source: branches/parallel/src/STMath.cpp @ 2267

Last change on this file since 2267 was 2267, checked in by Kana Sugimoto, 13 years ago

New Development: No

JIRA Issue: No (speedup)

Ready for Test: Yes

Interface Changes: No

What Interface Changed:

Test Programs: CASA: a unit tests of task, sdcoadd

Put in Release Notes: No

Module(s): asapmath.merge and sdcoadd (in CASA)

Description:

Reduced redundant call to addEntry and getEntry functions which are slow.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 167.3 KB
Line 
1//
2// C++ Implementation: STMath
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2006
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12
13#include <casa/iomanip.h>
14#include <casa/Exceptions/Error.h>
15#include <casa/Containers/Block.h>
16#include <casa/BasicSL/String.h>
17#include <casa/Arrays/MaskArrLogi.h>
18#include <casa/Arrays/MaskArrMath.h>
19#include <casa/Arrays/ArrayLogical.h>
20#include <casa/Arrays/ArrayMath.h>
21#include <casa/Arrays/Slice.h>
22#include <casa/Arrays/Slicer.h>
23#include <casa/Containers/RecordField.h>
24#include <tables/Tables/TableRow.h>
25#include <tables/Tables/TableVector.h>
26#include <tables/Tables/TabVecMath.h>
27#include <tables/Tables/ExprNode.h>
28#include <tables/Tables/TableRecord.h>
29#include <tables/Tables/TableParse.h>
30#include <tables/Tables/ReadAsciiTable.h>
31#include <tables/Tables/TableIter.h>
32#include <tables/Tables/TableCopy.h>
33#include <scimath/Mathematics/FFTServer.h>
34
35#include <lattices/Lattices/LatticeUtilities.h>
36
37#include <coordinates/Coordinates/SpectralCoordinate.h>
38#include <coordinates/Coordinates/CoordinateSystem.h>
39#include <coordinates/Coordinates/CoordinateUtil.h>
40#include <coordinates/Coordinates/FrequencyAligner.h>
41
42#include <scimath/Mathematics/VectorKernel.h>
43#include <scimath/Mathematics/Convolver.h>
44#include <scimath/Functionals/Polynomial.h>
45
46#include <atnf/PKSIO/SrcType.h>
47
48#include <casa/Logging/LogIO.h>
49#include <sstream>
50
51#include "MathUtils.h"
52#include "RowAccumulator.h"
53#include "STAttr.h"
54#include "STSelector.h"
55
56#include "STMath.h"
57using namespace casa;
58
59using namespace asap;
60
61// tolerance for direction comparison (rad)
62#define TOL_OTF    1.0e-15
63#define TOL_POINT  2.9088821e-4  // 1 arcmin
64
65STMath::STMath(bool insitu) :
66  insitu_(insitu)
67{
68}
69
70
71STMath::~STMath()
72{
73}
74
75CountedPtr<Scantable>
76STMath::average( const std::vector<CountedPtr<Scantable> >& in,
77                 const std::vector<bool>& mask,
78                 const std::string& weight,
79                 const std::string& avmode)
80{
81  LogIO os( LogOrigin( "STMath", "average()", WHERE ) ) ;
82  if ( avmode == "SCAN" && in.size() != 1 )
83    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
84                    "Use merge first."));
85  WeightType wtype = stringToWeight(weight);
86
87  // check if OTF observation
88  String obstype = in[0]->getHeader().obstype ;
89  Double tol = 0.0 ;
90  if ( (obstype.find( "OTF" ) != String::npos) || (obstype.find( "OBSERVE_TARGET" ) != String::npos) ) {
91    tol = TOL_OTF ;
92  }
93  else {
94    tol = TOL_POINT ;
95  }
96
97  // output
98  // clone as this is non insitu
99  bool insitu = insitu_;
100  setInsitu(false);
101  CountedPtr< Scantable > out = getScantable(in[0], true);
102  setInsitu(insitu);
103  std::vector<CountedPtr<Scantable> >::const_iterator stit = in.begin();
104  ++stit;
105  while ( stit != in.end() ) {
106    out->appendToHistoryTable((*stit)->history());
107    ++stit;
108  }
109
110  Table& tout = out->table();
111
112  /// @todo check if all scantables are conformant
113
114  ArrayColumn<Float> specColOut(tout,"SPECTRA");
115  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
116  ArrayColumn<Float> tsysColOut(tout,"TSYS");
117  ScalarColumn<Double> mjdColOut(tout,"TIME");
118  ScalarColumn<Double> intColOut(tout,"INTERVAL");
119  ScalarColumn<uInt> cycColOut(tout,"CYCLENO");
120  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
121
122  // set up the output table rows. These are based on the structure of the
123  // FIRST scantable in the vector
124  const Table& baset = in[0]->table();
125
126  Block<String> cols(3);
127  cols[0] = String("BEAMNO");
128  cols[1] = String("IFNO");
129  cols[2] = String("POLNO");
130  if ( avmode == "SOURCE" ) {
131    cols.resize(4);
132    cols[3] = String("SRCNAME");
133  }
134  if ( avmode == "SCAN"  && in.size() == 1) {
135    //cols.resize(4);
136    //cols[3] = String("SCANNO");
137    cols.resize(5);
138    cols[3] = String("SRCNAME");
139    cols[4] = String("SCANNO");
140  }
141  uInt outrowCount = 0;
142  TableIterator iter(baset, cols);
143//   int count = 0 ;
144  while (!iter.pastEnd()) {
145    Table subt = iter.table();
146//     // copy the first row of this selection into the new table
147//     tout.addRow();
148//     TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
149//     // re-index to 0
150//     if ( avmode != "SCAN" && avmode != "SOURCE" ) {
151//       scanColOut.put(outrowCount, uInt(0));
152//     }
153//     ++outrowCount;
154    MDirection::ScalarColumn dircol ;
155    dircol.attach( subt, "DIRECTION" ) ;
156    Int length = subt.nrow() ;
157    vector< Vector<Double> > dirs ;
158    vector<int> indexes ;
159    for ( Int i = 0 ; i < length ; i++ ) {
160      Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
161      //os << << count++ << ": " ;
162      //os << "[" << t[0] << "," << t[1] << "]" << LogIO::POST ;
163      bool adddir = true ;
164      for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
165        //if ( allTrue( t == dirs[j] ) ) {
166        Double dx = t[0] - dirs[j][0] ;
167        Double dy = t[1] - dirs[j][1] ;
168        Double dd = sqrt( dx * dx + dy * dy ) ;
169        //if ( allNearAbs( t, dirs[j], tol ) ) {
170        if ( dd <= tol ) {
171          adddir = false ;
172          break ;
173        }
174      }
175      if ( adddir ) {
176        dirs.push_back( t ) ;
177        indexes.push_back( i ) ;
178      }
179    }
180    uInt rowNum = dirs.size() ;
181    tout.addRow( rowNum ) ;
182    for ( uInt i = 0 ; i < rowNum ; i++ ) {
183      TableCopy::copyRows( tout, subt, outrowCount+i, indexes[i], 1 ) ;
184      // re-index to 0
185      if ( avmode != "SCAN" && avmode != "SOURCE" ) {
186        scanColOut.put(outrowCount+i, uInt(0));
187      }       
188    }
189    outrowCount += rowNum ;
190    ++iter;
191  }
192  RowAccumulator acc(wtype);
193  Vector<Bool> cmask(mask);
194  acc.setUserMask(cmask);
195  ROTableRow row(tout);
196  ROArrayColumn<Float> specCol, tsysCol;
197  ROArrayColumn<uChar> flagCol;
198  ROScalarColumn<Double> mjdCol, intCol;
199  ROScalarColumn<Int> scanIDCol;
200
201  Vector<uInt> rowstodelete;
202
203  for (uInt i=0; i < tout.nrow(); ++i) {
204    for ( int j=0; j < int(in.size()); ++j ) {
205      const Table& tin = in[j]->table();
206      const TableRecord& rec = row.get(i);
207      ROScalarColumn<Double> tmp(tin, "TIME");
208      Double td;tmp.get(0,td);
209      Table basesubt = tin( tin.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
210                         && tin.col("IFNO") == Int(rec.asuInt("IFNO"))
211                         && tin.col("POLNO") == Int(rec.asuInt("POLNO")) );
212      Table subt;
213      if ( avmode == "SOURCE") {
214        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME"));
215      } else if (avmode == "SCAN") {
216        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME")
217                      && basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) );
218      } else {
219        subt = basesubt;
220      }
221
222      vector<uInt> removeRows ;
223      uInt nrsubt = subt.nrow() ;
224      for ( uInt irow = 0 ; irow < nrsubt ; irow++ ) {
225        //if ( !allTrue((subt.col("DIRECTION").getArrayDouble(TableExprId(irow)))==rec.asArrayDouble("DIRECTION")) ) {
226        Vector<Double> x0 = (subt.col("DIRECTION").getArrayDouble(TableExprId(irow))) ;
227        Vector<Double> x1 = rec.asArrayDouble("DIRECTION") ;
228        double dx = x0[0] - x1[0] ;
229        double dy = x0[0] - x1[0] ;
230        Double dd = sqrt( dx * dx + dy * dy ) ;
231        //if ( !allNearAbs((subt.col("DIRECTION").getArrayDouble(TableExprId(irow))), rec.asArrayDouble("DIRECTION"), tol ) ) {
232        if ( dd > tol ) {
233          removeRows.push_back( irow ) ;
234        }
235      }
236      if ( removeRows.size() != 0 ) {
237        subt.removeRow( removeRows ) ;
238      }
239     
240      if ( nrsubt == removeRows.size() )
241        throw(AipsError("Averaging data is empty.")) ;
242
243      specCol.attach(subt,"SPECTRA");
244      flagCol.attach(subt,"FLAGTRA");
245      tsysCol.attach(subt,"TSYS");
246      intCol.attach(subt,"INTERVAL");
247      mjdCol.attach(subt,"TIME");
248      Vector<Float> spec,tsys;
249      Vector<uChar> flag;
250      Double inter,time;
251      for (uInt k = 0; k < subt.nrow(); ++k ) {
252        flagCol.get(k, flag);
253        Vector<Bool> bflag(flag.shape());
254        convertArray(bflag, flag);
255        /*
256        if ( allEQ(bflag, True) ) {
257        continue;//don't accumulate
258        }
259        */
260        specCol.get(k, spec);
261        tsysCol.get(k, tsys);
262        intCol.get(k, inter);
263        mjdCol.get(k, time);
264        // spectrum has to be added last to enable weighting by the other values
265        acc.add(spec, !bflag, tsys, inter, time);
266      }
267
268      // If there exists a channel at which all the input spectra are masked,
269      // spec has 'nan' values for that channel and it may affect the following
270      // processes. To avoid this, replacing 'nan' values in spec with
271      // weighted-mean of all spectra in the following line.
