source: branches/polybatch/python/scantable.py@ 2031

Last change on this file since 2031 was 1924, checked in by Malte Marquarding, 14 years ago

Ticket #206: use STFitEntry as return objetc instead of pointer wrnagling.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 92.2 KB
RevLine 
[1846]1"""This module defines the scantable class."""
2
[1697]3import os
[1691]4try:
5 from functools import wraps as wraps_dec
6except ImportError:
7 from asap.compatibility import wraps as wraps_dec
8
[1824]9from asap.env import is_casapy
[876]10from asap._asap import Scantable
[1843]11from asap._asap import filler
[1824]12from asap.parameters import rcParams
[1862]13from asap.logging import asaplog, asaplog_post_dec
[1824]14from asap.selector import selector
15from asap.linecatalog import linecatalog
[1600]16from asap.coordinate import coordinate
[1859]17from asap.utils import _n_bools, mask_not, mask_and, mask_or, page
[1907]18from asap.asapfitter import fitter
[102]19
[1689]20
21def preserve_selection(func):
[1691]22 @wraps_dec(func)
[1689]23 def wrap(obj, *args, **kw):
24 basesel = obj.get_selection()
[1857]25 try:
26 val = func(obj, *args, **kw)
27 finally:
28 obj.set_selection(basesel)
[1689]29 return val
30 return wrap
31
[1846]32def is_scantable(filename):
33 """Is the given file a scantable?
[1689]34
[1846]35 Parameters:
36
37 filename: the name of the file/directory to test
38
39 """
[1883]40 if ( os.path.isdir(filename)
41 and os.path.exists(filename+'/table.info')
42 and os.path.exists(filename+'/table.dat') ):
43 f=open(filename+'/table.info')
44 l=f.readline()
45 f.close()
46 #if ( l.find('Scantable') != -1 ):
47 if ( l.find('Measurement Set') == -1 ):
48 return True
49 else:
50 return False
51 else:
52 return False
53## return (os.path.isdir(filename)
54## and not os.path.exists(filename+'/table.f1')
55## and os.path.exists(filename+'/table.info'))
[1697]56
[1883]57def is_ms(filename):
58 """Is the given file a MeasurementSet?
[1697]59
[1883]60 Parameters:
61
62 filename: the name of the file/directory to test
63
64 """
65 if ( os.path.isdir(filename)
66 and os.path.exists(filename+'/table.info')
67 and os.path.exists(filename+'/table.dat') ):
68 f=open(filename+'/table.info')
69 l=f.readline()
70 f.close()
71 if ( l.find('Measurement Set') != -1 ):
72 return True
73 else:
74 return False
75 else:
76 return False
77
[876]78class scantable(Scantable):
[1846]79 """\
80 The ASAP container for scans (single-dish data).
[102]81 """
[1819]82
[1862]83 @asaplog_post_dec
[1916]84 #def __init__(self, filename, average=None, unit=None, getpt=None,
85 # antenna=None, parallactify=None):
86 def __init__(self, filename, average=None, unit=None, parallactify=None, **args):
[1846]87 """\
[102]88 Create a scantable from a saved one or make a reference
[1846]89
[102]90 Parameters:
[1846]91
92 filename: the name of an asap table on disk
93 or
94 the name of a rpfits/sdfits/ms file
95 (integrations within scans are auto averaged
96 and the whole file is read) or
97 [advanced] a reference to an existing scantable
98
99 average: average all integrations withinb a scan on read.
100 The default (True) is taken from .asaprc.
101
[484]102 unit: brightness unit; must be consistent with K or Jy.
[1846]103 Over-rides the default selected by the filler
104 (input rpfits/sdfits/ms) or replaces the value
105 in existing scantables
106
107 getpt: for MeasurementSet input data only:
108 If True, all pointing data are filled.
109 The deafult is False, which makes time to load
110 the MS data faster in some cases.
111
[1920]112 antenna: for MeasurementSet input data only:
113 Antenna selection. integer (id) or string (name or id).
[1846]114
115 parallactify: Indicate that the data had been parallatified. Default
116 is taken from rc file.
117
[710]118 """
[976]119 if average is None:
[710]120 average = rcParams['scantable.autoaverage']
[1916]121 #if getpt is None:
122 # getpt = True
123 #if antenna is not None:
124 # asaplog.push("Antenna selection currently unsupported."
125 # "Using ''")
126 # asaplog.post('WARN')
127 #if antenna is None:
128 # antenna = ''
129 #elif type(antenna) == int:
130 # antenna = '%s' % antenna
131 #elif type(antenna) == list:
132 # tmpstr = ''
133 # for i in range( len(antenna) ):
134 # if type(antenna[i]) == int:
135 # tmpstr = tmpstr + ('%s,'%(antenna[i]))
136 # elif type(antenna[i]) == str:
137 # tmpstr=tmpstr+antenna[i]+','
138 # else:
139 # raise TypeError('Bad antenna selection.')
140 # antenna = tmpstr.rstrip(',')
[1593]141 parallactify = parallactify or rcParams['scantable.parallactify']
[1259]142 varlist = vars()
[876]143 from asap._asap import stmath
[1819]144 self._math = stmath( rcParams['insitu'] )
[876]145 if isinstance(filename, Scantable):
146 Scantable.__init__(self, filename)
[181]147 else:
[1697]148 if isinstance(filename, str):
[976]149 filename = os.path.expandvars(filename)
150 filename = os.path.expanduser(filename)
151 if not os.path.exists(filename):
152 s = "File '%s' not found." % (filename)
153 raise IOError(s)
[1697]154 if is_scantable(filename):
155 ondisk = rcParams['scantable.storage'] == 'disk'
156 Scantable.__init__(self, filename, ondisk)
157 if unit is not None:
158 self.set_fluxunit(unit)
[1819]159 # do not reset to the default freqframe
160 #self.set_freqframe(rcParams['scantable.freqframe'])
[1883]161 #elif os.path.isdir(filename) \
162 # and not os.path.exists(filename+'/table.f1'):
163 elif is_ms(filename):
[1916]164 # Measurement Set
165 opts={'ms': {}}
166 mskeys=['getpt','antenna']
167 for key in mskeys:
168 if key in args.keys():
169 opts['ms'][key] = args[key]
170 #self._fill([filename], unit, average, getpt, antenna)
171 self._fill([filename], unit, average, opts)
[1893]172 elif os.path.isfile(filename):
[1916]173 #self._fill([filename], unit, average, getpt, antenna)
174 self._fill([filename], unit, average)
[1883]175 else:
[1819]176 msg = "The given file '%s'is not a valid " \
177 "asap table." % (filename)
[1859]178 raise IOError(msg)
[1118]179 elif (isinstance(filename, list) or isinstance(filename, tuple)) \
[976]180 and isinstance(filename[-1], str):
[1916]181 #self._fill(filename, unit, average, getpt, antenna)
182 self._fill(filename, unit, average)
[1586]183 self.parallactify(parallactify)
[1259]184 self._add_history("scantable", varlist)
[102]185
[1862]186 @asaplog_post_dec
[876]187 def save(self, name=None, format=None, overwrite=False):
[1846]188 """\
[1280]189 Store the scantable on disk. This can be an asap (aips++) Table,
190 SDFITS or MS2 format.
[1846]191
[116]192 Parameters:
[1846]193
[1093]194 name: the name of the outputfile. For format "ASCII"
195 this is the root file name (data in 'name'.txt
[497]196 and header in 'name'_header.txt)
[1855]197
[116]198 format: an optional file format. Default is ASAP.
[1855]199 Allowed are:
200
201 * 'ASAP' (save as ASAP [aips++] Table),
202 * 'SDFITS' (save as SDFITS file)
203 * 'ASCII' (saves as ascii text file)
204 * 'MS2' (saves as an casacore MeasurementSet V2)
205 * 'FITS' (save as image FITS - not readable by class)
206 * 'CLASS' (save as FITS readable by CLASS)
207
[411]208 overwrite: If the file should be overwritten if it exists.
[256]209 The default False is to return with warning
[411]210 without writing the output. USE WITH CARE.
[1855]211
[1846]212 Example::
213
[116]214 scan.save('myscan.asap')
[1118]215 scan.save('myscan.sdfits', 'SDFITS')
[1846]216
[116]217 """
[411]218 from os import path
[1593]219 format = format or rcParams['scantable.save']
[256]220 suffix = '.'+format.lower()
[1118]221 if name is None or name == "":
[256]222 name = 'scantable'+suffix
[718]223 msg = "No filename given. Using default name %s..." % name
224 asaplog.push(msg)
[411]225 name = path.expandvars(name)
[256]226 if path.isfile(name) or path.isdir(name):
227 if not overwrite:
[718]228 msg = "File %s exists." % name
[1859]229 raise IOError(msg)
[451]230 format2 = format.upper()
231 if format2 == 'ASAP':
[116]232 self._save(name)
233 else:
[989]234 from asap._asap import stwriter as stw
[1118]235 writer = stw(format2)
236 writer.write(self, name)
[116]237 return
238
[102]239 def copy(self):
[1846]240 """Return a copy of this scantable.
241
242 *Note*:
243
[1348]244 This makes a full (deep) copy. scan2 = scan1 makes a reference.
[1846]245
246 Example::
247
[102]248 copiedscan = scan.copy()
[1846]249
[102]250 """
[876]251 sd = scantable(Scantable._copy(self))
[113]252 return sd
253
[1093]254 def drop_scan(self, scanid=None):
[1846]255 """\
[1093]256 Return a new scantable where the specified scan number(s) has(have)
257 been dropped.
[1846]258
[1093]259 Parameters:
[1846]260
[1093]261 scanid: a (list of) scan number(s)
[1846]262
[1093]263 """
264 from asap import _is_sequence_or_number as _is_valid
265 from asap import _to_list
266 from asap import unique
267 if not _is_valid(scanid):
[1859]268 raise RuntimeError( 'Please specify a scanno to drop from the scantable' )
269 scanid = _to_list(scanid)
270 allscans = unique([ self.getscan(i) for i in range(self.nrow())])
271 for sid in scanid: allscans.remove(sid)
272 if len(allscans) == 0:
273 raise ValueError("Can't remove all scans")
274 sel = selector(scans=allscans)
275 return self._select_copy(sel)
[1093]276
[1594]277 def _select_copy(self, selection):
278 orig = self.get_selection()
279 self.set_selection(orig+selection)
280 cp = self.copy()
281 self.set_selection(orig)
282 return cp
283
[102]284 def get_scan(self, scanid=None):
[1855]285 """\
[102]286 Return a specific scan (by scanno) or collection of scans (by
287 source name) in a new scantable.
[1846]288
289 *Note*:
290
[1348]291 See scantable.drop_scan() for the inverse operation.
[1846]292
[102]293 Parameters:
[1846]294
[513]295 scanid: a (list of) scanno or a source name, unix-style
296 patterns are accepted for source name matching, e.g.
297 '*_R' gets all 'ref scans
[1846]298
299 Example::
300
[513]301 # get all scans containing the source '323p459'
302 newscan = scan.get_scan('323p459')
303 # get all 'off' scans
304 refscans = scan.get_scan('*_R')
305 # get a susbset of scans by scanno (as listed in scan.summary())
[1118]306 newscan = scan.get_scan([0, 2, 7, 10])
[1846]307
[102]308 """
309 if scanid is None:
[1859]310 raise RuntimeError( 'Please specify a scan no or name to '
311 'retrieve from the scantable' )
[102]312 try:
[946]313 bsel = self.get_selection()
314 sel = selector()
[102]315 if type(scanid) is str:
[946]316 sel.set_name(scanid)
[1594]317 return self._select_copy(sel)
[102]318 elif type(scanid) is int:
[946]319 sel.set_scans([scanid])
[1594]320 return self._select_copy(sel)
[381]321 elif type(scanid) is list:
[946]322 sel.set_scans(scanid)
[1594]323 return self._select_copy(sel)
[381]324 else:
[718]325 msg = "Illegal scanid type, use 'int' or 'list' if ints."
[1859]326 raise TypeError(msg)
[102]327 except RuntimeError:
[1859]328 raise
[102]329
330 def __str__(self):
[1118]331 return Scantable._summary(self, True)
[102]332
[976]333 def summary(self, filename=None):
[1846]334 """\
[102]335 Print a summary of the contents of this scantable.
[1846]336
[102]337 Parameters:
[1846]338
[102]339 filename: the name of a file to write the putput to
340 Default - no file output
[1846]341
[102]342 """
[976]343 info = Scantable._summary(self, True)
[102]344 if filename is not None:
[256]345 if filename is "":
346 filename = 'scantable_summary.txt'
[415]347 from os.path import expandvars, isdir
[411]348 filename = expandvars(filename)
[415]349 if not isdir(filename):
[413]350 data = open(filename, 'w')
351 data.write(info)
352 data.close()
353 else:
[718]354 msg = "Illegal file name '%s'." % (filename)
[1859]355 raise IOError(msg)
356 return page(info)
[710]357
[1512]358 def get_spectrum(self, rowno):
[1471]359 """Return the spectrum for the current row in the scantable as a list.
