source: branches/parallel/src/STMath.cpp @ 2285

Last change on this file since 2285 was 2285, checked in by ShinnosukeKawakami, 13 years ago

New Development: No

JIRA Issue: No List JIRA ticket.

Ready for Test: Yes

Interface Changes: No

What Interface Changed: Please list interface changes

Test Programs: fls3a_hi_regression.py

Put in Release Notes: No

Module(s): _asap.so

Description: (1)Replaced getEntry to map within dototalpower in STMath.cpp and STMath.h. (2) modified STFocus.h and Templates to pass build by using Intel Compiler successfully.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 168.1 KB
Line 
1//
2// C++ Implementation: STMath
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2006
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12
13#include <casa/iomanip.h>
14#include <casa/Exceptions/Error.h>
15#include <casa/Containers/Block.h>
16#include <casa/BasicSL/String.h>
17#include <casa/Arrays/MaskArrLogi.h>
18#include <casa/Arrays/MaskArrMath.h>
19#include <casa/Arrays/ArrayLogical.h>
20#include <casa/Arrays/ArrayMath.h>
21#include <casa/Arrays/Slice.h>
22#include <casa/Arrays/Slicer.h>
23#include <casa/Containers/RecordField.h>
24#include <tables/Tables/TableRow.h>
25#include <tables/Tables/TableVector.h>
26#include <tables/Tables/TabVecMath.h>
27#include <tables/Tables/ExprNode.h>
28#include <tables/Tables/TableRecord.h>
29#include <tables/Tables/TableParse.h>
30#include <tables/Tables/ReadAsciiTable.h>
31#include <tables/Tables/TableIter.h>
32#include <tables/Tables/TableCopy.h>
33#include <scimath/Mathematics/FFTServer.h>
34
35#include <lattices/Lattices/LatticeUtilities.h>
36
37#include <coordinates/Coordinates/SpectralCoordinate.h>
38#include <coordinates/Coordinates/CoordinateSystem.h>
39#include <coordinates/Coordinates/CoordinateUtil.h>
40#include <coordinates/Coordinates/FrequencyAligner.h>
41
42#include <scimath/Mathematics/VectorKernel.h>
43#include <scimath/Mathematics/Convolver.h>
44#include <scimath/Functionals/Polynomial.h>
45
46#include <atnf/PKSIO/SrcType.h>
47
48#include <casa/Logging/LogIO.h>
49#include <sstream>
50
51#include "MathUtils.h"
52#include "RowAccumulator.h"
53#include "STAttr.h"
54#include "STSelector.h"
55
56#include "STMath.h"
57using namespace casa;
58
59using namespace asap;
60
61// tolerance for direction comparison (rad)
62#define TOL_OTF    1.0e-15
63#define TOL_POINT  2.9088821e-4  // 1 arcmin
64
65STMath::STMath(bool insitu) :
66  insitu_(insitu)
67{
68}
69
70
71STMath::~STMath()
72{
73}
74
75CountedPtr<Scantable>
76STMath::average( const std::vector<CountedPtr<Scantable> >& in,
77                 const std::vector<bool>& mask,
78                 const std::string& weight,
79                 const std::string& avmode)
80{
81  LogIO os( LogOrigin( "STMath", "average()", WHERE ) ) ;
82  if ( avmode == "SCAN" && in.size() != 1 )
83    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
84                    "Use merge first."));
85  WeightType wtype = stringToWeight(weight);
86
87  // check if OTF observation
88  String obstype = in[0]->getHeader().obstype ;
89  Double tol = 0.0 ;
90  if ( (obstype.find( "OTF" ) != String::npos) || (obstype.find( "OBSERVE_TARGET" ) != String::npos) ) {
91    tol = TOL_OTF ;
92  }
93  else {
94    tol = TOL_POINT ;
95  }
96
97  // output
98  // clone as this is non insitu
99  bool insitu = insitu_;
100  setInsitu(false);
101  CountedPtr< Scantable > out = getScantable(in[0], true);
102  setInsitu(insitu);
103  std::vector<CountedPtr<Scantable> >::const_iterator stit = in.begin();
104  ++stit;
105  while ( stit != in.end() ) {
106    out->appendToHistoryTable((*stit)->history());
107    ++stit;
108  }
109
110  Table& tout = out->table();
111
112  /// @todo check if all scantables are conformant
113
114  ArrayColumn<Float> specColOut(tout,"SPECTRA");
115  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
116  ArrayColumn<Float> tsysColOut(tout,"TSYS");
117  ScalarColumn<Double> mjdColOut(tout,"TIME");
118  ScalarColumn<Double> intColOut(tout,"INTERVAL");
119  ScalarColumn<uInt> cycColOut(tout,"CYCLENO");
120  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
121
122  // set up the output table rows. These are based on the structure of the
123  // FIRST scantable in the vector
124  const Table& baset = in[0]->table();
125
126  Block<String> cols(3);
127  cols[0] = String("BEAMNO");
128  cols[1] = String("IFNO");
129  cols[2] = String("POLNO");
130  if ( avmode == "SOURCE" ) {
131    cols.resize(4);
132    cols[3] = String("SRCNAME");
133  }
134  if ( avmode == "SCAN"  && in.size() == 1) {
135    //cols.resize(4);
136    //cols[3] = String("SCANNO");
137    cols.resize(5);
138    cols[3] = String("SRCNAME");
139    cols[4] = String("SCANNO");
140  }
141  uInt outrowCount = 0;
142  TableIterator iter(baset, cols);
143//   int count = 0 ;
144  while (!iter.pastEnd()) {
145    Table subt = iter.table();
146//     // copy the first row of this selection into the new table
147//     tout.addRow();
148//     TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
149//     // re-index to 0
150//     if ( avmode != "SCAN" && avmode != "SOURCE" ) {
151//       scanColOut.put(outrowCount, uInt(0));
152//     }
153//     ++outrowCount;
154    MDirection::ScalarColumn dircol ;
155    dircol.attach( subt, "DIRECTION" ) ;
156    Int length = subt.nrow() ;
157    vector< Vector<Double> > dirs ;
158    vector<int> indexes ;
159    for ( Int i = 0 ; i < length ; i++ ) {
160      Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
161      //os << << count++ << ": " ;
162      //os << "[" << t[0] << "," << t[1] << "]" << LogIO::POST ;
163      bool adddir = true ;
164      for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
165        //if ( allTrue( t == dirs[j] ) ) {
166        Double dx = t[0] - dirs[j][0] ;
167        Double dy = t[1] - dirs[j][1] ;
168        Double dd = sqrt( dx * dx + dy * dy ) ;
169        //if ( allNearAbs( t, dirs[j], tol ) ) {
170        if ( dd <= tol ) {
171          adddir = false ;
172          break ;
173        }
174      }
175      if ( adddir ) {
176        dirs.push_back( t ) ;
177        indexes.push_back( i ) ;
178      }
179    }
180    uInt rowNum = dirs.size() ;
181    tout.addRow( rowNum ) ;
182    for ( uInt i = 0 ; i < rowNum ; i++ ) {
183      TableCopy::copyRows( tout, subt, outrowCount+i, indexes[i], 1 ) ;
184      // re-index to 0
185      if ( avmode != "SCAN" && avmode != "SOURCE" ) {
186        scanColOut.put(outrowCount+i, uInt(0));
187      }       
188    }
189    outrowCount += rowNum ;
190    ++iter;
191  }
192  RowAccumulator acc(wtype);
193  Vector<Bool> cmask(mask);
194  acc.setUserMask(cmask);
195  ROTableRow row(tout);
196  ROArrayColumn<Float> specCol, tsysCol;
197  ROArrayColumn<uChar> flagCol;
198  ROScalarColumn<Double> mjdCol, intCol;
199  ROScalarColumn<Int> scanIDCol;
200
201  Vector<uInt> rowstodelete;
202
203  for (uInt i=0; i < tout.nrow(); ++i) {
204    for ( int j=0; j < int(in.size()); ++j ) {
205      const Table& tin = in[j]->table();
206      const TableRecord& rec = row.get(i);
207      ROScalarColumn<Double> tmp(tin, "TIME");
208      Double td;tmp.get(0,td);
209      Table basesubt = tin( tin.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
210                         && tin.col("IFNO") == Int(rec.asuInt("IFNO"))
211                         && tin.col("POLNO") == Int(rec.asuInt("POLNO")) );
212      Table subt;
213      if ( avmode == "SOURCE") {
214        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME"));
215      } else if (avmode == "SCAN") {
216        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME")
217                      && basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) );
218      } else {
219        subt = basesubt;
220      }
221
222      vector<uInt> removeRows ;
223      uInt nrsubt = subt.nrow() ;
224      for ( uInt irow = 0 ; irow < nrsubt ; irow++ ) {
225        //if ( !allTrue((subt.col("DIRECTION").getArrayDouble(TableExprId(irow)))==rec.asArrayDouble("DIRECTION")) ) {
226        Vector<Double> x0 = (subt.col("DIRECTION").getArrayDouble(TableExprId(irow))) ;
227        Vector<Double> x1 = rec.asArrayDouble("DIRECTION") ;
228        double dx = x0[0] - x1[0] ;
229        double dy = x0[0] - x1[0] ;
230        Double dd = sqrt( dx * dx + dy * dy ) ;
231        //if ( !allNearAbs((subt.col("DIRECTION").getArrayDouble(TableExprId(irow))), rec.asArrayDouble("DIRECTION"), tol ) ) {
232        if ( dd > tol ) {
233          removeRows.push_back( irow ) ;
234        }
235      }
236      if ( removeRows.size() != 0 ) {
237        subt.removeRow( removeRows ) ;
238      }
239     
240      if ( nrsubt == removeRows.size() )
241        throw(AipsError("Averaging data is empty.")) ;
242
243      specCol.attach(subt,"SPECTRA");
244      flagCol.attach(subt,"FLAGTRA");
245      tsysCol.attach(subt,"TSYS");
246      intCol.attach(subt,"INTERVAL");
247      mjdCol.attach(subt,"TIME");
248      Vector<Float> spec,tsys;
249      Vector<uChar> flag;
250      Double inter,time;
251      for (uInt k = 0; k < subt.nrow(); ++k ) {
252        flagCol.get(k, flag);
253        Vector<Bool> bflag(flag.shape());
254        convertArray(bflag, flag);
255        /*
256        if ( allEQ(bflag, True) ) {
257        continue;//don't accumulate
258        }
259        */
260        specCol.get(k, spec);
261        tsysCol.get(k, tsys);
262        intCol.get(k, inter);
263        mjdCol.get(k, time);
264        // spectrum has to be added last to enable weighting by the other values
265        acc.add(spec, !bflag, tsys, inter, time);
266      }
267
268      // If there exists a channel at which all the input spectra are masked,
269      // spec has 'nan' values for that channel and it may affect the following
270      // processes. To avoid this, replacing 'nan' values in spec with
271      // weighted-mean of all spectra in the following line.
272      // (done for CAS-2776, 2011/04/07 by Wataru Kawasaki)
273      acc.replaceNaN();
274    }
275    const Vector<Bool>& msk = acc.getMask();
276    if ( allEQ(msk, False) ) {
277      uint n = rowstodelete.nelements();
278      rowstodelete.resize(n+1, True);
279      rowstodelete[n] = i;
280      continue;
281    }
282    //write out
283    if (acc.state()) {
284      Vector<uChar> flg(msk.shape());
285      convertArray(flg, !msk);
286      for (uInt k = 0; k < flg.nelements(); ++k) {
287        uChar userFlag = 1 << 7;
288        if (msk[k]==True) userFlag = 0 << 7;
289        flg(k) = userFlag;
290      }
291
292      flagColOut.put(i, flg);
293      specColOut.put(i, acc.getSpectrum());
294      tsysColOut.put(i, acc.getTsys());
295      intColOut.put(i, acc.getInterval());
296      mjdColOut.put(i, acc.getTime());
297      // we should only have one cycle now -> reset it to be 0
298      // frequency switched data has different CYCLENO for different IFNO
299      // which requires resetting this value
300      cycColOut.put(i, uInt(0));
301    } else {
302      ostringstream oss;
303      oss << "For output row="<<i<<", all input rows of data are flagged. no averaging" << endl;
304      pushLog(String(oss));
305    }
306    acc.reset();
307  }
308
309  if (rowstodelete.nelements() > 0) {
310    os << rowstodelete << LogIO::POST ;
311    tout.removeRow(rowstodelete);
312    if (tout.nrow() == 0) {
313      throw(AipsError("Can't average fully flagged data."));
314    }
315  }
316  return out;
317}
318
319CountedPtr< Scantable >
320  STMath::averageChannel( const CountedPtr < Scantable > & in,
321                          const std::string & mode,
322                          const std::string& avmode )
323{
324  // check if OTF observation
325  String obstype = in->getHeader().obstype ;
326  Double tol = 0.0 ;
327  if ( obstype.find( "OTF" ) != String::npos ) {
328    tol = TOL_OTF ;
329  }
330  else {
331    tol = TOL_POINT ;
332  }
333
334  // clone as this is non insitu
335  bool insitu = insitu_;
336  setInsitu(false);
337  CountedPtr< Scantable > out = getScantable(in, true);
338  setInsitu(insitu);
339  Table& tout = out->table();
340  ArrayColumn<Float> specColOut(tout,"SPECTRA");
341  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
342  ArrayColumn<Float> tsysColOut(tout,"TSYS");
343  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
344  ScalarColumn<Double> intColOut(tout, "INTERVAL");
345  Table tmp = in->table().sort("BEAMNO");
346  Block<String> cols(3);
347  cols[0] = String("BEAMNO");
348  cols[1] = String("IFNO");
349  cols[2] = String("POLNO");
350  if ( avmode == "SCAN") {
351    cols.resize(4);
352    cols[3] = String("SCANNO");
353  }
354  uInt outrowCount = 0;
355  uChar userflag = 1 << 7;
356  TableIterator iter(tmp, cols);
357  while (!iter.pastEnd()) {
358    Table subt = iter.table();
359    ROArrayColumn<Float> specCol, tsysCol;
360    ROArrayColumn<uChar> flagCol;
361    ROScalarColumn<Double> intCol(subt, "INTERVAL");
362    specCol.attach(subt,"SPECTRA");
363    flagCol.attach(subt,"FLAGTRA");
364    tsysCol.attach(subt,"TSYS");
365//     tout.addRow();
366//     TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
367//     if ( avmode != "SCAN") {
368//       scanColOut.put(outrowCount, uInt(0));
369//     }
370//     Vector<Float> tmp;
371//     specCol.get(0, tmp);
372//     uInt nchan = tmp.nelements();
373//     // have to do channel by channel here as MaskedArrMath
374//     // doesn't have partialMedians
375//     Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
376//     Vector<Float> outspec(nchan);
377//     Vector<uChar> outflag(nchan,0);
378//     Vector<Float> outtsys(1);/// @fixme when tsys is channel based
379//     for (uInt i=0; i<nchan; ++i) {
380//       Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
381//       MaskedArray<Float> ma = maskedArray(specs,flags);
382//       outspec[i] = median(ma);
383//       if ( allEQ(ma.getMask(), False) )
384//         outflag[i] = userflag;// flag data
385//     }
386//     outtsys[0] = median(tsysCol.getColumn());
387//     specColOut.put(outrowCount, outspec);
388//     flagColOut.put(outrowCount, outflag);
389//     tsysColOut.put(outrowCount, outtsys);
390//     Double intsum = sum(intCol.getColumn());
391//     intColOut.put(outrowCount, intsum);
392//     ++outrowCount;
393//     ++iter;
394    MDirection::ScalarColumn dircol ;
395    dircol.attach( subt, "DIRECTION" ) ;
396    Int length = subt.nrow() ;
397    vector< Vector<Double> > dirs ;
398    vector<int> indexes ;
399    for ( Int i = 0 ; i < length ; i++ ) {
400      Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
401      bool adddir = true ;
402      for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
403        //if ( allTrue( t == dirs[j] ) ) {
404        Double dx = t[0] - dirs[j][0] ;
405        Double dy = t[1] - dirs[j][1] ;
406        Double dd = sqrt( dx * dx + dy * dy ) ;
407        //if ( allNearAbs( t, dirs[j], tol ) ) {
408        if ( dd <= tol ) {
409          adddir = false ;
410          break ;
411        }
412      }
413      if ( adddir ) {
414        dirs.push_back( t ) ;
415        indexes.push_back( i ) ;
416      }
417    }
418    uInt rowNum = dirs.size() ;
419    tout.addRow( rowNum );
420    for ( uInt i = 0 ; i < rowNum ; i++ ) {
421      TableCopy::copyRows(tout, subt, outrowCount+i, indexes[i], 1) ;
422      if ( avmode != "SCAN") {
423        //scanColOut.put(outrowCount+i, uInt(0));
424      }
425    }
426    MDirection::ScalarColumn dircolOut ;
427    dircolOut.attach( tout, "DIRECTION" ) ;
428    for ( uInt irow = 0 ; irow < rowNum ; irow++ ) {
429      Vector<Double> t = dircolOut(outrowCount+irow).getAngle(Unit(String("rad"))).getValue() ;
430      Vector<Float> tmp;
431      specCol.get(0, tmp);
432      uInt nchan = tmp.nelements();
433      // have to do channel by channel here as MaskedArrMath
434      // doesn't have partialMedians
435      Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
436      // mask spectra for different DIRECTION
437      for ( uInt jrow = 0 ; jrow < subt.nrow() ; jrow++ ) {
438        Vector<Double> direction = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
439        //if ( t[0] != direction[0] || t[1] != direction[1] ) {
440        Double dx = t[0] - direction[0] ;
441        Double dy = t[1] - direction[1] ;
442        Double dd = sqrt( dx * dx + dy * dy ) ;
443        //if ( !allNearAbs( t, direction, tol ) ) {
444        if ( dd > tol ) {
445          flags[jrow] = userflag ;
446        }
447      }
448      Vector<Float> outspec(nchan);
449      Vector<uChar> outflag(nchan,0);
450      Vector<Float> outtsys(1);/// @fixme when tsys is channel based
451      for (uInt i=0; i<nchan; ++i) {
452        Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
453        MaskedArray<Float> ma = maskedArray(specs,flags);
454        outspec[i] = median(ma);
455        if ( allEQ(ma.getMask(), False) )
456          outflag[i] = userflag;// flag data
457      }
458      outtsys[0] = median(tsysCol.getColumn());
459      specColOut.put(outrowCount+irow, outspec);
460      flagColOut.put(outrowCount+irow, outflag);
461      tsysColOut.put(outrowCount+irow, outtsys);
462      Vector<Double> integ = intCol.getColumn() ;
463      MaskedArray<Double> mi = maskedArray( integ, flags ) ;
464      Double intsum = sum(mi);
465      intColOut.put(outrowCount+irow, intsum);
466    }
467    outrowCount += rowNum ;
468    ++iter;
469  }
470  return out;
471}
472
473CountedPtr< Scantable > STMath::getScantable(const CountedPtr< Scantable >& in,
474                                             bool droprows)
475{
476  if (insitu_) {
477    return in;
478  }
479  else {
480    // clone
481    return CountedPtr<Scantable>(new Scantable(*in, Bool(droprows)));
482  }
483}
484
485CountedPtr< Scantable > STMath::unaryOperate( const CountedPtr< Scantable >& in,
486                                              float val,
487                                              const std::string& mode,
488                                              bool tsys )
489{
490  CountedPtr< Scantable > out = getScantable(in, false);
491  Table& tab = out->table();
492  ArrayColumn<Float> specCol(tab,"SPECTRA");
493  ArrayColumn<Float> tsysCol(tab,"TSYS");
494  if (mode=="DIV") val = 1.0/val ;
495  else if (mode=="SUB") val *= -1.0 ;
496  for (uInt i=0; i<tab.nrow(); ++i) {
497    Vector<Float> spec;
498    Vector<Float> ts;
499    specCol.get(i, spec);
500    tsysCol.get(i, ts);
501    if (mode == "MUL" || mode == "DIV") {
502      //if (mode == "DIV") val = 1.0/val;
503      spec *= val;
504      specCol.put(i, spec);
505      if ( tsys ) {
506        ts *= val;
507        tsysCol.put(i, ts);
508      }
509    } else if ( mode == "ADD"  || mode == "SUB") {
510      //if (mode == "SUB") val *= -1.0;
511      spec += val;
512      specCol.put(i, spec);
513      if ( tsys ) {
514        ts += val;
515        tsysCol.put(i, ts);
516      }
517    }
518  }
519  return out;
520}
521
522CountedPtr< Scantable > STMath::arrayOperate( const CountedPtr< Scantable >& in,
523                                              const std::vector<float> val,
524                                              const std::string& mode,
525                                              const std::string& opmode,
526                                              bool tsys )
527{
528  CountedPtr< Scantable > out ;
529  if ( opmode == "channel" ) {
530    out = arrayOperateChannel( in, val, mode, tsys ) ;
531  }
532  else if ( opmode == "row" ) {
533    out = arrayOperateRow( in, val, mode, tsys ) ;
534  }
535  else {
536    throw( AipsError( "Unknown array operation mode." ) ) ;
537  }
538  return out ;
539}
540
541CountedPtr< Scantable > STMath::arrayOperateChannel( const CountedPtr< Scantable >& in,
542                                                     const std::vector<float> val,
543                                                     const std::string& mode,
544                                                     bool tsys )
545{
546  if ( val.size() == 1 ){
547    return unaryOperate( in, val[0], mode, tsys ) ;
548  }
549
550  // conformity of SPECTRA and TSYS
551  if ( tsys ) {
552    TableIterator titer(in->table(), "IFNO");
553    while ( !titer.pastEnd() ) {
554      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
555      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
556      Array<Float> spec = specCol.getColumn() ;
557      Array<Float> ts = tsysCol.getColumn() ;
558      if ( !spec.conform( ts ) ) {
559        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
560      }
561      titer.next() ;
562    }
563  }
564
565  // check if all spectra in the scantable have the same number of channel
566  vector<uInt> nchans;
567  vector<uInt> ifnos = in->getIFNos() ;
568  for ( uInt i = 0 ; i < ifnos.size() ; i++ ) {
569    nchans.push_back( in->nchan( ifnos[i] ) ) ;
570  }
571  Vector<uInt> mchans( nchans ) ;
572  if ( anyNE( mchans, mchans[0] ) ) {
573    throw( AipsError("All spectra in the input scantable must have the same number of channel for vector operation." ) ) ;
574  }
575
576  // check if vector size is equal to nchan
577  Vector<Float> fact( val ) ;
578  if ( fact.nelements() != mchans[0] ) {
579    throw( AipsError("Vector size must be 1 or be same as number of channel.") ) ;
580  }
581
582  // check divided by zero
583  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
584    throw( AipsError("Divided by zero is not recommended." ) ) ;
585  }
586
587  CountedPtr< Scantable > out = getScantable(in, false);
588  Table& tab = out->table();
589  ArrayColumn<Float> specCol(tab,"SPECTRA");
590  ArrayColumn<Float> tsysCol(tab,"TSYS");
591  if (mode == "DIV") fact = (float)1.0 / fact;
592  else if (mode == "SUB") fact *= (float)-1.0 ;
593  for (uInt i=0; i<tab.nrow(); ++i) {
594    Vector<Float> spec;
595    Vector<Float> ts;
596    specCol.get(i, spec);
597    tsysCol.get(i, ts);
598    if (mode == "MUL" || mode == "DIV") {
599      //if (mode == "DIV") fact = (float)1.0 / fact;
600      spec *= fact;
601      specCol.put(i, spec);
602      if ( tsys ) {
603        ts *= fact;
604        tsysCol.put(i, ts);
605      }
606    } else if ( mode == "ADD"  || mode == "SUB") {
607      //if (mode == "SUB") fact *= (float)-1.0 ;
608      spec += fact;
609      specCol.put(i, spec);
610      if ( tsys ) {
611        ts += fact;
612        tsysCol.put(i, ts);
613      }
614    }
615  }
616  return out;
617}
618
619CountedPtr< Scantable > STMath::arrayOperateRow( const CountedPtr< Scantable >& in,
620                                                 const std::vector<float> val,
621                                                 const std::string& mode,
622                                                 bool tsys )
623{
624  if ( val.size() == 1 ) {
625    return unaryOperate( in, val[0], mode, tsys ) ;
626  }
627
628  // conformity of SPECTRA and TSYS
629  if ( tsys ) {
630    TableIterator titer(in->table(), "IFNO");
631    while ( !titer.pastEnd() ) {
632      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
633      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
634      Array<Float> spec = specCol.getColumn() ;
635      Array<Float> ts = tsysCol.getColumn() ;
636      if ( !spec.conform( ts ) ) {
637        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
638      }
639      titer.next() ;
640    }
641  }
642
643  // check if vector size is equal to nrow
644  Vector<Float> fact( val ) ;
645  if (fact.nelements() != uInt(in->nrow())) {
646    throw( AipsError("Vector size must be 1 or be same as number of row.") ) ;
647  }
648
649  // check divided by zero
650  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
651    throw( AipsError("Divided by zero is not recommended." ) ) ;
652  }
653