272      // (done for CAS-2776, 2011/04/07 by Wataru Kawasaki)
273      acc.replaceNaN();
274    }
275    const Vector<Bool>& msk = acc.getMask();
276    if ( allEQ(msk, False) ) {
277      uint n = rowstodelete.nelements();
278      rowstodelete.resize(n+1, True);
279      rowstodelete[n] = i;
280      continue;
281    }
282    //write out
283    if (acc.state()) {
284      Vector<uChar> flg(msk.shape());
285      convertArray(flg, !msk);
286      for (uInt k = 0; k < flg.nelements(); ++k) {
287        uChar userFlag = 1 << 7;
288        if (msk[k]==True) userFlag = 0 << 7;
289        flg(k) = userFlag;
290      }
291
292      flagColOut.put(i, flg);
293      specColOut.put(i, acc.getSpectrum());
294      tsysColOut.put(i, acc.getTsys());
295      intColOut.put(i, acc.getInterval());
296      mjdColOut.put(i, acc.getTime());
297      // we should only have one cycle now -> reset it to be 0
298      // frequency switched data has different CYCLENO for different IFNO
299      // which requires resetting this value
300      cycColOut.put(i, uInt(0));
301    } else {
302      ostringstream oss;
303      oss << "For output row="<<i<<", all input rows of data are flagged. no averaging" << endl;
304      pushLog(String(oss));
305    }
306    acc.reset();
307  }
308
309  if (rowstodelete.nelements() > 0) {
310    os << rowstodelete << LogIO::POST ;
311    tout.removeRow(rowstodelete);
312    if (tout.nrow() == 0) {
313      throw(AipsError("Can't average fully flagged data."));
314    }
315  }
316  return out;
317}
318
319CountedPtr< Scantable >
320  STMath::averageChannel( const CountedPtr < Scantable > & in,
321                          const std::string & mode,
322                          const std::string& avmode )
323{
324  // check if OTF observation
325  String obstype = in->getHeader().obstype ;
326  Double tol = 0.0 ;
327  if ( obstype.find( "OTF" ) != String::npos ) {
328    tol = TOL_OTF ;
329  }
330  else {
331    tol = TOL_POINT ;
332  }
333
334  // clone as this is non insitu
335  bool insitu = insitu_;
336  setInsitu(false);
337  CountedPtr< Scantable > out = getScantable(in, true);
338  setInsitu(insitu);
339  Table& tout = out->table();
340  ArrayColumn<Float> specColOut(tout,"SPECTRA");
341  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
342  ArrayColumn<Float> tsysColOut(tout,"TSYS");
343  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
344  ScalarColumn<Double> intColOut(tout, "INTERVAL");
345  Table tmp = in->table().sort("BEAMNO");
346  Block<String> cols(3);
347  cols[0] = String("BEAMNO");
348  cols[1] = String("IFNO");
349  cols[2] = String("POLNO");
350  if ( avmode == "SCAN") {
351    cols.resize(4);
352    cols[3] = String("SCANNO");
353  }
354  uInt outrowCount = 0;
355  uChar userflag = 1 << 7;
356  TableIterator iter(tmp, cols);
357  while (!iter.pastEnd()) {
358    Table subt = iter.table();
359    ROArrayColumn<Float> specCol, tsysCol;
360    ROArrayColumn<uChar> flagCol;
361    ROScalarColumn<Double> intCol(subt, "INTERVAL");
362    specCol.attach(subt,"SPECTRA");
363    flagCol.attach(subt,"FLAGTRA");
364    tsysCol.attach(subt,"TSYS");
365//     tout.addRow();
366//     TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
367//     if ( avmode != "SCAN") {
368//       scanColOut.put(outrowCount, uInt(0));
369//     }
370//     Vector<Float> tmp;
371//     specCol.get(0, tmp);
372//     uInt nchan = tmp.nelements();
373//     // have to do channel by channel here as MaskedArrMath
374//     // doesn't have partialMedians
375//     Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
376//     Vector<Float> outspec(nchan);
377//     Vector<uChar> outflag(nchan,0);
378//     Vector<Float> outtsys(1);/// @fixme when tsys is channel based
379//     for (uInt i=0; i<nchan; ++i) {
380//       Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
381//       MaskedArray<Float> ma = maskedArray(specs,flags);
382//       outspec[i] = median(ma);
383//       if ( allEQ(ma.getMask(), False) )
384//         outflag[i] = userflag;// flag data
385//     }
386//     outtsys[0] = median(tsysCol.getColumn());
387//     specColOut.put(outrowCount, outspec);
388//     flagColOut.put(outrowCount, outflag);
389//     tsysColOut.put(outrowCount, outtsys);
390//     Double intsum = sum(intCol.getColumn());
391//     intColOut.put(outrowCount, intsum);
392//     ++outrowCount;
393//     ++iter;
394    MDirection::ScalarColumn dircol ;
395    dircol.attach( subt, "DIRECTION" ) ;
396    Int length = subt.nrow() ;
397    vector< Vector<Double> > dirs ;
398    vector<int> indexes ;
399    for ( Int i = 0 ; i < length ; i++ ) {
400      Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
401      bool adddir = true ;
402      for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
403        //if ( allTrue( t == dirs[j] ) ) {
404        Double dx = t[0] - dirs[j][0] ;
405        Double dy = t[1] - dirs[j][1] ;
406        Double dd = sqrt( dx * dx + dy * dy ) ;
407        //if ( allNearAbs( t, dirs[j], tol ) ) {
408        if ( dd <= tol ) {
409          adddir = false ;
410          break ;
411        }
412      }
413      if ( adddir ) {
414        dirs.push_back( t ) ;
415        indexes.push_back( i ) ;
416      }
417    }
418    uInt rowNum = dirs.size() ;
419    tout.addRow( rowNum );
420    for ( uInt i = 0 ; i < rowNum ; i++ ) {
421      TableCopy::copyRows(tout, subt, outrowCount+i, indexes[i], 1) ;
422      if ( avmode != "SCAN") {
423        //scanColOut.put(outrowCount+i, uInt(0));
424      }
425    }
426    MDirection::ScalarColumn dircolOut ;
427    dircolOut.attach( tout, "DIRECTION" ) ;
428    for ( uInt irow = 0 ; irow < rowNum ; irow++ ) {
429      Vector<Double> t = dircolOut(outrowCount+irow).getAngle(Unit(String("rad"))).getValue() ;
430      Vector<Float> tmp;
431      specCol.get(0, tmp);
432      uInt nchan = tmp.nelements();
433      // have to do channel by channel here as MaskedArrMath
434      // doesn't have partialMedians
435      Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
436      // mask spectra for different DIRECTION
437      for ( uInt jrow = 0 ; jrow < subt.nrow() ; jrow++ ) {
438        Vector<Double> direction = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
439        //if ( t[0] != direction[0] || t[1] != direction[1] ) {
440        Double dx = t[0] - direction[0] ;
441        Double dy = t[1] - direction[1] ;
442        Double dd = sqrt( dx * dx + dy * dy ) ;
443        //if ( !allNearAbs( t, direction, tol ) ) {
444        if ( dd > tol ) {
445          flags[jrow] = userflag ;
446        }
447      }
448      Vector<Float> outspec(nchan);
449      Vector<uChar> outflag(nchan,0);
450      Vector<Float> outtsys(1);/// @fixme when tsys is channel based
451      for (uInt i=0; i<nchan; ++i) {
452        Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
453        MaskedArray<Float> ma = maskedArray(specs,flags);
454        outspec[i] = median(ma);
455        if ( allEQ(ma.getMask(), False) )
456          outflag[i] = userflag;// flag data
457      }
458      outtsys[0] = median(tsysCol.getColumn());
459      specColOut.put(outrowCount+irow, outspec);
460      flagColOut.put(outrowCount+irow, outflag);
461      tsysColOut.put(outrowCount+irow, outtsys);
462      Vector<Double> integ = intCol.getColumn() ;
463      MaskedArray<Double> mi = maskedArray( integ, flags ) ;
464      Double intsum = sum(mi);
465      intColOut.put(outrowCount+irow, intsum);
466    }
467    outrowCount += rowNum ;
468    ++iter;
469  }
470  return out;
471}
472
473CountedPtr< Scantable > STMath::getScantable(const CountedPtr< Scantable >& in,
474                                             bool droprows)
475{
476  if (insitu_) {
477    return in;
478  }
479  else {
480    // clone
481    return CountedPtr<Scantable>(new Scantable(*in, Bool(droprows)));
482  }
483}
484
485CountedPtr< Scantable > STMath::unaryOperate( const CountedPtr< Scantable >& in,
486                                              float val,
487                                              const std::string& mode,
488                                              bool tsys )
489{
490  CountedPtr< Scantable > out = getScantable(in, false);
491  Table& tab = out->table();
492  ArrayColumn<Float> specCol(tab,"SPECTRA");
493  ArrayColumn<Float> tsysCol(tab,"TSYS");
494  if (mode=="DIV") val = 1.0/val ;
495  else if (mode=="SUB") val *= -1.0 ;
496  for (uInt i=0; i<tab.nrow(); ++i) {
497    Vector<Float> spec;
498    Vector<Float> ts;
499    specCol.get(i, spec);
500    tsysCol.get(i, ts);
501    if (mode == "MUL" || mode == "DIV") {
502      //if (mode == "DIV") val = 1.0/val;
503      spec *= val;
504      specCol.put(i, spec);
505      if ( tsys ) {
506        ts *= val;
507        tsysCol.put(i, ts);
508      }
509    } else if ( mode == "ADD"  || mode == "SUB") {
510      //if (mode == "SUB") val *= -1.0;
511      spec += val;
512      specCol.put(i, spec);
513      if ( tsys ) {
514        ts += val;
515        tsysCol.put(i, ts);
516      }
517    }
518  }
519  return out;
520}
521
522CountedPtr< Scantable > STMath::arrayOperate( const CountedPtr< Scantable >& in,
523                                              const std::vector<float> val,
524                                              const std::string& mode,
525                                              const std::string& opmode,
526                                              bool tsys )
527{
528  CountedPtr< Scantable > out ;
529  if ( opmode == "channel" ) {
530    out = arrayOperateChannel( in, val, mode, tsys ) ;
531  }
532  else if ( opmode == "row" ) {
533    out = arrayOperateRow( in, val, mode, tsys ) ;
534  }
535  else {
536    throw( AipsError( "Unknown array operation mode." ) ) ;
537  }
538  return out ;
539}
540
541CountedPtr< Scantable > STMath::arrayOperateChannel( const CountedPtr< Scantable >& in,
542                                                     const std::vector<float> val,
543                                                     const std::string& mode,
544                                                     bool tsys )
545{
546  if ( val.size() == 1 ){
547    return unaryOperate( in, val[0], mode, tsys ) ;
548  }
549
550  // conformity of SPECTRA and TSYS
551  if ( tsys ) {
552    TableIterator titer(in->table(), "IFNO");
553    while ( !titer.pastEnd() ) {
554      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
555      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
556      Array<Float> spec = specCol.getColumn() ;
557      Array<Float> ts = tsysCol.getColumn() ;
558      if ( !spec.conform( ts ) ) {
559        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
560      }
561      titer.next() ;
562    }
563  }
564
565  // check if all spectra in the scantable have the same number of channel
566  vector<uInt> nchans;
567  vector<uInt> ifnos = in->getIFNos() ;
568  for ( uInt i = 0 ; i < ifnos.size() ; i++ ) {
569    nchans.push_back( in->nchan( ifnos[i] ) ) ;
570  }
571  Vector<uInt> mchans( nchans ) ;
572  if ( anyNE( mchans, mchans[0] ) ) {
573    throw( AipsError("All spectra in the input scantable must have the same number of channel for vector operation." ) ) ;
574  }
575
576  // check if vector size is equal to nchan
577  Vector<Float> fact( val ) ;
578  if ( fact.nelements() != mchans[0] ) {
579    throw( AipsError("Vector size must be 1 or be same as number of channel.") ) ;
580  }
581
582  // check divided by zero
583  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
584    throw( AipsError("Divided by zero is not recommended." ) ) ;
585  }
586
587  CountedPtr< Scantable > out = getScantable(in, false);
588  Table& tab = out->table();
589  ArrayColumn<Float> specCol(tab,"SPECTRA");
590  ArrayColumn<Float> tsysCol(tab,"TSYS");
591  if (mode == "DIV") fact = (float)1.0 / fact;
592  else if (mode == "SUB") fact *= (float)-1.0 ;
593  for (uInt i=0; i<tab.nrow(); ++i) {
594    Vector<Float> spec;
595    Vector<Float> ts;
596    specCol.get(i, spec);
597    tsysCol.get(i, ts);
598    if (mode == "MUL" || mode == "DIV") {
599      //if (mode == "DIV") fact = (float)1.0 / fact;
600      spec *= fact;
601      specCol.put(i, spec);
602      if ( tsys ) {
603        ts *= fact;
604        tsysCol.put(i, ts);
605      }
606    } else if ( mode == "ADD"  || mode == "SUB") {
607      //if (mode == "SUB") fact *= (float)-1.0 ;
608      spec += fact;
609      specCol.put(i, spec);
610      if ( tsys ) {
611        ts += fact;
612        tsysCol.put(i, ts);
613      }
614    }
615  }
616  return out;
617}
618
619CountedPtr< Scantable > STMath::arrayOperateRow( const CountedPtr< Scantable >& in,
620                                                 const std::vector<float> val,
621                                                 const std::string& mode,
622                                                 bool tsys )
623{
624  if ( val.size() == 1 ) {
625    return unaryOperate( in, val[0], mode, tsys ) ;
626  }
627
628  // conformity of SPECTRA and TSYS
629  if ( tsys ) {
630    TableIterator titer(in->table(), "IFNO");
631    while ( !titer.pastEnd() ) {
632      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
633      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
634      Array<Float> spec = specCol.getColumn() ;
635      Array<Float> ts = tsysCol.getColumn() ;