[1846]360
[1471]361 Parameters:
[1846]362
[1573]363 rowno: the row number to retrieve the spectrum from
[1846]364
[1471]365 """
366 return self._getspectrum(rowno)
[946]367
[1471]368 def get_mask(self, rowno):
369 """Return the mask for the current row in the scantable as a list.
[1846]370
[1471]371 Parameters:
[1846]372
[1573]373 rowno: the row number to retrieve the mask from
[1846]374
[1471]375 """
376 return self._getmask(rowno)
377
378 def set_spectrum(self, spec, rowno):
379 """Return the spectrum for the current row in the scantable as a list.
[1846]380
[1471]381 Parameters:
[1846]382
[1855]383 spec: the new spectrum
[1846]384
[1855]385 rowno: the row number to set the spectrum for
386
[1471]387 """
388 assert(len(spec) == self.nchan())
389 return self._setspectrum(spec, rowno)
390
[1600]391 def get_coordinate(self, rowno):
392 """Return the (spectral) coordinate for a a given 'rowno'.
[1846]393
394 *Note*:
395
[1600]396 * This coordinate is only valid until a scantable method modifies
397 the frequency axis.
398 * This coordinate does contain the original frequency set-up
399 NOT the new frame. The conversions however are done using the user
400 specified frame (e.g. LSRK/TOPO). To get the 'real' coordinate,
401 use scantable.freq_align first. Without it there is no closure,
[1846]402 i.e.::
[1600]403
[1846]404 c = myscan.get_coordinate(0)
405 c.to_frequency(c.get_reference_pixel()) != c.get_reference_value()
406
[1600]407 Parameters:
[1846]408
[1600]409 rowno: the row number for the spectral coordinate
410
411 """
412 return coordinate(Scantable.get_coordinate(self, rowno))
413
[946]414 def get_selection(self):
[1846]415 """\
[1005]416 Get the selection object currently set on this scantable.
[1846]417
418 Example::
419
[1005]420 sel = scan.get_selection()
421 sel.set_ifs(0) # select IF 0
422 scan.set_selection(sel) # apply modified selection
[1846]423
[946]424 """
425 return selector(self._getselection())
426
[1576]427 def set_selection(self, selection=None, **kw):
[1846]428 """\
[1005]429 Select a subset of the data. All following operations on this scantable
430 are only applied to thi selection.
[1846]431
[1005]432 Parameters:
[1697]433
[1846]434 selection: a selector object (default unset the selection), or
435 any combination of "pols", "ifs", "beams", "scans",
436 "cycles", "name", "query"
[1697]437
[1846]438 Examples::
[1697]439
[1005]440 sel = selector() # create a selection object
[1118]441 self.set_scans([0, 3]) # select SCANNO 0 and 3
[1005]442 scan.set_selection(sel) # set the selection
443 scan.summary() # will only print summary of scanno 0 an 3
444 scan.set_selection() # unset the selection
[1697]445 # or the equivalent
446 scan.set_selection(scans=[0,3])
447 scan.summary() # will only print summary of scanno 0 an 3
448 scan.set_selection() # unset the selection
[1846]449
[946]450 """
[1576]451 if selection is None:
452 # reset
453 if len(kw) == 0:
454 selection = selector()
455 else:
456 # try keywords
457 for k in kw:
458 if k not in selector.fields:
459 raise KeyError("Invalid selection key '%s', valid keys are %s" % (k, selector.fields))
460 selection = selector(**kw)
[946]461 self._setselection(selection)
462
[1819]463 def get_row(self, row=0, insitu=None):
[1846]464 """\
[1819]465 Select a row in the scantable.
466 Return a scantable with single row.
[1846]467
[1819]468 Parameters:
[1846]469
470 row: row no of integration, default is 0.
471 insitu: if False a new scantable is returned. Otherwise, the
472 scaling is done in-situ. The default is taken from .asaprc
473 (False)
474
[1819]475 """
476 if insitu is None: insitu = rcParams['insitu']
477 if not insitu:
478 workscan = self.copy()
479 else:
480 workscan = self
481 # Select a row
482 sel=selector()
483 sel.set_scans([workscan.getscan(row)])
484 sel.set_cycles([workscan.getcycle(row)])
485 sel.set_beams([workscan.getbeam(row)])
486 sel.set_ifs([workscan.getif(row)])
487 sel.set_polarisations([workscan.getpol(row)])
488 sel.set_name(workscan._getsourcename(row))
489 workscan.set_selection(sel)
490 if not workscan.nrow() == 1:
491 msg = "Cloud not identify single row. %d rows selected."%(workscan.nrow())
492 raise RuntimeError(msg)
493 del sel
494 if insitu:
495 self._assign(workscan)
496 else:
497 return workscan
498
[1862]499 @asaplog_post_dec
[1907]500 def stats(self, stat='stddev', mask=None, form='3.3f', row=None):
[1846]501 """\
[135]502 Determine the specified statistic of the current beam/if/pol
[102]503 Takes a 'mask' as an optional parameter to specify which
504 channels should be excluded.
[1846]505
[102]506 Parameters:
[1846]507
[1819]508 stat: 'min', 'max', 'min_abc', 'max_abc', 'sumsq', 'sum',
509 'mean', 'var', 'stddev', 'avdev', 'rms', 'median'
[1855]510
[135]511 mask: an optional mask specifying where the statistic
[102]512 should be determined.
[1855]513
[1819]514 form: format string to print statistic values
[1846]515
[1907]516 row: row number of spectrum to process.
517 (default is None: for all rows)
[1846]518
[1907]519 Example:
[113]520 scan.set_unit('channel')
[1118]521 msk = scan.create_mask([100, 200], [500, 600])
[135]522 scan.stats(stat='mean', mask=m)
[1846]523
[102]524 """
[1593]525 mask = mask or []
[876]526 if not self._check_ifs():
[1118]527 raise ValueError("Cannot apply mask as the IFs have different "
528 "number of channels. Please use setselection() "
529 "to select individual IFs")
[1819]530 rtnabc = False
531 if stat.lower().endswith('_abc'): rtnabc = True
532 getchan = False
533 if stat.lower().startswith('min') or stat.lower().startswith('max'):
534 chan = self._math._minmaxchan(self, mask, stat)
535 getchan = True
536 statvals = []
[1907]537 if not rtnabc:
538 if row == None:
539 statvals = self._math._stats(self, mask, stat)
540 else:
541 statvals = self._math._statsrow(self, mask, stat, int(row))
[256]542
[1819]543 #def cb(i):
544 # return statvals[i]
[256]545
[1819]546 #return self._row_callback(cb, stat)
[102]547
[1819]548 label=stat
549 #callback=cb
550 out = ""
551 #outvec = []
552 sep = '-'*50
[1907]553
554 if row == None:
555 rows = xrange(self.nrow())
556 elif isinstance(row, int):
557 rows = [ row ]
558
559 for i in rows:
[1819]560 refstr = ''
561 statunit= ''
562 if getchan:
563 qx, qy = self.chan2data(rowno=i, chan=chan[i])
564 if rtnabc:
565 statvals.append(qx['value'])
566 refstr = ('(value: %'+form) % (qy['value'])+' ['+qy['unit']+'])'
567 statunit= '['+qx['unit']+']'
568 else:
569 refstr = ('(@ %'+form) % (qx['value'])+' ['+qx['unit']+'])'
570
571 tm = self._gettime(i)
572 src = self._getsourcename(i)
573 out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
574 out += 'Time[%s]:\n' % (tm)
[1907]575 if self.nbeam(-1) > 1: out += ' Beam[%d] ' % (self.getbeam(i))
576 if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
577 if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
[1819]578 #outvec.append(callback(i))
[1907]579 if len(rows) > 1:
580 # out += ('= %'+form) % (outvec[i]) +' '+refstr+'\n'
581 out += ('= %'+form) % (statvals[i]) +' '+refstr+'\n'
582 else:
583 # out += ('= %'+form) % (outvec[0]) +' '+refstr+'\n'
584 out += ('= %'+form) % (statvals[0]) +' '+refstr+'\n'
[1819]585 out += sep+"\n"
586
[1859]587 import os
588 if os.environ.has_key( 'USER' ):
589 usr = os.environ['USER']
590 else:
591 import commands
592 usr = commands.getoutput( 'whoami' )
593 tmpfile = '/tmp/tmp_'+usr+'_casapy_asap_scantable_stats'
594 f = open(tmpfile,'w')
595 print >> f, sep
596 print >> f, ' %s %s' % (label, statunit)
597 print >> f, sep
598 print >> f, out
599 f.close()
600 f = open(tmpfile,'r')
601 x = f.readlines()
602 f.close()
603 asaplog.push(''.join(x), False)
604
[1819]605 return statvals
606
607 def chan2data(self, rowno=0, chan=0):
[1846]608 """\
[1819]609 Returns channel/frequency/velocity and spectral value
610 at an arbitrary row and channel in the scantable.
[1846]611
[1819]612 Parameters:
[1846]613
[1819]614 rowno: a row number in the scantable. Default is the
615 first row, i.e. rowno=0
[1855]616
[1819]617 chan: a channel in the scantable. Default is the first
618 channel, i.e. pos=0
[1846]619
[1819]620 """
621 if isinstance(rowno, int) and isinstance(chan, int):
622 qx = {'unit': self.get_unit(),
623 'value': self._getabcissa(rowno)[chan]}
624 qy = {'unit': self.get_fluxunit(),
625 'value': self._getspectrum(rowno)[chan]}
626 return qx, qy
627
[1118]628 def stddev(self, mask=None):
[1846]629 """\
[135]630 Determine the standard deviation of the current beam/if/pol
631 Takes a 'mask' as an optional parameter to specify which
632 channels should be excluded.
[1846]633
[135]634 Parameters:
[1846]635
[135]636 mask: an optional mask specifying where the standard
637 deviation should be determined.
638
[1846]639 Example::
640
[135]641 scan.set_unit('channel')
[1118]642 msk = scan.create_mask([100, 200], [500, 600])
[135]643 scan.stddev(mask=m)
[1846]644
[135]645 """
[1118]646 return self.stats(stat='stddev', mask=mask);
[135]647
[1003]648
[1259]649 def get_column_names(self):
[1846]650 """\
[1003]651 Return a list of column names, which can be used for selection.
652 """
[1259]653 return list(Scantable.get_column_names(self))
[1003]654
[1730]655 def get_tsys(self, row=-1):
[1846]656 """\
[113]657 Return the System temperatures.
[1846]658
659 Parameters:
660
661 row: the rowno to get the information for. (default all rows)
662
[113]663 Returns:
[1846]664
[876]665 a list of Tsys values for the current selection
[1846]666
[113]667 """
[1730]668 if row > -1:
669 return self._get_column(self._gettsys, row)
[876]670 return self._row_callback(self._gettsys, "Tsys")
[256]671
[1730]672
673 def get_weather(self, row=-1):
[1846]674 """\
675 Return the weather informations.
676
677 Parameters:
678
679 row: the rowno to get the information for. (default all rows)
680
681 Returns:
682
683 a dict or list of of dicts of values for the current selection
684
685 """
686
[1730]687 values = self._get_column(self._get_weather, row)
688 if row > -1:
689 return {'temperature': values[0],
690 'pressure': values[1], 'humidity' : values[2],
691 'windspeed' : values[3], 'windaz' : values[4]
692 }
693 else:
694 out = []
695 for r in values:
696
697 out.append({'temperature': r[0],
698 'pressure': r[1], 'humidity' : r[2],
699 'windspeed' : r[3], 'windaz' : r[4]
700 })
701 return out
702
[876]703 def _row_callback(self, callback, label):
704 out = ""
[1118]705 outvec = []
[1590]706 sep = '-'*50
[876]707 for i in range(self.nrow()):
708 tm = self._gettime(i)
709 src = self._getsourcename(i)
[1590]710 out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
[876]711 out += 'Time[%s]:\n' % (tm)
[1590]712 if self.nbeam(-1) > 1:
713 out += ' Beam[%d] ' % (self.getbeam(i))
714 if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
715 if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
[876]716 outvec.append(callback(i))
717 out += '= %3.3f\n' % (outvec[i])
[1590]718 out += sep+'\n'
[1859]719
720 asaplog.push(sep)
721 asaplog.push(" %s" % (label))
722 asaplog.push(sep)
723 asaplog.push(out)
[1861]724 asaplog.post()
[1175]725 return outvec
[256]726
[1070]727 def _get_column(self, callback, row=-1):
728 """
729 """
730 if row == -1:
731 return [callback(i) for i in range(self.nrow())]
732 else:
[1819]733 if 0 <= row < self.nrow():
[1070]734 return callback(row)
[256]735
[1070]736
[1348]737 def get_time(self, row=-1, asdatetime=False):
[1846]738 """\
[113]739 Get a list of time stamps for the observations.