654  CountedPtr< Scantable > out = getScantable(in, false);
655  Table& tab = out->table();
656  ArrayColumn<Float> specCol(tab,"SPECTRA");
657  ArrayColumn<Float> tsysCol(tab,"TSYS");
658  if (mode == "DIV") fact = (float)1.0 / fact;
659  if (mode == "SUB") fact *= (float)-1.0 ;
660  for (uInt i=0; i<tab.nrow(); ++i) {
661    Vector<Float> spec;
662    Vector<Float> ts;
663    specCol.get(i, spec);
664    tsysCol.get(i, ts);
665    if (mode == "MUL" || mode == "DIV") {
666      spec *= fact[i];
667      specCol.put(i, spec);
668      if ( tsys ) {
669        ts *= fact[i];
670        tsysCol.put(i, ts);
671      }
672    } else if ( mode == "ADD"  || mode == "SUB") {
673      spec += fact[i];
674      specCol.put(i, spec);
675      if ( tsys ) {
676        ts += fact[i];
677        tsysCol.put(i, ts);
678      }
679    }
680  }
681  return out;
682}
683
684CountedPtr< Scantable > STMath::array2dOperate( const CountedPtr< Scantable >& in,
685                                                const std::vector< std::vector<float> > val,
686                                                const std::string& mode,
687                                                bool tsys )
688{
689  // conformity of SPECTRA and TSYS
690  if ( tsys ) {
691    TableIterator titer(in->table(), "IFNO");
692    while ( !titer.pastEnd() ) {
693      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
694      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
695      Array<Float> spec = specCol.getColumn() ;
696      Array<Float> ts = tsysCol.getColumn() ;
697      if ( !spec.conform( ts ) ) {
698        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
699      }
700      titer.next() ;
701    }
702  }
703
704  // some checks
705  vector<uInt> nchans;
706  for (Int i = 0 ; i < in->nrow() ; i++) {
707    nchans.push_back((in->getSpectrum(i)).size());
708  }
709  //Vector<uInt> mchans( nchans ) ;
710  vector< Vector<Float> > facts ;
711  for ( uInt i = 0 ; i < nchans.size() ; i++ ) {
712    Vector<Float> tmp( val[i] ) ;
713    // check divided by zero
714    if ( ( mode == "DIV" ) && anyEQ( tmp, (float)0.0 ) ) {
715      throw( AipsError("Divided by zero is not recommended." ) ) ;
716    }
717    // conformity check
718    if ( tmp.nelements() != nchans[i] ) {
719      stringstream ss ;
720      ss << "Row " << i << ": Vector size must be same as number of channel." ;
721      throw( AipsError( ss.str() ) ) ;
722    }
723    facts.push_back( tmp ) ;
724  }
725
726
727  CountedPtr< Scantable > out = getScantable(in, false);
728  Table& tab = out->table();
729  ArrayColumn<Float> specCol(tab,"SPECTRA");
730  ArrayColumn<Float> tsysCol(tab,"TSYS");
731  for (uInt i=0; i<tab.nrow(); ++i) {
732    Vector<Float> fact = facts[i] ;
733    Vector<Float> spec;
734    Vector<Float> ts;
735    specCol.get(i, spec);
736    tsysCol.get(i, ts);
737    if (mode == "MUL" || mode == "DIV") {
738      if (mode == "DIV") fact = (float)1.0 / fact;
739      spec *= fact;
740      specCol.put(i, spec);
741      if ( tsys ) {
742        ts *= fact;
743        tsysCol.put(i, ts);
744      }
745    } else if ( mode == "ADD"  || mode == "SUB") {
746      if (mode == "SUB") fact *= (float)-1.0 ;
747      spec += fact;
748      specCol.put(i, spec);
749      if ( tsys ) {
750        ts += fact;
751        tsysCol.put(i, ts);
752      }
753    }
754  }
755  return out;
756}
757
758CountedPtr<Scantable> STMath::binaryOperate(const CountedPtr<Scantable>& left,
759                                            const CountedPtr<Scantable>& right,
760                                            const std::string& mode)
761{
762  bool insitu = insitu_;
763  if ( ! left->conformant(*right) ) {
764    throw(AipsError("'left' and 'right' scantables are not conformant."));
765  }
766  setInsitu(false);
767  CountedPtr< Scantable > out = getScantable(left, false);
768  setInsitu(insitu);
769  Table& tout = out->table();
770  Block<String> coln(5);
771  coln[0] = "SCANNO";  coln[1] = "CYCLENO";  coln[2] = "BEAMNO";
772  coln[3] = "IFNO";  coln[4] = "POLNO";
773  Table tmpl = tout.sort(coln);
774  Table tmpr = right->table().sort(coln);
775  ArrayColumn<Float> lspecCol(tmpl,"SPECTRA");
776  ROArrayColumn<Float> rspecCol(tmpr,"SPECTRA");
777  ArrayColumn<uChar> lflagCol(tmpl,"FLAGTRA");
778  ROArrayColumn<uChar> rflagCol(tmpr,"FLAGTRA");
779
780  for (uInt i=0; i<tout.nrow(); ++i) {
781    Vector<Float> lspecvec, rspecvec;
782    Vector<uChar> lflagvec, rflagvec;
783    lspecvec = lspecCol(i);    rspecvec = rspecCol(i);
784    lflagvec = lflagCol(i);    rflagvec = rflagCol(i);
785    MaskedArray<Float> mleft = maskedArray(lspecvec, lflagvec);
786    MaskedArray<Float> mright = maskedArray(rspecvec, rflagvec);
787    if (mode == "ADD") {
788      mleft += mright;
789    } else if ( mode == "SUB") {
790      mleft -= mright;
791    } else if ( mode == "MUL") {
792      mleft *= mright;
793    } else if ( mode == "DIV") {
794      mleft /= mright;
795    } else {
796      throw(AipsError("Illegal binary operator"));
797    }
798    lspecCol.put(i, mleft.getArray());
799  }
800  return out;
801}
802
803
804
805MaskedArray<Float> STMath::maskedArray( const Vector<Float>& s,
806                                        const Vector<uChar>& f)
807{
808  Vector<Bool> mask;
809  mask.resize(f.shape());
810  convertArray(mask, f);
811  return MaskedArray<Float>(s,!mask);
812}
813
814MaskedArray<Double> STMath::maskedArray( const Vector<Double>& s,
815                                         const Vector<uChar>& f)
816{
817  Vector<Bool> mask;
818  mask.resize(f.shape());
819  convertArray(mask, f);
820  return MaskedArray<Double>(s,!mask);
821}
822
823Vector<uChar> STMath::flagsFromMA(const MaskedArray<Float>& ma)
824{
825  const Vector<Bool>& m = ma.getMask();
826  Vector<uChar> flags(m.shape());
827  convertArray(flags, !m);
828  return flags;
829}
830
831CountedPtr< Scantable > STMath::autoQuotient( const CountedPtr< Scantable >& in,
832                                              const std::string & mode,
833                                              bool preserve )
834{
835  /// @todo make other modes available
836  /// modes should be "nearest", "pair"
837  // make this operation non insitu
838  const Table& tin = in->table();
839  Table ons = tin(tin.col("SRCTYPE") == Int(SrcType::PSON));
840  Table offs = tin(tin.col("SRCTYPE") == Int(SrcType::PSOFF));
841  if ( offs.nrow() == 0 )
842    throw(AipsError("No 'off' scans present."));
843  // put all "on" scans into output table
844
845  bool insitu = insitu_;
846  setInsitu(false);
847  CountedPtr< Scantable > out = getScantable(in, true);
848  setInsitu(insitu);
849  Table& tout = out->table();
850
851  TableCopy::copyRows(tout, ons);
852  TableRow row(tout);
853  ROScalarColumn<Double> offtimeCol(offs, "TIME");
854  ArrayColumn<Float> outspecCol(tout, "SPECTRA");
855  ROArrayColumn<Float> outtsysCol(tout, "TSYS");
856  ArrayColumn<uChar> outflagCol(tout, "FLAGTRA");
857  for (uInt i=0; i < tout.nrow(); ++i) {
858    const TableRecord& rec = row.get(i);
859    Double ontime = rec.asDouble("TIME");
860    Table presel = offs(offs.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
861                        && offs.col("IFNO") == Int(rec.asuInt("IFNO"))
862                        && offs.col("POLNO") == Int(rec.asuInt("POLNO")) );
863    ROScalarColumn<Double> offtimeCol(presel, "TIME");
864
865    Double mindeltat = min(abs(offtimeCol.getColumn() - ontime));
866    // Timestamp may vary within a cycle ???!!!
867    // increase this by 0.01 sec in case of rounding errors...
868    // There might be a better way to do this.
869    // fix to this fix. TIME is MJD, so 1.0d not 1.0s
870    mindeltat += 0.01/24./60./60.;
871    Table sel = presel( abs(presel.col("TIME")-ontime) <= mindeltat);
872
873    if ( sel.nrow() < 1 )  {
874      throw(AipsError("No closest in time found... This could be a rounding "
875                      "issue. Try quotient instead."));
876    }
877    TableRow offrow(sel);
878    const TableRecord& offrec = offrow.get(0);//should only be one row
879    RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
880    RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
881    RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
882    /// @fixme this assumes tsys is a scalar not vector
883    Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
884    Vector<Float> specon, tsyson;
885    outtsysCol.get(i, tsyson);
886    outspecCol.get(i, specon);
887    Vector<uChar> flagon;
888    outflagCol.get(i, flagon);
889    MaskedArray<Float> mon = maskedArray(specon, flagon);
890    MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
891    MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
892    if (preserve) {
893      quot -= tsysoffscalar;
894    } else {
895      quot -= tsyson[0];
896    }
897    outspecCol.put(i, quot.getArray());
898    outflagCol.put(i, flagsFromMA(quot));
899  }
900  // renumber scanno
901  TableIterator it(tout, "SCANNO");
902  uInt i = 0;
903  while ( !it.pastEnd() ) {
904    Table t = it.table();
905    TableVector<uInt> vec(t, "SCANNO");
906    vec = i;
907    ++i;
908    ++it;
909  }
910  return out;
911}
912
913
914CountedPtr< Scantable > STMath::quotient( const CountedPtr< Scantable > & on,
915                                          const CountedPtr< Scantable > & off,
916                                          bool preserve )
917{
918  bool insitu = insitu_;
919  if ( ! on->conformant(*off) ) {
920    throw(AipsError("'on' and 'off' scantables are not conformant."));
921  }
922  setInsitu(false);
923  CountedPtr< Scantable > out = getScantable(on, false);
924  setInsitu(insitu);
925  Table& tout = out->table();
926  const Table& toff = off->table();
927  TableIterator sit(tout, "SCANNO");
928  TableIterator s2it(toff, "SCANNO");
929  while ( !sit.pastEnd() ) {
930    Table ton = sit.table();
931    TableRow row(ton);
932    Table t = s2it.table();
933    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
934    ROArrayColumn<Float> outtsysCol(ton, "TSYS");
935    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
936    for (uInt i=0; i < ton.nrow(); ++i) {
937      const TableRecord& rec = row.get(i);
938      Table offsel = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
939                          && t.col("IFNO") == Int(rec.asuInt("IFNO"))
940                          && t.col("POLNO") == Int(rec.asuInt("POLNO")) );
941      if ( offsel.nrow() == 0 )
942        throw AipsError("STMath::quotient: no matching off");
943      TableRow offrow(offsel);
944      const TableRecord& offrec = offrow.get(0);//should be ncycles - take first
945      RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
946      RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
947      RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
948      Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
949      Vector<Float> specon, tsyson;
950      outtsysCol.get(i, tsyson);
951      outspecCol.get(i, specon);
952      Vector<uChar> flagon;
953      outflagCol.get(i, flagon);
954      MaskedArray<Float> mon = maskedArray(specon, flagon);
955      MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
956      MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
957      if (preserve) {
958        quot -= tsysoffscalar;
959      } else {
960        quot -= tsyson[0];
961      }
962      outspecCol.put(i, quot.getArray());
963      outflagCol.put(i, flagsFromMA(quot));
964    }
965    ++sit;
966    ++s2it;
967    // take the first off for each on scan which doesn't have a
968    // matching off scan
969    // non <= noff:  matching pairs, non > noff matching pairs then first off
970    if ( s2it.pastEnd() ) s2it.reset();
971  }
972  return out;
973}
974
975// dototalpower (migration of GBTIDL procedure dototalpower.pro)
976// calibrate the CAL on-off pair. It calculate Tsys and average CAL on-off subintegrations
977// do it for each cycles in a specific scan.
978CountedPtr< Scantable > STMath::dototalpower( const CountedPtr< Scantable >& calon,
979                                              const CountedPtr< Scantable >& caloff, Float tcal )
980{
981if ( ! calon->conformant(*caloff) ) {
982    throw(AipsError("'CAL on' and 'CAL off' scantables are not conformant."));
983  }
984  setInsitu(false);
985  CountedPtr< Scantable > out = getScantable(caloff, false);
986  Table& tout = out->table();
987  const Table& tcon = calon->table();
988  Vector<Float> tcalout;
989  Vector<Float> tcalout2;  //debug
990
991  const Table& subtcal = caloff->tcal().table();
992  static STMath::TcalIDmap mt1;
993  const Table& tout_const = caloff->table();
994  ROScalarColumn<uInt> outTcalIdCol(tout_const, "TCAL_ID");
995  Vector<uInt> vinID = outTcalIdCol.getColumn();
996  vector<unsigned int> vint,vintsub;
997  ROScalarColumn<uInt> outtcalSubIdCol(subtcal, "ID");
998  Vector<uInt> vinSubRowNo = outtcalSubIdCol.getColumn();
999  ROArrayColumn<Float> TCAL_Col(subtcal, "TCAL");
1000  vector<unsigned int>::iterator ite_vint=vint.begin(),ite_vintsub=vintsub.begin();
1001  vint.insert(ite_vint,vinID.begin(),vinID.end());
1002  vintsub.insert(ite_vintsub,vinSubRowNo.begin(),vinSubRowNo.end());
1003  mt1.insert(pair<vector<unsigned int>,vector<unsigned int> > (vint,vintsub) );
1004  TcalIDmap::iterator ite_p;
1005  ite_p = mt1.find(vint);
1006
1007  if ( tout.nrow() != tcon.nrow() ) {
1008    throw(AipsError("Mismatch in number of rows to form cal on - off pair."));
1009  }
1010  // iteration by scanno or cycle no.
1011  TableIterator sit(tout, "SCANNO");
1012  TableIterator s2it(tcon, "SCANNO");
1013  while ( !sit.pastEnd() ) {
1014    Table toff = sit.table();
1015    TableRow row(toff);
1016    Table t = s2it.table();
1017    ScalarColumn<Double> outintCol(toff, "INTERVAL");
1018    ArrayColumn<Float> outspecCol(toff, "SPECTRA");
1019    ArrayColumn<Float> outtsysCol(toff, "TSYS");
1020    ArrayColumn<uChar> outflagCol(toff, "FLAGTRA");
1021    ROScalarColumn<uInt> outtcalIdCol(toff, "TCAL_ID");
1022    ROScalarColumn<uInt> outpolCol(toff, "POLNO");
1023    ROScalarColumn<Double> onintCol(t, "INTERVAL");
1024    ROArrayColumn<Float> onspecCol(t, "SPECTRA");
1025    ROArrayColumn<Float> ontsysCol(t, "TSYS");
1026    ROArrayColumn<uChar> onflagCol(t, "FLAGTRA");
1027    //ROScalarColumn<uInt> ontcalIdCol(t, "TCAL_ID");
1028
1029    for (uInt i=0; i < toff.nrow(); ++i) {
1030      //skip these checks -> assumes the data order are the same between the cal on off pairs
1031      //
1032      Vector<Float> specCalon, specCaloff;
1033      // to store scalar (mean) tsys
1034      Vector<Float> tsysout(1);
1035      uInt tcalId, polno;
1036      Double offint, onint;
1037      outpolCol.get(i, polno);
1038      outspecCol.get(i, specCaloff);
1039      onspecCol.get(i, specCalon);
1040      Vector<uChar> flagCaloff, flagCalon;
1041      outflagCol.get(i, flagCaloff);
1042      onflagCol.get(i, flagCalon);
1043      outtcalIdCol.get(i, tcalId);
1044      outintCol.get(i, offint);
1045      onintCol.get(i, onint);
1046      // caluculate mean Tsys
1047      uInt nchan = specCaloff.nelements();
1048      // percentage of edge cut off
1049      uInt pc = 10;
1050      uInt bchan = nchan/pc;
1051      uInt echan = nchan-bchan;
1052
1053      Slicer chansl(IPosition(1,bchan-1), IPosition(1,echan-1), IPosition(1,1),Slicer::endIsLast);
1054      Vector<Float> testsubsp = specCaloff(chansl);
1055      MaskedArray<Float> spoff = maskedArray( specCaloff(chansl),flagCaloff(chansl) );
1056      MaskedArray<Float> spon = maskedArray( specCalon(chansl),flagCalon(chansl) );
1057      MaskedArray<Float> spdiff = spon-spoff;
1058      uInt noff = spoff.nelementsValid();
1059      //uInt non = spon.nelementsValid();
1060      uInt ndiff = spdiff.nelementsValid();
1061      Float meantsys;
1062
1063/**
1064      Double subspec, subdiff;
1065      uInt usednchan;
1066      subspec = 0;
1067      subdiff = 0;
1068      usednchan = 0;
1069      for(uInt k=(bchan-1); k<echan; k++) {
1070        subspec += specCaloff[k];
1071        subdiff += static_cast<Double>(specCalon[k]-specCaloff[k]);
1072        ++usednchan;
1073      }
1074**/
1075      // get tcal if input tcal <= 0
1076      String tcalt;
1077      Float tcalUsed;
1078      tcalUsed = tcal;
1079      if ( tcal <= 0.0 ) {
1080        // caloff->tcal().getEntry(tcalt, tcalout, tcalId);
1081        uInt intTCAL = ite_p->second[(unsigned int)tcalId];
1082        TCAL_Col.get(intTCAL,tcalout);
1083//         if (polno<=3) {
1084//           tcalUsed = tcalout[polno];
1085//         }
1086//         else {
1087//           tcalUsed = tcalout[0];
1088//         }
1089        if ( tcalout.size() == 1 )
1090          tcalUsed = tcalout[0] ;
1091        else if ( tcalout.size() == nchan )
1092          tcalUsed = mean(tcalout) ;
1093        else {
1094          uInt ipol = polno ;
1095          if ( ipol > 3 ) ipol = 0 ;
1096          tcalUsed = tcalout[ipol] ;
1097        }
1098      }
1099
1100      Float meanoff;
1101      Float meandiff;
1102      if (noff && ndiff) {
1103         //Debug
1104         //if(noff!=ndiff) cerr<<"noff and ndiff is not equal"<<endl;
1105         //LogIO os( LogOrigin( "STMath", "dototalpower()", WHERE ) ) ;
1106         //if(noff!=ndiff) os<<"noff and ndiff is not equal"<<LogIO::POST;
1107         meanoff = sum(spoff)/noff;
1108         meandiff = sum(spdiff)/ndiff;
1109         meantsys= (meanoff/meandiff )*tcalUsed + tcalUsed/2;
1110      }
1111      else {
1112         meantsys=1;
1113      }
1114
1115      tsysout[0] = Float(meantsys);
1116      MaskedArray<Float> mcaloff = maskedArray(specCaloff, flagCaloff);
1117      MaskedArray<Float> mcalon = maskedArray(specCalon, flagCalon);
1118      MaskedArray<Float> sig =   Float(0.5) * (mcaloff + mcalon);
1119      //uInt ncaloff = mcaloff.nelementsValid();
1120      //uInt ncalon = mcalon.nelementsValid();
1121
1122      outintCol.put(i, offint+onint);
1123      outspecCol.put(i, sig.getArray());
1124      outflagCol.put(i, flagsFromMA(sig));
1125      outtsysCol.put(i, tsysout);
1126    }
1127    ++sit;
1128    ++s2it;
1129  }
1130  return out;
1131}
1132
1133//dosigref - migrated from GBT IDL's dosigref.pro, do calibration of position switch
1134// observatiions.
1135// input: sig and ref scantables, and an optional boxcar smoothing width(default width=0,
1136//        no smoothing).
1137// output: resultant scantable [= (sig-ref/ref)*tsys]
1138CountedPtr< Scantable > STMath::dosigref( const CountedPtr < Scantable >& sig,
1139                                          const CountedPtr < Scantable >& ref,
1140                                          int smoothref,
1141                                          casa::Float tsysv,
1142                                          casa::Float tau )
1143{
1144if ( ! ref->conformant(*sig) ) {
1145    throw(AipsError("'sig' and 'ref' scantables are not conformant."));
1146  }
1147  setInsitu(false);
1148  CountedPtr< Scantable > out = getScantable(sig, false);
1149  CountedPtr< Scantable > smref;
1150  if ( smoothref > 1 ) {
1151    float fsmoothref = static_cast<float>(smoothref);
1152    std::string inkernel = "boxcar";
1153    smref = smooth(ref, inkernel, fsmoothref );
1154    ostringstream oss;
1155    oss<<"Applied smoothing of "<<fsmoothref<<" on the reference."<<endl;
1156    pushLog(String(oss));
1157  }
1158  else {
1159    smref = ref;
1160  }
1161  Table& tout = out->table();
1162  const Table& tref = smref->table();
1163  if ( tout.nrow() != tref.nrow() ) {
1164    throw(AipsError("Mismatch in number of rows to form on-source and reference pair."));
1165  }
1166  // iteration by scanno? or cycle no.
1167  TableIterator sit(tout, "SCANNO");
1168  TableIterator s2it(tref, "SCANNO");
1169  while ( !sit.pastEnd() ) {
1170    Table ton = sit.table();
1171    Table t = s2it.table();
1172    ScalarColumn<Double> outintCol(ton, "INTERVAL");
1173    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1174    ArrayColumn<Float> outtsysCol(ton, "TSYS");
1175    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1176    ArrayColumn<Float> refspecCol(t, "SPECTRA");
1177    ROScalarColumn<Double> refintCol(t, "INTERVAL");
1178    ROArrayColumn<Float> reftsysCol(t, "TSYS");
1179    ArrayColumn<uChar> refflagCol(t, "FLAGTRA");
1180    ROScalarColumn<Float> refelevCol(t, "ELEVATION");
1181    for (uInt i=0; i < ton.nrow(); ++i) {
1182
1183      Double onint, refint;
1184      Vector<Float> specon, specref;
1185      // to store scalar (mean) tsys
1186      Vector<Float> tsysref;
1187      outintCol.get(i, onint);
1188      refintCol.get(i, refint);
1189      outspecCol.get(i, specon);
1190      refspecCol.get(i, specref);
1191      Vector<uChar> flagref, flagon;
1192      outflagCol.get(i, flagon);
1193      refflagCol.get(i, flagref);
1194      reftsysCol.get(i, tsysref);
1195
1196      Float tsysrefscalar;
1197      if ( tsysv > 0.0 ) {
1198        ostringstream oss;
1199        Float elev;
1200        refelevCol.get(i, elev);
1201        oss << "user specified Tsys = " << tsysv;
1202        // do recalc elevation if EL = 0
1203        if ( elev == 0 ) {
1204          throw(AipsError("EL=0, elevation data is missing."));
1205        } else {
1206          if ( tau <= 0.0 ) {
1207            throw(AipsError("Valid tau is not supplied."));
1208          } else {
1209            tsysrefscalar = tsysv * exp(tau/elev);
1210          }
1211        }
1212        oss << ", corrected (for El) tsys= "<<tsysrefscalar;
1213        pushLog(String(oss));
1214      }
1215      else {
1216        tsysrefscalar = tsysref[0];
1217      }
1218      //get quotient spectrum
1219      MaskedArray<Float> mref = maskedArray(specref, flagref);
1220      MaskedArray<Float> mon = maskedArray(specon, flagon);
1221      MaskedArray<Float> specres =   tsysrefscalar*((mon - mref)/mref);
1222      Double resint = onint*refint*smoothref/(onint+refint*smoothref);
1223
1224      //Debug
1225      //cerr<<"Tsys used="<<tsysrefscalar<<endl;
1226      //LogIO os( LogOrigin( "STMath", "dosigref", WHERE ) ) ;
1227      //os<<"Tsys used="<<tsysrefscalar<<LogIO::POST;
1228      // fill the result, replay signal tsys by reference tsys
1229      outintCol.put(i, resint);
1230      outspecCol.put(i, specres.getArray());
1231      outflagCol.put(i, flagsFromMA(specres));
1232      outtsysCol.put(i, tsysref);
1233    }
1234    ++sit;
1235    ++s2it;
1236  }
1237  return out;
1238}
1239
1240CountedPtr< Scantable > STMath::donod(const casa::CountedPtr<Scantable>& s,
1241                                     const std::vector<int>& scans,
1242                                     int smoothref,
1243                                     casa::Float tsysv,
1244                                     casa::Float tau,
1245                                     casa::Float tcal )
1246
1247{
1248  setInsitu(false);
1249  STSelector sel;
1250  std::vector<int> scan1, scan2, beams, types;
1251  std::vector< vector<int> > scanpair;
1252  //std::vector<string> calstate;
1253  std::vector<int> calstate;
1254  String msg;
1255
1256  CountedPtr< Scantable > s1b1on, s1b1off, s1b2on, s1b2off;
1257  CountedPtr< Scantable > s2b1on, s2b1off, s2b2on, s2b2off;
1258
1259  std::vector< CountedPtr< Scantable > > sctables;
1260  sctables.push_back(s1b1on);
1261  sctables.push_back(s1b1off);
1262  sctables.push_back(s1b2on);
1263  sctables.push_back(s1b2off);
1264  sctables.push_back(s2b1on);
1265  sctables.push_back(s2b1off);
1266  sctables.push_back(s2b2on);
1267  sctables.push_back(s2b2off);
1268
1269  //check scanlist
1270  int n=s->checkScanInfo(scans);
1271  if (n==1) {
1272     throw(AipsError("Incorrect scan pairs. "));
1273  }
1274
1275  // Assume scans contain only a pair of consecutive scan numbers.