636      if ( !spec.conform( ts ) ) {
637        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
638      }
639      titer.next() ;
640    }
641  }
642
643  // check if vector size is equal to nrow
644  Vector<Float> fact( val ) ;
645  if (fact.nelements() != uInt(in->nrow())) {
646    throw( AipsError("Vector size must be 1 or be same as number of row.") ) ;
647  }
648
649  // check divided by zero
650  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
651    throw( AipsError("Divided by zero is not recommended." ) ) ;
652  }
653
654  CountedPtr< Scantable > out = getScantable(in, false);
655  Table& tab = out->table();
656  ArrayColumn<Float> specCol(tab,"SPECTRA");
657  ArrayColumn<Float> tsysCol(tab,"TSYS");
658  if (mode == "DIV") fact = (float)1.0 / fact;
659  if (mode == "SUB") fact *= (float)-1.0 ;
660  for (uInt i=0; i<tab.nrow(); ++i) {
661    Vector<Float> spec;
662    Vector<Float> ts;
663    specCol.get(i, spec);
664    tsysCol.get(i, ts);
665    if (mode == "MUL" || mode == "DIV") {
666      spec *= fact[i];
667      specCol.put(i, spec);
668      if ( tsys ) {
669        ts *= fact[i];
670        tsysCol.put(i, ts);
671      }
672    } else if ( mode == "ADD"  || mode == "SUB") {
673      spec += fact[i];
674      specCol.put(i, spec);
675      if ( tsys ) {
676        ts += fact[i];
677        tsysCol.put(i, ts);
678      }
679    }
680  }
681  return out;
682}
683
684CountedPtr< Scantable > STMath::array2dOperate( const CountedPtr< Scantable >& in,
685                                                const std::vector< std::vector<float> > val,
686                                                const std::string& mode,
687                                                bool tsys )
688{
689  // conformity of SPECTRA and TSYS
690  if ( tsys ) {
691    TableIterator titer(in->table(), "IFNO");
692    while ( !titer.pastEnd() ) {
693      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
694      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
695      Array<Float> spec = specCol.getColumn() ;
696      Array<Float> ts = tsysCol.getColumn() ;
697      if ( !spec.conform( ts ) ) {
698        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
699      }
700      titer.next() ;
701    }
702  }
703
704  // some checks
705  vector<uInt> nchans;
706  for (Int i = 0 ; i < in->nrow() ; i++) {
707    nchans.push_back((in->getSpectrum(i)).size());
708  }
709  //Vector<uInt> mchans( nchans ) ;
710  vector< Vector<Float> > facts ;
711  for ( uInt i = 0 ; i < nchans.size() ; i++ ) {
712    Vector<Float> tmp( val[i] ) ;
713    // check divided by zero
714    if ( ( mode == "DIV" ) && anyEQ( tmp, (float)0.0 ) ) {
715      throw( AipsError("Divided by zero is not recommended." ) ) ;
716    }
717    // conformity check
718    if ( tmp.nelements() != nchans[i] ) {
719      stringstream ss ;
720      ss << "Row " << i << ": Vector size must be same as number of channel." ;
721      throw( AipsError( ss.str() ) ) ;
722    }
723    facts.push_back( tmp ) ;
724  }
725
726
727  CountedPtr< Scantable > out = getScantable(in, false);
728  Table& tab = out->table();
729  ArrayColumn<Float> specCol(tab,"SPECTRA");
730  ArrayColumn<Float> tsysCol(tab,"TSYS");
731  for (uInt i=0; i<tab.nrow(); ++i) {
732    Vector<Float> fact = facts[i] ;
733    Vector<Float> spec;
734    Vector<Float> ts;
735    specCol.get(i, spec);
736    tsysCol.get(i, ts);
737    if (mode == "MUL" || mode == "DIV") {
738      if (mode == "DIV") fact = (float)1.0 / fact;
739      spec *= fact;
740      specCol.put(i, spec);
741      if ( tsys ) {
742        ts *= fact;
743        tsysCol.put(i, ts);
744      }
745    } else if ( mode == "ADD"  || mode == "SUB") {
746      if (mode == "SUB") fact *= (float)-1.0 ;
747      spec += fact;
748      specCol.put(i, spec);
749      if ( tsys ) {
750        ts += fact;
751        tsysCol.put(i, ts);
752      }
753    }
754  }
755  return out;
756}
757
758CountedPtr<Scantable> STMath::binaryOperate(const CountedPtr<Scantable>& left,
759                                            const CountedPtr<Scantable>& right,
760                                            const std::string& mode)
761{
762  bool insitu = insitu_;
763  if ( ! left->conformant(*right) ) {
764    throw(AipsError("'left' and 'right' scantables are not conformant."));
765  }
766  setInsitu(false);
767  CountedPtr< Scantable > out = getScantable(left, false);
768  setInsitu(insitu);
769  Table& tout = out->table();
770  Block<String> coln(5);
771  coln[0] = "SCANNO";  coln[1] = "CYCLENO";  coln[2] = "BEAMNO";
772  coln[3] = "IFNO";  coln[4] = "POLNO";
773  Table tmpl = tout.sort(coln);
774  Table tmpr = right->table().sort(coln);
775  ArrayColumn<Float> lspecCol(tmpl,"SPECTRA");
776  ROArrayColumn<Float> rspecCol(tmpr,"SPECTRA");
777  ArrayColumn<uChar> lflagCol(tmpl,"FLAGTRA");
778  ROArrayColumn<uChar> rflagCol(tmpr,"FLAGTRA");
779
780  for (uInt i=0; i<tout.nrow(); ++i) {
781    Vector<Float> lspecvec, rspecvec;
782    Vector<uChar> lflagvec, rflagvec;
783    lspecvec = lspecCol(i);    rspecvec = rspecCol(i);
784    lflagvec = lflagCol(i);    rflagvec = rflagCol(i);
785    MaskedArray<Float> mleft = maskedArray(lspecvec, lflagvec);
786    MaskedArray<Float> mright = maskedArray(rspecvec, rflagvec);
787    if (mode == "ADD") {
788      mleft += mright;
789    } else if ( mode == "SUB") {
790      mleft -= mright;
791    } else if ( mode == "MUL") {
792      mleft *= mright;
793    } else if ( mode == "DIV") {
794      mleft /= mright;
795    } else {
796      throw(AipsError("Illegal binary operator"));
797    }
798    lspecCol.put(i, mleft.getArray());
799  }
800  return out;
801}
802
803
804
805MaskedArray<Float> STMath::maskedArray( const Vector<Float>& s,
806                                        const Vector<uChar>& f)
807{
808  Vector<Bool> mask;
809  mask.resize(f.shape());
810  convertArray(mask, f);
811  return MaskedArray<Float>(s,!mask);
812}
813
814MaskedArray<Double> STMath::maskedArray( const Vector<Double>& s,
815                                         const Vector<uChar>& f)
816{
817  Vector<Bool> mask;
818  mask.resize(f.shape());
819  convertArray(mask, f);
820  return MaskedArray<Double>(s,!mask);
821}
822
823Vector<uChar> STMath::flagsFromMA(const MaskedArray<Float>& ma)
824{
825  const Vector<Bool>& m = ma.getMask();
826  Vector<uChar> flags(m.shape());
827  convertArray(flags, !m);
828  return flags;
829}
830
831CountedPtr< Scantable > STMath::autoQuotient( const CountedPtr< Scantable >& in,
832                                              const std::string & mode,
833                                              bool preserve )
834{
835  /// @todo make other modes available
836  /// modes should be "nearest", "pair"
837  // make this operation non insitu
838  const Table& tin = in->table();
839  Table ons = tin(tin.col("SRCTYPE") == Int(SrcType::PSON));
840  Table offs = tin(tin.col("SRCTYPE") == Int(SrcType::PSOFF));
841  if ( offs.nrow() == 0 )
842    throw(AipsError("No 'off' scans present."));
843  // put all "on" scans into output table
844
845  bool insitu = insitu_;
846  setInsitu(false);
847  CountedPtr< Scantable > out = getScantable(in, true);
848  setInsitu(insitu);
849  Table& tout = out->table();
850
851  TableCopy::copyRows(tout, ons);
852  TableRow row(tout);
853  ROScalarColumn<Double> offtimeCol(offs, "TIME");
854  ArrayColumn<Float> outspecCol(tout, "SPECTRA");
855  ROArrayColumn<Float> outtsysCol(tout, "TSYS");
856  ArrayColumn<uChar> outflagCol(tout, "FLAGTRA");
857  for (uInt i=0; i < tout.nrow(); ++i) {
858    const TableRecord& rec = row.get(i);
859    Double ontime = rec.asDouble("TIME");
860    Table presel = offs(offs.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
861                        && offs.col("IFNO") == Int(rec.asuInt("IFNO"))
862                        && offs.col("POLNO") == Int(rec.asuInt("POLNO")) );
863    ROScalarColumn<Double> offtimeCol(presel, "TIME");
864
865    Double mindeltat = min(abs(offtimeCol.getColumn() - ontime));
866    // Timestamp may vary within a cycle ???!!!
867    // increase this by 0.01 sec in case of rounding errors...
868    // There might be a better way to do this.
869    // fix to this fix. TIME is MJD, so 1.0d not 1.0s
870    mindeltat += 0.01/24./60./60.;
871    Table sel = presel( abs(presel.col("TIME")-ontime) <= mindeltat);
872
873    if ( sel.nrow() < 1 )  {
874      throw(AipsError("No closest in time found... This could be a rounding "
875                      "issue. Try quotient instead."));
876    }
877    TableRow offrow(sel);
878    const TableRecord& offrec = offrow.get(0);//should only be one row
879    RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
880    RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
881    RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
882    /// @fixme this assumes tsys is a scalar not vector
883    Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
884    Vector<Float> specon, tsyson;
885    outtsysCol.get(i, tsyson);
886    outspecCol.get(i, specon);
887    Vector<uChar> flagon;
888    outflagCol.get(i, flagon);
889    MaskedArray<Float> mon = maskedArray(specon, flagon);
890    MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
891    MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
892    if (preserve) {
893      quot -= tsysoffscalar;
894    } else {
895      quot -= tsyson[0];
896    }
897    outspecCol.put(i, quot.getArray());
898    outflagCol.put(i, flagsFromMA(quot));
899  }
900  // renumber scanno
901  TableIterator it(tout, "SCANNO");
902  uInt i = 0;
903  while ( !it.pastEnd() ) {
904    Table t = it.table();
905    TableVector<uInt> vec(t, "SCANNO");
906    vec = i;
907    ++i;
908    ++it;
909  }
910  return out;
911}
912
913
914CountedPtr< Scantable > STMath::quotient( const CountedPtr< Scantable > & on,
915                                          const CountedPtr< Scantable > & off,
916                                          bool preserve )
917{
918  bool insitu = insitu_;
919  if ( ! on->conformant(*off) ) {
920    throw(AipsError("'on' and 'off' scantables are not conformant."));
921  }
922  setInsitu(false);
923  CountedPtr< Scantable > out = getScantable(on, false);
924  setInsitu(insitu);
925  Table& tout = out->table();
926  const Table& toff = off->table();
927  TableIterator sit(tout, "SCANNO");
928  TableIterator s2it(toff, "SCANNO");
929  while ( !sit.pastEnd() ) {
930    Table ton = sit.table();
931    TableRow row(ton);
932    Table t = s2it.table();
933    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
934    ROArrayColumn<Float> outtsysCol(ton, "TSYS");
935    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
936    for (uInt i=0; i < ton.nrow(); ++i) {
937      const TableRecord& rec = row.get(i);
938      Table offsel = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
939                          && t.col("IFNO") == Int(rec.asuInt("IFNO"))
940                          && t.col("POLNO") == Int(rec.asuInt("POLNO")) );
941      if ( offsel.nrow() == 0 )
942        throw AipsError("STMath::quotient: no matching off");
943      TableRow offrow(offsel);
944      const TableRecord& offrec = offrow.get(0);//should be ncycles - take first
945      RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
946      RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
947      RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
948      Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
949      Vector<Float> specon, tsyson;
950      outtsysCol.get(i, tsyson);
951      outspecCol.get(i, specon);
952      Vector<uChar> flagon;
953      outflagCol.get(i, flagon);
954      MaskedArray<Float> mon = maskedArray(specon, flagon);
955      MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
956      MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
957      if (preserve) {
958        quot -= tsysoffscalar;
959      } else {
960        quot -= tsyson[0];
961      }
962      outspecCol.put(i, quot.getArray());
963      outflagCol.put(i, flagsFromMA(quot));
964    }
965    ++sit;
966    ++s2it;
967    // take the first off for each on scan which doesn't have a
968    // matching off scan
969    // non <= noff:  matching pairs, non > noff matching pairs then first off
970    if ( s2it.pastEnd() ) s2it.reset();
971  }
972  return out;
973}
974
975// dototalpower (migration of GBTIDL procedure dototalpower.pro)
976// calibrate the CAL on-off pair. It calculate Tsys and average CAL on-off subintegrations
977// do it for each cycles in a specific scan.
978CountedPtr< Scantable > STMath::dototalpower( const CountedPtr< Scantable >& calon,
979                                              const CountedPtr< Scantable >& caloff, Float tcal )
980{
981if ( ! calon->conformant(*caloff) ) {
982    throw(AipsError("'CAL on' and 'CAL off' scantables are not conformant."));
983  }
984  setInsitu(false);
985  CountedPtr< Scantable > out = getScantable(caloff, false);
986  Table& tout = out->table();
987  const Table& tcon = calon->table();
988  Vector<Float> tcalout;
989  Vector<Float> tcalout2;  //debug
990
991  if ( tout.nrow() != tcon.nrow() ) {
992    throw(AipsError("Mismatch in number of rows to form cal on - off pair."));
993  }
994  // iteration by scanno or cycle no.