[1348]740 Return a datetime object for each integration time stamp in the scantable.
[1846]741
[113]742 Parameters:
[1846]743
[1348]744 row: row no of integration. Default -1 return all rows
[1855]745
[1348]746 asdatetime: return values as datetime objects rather than strings
[1846]747
[113]748 """
[1175]749 from time import strptime
750 from datetime import datetime
[1392]751 times = self._get_column(self._gettime, row)
[1348]752 if not asdatetime:
[1392]753 return times
[1175]754 format = "%Y/%m/%d/%H:%M:%S"
755 if isinstance(times, list):
756 return [datetime(*strptime(i, format)[:6]) for i in times]
757 else:
758 return datetime(*strptime(times, format)[:6])
[102]759
[1348]760
761 def get_inttime(self, row=-1):
[1846]762 """\
[1348]763 Get a list of integration times for the observations.
764 Return a time in seconds for each integration in the scantable.
[1846]765
[1348]766 Parameters:
[1846]767
[1348]768 row: row no of integration. Default -1 return all rows.
[1846]769
[1348]770 """
[1573]771 return self._get_column(self._getinttime, row)
[1348]772
[1573]773
[714]774 def get_sourcename(self, row=-1):
[1846]775 """\
[794]776 Get a list source names for the observations.
[714]777 Return a string for each integration in the scantable.
778 Parameters:
[1846]779
[1348]780 row: row no of integration. Default -1 return all rows.
[1846]781
[714]782 """
[1070]783 return self._get_column(self._getsourcename, row)
[714]784
[794]785 def get_elevation(self, row=-1):
[1846]786 """\
[794]787 Get a list of elevations for the observations.
788 Return a float for each integration in the scantable.
[1846]789
[794]790 Parameters:
[1846]791
[1348]792 row: row no of integration. Default -1 return all rows.
[1846]793
[794]794 """
[1070]795 return self._get_column(self._getelevation, row)
[794]796
797 def get_azimuth(self, row=-1):
[1846]798 """\
[794]799 Get a list of azimuths for the observations.
800 Return a float for each integration in the scantable.
[1846]801
[794]802 Parameters:
[1348]803 row: row no of integration. Default -1 return all rows.
[1846]804
[794]805 """
[1070]806 return self._get_column(self._getazimuth, row)
[794]807
808 def get_parangle(self, row=-1):
[1846]809 """\
[794]810 Get a list of parallactic angles for the observations.
811 Return a float for each integration in the scantable.
[1846]812
[794]813 Parameters:
[1846]814
[1348]815 row: row no of integration. Default -1 return all rows.
[1846]816
[794]817 """
[1070]818 return self._get_column(self._getparangle, row)
[794]819
[1070]820 def get_direction(self, row=-1):
821 """
822 Get a list of Positions on the sky (direction) for the observations.
[1594]823 Return a string for each integration in the scantable.
[1855]824
[1070]825 Parameters:
[1855]826
[1070]827 row: row no of integration. Default -1 return all rows
[1855]828
[1070]829 """
830 return self._get_column(self._getdirection, row)
831
[1391]832 def get_directionval(self, row=-1):
[1846]833 """\
[1391]834 Get a list of Positions on the sky (direction) for the observations.
835 Return a float for each integration in the scantable.
[1846]836
[1391]837 Parameters:
[1846]838
[1391]839 row: row no of integration. Default -1 return all rows
[1846]840
[1391]841 """
842 return self._get_column(self._getdirectionvec, row)
843
[1862]844 @asaplog_post_dec
[102]845 def set_unit(self, unit='channel'):
[1846]846 """\
[102]847 Set the unit for all following operations on this scantable
[1846]848
[102]849 Parameters:
[1846]850
851 unit: optional unit, default is 'channel'. Use one of '*Hz',
852 'km/s', 'channel' or equivalent ''
853
[102]854 """
[484]855 varlist = vars()
[1118]856 if unit in ['', 'pixel', 'channel']:
[113]857 unit = ''
858 inf = list(self._getcoordinfo())
859 inf[0] = unit
860 self._setcoordinfo(inf)
[1118]861 self._add_history("set_unit", varlist)
[113]862
[1862]863 @asaplog_post_dec
[484]864 def set_instrument(self, instr):
[1846]865 """\
[1348]866 Set the instrument for subsequent processing.
[1846]867
[358]868 Parameters:
[1846]869
[710]870 instr: Select from 'ATPKSMB', 'ATPKSHOH', 'ATMOPRA',
[407]871 'DSS-43' (Tid), 'CEDUNA', and 'HOBART'
[1846]872
[358]873 """
874 self._setInstrument(instr)
[1118]875 self._add_history("set_instument", vars())
[358]876
[1862]877 @asaplog_post_dec
[1190]878 def set_feedtype(self, feedtype):
[1846]879 """\
[1190]880 Overwrite the feed type, which might not be set correctly.
[1846]881
[1190]882 Parameters:
[1846]883
[1190]884 feedtype: 'linear' or 'circular'
[1846]885
[1190]886 """
887 self._setfeedtype(feedtype)
888 self._add_history("set_feedtype", vars())
889
[1862]890 @asaplog_post_dec
[276]891 def set_doppler(self, doppler='RADIO'):
[1846]892 """\
[276]893 Set the doppler for all following operations on this scantable.
[1846]894
[276]895 Parameters:
[1846]896
[276]897 doppler: One of 'RADIO', 'OPTICAL', 'Z', 'BETA', 'GAMMA'
[1846]898
[276]899 """
[484]900 varlist = vars()
[276]901 inf = list(self._getcoordinfo())
902 inf[2] = doppler
903 self._setcoordinfo(inf)
[1118]904 self._add_history("set_doppler", vars())
[710]905
[1862]906 @asaplog_post_dec
[226]907 def set_freqframe(self, frame=None):
[1846]908 """\
[113]909 Set the frame type of the Spectral Axis.
[1846]910
[113]911 Parameters:
[1846]912
[591]913 frame: an optional frame type, default 'LSRK'. Valid frames are:
[1819]914 'TOPO', 'LSRD', 'LSRK', 'BARY',
[1118]915 'GEO', 'GALACTO', 'LGROUP', 'CMB'
[1846]916
917 Example::
918
[113]919 scan.set_freqframe('BARY')
[1846]920
[113]921 """
[1593]922 frame = frame or rcParams['scantable.freqframe']
[484]923 varlist = vars()
[1819]924 # "REST" is not implemented in casacore
925 #valid = ['REST', 'TOPO', 'LSRD', 'LSRK', 'BARY', \
926 # 'GEO', 'GALACTO', 'LGROUP', 'CMB']
927 valid = ['TOPO', 'LSRD', 'LSRK', 'BARY', \
[1118]928 'GEO', 'GALACTO', 'LGROUP', 'CMB']
[591]929
[989]930 if frame in valid:
[113]931 inf = list(self._getcoordinfo())
932 inf[1] = frame
933 self._setcoordinfo(inf)
[1118]934 self._add_history("set_freqframe", varlist)
[102]935 else:
[1118]936 msg = "Please specify a valid freq type. Valid types are:\n", valid
[1859]937 raise TypeError(msg)
[710]938
[1862]939 @asaplog_post_dec
[989]940 def set_dirframe(self, frame=""):
[1846]941 """\
[989]942 Set the frame type of the Direction on the sky.
[1846]943
[989]944 Parameters:
[1846]945
[989]946 frame: an optional frame type, default ''. Valid frames are:
947 'J2000', 'B1950', 'GALACTIC'
[1846]948
949 Example:
950
[989]951 scan.set_dirframe('GALACTIC')
[1846]952
[989]953 """
954 varlist = vars()
[1859]955 Scantable.set_dirframe(self, frame)
[1118]956 self._add_history("set_dirframe", varlist)
[989]957
[113]958 def get_unit(self):
[1846]959 """\
[113]960 Get the default unit set in this scantable
[1846]961
[113]962 Returns:
[1846]963
[113]964 A unit string
[1846]965
[113]966 """
967 inf = self._getcoordinfo()
968 unit = inf[0]
969 if unit == '': unit = 'channel'
970 return unit
[102]971
[1862]972 @asaplog_post_dec
[158]973 def get_abcissa(self, rowno=0):
[1846]974 """\
[158]975 Get the abcissa in the current coordinate setup for the currently
[113]976 selected Beam/IF/Pol
[1846]977
[113]978 Parameters:
[1846]979
[226]980 rowno: an optional row number in the scantable. Default is the
981 first row, i.e. rowno=0
[1846]982
[113]983 Returns:
[1846]984
[1348]985 The abcissa values and the format string (as a dictionary)
[1846]986
[113]987 """
[256]988 abc = self._getabcissa(rowno)
[710]989 lbl = self._getabcissalabel(rowno)
[158]990 return abc, lbl
[113]991
[1862]992 @asaplog_post_dec
[1819]993 def flag(self, mask=None, unflag=False):
[1846]994 """\
[1001]995 Flag the selected data using an optional channel mask.
[1846]996
[1001]997 Parameters:
[1846]998
[1001]999 mask: an optional channel mask, created with create_mask. Default
1000 (no mask) is all channels.
[1855]1001
[1819]1002 unflag: if True, unflag the data
[1846]1003
[1001]1004 """
1005 varlist = vars()
[1593]1006 mask = mask or []
[1859]1007 self._flag(mask, unflag)
[1001]1008 self._add_history("flag", varlist)
1009
[1862]1010 @asaplog_post_dec
[1819]1011 def flag_row(self, rows=[], unflag=False):
[1846]1012 """\
[1819]1013 Flag the selected data in row-based manner.
[1846]1014
[1819]1015 Parameters:
[1846]1016
[1843]1017 rows: list of row numbers to be flagged. Default is no row
1018 (must be explicitly specified to execute row-based flagging).
[1855]1019
[1819]1020 unflag: if True, unflag the data.
[1846]1021
[1819]1022 """
1023 varlist = vars()
[1859]1024 self._flag_row(rows, unflag)
[1819]1025 self._add_history("flag_row", varlist)
1026
[1862]1027 @asaplog_post_dec
[1819]1028 def clip(self, uthres=None, dthres=None, clipoutside=True, unflag=False):
[1846]1029 """\
[1819]1030 Flag the selected data outside a specified range (in channel-base)
[1846]1031
[1819]1032 Parameters:
[1846]1033
[1819]1034 uthres: upper threshold.
[1855]1035
[1819]1036 dthres: lower threshold
[1846]1037
[1819]1038 clipoutside: True for flagging data outside the range [dthres:uthres].
1039 False for glagging data inside the range.
[1855]1040
[1846]1041 unflag: if True, unflag the data.
1042
[1819]1043 """
1044 varlist = vars()
[1859]1045 self._clip(uthres, dthres, clipoutside, unflag)
[1819]1046 self._add_history("clip", varlist)
1047
[1862]1048 @asaplog_post_dec
[1584]1049 def lag_flag(self, start, end, unit="MHz", insitu=None):
[1846]1050 """\
[1192]1051 Flag the data in 'lag' space by providing a frequency to remove.
[1584]1052 Flagged data in the scantable gets interpolated over the region.
[1192]1053 No taper is applied.
[1846]1054
[1192]1055 Parameters:
[1846]1056
[1579]1057 start: the start frequency (really a period within the
1058 bandwidth) or period to remove
[1855]1059
[1579]1060 end: the end frequency or period to remove
[1855]1061
[1584]1062 unit: the frequency unit (default "MHz") or "" for
[1579]1063 explicit lag channels
[1846]1064
1065 *Notes*:
1066
[1579]1067 It is recommended to flag edges of the band or strong
[1348]1068 signals beforehand.
[1846]1069
[1192]1070 """
1071 if insitu is None: insitu = rcParams['insitu']
1072 self._math._setinsitu(insitu)
1073 varlist = vars()
[1579]1074 base = { "GHz": 1000000000., "MHz": 1000000., "kHz": 1000., "Hz": 1.}
1075 if not (unit == "" or base.has_key(unit)):
[1192]1076 raise ValueError("%s is not a valid unit." % unit)
[1859]1077 if unit == "":
1078 s = scantable(self._math._lag_flag(self, start, end, "lags"))
1079 else:
1080 s = scantable(self._math._lag_flag(self, start*base[unit],
1081 end*base[unit], "frequency"))
[1192]1082 s._add_history("lag_flag", varlist)
1083 if insitu:
1084 self._assign(s)
1085 else:
1086 return s
[1001]1087
[1862]1088 @asaplog_post_dec
[113]1089 def create_mask(self, *args, **kwargs):
[1846]1090 """\
[1118]1091 Compute and return a mask based on [min, max] windows.