1276  // It is assumed that first beam, b1,  is on target.
1277  // There is no check if the first beam is on or not.
1278  if ( scans.size()==1 ) {
1279    scan1.push_back(scans[0]);
1280    scan2.push_back(scans[0]+1);
1281  } else if ( scans.size()==2 ) {
1282   scan1.push_back(scans[0]);
1283   scan2.push_back(scans[1]);
1284  } else {
1285    if ( scans.size()%2 == 0 ) {
1286      for (uInt i=0; i<scans.size(); i++) {
1287        if (i%2 == 0) {
1288          scan1.push_back(scans[i]);
1289        }
1290        else {
1291          scan2.push_back(scans[i]);
1292        }
1293      }
1294    } else {
1295      throw(AipsError("Odd numbers of scans, cannot form pairs."));
1296    }
1297  }
1298  scanpair.push_back(scan1);
1299  scanpair.push_back(scan2);
1300  //calstate.push_back("*calon");
1301  //calstate.push_back("*[^calon]");
1302  calstate.push_back(SrcType::NODCAL);
1303  calstate.push_back(SrcType::NOD);
1304  CountedPtr< Scantable > ws = getScantable(s, false);
1305  uInt l=0;
1306  while ( l < sctables.size() ) {
1307    for (uInt i=0; i < 2; i++) {
1308      for (uInt j=0; j < 2; j++) {
1309        for (uInt k=0; k < 2; k++) {
1310          sel.reset();
1311          sel.setScans(scanpair[i]);
1312          //sel.setName(calstate[k]);
1313          types.clear();
1314          types.push_back(calstate[k]);
1315          sel.setTypes(types);
1316          beams.clear();
1317          beams.push_back(j);
1318          sel.setBeams(beams);
1319          ws->setSelection(sel);
1320          sctables[l]= getScantable(ws, false);
1321          l++;
1322        }
1323      }
1324    }
1325  }
1326
1327  // replace here by splitData or getData functionality
1328  CountedPtr< Scantable > sig1;
1329  CountedPtr< Scantable > ref1;
1330  CountedPtr< Scantable > sig2;
1331  CountedPtr< Scantable > ref2;
1332  CountedPtr< Scantable > calb1;
1333  CountedPtr< Scantable > calb2;
1334
1335  msg=String("Processing dototalpower for subset of the data");
1336  ostringstream oss1;
1337  oss1 << msg  << endl;
1338  pushLog(String(oss1));
1339  // Debug for IRC CS data
1340  //float tcal1=7.0;
1341  //float tcal2=4.0;
1342  sig1 = dototalpower(sctables[0], sctables[1], tcal=tcal);
1343  ref1 = dototalpower(sctables[2], sctables[3], tcal=tcal);
1344  ref2 = dototalpower(sctables[4], sctables[5], tcal=tcal);
1345  sig2 = dototalpower(sctables[6], sctables[7], tcal=tcal);
1346
1347  // correction of user-specified tsys for elevation here
1348
1349  // dosigref calibration
1350  msg=String("Processing dosigref for subset of the data");
1351  ostringstream oss2;
1352  oss2 << msg  << endl;
1353  pushLog(String(oss2));
1354  calb1=dosigref(sig1,ref2,smoothref,tsysv,tau);
1355  calb2=dosigref(sig2,ref1,smoothref,tsysv,tau);
1356
1357  // iteration by scanno or cycle no.
1358  Table& tcalb1 = calb1->table();
1359  Table& tcalb2 = calb2->table();
1360  TableIterator sit(tcalb1, "SCANNO");
1361  TableIterator s2it(tcalb2, "SCANNO");
1362  while ( !sit.pastEnd() ) {
1363    Table t1 = sit.table();
1364    Table t2= s2it.table();
1365    ArrayColumn<Float> outspecCol(t1, "SPECTRA");
1366    ArrayColumn<Float> outtsysCol(t1, "TSYS");
1367    ArrayColumn<uChar> outflagCol(t1, "FLAGTRA");
1368    ScalarColumn<Double> outintCol(t1, "INTERVAL");
1369    ArrayColumn<Float> t2specCol(t2, "SPECTRA");
1370    ROArrayColumn<Float> t2tsysCol(t2, "TSYS");
1371    ArrayColumn<uChar> t2flagCol(t2, "FLAGTRA");
1372    ROScalarColumn<Double> t2intCol(t2, "INTERVAL");
1373    for (uInt i=0; i < t1.nrow(); ++i) {
1374      Vector<Float> spec1, spec2;
1375      // to store scalar (mean) tsys
1376      Vector<Float> tsys1, tsys2;
1377      Vector<uChar> flag1, flag2;
1378      Double tint1, tint2;
1379      outspecCol.get(i, spec1);
1380      t2specCol.get(i, spec2);
1381      outflagCol.get(i, flag1);
1382      t2flagCol.get(i, flag2);
1383      outtsysCol.get(i, tsys1);
1384      t2tsysCol.get(i, tsys2);
1385      outintCol.get(i, tint1);
1386      t2intCol.get(i, tint2);
1387      // average
1388      // assume scalar tsys for weights
1389      Float wt1, wt2, tsyssq1, tsyssq2;
1390      tsyssq1 = tsys1[0]*tsys1[0];
1391      tsyssq2 = tsys2[0]*tsys2[0];
1392      wt1 = Float(tint1)/tsyssq1;
1393      wt2 = Float(tint2)/tsyssq2;
1394      Float invsumwt=1/(wt1+wt2);
1395      MaskedArray<Float> mspec1 = maskedArray(spec1, flag1);
1396      MaskedArray<Float> mspec2 = maskedArray(spec2, flag2);
1397      MaskedArray<Float> avspec =  invsumwt * (wt1*mspec1 + wt2*mspec2);
1398      //Array<Float> avtsys =  Float(0.5) * (tsys1 + tsys2);
1399      // cerr<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<endl;
1400      // LogIO os( LogOrigin( "STMath", "donod", WHERE ) ) ;
1401      // os<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<LogIO::POST;
1402      tsys1[0] = sqrt(tsyssq1 + tsyssq2);
1403      Array<Float> avtsys =  tsys1;
1404
1405      outspecCol.put(i, avspec.getArray());
1406      outflagCol.put(i, flagsFromMA(avspec));
1407      outtsysCol.put(i, avtsys);
1408    }
1409    ++sit;
1410    ++s2it;
1411  }
1412  return calb1;
1413}
1414
1415//GBTIDL version of frequency switched data calibration
1416CountedPtr< Scantable > STMath::dofs( const CountedPtr< Scantable >& s,
1417                                      const std::vector<int>& scans,
1418                                      int smoothref,
1419                                      casa::Float tsysv,
1420                                      casa::Float tau,
1421                                      casa::Float tcal )
1422{
1423
1424
1425  STSelector sel;
1426  CountedPtr< Scantable > ws = getScantable(s, false);
1427  CountedPtr< Scantable > sig, sigwcal, ref, refwcal;
1428  CountedPtr< Scantable > calsig, calref, out, out1, out2;
1429  Bool nofold=False;
1430  vector<int> types ;
1431
1432  //split the data
1433  //sel.setName("*_fs");
1434  types.push_back( SrcType::FSON ) ;
1435  sel.setTypes( types ) ;
1436  ws->setSelection(sel);
1437  sig = getScantable(ws,false);
1438  sel.reset();
1439  types.clear() ;
1440  //sel.setName("*_fs_calon");
1441  types.push_back( SrcType::FONCAL ) ;
1442  sel.setTypes( types ) ;
1443  ws->setSelection(sel);
1444  sigwcal = getScantable(ws,false);
1445  sel.reset();
1446  types.clear() ;
1447  //sel.setName("*_fsr");
1448  types.push_back( SrcType::FSOFF ) ;
1449  sel.setTypes( types ) ;
1450  ws->setSelection(sel);
1451  ref = getScantable(ws,false);
1452  sel.reset();
1453  types.clear() ;
1454  //sel.setName("*_fsr_calon");
1455  types.push_back( SrcType::FOFFCAL ) ;
1456  sel.setTypes( types ) ;
1457  ws->setSelection(sel);
1458  refwcal = getScantable(ws,false);
1459  sel.reset() ;
1460  types.clear() ;
1461
1462  calsig = dototalpower(sigwcal, sig, tcal=tcal);
1463  calref = dototalpower(refwcal, ref, tcal=tcal);
1464
1465  out1=dosigref(calsig,calref,smoothref,tsysv,tau);
1466  out2=dosigref(calref,calsig,smoothref,tsysv,tau);
1467
1468  Table& tabout1=out1->table();
1469  Table& tabout2=out2->table();
1470  ROScalarColumn<uInt> freqidCol1(tabout1, "FREQ_ID");
1471  ScalarColumn<uInt> freqidCol2(tabout2, "FREQ_ID");
1472  ROArrayColumn<Float> specCol(tabout2, "SPECTRA");
1473  Vector<Float> spec; specCol.get(0, spec);
1474  uInt nchan = spec.nelements();
1475  uInt freqid1; freqidCol1.get(0,freqid1);
1476  uInt freqid2; freqidCol2.get(0,freqid2);
1477  Double rp1, rp2, rv1, rv2, inc1, inc2;
1478  out1->frequencies().getEntry(rp1, rv1, inc1, freqid1);
1479  out2->frequencies().getEntry(rp2, rv2, inc2, freqid2);
1480  //cerr << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << endl ;
1481  //LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1482  //os << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << LogIO::POST ;
1483  if (rp1==rp2) {
1484    Double foffset = rv1 - rv2;
1485    uInt choffset = static_cast<uInt>(foffset/abs(inc2));
1486    if (choffset >= nchan) {
1487      //cerr<<"out-band frequency switching, no folding"<<endl;
1488      LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1489      os<<"out-band frequency switching, no folding"<<LogIO::POST;
1490      nofold = True;
1491    }
1492  }
1493
1494  if (nofold) {
1495    std::vector< CountedPtr< Scantable > > tabs;
1496    tabs.push_back(out1);
1497    tabs.push_back(out2);
1498    out = merge(tabs);
1499  }
1500  else {
1501    //out = out1;
1502    Double choffset = ( rv1 - rv2 ) / inc2 ;
1503    out = dofold( out1, out2, choffset ) ;
1504  }
1505   
1506  return out;
1507}
1508
1509CountedPtr<Scantable> STMath::dofold( const CountedPtr<Scantable> &sig,
1510                                      const CountedPtr<Scantable> &ref,
1511                                      Double choffset,
1512                                      Double choffset2 )
1513{
1514  LogIO os( LogOrigin( "STMath", "dofold", WHERE ) ) ;
1515  os << "choffset=" << choffset << " choffset2=" << choffset2 << LogIO::POST ;
1516
1517  // output scantable
1518  CountedPtr<Scantable> out = getScantable( sig, false ) ;
1519
1520  // separate choffset to integer part and decimal part
1521  Int ioffset = (Int)choffset ;
1522  Double doffset = choffset - ioffset ;
1523  Int ioffset2 = (Int)choffset2 ;
1524  Double doffset2 = choffset2 - ioffset2 ;
1525  os << "ioffset=" << ioffset << " doffset=" << doffset << LogIO::POST ;
1526  os << "ioffset2=" << ioffset2 << " doffset2=" << doffset2 << LogIO::POST ; 
1527
1528  // get column
1529  ROArrayColumn<Float> specCol1( sig->table(), "SPECTRA" ) ;
1530  ROArrayColumn<Float> specCol2( ref->table(), "SPECTRA" ) ;
1531  ROArrayColumn<Float> tsysCol1( sig->table(), "TSYS" ) ;
1532  ROArrayColumn<Float> tsysCol2( ref->table(), "TSYS" ) ;
1533  ROArrayColumn<uChar> flagCol1( sig->table(), "FLAGTRA" ) ;
1534  ROArrayColumn<uChar> flagCol2( ref->table(), "FLAGTRA" ) ;
1535  ROScalarColumn<Double> mjdCol1( sig->table(), "TIME" ) ;
1536  ROScalarColumn<Double> mjdCol2( ref->table(), "TIME" ) ;
1537  ROScalarColumn<Double> intervalCol1( sig->table(), "INTERVAL" ) ;
1538  ROScalarColumn<Double> intervalCol2( ref->table(), "INTERVAL" ) ;
1539
1540  // check
1541  if ( ioffset == 0 ) {
1542    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1543    os << "channel offset is zero, no folding" << LogIO::POST ;
1544    return out ;
1545  }
1546  int nchan = ref->nchan() ;
1547  if ( abs(ioffset) >= nchan ) {
1548    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1549    os << "out-band frequency switching, no folding" << LogIO::POST ;
1550    return out ;
1551  }
1552
1553  // attach column for output scantable
1554  ArrayColumn<Float> specColOut( out->table(), "SPECTRA" ) ;
1555  ArrayColumn<uChar> flagColOut( out->table(), "FLAGTRA" ) ;
1556  ArrayColumn<Float> tsysColOut( out->table(), "TSYS" ) ;
1557  ScalarColumn<Double> mjdColOut( out->table(), "TIME" ) ;
1558  ScalarColumn<Double> intervalColOut( out->table(), "INTERVAL" ) ;
1559  ScalarColumn<uInt> fidColOut( out->table(), "FREQ_ID" ) ;
1560
1561  // for each row
1562  // assume that the data order are same between sig and ref
1563  RowAccumulator acc( asap::W_TINTSYS ) ;
1564  for ( int i = 0 ; i < sig->nrow() ; i++ ) {
1565    // get values
1566    Vector<Float> spsig ;
1567    specCol1.get( i, spsig ) ;
1568    Vector<Float> spref ;
1569    specCol2.get( i, spref ) ;
1570    Vector<Float> tsyssig ;
1571    tsysCol1.get( i, tsyssig ) ;
1572    Vector<Float> tsysref ;
1573    tsysCol2.get( i, tsysref ) ;
1574    Vector<uChar> flagsig ;
1575    flagCol1.get( i, flagsig ) ;
1576    Vector<uChar> flagref ;
1577    flagCol2.get( i, flagref ) ;
1578    Double timesig ;
1579    mjdCol1.get( i, timesig ) ;
1580    Double timeref ;
1581    mjdCol2.get( i, timeref ) ;
1582    Double intsig ;
1583    intervalCol1.get( i, intsig ) ;
1584    Double intref ;
1585    intervalCol2.get( i, intref ) ;
1586
1587    // shift reference spectra
1588    int refchan = spref.nelements() ;
1589    Vector<Float> sspref( spref.nelements() ) ;
1590    Vector<Float> stsysref( tsysref.nelements() ) ;
1591    Vector<uChar> sflagref( flagref.nelements() ) ;
1592    if ( ioffset > 0 ) {
1593      // SPECTRA and FLAGTRA
1594      for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1595        sspref[j] = spref[j+ioffset] ;
1596        sflagref[j] = flagref[j+ioffset] ;
1597      }
1598      for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1599        sspref[j] = spref[j-refchan+ioffset] ;
1600        sflagref[j] = flagref[j-refchan+ioffset] ;
1601      }
1602      spref = sspref.copy() ;
1603      flagref = sflagref.copy() ;
1604      for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1605        sspref[j] = doffset * spref[j+1] + ( 1.0 - doffset ) * spref[j] ;
1606        sflagref[j] = flagref[j+1] + flagref[j] ;
1607      }
1608      sspref[refchan-1] = doffset * spref[0] + ( 1.0 - doffset ) * spref[refchan-1] ;
1609      sflagref[refchan-1] = flagref[0] + flagref[refchan-1] ;
1610
1611      // TSYS
1612      if ( spref.nelements() == tsysref.nelements() ) {
1613        for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1614          stsysref[j] = tsysref[j+ioffset] ;
1615        }
1616        for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1617          stsysref[j] = tsysref[j-refchan+ioffset] ;
1618        }
1619        tsysref = stsysref.copy() ;
1620        for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1621          stsysref[j] = doffset * tsysref[j+1] + ( 1.0 - doffset ) * tsysref[j] ;
1622        }
1623        stsysref[refchan-1] = doffset * tsysref[0] + ( 1.0 - doffset ) * tsysref[refchan-1] ;
1624      }
1625    }
1626    else {
1627      // SPECTRA and FLAGTRA
1628      for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1629        sspref[j] = spref[refchan+ioffset+j] ;
1630        sflagref[j] = flagref[refchan+ioffset+j] ;
1631      }
1632      for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1633        sspref[j] = spref[j+ioffset] ;
1634        sflagref[j] = flagref[j+ioffset] ;
1635      }
1636      spref = sspref.copy() ;
1637      flagref = sflagref.copy() ;
1638      sspref[0] = doffset * spref[refchan-1] + ( 1.0 - doffset ) * spref[0] ;
1639      sflagref[0] = flagref[0] + flagref[refchan-1] ;
1640      for ( int j = 1 ; j < refchan ; j++ ) {
1641        sspref[j] = doffset * spref[j-1] + ( 1.0 - doffset ) * spref[j] ;
1642        sflagref[j] = flagref[j-1] + flagref[j] ;
1643      }
1644      // TSYS
1645      if ( spref.nelements() == tsysref.nelements() ) {
1646        for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1647          stsysref[j] = tsysref[refchan+ioffset+j] ;
1648        }
1649        for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1650          stsysref[j] = tsysref[j+ioffset] ;
1651        }
1652        tsysref = stsysref.copy() ;
1653        stsysref[0] = doffset * tsysref[refchan-1] + ( 1.0 - doffset ) * tsysref[0] ;
1654        for ( int j = 1 ; j < refchan ; j++ ) {
1655          stsysref[j] = doffset * tsysref[j-1] + ( 1.0 - doffset ) * tsysref[j] ;
1656        }
1657      }
1658    }
1659
1660    // shift signal spectra if necessary (only for APEX?)
1661    if ( choffset2 != 0.0 ) {
1662      int sigchan = spsig.nelements() ;
1663      Vector<Float> sspsig( spsig.nelements() ) ;
1664      Vector<Float> stsyssig( tsyssig.nelements() ) ;
1665      Vector<uChar> sflagsig( flagsig.nelements() ) ;
1666      if ( ioffset2 > 0 ) {
1667        // SPECTRA and FLAGTRA
1668        for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1669          sspsig[j] = spsig[j+ioffset2] ;
1670          sflagsig[j] = flagsig[j+ioffset2] ;
1671        }
1672        for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1673          sspsig[j] = spsig[j-sigchan+ioffset2] ;
1674          sflagsig[j] = flagsig[j-sigchan+ioffset2] ;
1675        }
1676        spsig = sspsig.copy() ;
1677        flagsig = sflagsig.copy() ;
1678        for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1679          sspsig[j] = doffset2 * spsig[j+1] + ( 1.0 - doffset2 ) * spsig[j] ;
1680          sflagsig[j] = flagsig[j+1] || flagsig[j] ;
1681        }
1682        sspsig[sigchan-1] = doffset2 * spsig[0] + ( 1.0 - doffset2 ) * spsig[sigchan-1] ;
1683        sflagsig[sigchan-1] = flagsig[0] || flagsig[sigchan-1] ;
1684        // TSTS
1685        if ( spsig.nelements() == tsyssig.nelements() ) {
1686          for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1687            stsyssig[j] = tsyssig[j+ioffset2] ;
1688          }
1689          for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1690            stsyssig[j] = tsyssig[j-sigchan+ioffset2] ;
1691          }
1692          tsyssig = stsyssig.copy() ;
1693          for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1694            stsyssig[j] = doffset2 * tsyssig[j+1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1695          }
1696          stsyssig[sigchan-1] = doffset2 * tsyssig[0] + ( 1.0 - doffset2 ) * tsyssig[sigchan-1] ;
1697        }
1698      }
1699      else {
1700        // SPECTRA and FLAGTRA
1701        for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1702          sspsig[j] = spsig[sigchan+ioffset2+j] ;
1703          sflagsig[j] = flagsig[sigchan+ioffset2+j] ;
1704        }
1705        for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1706          sspsig[j] = spsig[j+ioffset2] ;
1707          sflagsig[j] = flagsig[j+ioffset2] ;
1708        }
1709        spsig = sspsig.copy() ;
1710        flagsig = sflagsig.copy() ;
1711        sspsig[0] = doffset2 * spsig[sigchan-1] + ( 1.0 - doffset2 ) * spsig[0] ;
1712        sflagsig[0] = flagsig[0] + flagsig[sigchan-1] ;
1713        for ( int j = 1 ; j < sigchan ; j++ ) {
1714          sspsig[j] = doffset2 * spsig[j-1] + ( 1.0 - doffset2 ) * spsig[j] ;
1715          sflagsig[j] = flagsig[j-1] + flagsig[j] ;
1716        }
1717        // TSYS
1718        if ( spsig.nelements() == tsyssig.nelements() ) {
1719          for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1720            stsyssig[j] = tsyssig[sigchan+ioffset2+j] ;
1721          }
1722          for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1723            stsyssig[j] = tsyssig[j+ioffset2] ;
1724          }
1725          tsyssig = stsyssig.copy() ;
1726          stsyssig[0] = doffset2 * tsyssig[sigchan-1] + ( 1.0 - doffset2 ) * tsyssig[0] ;
1727          for ( int j = 1 ; j < sigchan ; j++ ) {
1728            stsyssig[j] = doffset2 * tsyssig[j-1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1729          }
1730        }
1731      }
1732    }
1733
1734    // folding
1735    acc.add( spsig, !flagsig, tsyssig, intsig, timesig ) ;
1736    acc.add( sspref, !sflagref, stsysref, intref, timeref ) ;
1737   
1738    // put result
1739    specColOut.put( i, acc.getSpectrum() ) ;
1740    const Vector<Bool> &msk = acc.getMask() ;
1741    Vector<uChar> flg( msk.shape() ) ;
1742    convertArray( flg, !msk ) ;
1743    flagColOut.put( i, flg ) ;
1744    tsysColOut.put( i, acc.getTsys() ) ;
1745    intervalColOut.put( i, acc.getInterval() ) ;
1746    mjdColOut.put( i, acc.getTime() ) ;
1747    // change FREQ_ID to unshifted IF setting (only for APEX?)