995  TableIterator sit(tout, "SCANNO");
996  TableIterator s2it(tcon, "SCANNO");
997  while ( !sit.pastEnd() ) {
998    Table toff = sit.table();
999    TableRow row(toff);
1000    Table t = s2it.table();
1001    ScalarColumn<Double> outintCol(toff, "INTERVAL");
1002    ArrayColumn<Float> outspecCol(toff, "SPECTRA");
1003    ArrayColumn<Float> outtsysCol(toff, "TSYS");
1004    ArrayColumn<uChar> outflagCol(toff, "FLAGTRA");
1005    ROScalarColumn<uInt> outtcalIdCol(toff, "TCAL_ID");
1006    ROScalarColumn<uInt> outpolCol(toff, "POLNO");
1007    ROScalarColumn<Double> onintCol(t, "INTERVAL");
1008    ROArrayColumn<Float> onspecCol(t, "SPECTRA");
1009    ROArrayColumn<Float> ontsysCol(t, "TSYS");
1010    ROArrayColumn<uChar> onflagCol(t, "FLAGTRA");
1011    //ROScalarColumn<uInt> ontcalIdCol(t, "TCAL_ID");
1012
1013    for (uInt i=0; i < toff.nrow(); ++i) {
1014      //skip these checks -> assumes the data order are the same between the cal on off pairs
1015      //
1016      Vector<Float> specCalon, specCaloff;
1017      // to store scalar (mean) tsys
1018      Vector<Float> tsysout(1);
1019      uInt tcalId, polno;
1020      Double offint, onint;
1021      outpolCol.get(i, polno);
1022      outspecCol.get(i, specCaloff);
1023      onspecCol.get(i, specCalon);
1024      Vector<uChar> flagCaloff, flagCalon;
1025      outflagCol.get(i, flagCaloff);
1026      onflagCol.get(i, flagCalon);
1027      outtcalIdCol.get(i, tcalId);
1028      outintCol.get(i, offint);
1029      onintCol.get(i, onint);
1030      // caluculate mean Tsys
1031      uInt nchan = specCaloff.nelements();
1032      // percentage of edge cut off
1033      uInt pc = 10;
1034      uInt bchan = nchan/pc;
1035      uInt echan = nchan-bchan;
1036
1037      Slicer chansl(IPosition(1,bchan-1), IPosition(1,echan-1), IPosition(1,1),Slicer::endIsLast);
1038      Vector<Float> testsubsp = specCaloff(chansl);
1039      MaskedArray<Float> spoff = maskedArray( specCaloff(chansl),flagCaloff(chansl) );
1040      MaskedArray<Float> spon = maskedArray( specCalon(chansl),flagCalon(chansl) );
1041      MaskedArray<Float> spdiff = spon-spoff;
1042      uInt noff = spoff.nelementsValid();
1043      //uInt non = spon.nelementsValid();
1044      uInt ndiff = spdiff.nelementsValid();
1045      Float meantsys;
1046
1047/**
1048      Double subspec, subdiff;
1049      uInt usednchan;
1050      subspec = 0;
1051      subdiff = 0;
1052      usednchan = 0;
1053      for(uInt k=(bchan-1); k<echan; k++) {
1054        subspec += specCaloff[k];
1055        subdiff += static_cast<Double>(specCalon[k]-specCaloff[k]);
1056        ++usednchan;
1057      }
1058**/
1059      // get tcal if input tcal <= 0
1060      String tcalt;
1061      Float tcalUsed;
1062      tcalUsed = tcal;
1063      if ( tcal <= 0.0 ) {
1064        caloff->tcal().getEntry(tcalt, tcalout, tcalId);
1065//         if (polno<=3) {
1066//           tcalUsed = tcalout[polno];
1067//         }
1068//         else {
1069//           tcalUsed = tcalout[0];
1070//         }
1071        if ( tcalout.size() == 1 )
1072          tcalUsed = tcalout[0] ;
1073        else if ( tcalout.size() == nchan )
1074          tcalUsed = mean(tcalout) ;
1075        else {
1076          uInt ipol = polno ;
1077          if ( ipol > 3 ) ipol = 0 ;
1078          tcalUsed = tcalout[ipol] ;
1079        }
1080      }
1081
1082      Float meanoff;
1083      Float meandiff;
1084      if (noff && ndiff) {
1085         //Debug
1086         //if(noff!=ndiff) cerr<<"noff and ndiff is not equal"<<endl;
1087         //LogIO os( LogOrigin( "STMath", "dototalpower()", WHERE ) ) ;
1088         //if(noff!=ndiff) os<<"noff and ndiff is not equal"<<LogIO::POST;
1089         meanoff = sum(spoff)/noff;
1090         meandiff = sum(spdiff)/ndiff;
1091         meantsys= (meanoff/meandiff )*tcalUsed + tcalUsed/2;
1092      }
1093      else {
1094         meantsys=1;
1095      }
1096
1097      tsysout[0] = Float(meantsys);
1098      MaskedArray<Float> mcaloff = maskedArray(specCaloff, flagCaloff);
1099      MaskedArray<Float> mcalon = maskedArray(specCalon, flagCalon);
1100      MaskedArray<Float> sig =   Float(0.5) * (mcaloff + mcalon);
1101      //uInt ncaloff = mcaloff.nelementsValid();
1102      //uInt ncalon = mcalon.nelementsValid();
1103
1104      outintCol.put(i, offint+onint);
1105      outspecCol.put(i, sig.getArray());
1106      outflagCol.put(i, flagsFromMA(sig));
1107      outtsysCol.put(i, tsysout);
1108    }
1109    ++sit;
1110    ++s2it;
1111  }
1112  return out;
1113}
1114
1115//dosigref - migrated from GBT IDL's dosigref.pro, do calibration of position switch
1116// observatiions.
1117// input: sig and ref scantables, and an optional boxcar smoothing width(default width=0,
1118//        no smoothing).
1119// output: resultant scantable [= (sig-ref/ref)*tsys]
1120CountedPtr< Scantable > STMath::dosigref( const CountedPtr < Scantable >& sig,
1121                                          const CountedPtr < Scantable >& ref,
1122                                          int smoothref,
1123                                          casa::Float tsysv,
1124                                          casa::Float tau )
1125{
1126if ( ! ref->conformant(*sig) ) {
1127    throw(AipsError("'sig' and 'ref' scantables are not conformant."));
1128  }
1129  setInsitu(false);
1130  CountedPtr< Scantable > out = getScantable(sig, false);
1131  CountedPtr< Scantable > smref;
1132  if ( smoothref > 1 ) {
1133    float fsmoothref = static_cast<float>(smoothref);
1134    std::string inkernel = "boxcar";
1135    smref = smooth(ref, inkernel, fsmoothref );
1136    ostringstream oss;
1137    oss<<"Applied smoothing of "<<fsmoothref<<" on the reference."<<endl;
1138    pushLog(String(oss));
1139  }
1140  else {
1141    smref = ref;
1142  }
1143  Table& tout = out->table();
1144  const Table& tref = smref->table();
1145  if ( tout.nrow() != tref.nrow() ) {
1146    throw(AipsError("Mismatch in number of rows to form on-source and reference pair."));
1147  }
1148  // iteration by scanno? or cycle no.
1149  TableIterator sit(tout, "SCANNO");
1150  TableIterator s2it(tref, "SCANNO");
1151  while ( !sit.pastEnd() ) {
1152    Table ton = sit.table();
1153    Table t = s2it.table();
1154    ScalarColumn<Double> outintCol(ton, "INTERVAL");
1155    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1156    ArrayColumn<Float> outtsysCol(ton, "TSYS");
1157    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1158    ArrayColumn<Float> refspecCol(t, "SPECTRA");
1159    ROScalarColumn<Double> refintCol(t, "INTERVAL");
1160    ROArrayColumn<Float> reftsysCol(t, "TSYS");
1161    ArrayColumn<uChar> refflagCol(t, "FLAGTRA");
1162    ROScalarColumn<Float> refelevCol(t, "ELEVATION");
1163    for (uInt i=0; i < ton.nrow(); ++i) {
1164
1165      Double onint, refint;
1166      Vector<Float> specon, specref;
1167      // to store scalar (mean) tsys
1168      Vector<Float> tsysref;
1169      outintCol.get(i, onint);
1170      refintCol.get(i, refint);
1171      outspecCol.get(i, specon);
1172      refspecCol.get(i, specref);
1173      Vector<uChar> flagref, flagon;
1174      outflagCol.get(i, flagon);
1175      refflagCol.get(i, flagref);
1176      reftsysCol.get(i, tsysref);
1177
1178      Float tsysrefscalar;
1179      if ( tsysv > 0.0 ) {
1180        ostringstream oss;
1181        Float elev;
1182        refelevCol.get(i, elev);
1183        oss << "user specified Tsys = " << tsysv;
1184        // do recalc elevation if EL = 0
1185        if ( elev == 0 ) {
1186          throw(AipsError("EL=0, elevation data is missing."));
1187        } else {
1188          if ( tau <= 0.0 ) {
1189            throw(AipsError("Valid tau is not supplied."));
1190          } else {
1191            tsysrefscalar = tsysv * exp(tau/elev);
1192          }
1193        }
1194        oss << ", corrected (for El) tsys= "<<tsysrefscalar;
1195        pushLog(String(oss));
1196      }
1197      else {
1198        tsysrefscalar = tsysref[0];
1199      }
1200      //get quotient spectrum
1201      MaskedArray<Float> mref = maskedArray(specref, flagref);
1202      MaskedArray<Float> mon = maskedArray(specon, flagon);
1203      MaskedArray<Float> specres =   tsysrefscalar*((mon - mref)/mref);
1204      Double resint = onint*refint*smoothref/(onint+refint*smoothref);
1205
1206      //Debug
1207      //cerr<<"Tsys used="<<tsysrefscalar<<endl;
1208      //LogIO os( LogOrigin( "STMath", "dosigref", WHERE ) ) ;
1209      //os<<"Tsys used="<<tsysrefscalar<<LogIO::POST;
1210      // fill the result, replay signal tsys by reference tsys
1211      outintCol.put(i, resint);
1212      outspecCol.put(i, specres.getArray());
1213      outflagCol.put(i, flagsFromMA(specres));
1214      outtsysCol.put(i, tsysref);
1215    }
1216    ++sit;
1217    ++s2it;
1218  }
1219  return out;
1220}
1221
1222CountedPtr< Scantable > STMath::donod(const casa::CountedPtr<Scantable>& s,
1223                                     const std::vector<int>& scans,
1224                                     int smoothref,
1225                                     casa::Float tsysv,
1226                                     casa::Float tau,
1227                                     casa::Float tcal )
1228
1229{
1230  setInsitu(false);
1231  STSelector sel;
1232  std::vector<int> scan1, scan2, beams, types;
1233  std::vector< vector<int> > scanpair;
1234  //std::vector<string> calstate;
1235  std::vector<int> calstate;
1236  String msg;
1237
1238  CountedPtr< Scantable > s1b1on, s1b1off, s1b2on, s1b2off;
1239  CountedPtr< Scantable > s2b1on, s2b1off, s2b2on, s2b2off;
1240
1241  std::vector< CountedPtr< Scantable > > sctables;
1242  sctables.push_back(s1b1on);
1243  sctables.push_back(s1b1off);
1244  sctables.push_back(s1b2on);
1245  sctables.push_back(s1b2off);
1246  sctables.push_back(s2b1on);
1247  sctables.push_back(s2b1off);
1248  sctables.push_back(s2b2on);
1249  sctables.push_back(s2b2off);
1250
1251  //check scanlist
1252  int n=s->checkScanInfo(scans);
1253  if (n==1) {
1254     throw(AipsError("Incorrect scan pairs. "));
1255  }
1256
1257  // Assume scans contain only a pair of consecutive scan numbers.
1258  // It is assumed that first beam, b1,  is on target.
1259  // There is no check if the first beam is on or not.
