix import ma, array
|
|---|
| 633 | y = ma.masked_array(y,mask=logical_not(array(m,copy=False)))
|
|---|
| 634 | if self._minmaxx is not None:
|
|---|
| 635 | s,e = self._slice_indeces(x)
|
|---|
| 636 | x = x[s:e]
|
|---|
| 637 | y = y[s:e]
|
|---|
| 638 | if len(x) > 1024 and rcParams['plotter.decimate']:
|
|---|
| 639 | fac = len(x)/1024
|
|---|
| 640 | x = x[::fac]
|
|---|
| 641 | y = y[::fac]
|
|---|
| 642 | llbl = self._get_label(scan, r, self._stacking, self._lmap)
|
|---|
| 643 | if isinstance(llbl, list) or isinstance(llbl, tuple):
|
|---|
| 644 | if 0 <= stackcount < len(llbl):
|
|---|
| 645 | # use user label
|
|---|
| 646 | llbl = llbl[stackcount]
|
|---|
| 647 | else:
|
|---|
| 648 | # get default label
|
|---|
| 649 | llbl = self._get_label(scan, r, self._stacking, None)
|
|---|
| 650 | self._plotter.set_line(label=llbl)
|
|---|
| 651 | plotit = self._plotter.plot
|
|---|
| 652 | if self._hist: plotit = self._plotter.hist
|
|---|
| 653 | if len(x) > 0:
|
|---|
| 654 | plotit(x,y)
|
|---|
| 655 | xlim= self._minmaxx or [min(x),max(x)]
|
|---|
| 656 | allxlim += xlim
|
|---|
| 657 | ylim= self._minmaxy or [ma.minimum(y),ma.maximum(y)]
|
|---|
| 658 | allylim += ylim
|
|---|
| 659 | stackcount += 1
|
|---|
| 660 | # last in colour stack -> autoscale x
|
|---|
| 661 | if stackcount == nstack:
|
|---|
| 662 | allxlim.sort()
|
|---|
| 663 | self._plotter.axes.set_xlim([allxlim[0],allxlim[-1]])
|
|---|
| 664 | # clear
|
|---|
| 665 | allxlim =[]
|
|---|
| 666 |
|
|---|
| 667 | newpanel = False
|
|---|
| 668 | a0=a
|
|---|
| 669 | b0=b
|
|---|
| 670 | # ignore following rows
|
|---|
| 671 | if (panelcount == n) and (stackcount == nstack):
|
|---|
| 672 | # last panel -> autoscale y if ganged
|
|---|
| 673 | if rcParams['plotter.ganged']:
|
|---|
| 674 | allylim.sort()
|
|---|
| 675 | self._plotter.set_limits(ylim=[allylim[0],allylim[-1]])
|
|---|
| 676 | break
|
|---|
| 677 | r+=1 # next row
|
|---|
| 678 | #reset the selector to the scantable's original
|
|---|
| 679 | scan.set_selection(savesel)
|
|---|
| 680 |
|
|---|
| 681 | def set_selection(self, selection=None, refresh=True):
|
|---|
| 682 | self._selection = isinstance(selection,selector) and selection or selector()
|
|---|
| 683 | d0 = {'s': 'SCANNO', 'b': 'BEAMNO', 'i':'IFNO',
|
|---|
| 684 | 'p': 'POLNO', 'c': 'CYCLENO', 't' : 'TIME' }
|
|---|
| 685 | order = [d0[self._panelling],d0[self._stacking]]
|
|---|
| 686 | self._selection.set_order(order)
|
|---|
| 687 | if self._data and refresh: self.plot(self._data)
|
|---|
| 688 |
|
|---|
| 689 | def _get_selected_n(self, scan):
|
|---|
| 690 | d1 = {'b': scan.getbeamnos, 's': scan.getscannos,
|
|---|
| 691 | 'i': scan.getifnos, 'p': scan.getpolnos, 't': scan.ncycle }
|
|---|
| 692 | d2 = { 'b': self._selection.get_beams(),
|
|---|
| 693 | 's': self._selection.get_scans(),
|
|---|
| 694 | 'i': self._selection.get_ifs(),
|
|---|
| 695 | 'p': self._selection.get_pols(),
|
|---|
| 696 | 't': self._selection.get_cycles() }
|
|---|
| 697 | n = d2[self._panelling] or d1[self._panelling]()
|
|---|
| 698 | nstack = d2[self._stacking] or d1[self._stacking]()
|
|---|
| 699 | return n,nstack
|
|---|
| 700 |
|
|---|
| 701 | def _get_label(self, scan, row, mode, userlabel=None):
|
|---|
| 702 | if isinstance(userlabel, list) and len(userlabel) == 0:
|
|---|
| 703 | userlabel = " "
|
|---|
| 704 | pms = dict(zip(self._selection.get_pols(),self._selection.get_poltypes()))
|
|---|
| 705 | if len(pms):
|
|---|
| 706 | poleval = scan._getpollabel(scan.getpol(row),pms[scan.getpol(row)])
|
|---|
| 707 | else:
|
|---|
| 708 | poleval = scan._getpollabel(scan.getpol(row),scan.poltype())
|
|---|
| 709 | d = {'b': "Beam "+str(scan.getbeam(row)),
|
|---|
| 710 | 's': scan._getsourcename(row),
|
|---|
| 711 | 'i': "IF"+str(scan.getif(row)),
|
|---|
| 712 | 'p': poleval,
|
|---|
| 713 | 't': scan._gettime(row) }
|
|---|
| 714 | return userlabel or d[mode]
|
|---|
| 715 |
|
|---|