1748    if ( choffset2 != 0.0 ) {
1749      uInt freqid = fidColOut( 0 ) ; // assume single-IF data
1750      double refpix, refval, increment ;
1751      out->frequencies().getEntry( refpix, refval, increment, freqid ) ;
1752      refval -= choffset * increment ;
1753      uInt newfreqid = out->frequencies().addEntry( refpix, refval, increment ) ;
1754      Vector<uInt> freqids = fidColOut.getColumn() ;
1755      for ( uInt j = 0 ; j < freqids.nelements() ; j++ ) {
1756        if ( freqids[j] == freqid )
1757          freqids[j] = newfreqid ;
1758      }
1759      fidColOut.putColumn( freqids ) ;
1760    }
1761
1762    acc.reset() ;
1763  }
1764
1765  return out ;
1766}
1767
1768
1769CountedPtr< Scantable > STMath::freqSwitch( const CountedPtr< Scantable >& in )
1770{
1771  // make copy or reference
1772  CountedPtr< Scantable > out = getScantable(in, false);
1773  Table& tout = out->table();
1774  Block<String> cols(4);
1775  cols[0] = String("SCANNO");
1776  cols[1] = String("CYCLENO");
1777  cols[2] = String("BEAMNO");
1778  cols[3] = String("POLNO");
1779  TableIterator iter(tout, cols);
1780  while (!iter.pastEnd()) {
1781    Table subt = iter.table();
1782    // this should leave us with two rows for the two IFs....if not ignore
1783    if (subt.nrow() != 2 ) {
1784      continue;
1785    }
1786    ArrayColumn<Float> specCol(subt, "SPECTRA");
1787    ArrayColumn<Float> tsysCol(subt, "TSYS");
1788    ArrayColumn<uChar> flagCol(subt, "FLAGTRA");
1789    Vector<Float> onspec,offspec, ontsys, offtsys;
1790    Vector<uChar> onflag, offflag;
1791    tsysCol.get(0, ontsys);   tsysCol.get(1, offtsys);
1792    specCol.get(0, onspec);   specCol.get(1, offspec);
1793    flagCol.get(0, onflag);   flagCol.get(1, offflag);
1794    MaskedArray<Float> on  = maskedArray(onspec, onflag);
1795    MaskedArray<Float> off = maskedArray(offspec, offflag);
1796    MaskedArray<Float> oncopy = on.copy();
1797
1798    on /= off; on -= 1.0f;
1799    on *= ontsys[0];
1800    off /= oncopy; off -= 1.0f;
1801    off *= offtsys[0];
1802    specCol.put(0, on.getArray());
1803    const Vector<Bool>& m0 = on.getMask();
1804    Vector<uChar> flags0(m0.shape());
1805    convertArray(flags0, !m0);
1806    flagCol.put(0, flags0);
1807
1808    specCol.put(1, off.getArray());
1809    const Vector<Bool>& m1 = off.getMask();
1810    Vector<uChar> flags1(m1.shape());
1811    convertArray(flags1, !m1);
1812    flagCol.put(1, flags1);
1813    ++iter;
1814  }
1815
1816  return out;
1817}
1818
1819std::vector< float > STMath::statistic( const CountedPtr< Scantable > & in,
1820                                        const std::vector< bool > & mask,
1821                                        const std::string& which )
1822{
1823
1824  Vector<Bool> m(mask);
1825  const Table& tab = in->table();
1826  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1827  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1828  std::vector<float> out;
1829  for (uInt i=0; i < tab.nrow(); ++i ) {
1830    Vector<Float> spec; specCol.get(i, spec);
1831    Vector<uChar> flag; flagCol.get(i, flag);
1832    MaskedArray<Float> ma  = maskedArray(spec, flag);
1833    float outstat = 0.0;
1834    if ( spec.nelements() == m.nelements() ) {
1835      outstat = mathutil::statistics(which, ma(m));
1836    } else {
1837      outstat = mathutil::statistics(which, ma);
1838    }
1839    out.push_back(outstat);
1840  }
1841  return out;
1842}
1843
1844std::vector< float > STMath::statisticRow( const CountedPtr< Scantable > & in,
1845                                        const std::vector< bool > & mask,
1846                                        const std::string& which,
1847                                        int row )
1848{
1849
1850  Vector<Bool> m(mask);
1851  const Table& tab = in->table();
1852  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1853  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1854  std::vector<float> out;
1855
1856  Vector<Float> spec; specCol.get(row, spec);
1857  Vector<uChar> flag; flagCol.get(row, flag);
1858  MaskedArray<Float> ma  = maskedArray(spec, flag);
1859  float outstat = 0.0;
1860  if ( spec.nelements() == m.nelements() ) {
1861    outstat = mathutil::statistics(which, ma(m));
1862  } else {
1863    outstat = mathutil::statistics(which, ma);
1864  }
1865  out.push_back(outstat);
1866
1867  return out;
1868}
1869
1870std::vector< int > STMath::minMaxChan( const CountedPtr< Scantable > & in,
1871                                        const std::vector< bool > & mask,
1872                                        const std::string& which )
1873{
1874
1875  Vector<Bool> m(mask);
1876  const Table& tab = in->table();
1877  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1878  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1879  std::vector<int> out;
1880  for (uInt i=0; i < tab.nrow(); ++i ) {
1881    Vector<Float> spec; specCol.get(i, spec);
1882    Vector<uChar> flag; flagCol.get(i, flag);
1883    MaskedArray<Float> ma  = maskedArray(spec, flag);
1884    if (ma.ndim() != 1) {
1885      throw (ArrayError(
1886          "std::vector<int> STMath::minMaxChan("
1887          "ContedPtr<Scantable> &in, std::vector<bool> &mask, "
1888          " std::string &which)"
1889          " - MaskedArray is not 1D"));
1890    }
1891    IPosition outpos(1,0);
1892    if ( spec.nelements() == m.nelements() ) {
1893      outpos = mathutil::minMaxPos(which, ma(m));
1894    } else {
1895      outpos = mathutil::minMaxPos(which, ma);
1896    }
1897    out.push_back(outpos[0]);
1898  }
1899  return out;
1900}
1901
1902CountedPtr< Scantable > STMath::bin( const CountedPtr< Scantable > & in,
1903                                     int width )
1904{
1905  if ( !in->getSelection().empty() ) throw(AipsError("Can't bin subset of the data."));
1906  CountedPtr< Scantable > out = getScantable(in, false);
1907  Table& tout = out->table();
1908  out->frequencies().rescale(width, "BIN");
1909  ArrayColumn<Float> specCol(tout, "SPECTRA");
1910  ArrayColumn<uChar> flagCol(tout, "FLAGTRA");
1911  for (uInt i=0; i < tout.nrow(); ++i ) {
1912    MaskedArray<Float> main  = maskedArray(specCol(i), flagCol(i));
1913    MaskedArray<Float> maout;
1914    LatticeUtilities::bin(maout, main, 0, Int(width));
1915    /// @todo implement channel based tsys binning
1916    specCol.put(i, maout.getArray());
1917    flagCol.put(i, flagsFromMA(maout));
1918    // take only the first binned spectrum's length for the deprecated
1919    // global header item nChan
1920    if (i==0) tout.rwKeywordSet().define(String("nChan"),
1921                                       Int(maout.getArray().nelements()));
1922  }
1923  return out;
1924}
1925
1926CountedPtr< Scantable > STMath::resample( const CountedPtr< Scantable >& in,
1927                                          const std::string& method,
1928                                          float width )
1929//
1930// Should add the possibility of width being specified in km/s. This means
1931// that for each freqID (SpectralCoordinate) we will need to convert to an
1932// average channel width (say at the reference pixel).  Then we would need
1933// to be careful to make sure each spectrum (of different freqID)
1934// is the same length.
1935//
1936{
1937  //InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1938  Int interpMethod(stringToIMethod(method));
1939
1940  CountedPtr< Scantable > out = getScantable(in, false);
1941  Table& tout = out->table();
1942
1943// Resample SpectralCoordinates (one per freqID)
1944  out->frequencies().rescale(width, "RESAMPLE");
1945  TableIterator iter(tout, "IFNO");
1946  TableRow row(tout);
1947  while ( !iter.pastEnd() ) {
1948    Table tab = iter.table();
1949    ArrayColumn<Float> specCol(tab, "SPECTRA");
1950    //ArrayColumn<Float> tsysCol(tout, "TSYS");
1951    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1952    Vector<Float> spec;
1953    Vector<uChar> flag;
1954    specCol.get(0,spec); // the number of channels should be constant per IF
1955    uInt nChanIn = spec.nelements();
1956    Vector<Float> xIn(nChanIn); indgen(xIn);
1957    Int fac =  Int(nChanIn/width);
1958    Vector<Float> xOut(fac+10); // 10 to be safe - resize later
1959    uInt k = 0;
1960    Float x = 0.0;
1961    while (x < Float(nChanIn) ) {
1962      xOut(k) = x;
1963      k++;
1964      x += width;
1965    }
1966    uInt nChanOut = k;
1967    xOut.resize(nChanOut, True);
1968    // process all rows for this IFNO
1969    Vector<Float> specOut;
1970    Vector<Bool> maskOut;
1971    Vector<uChar> flagOut;
1972    for (uInt i=0; i < tab.nrow(); ++i) {
1973      specCol.get(i, spec);
1974      flagCol.get(i, flag);
1975      Vector<Bool> mask(flag.nelements());
1976      convertArray(mask, flag);
1977
1978      IPosition shapeIn(spec.shape());
1979      //sh.nchan = nChanOut;
1980      InterpolateArray1D<Float,Float>::interpolate(specOut, maskOut, xOut,
1981                                                   xIn, spec, mask,
1982                                                   interpMethod, True, True);
1983      /// @todo do the same for channel based Tsys
1984      flagOut.resize(maskOut.nelements());
1985      convertArray(flagOut, maskOut);
1986      specCol.put(i, specOut);
1987      flagCol.put(i, flagOut);
1988    }
1989    ++iter;
1990  }
1991
1992  return out;
1993}
1994
1995STMath::imethod STMath::stringToIMethod(const std::string& in)
1996{
1997  static STMath::imap lookup;
1998
1999  // initialize the lookup table if necessary
2000  if ( lookup.empty() ) {
2001    lookup["nearest"]   = InterpolateArray1D<Double,Float>::nearestNeighbour;
2002    lookup["linear"] = InterpolateArray1D<Double,Float>::linear;
2003    lookup["cubic"]  = InterpolateArray1D<Double,Float>::cubic;
2004    lookup["spline"]  = InterpolateArray1D<Double,Float>::spline;
2005  }
2006
2007  STMath::imap::const_iterator iter = lookup.find(in);
2008
2009  if ( lookup.end() == iter ) {
2010    std::string message = in;
2011    message += " is not a valid interpolation mode";
2012    throw(AipsError(message));
2013  }
2014  return iter->second;
2015}
2016
2017WeightType STMath::stringToWeight(const std::string& in)
2018{
2019  static std::map<std::string, WeightType> lookup;
2020
2021  // initialize the lookup table if necessary
2022  if ( lookup.empty() ) {
2023    lookup["NONE"]   = asap::W_NONE;
2024    lookup["TINT"] = asap::W_TINT;
2025    lookup["TINTSYS"]  = asap::W_TINTSYS;
2026    lookup["TSYS"]  = asap::W_TSYS;
2027    lookup["VAR"]  = asap::W_VAR;
2028  }
2029
2030  std::map<std::string, WeightType>::const_iterator iter = lookup.find(in);
2031
2032  if ( lookup.end() == iter ) {
2033    std::string message = in;
2034    message += " is not a valid weighting mode";
2035    throw(AipsError(message));
2036  }
2037  return iter->second;
2038}
2039
2040CountedPtr< Scantable > STMath::gainElevation( const CountedPtr< Scantable >& in,
2041                                               const vector< float > & coeff,
2042                                               const std::string & filename,
2043                                               const std::string& method)
2044{
2045  // Get elevation data from Scantable and convert to degrees
2046  CountedPtr< Scantable > out = getScantable(in, false);
2047  Table& tab = out->table();
2048  ROScalarColumn<Float> elev(tab, "ELEVATION");
2049  Vector<Float> x = elev.getColumn();
2050  x *= Float(180 / C::pi);                        // Degrees
2051
2052  Vector<Float> coeffs(coeff);
2053  const uInt nc = coeffs.nelements();
2054  if ( filename.length() > 0 && nc > 0 ) {
2055    throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
2056  }
2057
2058  // Correct
2059  if ( nc > 0 || filename.length() == 0 ) {
2060    // Find instrument
2061    Bool throwit = True;
2062    Instrument inst =
2063      STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2064                                throwit);
2065
2066    // Set polynomial
2067    Polynomial<Float>* ppoly = 0;
2068    Vector<Float> coeff;
2069    String msg;
2070    if ( nc > 0 ) {
2071      ppoly = new Polynomial<Float>(nc-1);
2072      coeff = coeffs;
2073      msg = String("user");
2074    } else {
2075      STAttr sdAttr;
2076      coeff = sdAttr.gainElevationPoly(inst);
2077      ppoly = new Polynomial<Float>(coeff.nelements()-1);
2078      msg = String("built in");
2079    }
2080
2081    if ( coeff.nelements() > 0 ) {
2082      ppoly->setCoefficients(coeff);
2083    } else {
2084      delete ppoly;
2085      throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
2086    }
2087    ostringstream oss;
2088    oss << "Making polynomial correction with " << msg << " coefficients:" << endl;
2089    oss << "   " <<  coeff;
2090    pushLog(String(oss));
2091    const uInt nrow = tab.nrow();
2092    Vector<Float> factor(nrow);
2093    for ( uInt i=0; i < nrow; ++i ) {
2094      factor[i] = 1.0 / (*ppoly)(x[i]);
2095    }
2096    delete ppoly;
2097    scaleByVector(tab, factor, true);
2098
2099  } else {
2100    // Read and correct
2101    pushLog("Making correction from ascii Table");
2102    scaleFromAsciiTable(tab, filename, method, x, true);
2103  }
2104  return out;
2105}
2106
2107void STMath::scaleFromAsciiTable(Table& in, const std::string& filename,
2108                                 const std::string& method,
2109                                 const Vector<Float>& xout, bool dotsys)
2110{
2111
2112// Read gain-elevation ascii file data into a Table.
2113
2114  String formatString;
2115  Table tbl = readAsciiTable(formatString, Table::Memory, filename, "", "", False);
2116  scaleFromTable(in, tbl, method, xout, dotsys);
2117}
2118
2119void STMath::scaleFromTable(Table& in,
2120                            const Table& table,
2121                            const std::string& method,
2122                            const Vector<Float>& xout, bool dotsys)
2123{
2124
2125  ROScalarColumn<Float> geElCol(table, "ELEVATION");
2126  ROScalarColumn<Float> geFacCol(table, "FACTOR");
2127  Vector<Float> xin = geElCol.getColumn();
2128  Vector<Float> yin = geFacCol.getColumn();
2129  Vector<Bool> maskin(xin.nelements(),True);
2130
2131  // Interpolate (and extrapolate) with desired method
2132
2133  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2134
2135   Vector<Float> yout;
2136   Vector<Bool> maskout;
2137   InterpolateArray1D<Float,Float>::interpolate(yout, maskout, xout,
2138                                                xin, yin, maskin, interp,
2139                                                True, True);
2140
2141   scaleByVector(in, Float(1.0)/yout, dotsys);
2142}
2143
2144void STMath::scaleByVector( Table& in,
2145                            const Vector< Float >& factor,
2146                            bool dotsys )
2147{
2148  uInt nrow = in.nrow();
2149  if ( factor.nelements() != nrow ) {
2150    throw(AipsError("factors.nelements() != table.nelements()"));
2151  }
2152  ArrayColumn<Float> specCol(in, "SPECTRA");
2153  ArrayColumn<uChar> flagCol(in, "FLAGTRA");
2154  ArrayColumn<Float> tsysCol(in, "TSYS");
2155  for (uInt i=0; i < nrow; ++i) {
2156    MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2157    ma *= factor[i];
2158    specCol.put(i, ma.getArray());
2159    flagCol.put(i, flagsFromMA(ma));
2160    if ( dotsys ) {
2161      Vector<Float> tsys = tsysCol(i);
2162      tsys *= factor[i];
2163      tsysCol.put(i,tsys);
2164    }
2165  }
2166}
2167
2168CountedPtr< Scantable > STMath::convertFlux( const CountedPtr< Scantable >& in,
2169                                             float d, float etaap,
2170                                             float jyperk )
2171{
2172  CountedPtr< Scantable > out = getScantable(in, false);
2173  Table& tab = in->table();
2174  Unit fluxUnit(tab.keywordSet().asString("FluxUnit"));
2175  Unit K(String("K"));
2176  Unit JY(String("Jy"));
2177
2178  bool tokelvin = true;
2179  Double cfac = 1.0;
2180
2181  if ( fluxUnit == JY ) {
2182    pushLog("Converting to K");
2183    Quantum<Double> t(1.0,fluxUnit);
2184    Quantum<Double> t2 = t.get(JY);
2185    cfac = (t2 / t).getValue();               // value to Jy
2186
2187    tokelvin = true;
2188    out->setFluxUnit("K");
2189  } else if ( fluxUnit == K ) {
2190    pushLog("Converting to Jy");
2191    Quantum<Double> t(1.0,fluxUnit);
2192    Quantum<Double> t2 = t.get(K);
2193    cfac = (t2 / t).getValue();              // value to K
2194
2195    tokelvin = false;
2196    out->setFluxUnit("Jy");
2197  } else {
2198    throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
2199  }
2200  // Make sure input values are converted to either Jy or K first...
2201  Float factor = cfac;
2202
2203  // Select method
2204  if (jyperk > 0.0) {
2205    factor *= jyperk;
2206    if ( tokelvin ) factor = 1.0 / jyperk;
2207    ostringstream oss;
2208    oss << "Jy/K = " << jyperk;
2209    pushLog(String(oss));
2210    Vector<Float> factors(tab.nrow(), factor);
2211    scaleByVector(tab,factors, false);
2212  } else if ( etaap > 0.0) {
2213    if (d < 0) {
2214      Instrument inst =
2215        STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2216                                  True);
2217      STAttr sda;
2218      d = sda.diameter(inst);
2219    }
2220    jyperk = STAttr::findJyPerK(etaap, d);
2221    ostringstream oss;
2222    oss << "Jy/K = " << jyperk;
2223    pushLog(String(oss));
2224    factor *= jyperk;
2225    if ( tokelvin ) {
2226      factor = 1.0 / factor;
2227    }
2228    Vector<Float> factors(tab.nrow(), factor);
2229    scaleByVector(tab, factors, False);
2230  } else {
2231
2232    // OK now we must deal with automatic look up of values.
2233    // We must also deal with the fact that the factors need
2234    // to be computed per IF and may be different and may
2235    // change per integration.
2236
2237    pushLog("Looking up conversion factors");
2238    convertBrightnessUnits(out, tokelvin, cfac);
2239  }
2240
2241  return out;
2242}
2243
2244void STMath::convertBrightnessUnits( CountedPtr<Scantable>& in,
2245                                     bool tokelvin, float cfac )
2246{
2247  Table& table = in->table();
2248  Instrument inst =
2249    STAttr::convertInstrument(table.keywordSet().asString("AntennaName"), True);
2250  TableIterator iter(table, "FREQ_ID");
2251  STFrequencies stfreqs = in->frequencies();
2252  STAttr sdAtt;
2253  while (!iter.pastEnd()) {
2254    Table tab = iter.table();
2255    ArrayColumn<Float> specCol(tab, "SPECTRA");
2256    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2257    ROScalarColumn<uInt> freqidCol(tab, "FREQ_ID");
2258    MEpoch::ROScalarColumn timeCol(tab, "TIME");
2259
2260    uInt freqid; freqidCol.get(0, freqid);
2261    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2262    // STAttr.JyPerK has a Vector interface... change sometime.
2263    Vector<Float> freqs(1,stfreqs.getRefFreq(freqid, tmpspec.nelements()));
2264    for ( uInt i=0; i<tab.nrow(); ++i) {
2265      Float jyperk = (sdAtt.JyPerK(inst, timeCol(i), freqs))[0];
2266      Float factor = cfac * jyperk;
2267      if ( tokelvin ) factor = Float(1.0) / factor;
2268      MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2269      ma *= factor;
2270      specCol.put(i, ma.getArray());
2271      flagCol.put(i, flagsFromMA(ma));
2272    }
2273  ++iter;
2274  }
2275}
2276
2277CountedPtr< Scantable > STMath::opacity( const CountedPtr< Scantable > & in,
2278                                         const std::vector<float>& tau )
2279{
2280  CountedPtr< Scantable > out = getScantable(in, false);
2281
2282  Table outtab = out->table();
2283
2284  const Int ntau = uInt(tau.size());
2285  std::vector<float>::const_iterator tauit = tau.begin();
2286  AlwaysAssert((ntau == 1 || ntau == in->nif() || ntau == in->nif() * in->npol()),
2287               AipsError);
2288  TableIterator iiter(outtab, "IFNO");
2289  while ( !iiter.pastEnd() ) {
2290    Table itab = iiter.table();
2291    TableIterator piter(outtab, "POLNO");
2292    while ( !piter.pastEnd() ) {
2293      Table tab = piter.table();
2294      ROScalarColumn<Float> elev(tab, "ELEVATION");
2295      ArrayColumn<Float> specCol(tab, "SPECTRA");
2296      ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2297      ArrayColumn<Float> tsysCol(tab, "TSYS");
2298      for ( uInt i=0; i<tab.nrow(); ++i) {
2299        Float zdist = Float(C::pi_2) - elev(i);
2300        Float factor = exp(*tauit/cos(zdist));
2301        MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2302        ma *= factor;
2303        specCol.put(i, ma.getArray());
2304        flagCol.put(i, flagsFromMA(ma));
2305        Vector<Float> tsys;
2306        tsysCol.get(i, tsys);
2307        tsys *= factor;
2308        tsysCol.put(i, tsys);
2309      }
2310      if (ntau == in->nif()*in->npol() ) {
2311        tauit++;
2312      }
2313      piter++;
2314    }
2315    if (ntau >= in->nif() ) {
2316      tauit++;
2317    }
2318    iiter++;
2319  }
2320  return out;
2321}
2322
2323CountedPtr< Scantable > STMath::smoothOther( const CountedPtr< Scantable >& in,
2324                                             const std::string& kernel,
2325                                             float width, int order)
2326{
2327  CountedPtr< Scantable > out = getScantable(in, false);
2328  Table table = out->table();
2329
2330  TableIterator iter(table, "IFNO");
2331  while (!iter.pastEnd()) {
2332    Table tab = iter.table();
2333    ArrayColumn<Float> specCol(tab, "SPECTRA");
2334    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2335    Vector<Float> spec;
2336    Vector<uChar> flag;
2337    for (uInt i = 0; i < tab.nrow(); ++i) {
2338      specCol.get(i, spec);
2339      flagCol.get(i, flag);
2340      Vector<Bool> mask(flag.nelements());
2341      convertArray(mask, flag);
2342      Vector<Float> specout;
2343      Vector<Bool> maskout;
2344      if (kernel == "hanning") {
2345        mathutil::hanning(specout, maskout, spec, !mask);
2346        convertArray(flag, !maskout);
2347      } else if (kernel == "rmedian") {
2348        mathutil::runningMedian(specout, maskout, spec , mask, width);
2349        convertArray(flag, maskout);
2350      } else if (kernel == "poly") {
2351        mathutil::polyfit(specout, maskout, spec, !mask, width, order);
2352        convertArray(flag, !maskout);
2353      }
2354
2355      for (uInt j = 0; j < flag.nelements(); ++j) {
2356        uChar userFlag = 1 << 7;
2357        if (maskout[j]==True) userFlag = 0 << 7;
2358        flag(j) = userFlag;
2359      }
2360
2361      flagCol.put(i, flag);
2362      specCol.put(i, specout);
2363    }
2364  ++iter;
2365  }
2366  return out;
2367}
2368
2369CountedPtr< Scantable > STMath::smooth( const CountedPtr< Scantable >& in,
2370                                        const std::string& kernel, float width,
2371                                        int order)
2372{
2373  if (kernel == "rmedian"  || kernel == "hanning" || kernel == "poly") {
2374    return smoothOther(in, kernel, width, order);
2375  }
2376  CountedPtr< Scantable > out = getScantable(in, false);
2377  Table& table = out->table();
2378  VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernel);
2379  // same IFNO should have same no of channels
2380  // this saves overhead
2381  TableIterator iter(table, "IFNO");
2382  while (!iter.pastEnd()) {
2383    Table tab = iter.table();
2384    ArrayColumn<Float> specCol(tab, "SPECTRA");
2385    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2386    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2387    uInt nchan = tmpspec.nelements();
2388    Vector<Float> kvec = VectorKernel::make(type, width, nchan, True, False);
2389    Convolver<Float> conv(kvec, IPosition(1,nchan));
2390    Vector<Float> spec;
2391    Vector<uChar> flag;
2392    for ( uInt i=0; i<tab.nrow(); ++i) {
2393      specCol.get(i, spec);
2394      flagCol.get(i, flag);
2395      Vector<Bool> mask(flag.nelements());
2396      convertArray(mask, flag);
2397      Vector<Float> specout;
2398      mathutil::replaceMaskByZero(specout, mask);
2399      conv.linearConv(specout, spec);
2400      specCol.put(i, specout);
2401    }
2402    ++iter;
2403  }
2404  return out;
2405}
2406
2407CountedPtr< Scantable >
2408  STMath::merge( const std::vector< CountedPtr < Scantable > >& in )
2409{
2410  if ( in.size() < 2 ) {
2411    throw(AipsError("Need at least two scantables to perform a merge."));
2412  }
2413  std::vector<CountedPtr < Scantable > >::const_iterator it = in.begin();
2414  bool insitu = insitu_;
2415  setInsitu(false);
2416  CountedPtr< Scantable > out = getScantable(*it, false);
2417  setInsitu(insitu);
2418  Table& tout = out->table();
2419  ScalarColumn<uInt> freqidcol(tout,"FREQ_ID"), molidcol(tout, "MOLECULE_ID");
2420  ScalarColumn<uInt> scannocol(tout,"SCANNO"), focusidcol(tout,"FOCUS_ID");
2421  // Renumber SCANNO to be 0-based
2422  Vector<uInt> scannos = scannocol.getColumn();
2423  uInt offset = min(scannos);
2424  scannos -= offset;
2425  scannocol.putColumn(scannos);
2426  uInt newscanno = max(scannos)+1;
2427  ++it;
2428  while ( it != in.end() ){
2429    if ( ! (*it)->conformant(*out) ) {
2430      // non conformant.
2431      //pushLog(String("Warning: Can't merge scantables as header info differs."));
2432      LogIO os( LogOrigin( "STMath", "merge()", WHERE ) ) ;
2433      os << LogIO::SEVERE << "Can't merge scantables as header informations (any one of AntennaName, Equinox, and FluxUnit) differ." << LogIO::EXCEPTION ;
2434    }
2435    out->appendToHistoryTable((*it)->history());
2436    const Table& tab = (*it)->table();
2437
2438    Block<String> cols(3);
2439    cols[0] = String("FREQ_ID");
2440    cols[1] = String("MOLECULE_ID");
2441    cols[2] = String("FOCUS_ID");
2442
2443    TableIterator scanit(tab, "SCANNO");
2444    while (!scanit.pastEnd()) {
2445      ScalarColumn<uInt> thescannocol(scanit.table(),"SCANNO");
2446      Vector<uInt> thescannos(thescannocol.nrow(),newscanno);
2447      thescannocol.putColumn(thescannos);
2448      TableIterator subit(scanit.table(), cols);
2449      while ( !subit.pastEnd() ) {
2450        uInt nrow = tout.nrow();
2451        Table thetab = subit.table();
2452        ROTableRow row(thetab);
2453        Vector<uInt> thecolvals(thetab.nrow());
2454        ScalarColumn<uInt> thefreqidcol(thetab,"FREQ_ID");
2455        ScalarColumn<uInt> themolidcol(thetab, "MOLECULE_ID");
2456        ScalarColumn<uInt> thefocusidcol(thetab,"FOCUS_ID");
2457        // The selected subset of table should have
2458        // the equal FREQ_ID, MOLECULE_ID, and FOCUS_ID values.