1260  if ( scans.size()==1 ) {
1261    scan1.push_back(scans[0]);
1262    scan2.push_back(scans[0]+1);
1263  } else if ( scans.size()==2 ) {
1264   scan1.push_back(scans[0]);
1265   scan2.push_back(scans[1]);
1266  } else {
1267    if ( scans.size()%2 == 0 ) {
1268      for (uInt i=0; i<scans.size(); i++) {
1269        if (i%2 == 0) {
1270          scan1.push_back(scans[i]);
1271        }
1272        else {
1273          scan2.push_back(scans[i]);
1274        }
1275      }
1276    } else {
1277      throw(AipsError("Odd numbers of scans, cannot form pairs."));
1278    }
1279  }
1280  scanpair.push_back(scan1);
1281  scanpair.push_back(scan2);
1282  //calstate.push_back("*calon");
1283  //calstate.push_back("*[^calon]");
1284  calstate.push_back(SrcType::NODCAL);
1285  calstate.push_back(SrcType::NOD);
1286  CountedPtr< Scantable > ws = getScantable(s, false);
1287  uInt l=0;
1288  while ( l < sctables.size() ) {
1289    for (uInt i=0; i < 2; i++) {
1290      for (uInt j=0; j < 2; j++) {
1291        for (uInt k=0; k < 2; k++) {
1292          sel.reset();
1293          sel.setScans(scanpair[i]);
1294          //sel.setName(calstate[k]);
1295          types.clear();
1296          types.push_back(calstate[k]);
1297          sel.setTypes(types);
1298          beams.clear();
1299          beams.push_back(j);
1300          sel.setBeams(beams);
1301          ws->setSelection(sel);
1302          sctables[l]= getScantable(ws, false);
1303          l++;
1304        }
1305      }
1306    }
1307  }
1308
1309  // replace here by splitData or getData functionality
1310  CountedPtr< Scantable > sig1;
1311  CountedPtr< Scantable > ref1;
1312  CountedPtr< Scantable > sig2;
1313  CountedPtr< Scantable > ref2;
1314  CountedPtr< Scantable > calb1;
1315  CountedPtr< Scantable > calb2;
1316
1317  msg=String("Processing dototalpower for subset of the data");
1318  ostringstream oss1;
1319  oss1 << msg  << endl;
1320  pushLog(String(oss1));
1321  // Debug for IRC CS data
1322  //float tcal1=7.0;
1323  //float tcal2=4.0;
1324  sig1 = dototalpower(sctables[0], sctables[1], tcal=tcal);
1325  ref1 = dototalpower(sctables[2], sctables[3], tcal=tcal);
1326  ref2 = dototalpower(sctables[4], sctables[5], tcal=tcal);
1327  sig2 = dototalpower(sctables[6], sctables[7], tcal=tcal);
1328
1329  // correction of user-specified tsys for elevation here
1330
1331  // dosigref calibration
1332  msg=String("Processing dosigref for subset of the data");
1333  ostringstream oss2;
1334  oss2 << msg  << endl;
1335  pushLog(String(oss2));
1336  calb1=dosigref(sig1,ref2,smoothref,tsysv,tau);
1337  calb2=dosigref(sig2,ref1,smoothref,tsysv,tau);
1338
1339  // iteration by scanno or cycle no.
1340  Table& tcalb1 = calb1->table();
1341  Table& tcalb2 = calb2->table();
1342  TableIterator sit(tcalb1, "SCANNO");
1343  TableIterator s2it(tcalb2, "SCANNO");
1344  while ( !sit.pastEnd() ) {
1345    Table t1 = sit.table();
1346    Table t2= s2it.table();
1347    ArrayColumn<Float> outspecCol(t1, "SPECTRA");
1348    ArrayColumn<Float> outtsysCol(t1, "TSYS");
1349    ArrayColumn<uChar> outflagCol(t1, "FLAGTRA");
1350    ScalarColumn<Double> outintCol(t1, "INTERVAL");
1351    ArrayColumn<Float> t2specCol(t2, "SPECTRA");
1352    ROArrayColumn<Float> t2tsysCol(t2, "TSYS");
1353    ArrayColumn<uChar> t2flagCol(t2, "FLAGTRA");
1354    ROScalarColumn<Double> t2intCol(t2, "INTERVAL");
1355    for (uInt i=0; i < t1.nrow(); ++i) {
1356      Vector<Float> spec1, spec2;
1357      // to store scalar (mean) tsys
1358      Vector<Float> tsys1, tsys2;
1359      Vector<uChar> flag1, flag2;
1360      Double tint1, tint2;
1361      outspecCol.get(i, spec1);
1362      t2specCol.get(i, spec2);
1363      outflagCol.get(i, flag1);
1364      t2flagCol.get(i, flag2);
1365      outtsysCol.get(i, tsys1);
1366      t2tsysCol.get(i, tsys2);
1367      outintCol.get(i, tint1);
1368      t2intCol.get(i, tint2);
1369      // average
1370      // assume scalar tsys for weights
1371      Float wt1, wt2, tsyssq1, tsyssq2;
1372      tsyssq1 = tsys1[0]*tsys1[0];
1373      tsyssq2 = tsys2[0]*tsys2[0];
1374      wt1 = Float(tint1)/tsyssq1;
1375      wt2 = Float(tint2)/tsyssq2;
1376      Float invsumwt=1/(wt1+wt2);
1377      MaskedArray<Float> mspec1 = maskedArray(spec1, flag1);
1378      MaskedArray<Float> mspec2 = maskedArray(spec2, flag2);
1379      MaskedArray<Float> avspec =  invsumwt * (wt1*mspec1 + wt2*mspec2);
1380      //Array<Float> avtsys =  Float(0.5) * (tsys1 + tsys2);
1381      // cerr<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<endl;
1382      // LogIO os( LogOrigin( "STMath", "donod", WHERE ) ) ;
1383      // os<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<LogIO::POST;
1384      tsys1[0] = sqrt(tsyssq1 + tsyssq2);
1385      Array<Float> avtsys =  tsys1;
1386
1387      outspecCol.put(i, avspec.getArray());
1388      outflagCol.put(i, flagsFromMA(avspec));
1389      outtsysCol.put(i, avtsys);
1390    }
1391    ++sit;
1392    ++s2it;
1393  }
1394  return calb1;
1395}
1396
1397//GBTIDL version of frequency switched data calibration
1398CountedPtr< Scantable > STMath::dofs( const CountedPtr< Scantable >& s,
1399                                      const std::vector<int>& scans,
1400                                      int smoothref,
1401                                      casa::Float tsysv,
1402                                      casa::Float tau,
1403                                      casa::Float tcal )
1404{
1405
1406
1407  STSelector sel;
1408  CountedPtr< Scantable > ws = getScantable(s, false);
1409  CountedPtr< Scantable > sig, sigwcal, ref, refwcal;
1410  CountedPtr< Scantable > calsig, calref, out, out1, out2;
1411  Bool nofold=False;
1412  vector<int> types ;
1413
1414  //split the data
1415  //sel.setName("*_fs");
1416  types.push_back( SrcType::FSON ) ;
1417  sel.setTypes( types ) ;
1418  ws->setSelection(sel);
1419  sig = getScantable(ws,false);
1420  sel.reset();
1421  types.clear() ;
1422  //sel.setName("*_fs_calon");
1423  types.push_back( SrcType::FONCAL ) ;
1424  sel.setTypes( types ) ;
1425  ws->setSelection(sel);
1426  sigwcal = getScantable(ws,false);
1427  sel.reset();
1428  types.clear() ;
1429  //sel.setName("*_fsr");
1430  types.push_back( SrcType::FSOFF ) ;
1431  sel.setTypes( types ) ;
1432  ws->setSelection(sel);
1433  ref = getScantable(ws,false);
1434  sel.reset();
1435  types.clear() ;
1436  //sel.setName("*_fsr_calon");
1437  types.push_back( SrcType::FOFFCAL ) ;
1438  sel.setTypes( types ) ;
1439  ws->setSelection(sel);
1440  refwcal = getScantable(ws,false);
1441  sel.reset() ;
1442  types.clear() ;
1443
1444  calsig = dototalpower(sigwcal, sig, tcal=tcal);
1445  calref = dototalpower(refwcal, ref, tcal=tcal);
1446
1447  out1=dosigref(calsig,calref,smoothref,tsysv,tau);
1448  out2=dosigref(calref,calsig,smoothref,tsysv,tau);
1449
1450  Table& tabout1=out1->table();
1451  Table& tabout2=out2->table();
1452  ROScalarColumn<uInt> freqidCol1(tabout1, "FREQ_ID");
1453  ScalarColumn<uInt> freqidCol2(tabout2, "FREQ_ID");
1454  ROArrayColumn<Float> specCol(tabout2, "SPECTRA");
1455  Vector<Float> spec; specCol.get(0, spec);
1456  uInt nchan = spec.nelements();
1457  uInt freqid1; freqidCol1.get(0,freqid1);
1458  uInt freqid2; freqidCol2.get(0,freqid2);
1459  Double rp1, rp2, rv1, rv2, inc1, inc2;
1460  out1->frequencies().getEntry(rp1, rv1, inc1, freqid1);
1461  out2->frequencies().getEntry(rp2, rv2, inc2, freqid2);
1462  //cerr << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << endl ;
1463  //LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1464  //os << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << LogIO::POST ;
1465  if (rp1==rp2) {
1466    Double foffset = rv1 - rv2;
1467    uInt choffset = static_cast<uInt>(foffset/abs(inc2));
1468    if (choffset >= nchan) {
1469      //cerr<<"out-band frequency switching, no folding"<<endl;
1470      LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1471      os<<"out-band frequency switching, no folding"<<LogIO::POST;
1472      nofold = True;
1473    }
1474  }
1475
1476  if (nofold) {
1477    std::vector< CountedPtr< Scantable > > tabs;
1478    tabs.push_back(out1);
1479    tabs.push_back(out2);
1480    out = merge(tabs);
1481  }
1482  else {
1483    //out = out1;
1484    Double choffset = ( rv1 - rv2 ) / inc2 ;
1485    out = dofold( out1, out2, choffset ) ;
1486  }
1487   
1488  return out;
1489}
1490
1491CountedPtr<Scantable> STMath::dofold( const CountedPtr<Scantable> &sig,
1492                                      const CountedPtr<Scantable> &ref,
1493                                      Double choffset,
1494                                      Double choffset2 )
1495{
1496  LogIO os( LogOrigin( "STMath", "dofold", WHERE ) ) ;
1497  os << "choffset=" << choffset << " choffset2=" << choffset2 << LogIO::POST ;
1498
1499  // output scantable
1500  CountedPtr<Scantable> out = getScantable( sig, false ) ;
1501
1502  // separate choffset to integer part and decimal part
1503  Int ioffset = (Int)choffset ;
1504  Double doffset = choffset - ioffset ;
1505  Int ioffset2 = (Int)choffset2 ;
1506  Double doffset2 = choffset2 - ioffset2 ;
1507  os << "ioffset=" << ioffset << " doffset=" << doffset << LogIO::POST ;
1508  os << "ioffset2=" << ioffset2 << " doffset2=" << doffset2 << LogIO::POST ; 
1509
1510  // get column
1511  ROArrayColumn<Float> specCol1( sig->table(), "SPECTRA" ) ;
1512  ROArrayColumn<Float> specCol2( ref->table(), "SPECTRA" ) ;
1513  ROArrayColumn<Float> tsysCol1( sig->table(), "TSYS" ) ;
1514  ROArrayColumn<Float> tsysCol2( ref->table(), "TSYS" ) ;
1515  ROArrayColumn<uChar> flagCol1( sig->table(), "FLAGTRA" ) ;
1516  ROArrayColumn<uChar> flagCol2( ref->table(), "FLAGTRA" ) ;
1517  ROScalarColumn<Double> mjdCol1( sig->table(), "TIME" ) ;
1518  ROScalarColumn<Double> mjdCol2( ref->table(), "TIME" ) ;
1519  ROScalarColumn<Double> intervalCol1( sig->table(), "INTERVAL" ) ;
1520  ROScalarColumn<Double> intervalCol2( ref->table(), "INTERVAL" ) ;
1521
1522  // check
1523  if ( ioffset == 0 ) {
1524    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1525    os << "channel offset is zero, no folding" << LogIO::POST ;
1526    return out ;
1527  }
1528  int nchan = ref->nchan() ;
1529  if ( abs(ioffset) >= nchan ) {
1530    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1531    os << "out-band frequency switching, no folding" << LogIO::POST ;
1532    return out ;
1533  }
1534
1535  // attach column for output scantable
1536  ArrayColumn<Float> specColOut( out->table(), "SPECTRA" ) ;
1537  ArrayColumn<uChar> flagColOut( out->table(), "FLAGTRA" ) ;
1538  ArrayColumn<Float> tsysColOut( out->table(), "TSYS" ) ;
1539  ScalarColumn<Double> mjdColOut( out->table(), "TIME" ) ;
1540  ScalarColumn<Double> intervalColOut( out->table(), "INTERVAL" ) ;
1541  ScalarColumn<uInt> fidColOut( out->table(), "FREQ_ID" ) ;
1542
1543  // for each row
1544  // assume that the data order are same between sig and ref
1545  RowAccumulator acc( asap::W_TINTSYS ) ;
1546  for ( int i = 0 ; i < sig->nrow() ; i++ ) {
1547    // get values
1548    Vector<Float> spsig ;
1549    specCol1.get( i, spsig ) ;
1550    Vector<Float> spref ;
1551    specCol2.get( i, spref ) ;
1552    Vector<Float> tsyssig ;
1553    tsysCol1.get( i, tsyssig ) ;
1554    Vector<Float> tsysref ;
1555    tsysCol2.get( i, tsysref ) ;
1556    Vector<uChar> flagsig ;
1557    flagCol1.get( i, flagsig ) ;
1558    Vector<uChar> flagref ;
1559    flagCol2.get( i, flagref ) ;
1560    Double timesig ;
1561    mjdCol1.get( i, timesig ) ;
1562    Double timeref ;
1563    mjdCol2.get( i, timeref ) ;
1564    Double intsig ;
1565    intervalCol1.get( i, intsig ) ;
1566    Double intref ;
1567    intervalCol2.get( i, intref ) ;
1568
1569    // shift reference spectra
1570    int refchan = spref.nelements() ;
1571    Vector<Float> sspref( spref.nelements() ) ;
1572    Vector<Float> stsysref( tsysref.nelements() ) ;
1573    Vector<uChar> sflagref( flagref.nelements() ) ;
1574    if ( ioffset > 0 ) {
1575      // SPECTRA and FLAGTRA
1576      for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1577        sspref[j] = spref[j+ioffset] ;
1578        sflagref[j] = flagref[j+ioffset] ;
1579      }
1580      for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1581        sspref[j] = spref[j-refchan+ioffset] ;
1582        sflagref[j] = flagref[j-refchan+ioffset] ;
1583      }
1584      spref = sspref.copy() ;
1585      flagref = sflagref.copy() ;
1586      for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1587        sspref[j] = doffset * spref[j+1] + ( 1.0 - doffset ) * spref[j] ;
1588        sflagref[j] = flagref[j+1] + flagref[j] ;
1589      }
1590      sspref[refchan-1] = doffset * spref[0] + ( 1.0 - doffset ) * spref[refchan-1] ;
1591      sflagref[refchan-1] = flagref[0] + flagref[refchan-1] ;
1592
1593      // TSYS
1594      if ( spref.nelements() == tsysref.nelements() ) {
1595        for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1596          stsysref[j] = tsysref[j+ioffset] ;
1597        }
1598        for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1599          stsysref[j] = tsysref[j-refchan+ioffset] ;
1600        }
1601        tsysref = stsysref.copy() ;
1602        for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1603          stsysref[j] = doffset * tsysref[j+1] + ( 1.0 - doffset ) * tsysref[j] ;
1604        }
1605        stsysref[refchan-1] = doffset * tsysref[0] + ( 1.0 - doffset ) * tsysref[refchan-1] ;
1606      }
1607    }
1608    else {
1609      // SPECTRA and FLAGTRA
1610      for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1611        sspref[j] = spref[refchan+ioffset+j] ;
1612        sflagref[j] = flagref[refchan+ioffset+j] ;
1613      }
1614      for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1615        sspref[j] = spref[j+ioffset] ;
1616        sflagref[j] = flagref[j+ioffset] ;
1617      }
1618      spref = sspref.copy() ;
1619      flagref = sflagref.copy() ;
1620      sspref[0] = doffset * spref[refchan-1] + ( 1.0 - doffset ) * spref[0] ;
1621      sflagref[0] = flagref[0] + flagref[refchan-1] ;
1622      for ( int j = 1 ; j < refchan ; j++ ) {
1623        sspref[j] = doffset * spref[j-1] + ( 1.0 - doffset ) * spref[j] ;
1624        sflagref[j] = flagref[j-1] + flagref[j] ;
1625      }
1626      // TSYS
1627      if ( spref.nelements() == tsysref.nelements() ) {
1628        for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1629          stsysref[j] = tsysref[refchan+ioffset+j] ;
1630        }
1631        for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1632          stsysref[j] = tsysref[j+ioffset] ;
1633        }
1634        tsysref = stsysref.copy() ;
1635        stsysref[0] = doffset * tsysref[refchan-1] + ( 1.0 - doffset ) * tsysref[0] ;
1636        for ( int j = 1 ; j < refchan ; j++ ) {
1637          stsysref[j] = doffset * tsysref[j-1] + ( 1.0 - doffset ) * tsysref[j] ;
1638        }
1639      }
1640    }
1641
1642    // shift signal spectra if necessary (only for APEX?)