[189]1092 The specified windows are to be INCLUDED, when the mask is
[113]1093 applied.
[1846]1094
[102]1095 Parameters:
[1846]1096
[1118]1097 [min, max], [min2, max2], ...
[1024]1098 Pairs of start/end points (inclusive)specifying the regions
[102]1099 to be masked
[1855]1100
[189]1101 invert: optional argument. If specified as True,
1102 return an inverted mask, i.e. the regions
1103 specified are EXCLUDED
[1855]1104
[513]1105 row: create the mask using the specified row for
1106 unit conversions, default is row=0
1107 only necessary if frequency varies over rows.
[1846]1108
1109 Examples::
1110
[113]1111 scan.set_unit('channel')
[1846]1112 # a)
[1118]1113 msk = scan.create_mask([400, 500], [800, 900])
[189]1114 # masks everything outside 400 and 500
[113]1115 # and 800 and 900 in the unit 'channel'
1116
[1846]1117 # b)
[1118]1118 msk = scan.create_mask([400, 500], [800, 900], invert=True)
[189]1119 # masks the regions between 400 and 500
[113]1120 # and 800 and 900 in the unit 'channel'
[1846]1121
1122 # c)
1123 #mask only channel 400
[1554]1124 msk = scan.create_mask([400])
[1846]1125
[102]1126 """
[1554]1127 row = kwargs.get("row", 0)
[513]1128 data = self._getabcissa(row)
[113]1129 u = self._getcoordinfo()[0]
[1859]1130 if u == "":
1131 u = "channel"
1132 msg = "The current mask window unit is %s" % u
1133 i = self._check_ifs()
1134 if not i:
1135 msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
1136 asaplog.push(msg)
[102]1137 n = self.nchan()
[1295]1138 msk = _n_bools(n, False)
[710]1139 # test if args is a 'list' or a 'normal *args - UGLY!!!
1140
[1118]1141 ws = (isinstance(args[-1][-1], int) or isinstance(args[-1][-1], float)) \
1142 and args or args[0]
[710]1143 for window in ws:
[1554]1144 if len(window) == 1:
1145 window = [window[0], window[0]]
1146 if len(window) == 0 or len(window) > 2:
1147 raise ValueError("A window needs to be defined as [start(, end)]")
[1545]1148 if window[0] > window[1]:
1149 tmp = window[0]
1150 window[0] = window[1]
1151 window[1] = tmp
[102]1152 for i in range(n):
[1024]1153 if data[i] >= window[0] and data[i] <= window[1]:
[1295]1154 msk[i] = True
[113]1155 if kwargs.has_key('invert'):
1156 if kwargs.get('invert'):
[1295]1157 msk = mask_not(msk)
[102]1158 return msk
[710]1159
[1924]1160 def get_masklist(self, mask=None, row=0, silent=False):
[1846]1161 """\
[1819]1162 Compute and return a list of mask windows, [min, max].
[1846]1163
[1819]1164 Parameters:
[1846]1165
[1819]1166 mask: channel mask, created with create_mask.
[1855]1167
[1819]1168 row: calcutate the masklist using the specified row
1169 for unit conversions, default is row=0
1170 only necessary if frequency varies over rows.
[1846]1171
[1819]1172 Returns:
[1846]1173
[1819]1174 [min, max], [min2, max2], ...
1175 Pairs of start/end points (inclusive)specifying
1176 the masked regions
[1846]1177
[1819]1178 """
1179 if not (isinstance(mask,list) or isinstance(mask, tuple)):
1180 raise TypeError("The mask should be list or tuple.")
1181 if len(mask) < 2:
1182 raise TypeError("The mask elements should be > 1")
1183 if self.nchan() != len(mask):
1184 msg = "Number of channels in scantable != number of mask elements"
1185 raise TypeError(msg)
1186 data = self._getabcissa(row)
1187 u = self._getcoordinfo()[0]
[1859]1188 if u == "":
1189 u = "channel"
1190 msg = "The current mask window unit is %s" % u
1191 i = self._check_ifs()
1192 if not i:
1193 msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
[1924]1194 if not silent:
1195 asaplog.push(msg)
[1819]1196 masklist=[]
1197 ist, ien = None, None
1198 ist, ien=self.get_mask_indices(mask)
1199 if ist is not None and ien is not None:
1200 for i in xrange(len(ist)):
1201 range=[data[ist[i]],data[ien[i]]]
1202 range.sort()
1203 masklist.append([range[0],range[1]])
1204 return masklist
1205
1206 def get_mask_indices(self, mask=None):
[1846]1207 """\
[1819]1208 Compute and Return lists of mask start indices and mask end indices.
[1855]1209
1210 Parameters:
1211
[1819]1212 mask: channel mask, created with create_mask.
[1846]1213
[1819]1214 Returns:
[1846]1215
[1819]1216 List of mask start indices and that of mask end indices,
1217 i.e., [istart1,istart2,....], [iend1,iend2,....].
[1846]1218
[1819]1219 """
1220 if not (isinstance(mask,list) or isinstance(mask, tuple)):
1221 raise TypeError("The mask should be list or tuple.")
1222 if len(mask) < 2:
1223 raise TypeError("The mask elements should be > 1")
1224 istart=[]
1225 iend=[]
1226 if mask[0]: istart.append(0)
1227 for i in range(len(mask)-1):
1228 if not mask[i] and mask[i+1]:
1229 istart.append(i+1)
1230 elif mask[i] and not mask[i+1]:
1231 iend.append(i)
1232 if mask[len(mask)-1]: iend.append(len(mask)-1)
1233 if len(istart) != len(iend):
1234 raise RuntimeError("Numbers of mask start != mask end.")
1235 for i in range(len(istart)):
1236 if istart[i] > iend[i]:
1237 raise RuntimeError("Mask start index > mask end index")
1238 break
1239 return istart,iend
1240
1241# def get_restfreqs(self):
1242# """
1243# Get the restfrequency(s) stored in this scantable.
1244# The return value(s) are always of unit 'Hz'
1245# Parameters:
1246# none
1247# Returns:
1248# a list of doubles
1249# """
1250# return list(self._getrestfreqs())
1251
1252 def get_restfreqs(self, ids=None):
[1846]1253 """\
[256]1254 Get the restfrequency(s) stored in this scantable.
1255 The return value(s) are always of unit 'Hz'
[1846]1256
[256]1257 Parameters:
[1846]1258
[1819]1259 ids: (optional) a list of MOLECULE_ID for that restfrequency(s) to
1260 be retrieved
[1846]1261
[256]1262 Returns:
[1846]1263
[1819]1264 dictionary containing ids and a list of doubles for each id
[1846]1265
[256]1266 """
[1819]1267 if ids is None:
1268 rfreqs={}
1269 idlist = self.getmolnos()
1270 for i in idlist:
1271 rfreqs[i]=list(self._getrestfreqs(i))
1272 return rfreqs
1273 else:
1274 if type(ids)==list or type(ids)==tuple:
1275 rfreqs={}
1276 for i in ids:
1277 rfreqs[i]=list(self._getrestfreqs(i))
1278 return rfreqs
1279 else:
1280 return list(self._getrestfreqs(ids))
1281 #return list(self._getrestfreqs(ids))
[102]1282
[931]1283 def set_restfreqs(self, freqs=None, unit='Hz'):
[1846]1284 """\
[931]1285 Set or replace the restfrequency specified and
1286 If the 'freqs' argument holds a scalar,
1287 then that rest frequency will be applied to all the selected
1288 data. If the 'freqs' argument holds
1289 a vector, then it MUST be of equal or smaller length than
1290 the number of IFs (and the available restfrequencies will be
1291 replaced by this vector). In this case, *all* data have
1292 the restfrequency set per IF according
1293 to the corresponding value you give in the 'freqs' vector.
[1118]1294 E.g. 'freqs=[1e9, 2e9]' would mean IF 0 gets restfreq 1e9 and
[931]1295 IF 1 gets restfreq 2e9.
[1846]1296
[1395]1297 You can also specify the frequencies via a linecatalog.
[1153]1298
[931]1299 Parameters:
[1846]1300
[931]1301 freqs: list of rest frequency values or string idenitfiers
[1855]1302
[931]1303 unit: unit for rest frequency (default 'Hz')
[402]1304
[1846]1305
1306 Example::
1307
[1819]1308 # set the given restfrequency for the all currently selected IFs
[931]1309 scan.set_restfreqs(freqs=1.4e9)
[1845]1310 # set restfrequencies for the n IFs (n > 1) in the order of the
1311 # list, i.e
1312 # IF0 -> 1.4e9, IF1 -> 1.41e9, IF3 -> 1.42e9
1313 # len(list_of_restfreqs) == nIF
1314 # for nIF == 1 the following will set multiple restfrequency for
1315 # that IF
[1819]1316 scan.set_restfreqs(freqs=[1.4e9, 1.41e9, 1.42e9])
[1845]1317 # set multiple restfrequencies per IF. as a list of lists where
1318 # the outer list has nIF elements, the inner s arbitrary
1319 scan.set_restfreqs(freqs=[[1.4e9, 1.41e9], [1.67e9]])
[391]1320
[1846]1321 *Note*:
[1845]1322
[931]1323 To do more sophisticate Restfrequency setting, e.g. on a
1324 source and IF basis, use scantable.set_selection() before using
[1846]1325 this function::
[931]1326
[1846]1327 # provided your scantable is called scan
1328 selection = selector()
1329 selection.set_name("ORION*")
1330 selection.set_ifs([1])
1331 scan.set_selection(selection)
1332 scan.set_restfreqs(freqs=86.6e9)
1333
[931]1334 """
1335 varlist = vars()
[1157]1336 from asap import linecatalog
1337 # simple value
[1118]1338 if isinstance(freqs, int) or isinstance(freqs, float):
[1845]1339 self._setrestfreqs([freqs], [""], unit)
[1157]1340 # list of values
[1118]1341 elif isinstance(freqs, list) or isinstance(freqs, tuple):
[1157]1342 # list values are scalars
[1118]1343 if isinstance(freqs[-1], int) or isinstance(freqs[-1], float):
[1845]1344 if len(freqs) == 1:
1345 self._setrestfreqs(freqs, [""], unit)
1346 else:
1347 # allow the 'old' mode of setting mulitple IFs
1348 sel = selector()
1349 savesel = self._getselection()
1350 iflist = self.getifnos()
1351 if len(freqs)>len(iflist):
1352 raise ValueError("number of elements in list of list "
1353 "exeeds the current IF selections")
1354 iflist = self.getifnos()
1355 for i, fval in enumerate(freqs):
1356 sel.set_ifs(iflist[i])
1357 self._setselection(sel)
1358 self._setrestfreqs([fval], [""], unit)
1359 self._setselection(savesel)
1360
1361 # list values are dict, {'value'=, 'name'=)
[1157]1362 elif isinstance(freqs[-1], dict):
[1845]1363 values = []
1364 names = []
1365 for d in freqs:
1366 values.append(d["value"])
1367 names.append(d["name"])
1368 self._setrestfreqs(values, names, unit)
[1819]1369 elif isinstance(freqs[-1], list) or isinstance(freqs[-1], tuple):
[1157]1370 sel = selector()
1371 savesel = self._getselection()
[1322]1372 iflist = self.getifnos()
[1819]1373 if len(freqs)>len(iflist):
[1845]1374 raise ValueError("number of elements in list of list exeeds"
1375 " the current IF selections")
1376 for i, fval in enumerate(freqs):
[1322]1377 sel.set_ifs(iflist[i])
[1259]1378 self._setselection(sel)
[1845]1379 self._setrestfreqs(fval, [""], unit)
[1157]1380 self._setselection(savesel)
1381 # freqs are to be taken from a linecatalog
[1153]1382 elif isinstance(freqs, linecatalog):
1383 sel = selector()
1384 savesel = self._getselection()
1385 for i in xrange(freqs.nrow()):
[1322]1386 sel.set_ifs(iflist[i])
[1153]1387 self._setselection(sel)
[1845]1388 self._setrestfreqs([freqs.get_frequency(i)],
1389 [freqs.get_name(i)], "MHz")
[1153]1390 # ensure that we are not iterating past nIF
1391 if i == self.nif()-1: break
1392 self._setselection(savesel)
[931]1393 else:
1394 return
1395 self._add_history("set_restfreqs", varlist)
1396
[1360]1397 def shift_refpix(self, delta):
[1846]1398 """\
[1589]1399 Shift the reference pixel of the Spectra Coordinate by an
1400 integer amount.