2459        const TableRecord& rec = row.get(0);
2460        // Set the proper FREQ_ID
2461        Double rv,rp,inc;
2462        (*it)->frequencies().getEntry(rp, rv, inc, rec.asuInt("FREQ_ID"));
2463        uInt id;
2464        id = out->frequencies().addEntry(rp, rv, inc);
2465        thecolvals = id;
2466        thefreqidcol.putColumn(thecolvals);
2467        // Set the proper MOLECULE_ID
2468        Vector<String> name,fname;Vector<Double> rf;
2469        (*it)->molecules().getEntry(rf, name, fname, rec.asuInt("MOLECULE_ID"));
2470        id = out->molecules().addEntry(rf, name, fname);
2471        thecolvals = id;
2472        themolidcol.putColumn(thecolvals);
2473        // Set the proper FOCUS_ID
2474        Float fpa,frot,fax,ftan,fhand,fmount,fuser, fxy, fxyp;
2475        (*it)->focus().getEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2476                                fxy, fxyp, rec.asuInt("FOCUS_ID"));
2477        id = out->focus().addEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2478                                   fxy, fxyp);
2479        thecolvals = id;
2480        thefocusidcol.putColumn(thecolvals);
2481
2482        tout.addRow(thetab.nrow());
2483        TableCopy::copyRows(tout, thetab, nrow, 0, thetab.nrow());
2484
2485        ++subit;
2486      }
2487      ++newscanno;
2488      ++scanit;
2489    }
2490    ++it;
2491  }
2492  return out;
2493}
2494
2495CountedPtr< Scantable >
2496  STMath::invertPhase( const CountedPtr < Scantable >& in )
2497{
2498  return applyToPol(in, &STPol::invertPhase, Float(0.0));
2499}
2500
2501CountedPtr< Scantable >
2502  STMath::rotateXYPhase( const CountedPtr < Scantable >& in, float phase )
2503{
2504   return applyToPol(in, &STPol::rotatePhase, Float(phase));
2505}
2506
2507CountedPtr< Scantable >
2508  STMath::rotateLinPolPhase( const CountedPtr < Scantable >& in, float phase )
2509{
2510  return applyToPol(in, &STPol::rotateLinPolPhase, Float(phase));
2511}
2512
2513CountedPtr< Scantable > STMath::applyToPol( const CountedPtr<Scantable>& in,
2514                                             STPol::polOperation fptr,
2515                                             Float phase )
2516{
2517  CountedPtr< Scantable > out = getScantable(in, false);
2518  Table& tout = out->table();
2519  Block<String> cols(4);
2520  cols[0] = String("SCANNO");
2521  cols[1] = String("BEAMNO");
2522  cols[2] = String("IFNO");
2523  cols[3] = String("CYCLENO");
2524  TableIterator iter(tout, cols);
2525  CountedPtr<STPol> stpol = STPol::getPolClass(out->factories_,
2526                                               out->getPolType() );
2527  while (!iter.pastEnd()) {
2528    Table t = iter.table();
2529    ArrayColumn<Float> speccol(t, "SPECTRA");
2530    ScalarColumn<uInt> focidcol(t, "FOCUS_ID");
2531    Matrix<Float> pols(speccol.getColumn());
2532    try {
2533      stpol->setSpectra(pols);
2534      Float fang,fhand;
2535      fang = in->focusTable_.getTotalAngle(focidcol(0));
2536      fhand = in->focusTable_.getFeedHand(focidcol(0));
2537      stpol->setPhaseCorrections(fang, fhand);
2538      // use a member function pointer in STPol.  This only works on
2539      // the STPol pointer itself, not the Counted Pointer so
2540      // derefernce it.
2541      (&(*(stpol))->*fptr)(phase);
2542      speccol.putColumn(stpol->getSpectra());
2543    } catch (AipsError& e) {
2544      //delete stpol;stpol=0;
2545      throw(e);
2546    }
2547    ++iter;
2548  }
2549  //delete stpol;stpol=0;
2550  return out;
2551}
2552
2553CountedPtr< Scantable >
2554  STMath::swapPolarisations( const CountedPtr< Scantable > & in )
2555{
2556  CountedPtr< Scantable > out = getScantable(in, false);
2557  Table& tout = out->table();
2558  Table t0 = tout(tout.col("POLNO") == 0);
2559  Table t1 = tout(tout.col("POLNO") == 1);
2560  if ( t0.nrow() != t1.nrow() )
2561    throw(AipsError("Inconsistent number of polarisations"));
2562  ArrayColumn<Float> speccol0(t0, "SPECTRA");
2563  ArrayColumn<uChar> flagcol0(t0, "FLAGTRA");
2564  ArrayColumn<Float> speccol1(t1, "SPECTRA");
2565  ArrayColumn<uChar> flagcol1(t1, "FLAGTRA");
2566  Matrix<Float> s0 = speccol0.getColumn();
2567  Matrix<uChar> f0 = flagcol0.getColumn();
2568  speccol0.putColumn(speccol1.getColumn());
2569  flagcol0.putColumn(flagcol1.getColumn());
2570  speccol1.putColumn(s0);
2571  flagcol1.putColumn(f0);
2572  return out;
2573}
2574
2575CountedPtr< Scantable >
2576  STMath::averagePolarisations( const CountedPtr< Scantable > & in,
2577                                const std::vector<bool>& mask,
2578                                const std::string& weight )
2579{
2580  if (in->npol() < 2 )
2581    throw(AipsError("averagePolarisations can only be applied to two or more"
2582                    "polarisations"));
2583  bool insitu = insitu_;
2584  setInsitu(false);
2585  CountedPtr< Scantable > pols = getScantable(in, true);
2586  setInsitu(insitu);
2587  Table& tout = pols->table();
2588  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
2589  Table tab = tableCommand(taql, in->table());
2590  if (tab.nrow() == 0 )
2591    throw(AipsError("Could not find  any rows with POLNO==0 and POLNO==1"));
2592  TableCopy::copyRows(tout, tab);
2593  TableVector<uInt> vec(tout, "POLNO");
2594  vec = 0;
2595  pols->table_.rwKeywordSet().define("nPol", Int(1));
2596  pols->table_.rwKeywordSet().define("POLTYPE", String("stokes"));
2597  //pols->table_.rwKeywordSet().define("POLTYPE", in->getPolType());
2598  std::vector<CountedPtr<Scantable> > vpols;
2599  vpols.push_back(pols);
2600  CountedPtr< Scantable > out = average(vpols, mask, weight, "SCAN");
2601  return out;
2602}
2603
2604CountedPtr< Scantable >
2605  STMath::averageBeams( const CountedPtr< Scantable > & in,
2606                        const std::vector<bool>& mask,
2607                        const std::string& weight )
2608{
2609  bool insitu = insitu_;
2610  setInsitu(false);
2611  CountedPtr< Scantable > beams = getScantable(in, false);
2612  setInsitu(insitu);
2613  Table& tout = beams->table();
2614  // give all rows the same BEAMNO
2615  TableVector<uInt> vec(tout, "BEAMNO");
2616  vec = 0;
2617  beams->table_.rwKeywordSet().define("nBeam", Int(1));
2618  std::vector<CountedPtr<Scantable> > vbeams;
2619  vbeams.push_back(beams);
2620  CountedPtr< Scantable > out = average(vbeams, mask, weight, "SCAN");
2621  return out;
2622}
2623
2624
2625CountedPtr< Scantable >
2626  asap::STMath::frequencyAlign( const CountedPtr< Scantable > & in,
2627                                const std::string & refTime,
2628                                const std::string & method)
2629{
2630  // clone as this is not working insitu
2631  bool insitu = insitu_;
2632  setInsitu(false);
2633  CountedPtr< Scantable > out = getScantable(in, false);
2634  setInsitu(insitu);
2635  Table& tout = out->table();
2636  // Get reference Epoch to time of first row or given String
2637  Unit DAY(String("d"));
2638  MEpoch::Ref epochRef(in->getTimeReference());
2639  MEpoch refEpoch;
2640  if (refTime.length()>0) {
2641    Quantum<Double> qt;
2642    if (MVTime::read(qt,refTime)) {
2643      MVEpoch mv(qt);
2644      refEpoch = MEpoch(mv, epochRef);
2645   } else {
2646      throw(AipsError("Invalid format for Epoch string"));
2647   }
2648  } else {
2649    refEpoch = in->timeCol_(0);
2650  }
2651  MPosition refPos = in->getAntennaPosition();
2652
2653  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2654  /*
2655  // Comment from MV.
2656  // the following code has been commented out because different FREQ_IDs have to be aligned together even
2657  // if the frame doesn't change. So far, lack of this check didn't cause any problems.
2658  // test if user frame is different to base frame
2659  if ( in->frequencies().getFrameString(true)
2660       == in->frequencies().getFrameString(false) ) {
2661    throw(AipsError("Can't convert as no output frame has been set"
2662                    " (use set_freqframe) or it is aligned already."));
2663  }
2664  */
2665  MFrequency::Types system = in->frequencies().getFrame();
2666  MVTime mvt(refEpoch.getValue());
2667  String epochout = mvt.string(MVTime::YMD) + String(" (") + refEpoch.getRefString() + String(")");
2668  ostringstream oss;
2669  oss << "Aligned at reference Epoch " << epochout
2670      << " in frame " << MFrequency::showType(system);
2671  pushLog(String(oss));
2672  // set up the iterator
2673  Block<String> cols(4);
2674  // select by constant direction
2675  cols[0] = String("SRCNAME");
2676  cols[1] = String("BEAMNO");
2677  // select by IF ( no of channels varies over this )
2678  cols[2] = String("IFNO");
2679  // select by restfrequency
2680  cols[3] = String("MOLECULE_ID");
2681  TableIterator iter(tout, cols);
2682  while ( !iter.pastEnd() ) {
2683    Table t = iter.table();
2684    MDirection::ROScalarColumn dirCol(t, "DIRECTION");
2685    TableIterator fiter(t, "FREQ_ID");
2686    // determine nchan from the first row. This should work as
2687    // we are iterating over BEAMNO and IFNO    // we should have constant direction
2688
2689    ROArrayColumn<Float> sCol(t, "SPECTRA");
2690    const MDirection direction = dirCol(0);
2691    const uInt nchan = sCol(0).nelements();
2692
2693    // skip operations if there is nothing to align
2694    if (fiter.pastEnd()) {
2695        continue;
2696    }
2697
2698    Table ftab = fiter.table();
2699    // align all frequency ids with respect to the first encountered id
2700    ScalarColumn<uInt> freqidCol(ftab, "FREQ_ID");
2701    // get the SpectralCoordinate for the freqid, which we are iterating over
2702    SpectralCoordinate sC = in->frequencies().getSpectralCoordinate(freqidCol(0));
2703    FrequencyAligner<Float> fa( sC, nchan, refEpoch,
2704                                direction, refPos, system );
2705    // realign the SpectralCoordinate and put into the output Scantable
2706    Vector<String> units(1);
2707    units = String("Hz");
2708    Bool linear=True;
2709    SpectralCoordinate sc2 = fa.alignedSpectralCoordinate(linear);
2710    sc2.setWorldAxisUnits(units);
2711    const uInt id = out->frequencies().addEntry(sc2.referencePixel()[0],
2712                                                sc2.referenceValue()[0],
2713                                                sc2.increment()[0]);
2714    while ( !fiter.pastEnd() ) {
2715      ftab = fiter.table();
2716      // spectral coordinate for the current FREQ_ID
2717      ScalarColumn<uInt> freqidCol2(ftab, "FREQ_ID");
2718      sC = in->frequencies().getSpectralCoordinate(freqidCol2(0));
2719      // create the "global" abcissa for alignment with same FREQ_ID
2720      Vector<Double> abc(nchan);
2721      for (uInt i=0; i<nchan; i++) {
2722           Double w;
2723           sC.toWorld(w,Double(i));
2724           abc[i] = w;
2725      }
2726      TableVector<uInt> tvec(ftab, "FREQ_ID");
2727      // assign new frequency id to all rows
2728      tvec = id;
2729      // cache abcissa for same time stamps, so iterate over those
2730      TableIterator timeiter(ftab, "TIME");
2731      while ( !timeiter.pastEnd() ) {
2732        Table tab = timeiter.table();
2733        ArrayColumn<Float> specCol(tab, "SPECTRA");
2734        ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2735        MEpoch::ROScalarColumn timeCol(tab, "TIME");
2736        // use align abcissa cache after the first row
2737        // these rows should be just be POLNO
2738        bool first = true;
2739        for (int i=0; i<int(tab.nrow()); ++i) {
2740          // input values
2741          Vector<uChar> flag = flagCol(i);
2742          Vector<Bool> mask(flag.shape());
2743          Vector<Float> specOut, spec;
2744          spec  = specCol(i);
2745          Vector<Bool> maskOut;Vector<uChar> flagOut;
2746          convertArray(mask, flag);
2747          // alignment
2748          Bool ok = fa.align(specOut, maskOut, abc, spec,
2749                             mask, timeCol(i), !first,
2750                             interp, False);
2751          // back into scantable
2752          flagOut.resize(maskOut.nelements());
2753          convertArray(flagOut, maskOut);
2754          flagCol.put(i, flagOut);
2755          specCol.put(i, specOut);
2756          // start abcissa caching
2757          first = false;
2758        }
2759        // next timestamp
2760        ++timeiter;
2761      }
2762      // next FREQ_ID
2763      ++fiter;
2764    }
2765    // next aligner
2766    ++iter;
2767  }
2768  // set this afterwards to ensure we are doing insitu correctly.
2769  out->frequencies().setFrame(system, true);
2770  return out;
2771}
2772
2773CountedPtr<Scantable>
2774  asap::STMath::convertPolarisation( const CountedPtr<Scantable>& in,
2775                                     const std::string & newtype )
2776{
2777  if (in->npol() != 2 && in->npol() != 4)
2778    throw(AipsError("Can only convert two or four polarisations."));
2779  if ( in->getPolType() == newtype )
2780    throw(AipsError("No need to convert."));
2781  if ( ! in->selector_.empty() )
2782    throw(AipsError("Can only convert whole scantable. Unset the selection."));
2783  bool insitu = insitu_;
2784  setInsitu(false);
2785  CountedPtr< Scantable > out = getScantable(in, true);
2786  setInsitu(insitu);
2787  Table& tout = out->table();
2788  tout.rwKeywordSet().define("POLTYPE", String(newtype));
2789
2790  Block<String> cols(4);
2791  cols[0] = "SCANNO";
2792  cols[1] = "CYCLENO";
2793  cols[2] = "BEAMNO";
2794  cols[3] = "IFNO";
2795  TableIterator it(in->originalTable_, cols);
2796  String basetype = in->getPolType();
2797  STPol* stpol = STPol::getPolClass(in->factories_, basetype);
2798  try {
2799    while ( !it.pastEnd() ) {
2800      Table tab = it.table();
2801      uInt row = tab.rowNumbers()[0];
2802      stpol->setSpectra(in->getPolMatrix(row));
2803      Float fang,fhand;
2804      fang = in->focusTable_.getTotalAngle(in->mfocusidCol_(row));
2805      fhand = in->focusTable_.getFeedHand(in->mfocusidCol_(row));
2806      stpol->setPhaseCorrections(fang, fhand);
2807      Int npolout = 0;
2808      for (uInt i=0; i<tab.nrow(); ++i) {
2809        Vector<Float> outvec = stpol->getSpectrum(i, newtype);
2810        if ( outvec.nelements() > 0 ) {
2811          tout.addRow();
2812          TableCopy::copyRows(tout, tab, tout.nrow()-1, 0, 1);
2813          ArrayColumn<Float> sCol(tout,"SPECTRA");
2814          ScalarColumn<uInt> pCol(tout,"POLNO");
2815          sCol.put(tout.nrow()-1 ,outvec);
2816          pCol.put(tout.nrow()-1 ,uInt(npolout));
2817          npolout++;
2818       }
2819      }
2820      tout.rwKeywordSet().define("nPol", npolout);
2821      ++it;
2822    }
2823  } catch (AipsError& e) {
2824    delete stpol;
2825    throw(e);
2826  }
2827  delete stpol;
2828  return out;
2829}
2830
2831CountedPtr< Scantable >
2832  asap::STMath::mxExtract( const CountedPtr< Scantable > & in,
2833                           const std::string & scantype )
2834{
2835  bool insitu = insitu_;
2836  setInsitu(false);
2837  CountedPtr< Scantable > out = getScantable(in, true);
2838  setInsitu(insitu);
2839  Table& tout = out->table();
2840  std::string taql = "SELECT FROM $1 WHERE BEAMNO != REFBEAMNO";
2841  if (scantype == "on") {
2842    taql = "SELECT FROM $1 WHERE BEAMNO == REFBEAMNO";
2843  }
2844  Table tab = tableCommand(taql, in->table());
2845  TableCopy::copyRows(tout, tab);
2846  if (scantype == "on") {
2847    // re-index SCANNO to 0
2848    TableVector<uInt> vec(tout, "SCANNO");
2849    vec = 0;
2850  }
2851  return out;
2852}
2853
2854CountedPtr< Scantable >
2855  asap::STMath::lagFlag( const CountedPtr< Scantable > & in,
2856                         double start, double end,
2857                         const std::string& mode)
2858{
2859  CountedPtr< Scantable > out = getScantable(in, false);
2860  Table& tout = out->table();
2861  TableIterator iter(tout, "FREQ_ID");
2862  FFTServer<Float,Complex> ffts;
2863  while ( !iter.pastEnd() ) {
2864    Table tab = iter.table();
2865    Double rp,rv,inc;
2866    ROTableRow row(tab);
2867    const TableRecord& rec = row.get(0);
2868    uInt freqid = rec.asuInt("FREQ_ID");
2869    out->frequencies().getEntry(rp, rv, inc, freqid);
2870    ArrayColumn<Float> specCol(tab, "SPECTRA");
2871    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2872    for (int i=0; i<int(tab.nrow()); ++i) {
2873      Vector<Float> spec = specCol(i);
2874      Vector<uChar> flag = flagCol(i);
2875      int fstart = -1;
2876      int fend = -1;
2877      for (unsigned int k=0; k < flag.nelements(); ++k ) {
2878        if (flag[k] > 0) {
2879          fstart = k;
2880          while (flag[k] > 0 && k < flag.nelements()) {
2881            fend = k;
2882            k++;
2883          }
2884        }
2885        Float interp = 0.0;
2886        if (fstart-1 > 0 ) {
2887          interp = spec[fstart-1];
2888          if (fend+1 < Int(spec.nelements())) {
2889            interp = (interp+spec[fend+1])/2.0;
2890          }
2891        } else {
2892          interp = spec[fend+1];
2893        }
2894        if (fstart > -1 && fend > -1) {
2895          for (int j=fstart;j<=fend;++j) {
2896            spec[j] = interp;
2897          }
2898        }
2899        fstart =-1;
2900        fend = -1;
2901      }
2902      Vector<Complex> lags;
2903      ffts.fft0(lags, spec);
2904      Int lag0(start+0.5);
2905      Int lag1(end+0.5);
2906      if (mode == "frequency") {
2907        lag0 = Int(spec.nelements()*abs(inc)/(start)+0.5);
2908        lag1 = Int(spec.nelements()*abs(inc)/(end)+0.5);
2909      }
2910      Int lstart =  max(0, lag0);
2911      Int lend =  min(Int(lags.nelements()-1), lag1);
2912      if (lstart == lend) {
2913        lags[lstart] = Complex(0.0);
2914      } else {
2915        if (lstart > lend) {
2916          Int tmp = lend;
2917          lend = lstart;
2918          lstart = tmp;
2919        }
2920        for (int j=lstart; j <=lend ;++j) {
2921          lags[j] = Complex(0.0);
2922        }
2923      }
2924      ffts.fft0(spec, lags);
2925      specCol.put(i, spec);
2926    }
2927    ++iter;
2928  }
2929  return out;
2930}
2931
2932// Averaging spectra with different channel/resolution
2933CountedPtr<Scantable>
2934STMath::new_average( const std::vector<CountedPtr<Scantable> >& in,
2935                     const bool& compel,
2936                     const std::vector<bool>& mask,
2937                     const std::string& weight,
2938                     const std::string& avmode )
2939  throw ( casa::AipsError )
2940{
2941  LogIO os( LogOrigin( "STMath", "new_average()", WHERE ) ) ;
2942  if ( avmode == "SCAN" && in.size() != 1 )
2943    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
2944                    "Use merge first."));
2945 
2946  // check if OTF observation
2947  String obstype = in[0]->getHeader().obstype ;
2948  Double tol = 0.0 ;
2949  if ( obstype.find( "OTF" ) != String::npos ) {
2950    tol = TOL_OTF ;
2951  }
2952  else {
2953    tol = TOL_POINT ;
2954  }
2955
2956  CountedPtr<Scantable> out ;     // processed result
2957  if ( compel ) {
2958    std::vector< CountedPtr<Scantable> > newin ; // input for average process
2959    uInt insize = in.size() ;    // number of input scantables
2960
2961    // TEST: do normal average in each table before IF grouping
2962    os << "Do preliminary averaging" << LogIO::POST ;
2963    vector< CountedPtr<Scantable> > tmpin( insize ) ;
2964    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2965      vector< CountedPtr<Scantable> > v( 1, in[itable] ) ;
2966      tmpin[itable] = average( v, mask, weight, avmode ) ;
2967    }
2968
2969    // warning
2970    os << "Average spectra with different spectral resolution" << LogIO::POST ;
2971
2972    // temporarily set coordinfo
2973    vector<string> oldinfo( insize ) ;
2974    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2975      vector<string> coordinfo = in[itable]->getCoordInfo() ;
2976      oldinfo[itable] = coordinfo[0] ;
2977      coordinfo[0] = "Hz" ;
2978      tmpin[itable]->setCoordInfo( coordinfo ) ;
2979    }
2980
2981    // columns
2982    ScalarColumn<uInt> freqIDCol ;
2983    ScalarColumn<uInt> ifnoCol ;
2984    ScalarColumn<uInt> scannoCol ;
2985
2986
2987    // check IF frequency coverage
2988    // freqid: list of FREQ_ID, which is used, in each table 
2989    // iffreq: list of minimum and maximum frequency for each FREQ_ID in
2990    //         each table
2991    // freqid[insize][numIF]
2992    // freqid: [[id00, id01, ...],
2993    //          [id10, id11, ...],
2994    //          ...
2995    //          [idn0, idn1, ...]]
2996    // iffreq[insize][numIF*2]
2997    // iffreq: [[min_id00, max_id00, min_id01, max_id01, ...],
2998    //          [min_id10, max_id10, min_id11, max_id11, ...],
2999    //          ...
3000    //          [min_idn0, max_idn0, min_idn1, max_idn1, ...]]
3001    //os << "Check IF settings in each table" << LogIO::POST ;
3002    vector< vector<uInt> > freqid( insize );
3003    vector< vector<double> > iffreq( insize ) ;
3004    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3005      uInt rows = tmpin[itable]->nrow() ;
3006      uInt freqnrows = tmpin[itable]->frequencies().table().nrow() ;
3007      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3008        if ( freqid[itable].size() == freqnrows ) {
3009          break ;
3010        }
3011        else {
3012          freqIDCol.attach( tmpin[itable]->table(), "FREQ_ID" ) ;
3013          ifnoCol.attach( tmpin[itable]->table(), "IFNO" ) ;
3014          uInt id = freqIDCol( irow ) ;
3015          if ( freqid[itable].size() == 0 || count( freqid[itable].begin(), freqid[itable].end(), id ) == 0 ) {
3016            //os << "itable = " << itable << ": IF " << id << " is included in the list" << LogIO::POST ;
3017            vector<double> abcissa = tmpin[itable]->getAbcissa( irow ) ;
3018            freqid[itable].push_back( id ) ;
3019            iffreq[itable].push_back( abcissa[0] - 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
3020            iffreq[itable].push_back( abcissa[abcissa.size()-1] + 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
3021          }
3022        }
3023      }
3024    }
3025
3026    // debug
3027    //os << "IF settings summary:" << endl ;
3028    //for ( uInt i = 0 ; i < freqid.size() ; i++ ) {
3029    //os << "   Table" << i << endl ;
3030    //for ( uInt j = 0 ; j < freqid[i].size() ; j++ ) {
3031    //os << "      id = " << freqid[i][j] << " (min,max) = (" << iffreq[i][2*j] << "," << iffreq[i][2*j+1] << ")" << endl ;
3032    //}
3033    //}
3034    //os << endl ;
3035    //os.post() ;
3036
3037    // IF grouping based on their frequency coverage
3038    // ifgrp: list of table index and FREQ_ID for all members in each IF group
3039    // ifgfreq: list of minimum and maximum frequency in each IF group
3040    // ifgrp[numgrp][nummember*2]
3041    // ifgrp: [[table00, freqrow00, table01, freqrow01, ...],
3042    //         [table10, freqrow10, table11, freqrow11, ...],
3043    //         ...
3044    //         [tablen0, freqrown0, tablen1, freqrown1, ...]]
3045    // ifgfreq[numgrp*2]
3046    // ifgfreq: [min0_grp0, max0_grp0, min1_grp1, max1_grp1, ...]