1643    if ( choffset2 != 0.0 ) {
1644      int sigchan = spsig.nelements() ;
1645      Vector<Float> sspsig( spsig.nelements() ) ;
1646      Vector<Float> stsyssig( tsyssig.nelements() ) ;
1647      Vector<uChar> sflagsig( flagsig.nelements() ) ;
1648      if ( ioffset2 > 0 ) {
1649        // SPECTRA and FLAGTRA
1650        for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1651          sspsig[j] = spsig[j+ioffset2] ;
1652          sflagsig[j] = flagsig[j+ioffset2] ;
1653        }
1654        for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1655          sspsig[j] = spsig[j-sigchan+ioffset2] ;
1656          sflagsig[j] = flagsig[j-sigchan+ioffset2] ;
1657        }
1658        spsig = sspsig.copy() ;
1659        flagsig = sflagsig.copy() ;
1660        for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1661          sspsig[j] = doffset2 * spsig[j+1] + ( 1.0 - doffset2 ) * spsig[j] ;
1662          sflagsig[j] = flagsig[j+1] || flagsig[j] ;
1663        }
1664        sspsig[sigchan-1] = doffset2 * spsig[0] + ( 1.0 - doffset2 ) * spsig[sigchan-1] ;
1665        sflagsig[sigchan-1] = flagsig[0] || flagsig[sigchan-1] ;
1666        // TSTS
1667        if ( spsig.nelements() == tsyssig.nelements() ) {
1668          for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1669            stsyssig[j] = tsyssig[j+ioffset2] ;
1670          }
1671          for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1672            stsyssig[j] = tsyssig[j-sigchan+ioffset2] ;
1673          }
1674          tsyssig = stsyssig.copy() ;
1675          for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1676            stsyssig[j] = doffset2 * tsyssig[j+1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1677          }
1678          stsyssig[sigchan-1] = doffset2 * tsyssig[0] + ( 1.0 - doffset2 ) * tsyssig[sigchan-1] ;
1679        }
1680      }
1681      else {
1682        // SPECTRA and FLAGTRA
1683        for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1684          sspsig[j] = spsig[sigchan+ioffset2+j] ;
1685          sflagsig[j] = flagsig[sigchan+ioffset2+j] ;
1686        }
1687        for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1688          sspsig[j] = spsig[j+ioffset2] ;
1689          sflagsig[j] = flagsig[j+ioffset2] ;
1690        }
1691        spsig = sspsig.copy() ;
1692        flagsig = sflagsig.copy() ;
1693        sspsig[0] = doffset2 * spsig[sigchan-1] + ( 1.0 - doffset2 ) * spsig[0] ;
1694        sflagsig[0] = flagsig[0] + flagsig[sigchan-1] ;
1695        for ( int j = 1 ; j < sigchan ; j++ ) {
1696          sspsig[j] = doffset2 * spsig[j-1] + ( 1.0 - doffset2 ) * spsig[j] ;
1697          sflagsig[j] = flagsig[j-1] + flagsig[j] ;
1698        }
1699        // TSYS
1700        if ( spsig.nelements() == tsyssig.nelements() ) {
1701          for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1702            stsyssig[j] = tsyssig[sigchan+ioffset2+j] ;
1703          }
1704          for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1705            stsyssig[j] = tsyssig[j+ioffset2] ;
1706          }
1707          tsyssig = stsyssig.copy() ;
1708          stsyssig[0] = doffset2 * tsyssig[sigchan-1] + ( 1.0 - doffset2 ) * tsyssig[0] ;
1709          for ( int j = 1 ; j < sigchan ; j++ ) {
1710            stsyssig[j] = doffset2 * tsyssig[j-1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1711          }
1712        }
1713      }
1714    }
1715
1716    // folding
1717    acc.add( spsig, !flagsig, tsyssig, intsig, timesig ) ;
1718    acc.add( sspref, !sflagref, stsysref, intref, timeref ) ;
1719   
1720    // put result
1721    specColOut.put( i, acc.getSpectrum() ) ;
1722    const Vector<Bool> &msk = acc.getMask() ;
1723    Vector<uChar> flg( msk.shape() ) ;
1724    convertArray( flg, !msk ) ;
1725    flagColOut.put( i, flg ) ;
1726    tsysColOut.put( i, acc.getTsys() ) ;
1727    intervalColOut.put( i, acc.getInterval() ) ;
1728    mjdColOut.put( i, acc.getTime() ) ;
1729    // change FREQ_ID to unshifted IF setting (only for APEX?)
1730    if ( choffset2 != 0.0 ) {
1731      uInt freqid = fidColOut( 0 ) ; // assume single-IF data
1732      double refpix, refval, increment ;
1733      out->frequencies().getEntry( refpix, refval, increment, freqid ) ;
1734      refval -= choffset * increment ;
1735      uInt newfreqid = out->frequencies().addEntry( refpix, refval, increment ) ;
1736      Vector<uInt> freqids = fidColOut.getColumn() ;
1737      for ( uInt j = 0 ; j < freqids.nelements() ; j++ ) {
1738        if ( freqids[j] == freqid )
1739          freqids[j] = newfreqid ;
1740      }
1741      fidColOut.putColumn( freqids ) ;
1742    }
1743
1744    acc.reset() ;
1745  }
1746
1747  return out ;
1748}
1749
1750
1751CountedPtr< Scantable > STMath::freqSwitch( const CountedPtr< Scantable >& in )
1752{
1753  // make copy or reference
1754  CountedPtr< Scantable > out = getScantable(in, false);
1755  Table& tout = out->table();
1756  Block<String> cols(4);
1757  cols[0] = String("SCANNO");
1758  cols[1] = String("CYCLENO");
1759  cols[2] = String("BEAMNO");
1760  cols[3] = String("POLNO");
1761  TableIterator iter(tout, cols);
1762  while (!iter.pastEnd()) {
1763    Table subt = iter.table();
1764    // this should leave us with two rows for the two IFs....if not ignore
1765    if (subt.nrow() != 2 ) {
1766      continue;
1767    }
1768    ArrayColumn<Float> specCol(subt, "SPECTRA");
1769    ArrayColumn<Float> tsysCol(subt, "TSYS");
1770    ArrayColumn<uChar> flagCol(subt, "FLAGTRA");
1771    Vector<Float> onspec,offspec, ontsys, offtsys;
1772    Vector<uChar> onflag, offflag;
1773    tsysCol.get(0, ontsys);   tsysCol.get(1, offtsys);
1774    specCol.get(0, onspec);   specCol.get(1, offspec);
1775    flagCol.get(0, onflag);   flagCol.get(1, offflag);
1776    MaskedArray<Float> on  = maskedArray(onspec, onflag);
1777    MaskedArray<Float> off = maskedArray(offspec, offflag);
1778    MaskedArray<Float> oncopy = on.copy();
1779
1780    on /= off; on -= 1.0f;
1781    on *= ontsys[0];
1782    off /= oncopy; off -= 1.0f;
1783    off *= offtsys[0];
1784    specCol.put(0, on.getArray());
1785    const Vector<Bool>& m0 = on.getMask();
1786    Vector<uChar> flags0(m0.shape());
1787    convertArray(flags0, !m0);
1788    flagCol.put(0, flags0);
1789
1790    specCol.put(1, off.getArray());
1791    const Vector<Bool>& m1 = off.getMask();
1792    Vector<uChar> flags1(m1.shape());
1793    convertArray(flags1, !m1);
1794    flagCol.put(1, flags1);
1795    ++iter;
1796  }
1797
1798  return out;
1799}
1800
1801std::vector< float > STMath::statistic( const CountedPtr< Scantable > & in,
1802                                        const std::vector< bool > & mask,
1803                                        const std::string& which )
1804{
1805
1806  Vector<Bool> m(mask);
1807  const Table& tab = in->table();
1808  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1809  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1810  std::vector<float> out;
1811  for (uInt i=0; i < tab.nrow(); ++i ) {
1812    Vector<Float> spec; specCol.get(i, spec);
1813    Vector<uChar> flag; flagCol.get(i, flag);
1814    MaskedArray<Float> ma  = maskedArray(spec, flag);
1815    float outstat = 0.0;
1816    if ( spec.nelements() == m.nelements() ) {
1817      outstat = mathutil::statistics(which, ma(m));
1818    } else {
1819      outstat = mathutil::statistics(which, ma);
1820    }
1821    out.push_back(outstat);
1822  }
1823  return out;
1824}
1825
1826std::vector< float > STMath::statisticRow( const CountedPtr< Scantable > & in,
1827                                        const std::vector< bool > & mask,
1828                                        const std::string& which,
1829                                        int row )
1830{
1831
1832  Vector<Bool> m(mask);
1833  const Table& tab = in->table();
1834  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1835  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1836  std::vector<float> out;
1837
1838  Vector<Float> spec; specCol.get(row, spec);
1839  Vector<uChar> flag; flagCol.get(row, flag);
1840  MaskedArray<Float> ma  = maskedArray(spec, flag);
1841  float outstat = 0.0;
1842  if ( spec.nelements() == m.nelements() ) {
1843    outstat = mathutil::statistics(which, ma(m));
1844  } else {
1845    outstat = mathutil::statistics(which, ma);
1846  }
1847  out.push_back(outstat);
1848
1849  return out;
1850}
1851
1852std::vector< int > STMath::minMaxChan( const CountedPtr< Scantable > & in,
1853                                        const std::vector< bool > & mask,
1854                                        const std::string& which )
1855{
1856
1857  Vector<Bool> m(mask);
1858  const Table& tab = in->table();
1859  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1860  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1861  std::vector<int> out;
1862  for (uInt i=0; i < tab.nrow(); ++i ) {
1863    Vector<Float> spec; specCol.get(i, spec);
1864    Vector<uChar> flag; flagCol.get(i, flag);
1865    MaskedArray<Float> ma  = maskedArray(spec, flag);
1866    if (ma.ndim() != 1) {
1867      throw (ArrayError(
1868          "std::vector<int> STMath::minMaxChan("
1869          "ContedPtr<Scantable> &in, std::vector<bool> &mask, "
1870          " std::string &which)"
1871          " - MaskedArray is not 1D"));
1872    }
1873    IPosition outpos(1,0);
1874    if ( spec.nelements() == m.nelements() ) {
1875      outpos = mathutil::minMaxPos(which, ma(m));
1876    } else {
1877      outpos = mathutil::minMaxPos(which, ma);
1878    }
1879    out.push_back(outpos[0]);
1880  }
1881  return out;
1882}
1883
1884CountedPtr< Scantable > STMath::bin( const CountedPtr< Scantable > & in,
1885                                     int width )
1886{
1887  if ( !in->getSelection().empty() ) throw(AipsError("Can't bin subset of the data."));
1888  CountedPtr< Scantable > out = getScantable(in, false);
1889  Table& tout = out->table();
1890  out->frequencies().rescale(width, "BIN");
1891  ArrayColumn<Float> specCol(tout, "SPECTRA");
1892  ArrayColumn<uChar> flagCol(tout, "FLAGTRA");
1893  for (uInt i=0; i < tout.nrow(); ++i ) {
1894    MaskedArray<Float> main  = maskedArray(specCol(i), flagCol(i));
1895    MaskedArray<Float> maout;
1896    LatticeUtilities::bin(maout, main, 0, Int(width));
1897    /// @todo implement channel based tsys binning
1898    specCol.put(i, maout.getArray());
1899    flagCol.put(i, flagsFromMA(maout));
1900    // take only the first binned spectrum's length for the deprecated
1901    // global header item nChan
1902    if (i==0) tout.rwKeywordSet().define(String("nChan"),
1903                                       Int(maout.getArray().nelements()));
1904  }
1905  return out;
1906}
1907
1908CountedPtr< Scantable > STMath::resample( const CountedPtr< Scantable >& in,
1909                                          const std::string& method,
1910                                          float width )
1911//
1912// Should add the possibility of width being specified in km/s. This means
1913// that for each freqID (SpectralCoordinate) we will need to convert to an
1914// average channel width (say at the reference pixel).  Then we would need
1915// to be careful to make sure each spectrum (of different freqID)
1916// is the same length.