[1846]1401
[1589]1402 Parameters:
[1846]1403
[1589]1404 delta: the amount to shift by
[1846]1405
1406 *Note*:
1407
[1589]1408 Be careful using this with broadband data.
[1846]1409
[1360]1410 """
[1731]1411 Scantable.shift_refpix(self, delta)
[931]1412
[1862]1413 @asaplog_post_dec
[1259]1414 def history(self, filename=None):
[1846]1415 """\
[1259]1416 Print the history. Optionally to a file.
[1846]1417
[1348]1418 Parameters:
[1846]1419
[1348]1420 filename: The name of the file to save the history to.
[1846]1421
[1259]1422 """
[484]1423 hist = list(self._gethistory())
[794]1424 out = "-"*80
[484]1425 for h in hist:
[489]1426 if h.startswith("---"):
[1857]1427 out = "\n".join([out, h])
[489]1428 else:
1429 items = h.split("##")
1430 date = items[0]
1431 func = items[1]
1432 items = items[2:]
[794]1433 out += "\n"+date+"\n"
1434 out += "Function: %s\n Parameters:" % (func)
[489]1435 for i in items:
1436 s = i.split("=")
[1118]1437 out += "\n %s = %s" % (s[0], s[1])
[1857]1438 out = "\n".join([out, "-"*80])
[1259]1439 if filename is not None:
1440 if filename is "":
1441 filename = 'scantable_history.txt'
1442 import os
1443 filename = os.path.expandvars(os.path.expanduser(filename))
1444 if not os.path.isdir(filename):
1445 data = open(filename, 'w')
1446 data.write(out)
1447 data.close()
1448 else:
1449 msg = "Illegal file name '%s'." % (filename)
[1859]1450 raise IOError(msg)
1451 return page(out)
[513]1452 #
1453 # Maths business
1454 #
[1862]1455 @asaplog_post_dec
[931]1456 def average_time(self, mask=None, scanav=False, weight='tint', align=False):
[1846]1457 """\
[1070]1458 Return the (time) weighted average of a scan.
[1846]1459
1460 *Note*:
1461
[1070]1462 in channels only - align if necessary
[1846]1463
[513]1464 Parameters:
[1846]1465
[513]1466 mask: an optional mask (only used for 'var' and 'tsys'
1467 weighting)
[1855]1468
[558]1469 scanav: True averages each scan separately
1470 False (default) averages all scans together,
[1855]1471
[1099]1472 weight: Weighting scheme.
1473 'none' (mean no weight)
1474 'var' (1/var(spec) weighted)
1475 'tsys' (1/Tsys**2 weighted)
1476 'tint' (integration time weighted)
1477 'tintsys' (Tint/Tsys**2)
1478 'median' ( median averaging)
[535]1479 The default is 'tint'
[1855]1480
[931]1481 align: align the spectra in velocity before averaging. It takes
1482 the time of the first spectrum as reference time.
[1846]1483
1484 Example::
1485
[513]1486 # time average the scantable without using a mask
[710]1487 newscan = scan.average_time()
[1846]1488
[513]1489 """
1490 varlist = vars()
[1593]1491 weight = weight or 'TINT'
1492 mask = mask or ()
1493 scanav = (scanav and 'SCAN') or 'NONE'
[1118]1494 scan = (self, )
[1859]1495
1496 if align:
1497 scan = (self.freq_align(insitu=False), )
1498 s = None
1499 if weight.upper() == 'MEDIAN':
1500 s = scantable(self._math._averagechannel(scan[0], 'MEDIAN',
1501 scanav))
1502 else:
1503 s = scantable(self._math._average(scan, mask, weight.upper(),
1504 scanav))
[1099]1505 s._add_history("average_time", varlist)
[513]1506 return s
[710]1507
[1862]1508 @asaplog_post_dec
[876]1509 def convert_flux(self, jyperk=None, eta=None, d=None, insitu=None):
[1846]1510 """\
[513]1511 Return a scan where all spectra are converted to either
1512 Jansky or Kelvin depending upon the flux units of the scan table.
1513 By default the function tries to look the values up internally.
1514 If it can't find them (or if you want to over-ride), you must
1515 specify EITHER jyperk OR eta (and D which it will try to look up
1516 also if you don't set it). jyperk takes precedence if you set both.
[1846]1517
[513]1518 Parameters:
[1846]1519
[513]1520 jyperk: the Jy / K conversion factor
[1855]1521
[513]1522 eta: the aperture efficiency
[1855]1523
[513]1524 d: the geomtric diameter (metres)
[1855]1525
[513]1526 insitu: if False a new scantable is returned.
1527 Otherwise, the scaling is done in-situ
1528 The default is taken from .asaprc (False)
[1846]1529
[513]1530 """
1531 if insitu is None: insitu = rcParams['insitu']
[876]1532 self._math._setinsitu(insitu)
[513]1533 varlist = vars()
[1593]1534 jyperk = jyperk or -1.0
1535 d = d or -1.0
1536 eta = eta or -1.0
[876]1537 s = scantable(self._math._convertflux(self, d, eta, jyperk))
1538 s._add_history("convert_flux", varlist)
1539 if insitu: self._assign(s)
1540 else: return s
[513]1541
[1862]1542 @asaplog_post_dec
[876]1543 def gain_el(self, poly=None, filename="", method="linear", insitu=None):
[1846]1544 """\
[513]1545 Return a scan after applying a gain-elevation correction.
1546 The correction can be made via either a polynomial or a
1547 table-based interpolation (and extrapolation if necessary).
1548 You specify polynomial coefficients, an ascii table or neither.
1549 If you specify neither, then a polynomial correction will be made
1550 with built in coefficients known for certain telescopes (an error
1551 will occur if the instrument is not known).
1552 The data and Tsys are *divided* by the scaling factors.
[1846]1553
[513]1554 Parameters:
[1846]1555
[513]1556 poly: Polynomial coefficients (default None) to compute a
1557 gain-elevation correction as a function of
1558 elevation (in degrees).
[1855]1559
[513]1560 filename: The name of an ascii file holding correction factors.
1561 The first row of the ascii file must give the column
1562 names and these MUST include columns
1563 "ELEVATION" (degrees) and "FACTOR" (multiply data
1564 by this) somewhere.
1565 The second row must give the data type of the
1566 column. Use 'R' for Real and 'I' for Integer.
1567 An example file would be
1568 (actual factors are arbitrary) :
1569
1570 TIME ELEVATION FACTOR
1571 R R R
1572 0.1 0 0.8
1573 0.2 20 0.85
1574 0.3 40 0.9
1575 0.4 60 0.85
1576 0.5 80 0.8
1577 0.6 90 0.75
[1855]1578
[513]1579 method: Interpolation method when correcting from a table.
1580 Values are "nearest", "linear" (default), "cubic"
1581 and "spline"
[1855]1582
[513]1583 insitu: if False a new scantable is returned.
1584 Otherwise, the scaling is done in-situ
1585 The default is taken from .asaprc (False)
[1846]1586
[513]1587 """
1588
1589 if insitu is None: insitu = rcParams['insitu']
[876]1590 self._math._setinsitu(insitu)
[513]1591 varlist = vars()
[1593]1592 poly = poly or ()
[513]1593 from os.path import expandvars
1594 filename = expandvars(filename)
[876]1595 s = scantable(self._math._gainel(self, poly, filename, method))
1596 s._add_history("gain_el", varlist)
[1593]1597 if insitu:
1598 self._assign(s)
1599 else:
1600 return s
[710]1601
[1862]1602 @asaplog_post_dec
[931]1603 def freq_align(self, reftime=None, method='cubic', insitu=None):
[1846]1604 """\
[513]1605 Return a scan where all rows have been aligned in frequency/velocity.
1606 The alignment frequency frame (e.g. LSRK) is that set by function
1607 set_freqframe.
[1846]1608
[513]1609 Parameters:
[1855]1610
[513]1611 reftime: reference time to align at. By default, the time of
1612 the first row of data is used.
[1855]1613
[513]1614 method: Interpolation method for regridding the spectra.
1615 Choose from "nearest", "linear", "cubic" (default)
1616 and "spline"
[1855]1617
[513]1618 insitu: if False a new scantable is returned.
1619 Otherwise, the scaling is done in-situ
1620 The default is taken from .asaprc (False)
[1846]1621
[513]1622 """
[931]1623 if insitu is None: insitu = rcParams["insitu"]
[876]1624 self._math._setinsitu(insitu)
[513]1625 varlist = vars()
[1593]1626 reftime = reftime or ""
[931]1627 s = scantable(self._math._freq_align(self, reftime, method))
[876]1628 s._add_history("freq_align", varlist)
1629 if insitu: self._assign(s)
1630 else: return s
[513]1631
[1862]1632 @asaplog_post_dec
[1725]1633 def opacity(self, tau=None, insitu=None):
[1846]1634 """\
[513]1635 Apply an opacity correction. The data
1636 and Tsys are multiplied by the correction factor.
[1846]1637
[513]1638 Parameters:
[1855]1639
[1689]1640 tau: (list of) opacity from which the correction factor is
[513]1641 exp(tau*ZD)
[1689]1642 where ZD is the zenith-distance.
1643 If a list is provided, it has to be of length nIF,
1644 nIF*nPol or 1 and in order of IF/POL, e.g.
1645 [opif0pol0, opif0pol1, opif1pol0 ...]
[1725]1646 if tau is `None` the opacities are determined from a
1647 model.
[1855]1648
[513]1649 insitu: if False a new scantable is returned.
1650 Otherwise, the scaling is done in-situ
1651 The default is taken from .asaprc (False)
[1846]1652
[513]1653 """
1654 if insitu is None: insitu = rcParams['insitu']
[876]1655 self._math._setinsitu(insitu)
[513]1656 varlist = vars()
[1689]1657 if not hasattr(tau, "__len__"):
1658 tau = [tau]
[876]1659 s = scantable(self._math._opacity(self, tau))
1660 s._add_history("opacity", varlist)
1661 if insitu: self._assign(s)
1662 else: return s
[513]1663
[1862]1664 @asaplog_post_dec
[513]1665 def bin(self, width=5, insitu=None):
[1846]1666 """\
[513]1667 Return a scan where all spectra have been binned up.
[1846]1668
[1348]1669 Parameters:
[1846]1670
[513]1671 width: The bin width (default=5) in pixels
[1855]1672
[513]1673 insitu: if False a new scantable is returned.
1674 Otherwise, the scaling is done in-situ
1675 The default is taken from .asaprc (False)
[1846]1676
[513]1677 """
1678 if insitu is None: insitu = rcParams['insitu']
[876]1679 self._math._setinsitu(insitu)
[513]1680 varlist = vars()
[876]1681 s = scantable(self._math._bin(self, width))
[1118]1682 s._add_history("bin", varlist)
[1589]1683 if insitu:
1684 self._assign(s)
1685 else:
1686 return s
[513]1687
[1862]1688 @asaplog_post_dec
[513]1689 def resample(self, width=5, method='cubic', insitu=None):
[1846]1690 """\
[1348]1691 Return a scan where all spectra have been binned up.
[1573]1692
[1348]1693 Parameters:
[1846]1694
[513]1695 width: The bin width (default=5) in pixels
[1855]1696
[513]1697 method: Interpolation method when correcting from a table.
1698 Values are "nearest", "linear", "cubic" (default)
1699 and "spline"
[1855]1700
[513]1701 insitu: if False a new scantable is returned.
1702 Otherwise, the scaling is done in-situ
1703 The default is taken from .asaprc (False)
[1846]1704
[513]1705 """
1706 if insitu is None: insitu = rcParams['insitu']
[876]1707 self._math._setinsitu(insitu)
[513]1708 varlist = vars()
[876]1709 s = scantable(self._math._resample(self, method, width))
[1118]1710 s._add_history("resample", varlist)
[876]1711 if insitu: self._assign(s)
1712 else: return s
[513]1713
[1862]1714 @asaplog_post_dec
[946]1715 def average_pol(self, mask=None, weight='none'):
[1846]1716 """\
[946]1717 Average the Polarisations together.
[1846]1718
[946]1719 Parameters:
[1846]1720
[946]1721 mask: An optional mask defining the region, where the
1722 averaging will be applied. The output will have all
1723 specified points masked.
[1855]1724
[946]1725 weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
1726 weighted), or 'tsys' (1/Tsys**2 weighted)
[1846]1727
[946]1728 """
1729 varlist = vars()
[1593]1730 mask = mask or ()
[1010]1731 s = scantable(self._math._averagepol(self, mask, weight.upper()))
[1118]1732 s._add_history("average_pol", varlist)
[992]1733 return s
[513]1734
[1862]1735 @asaplog_post_dec
[1145]1736 def average_beam(self, mask=None, weight='none'):
[1846]1737 """\
[1145]1738 Average the Beams together.