3047    //os << "IF grouping based on their frequency coverage" << LogIO::POST ;
3048    vector< vector<uInt> > ifgrp ;
3049    vector<double> ifgfreq ;
3050
3051    // parameter for IF grouping
3052    // groupmode = OR    retrieve all region
3053    //             AND   only retrieve overlaped region
3054    //string groupmode = "AND" ;
3055    string groupmode = "OR" ;
3056    uInt sizecr = 0 ;
3057    if ( groupmode == "AND" )
3058      sizecr = 2 ;
3059    else if ( groupmode == "OR" )
3060      sizecr = 0 ;
3061
3062    vector<double> sortedfreq ;
3063    for ( uInt i = 0 ; i < iffreq.size() ; i++ ) {
3064      for ( uInt j = 0 ; j < iffreq[i].size() ; j++ ) {
3065        if ( count( sortedfreq.begin(), sortedfreq.end(), iffreq[i][j] ) == 0 )
3066          sortedfreq.push_back( iffreq[i][j] ) ;
3067      }
3068    }
3069    sort( sortedfreq.begin(), sortedfreq.end() ) ;
3070    for ( vector<double>::iterator i = sortedfreq.begin() ; i != sortedfreq.end()-1 ; i++ ) {
3071      ifgfreq.push_back( *i ) ;
3072      ifgfreq.push_back( *(i+1) ) ;
3073    }
3074    ifgrp.resize( ifgfreq.size()/2 ) ;
3075    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3076      for ( uInt iif = 0 ; iif < freqid[itable].size() ; iif++ ) {
3077        double range0 = iffreq[itable][2*iif] ;
3078        double range1 = iffreq[itable][2*iif+1] ;
3079        for ( uInt j = 0 ; j < ifgrp.size() ; j++ ) {
3080          double fmin = max( range0, ifgfreq[2*j] ) ;
3081          double fmax = min( range1, ifgfreq[2*j+1] ) ;
3082          if ( fmin < fmax ) {
3083            ifgrp[j].push_back( itable ) ;
3084            ifgrp[j].push_back( freqid[itable][iif] ) ;
3085          }
3086        }
3087      }
3088    }
3089    vector< vector<uInt> >::iterator fiter = ifgrp.begin() ;
3090    vector<double>::iterator giter = ifgfreq.begin() ;
3091    while( fiter != ifgrp.end() ) {
3092      if ( fiter->size() <= sizecr ) {
3093        fiter = ifgrp.erase( fiter ) ;
3094        giter = ifgfreq.erase( giter ) ;
3095        giter = ifgfreq.erase( giter ) ;
3096      }
3097      else {
3098        fiter++ ;
3099        advance( giter, 2 ) ;
3100      }
3101    }
3102
3103    // Grouping continuous IF groups (without frequency gap)
3104    // freqgrp: list of IF group indexes in each frequency group
3105    // freqrange: list of minimum and maximum frequency in each frequency group
3106    // freqgrp[numgrp][nummember]
3107    // freqgrp: [[ifgrp00, ifgrp01, ifgrp02, ...],
3108    //           [ifgrp10, ifgrp11, ifgrp12, ...],
3109    //           ...
3110    //           [ifgrpn0, ifgrpn1, ifgrpn2, ...]]
3111    // freqrange[numgrp*2]
3112    // freqrange: [min_grp0, max_grp0, min_grp1, max_grp1, ...]
3113    vector< vector<uInt> > freqgrp ;
3114    double freqrange = 0.0 ;
3115    uInt grpnum = 0 ;
3116    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3117      // Assumed that ifgfreq was sorted
3118      if ( grpnum != 0 && freqrange == ifgfreq[2*i] ) {
3119        freqgrp[grpnum-1].push_back( i ) ;
3120      }
3121      else {
3122        vector<uInt> grp0( 1, i ) ;
3123        freqgrp.push_back( grp0 ) ;
3124        grpnum++ ;
3125      }
3126      freqrange = ifgfreq[2*i+1] ;
3127    }
3128       
3129
3130    // print IF groups
3131    ostringstream oss ;
3132    oss << "IF Group summary: " << endl ;
3133    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3134    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3135      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3136      for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3137        oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3138      }
3139      oss << endl ;
3140    }
3141    oss << endl ;
3142    os << oss.str() << LogIO::POST ;
3143   
3144    // print frequency group
3145    oss.str("") ;
3146    oss << "Frequency Group summary: " << endl ;
3147    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: IF_GROUP_ID" << endl ;
3148    for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3149      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*freqgrp[i][0]] << "," << ifgfreq[2*freqgrp[i][freqgrp[i].size()-1]+1] << "]: " ;
3150      for ( uInt j = 0 ; j < freqgrp[i].size() ; j++ ) {
3151        oss << freqgrp[i][j] << " " ;
3152      }
3153      oss << endl ;
3154    }
3155    oss << endl ;
3156    os << oss.str() << LogIO::POST ;
3157
3158    // membership check
3159    // groups: list of IF group indexes whose frequency range overlaps with
3160    //         that of each table and IF
3161    // groups[numtable][numIF][nummembership]
3162    // groups: [[[grp, grp,...], [grp, grp,...],...],
3163    //          [[grp, grp,...], [grp, grp,...],...],
3164    //          ...
3165    //          [[grp, grp,...], [grp, grp,...],...]]
3166    vector< vector< vector<uInt> > > groups( insize ) ;
3167    for ( uInt i = 0 ; i < insize ; i++ ) {
3168      groups[i].resize( freqid[i].size() ) ;
3169    }
3170    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3171      for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3172        uInt tableid = ifgrp[igrp][2*imem] ;
3173        vector<uInt>::iterator iter = find( freqid[tableid].begin(), freqid[tableid].end(), ifgrp[igrp][2*imem+1] ) ;
3174        if ( iter != freqid[tableid].end() ) {
3175          uInt rowid = distance( freqid[tableid].begin(), iter ) ;
3176          groups[tableid][rowid].push_back( igrp ) ;
3177        }
3178      }
3179    }
3180
3181    // print membership
3182    //oss.str("") ;
3183    //for ( uInt i = 0 ; i < insize ; i++ ) {
3184    //oss << "Table " << i << endl ;
3185    //for ( uInt j = 0 ; j < groups[i].size() ; j++ ) {
3186    //oss << "   FREQ_ID " <<  setw( 2 ) << freqid[i][j] << ": " ;
3187    //for ( uInt k = 0 ; k < groups[i][j].size() ; k++ ) {
3188    //oss << setw( 2 ) << groups[i][j][k] << " " ;
3189    //}
3190    //oss << endl ;
3191    //}
3192    //}
3193    //os << oss.str() << LogIO::POST ;
3194
3195    // set back coordinfo
3196    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3197      vector<string> coordinfo = tmpin[itable]->getCoordInfo() ;
3198      coordinfo[0] = oldinfo[itable] ;
3199      tmpin[itable]->setCoordInfo( coordinfo ) ;
3200    }
3201
3202    // Create additional table if needed
3203    bool oldInsitu = insitu_ ;
3204    setInsitu( false ) ;
3205    vector< vector<uInt> > addrow( insize ) ;
3206    vector<uInt> addtable( insize, 0 ) ;
3207    vector<uInt> newtableids( insize ) ;
3208    vector<uInt> newifids( insize, 0 ) ;
3209    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3210      //os << "Table " << itable << ": " ;
3211      for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3212        addrow[itable].push_back( groups[itable][ifrow].size()-1 ) ;
3213        //os << addrow[itable][ifrow] << " " ;
3214      }
3215      addtable[itable] = *max_element( addrow[itable].begin(), addrow[itable].end() ) ;
3216      //os << "(" << addtable[itable] << ")" << LogIO::POST ;
3217    }
3218    newin.resize( insize ) ;
3219    copy( tmpin.begin(), tmpin.end(), newin.begin() ) ;
3220    for ( uInt i = 0 ; i < insize ; i++ ) {
3221      newtableids[i] = i ;
3222    }
3223    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3224      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3225        CountedPtr<Scantable> add = getScantable( newin[itable], false ) ;
3226        vector<int> freqidlist ;
3227        for ( uInt i = 0 ; i < groups[itable].size() ; i++ ) {
3228          if ( groups[itable][i].size() > iadd + 1 ) {
3229            freqidlist.push_back( freqid[itable][i] ) ;
3230          }
3231        }
3232        stringstream taqlstream ;
3233        taqlstream << "SELECT FROM $1 WHERE FREQ_ID IN [" ;
3234        for ( uInt i = 0 ; i < freqidlist.size() ; i++ ) {
3235          taqlstream << freqidlist[i] ;
3236          if ( i < freqidlist.size() - 1 )
3237            taqlstream << "," ;
3238          else
3239            taqlstream << "]" ;
3240        }
3241        string taql = taqlstream.str() ;
3242        //os << "taql = " << taql << LogIO::POST ;
3243        STSelector selector = STSelector() ;
3244        selector.setTaQL( taql ) ;
3245        add->setSelection( selector ) ;
3246        newin.push_back( add ) ;
3247        newtableids.push_back( itable ) ;
3248        newifids.push_back( iadd + 1 ) ;
3249      }
3250    }
3251
3252    // udpate ifgrp
3253    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3254      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3255        for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3256          if ( groups[itable][ifrow].size() > iadd + 1 ) {
3257            uInt igrp = groups[itable][ifrow][iadd+1] ;
3258            for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3259              if ( ifgrp[igrp][2*imem] == newtableids[iadd+insize] && ifgrp[igrp][2*imem+1] == freqid[newtableids[iadd+insize]][ifrow] ) {
3260                ifgrp[igrp][2*imem] = insize + iadd ;
3261              }
3262            }
3263          }
3264        }
3265      }
3266    }
3267
3268    // print IF groups again for debug
3269    //oss.str( "" ) ;
3270    //oss << "IF Group summary: " << endl ;
3271    //oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3272    //for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3273    //oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3274    //for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3275    //oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3276    //}
3277    //oss << endl ;
3278    //}
3279    //oss << endl ;
3280    //os << oss.str() << LogIO::POST ;
3281
3282    // reset SCANNO and IFNO/FREQ_ID: IF is reset by the result of sortation
3283    os << "All scan number is set to 0" << LogIO::POST ;
3284    //os << "All IF number is set to IF group index" << LogIO::POST ;
3285    insize = newin.size() ;
3286    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3287      uInt rows = newin[itable]->nrow() ;
3288      Table &tmpt = newin[itable]->table() ;
3289      freqIDCol.attach( tmpt, "FREQ_ID" ) ;
3290      scannoCol.attach( tmpt, "SCANNO" ) ;
3291      ifnoCol.attach( tmpt, "IFNO" ) ;
3292      for ( uInt irow=0 ; irow < rows ; irow++ ) {
3293        scannoCol.put( irow, 0 ) ;
3294        uInt freqID = freqIDCol( irow ) ;
3295        vector<uInt>::iterator iter = find( freqid[newtableids[itable]].begin(), freqid[newtableids[itable]].end(), freqID ) ;
3296        if ( iter != freqid[newtableids[itable]].end() ) {
3297          uInt index = distance( freqid[newtableids[itable]].begin(), iter ) ;
3298          ifnoCol.put( irow, groups[newtableids[itable]][index][newifids[itable]] ) ;
3299        }
3300        else {
3301          throw(AipsError("IF grouping was wrong in additional tables.")) ;
3302        }
3303      }
3304    }
3305    oldinfo.resize( insize ) ;
3306    setInsitu( oldInsitu ) ;
3307
3308    // temporarily set coordinfo
3309    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3310      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3311      oldinfo[itable] = coordinfo[0] ;
3312      coordinfo[0] = "Hz" ;
3313      newin[itable]->setCoordInfo( coordinfo ) ;
3314    }
3315
3316    // save column values in the vector
3317    vector< vector<uInt> > freqTableIdVec( insize ) ;
3318    vector< vector<uInt> > freqIdVec( insize ) ;
3319    vector< vector<uInt> > ifNoVec( insize ) ;
3320    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3321      ScalarColumn<uInt> freqIDs ;
3322      freqIDs.attach( newin[itable]->frequencies().table(), "ID" ) ;
3323      ifnoCol.attach( newin[itable]->table(), "IFNO" ) ;
3324      freqIDCol.attach( newin[itable]->table(), "FREQ_ID" ) ;
3325      for ( uInt irow = 0 ; irow < newin[itable]->frequencies().table().nrow() ; irow++ ) {
3326        freqTableIdVec[itable].push_back( freqIDs( irow ) ) ;
3327      }
3328      for ( uInt irow = 0 ; irow < newin[itable]->table().nrow() ; irow++ ) {
3329        freqIdVec[itable].push_back( freqIDCol( irow ) ) ;
3330        ifNoVec[itable].push_back( ifnoCol( irow ) ) ;
3331      }
3332    }
3333
3334    // reset spectra and flagtra: pick up common part of frequency coverage
3335    //os << "Pick common frequency range and align resolution" << LogIO::POST ;
3336    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3337      uInt rows = newin[itable]->nrow() ;
3338      int nminchan = -1 ;
3339      int nmaxchan = -1 ;
3340      vector<uInt> freqIdUpdate ;
3341      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3342        uInt ifno = ifNoVec[itable][irow] ;  // IFNO is reset by group index
3343        double minfreq = ifgfreq[2*ifno] ;
3344        double maxfreq = ifgfreq[2*ifno+1] ;
3345        //os << "frequency range: [" << minfreq << "," << maxfreq << "]" << LogIO::POST ;
3346        vector<double> abcissa = newin[itable]->getAbcissa( irow ) ;
3347        int nchan = abcissa.size() ;
3348        double resol = abcissa[1] - abcissa[0] ;
3349        //os << "abcissa range  : [" << abcissa[0] << "," << abcissa[nchan-1] << "]" << LogIO::POST ;
3350        if ( minfreq <= abcissa[0] )
3351          nminchan = 0 ;
3352        else {
3353          //double cfreq = ( minfreq - abcissa[0] ) / resol ;
3354          double cfreq = ( minfreq - abcissa[0] + 0.5 * resol ) / resol ;
3355          nminchan = int(cfreq) + ( ( cfreq - int(cfreq) <= 0.5 ) ? 0 : 1 ) ;
3356        }
3357        if ( maxfreq >= abcissa[abcissa.size()-1] )
3358          nmaxchan = abcissa.size() - 1 ;
3359        else {
3360          //double cfreq = ( abcissa[abcissa.size()-1] - maxfreq ) / resol ;
3361          double cfreq = ( abcissa[abcissa.size()-1] - maxfreq + 0.5 * resol ) / resol ;
3362          nmaxchan = abcissa.size() - 1 - int(cfreq) - ( ( cfreq - int(cfreq) >= 0.5 ) ? 1 : 0 ) ;
3363        }
3364        //os << "channel range (" << irow << "): [" << nminchan << "," << nmaxchan << "]" << LogIO::POST ;
3365        if ( nmaxchan > nminchan ) {
3366          newin[itable]->reshapeSpectrum( nminchan, nmaxchan, irow ) ;
3367          int newchan = nmaxchan - nminchan + 1 ;
3368          if ( count( freqIdUpdate.begin(), freqIdUpdate.end(), freqIdVec[itable][irow] ) == 0 && newchan < nchan )
3369            freqIdUpdate.push_back( freqIdVec[itable][irow] ) ;
3370        }
3371        else {
3372          throw(AipsError("Failed to pick up common part of frequency range.")) ;
3373        }
3374      }
3375      for ( uInt i = 0 ; i < freqIdUpdate.size() ; i++ ) {
3376        uInt freqId = freqIdUpdate[i] ;
3377        Double refpix ;
3378        Double refval ;
3379        Double increment ;
3380       
3381        // update row
3382        newin[itable]->frequencies().getEntry( refpix, refval, increment, freqId ) ;
3383        refval = refval - ( refpix - nminchan ) * increment ;
3384        refpix = 0 ;
3385        newin[itable]->frequencies().setEntry( refpix, refval, increment, freqId ) ;
3386      }   
3387    }
3388
3389   
3390    // reset spectra and flagtra: align spectral resolution
3391    //os << "Align spectral resolution" << LogIO::POST ;
3392    // gmaxdnu: the coarsest frequency resolution in the frequency group
3393    // gmemid: member index that have a resolution equal to gmaxdnu
3394    // gmaxdnu[numfreqgrp]
3395    // gmaxdnu: [dnu0, dnu1, ...]
3396    // gmemid[numfreqgrp]
3397    // gmemid: [id0, id1, ...]
3398    vector<double> gmaxdnu( freqgrp.size(), 0.0 ) ;
3399    vector<uInt> gmemid( freqgrp.size(), 0 ) ;
3400    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3401      double maxdnu = 0.0 ;       // maximum (coarsest) frequency resolution
3402      int minchan = INT_MAX ;     // minimum channel number
3403      Double refpixref = -1 ;     // reference of 'reference pixel'
3404      Double refvalref = -1 ;     // reference of 'reference frequency'
3405      Double refinc = -1 ;        // reference frequency resolution
3406      uInt refreqid ;
3407      uInt reftable = INT_MAX;
3408      // process only if group member > 1
3409      if ( ifgrp[igrp].size() > 2 ) {
3410        // find minchan and maxdnu in each group
3411        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3412          uInt tableid = ifgrp[igrp][2*imem] ;
3413          uInt rowid = ifgrp[igrp][2*imem+1] ;
3414          vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3415          if ( iter != freqIdVec[tableid].end() ) {
3416            uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3417            vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3418            int nchan = abcissa.size() ;
3419            double dnu = abcissa[1] - abcissa[0] ;
3420            //os << "GROUP " << igrp << " (" << tableid << "," << rowid << "): nchan = " << nchan << " (minchan = " << minchan << ")" << LogIO::POST ;
3421            if ( nchan < minchan ) {
3422              minchan = nchan ;
3423              maxdnu = dnu ;
3424              newin[tableid]->frequencies().getEntry( refpixref, refvalref, refinc, rowid ) ;
3425              refreqid = rowid ;
3426              reftable = tableid ;
3427            }
3428          }
3429        }
3430        // regrid spectra in each group
3431        os << "GROUP " << igrp << endl ;
3432        os << "   Channel number is adjusted to " << minchan << endl ;
3433        os << "   Corresponding frequency resolution is " << maxdnu << "Hz" << LogIO::POST ;
3434        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3435          uInt tableid = ifgrp[igrp][2*imem] ;
3436          uInt rowid = ifgrp[igrp][2*imem+1] ;
3437          freqIDCol.attach( newin[tableid]->table(), "FREQ_ID" ) ;
3438          //os << "tableid = " << tableid << " rowid = " << rowid << ": " << LogIO::POST ;
3439          //os << "   regridChannel applied to " ;
3440          //if ( tableid != reftable )
3441          refreqid = newin[tableid]->frequencies().addEntry( refpixref, refvalref, refinc ) ;
3442          for ( uInt irow = 0 ; irow < newin[tableid]->table().nrow() ; irow++ ) {
3443            uInt tfreqid = freqIdVec[tableid][irow] ;
3444            if ( tfreqid == rowid ) {     
3445              //os << irow << " " ;
3446              newin[tableid]->regridChannel( minchan, maxdnu, irow ) ;
3447              freqIDCol.put( irow, refreqid ) ;
3448              freqIdVec[tableid][irow] = refreqid ;
3449            }
3450          }
3451          //os << LogIO::POST ;
3452        }
3453      }
3454      else {
3455        uInt tableid = ifgrp[igrp][0] ;
3456        uInt rowid = ifgrp[igrp][1] ;
3457        vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3458        if ( iter != freqIdVec[tableid].end() ) {
3459          uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3460          vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3461          minchan = abcissa.size() ;
3462          maxdnu = abcissa[1] - abcissa[0] ;
3463        }
3464      }
3465      for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3466        if ( count( freqgrp[i].begin(), freqgrp[i].end(), igrp ) > 0 ) {
3467          if ( maxdnu > gmaxdnu[i] ) {
3468            gmaxdnu[i] = maxdnu ;
3469            gmemid[i] = igrp ;
3470          }
3471          break ;
3472        }
3473      }
3474    }
3475
3476    // set back coordinfo
3477    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3478      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3479      coordinfo[0] = oldinfo[itable] ;
3480      newin[itable]->setCoordInfo( coordinfo ) ;
3481    }     
3482
3483    // accumulate all rows into the first table
3484    // NOTE: assumed in.size() = 1
3485    vector< CountedPtr<Scantable> > tmp( 1 ) ;
3486    if ( newin.size() == 1 )
3487      tmp[0] = newin[0] ;
3488    else
3489      tmp[0] = merge( newin ) ;
3490
3491    //return tmp[0] ;
3492
3493    // average
3494    CountedPtr<Scantable> tmpout = average( tmp, mask, weight, avmode ) ;
3495
3496    //return tmpout ;
3497
3498    // combine frequency group
3499    os << "Combine spectra based on frequency grouping" << LogIO::POST ;
3500    os << "IFNO is renumbered as frequency group ID (see above)" << LogIO::POST ;
3501    vector<string> coordinfo = tmpout->getCoordInfo() ;
3502    oldinfo[0] = coordinfo[0] ;
3503    coordinfo[0] = "Hz" ;
3504    tmpout->setCoordInfo( coordinfo ) ;
3505    // create proformas of output table
3506    stringstream taqlstream ;
3507    taqlstream << "SELECT FROM $1 WHERE IFNO IN [" ;
3508    for ( uInt i = 0 ; i < gmemid.size() ; i++ ) {
3509      taqlstream << gmemid[i] ;
3510      if ( i < gmemid.size() - 1 )
3511        taqlstream << "," ;
3512      else
3513        taqlstream << "]" ;
3514    }
3515    string taql = taqlstream.str() ;
3516    //os << "taql = " << taql << LogIO::POST ;
3517    STSelector selector = STSelector() ;
3518    selector.setTaQL( taql ) ;
3519    oldInsitu = insitu_ ;
3520    setInsitu( false ) ;
3521    out = getScantable( tmpout, false ) ;
3522    setInsitu( oldInsitu ) ;
3523    out->setSelection( selector ) ;
3524    // regrid rows
3525    ifnoCol.attach( tmpout->table(), "IFNO" ) ;
3526    for ( uInt irow = 0 ; irow < tmpout->table().nrow() ; irow++ ) {
3527      uInt ifno = ifnoCol( irow ) ;
3528      for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3529        if ( count( freqgrp[igrp].begin(), freqgrp[igrp].end(), ifno ) > 0 ) {
3530          vector<double> abcissa = tmpout->getAbcissa( irow ) ;
3531          double bw = ( abcissa[1] - abcissa[0] ) * abcissa.size() ;
3532          int nchan = (int)( bw / gmaxdnu[igrp] ) ;
3533          tmpout->regridChannel( nchan, gmaxdnu[igrp], irow ) ;
3534          break ;
3535        }
3536      }
3537    }
3538    // combine spectra
3539    ArrayColumn<Float> specColOut ;
3540    specColOut.attach( out->table(), "SPECTRA" ) ;
3541    ArrayColumn<uChar> flagColOut ;
3542    flagColOut.attach( out->table(), "FLAGTRA" ) ;
3543    ScalarColumn<uInt> ifnoColOut ;
3544    ifnoColOut.attach( out->table(), "IFNO" ) ;
3545    ScalarColumn<uInt> polnoColOut ;
3546    polnoColOut.attach( out->table(), "POLNO" ) ;
3547    ScalarColumn<uInt> freqidColOut ;
3548    freqidColOut.attach( out->table(), "FREQ_ID" ) ;
3549    MDirection::ScalarColumn dirColOut ;
3550    dirColOut.attach( out->table(), "DIRECTION" ) ;
3551    Table &tab = tmpout->table() ;
3552    Block<String> cols(1);
3553    cols[0] = String("POLNO") ;
3554    TableIterator iter( tab, cols ) ;
3555    bool done = false ;
3556    vector< vector<uInt> > sizes( freqgrp.size() ) ;
3557    while( !iter.pastEnd() ) {
3558      vector< vector<Float> > specout( freqgrp.size() ) ;
3559      vector< vector<uChar> > flagout( freqgrp.size() ) ;
3560      ArrayColumn<Float> specCols ;
3561      specCols.attach( iter.table(), "SPECTRA" ) ;
3562      ArrayColumn<uChar> flagCols ;
3563      flagCols.attach( iter.table(), "FLAGTRA" ) ;
3564      ifnoCol.attach( iter.table(), "IFNO" ) ;
3565      ScalarColumn<uInt> polnos ;
3566      polnos.attach( iter.table(), "POLNO" ) ;
3567      MDirection::ScalarColumn dircol ;
3568      dircol.attach( iter.table(), "DIRECTION" ) ;
3569      uInt polno = polnos( 0 ) ;
3570      //os << "POLNO iteration: " << polno << LogIO::POST ;
3571//       for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3572//      sizes[igrp].resize( freqgrp[igrp].size() ) ;
3573//      for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3574//        for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3575//          uInt ifno = ifnoCol( irow ) ;
3576//          if ( ifno == freqgrp[igrp][imem] ) {
3577//            Vector<Float> spec = specCols( irow ) ;
3578//            Vector<uChar> flag = flagCols( irow ) ;
3579//            vector<Float> svec ;
3580//            spec.tovector( svec ) ;
3581//            vector<uChar> fvec ;
3582//            flag.tovector( fvec ) ;
3583//            //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3584//            specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3585//            flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3586//            //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3587//            sizes[igrp][imem] = spec.nelements() ;
3588//          }
3589//        }
3590//      }
3591//      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3592//        uInt ifout = ifnoColOut( irow ) ;
3593//        uInt polout = polnoColOut( irow ) ;
3594//        if ( ifout == gmemid[igrp] && polout == polno ) {
3595//          // set SPECTRA and FRAGTRA
3596//          Vector<Float> newspec( specout[igrp] ) ;
3597//          Vector<uChar> newflag( flagout[igrp] ) ;
3598//          specColOut.put( irow, newspec ) ;
3599//          flagColOut.put( irow, newflag ) ;