1917//
1918{
1919  //InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1920  Int interpMethod(stringToIMethod(method));
1921
1922  CountedPtr< Scantable > out = getScantable(in, false);
1923  Table& tout = out->table();
1924
1925// Resample SpectralCoordinates (one per freqID)
1926  out->frequencies().rescale(width, "RESAMPLE");
1927  TableIterator iter(tout, "IFNO");
1928  TableRow row(tout);
1929  while ( !iter.pastEnd() ) {
1930    Table tab = iter.table();
1931    ArrayColumn<Float> specCol(tab, "SPECTRA");
1932    //ArrayColumn<Float> tsysCol(tout, "TSYS");
1933    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1934    Vector<Float> spec;
1935    Vector<uChar> flag;
1936    specCol.get(0,spec); // the number of channels should be constant per IF
1937    uInt nChanIn = spec.nelements();
1938    Vector<Float> xIn(nChanIn); indgen(xIn);
1939    Int fac =  Int(nChanIn/width);
1940    Vector<Float> xOut(fac+10); // 10 to be safe - resize later
1941    uInt k = 0;
1942    Float x = 0.0;
1943    while (x < Float(nChanIn) ) {
1944      xOut(k) = x;
1945      k++;
1946      x += width;
1947    }
1948    uInt nChanOut = k;
1949    xOut.resize(nChanOut, True);
1950    // process all rows for this IFNO
1951    Vector<Float> specOut;
1952    Vector<Bool> maskOut;
1953    Vector<uChar> flagOut;
1954    for (uInt i=0; i < tab.nrow(); ++i) {
1955      specCol.get(i, spec);
1956      flagCol.get(i, flag);
1957      Vector<Bool> mask(flag.nelements());
1958      convertArray(mask, flag);
1959
1960      IPosition shapeIn(spec.shape());
1961      //sh.nchan = nChanOut;
1962      InterpolateArray1D<Float,Float>::interpolate(specOut, maskOut, xOut,
1963                                                   xIn, spec, mask,
1964                                                   interpMethod, True, True);
1965      /// @todo do the same for channel based Tsys
1966      flagOut.resize(maskOut.nelements());
1967      convertArray(flagOut, maskOut);
1968      specCol.put(i, specOut);
1969      flagCol.put(i, flagOut);
1970    }
1971    ++iter;
1972  }
1973
1974  return out;
1975}
1976
1977STMath::imethod STMath::stringToIMethod(const std::string& in)
1978{
1979  static STMath::imap lookup;
1980
1981  // initialize the lookup table if necessary
1982  if ( lookup.empty() ) {
1983    lookup["nearest"]   = InterpolateArray1D<Double,Float>::nearestNeighbour;
1984    lookup["linear"] = InterpolateArray1D<Double,Float>::linear;
1985    lookup["cubic"]  = InterpolateArray1D<Double,Float>::cubic;
1986    lookup["spline"]  = InterpolateArray1D<Double,Float>::spline;
1987  }
1988
1989  STMath::imap::const_iterator iter = lookup.find(in);
1990
1991  if ( lookup.end() == iter ) {
1992    std::string message = in;
1993    message += " is not a valid interpolation mode";
1994    throw(AipsError(message));
1995  }
1996  return iter->second;
1997}
1998
1999WeightType STMath::stringToWeight(const std::string& in)
2000{
2001  static std::map<std::string, WeightType> lookup;
2002
2003  // initialize the lookup table if necessary
2004  if ( lookup.empty() ) {
2005    lookup["NONE"]   = asap::W_NONE;
2006    lookup["TINT"] = asap::W_TINT;
2007    lookup["TINTSYS"]  = asap::W_TINTSYS;
2008    lookup["TSYS"]  = asap::W_TSYS;
2009    lookup["VAR"]  = asap::W_VAR;
2010  }
2011
2012  std::map<std::string, WeightType>::const_iterator iter = lookup.find(in);
2013
2014  if ( lookup.end() == iter ) {
2015    std::string message = in;
2016    message += " is not a valid weighting mode";
2017    throw(AipsError(message));
2018  }
2019  return iter->second;
2020}
2021
2022CountedPtr< Scantable > STMath::gainElevation( const CountedPtr< Scantable >& in,
2023                                               const vector< float > & coeff,
2024                                               const std::string & filename,
2025                                               const std::string& method)
2026{
2027  // Get elevation data from Scantable and convert to degrees
2028  CountedPtr< Scantable > out = getScantable(in, false);
2029  Table& tab = out->table();
2030  ROScalarColumn<Float> elev(tab, "ELEVATION");
2031  Vector<Float> x = elev.getColumn();
2032  x *= Float(180 / C::pi);                        // Degrees
2033
2034  Vector<Float> coeffs(coeff);
2035  const uInt nc = coeffs.nelements();
2036  if ( filename.length() > 0 && nc > 0 ) {
2037    throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
2038  }
2039
2040  // Correct
2041  if ( nc > 0 || filename.length() == 0 ) {
2042    // Find instrument
2043    Bool throwit = True;
2044    Instrument inst =
2045      STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2046                                throwit);
2047
2048    // Set polynomial
2049    Polynomial<Float>* ppoly = 0;
2050    Vector<Float> coeff;
2051    String msg;
2052    if ( nc > 0 ) {
2053      ppoly = new Polynomial<Float>(nc-1);
2054      coeff = coeffs;
2055      msg = String("user");
2056    } else {
2057      STAttr sdAttr;
2058      coeff = sdAttr.gainElevationPoly(inst);
2059      ppoly = new Polynomial<Float>(coeff.nelements()-1);
2060      msg = String("built in");
2061    }
2062
2063    if ( coeff.nelements() > 0 ) {
2064      ppoly->setCoefficients(coeff);
2065    } else {
2066      delete ppoly;
2067      throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
2068    }
2069    ostringstream oss;
2070    oss << "Making polynomial correction with " << msg << " coefficients:" << endl;
2071    oss << "   " <<  coeff;
2072    pushLog(String(oss));
2073    const uInt nrow = tab.nrow();
2074    Vector<Float> factor(nrow);
2075    for ( uInt i=0; i < nrow; ++i ) {
2076      factor[i] = 1.0 / (*ppoly)(x[i]);
2077    }
2078    delete ppoly;
2079    scaleByVector(tab, factor, true);
2080
2081  } else {
2082    // Read and correct
2083    pushLog("Making correction from ascii Table");
2084    scaleFromAsciiTable(tab, filename, method, x, true);
2085  }
2086  return out;
2087}
2088
2089void STMath::scaleFromAsciiTable(Table& in, const std::string& filename,
2090                                 const std::string& method,
2091                                 const Vector<Float>& xout, bool dotsys)
2092{
2093
2094// Read gain-elevation ascii file data into a Table.
2095
2096  String formatString;
2097  Table tbl = readAsciiTable(formatString, Table::Memory, filename, "", "", False);
2098  scaleFromTable(in, tbl, method, xout, dotsys);
2099}
2100
2101void STMath::scaleFromTable(Table& in,
2102                            const Table& table,
2103                            const std::string& method,
2104                            const Vector<Float>& xout, bool dotsys)
2105{
2106
2107  ROScalarColumn<Float> geElCol(table, "ELEVATION");
2108  ROScalarColumn<Float> geFacCol(table, "FACTOR");
2109  Vector<Float> xin = geElCol.getColumn();
2110  Vector<Float> yin = geFacCol.getColumn();
2111  Vector<Bool> maskin(xin.nelements(),True);
2112
2113  // Interpolate (and extrapolate) with desired method
2114
2115  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2116
2117   Vector<Float> yout;
2118   Vector<Bool> maskout;
2119   InterpolateArray1D<Float,Float>::interpolate(yout, maskout, xout,
2120                                                xin, yin, maskin, interp,
2121                                                True, True);
2122
2123   scaleByVector(in, Float(1.0)/yout, dotsys);
2124}
2125
2126void STMath::scaleByVector( Table& in,
2127                            const Vector< Float >& factor,
2128                            bool dotsys )
2129{
2130  uInt nrow = in.nrow();
2131  if ( factor.nelements() != nrow ) {
2132    throw(AipsError("factors.nelements() != table.nelements()"));
2133  }
2134  ArrayColumn<Float> specCol(in, "SPECTRA");
2135  ArrayColumn<uChar> flagCol(in, "FLAGTRA");
2136  ArrayColumn<Float> tsysCol(in, "TSYS");
2137  for (uInt i=0; i < nrow; ++i) {
2138    MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2139    ma *= factor[i];
2140    specCol.put(i, ma.getArray());
2141    flagCol.put(i, flagsFromMA(ma));
2142    if ( dotsys ) {
2143      Vector<Float> tsys = tsysCol(i);
2144      tsys *= factor[i];
2145      tsysCol.put(i,tsys);
2146    }
2147  }
2148}
2149
2150CountedPtr< Scantable > STMath::convertFlux( const CountedPtr< Scantable >& in,
2151                                             float d, float etaap,
2152                                             float jyperk )
2153{
2154  CountedPtr< Scantable > out = getScantable(in, false);
2155  Table& tab = in->table();
2156  Unit fluxUnit(tab.keywordSet().asString("FluxUnit"));
2157  Unit K(String("K"));
2158  Unit JY(String("Jy"));
2159
2160  bool tokelvin = true;
2161  Double cfac = 1.0;
2162
2163  if ( fluxUnit == JY ) {
2164    pushLog("Converting to K");
2165    Quantum<Double> t(1.0,fluxUnit);
2166    Quantum<Double> t2 = t.get(JY);
2167    cfac = (t2 / t).getValue();               // value to Jy
2168
2169    tokelvin = true;
2170    out->setFluxUnit("K");
2171  } else if ( fluxUnit == K ) {
2172    pushLog("Converting to Jy");
2173    Quantum<Double> t(1.0,fluxUnit);
2174    Quantum<Double> t2 = t.get(K);
2175    cfac = (t2 / t).getValue();              // value to K
2176
2177    tokelvin = false;
2178    out->setFluxUnit("Jy");
2179  } else {
2180    throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
2181  }
2182  // Make sure input values are converted to either Jy or K first...