[1846]1739
[1145]1740 Parameters:
1741 mask: An optional mask defining the region, where the
1742 averaging will be applied. The output will have all
1743 specified points masked.
[1855]1744
[1145]1745 weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
1746 weighted), or 'tsys' (1/Tsys**2 weighted)
[1846]1747
[1145]1748 """
1749 varlist = vars()
[1593]1750 mask = mask or ()
[1145]1751 s = scantable(self._math._averagebeams(self, mask, weight.upper()))
1752 s._add_history("average_beam", varlist)
1753 return s
1754
[1586]1755 def parallactify(self, pflag):
[1846]1756 """\
[1843]1757 Set a flag to indicate whether this data should be treated as having
[1617]1758 been 'parallactified' (total phase == 0.0)
[1846]1759
[1617]1760 Parameters:
[1855]1761
[1843]1762 pflag: Bool indicating whether to turn this on (True) or
[1617]1763 off (False)
[1846]1764
[1617]1765 """
[1586]1766 varlist = vars()
1767 self._parallactify(pflag)
1768 self._add_history("parallactify", varlist)
1769
[1862]1770 @asaplog_post_dec
[992]1771 def convert_pol(self, poltype=None):
[1846]1772 """\
[992]1773 Convert the data to a different polarisation type.
[1565]1774 Note that you will need cross-polarisation terms for most conversions.
[1846]1775
[992]1776 Parameters:
[1855]1777
[992]1778 poltype: The new polarisation type. Valid types are:
[1565]1779 "linear", "circular", "stokes" and "linpol"
[1846]1780
[992]1781 """
1782 varlist = vars()
[1859]1783 s = scantable(self._math._convertpol(self, poltype))
[1118]1784 s._add_history("convert_pol", varlist)
[992]1785 return s
1786
[1862]1787 @asaplog_post_dec
[1819]1788 def smooth(self, kernel="hanning", width=5.0, order=2, plot=False, insitu=None):
[1846]1789 """\
[513]1790 Smooth the spectrum by the specified kernel (conserving flux).
[1846]1791
[513]1792 Parameters:
[1846]1793
[513]1794 kernel: The type of smoothing kernel. Select from
[1574]1795 'hanning' (default), 'gaussian', 'boxcar', 'rmedian'
1796 or 'poly'
[1855]1797
[513]1798 width: The width of the kernel in pixels. For hanning this is
1799 ignored otherwise it defauls to 5 pixels.
1800 For 'gaussian' it is the Full Width Half
1801 Maximum. For 'boxcar' it is the full width.
[1574]1802 For 'rmedian' and 'poly' it is the half width.
[1855]1803
[1574]1804 order: Optional parameter for 'poly' kernel (default is 2), to
1805 specify the order of the polnomial. Ignored by all other
1806 kernels.
[1855]1807
[1819]1808 plot: plot the original and the smoothed spectra.
1809 In this each indivual fit has to be approved, by
1810 typing 'y' or 'n'
[1855]1811
[513]1812 insitu: if False a new scantable is returned.
1813 Otherwise, the scaling is done in-situ
1814 The default is taken from .asaprc (False)
[1846]1815
[513]1816 """
1817 if insitu is None: insitu = rcParams['insitu']
[876]1818 self._math._setinsitu(insitu)
[513]1819 varlist = vars()
[1819]1820
1821 if plot: orgscan = self.copy()
1822
[1574]1823 s = scantable(self._math._smooth(self, kernel.lower(), width, order))
[876]1824 s._add_history("smooth", varlist)
[1819]1825
1826 if plot:
1827 if rcParams['plotter.gui']:
1828 from asap.asaplotgui import asaplotgui as asaplot
1829 else:
1830 from asap.asaplot import asaplot
1831 self._p=asaplot()
1832 self._p.set_panels()
1833 ylab=s._get_ordinate_label()
1834 #self._p.palette(0,["#777777","red"])
1835 for r in xrange(s.nrow()):
1836 xsm=s._getabcissa(r)
1837 ysm=s._getspectrum(r)
1838 xorg=orgscan._getabcissa(r)
1839 yorg=orgscan._getspectrum(r)
1840 self._p.clear()
1841 self._p.hold()
1842 self._p.set_axes('ylabel',ylab)
1843 self._p.set_axes('xlabel',s._getabcissalabel(r))
1844 self._p.set_axes('title',s._getsourcename(r))
1845 self._p.set_line(label='Original',color="#777777")
1846 self._p.plot(xorg,yorg)
1847 self._p.set_line(label='Smoothed',color="red")
1848 self._p.plot(xsm,ysm)
1849 ### Ugly part for legend
1850 for i in [0,1]:
1851 self._p.subplots[0]['lines'].append([self._p.subplots[0]['axes'].lines[i]])
1852 self._p.release()
1853 ### Ugly part for legend
1854 self._p.subplots[0]['lines']=[]
1855 res = raw_input("Accept smoothing ([y]/n): ")
1856 if res.upper() == 'N':
1857 s._setspectrum(yorg, r)
1858 self._p.unmap()
1859 self._p = None
1860 del orgscan
1861
[876]1862 if insitu: self._assign(s)
1863 else: return s
[513]1864
[1862]1865 @asaplog_post_dec
[1907]1866 def old_poly_baseline(self, mask=None, order=0, plot=False, uselin=False, insitu=None, rows=None):
[1846]1867 """\
[513]1868 Return a scan which has been baselined (all rows) by a polynomial.
[1907]1869
[513]1870 Parameters:
[1846]1871
[794]1872 mask: an optional mask
[1855]1873
[794]1874 order: the order of the polynomial (default is 0)
[1855]1875
[1061]1876 plot: plot the fit and the residual. In this each
1877 indivual fit has to be approved, by typing 'y'
1878 or 'n'
[1855]1879
[1391]1880 uselin: use linear polynomial fit
[1855]1881
[794]1882 insitu: if False a new scantable is returned.
1883 Otherwise, the scaling is done in-situ
1884 The default is taken from .asaprc (False)
[1846]1885
[1907]1886 rows: row numbers of spectra to be processed.
1887 (default is None: for all rows)
1888
1889 Example:
[513]1890 # return a scan baselined by a third order polynomial,
1891 # not using a mask
1892 bscan = scan.poly_baseline(order=3)
[1846]1893
[579]1894 """
[513]1895 if insitu is None: insitu = rcParams['insitu']
[1819]1896 if not insitu:
1897 workscan = self.copy()
1898 else:
1899 workscan = self
[513]1900 varlist = vars()
1901 if mask is None:
[1907]1902 mask = [True for i in xrange(self.nchan())]
[1819]1903
[1217]1904 try:
1905 f = fitter()
[1391]1906 if uselin:
1907 f.set_function(lpoly=order)
1908 else:
1909 f.set_function(poly=order)
[1819]1910
[1907]1911 if rows == None:
1912 rows = xrange(workscan.nrow())
1913 elif isinstance(rows, int):
1914 rows = [ rows ]
1915
[1819]1916 if len(rows) > 0:
1917 self.blpars = []
[1907]1918 self.masklists = []
1919 self.actualmask = []
1920
[1819]1921 for r in rows:
1922 f.x = workscan._getabcissa(r)
1923 f.y = workscan._getspectrum(r)
[1907]1924 f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
[1819]1925 f.data = None
1926 f.fit()
1927 if plot:
1928 f.plot(residual=True)
1929 x = raw_input("Accept fit ( [y]/n ): ")
1930 if x.upper() == 'N':
1931 self.blpars.append(None)
[1907]1932 self.masklists.append(None)
1933 self.actualmask.append(None)
[1819]1934 continue
1935 workscan._setspectrum(f.fitter.getresidual(), r)
1936 self.blpars.append(f.get_parameters())
[1924]1937 self.masklists.append(workscan.get_masklist(f.mask, row=r, silent=True))
[1907]1938 self.actualmask.append(f.mask)
[1819]1939
1940 if plot:
1941 f._p.unmap()
1942 f._p = None
1943 workscan._add_history("poly_baseline", varlist)
[1856]1944 if insitu:
1945 self._assign(workscan)
1946 else:
1947 return workscan
[1217]1948 except RuntimeError:
1949 msg = "The fit failed, possibly because it didn't converge."
[1859]1950 raise RuntimeError(msg)
[513]1951
[1924]1952 @asaplog_post_dec
1953 def poly_baseline(self, mask=None, order=0, plot=False, batch=False,
1954 insitu=None, rows=None):
[1907]1955 """\
1956 Return a scan which has been baselined (all rows) by a polynomial.
1957 Parameters:
1958 mask: an optional mask
1959 order: the order of the polynomial (default is 0)
1960 plot: plot the fit and the residual. In this each
1961 indivual fit has to be approved, by typing 'y'
1962 or 'n'. Ignored if batch = True.
1963 batch: if True a faster algorithm is used and logs
1964 including the fit results are not output
1965 (default is False)
1966 insitu: if False a new scantable is returned.
1967 Otherwise, the scaling is done in-situ
1968 The default is taken from .asaprc (False)
1969 rows: row numbers of spectra to be processed.
1970 (default is None: for all rows)
1971 Example:
1972 # return a scan baselined by a third order polynomial,
1973 # not using a mask
1974 bscan = scan.poly_baseline(order=3)
1975 """
1976 if insitu is None: insitu = rcParams["insitu"]
[1924]1977 varlist = vars()
[1907]1978 if insitu:
1979 workscan = self
1980 else:
1981 workscan = self.copy()
1982
1983 nchan = workscan.nchan()
1984
1985 if mask is None:
1986 mask = [True for i in xrange(nchan)]
1987
1988 try:
1989 if rows == None:
1990 rows = xrange(workscan.nrow())
1991 elif isinstance(rows, int):
1992 rows = [ rows ]
1993
1994 if len(rows) > 0:
[1924]1995 workscan.blpars = []
1996 workscan.masklists = []
1997 workscan.actualmask = []
[1907]1998
1999 if batch:
[1924]2000 workscan._poly_baseline_batch(mask, order)
[1907]2001 elif plot:
2002 f = fitter()
2003 f.set_function(lpoly=order)
2004 for r in rows:
2005 f.x = workscan._getabcissa(r)
2006 f.y = workscan._getspectrum(r)
2007 f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
2008 f.data = None
2009 f.fit()
2010
2011 f.plot(residual=True)
2012 accept_fit = raw_input("Accept fit ( [y]/n ): ")
2013 if accept_fit.upper() == "N":
2014 self.blpars.append(None)
2015 self.masklists.append(None)
2016 self.actualmask.append(None)
2017 continue
2018 workscan._setspectrum(f.fitter.getresidual(), r)
[1924]2019 workscan.blpars.append(f.get_parameters())
2020 workscan.masklists.append(workscan.get_masklist(f.mask, row=r))
2021 workscan.actualmask.append(f.mask)
[1907]2022
2023 f._p.unmap()
2024 f._p = None
2025 else:
2026 for r in rows:
[1924]2027 fitparams = workscan._poly_baseline(mask, order, r)
2028 params = fitparams.getparameters()
2029 fmtd = ", ".join(["p%d = %3.6f" % (i, v) for i, v in enumerate(params)])
2030 errors = fitparams.geterrors()
2031 fmask = mask_and(mask, workscan._getmask(r))
2032
2033 workscan.blpars.append({"params":params,
2034 "fixed": fitparams.getfixedparameters(),
2035 "formatted":fmtd, "errors":errors})
2036 workscan.masklists.append(workscan.get_masklist(fmask, r, silent=True))
2037 workscan.actualmask.append(fmask)
[1907]2038
[1924]2039 asaplog.push(fmtd)
[1907]2040
2041 workscan._add_history("poly_baseline", varlist)
2042
2043 if insitu:
2044 self._assign(workscan)
2045 else:
2046 return workscan
2047
[1919]2048 except RuntimeError, e:
[1907]2049 msg = "The fit failed, possibly because it didn't converge."
2050 if rcParams["verbose"]:
[1919]2051 asaplog.push(str(e))
[1907]2052 asaplog.push(str(msg))
2053 return
2054 else:
[1919]2055 raise RuntimeError(str(e)+'\n'+msg)
[1907]2056
2057
2058 def auto_poly_baseline(self, mask=None, edge=(0, 0), order=0,
[1280]2059 threshold=3, chan_avg_limit=1, plot=False,
[1907]2060 insitu=None, rows=None):
[1846]2061 """\
[880]2062 Return a scan which has been baselined (all rows) by a polynomial.
2063 Spectral lines are detected first using linefinder and masked out
2064 to avoid them affecting the baseline solution.