3600//          // IFNO renumbering
3601//          ifnoColOut.put( irow, igrp ) ;
3602//        }
3603//      }
3604//       }
3605      // get a list of number of channels for each frequency group member
3606      if ( !done ) {
3607        for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3608          sizes[igrp].resize( freqgrp[igrp].size() ) ;
3609          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3610            for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3611              uInt ifno = ifnoCol( irow ) ;
3612              if ( ifno == freqgrp[igrp][imem] ) {
3613                Vector<Float> spec = specCols( irow ) ;
3614                sizes[igrp][imem] = spec.nelements() ;
3615                break ;
3616              }               
3617            }
3618          }
3619        }
3620        done = true ;
3621      }
3622      // combine spectra
3623      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3624        uInt polout = polnoColOut( irow ) ;
3625        if ( polout == polno ) {
3626          uInt ifout = ifnoColOut( irow ) ;
3627          Vector<Double> direction = dirColOut(irow).getAngle(Unit(String("rad"))).getValue() ;
3628          uInt igrp ;
3629          for ( uInt jgrp = 0 ; jgrp < freqgrp.size() ; jgrp++ ) {
3630            if ( ifout == gmemid[jgrp] ) {
3631              igrp = jgrp ;
3632              break ;
3633            }
3634          }
3635          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3636            for ( uInt jrow = 0 ; jrow < iter.table().nrow() ; jrow++ ) {
3637              uInt ifno = ifnoCol( jrow ) ;
3638              Vector<Double> tdir = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
3639              //if ( ifno == freqgrp[igrp][imem] && allTrue( tdir == direction  ) ) {
3640              Double dx = tdir[0] - direction[0] ;
3641              Double dy = tdir[1] - direction[1] ;
3642              Double dd = sqrt( dx * dx + dy * dy ) ;
3643              //if ( ifno == freqgrp[igrp][imem] && allNearAbs( tdir, direction, tol ) ) {
3644              if ( ifno == freqgrp[igrp][imem] && dd <= tol ) {
3645                Vector<Float> spec = specCols( jrow ) ;
3646                Vector<uChar> flag = flagCols( jrow ) ;
3647                vector<Float> svec ;
3648                spec.tovector( svec ) ;
3649                vector<uChar> fvec ;
3650                flag.tovector( fvec ) ;
3651                //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3652                specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3653                flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3654                //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3655              }
3656            }
3657          }
3658          // set SPECTRA and FRAGTRA
3659          Vector<Float> newspec( specout[igrp] ) ;
3660          Vector<uChar> newflag( flagout[igrp] ) ;
3661          specColOut.put( irow, newspec ) ;
3662          flagColOut.put( irow, newflag ) ;
3663          // IFNO renumbering
3664          ifnoColOut.put( irow, igrp ) ;
3665        }
3666      }
3667      iter++ ;
3668    }
3669    // update FREQUENCIES subtable
3670    vector<bool> updated( freqgrp.size(), false ) ;
3671    for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3672      uInt index = 0 ;
3673      uInt pixShift = 0 ;
3674      while ( freqgrp[igrp][index] != gmemid[igrp] ) {
3675        pixShift += sizes[igrp][index++] ;
3676      }
3677      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3678        if ( ifnoColOut( irow ) == gmemid[igrp] && !updated[igrp] ) {
3679          uInt freqidOut = freqidColOut( irow ) ;
3680          //os << "freqgrp " << igrp << " freqidOut = " << freqidOut << LogIO::POST ;
3681          double refpix ;
3682          double refval ;
3683          double increm ;
3684          out->frequencies().getEntry( refpix, refval, increm, freqidOut ) ;
3685          refpix += pixShift ;
3686          out->frequencies().setEntry( refpix, refval, increm, freqidOut ) ;
3687          updated[igrp] = true ;
3688        }
3689      }
3690    }
3691
3692    //out = tmpout ;
3693
3694    coordinfo = tmpout->getCoordInfo() ;
3695    coordinfo[0] = oldinfo[0] ;
3696    tmpout->setCoordInfo( coordinfo ) ;
3697  }
3698  else {
3699    // simple average
3700    out =  average( in, mask, weight, avmode ) ;
3701  }
3702 
3703  return out ;
3704}
3705
3706CountedPtr<Scantable> STMath::cwcal( const CountedPtr<Scantable>& s,
3707                                     const String calmode,
3708                                     const String antname )
3709{
3710  // frequency switch
3711  if ( calmode == "fs" ) {
3712    return cwcalfs( s, antname ) ;
3713  }
3714  else {
3715    vector<bool> masks = s->getMask( 0 ) ;
3716    vector<int> types ;
3717
3718    // sky scan
3719    STSelector sel = STSelector() ;
3720    types.push_back( SrcType::SKY ) ;
3721    sel.setTypes( types ) ;
3722    s->setSelection( sel ) ;
3723    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3724    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
3725    s->unsetSelection() ;
3726    sel.reset() ;
3727    types.clear() ;
3728
3729    // hot scan
3730    types.push_back( SrcType::HOT ) ;
3731    sel.setTypes( types ) ;
3732    s->setSelection( sel ) ;
3733    tmp.clear() ;
3734    tmp.push_back( getScantable( s, false ) ) ;
3735    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
3736    s->unsetSelection() ;
3737    sel.reset() ;
3738    types.clear() ;
3739   
3740    // cold scan
3741    CountedPtr<Scantable> acold ;
3742//     types.push_back( SrcType::COLD ) ;
3743//     sel.setTypes( types ) ;
3744//     s->setSelection( sel ) ;
3745//     tmp.clear() ;
3746//     tmp.push_back( getScantable( s, false ) ) ;
3747//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCNAN" ) ;
3748//     s->unsetSelection() ;
3749//     sel.reset() ;
3750//     types.clear() ;
3751
3752    // off scan
3753    types.push_back( SrcType::PSOFF ) ;
3754    sel.setTypes( types ) ;
3755    s->setSelection( sel ) ;
3756    tmp.clear() ;
3757    tmp.push_back( getScantable( s, false ) ) ;
3758    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3759    s->unsetSelection() ;
3760    sel.reset() ;
3761    types.clear() ;
3762   
3763    // on scan
3764    bool insitu = insitu_ ;
3765    insitu_ = false ;
3766    CountedPtr<Scantable> out = getScantable( s, true ) ;
3767    insitu_ = insitu ;
3768    types.push_back( SrcType::PSON ) ;
3769    sel.setTypes( types ) ;
3770    s->setSelection( sel ) ;
3771    TableCopy::copyRows( out->table(), s->table() ) ;
3772    s->unsetSelection() ;
3773    sel.reset() ;
3774    types.clear() ;
3775   
3776    // process each on scan
3777    ArrayColumn<Float> tsysCol ;
3778    tsysCol.attach( out->table(), "TSYS" ) ;
3779    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3780      vector<float> sp = getCalibratedSpectra( out, aoff, asky, ahot, acold, i, antname ) ;
3781      out->setSpectrum( sp, i ) ;
3782      string reftime = out->getTime( i ) ;
3783      vector<int> ii( 1, out->getIF( i ) ) ;
3784      vector<int> ib( 1, out->getBeam( i ) ) ;
3785      vector<int> ip( 1, out->getPol( i ) ) ;
3786      sel.setIFs( ii ) ;
3787      sel.setBeams( ib ) ;
3788      sel.setPolarizations( ip ) ;
3789      asky->setSelection( sel ) ;   
3790      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
3791      const Vector<Float> Vtsys( sptsys ) ;
3792      tsysCol.put( i, Vtsys ) ;
3793      asky->unsetSelection() ;
3794      sel.reset() ;
3795    }
3796
3797    // flux unit
3798    out->setFluxUnit( "K" ) ;
3799
3800    return out ;
3801  }
3802}
3803 
3804CountedPtr<Scantable> STMath::almacal( const CountedPtr<Scantable>& s,
3805                                       const String calmode )
3806{
3807  // frequency switch
3808  if ( calmode == "fs" ) {
3809    return almacalfs( s ) ;
3810  }
3811  else {
3812    vector<bool> masks = s->getMask( 0 ) ;
3813   
3814    // off scan
3815    STSelector sel = STSelector() ;
3816    vector<int> types ;
3817    types.push_back( SrcType::PSOFF ) ;
3818    sel.setTypes( types ) ;
3819    s->setSelection( sel ) ;
3820    // TODO 2010/01/08 TN
3821    // Grouping by time should be needed before averaging.
3822    // Each group must have own unique SCANNO (should be renumbered).
3823    // See PIPELINE/SDCalibration.py
3824    CountedPtr<Scantable> soff = getScantable( s, false ) ;
3825    Table ttab = soff->table() ;
3826    ROScalarColumn<Double> timeCol( ttab, "TIME" ) ;
3827    uInt nrow = timeCol.nrow() ;
3828    Vector<Double> timeSep( nrow - 1 ) ;
3829    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3830      timeSep[i] = timeCol(i+1) - timeCol(i) ;
3831    }
3832    ScalarColumn<Double> intervalCol( ttab, "INTERVAL" ) ;
3833    Vector<Double> interval = intervalCol.getColumn() ;
3834    interval /= 86400.0 ;
3835    ScalarColumn<uInt> scanCol( ttab, "SCANNO" ) ;
3836    vector<uInt> glist ;
3837    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3838      double gap = 2.0 * timeSep[i] / ( interval[i] + interval[i+1] ) ;
3839      //cout << "gap[" << i << "]=" << setw(5) << gap << endl ;
3840      if ( gap > 1.1 ) {
3841        glist.push_back( i ) ;
3842      }
3843    }
3844    Vector<uInt> gaplist( glist ) ;
3845    //cout << "gaplist = " << gaplist << endl ;
3846    uInt newid = 0 ;
3847    for ( uInt i = 0 ; i < nrow ; i++ ) {
3848      scanCol.put( i, newid ) ;
3849      if ( i == gaplist[newid] ) {
3850        newid++ ;
3851      }
3852    }
3853    //cout << "new scancol = " << scanCol.getColumn() << endl ;
3854    vector< CountedPtr<Scantable> > tmp( 1, soff ) ;
3855    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3856    //cout << "aoff.nrow = " << aoff->nrow() << endl ;
3857    s->unsetSelection() ;
3858    sel.reset() ;
3859    types.clear() ;
3860   
3861    // on scan
3862    bool insitu = insitu_ ;
3863    insitu_ = false ;
3864    CountedPtr<Scantable> out = getScantable( s, true ) ;
3865    insitu_ = insitu ;
3866    types.push_back( SrcType::PSON ) ;
3867    sel.setTypes( types ) ;
3868    s->setSelection( sel ) ;
3869    TableCopy::copyRows( out->table(), s->table() ) ;
3870    s->unsetSelection() ;
3871    sel.reset() ;
3872    types.clear() ;
3873   
3874    // process each on scan
3875    ArrayColumn<Float> tsysCol ;
3876    tsysCol.attach( out->table(), "TSYS" ) ;
3877    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3878      vector<float> sp = getCalibratedSpectra( out, aoff, i ) ;
3879      out->setSpectrum( sp, i ) ;
3880    }
3881
3882    // flux unit
3883    out->setFluxUnit( "K" ) ;
3884
3885    return out ;
3886  }
3887}
3888
3889CountedPtr<Scantable> STMath::cwcalfs( const CountedPtr<Scantable>& s,
3890                                       const String antname )
3891{
3892  vector<int> types ;
3893
3894  // APEX calibration mode
3895  int apexcalmode = 1 ;
3896 
3897  if ( antname.find( "APEX" ) != string::npos ) {
3898    // check if off scan exists or not
3899    STSelector sel = STSelector() ;
3900    //sel.setName( offstr1 ) ;
3901    types.push_back( SrcType::FLOOFF ) ;
3902    sel.setTypes( types ) ;
3903    try {
3904      s->setSelection( sel ) ;
3905    }
3906    catch ( AipsError &e ) {
3907      apexcalmode = 0 ;
3908    }
3909    sel.reset() ;
3910  }
3911  s->unsetSelection() ;
3912  types.clear() ;
3913
3914  vector<bool> masks = s->getMask( 0 ) ;
3915  CountedPtr<Scantable> ssig, sref ;
3916  CountedPtr<Scantable> out ;
3917
3918  if ( antname.find( "APEX" ) != string::npos ) {
3919    // APEX calibration
3920    // sky scan
3921    STSelector sel = STSelector() ;
3922    types.push_back( SrcType::FLOSKY ) ;
3923    sel.setTypes( types ) ;
3924    s->setSelection( sel ) ;
3925    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3926    CountedPtr<Scantable> askylo = average( tmp, masks, "TINT", "SCAN" ) ;
3927    s->unsetSelection() ;
3928    sel.reset() ;
3929    types.clear() ;
3930    types.push_back( SrcType::FHISKY ) ;
3931    sel.setTypes( types ) ;
3932    s->setSelection( sel ) ;
3933    tmp.clear() ;
3934    tmp.push_back( getScantable( s, false ) ) ;
3935    CountedPtr<Scantable> askyhi = average( tmp, masks, "TINT", "SCAN" ) ;
3936    s->unsetSelection() ;
3937    sel.reset() ;
3938    types.clear() ;
3939   
3940    // hot scan
3941    types.push_back( SrcType::FLOHOT ) ;
3942    sel.setTypes( types ) ;
3943    s->setSelection( sel ) ;
3944    tmp.clear() ;
3945    tmp.push_back( getScantable( s, false ) ) ;
3946    CountedPtr<Scantable> ahotlo = average( tmp, masks, "TINT", "SCAN" ) ;
3947    s->unsetSelection() ;
3948    sel.reset() ;
3949    types.clear() ;
3950    types.push_back( SrcType::FHIHOT ) ;
3951    sel.setTypes( types ) ;
3952    s->setSelection( sel ) ;
3953    tmp.clear() ;
3954    tmp.push_back( getScantable( s, false ) ) ;
3955    CountedPtr<Scantable> ahothi = average( tmp, masks, "TINT", "SCAN" ) ;
3956    s->unsetSelection() ;
3957    sel.reset() ;
3958    types.clear() ;
3959   
3960    // cold scan
3961    CountedPtr<Scantable> acoldlo, acoldhi ;
3962//     types.push_back( SrcType::FLOCOLD ) ;
3963//     sel.setTypes( types ) ;
3964//     s->setSelection( sel ) ;
3965//     tmp.clear() ;
3966//     tmp.push_back( getScantable( s, false ) ) ;
3967//     CountedPtr<Scantable> acoldlo = average( tmp, masks, "TINT", "SCAN" ) ;
3968//     s->unsetSelection() ;
3969//     sel.reset() ;
3970//     types.clear() ;
3971//     types.push_back( SrcType::FHICOLD ) ;
3972//     sel.setTypes( types ) ;
3973//     s->setSelection( sel ) ;
3974//     tmp.clear() ;
3975//     tmp.push_back( getScantable( s, false ) ) ;
3976//     CountedPtr<Scantable> acoldhi = average( tmp, masks, "TINT", "SCAN" ) ;
3977//     s->unsetSelection() ;
3978//     sel.reset() ;
3979//     types.clear() ;
3980
3981    // ref scan
3982    bool insitu = insitu_ ;
3983    insitu_ = false ;
3984    sref = getScantable( s, true ) ;
3985    insitu_ = insitu ;
3986    types.push_back( SrcType::FSLO ) ;
3987    sel.setTypes( types ) ;
3988    s->setSelection( sel ) ;
3989    TableCopy::copyRows( sref->table(), s->table() ) ;
3990    s->unsetSelection() ;
3991    sel.reset() ;
3992    types.clear() ;
3993   
3994    // sig scan
3995    insitu_ = false ;
3996    ssig = getScantable( s, true ) ;
3997    insitu_ = insitu ;
3998    types.push_back( SrcType::FSHI ) ;
3999    sel.setTypes( types ) ;
4000    s->setSelection( sel ) ;
4001    TableCopy::copyRows( ssig->table(), s->table() ) ;
4002    s->unsetSelection() ;
4003    sel.reset() ; 
4004    types.clear() ;
4005         
4006    if ( apexcalmode == 0 ) {
4007      // APEX fs data without off scan
4008      // process each sig and ref scan
4009      ArrayColumn<Float> tsysCollo ;
4010      tsysCollo.attach( ssig->table(), "TSYS" ) ;
4011      ArrayColumn<Float> tsysColhi ;
4012      tsysColhi.attach( sref->table(), "TSYS" ) ;
4013      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4014        vector< CountedPtr<Scantable> > sky( 2 ) ;
4015        sky[0] = askylo ;
4016        sky[1] = askyhi ;
4017        vector< CountedPtr<Scantable> > hot( 2 ) ;
4018        hot[0] = ahotlo ;
4019        hot[1] = ahothi ;
4020        vector< CountedPtr<Scantable> > cold( 2 ) ;
4021        //cold[0] = acoldlo ;
4022        //cold[1] = acoldhi ;
4023        vector<float> sp = getFSCalibratedSpectra( ssig, sref, sky, hot, cold, i ) ;
4024        ssig->setSpectrum( sp, i ) ;
4025        string reftime = ssig->getTime( i ) ;
4026        vector<int> ii( 1, ssig->getIF( i ) ) ;
4027        vector<int> ib( 1, ssig->getBeam( i ) ) ;
4028        vector<int> ip( 1, ssig->getPol( i ) ) ;
4029        sel.setIFs( ii ) ;
4030        sel.setBeams( ib ) ;
4031        sel.setPolarizations( ip ) ;
4032        askylo->setSelection( sel ) ;
4033        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4034        const Vector<Float> Vtsyslo( sptsys ) ;
4035        tsysCollo.put( i, Vtsyslo ) ;
4036        askylo->unsetSelection() ;
4037        sel.reset() ;
4038        sky[0] = askyhi ;
4039        sky[1] = askylo ;
4040        hot[0] = ahothi ;
4041        hot[1] = ahotlo ;
4042        cold[0] = acoldhi ;
4043        cold[1] = acoldlo ;
4044        sp = getFSCalibratedSpectra( sref, ssig, sky, hot, cold, i ) ;
4045        sref->setSpectrum( sp, i ) ;
4046        reftime = sref->getTime( i ) ;
4047        ii[0] = sref->getIF( i )  ;
4048        ib[0] = sref->getBeam( i ) ;
4049        ip[0] = sref->getPol( i ) ;
4050        sel.setIFs( ii ) ;
4051        sel.setBeams( ib ) ;
4052        sel.setPolarizations( ip ) ;
4053        askyhi->setSelection( sel ) ;   
4054        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4055        const Vector<Float> Vtsyshi( sptsys ) ;
4056        tsysColhi.put( i, Vtsyshi ) ;
4057        askyhi->unsetSelection() ;
4058        sel.reset() ;
4059      }
4060    }
4061    else if ( apexcalmode == 1 ) {
4062      // APEX fs data with off scan
4063      // off scan
4064      types.push_back( SrcType::FLOOFF ) ;
4065      sel.setTypes( types ) ;
4066      s->setSelection( sel ) ;
4067      tmp.clear() ;
4068      tmp.push_back( getScantable( s, false ) ) ;
4069      CountedPtr<Scantable> aofflo = average( tmp, masks, "TINT", "SCAN" ) ;
4070      s->unsetSelection() ;
4071      sel.reset() ;
4072      types.clear() ;
4073      types.push_back( SrcType::FHIOFF ) ;
4074      sel.setTypes( types ) ;
4075      s->setSelection( sel ) ;
4076      tmp.clear() ;
4077      tmp.push_back( getScantable( s, false ) ) ;
4078      CountedPtr<Scantable> aoffhi = average( tmp, masks, "TINT", "SCAN" ) ;
4079      s->unsetSelection() ;
4080      sel.reset() ;
4081      types.clear() ;
4082     
4083      // process each sig and ref scan
4084      ArrayColumn<Float> tsysCollo ;
4085      tsysCollo.attach( ssig->table(), "TSYS" ) ;
4086      ArrayColumn<Float> tsysColhi ;
4087      tsysColhi.attach( sref->table(), "TSYS" ) ;
4088      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4089        vector<float> sp = getCalibratedSpectra( ssig, aofflo, askylo, ahotlo, acoldlo, i, antname ) ;
4090        ssig->setSpectrum( sp, i ) ;
4091        sp = getCalibratedSpectra( sref, aoffhi, askyhi, ahothi, acoldhi, i, antname ) ;
4092        string reftime = ssig->getTime( i ) ;
4093        vector<int> ii( 1, ssig->getIF( i ) ) ;
4094        vector<int> ib( 1, ssig->getBeam( i ) ) ;
4095        vector<int> ip( 1, ssig->getPol( i ) ) ;
4096        sel.setIFs( ii ) ;
4097        sel.setBeams( ib ) ;
4098        sel.setPolarizations( ip ) ;
4099        askylo->setSelection( sel ) ;
4100        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4101        const Vector<Float> Vtsyslo( sptsys ) ;
4102        tsysCollo.put( i, Vtsyslo ) ;
4103        askylo->unsetSelection() ;
4104        sel.reset() ;
4105        sref->setSpectrum( sp, i ) ;
4106        reftime = sref->getTime( i ) ;
4107        ii[0] = sref->getIF( i )  ;
4108        ib[0] = sref->getBeam( i ) ;
4109        ip[0] = sref->getPol( i ) ;
4110        sel.setIFs( ii ) ;
4111        sel.setBeams( ib ) ;
4112        sel.setPolarizations( ip ) ;
4113        askyhi->setSelection( sel ) ;   
4114        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4115        const Vector<Float> Vtsyshi( sptsys ) ;
4116        tsysColhi.put( i, Vtsyshi ) ;
4117        askyhi->unsetSelection() ;
4118        sel.reset() ;
4119      }
4120    }
4121  }
4122  else {
4123    // non-APEX fs data
4124    // sky scan
4125    STSelector sel = STSelector() ;
4126    types.push_back( SrcType::SKY ) ;
4127    sel.setTypes( types ) ;
4128    s->setSelection( sel ) ;
4129    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
4130    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
4131    s->unsetSelection() ;
4132    sel.reset() ;
4133    types.clear() ;
4134   
4135    // hot scan
4136    types.push_back( SrcType::HOT ) ;
4137    sel.setTypes( types ) ;
4138    s->setSelection( sel ) ;
4139    tmp.clear() ;
4140    tmp.push_back( getScantable( s, false ) ) ;
4141    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
4142    s->unsetSelection() ;
4143    sel.reset() ;
4144    types.clear() ;
4145
4146    // cold scan
4147    CountedPtr<Scantable> acold ;
4148//     types.push_back( SrcType::COLD ) ;
4149//     sel.setTypes( types ) ;
4150//     s->setSelection( sel ) ;
4151//     tmp.clear() ;
4152//     tmp.push_back( getScantable( s, false ) ) ;
4153//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCAN" ) ;
4154//     s->unsetSelection() ;
4155//     sel.reset() ;
4156//     types.clear() ;
4157   
4158    // ref scan
4159    bool insitu = insitu_ ;
4160    insitu_ = false ;
4161    sref = getScantable( s, true ) ;
4162    insitu_ = insitu ;
4163    types.push_back( SrcType::FSOFF ) ;
4164    sel.setTypes( types ) ;
4165    s->setSelection( sel ) ;
4166    TableCopy::copyRows( sref->table(), s->table() ) ;
4167    s->unsetSelection() ;
4168    sel.reset() ;
4169    types.clear() ;
4170   
4171    // sig scan
4172    insitu_ = false ;
4173    ssig = getScantable( s, true ) ;
4174    insitu_ = insitu ;
4175    types.push_back( SrcType::FSON ) ;
4176    sel.setTypes( types ) ;
4177    s->setSelection( sel ) ;
4178    TableCopy::copyRows( ssig->table(), s->table() ) ;
4179    s->unsetSelection() ;
4180    sel.reset() ;
4181    types.clear() ;
4182
4183    // process each sig and ref scan
4184    ArrayColumn<Float> tsysColsig ;
4185    tsysColsig.attach( ssig->table(), "TSYS" ) ;
4186    ArrayColumn<Float> tsysColref ;
4187    tsysColref.attach( ssig->table(), "TSYS" ) ;
4188    for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4189      vector<float> sp = getFSCalibratedSpectra( ssig, sref, asky, ahot, acold, i ) ;
4190      ssig->setSpectrum( sp, i ) ;
4191      string reftime = ssig->getTime( i ) ;
4192      vector<int> ii( 1, ssig->getIF( i ) ) ;
4193      vector<int> ib( 1, ssig->getBeam( i ) ) ;
4194      vector<int> ip( 1, ssig->getPol( i ) ) ;
4195      sel.setIFs( ii ) ;
4196      sel.setBeams( ib ) ;
4197      sel.setPolarizations( ip ) ;
4198      asky->setSelection( sel ) ;
4199      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
4200      const Vector<Float> Vtsys( sptsys ) ;
4201      tsysColsig.put( i, Vtsys ) ;
4202      asky->unsetSelection() ;
4203      sel.reset() ;
4204      sp = getFSCalibratedSpectra( sref, ssig, asky, ahot, acold, i ) ;
4205      sref->setSpectrum( sp, i ) ;
4206      tsysColref.put( i, Vtsys ) ;
4207    }
4208  }
4209
4210  // do folding if necessary
4211  Table sigtab = ssig->table() ;
4212  Table reftab = sref->table() ;
4213  ScalarColumn<uInt> sigifnoCol ;
4214  ScalarColumn<uInt> refifnoCol ;
4215  ScalarColumn<uInt> sigfidCol ;
4216  ScalarColumn<uInt> reffidCol ;
4217  Int nchan = (Int)ssig->nchan() ;
4218  sigifnoCol.attach( sigtab, "IFNO" ) ;
4219  refifnoCol.attach( reftab, "IFNO" ) ;
4220  sigfidCol.attach( sigtab, "FREQ_ID" ) ;
4221  reffidCol.attach( reftab, "FREQ_ID" ) ;
4222  Vector<uInt> sfids( sigfidCol.getColumn() ) ;
4223  Vector<uInt> rfids( reffidCol.getColumn() ) ;
4224  vector<uInt> sfids_unique ;
4225  vector<uInt> rfids_unique ;
4226  vector<uInt> sifno_unique ;
4227  vector<uInt> rifno_unique ;
4228  for ( uInt i = 0 ; i < sfids.nelements() ; i++ ) {
4229    if ( count( sfids_unique.begin(), sfids_unique.end(), sfids[i] ) == 0 ) {
4230      sfids_unique.push_back( sfids[i] ) ;
4231      sifno_unique.push_back( ssig->getIF( i ) ) ;
4232    }
4233    if ( count( rfids_unique.begin(), rfids_unique.end(),  rfids[i] ) == 0 ) {
4234      rfids_unique.push_back( rfids[i] ) ;
4235      rifno_unique.push_back( sref->getIF( i ) ) ;
4236    }
4237  }
4238  double refpix_sig, refval_sig, increment_sig ;
4239  double refpix_ref, refval_ref, increment_ref ;
4240  vector< CountedPtr<Scantable> > tmp( sfids_unique.size() ) ;
4241  for ( uInt i = 0 ; i < sfids_unique.size() ; i++ ) {
4242    ssig->frequencies().getEntry( refpix_sig, refval_sig, increment_sig, sfids_unique[i] ) ;
4243    sref->frequencies().getEntry( refpix_ref, refval_ref, increment_ref, rfids_unique[i] ) ;
4244    if ( refpix_sig == refpix_ref ) {
4245      double foffset = refval_ref - refval_sig ;
4246      int choffset = static_cast<int>(foffset/increment_sig) ;
4247      double doffset = foffset / increment_sig ;
4248      if ( abs(choffset) >= nchan ) {
4249        LogIO os( LogOrigin( "STMath", "cwcalfs", WHERE ) ) ;
4250        os << "FREQ_ID=[" << sfids_unique[i] << "," << rfids_unique[i] << "]: out-band frequency switching, no folding" << LogIO::POST ;
4251        os << "Just return signal data" << LogIO::POST ;