2065
2066 Parameters:
[1846]2067
[880]2068 mask: an optional mask retreived from scantable
[1846]2069
2070 edge: an optional number of channel to drop at the edge of
2071 spectrum. If only one value is
[880]2072 specified, the same number will be dropped from
2073 both sides of the spectrum. Default is to keep
[907]2074 all channels. Nested tuples represent individual
[976]2075 edge selection for different IFs (a number of spectral
2076 channels can be different)
[1846]2077
[880]2078 order: the order of the polynomial (default is 0)
[1846]2079
[880]2080 threshold: the threshold used by line finder. It is better to
2081 keep it large as only strong lines affect the
2082 baseline solution.
[1846]2083
[1280]2084 chan_avg_limit:
2085 a maximum number of consequtive spectral channels to
2086 average during the search of weak and broad lines.
2087 The default is no averaging (and no search for weak
2088 lines). If such lines can affect the fitted baseline
2089 (e.g. a high order polynomial is fitted), increase this
2090 parameter (usually values up to 8 are reasonable). Most
2091 users of this method should find the default value
2092 sufficient.
[1846]2093
[1061]2094 plot: plot the fit and the residual. In this each
2095 indivual fit has to be approved, by typing 'y'
2096 or 'n'
[1846]2097
[880]2098 insitu: if False a new scantable is returned.
2099 Otherwise, the scaling is done in-situ
2100 The default is taken from .asaprc (False)
[1907]2101 rows: row numbers of spectra to be processed.
2102 (default is None: for all rows)
[880]2103
[1846]2104
2105 Example::
2106
2107 scan2 = scan.auto_poly_baseline(order=7, insitu=False)
2108
[880]2109 """
2110 if insitu is None: insitu = rcParams['insitu']
2111 varlist = vars()
2112 from asap.asaplinefind import linefinder
2113 from asap import _is_sequence_or_number as _is_valid
2114
[976]2115 # check whether edge is set up for each IF individually
[1118]2116 individualedge = False;
2117 if len(edge) > 1:
2118 if isinstance(edge[0], list) or isinstance(edge[0], tuple):
2119 individualedge = True;
[907]2120
[1118]2121 if not _is_valid(edge, int) and not individualedge:
[909]2122 raise ValueError, "Parameter 'edge' has to be an integer or a \
[907]2123 pair of integers specified as a tuple. Nested tuples are allowed \
2124 to make individual selection for different IFs."
[919]2125
[1118]2126 curedge = (0, 0)
2127 if individualedge:
2128 for edgepar in edge:
2129 if not _is_valid(edgepar, int):
2130 raise ValueError, "Each element of the 'edge' tuple has \
2131 to be a pair of integers or an integer."
[907]2132 else:
[1118]2133 curedge = edge;
[880]2134
[1907]2135 if not insitu:
2136 workscan = self.copy()
2137 else:
2138 workscan = self
2139
[880]2140 # setup fitter
2141 f = fitter()
[1907]2142 f.set_function(lpoly=order)
[880]2143
2144 # setup line finder
[1118]2145 fl = linefinder()
[1268]2146 fl.set_options(threshold=threshold,avg_limit=chan_avg_limit)
[880]2147
[907]2148 fl.set_scan(workscan)
2149
[1907]2150 if mask is None:
2151 mask = _n_bools(workscan.nchan(), True)
2152
2153 if rows is None:
2154 rows = xrange(workscan.nrow())
2155 elif isinstance(rows, int):
2156 rows = [ rows ]
2157
[1819]2158 # Save parameters of baseline fits & masklists as a class attribute.
2159 # NOTICE: It does not reflect changes in scantable!
2160 if len(rows) > 0:
2161 self.blpars=[]
2162 self.masklists=[]
[1907]2163 self.actualmask=[]
[880]2164 asaplog.push("Processing:")
2165 for r in rows:
[1118]2166 msg = " Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % \
2167 (workscan.getscan(r), workscan.getbeam(r), workscan.getif(r), \
2168 workscan.getpol(r), workscan.getcycle(r))
[880]2169 asaplog.push(msg, False)
[907]2170
[976]2171 # figure out edge parameter
[1118]2172 if individualedge:
2173 if len(edge) >= workscan.getif(r):
2174 raise RuntimeError, "Number of edge elements appear to " \
2175 "be less than the number of IFs"
2176 curedge = edge[workscan.getif(r)]
[919]2177
[1907]2178 actualmask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
[1819]2179
[976]2180 # setup line finder
[1819]2181 fl.find_lines(r, actualmask, curedge)
[1907]2182
[1819]2183 f.x = workscan._getabcissa(r)
2184 f.y = workscan._getspectrum(r)
[1907]2185 f.mask = fl.get_mask()
[1819]2186 f.data = None
[880]2187 f.fit()
[1819]2188
2189 # Show mask list
[1924]2190 masklist=workscan.get_masklist(f.mask, row=r, silent=True)
[1819]2191 msg = "mask range: "+str(masklist)
2192 asaplog.push(msg, False)
2193
[1061]2194 if plot:
2195 f.plot(residual=True)
2196 x = raw_input("Accept fit ( [y]/n ): ")
2197 if x.upper() == 'N':
[1819]2198 self.blpars.append(None)
2199 self.masklists.append(None)
[1907]2200 self.actualmask.append(None)
[1061]2201 continue
[1819]2202
[880]2203 workscan._setspectrum(f.fitter.getresidual(), r)
[1819]2204 self.blpars.append(f.get_parameters())
2205 self.masklists.append(masklist)
[1907]2206 self.actualmask.append(f.mask)
[1061]2207 if plot:
2208 f._p.unmap()
2209 f._p = None
2210 workscan._add_history("auto_poly_baseline", varlist)
[880]2211 if insitu:
2212 self._assign(workscan)
2213 else:
2214 return workscan
2215
[1862]2216 @asaplog_post_dec
[914]2217 def rotate_linpolphase(self, angle):
[1846]2218 """\
[914]2219 Rotate the phase of the complex polarization O=Q+iU correlation.
2220 This is always done in situ in the raw data. So if you call this
2221 function more than once then each call rotates the phase further.
[1846]2222
[914]2223 Parameters:
[1846]2224
[914]2225 angle: The angle (degrees) to rotate (add) by.
[1846]2226
2227 Example::
2228
[914]2229 scan.rotate_linpolphase(2.3)
[1846]2230
[914]2231 """
2232 varlist = vars()
[936]2233 self._math._rotate_linpolphase(self, angle)
[914]2234 self._add_history("rotate_linpolphase", varlist)
2235 return
[710]2236
[1862]2237 @asaplog_post_dec
[914]2238 def rotate_xyphase(self, angle):
[1846]2239 """\
[914]2240 Rotate the phase of the XY correlation. This is always done in situ
2241 in the data. So if you call this function more than once
2242 then each call rotates the phase further.
[1846]2243
[914]2244 Parameters:
[1846]2245
[914]2246 angle: The angle (degrees) to rotate (add) by.
[1846]2247
2248 Example::
2249
[914]2250 scan.rotate_xyphase(2.3)
[1846]2251
[914]2252 """
2253 varlist = vars()
[936]2254 self._math._rotate_xyphase(self, angle)
[914]2255 self._add_history("rotate_xyphase", varlist)
2256 return
2257
[1862]2258 @asaplog_post_dec
[914]2259 def swap_linears(self):
[1846]2260 """\
[1573]2261 Swap the linear polarisations XX and YY, or better the first two
[1348]2262 polarisations as this also works for ciculars.
[914]2263 """
2264 varlist = vars()
[936]2265 self._math._swap_linears(self)
[914]2266 self._add_history("swap_linears", varlist)
2267 return
2268
[1862]2269 @asaplog_post_dec
[914]2270 def invert_phase(self):
[1846]2271 """\
[914]2272 Invert the phase of the complex polarisation
2273 """
2274 varlist = vars()
[936]2275 self._math._invert_phase(self)
[914]2276 self._add_history("invert_phase", varlist)
2277 return
2278
[1862]2279 @asaplog_post_dec
[876]2280 def add(self, offset, insitu=None):
[1846]2281 """\
[513]2282 Return a scan where all spectra have the offset added
[1846]2283
[513]2284 Parameters:
[1846]2285
[513]2286 offset: the offset
[1855]2287
[513]2288 insitu: if False a new scantable is returned.
2289 Otherwise, the scaling is done in-situ
2290 The default is taken from .asaprc (False)
[1846]2291
[513]2292 """
2293 if insitu is None: insitu = rcParams['insitu']
[876]2294 self._math._setinsitu(insitu)
[513]2295 varlist = vars()
[876]2296 s = scantable(self._math._unaryop(self, offset, "ADD", False))
[1118]2297 s._add_history("add", varlist)
[876]2298 if insitu:
2299 self._assign(s)
2300 else:
[513]2301 return s
2302
[1862]2303 @asaplog_post_dec
[1308]2304 def scale(self, factor, tsys=True, insitu=None):
[1846]2305 """\
2306
[513]2307 Return a scan where all spectra are scaled by the give 'factor'
[1846]2308
[513]2309 Parameters:
[1846]2310
[1819]2311 factor: the scaling factor (float or 1D float list)
[1855]2312
[513]2313 insitu: if False a new scantable is returned.
2314 Otherwise, the scaling is done in-situ
2315 The default is taken from .asaprc (False)
[1855]2316
[513]2317 tsys: if True (default) then apply the operation to Tsys
2318 as well as the data
[1846]2319
[513]2320 """
2321 if insitu is None: insitu = rcParams['insitu']
[876]2322 self._math._setinsitu(insitu)
[513]2323 varlist = vars()
[1819]2324 s = None
2325 import numpy
2326 if isinstance(factor, list) or isinstance(factor, numpy.ndarray):
2327 if isinstance(factor[0], list) or isinstance(factor[0], numpy.ndarray):
2328 from asapmath import _array2dOp
2329 s = _array2dOp( self.copy(), factor, "MUL", tsys )
2330 else:
2331 s = scantable( self._math._arrayop( self.copy(), factor, "MUL", tsys ) )
2332 else:
2333 s = scantable(self._math._unaryop(self.copy(), factor, "MUL", tsys))
[1118]2334 s._add_history("scale", varlist)
[876]2335 if insitu:
2336 self._assign(s)
2337 else:
[513]2338 return s
2339
[1504]2340 def set_sourcetype(self, match, matchtype="pattern",
2341 sourcetype="reference"):
[1846]2342 """\
[1502]2343 Set the type of the source to be an source or reference scan
[1846]2344 using the provided pattern.
2345
[1502]2346 Parameters:
[1846]2347
[1504]2348 match: a Unix style pattern, regular expression or selector
[1855]2349
[1504]2350 matchtype: 'pattern' (default) UNIX style pattern or
2351 'regex' regular expression
[1855]2352
[1502]2353 sourcetype: the type of the source to use (source/reference)
[1846]2354
[1502]2355 """
2356 varlist = vars()
2357 basesel = self.get_selection()
2358 stype = -1
2359 if sourcetype.lower().startswith("r"):
2360 stype = 1
2361 elif sourcetype.lower().startswith("s"):
2362 stype = 0
[1504]2363 else:
[1502]2364 raise ValueError("Illegal sourcetype use s(ource) or r(eference)")
[1504]2365 if matchtype.lower().startswith("p"):
2366 matchtype = "pattern"
2367 elif matchtype.lower().startswith("r"):
2368 matchtype = "regex"
2369 else:
2370 raise ValueError("Illegal matchtype, use p(attern) or r(egex)")
[1502]2371 sel = selector()
2372 if isinstance(match, selector):
2373 sel = match
2374 else:
[1504]2375 sel.set_query("SRCNAME == %s('%s')" % (matchtype, match))
[1502]2376 self.set_selection(basesel+sel)
2377 self._setsourcetype(stype)
2378 self.set_selection(basesel)
[1573]2379 self._add_history("set_sourcetype", varlist)
[1502]2380
[1862]2381 @asaplog_post_dec
[1857]2382 @preserve_selection
[1819]2383 def auto_quotient(self, preserve=True, mode='paired', verify=False):
[1846]2384 """\
[670]2385 This function allows to build quotients automatically.
[1819]2386 It assumes the observation to have the same number of
[670]2387 "ons" and "offs"
[1846]2388
[670]2389 Parameters:
[1846]2390
[710]2391 preserve: you can preserve (default) the continuum or
2392 remove it. The equations used are
[1857]2393
[670]2394 preserve: Output = Toff * (on/off) - Toff
[1857]2395
[1070]2396 remove: Output = Toff * (on/off) - Ton
[1855]2397
[1573]2398 mode: the on/off detection mode
[1348]2399 'paired' (default)
2400 identifies 'off' scans by the
2401 trailing '_R' (Mopra/Parkes) or
2402 '_e'/'_w' (Tid) and matches
2403 on/off pairs from the observing pattern
[1502]2404 'time'
2405 finds the closest off in time
[1348]2406
[1857]2407 .. todo:: verify argument is not implemented
2408
[670]2409 """
[1857]2410 varlist = vars()
[1348]2411 modes = ["time", "paired"]
[670]2412 if not mode in modes:
[876]2413 msg = "please provide valid mode. Valid modes are %s" % (modes)
2414 raise ValueError(msg)
[1348]2415 s = None
2416 if mode.lower() == "paired":
[1857]2417 sel = self.get_selection()
[1875]2418 sel.set_query("SRCTYPE==psoff")
[1356]2419 self.set_selection(sel)
[1348]2420 offs = self.copy()
[1875]2421 sel.set_query("SRCTYPE==pson")
[1356]2422 self.set_selection(sel)
[1348]2423 ons = self.copy()
2424 s = scantable(self._math._quotient(ons, offs, preserve))
2425 elif mode.lower() == "time":
2426 s = scantable(self._math._auto_quotient(self, mode, preserve))
[1118]2427 s._add_history("auto_quotient", varlist)
[876]2428 return s
[710]2429
[1862]2430 @asaplog_post_dec
[1145]2431 def mx_quotient(self, mask = None, weight='median', preserve=True):
[1846]2432 """\
[1143]2433 Form a quotient using "off" beams when observing in "MX" mode.
[1846]2434
[1143]2435 Parameters:
[1846]2436
[1145]2437 mask: an optional mask to be used when weight == 'stddev'
[1855]2438
[1143]2439 weight: How to average the off beams. Default is 'median'.
[1855]2440
[1145]2441 preserve: you can preserve (default) the continuum or
[1855]2442 remove it. The equations used are:
[1846]2443
[1855]2444 preserve: Output = Toff * (on/off) - Toff
2445
2446 remove: Output = Toff * (on/off) - Ton
2447
[1217]2448 """
[1593]2449 mask = mask or ()
[1141]2450 varlist = vars()
2451 on = scantable(self._math._mx_extract(self, 'on'))
[1143]2452 preoff = scantable(self._math._mx_extract(self, 'off'))
2453 off = preoff.average_time(mask=mask, weight=weight, scanav=False)
[1217]2454 from asapmath import quotient
[1145]2455 q = quotient(on, off, preserve)
[1143]2456 q._add_history("mx_quotient", varlist)
[1217]2457 return q
[513]2458
[1862]2459 @asaplog_post_dec
[718]2460 def freq_switch(self, insitu=None):
[1846]2461 """\
[718]2462 Apply frequency switching to the data.
[1846]2463
[718]2464 Parameters:
[1846]2465
[718]2466 insitu: if False a new scantable is returned.
2467 Otherwise, the swictching is done in-situ
2468 The default is taken from .asaprc (False)
[1846]2469
[718]2470 """
2471 if insitu is None: insitu = rcParams['insitu']
[876]2472 self._math._setinsitu(insitu)
[718]2473 varlist = vars()
[876]2474 s = scantable(self._math._freqswitch(self))
[1118]2475 s._add_history("freq_switch", varlist)
[1856]2476 if insitu:
2477 self._assign(s)
2478 else:
2479 return s
[718]2480
[1862]2481 @asaplog_post_dec
[780]2482 def recalc_azel(self):
[1846]2483 """Recalculate the azimuth and elevation for each position."""
[780]2484 varlist = vars()
[876]2485 self._recalcazel()
[780]2486 self._add_history("recalc_azel", varlist)
2487 return
2488
[1862]2489 @asaplog_post_dec
[513]2490 def __add__(self, other):
2491 varlist = vars()
2492 s = None
2493 if isinstance(other, scantable):
[1573]2494 s = scantable(self._math._binaryop(self, other, "ADD"))
[513]2495 elif isinstance(other, float):
[876]2496 s = scantable(self._math._unaryop(self, other, "ADD", False))
[513]2497 else:
[718]2498 raise TypeError("Other input is not a scantable or float value")
[513]2499 s._add_history("operator +", varlist)
2500 return s
2501
[1862]2502 @asaplog_post_dec
[513]2503 def __sub__(self, other):
2504 """
2505 implicit on all axes and on Tsys
2506 """
2507 varlist = vars()
2508 s = None
2509 if isinstance(other, scantable):
[1588]2510 s = scantable(self._math._binaryop(self, other, "SUB"))
[513]2511 elif isinstance(other, float):
[876]2512 s = scantable(self._math._unaryop(self, other, "SUB", False))
[513]2513 else:
[718]2514 raise TypeError("Other input is not a scantable or float value")
[513]2515 s._add_history("operator -", varlist)
2516 return s
[710]2517
[1862]2518 @asaplog_post_dec
[513]2519 def __mul__(self, other):
2520 """
2521 implicit on all axes and on Tsys
2522 """
2523 varlist = vars()
2524 s = None
2525 if isinstance(other, scantable):
[1588]2526 s = scantable(self._math._binaryop(self, other, "MUL"))
[513]2527 elif isinstance(other, float):
[876]2528 s = scantable(self._math._unaryop(self, other, "MUL", False))
[513]2529 else:
[718]2530 raise TypeError("Other input is not a scantable or float value")
[513]2531 s._add_history("operator *", varlist)
2532 return s
2533
[710]2534
[1862]2535 @asaplog_post_dec
[513]2536 def __div__(self, other):
2537 """
2538 implicit on all axes and on Tsys
2539 """
2540 varlist = vars()
2541 s = None
2542 if isinstance(other, scantable):
[1589]2543 s = scantable(self._math._binaryop(self, other, "DIV"))
[513]2544 elif isinstance(other, float):
2545 if other == 0.0:
[718]2546 raise ZeroDivisionError("Dividing by zero is not recommended")
[876]2547 s = scantable(self._math._unaryop(self, other, "DIV", False))
[513]2548 else:
[718]2549 raise TypeError("Other input is not a scantable or float value")
[513]2550 s._add_history("operator /", varlist)
2551 return s
2552
[1862]2553 @asaplog_post_dec
[530]2554 def get_fit(self, row=0):
[1846]2555 """\
[530]2556 Print or return the stored fits for a row in the scantable
[1846]2557
[530]2558 Parameters:
[1846]2559
[530]2560 row: the row which the fit has been applied to.
[1846]2561
[530]2562 """
2563 if row > self.nrow():
2564 return
[976]2565 from asap.asapfit import asapfit
[530]2566 fit = asapfit(self._getfit(row))
[1859]2567 asaplog.push( '%s' %(fit) )
2568 return fit.as_dict()
[530]2569
[1483]2570 def flag_nans(self):
[1846]2571 """\
[1483]2572 Utility function to flag NaN values in the scantable.
2573 """
2574 import numpy
2575 basesel = self.get_selection()
2576 for i in range(self.nrow()):
[1589]2577 sel = self.get_row_selector(i)
2578 self.set_selection(basesel+sel)
[1483]2579 nans = numpy.isnan(self._getspectrum(0))
2580 if numpy.any(nans):
2581 bnans = [ bool(v) for v in nans]
2582 self.flag(bnans)
2583 self.set_selection(basesel)
2584
[1588]2585 def get_row_selector(self, rowno):
2586 return selector(beams=self.getbeam(rowno),
2587 ifs=self.getif(rowno),
2588 pols=self.getpol(rowno),
2589 scans=self.getscan(rowno),
2590 cycles=self.getcycle(rowno))
[1573]2591
[484]2592 def _add_history(self, funcname, parameters):
[1435]2593 if not rcParams['scantable.history']:
2594 return
[484]2595 # create date
2596 sep = "##"
2597 from datetime import datetime
2598 dstr = datetime.now().strftime('%Y/%m/%d %H:%M:%S')
2599 hist = dstr+sep
2600 hist += funcname+sep#cdate+sep
2601 if parameters.has_key('self'): del parameters['self']
[1118]2602 for k, v in parameters.iteritems():
[484]2603 if type(v) is dict:
[1118]2604 for k2, v2 in v.iteritems():
[484]2605 hist += k2
2606 hist += "="
[1118]2607 if isinstance(v2, scantable):
[484]2608 hist += 'scantable'
2609 elif k2 == 'mask':
[1118]2610 if isinstance(v2, list) or isinstance(v2, tuple):
[513]2611 hist += str(self._zip_mask(v2))
2612 else:
2613 hist += str(v2)
[484]2614 else:
[513]2615 hist += str(v2)
[484]2616 else:
2617 hist += k
2618 hist += "="
[1118]2619 if isinstance(v, scantable):
[484]2620 hist += 'scantable'
2621 elif k == 'mask':
[1118]2622 if isinstance(v, list) or isinstance(v, tuple):
[513]2623 hist += str(self._zip_mask(v))
2624 else:
2625 hist += str(v)
[484]2626 else:
2627 hist += str(v)
2628 hist += sep
2629 hist = hist[:-2] # remove trailing '##'
2630 self._addhistory(hist)
2631
[710]2632
[484]2633 def _zip_mask(self, mask):
2634 mask = list(mask)
2635 i = 0
2636 segments = []
2637 while mask[i:].count(1):
2638 i += mask[i:].index(1)
2639 if mask[i:].count(0):
2640 j = i + mask[i:].index(0)
2641 else:
[710]2642 j = len(mask)
[1118]2643 segments.append([i, j])
[710]2644 i = j
[484]2645 return segments
[714]2646
[626]2647 def _get_ordinate_label(self):
2648 fu = "("+self.get_fluxunit()+")"
2649 import re
2650 lbl = "Intensity"
[1118]2651 if re.match(".K.", fu):
[626]2652 lbl = "Brightness Temperature "+ fu
[1118]2653 elif re.match(".Jy.", fu):
[626]2654 lbl = "Flux density "+ fu
2655 return lbl
[710]2656
[876]2657 def _check_ifs(self):
2658 nchans = [self.nchan(i) for i in range(self.nif(-1))]
[889]2659 nchans = filter(lambda t: t > 0, nchans)
[876]2660 return (sum(nchans)/len(nchans) == nchans[0])
[976]2661
[1862]2662 @asaplog_post_dec
[1916]2663 #def _fill(self, names, unit, average, getpt, antenna):
2664 def _fill(self, names, unit, average, opts={}):
[976]2665 first = True
2666 fullnames = []
2667 for name in names:
2668 name = os.path.expandvars(name)
2669 name = os.path.expanduser(name)
2670 if not os.path.exists(name):
2671 msg = "File '%s' does not exists" % (name)
2672 raise IOError(msg)
2673 fullnames.append(name)
2674 if average:
2675 asaplog.push('Auto averaging integrations')
[1079]2676 stype = int(rcParams['scantable.storage'].lower() == 'disk')
[976]2677 for name in fullnames:
[1073]2678 tbl = Scantable(stype)
[1843]2679 r = filler(tbl)
[1504]2680 rx = rcParams['scantable.reference']
[1843]2681 r.setreferenceexpr(rx)
[976]2682 msg = "Importing %s..." % (name)
[1118]2683 asaplog.push(msg, False)
[1916]2684 #opts = {'ms': {'antenna' : antenna, 'getpt': getpt} }
[1904]2685 r.open(name, opts)# antenna, -1, -1, getpt)
[1843]2686 r.fill()
[976]2687 if average:
[1118]2688 tbl = self._math._average((tbl, ), (), 'NONE', 'SCAN')
[976]2689 if not first:
2690 tbl = self._math._merge([self, tbl])
2691 Scantable.__init__(self, tbl)
[1843]2692 r.close()
[1118]2693 del r, tbl
[976]2694 first = False
[1861]2695 #flush log
2696 asaplog.post()
[976]2697 if unit is not None:
2698 self.set_fluxunit(unit)
[1824]2699 if not is_casapy():
2700 self.set_freqframe(rcParams['scantable.freqframe'])
[976]2701
[1402]2702 def __getitem__(self, key):
2703 if key < 0:
2704 key += self.nrow()
2705 if key >= self.nrow():
2706 raise IndexError("Row index out of range.")
2707 return self._getspectrum(key)
2708
2709 def __setitem__(self, key, value):
2710 if key < 0:
2711 key += self.nrow()
2712 if key >= self.nrow():
2713 raise IndexError("Row index out of range.")
2714 if not hasattr(value, "__len__") or \
2715 len(value) > self.nchan(self.getif(key)):
2716 raise ValueError("Spectrum length doesn't match.")
2717 return self._setspectrum(value, key)
2718
2719 def __len__(self):
2720 return self.nrow()
2721
2722 def __iter__(self):
2723 for i in range(len(self)):
2724 yield self[i]
Note: See TracBrowser for help on using the repository browser.