4252        //std::vector< CountedPtr<Scantable> > tabs ;
4253        //tabs.push_back( ssig ) ;
4254        //tabs.push_back( sref ) ;
4255        //out = merge( tabs ) ;
4256        tmp[i] = ssig ;
4257      }
4258      else {
4259        STSelector sel = STSelector() ;
4260        vector<int> v( 1, sifno_unique[i] ) ;
4261        sel.setIFs( v ) ;
4262        ssig->setSelection( sel ) ;
4263        sel.reset() ;
4264        v[0] = rifno_unique[i] ;
4265        sel.setIFs( v ) ;
4266        sref->setSelection( sel ) ;
4267        sel.reset() ;
4268        if ( antname.find( "APEX" ) != string::npos ) {
4269          tmp[i] = dofold( ssig, sref, 0.5*doffset, -0.5*doffset ) ;
4270          //tmp[i] = dofold( ssig, sref, doffset ) ;
4271        }
4272        else {
4273          tmp[i] = dofold( ssig, sref, doffset ) ;
4274        }
4275        ssig->unsetSelection() ;
4276        sref->unsetSelection() ;
4277      }
4278    }
4279  }
4280
4281  if ( tmp.size() > 1 ) {
4282    out = merge( tmp ) ;
4283  }
4284  else {
4285    out = tmp[0] ;
4286  }
4287
4288  // flux unit
4289  out->setFluxUnit( "K" ) ;
4290
4291  return out ;
4292}
4293
4294CountedPtr<Scantable> STMath::almacalfs( const CountedPtr<Scantable>& s )
4295{
4296  CountedPtr<Scantable> out ;
4297
4298  return out ;
4299}
4300
4301vector<float> STMath::getSpectrumFromTime( string reftime,
4302                                           CountedPtr<Scantable>& s,
4303                                           string mode )
4304{
4305  LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4306  vector<float> sp ;
4307
4308  if ( s->nrow() == 0 ) {
4309    os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4310    return sp ;
4311  }
4312  else if ( s->nrow() == 1 ) {
4313    //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4314    return s->getSpectrum( 0 ) ;
4315  }
4316  else {
4317    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4318    if ( mode == "before" ) {
4319      int id = -1 ;
4320      if ( idx[0] != -1 ) {
4321        id = idx[0] ;
4322      }
4323      else if ( idx[1] != -1 ) {
4324        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4325        id = idx[1] ;
4326      }
4327      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4328      sp = s->getSpectrum( id ) ;
4329    }
4330    else if ( mode == "after" ) {
4331      int id = -1 ;
4332      if ( idx[1] != -1 ) {
4333        id = idx[1] ;
4334      }
4335      else if ( idx[0] != -1 ) {
4336        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4337        id = idx[1] ;
4338      }
4339      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4340      sp = s->getSpectrum( id ) ;
4341    }
4342    else if ( mode == "nearest" ) {
4343      int id = -1 ;
4344      if ( idx[0] == -1 ) {
4345        id = idx[1] ;
4346      }
4347      else if ( idx[1] == -1 ) {
4348        id = idx[0] ;
4349      }
4350      else if ( idx[0] == idx[1] ) {
4351        id = idx[0] ;
4352      }
4353      else {
4354        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4355        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4356        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4357        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4358        double tref = getMJD( reftime ) ;
4359        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4360          id = idx[1] ;
4361        }
4362        else {
4363          id = idx[0] ;
4364        }
4365      }
4366      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4367      sp = s->getSpectrum( id ) ;     
4368    }
4369    else if ( mode == "linear" ) {
4370      if ( idx[0] == -1 ) {
4371        // use after
4372        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4373        int id = idx[1] ;
4374        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4375        sp = s->getSpectrum( id ) ;
4376      }
4377      else if ( idx[1] == -1 ) {
4378        // use before
4379        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4380        int id = idx[0] ;
4381        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4382        sp = s->getSpectrum( id ) ;
4383      }
4384      else if ( idx[0] == idx[1] ) {
4385        // use before
4386        //os << "No need to interporate." << LogIO::POST ;
4387        int id = idx[0] ;
4388        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4389        sp = s->getSpectrum( id ) ;
4390      }
4391      else {
4392        // do interpolation
4393        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4394        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4395        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4396        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4397        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4398        double tref = getMJD( reftime ) ;
4399        vector<float> sp0 = s->getSpectrum( idx[0] ) ;
4400        vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4401        for ( unsigned int i = 0 ; i < sp0.size() ; i++ ) {
4402          float v = ( sp1[i] - sp0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + sp0[i] ;
4403          sp.push_back( v ) ;
4404        }
4405      }
4406    }
4407    else {
4408      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4409    }
4410    return sp ;
4411  }
4412}
4413
4414double STMath::getMJD( string strtime )
4415{
4416  if ( strtime.find("/") == string::npos ) {
4417    // MJD time string
4418    return atof( strtime.c_str() ) ;
4419  }
4420  else {
4421    // string in YYYY/MM/DD/HH:MM:SS format
4422    uInt year = atoi( strtime.substr( 0, 4 ).c_str() ) ;
4423    uInt month = atoi( strtime.substr( 5, 2 ).c_str() ) ;
4424    uInt day = atoi( strtime.substr( 8, 2 ).c_str() ) ;
4425    uInt hour = atoi( strtime.substr( 11, 2 ).c_str() ) ;
4426    uInt minute = atoi( strtime.substr( 14, 2 ).c_str() ) ;
4427    uInt sec = atoi( strtime.substr( 17, 2 ).c_str() ) ;
4428    Time t( year, month, day, hour, minute, sec ) ;
4429    return t.modifiedJulianDay() ;
4430  }
4431}
4432
4433vector<int> STMath::getRowIdFromTime( string reftime, CountedPtr<Scantable> &s )
4434{
4435  double reft = getMJD( reftime ) ;
4436  double dtmin = 1.0e100 ;
4437  double dtmax = -1.0e100 ;
4438  vector<double> dt ;
4439  int just_before = -1 ;
4440  int just_after = -1 ;
4441  for ( int i = 0 ; i < s->nrow() ; i++ ) {
4442    dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
4443  }
4444  for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4445    if ( dt[i] > 0.0 ) {
4446      // after reftime
4447      if ( dt[i] < dtmin ) {
4448        just_after = i ;
4449        dtmin = dt[i] ;
4450      }
4451    }
4452    else if ( dt[i] < 0.0 ) {
4453      // before reftime
4454      if ( dt[i] > dtmax ) {
4455        just_before = i ;
4456        dtmax = dt[i] ;
4457      }
4458    }
4459    else {
4460      // just a reftime
4461      just_before = i ;
4462      just_after = i ;
4463      dtmax = 0 ;
4464      dtmin = 0 ;
4465      break ;
4466    }
4467  }
4468
4469  vector<int> v ;
4470  v.push_back( just_before ) ;
4471  v.push_back( just_after ) ;
4472
4473  return v ;
4474}
4475
4476vector<float> STMath::getTcalFromTime( string reftime,
4477                                       CountedPtr<Scantable>& s,
4478                                       string mode )
4479{
4480  LogIO os( LogOrigin( "STMath", "getTcalFromTime", WHERE ) ) ;
4481  vector<float> tcal ;
4482  STTcal tcalTable = s->tcal() ;
4483  String time ;
4484  Vector<Float> tcalval ;
4485  if ( s->nrow() == 0 ) {
4486    os << LogIO::SEVERE << "No row in the input scantable. Return empty tcal." << LogIO::POST ;
4487    return tcal ;
4488  }
4489  else if ( s->nrow() == 1 ) {
4490    uInt tcalid = s->getTcalId( 0 ) ;
4491    //os << "use row " << 0 << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4492    tcalTable.getEntry( time, tcalval, tcalid ) ;
4493    tcalval.tovector( tcal ) ;
4494    return tcal ;
4495  }
4496  else {
4497    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4498    if ( mode == "before" ) {
4499      int id = -1 ;
4500      if ( idx[0] != -1 ) {
4501        id = idx[0] ;
4502      }
4503      else if ( idx[1] != -1 ) {
4504        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4505        id = idx[1] ;
4506      }
4507      uInt tcalid = s->getTcalId( id ) ;
4508      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4509      tcalTable.getEntry( time, tcalval, tcalid ) ;
4510      tcalval.tovector( tcal ) ;
4511    }
4512    else if ( mode == "after" ) {
4513      int id = -1 ;
4514      if ( idx[1] != -1 ) {
4515        id = idx[1] ;
4516      }
4517      else if ( idx[0] != -1 ) {
4518        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4519        id = idx[1] ;
4520      }
4521      uInt tcalid = s->getTcalId( id ) ;
4522      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4523      tcalTable.getEntry( time, tcalval, tcalid ) ;
4524      tcalval.tovector( tcal ) ;
4525    }
4526    else if ( mode == "nearest" ) {
4527      int id = -1 ;
4528      if ( idx[0] == -1 ) {
4529        id = idx[1] ;
4530      }
4531      else if ( idx[1] == -1 ) {
4532        id = idx[0] ;
4533      }
4534      else if ( idx[0] == idx[1] ) {
4535        id = idx[0] ;
4536      }
4537      else {
4538        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4539        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4540        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4541        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4542        double tref = getMJD( reftime ) ;
4543        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4544          id = idx[1] ;
4545        }
4546        else {
4547          id = idx[0] ;
4548        }
4549      }
4550      uInt tcalid = s->getTcalId( id ) ;
4551      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4552      tcalTable.getEntry( time, tcalval, tcalid ) ;
4553      tcalval.tovector( tcal ) ;
4554    }
4555    else if ( mode == "linear" ) {
4556      if ( idx[0] == -1 ) {
4557        // use after
4558        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4559        int id = idx[1] ;
4560        uInt tcalid = s->getTcalId( id ) ;
4561        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4562        tcalTable.getEntry( time, tcalval, tcalid ) ;
4563        tcalval.tovector( tcal ) ;
4564      }
4565      else if ( idx[1] == -1 ) {
4566        // use before
4567        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4568        int id = idx[0] ;
4569        uInt tcalid = s->getTcalId( id ) ;
4570        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4571        tcalTable.getEntry( time, tcalval, tcalid ) ;
4572        tcalval.tovector( tcal ) ;
4573      }
4574      else if ( idx[0] == idx[1] ) {
4575        // use before
4576        //os << "No need to interporate." << LogIO::POST ;
4577        int id = idx[0] ;
4578        uInt tcalid = s->getTcalId( id ) ;
4579        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4580        tcalTable.getEntry( time, tcalval, tcalid ) ;
4581        tcalval.tovector( tcal ) ;
4582      }
4583      else {
4584        // do interpolation
4585        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4586        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4587        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4588        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4589        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4590        double tref = getMJD( reftime ) ;
4591        vector<float> tcal0 ;
4592        vector<float> tcal1 ;
4593        uInt tcalid0 = s->getTcalId( idx[0] ) ;
4594        uInt tcalid1 = s->getTcalId( idx[1] ) ;
4595        tcalTable.getEntry( time, tcalval, tcalid0 ) ;
4596        tcalval.tovector( tcal0 ) ;
4597        tcalTable.getEntry( time, tcalval, tcalid1 ) ;
4598        tcalval.tovector( tcal1 ) ;       
4599        for ( unsigned int i = 0 ; i < tcal0.size() ; i++ ) {
4600          float v = ( tcal1[i] - tcal0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tcal0[i] ;
4601          tcal.push_back( v ) ;
4602        }
4603      }
4604    }
4605    else {
4606      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4607    }
4608    return tcal ;
4609  }
4610}
4611
4612vector<float> STMath::getTsysFromTime( string reftime,
4613                                       CountedPtr<Scantable>& s,
4614                                       string mode )
4615{
4616  LogIO os( LogOrigin( "STMath", "getTsysFromTime", WHERE ) ) ;
4617  ArrayColumn<Float> tsysCol ;
4618  tsysCol.attach( s->table(), "TSYS" ) ;
4619  vector<float> tsys ;
4620  String time ;
4621  Vector<Float> tsysval ;
4622  if ( s->nrow() == 0 ) {
4623    os << LogIO::SEVERE << "No row in the input scantable. Return empty tsys." << LogIO::POST ;
4624    return tsys ;
4625  }
4626  else if ( s->nrow() == 1 ) {
4627    //os << "use row " << 0 << LogIO::POST ;
4628    tsysval = tsysCol( 0 ) ;
4629    tsysval.tovector( tsys ) ;
4630    return tsys ;
4631  }
4632  else {
4633    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4634    if ( mode == "before" ) {
4635      int id = -1 ;
4636      if ( idx[0] != -1 ) {
4637        id = idx[0] ;
4638      }
4639      else if ( idx[1] != -1 ) {
4640        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4641        id = idx[1] ;
4642      }
4643      //os << "use row " << id << LogIO::POST ;
4644      tsysval = tsysCol( id ) ;
4645      tsysval.tovector( tsys ) ;
4646    }
4647    else if ( mode == "after" ) {
4648      int id = -1 ;
4649      if ( idx[1] != -1 ) {
4650        id = idx[1] ;
4651      }
4652      else if ( idx[0] != -1 ) {
4653        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4654        id = idx[1] ;
4655      }
4656      //os << "use row " << id << LogIO::POST ;
4657      tsysval = tsysCol( id ) ;
4658      tsysval.tovector( tsys ) ;
4659    }
4660    else if ( mode == "nearest" ) {
4661      int id = -1 ;
4662      if ( idx[0] == -1 ) {
4663        id = idx[1] ;
4664      }
4665      else if ( idx[1] == -1 ) {
4666        id = idx[0] ;
4667      }
4668      else if ( idx[0] == idx[1] ) {
4669        id = idx[0] ;
4670      }
4671      else {
4672        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4673        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4674        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4675        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4676        double tref = getMJD( reftime ) ;
4677        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4678          id = idx[1] ;
4679        }
4680        else {
4681          id = idx[0] ;
4682        }
4683      }
4684      //os << "use row " << id << LogIO::POST ;
4685      tsysval = tsysCol( id ) ;
4686      tsysval.tovector( tsys ) ;
4687    }
4688    else if ( mode == "linear" ) {
4689      if ( idx[0] == -1 ) {
4690        // use after
4691        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4692        int id = idx[1] ;
4693        //os << "use row " << id << LogIO::POST ;
4694        tsysval = tsysCol( id ) ;
4695        tsysval.tovector( tsys ) ;
4696      }
4697      else if ( idx[1] == -1 ) {
4698        // use before
4699        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4700        int id = idx[0] ;
4701        //os << "use row " << id << LogIO::POST ;
4702        tsysval = tsysCol( id ) ;
4703        tsysval.tovector( tsys ) ;
4704      }
4705      else if ( idx[0] == idx[1] ) {
4706        // use before
4707        //os << "No need to interporate." << LogIO::POST ;
4708        int id = idx[0] ;
4709        //os << "use row " << id << LogIO::POST ;
4710        tsysval = tsysCol( id ) ;
4711        tsysval.tovector( tsys ) ;
4712      }
4713      else {
4714        // do interpolation
4715        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4716        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4717        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4718        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4719        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4720        double tref = getMJD( reftime ) ;
4721        vector<float> tsys0 ;
4722        vector<float> tsys1 ;
4723        tsysval = tsysCol( idx[0] ) ;
4724        tsysval.tovector( tsys0 ) ;
4725        tsysval = tsysCol( idx[1] ) ;
4726        tsysval.tovector( tsys1 ) ;       
4727        for ( unsigned int i = 0 ; i < tsys0.size() ; i++ ) {
4728          float v = ( tsys1[i] - tsys0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tsys0[i] ;
4729          tsys.push_back( v ) ;
4730        }
4731      }
4732    }
4733    else {
4734      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4735    }
4736    return tsys ;
4737  }
4738}
4739
4740vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4741                                            CountedPtr<Scantable>& off,
4742                                            CountedPtr<Scantable>& sky,
4743                                            CountedPtr<Scantable>& hot,
4744                                            CountedPtr<Scantable>& cold,
4745                                            int index,
4746                                            string antname )
4747{
4748  string reftime = on->getTime( index ) ;
4749  vector<int> ii( 1, on->getIF( index ) ) ;
4750  vector<int> ib( 1, on->getBeam( index ) ) ;
4751  vector<int> ip( 1, on->getPol( index ) ) ;
4752  vector<int> ic( 1, on->getScan( index ) ) ;
4753  STSelector sel = STSelector() ;
4754  sel.setIFs( ii ) ;
4755  sel.setBeams( ib ) ;
4756  sel.setPolarizations( ip ) ;
4757  sky->setSelection( sel ) ;
4758  hot->setSelection( sel ) ;
4759  //cold->setSelection( sel ) ;
4760  off->setSelection( sel ) ;
4761  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4762  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4763  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4764  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4765  vector<float> spec = on->getSpectrum( index ) ;
4766  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4767  vector<float> sp( tcal.size() ) ;
4768  if ( antname.find( "APEX" ) != string::npos ) {
4769    // using gain array
4770    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4771      float v = ( ( spec[j] - spoff[j] ) / spoff[j] )
4772        * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4773      sp[j] = v ;
4774    }
4775  }
4776  else {
4777    // Chopper-Wheel calibration (Ulich & Haas 1976)
4778    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4779      float v = ( spec[j] - spoff[j] ) / ( sphot[j] - spsky[j] ) * tcal[j] ;
4780      sp[j] = v ;
4781    }
4782  }
4783  sel.reset() ;
4784  sky->unsetSelection() ;
4785  hot->unsetSelection() ;
4786  //cold->unsetSelection() ;
4787  off->unsetSelection() ;
4788
4789  return sp ;
4790}
4791
4792vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4793                                            CountedPtr<Scantable>& off,
4794                                            int index )
4795{
4796  string reftime = on->getTime( index ) ;
4797  vector<int> ii( 1, on->getIF( index ) ) ;
4798  vector<int> ib( 1, on->getBeam( index ) ) ;
4799  vector<int> ip( 1, on->getPol( index ) ) ;
4800  vector<int> ic( 1, on->getScan( index ) ) ;
4801  STSelector sel = STSelector() ;
4802  sel.setIFs( ii ) ;
4803  sel.setBeams( ib ) ;
4804  sel.setPolarizations( ip ) ;
4805  off->setSelection( sel ) ;
4806  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4807  vector<float> spec = on->getSpectrum( index ) ;
4808  //vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4809  //vector<float> tsys = on->getTsysVec( index ) ;
4810  ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
4811  Vector<Float> tsys = tsysCol( index ) ;
4812  vector<float> sp( spec.size() ) ;
4813  // ALMA Calibration
4814  //
4815  // Ta* = Tsys * ( ON - OFF ) / OFF
4816  //
4817  // 2010/01/07 Takeshi Nakazato
4818  unsigned int tsyssize = tsys.nelements() ;
4819  unsigned int spsize = sp.size() ;
4820  for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
4821    float tscale = 0.0 ;
4822    if ( tsyssize == spsize )
4823      tscale = tsys[j] ;
4824    else
4825      tscale = tsys[0] ;
4826    float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
4827    sp[j] = v ;
4828  }
4829  sel.reset() ;
4830  off->unsetSelection() ;
4831
4832  return sp ;
4833}
4834
4835vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4836                                              CountedPtr<Scantable>& ref,
4837                                              CountedPtr<Scantable>& sky,
4838                                              CountedPtr<Scantable>& hot,
4839                                              CountedPtr<Scantable>& cold,
4840                                              int index )
4841{
4842  string reftime = sig->getTime( index ) ;
4843  vector<int> ii( 1, sig->getIF( index ) ) ;
4844  vector<int> ib( 1, sig->getBeam( index ) ) ;
4845  vector<int> ip( 1, sig->getPol( index ) ) ;
4846  vector<int> ic( 1, sig->getScan( index ) ) ;
4847  STSelector sel = STSelector() ;
4848  sel.setIFs( ii ) ;
4849  sel.setBeams( ib ) ;
4850  sel.setPolarizations( ip ) ;
4851  sky->setSelection( sel ) ;
4852  hot->setSelection( sel ) ;
4853  //cold->setSelection( sel ) ;
4854  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4855  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4856  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4857  vector<float> spref = ref->getSpectrum( index ) ;
4858  vector<float> spsig = sig->getSpectrum( index ) ;
4859  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4860  vector<float> sp( tcal.size() ) ;
4861  for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4862    float v = tcal[j] * spsky[j] / ( sphot[j] - spsky[j] ) * ( spsig[j] - spref[j] ) / spref[j] ;
4863    sp[j] = v ;
4864  }
4865  sel.reset() ;
4866  sky->unsetSelection() ;
4867  hot->unsetSelection() ;
4868  //cold->unsetSelection() ;
4869
4870  return sp ;
4871}
4872
4873vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4874                                              CountedPtr<Scantable>& ref,
4875                                              vector< CountedPtr<Scantable> >& sky,
4876                                              vector< CountedPtr<Scantable> >& hot,
4877                                              vector< CountedPtr<Scantable> >& cold,
4878                                              int index )
4879{
4880  string reftime = sig->getTime( index ) ;
4881  vector<int> ii( 1, sig->getIF( index ) ) ;
4882  vector<int> ib( 1, sig->getBeam( index ) ) ;
4883  vector<int> ip( 1, sig->getPol( index ) ) ;
4884  vector<int> ic( 1, sig->getScan( index ) ) ;
4885  STSelector sel = STSelector() ;
4886  sel.setIFs( ii ) ;
4887  sel.setBeams( ib ) ;
4888  sel.setPolarizations( ip ) ;
4889  sky[0]->setSelection( sel ) ;
4890  hot[0]->setSelection( sel ) ;
4891  //cold[0]->setSelection( sel ) ;
4892  vector<float> spskys = getSpectrumFromTime( reftime, sky[0], "linear" ) ;
4893  vector<float> sphots = getSpectrumFromTime( reftime, hot[0], "linear" ) ;
4894  //vector<float> spcolds = getSpectrumFromTime( reftime, cold[0], "linear" ) ;
4895  vector<float> tcals = getTcalFromTime( reftime, sky[0], "linear" ) ;
4896  sel.reset() ;
4897  ii[0] = ref->getIF( index ) ;
4898  sel.setIFs( ii ) ;
4899  sel.setBeams( ib ) ;
4900  sel.setPolarizations( ip ) ;
4901  sky[1]->setSelection( sel ) ;
4902  hot[1]->setSelection( sel ) ;
4903  //cold[1]->setSelection( sel ) ;
4904  vector<float> spskyr = getSpectrumFromTime( reftime, sky[1], "linear" ) ;
4905  vector<float> sphotr = getSpectrumFromTime( reftime, hot[1], "linear" ) ;
4906  //vector<float> spcoldr = getSpectrumFromTime( reftime, cold[1], "linear" ) ;
4907  vector<float> tcalr = getTcalFromTime( reftime, sky[1], "linear" ) ; 
4908  vector<float> spref = ref->getSpectrum( index ) ;
4909  vector<float> spsig = sig->getSpectrum( index ) ;
4910  vector<float> sp( tcals.size() ) ;
4911  for ( unsigned int j = 0 ; j < tcals.size() ; j++ ) {
4912    float v = tcals[j] * spsig[j] / ( sphots[j] - spskys[j] ) - tcalr[j] * spref[j] / ( sphotr[j] - spskyr[j] ) ;
4913    sp[j] = v ;
4914  }
4915  sel.reset() ;
4916  sky[0]->unsetSelection() ;
4917  hot[0]->unsetSelection() ;
4918  //cold[0]->unsetSelection() ;
4919  sky[1]->unsetSelection() ;
4920  hot[1]->unsetSelection() ;
4921  //cold[1]->unsetSelection() ;
4922
4923  return sp ;
4924}
Note: See TracBrowser for help on using the repository browser.