2183  Float factor = cfac;
2184
2185  // Select method
2186  if (jyperk > 0.0) {
2187    factor *= jyperk;
2188    if ( tokelvin ) factor = 1.0 / jyperk;
2189    ostringstream oss;
2190    oss << "Jy/K = " << jyperk;
2191    pushLog(String(oss));
2192    Vector<Float> factors(tab.nrow(), factor);
2193    scaleByVector(tab,factors, false);
2194  } else if ( etaap > 0.0) {
2195    if (d < 0) {
2196      Instrument inst =
2197        STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2198                                  True);
2199      STAttr sda;
2200      d = sda.diameter(inst);
2201    }
2202    jyperk = STAttr::findJyPerK(etaap, d);
2203    ostringstream oss;
2204    oss << "Jy/K = " << jyperk;
2205    pushLog(String(oss));
2206    factor *= jyperk;
2207    if ( tokelvin ) {
2208      factor = 1.0 / factor;
2209    }
2210    Vector<Float> factors(tab.nrow(), factor);
2211    scaleByVector(tab, factors, False);
2212  } else {
2213
2214    // OK now we must deal with automatic look up of values.
2215    // We must also deal with the fact that the factors need
2216    // to be computed per IF and may be different and may
2217    // change per integration.
2218
2219    pushLog("Looking up conversion factors");
2220    convertBrightnessUnits(out, tokelvin, cfac);
2221  }
2222
2223  return out;
2224}
2225
2226void STMath::convertBrightnessUnits( CountedPtr<Scantable>& in,
2227                                     bool tokelvin, float cfac )
2228{
2229  Table& table = in->table();
2230  Instrument inst =
2231    STAttr::convertInstrument(table.keywordSet().asString("AntennaName"), True);
2232  TableIterator iter(table, "FREQ_ID");
2233  STFrequencies stfreqs = in->frequencies();
2234  STAttr sdAtt;
2235  while (!iter.pastEnd()) {
2236    Table tab = iter.table();
2237    ArrayColumn<Float> specCol(tab, "SPECTRA");
2238    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2239    ROScalarColumn<uInt> freqidCol(tab, "FREQ_ID");
2240    MEpoch::ROScalarColumn timeCol(tab, "TIME");
2241
2242    uInt freqid; freqidCol.get(0, freqid);
2243    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2244    // STAttr.JyPerK has a Vector interface... change sometime.
2245    Vector<Float> freqs(1,stfreqs.getRefFreq(freqid, tmpspec.nelements()));
2246    for ( uInt i=0; i<tab.nrow(); ++i) {
2247      Float jyperk = (sdAtt.JyPerK(inst, timeCol(i), freqs))[0];
2248      Float factor = cfac * jyperk;
2249      if ( tokelvin ) factor = Float(1.0) / factor;
2250      MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2251      ma *= factor;
2252      specCol.put(i, ma.getArray());
2253      flagCol.put(i, flagsFromMA(ma));
2254    }
2255  ++iter;
2256  }
2257}
2258
2259CountedPtr< Scantable > STMath::opacity( const CountedPtr< Scantable > & in,
2260                                         const std::vector<float>& tau )
2261{
2262  CountedPtr< Scantable > out = getScantable(in, false);
2263
2264  Table outtab = out->table();
2265
2266  const Int ntau = uInt(tau.size());
2267  std::vector<float>::const_iterator tauit = tau.begin();
2268  AlwaysAssert((ntau == 1 || ntau == in->nif() || ntau == in->nif() * in->npol()),
2269               AipsError);
2270  TableIterator iiter(outtab, "IFNO");
2271  while ( !iiter.pastEnd() ) {
2272    Table itab = iiter.table();
2273    TableIterator piter(outtab, "POLNO");
2274    while ( !piter.pastEnd() ) {
2275      Table tab = piter.table();
2276      ROScalarColumn<Float> elev(tab, "ELEVATION");
2277      ArrayColumn<Float> specCol(tab, "SPECTRA");
2278      ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2279      ArrayColumn<Float> tsysCol(tab, "TSYS");
2280      for ( uInt i=0; i<tab.nrow(); ++i) {
2281        Float zdist = Float(C::pi_2) - elev(i);
2282        Float factor = exp(*tauit/cos(zdist));
2283        MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2284        ma *= factor;
2285        specCol.put(i, ma.getArray());
2286        flagCol.put(i, flagsFromMA(ma));
2287        Vector<Float> tsys;
2288        tsysCol.get(i, tsys);
2289        tsys *= factor;
2290        tsysCol.put(i, tsys);
2291      }
2292      if (ntau == in->nif()*in->npol() ) {
2293        tauit++;
2294      }
2295      piter++;
2296    }
2297    if (ntau >= in->nif() ) {
2298      tauit++;
2299    }
2300    iiter++;
2301  }
2302  return out;
2303}
2304
2305CountedPtr< Scantable > STMath::smoothOther( const CountedPtr< Scantable >& in,
2306                                             const std::string& kernel,
2307                                             float width, int order)
2308{
2309  CountedPtr< Scantable > out = getScantable(in, false);
2310  Table table = out->table();
2311
2312  TableIterator iter(table, "IFNO");
2313  while (!iter.pastEnd()) {
2314    Table tab = iter.table();
2315    ArrayColumn<Float> specCol(tab, "SPECTRA");
2316    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2317    Vector<Float> spec;
2318    Vector<uChar> flag;
2319    for (uInt i = 0; i < tab.nrow(); ++i) {
2320      specCol.get(i, spec);
2321      flagCol.get(i, flag);
2322      Vector<Bool> mask(flag.nelements());
2323      convertArray(mask, flag);
2324      Vector<Float> specout;
2325      Vector<Bool> maskout;
2326      if (kernel == "hanning") {
2327        mathutil::hanning(specout, maskout, spec, !mask);
2328        convertArray(flag, !maskout);
2329      } else if (kernel == "rmedian") {
2330        mathutil::runningMedian(specout, maskout, spec , mask, width);
2331        convertArray(flag, maskout);
2332      } else if (kernel == "poly") {
2333        mathutil::polyfit(specout, maskout, spec, !mask, width, order);
2334        convertArray(flag, !maskout);
2335      }
2336
2337      for (uInt j = 0; j < flag.nelements(); ++j) {
2338        uChar userFlag = 1 << 7;
2339        if (maskout[j]==True) userFlag = 0 << 7;
2340        flag(j) = userFlag;
2341      }
2342
2343      flagCol.put(i, flag);
2344      specCol.put(i, specout);
2345    }
2346  ++iter;
2347  }
2348  return out;
2349}
2350
2351CountedPtr< Scantable > STMath::smooth( const CountedPtr< Scantable >& in,
2352                                        const std::string& kernel, float width,
2353                                        int order)
2354{
2355  if (kernel == "rmedian"  || kernel == "hanning" || kernel == "poly") {
2356    return smoothOther(in, kernel, width, order);
2357  }
2358  CountedPtr< Scantable > out = getScantable(in, false);
2359  Table& table = out->table();
2360  VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernel);
2361  // same IFNO should have same no of channels
2362  // this saves overhead
2363  TableIterator iter(table, "IFNO");
2364  while (!iter.pastEnd()) {
2365    Table tab = iter.table();
2366    ArrayColumn<Float> specCol(tab, "SPECTRA");
2367    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2368    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2369    uInt nchan = tmpspec.nelements();
2370    Vector<Float> kvec = VectorKernel::make(type, width, nchan, True, False);
2371    Convolver<Float> conv(kvec, IPosition(1,nchan));
2372    Vector<Float> spec;
2373    Vector<uChar> flag;
2374    for ( uInt i=0; i<tab.nrow(); ++i) {
2375      specCol.get(i, spec);
2376      flagCol.get(i, flag);
2377      Vector<Bool> mask(flag.nelements());
2378      convertArray(mask, flag);
2379      Vector<Float> specout;
2380      mathutil::replaceMaskByZero(specout, mask);
2381      conv.linearConv(specout, spec);
2382      specCol.put(i, specout);
2383    }
2384    ++iter;
2385  }
2386  return out;
2387}
2388
2389CountedPtr< Scantable >
2390  STMath::merge( const std::vector< CountedPtr < Scantable > >& in )
2391{
2392  if ( in.size() < 2 ) {
2393    throw(AipsError("Need at least two scantables to perform a merge."));
2394  }
2395  std::vector<CountedPtr < Scantable > >::const_iterator it = in.begin();
2396  bool insitu = insitu_;
2397  setInsitu(false);
2398  CountedPtr< Scantable > out = getScantable(*it, false);
2399  setInsitu(insitu);
2400  Table& tout = out->table();
2401  ScalarColumn<uInt> freqidcol(tout,"FREQ_ID"), molidcol(tout, "MOLECULE_ID");
2402  ScalarColumn<uInt> scannocol(tout,"SCANNO"), focusidcol(tout,"FOCUS_ID");
2403  // Renumber SCANNO to be 0-based
2404  Vector<uInt> scannos = scannocol.getColumn();
2405  uInt offset = min(scannos);
2406  scannos -= offset;
2407  scannocol.putColumn(scannos);
2408  uInt newscanno = max(scannos)+1;
2409  ++it;
2410  while ( it != in.end() ){
2411    if ( ! (*it)->conformant(*out) ) {
2412      // non conformant.
2413      //pushLog(String("Warning: Can't merge scantables as header info differs."));
2414      LogIO os( LogOrigin( "STMath", "merge()", WHERE ) ) ;
2415      os << LogIO::SEVERE << "Can't merge scantables as header informations (any one of AntennaName, Equinox, and FluxUnit) differ." << LogIO::EXCEPTION ;
2416    }
2417    out->appendToHistoryTable((*it)->history());
2418    const Table& tab = (*it)->table();
2419
2420    Block<String> cols(3);
2421    cols[0] = String("FREQ_ID");
2422    cols[1] = String("MOLECULE_ID");
2423    cols[2] = String("FOCUS_ID");
2424
2425    TableIterator scanit(tab, "SCANNO");
2426    while (!scanit.pastEnd()) {
2427      ScalarColumn<uInt> thescannocol(scanit.table(),"SCANNO");
2428      Vector<uInt> thescannos(thescannocol.nrow(),newscanno);
2429      thescannocol.putColumn(thescannos);
2430      TableIterator subit(scanit.table(), cols);
2431      while ( !subit.pastEnd() ) {
2432        uInt nrow = tout.nrow();
2433        Table thetab = subit.table();
2434        ROTableRow row(thetab);
2435        Vector<uInt> thecolvals(thetab.nrow());
2436        ScalarColumn<uInt> thefreqidcol(thetab,"FREQ_ID");
2437        ScalarColumn<uInt> themolidcol(thetab, "MOLECULE_ID");
2438        ScalarColumn<uInt> thefocusidcol(thetab,"FOCUS_ID");
2439        // The selected subset of table should have
2440        // the equal FREQ_ID, MOLECULE_ID, and FOCUS_ID values.
2441        const TableRecord& rec = row.get(0);
2442        // Set the proper FREQ_ID
2443        Double rv,rp,inc;
2444        (*it)->frequencies().getEntry(rp, rv, inc, rec.asuInt("FREQ_ID"));
2445        uInt id;
2446        id = out->frequencies().addEntry(rp, rv, inc);
2447        thecolvals = id;
2448        thefreqidcol.putColumn(thecolvals);
2449        // Set the proper MOLECULE_ID
2450        Vector<String> name,fname;Vector<Double> rf;
2451        (*it)->molecules().getEntry(rf, name, fname, rec.asuInt("MOLECULE_ID"));
2452        id = out->molecules().addEntry(rf, name, fname);
2453        thecolvals = id;
2454        themolidcol.putColumn(thecolvals);
2455        // Set the proper FOCUS_ID
2456        Float fpa,frot,fax,ftan,fhand,fmount,fuser, fxy, fxyp;
2457        (*it)->focus().getEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2458                                fxy, fxyp, rec.asuInt("FOCUS_ID"));
2459        id = out->focus().addEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2460                                   fxy, fxyp);
2461        thecolvals = id;
2462        thefocusidcol.putColumn(thecolvals);
2463
2464        tout.addRow(thetab.nrow());
2465        TableCopy::copyRows(tout, thetab, nrow, 0, thetab.nrow());
2466
2467        ++subit;
2468      }
2469      ++newscanno;
2470      ++scanit;
2471    }
2472    ++it;
2473  }
2474  return out;
2475}
2476
2477CountedPtr< Scantable >
2478  STMath::invertPhase( const CountedPtr < Scantable >& in )
2479{
2480  return applyToPol(in, &STPol::invertPhase, Float(0.0));
2481}
2482
2483CountedPtr< Scantable >
2484  STMath::rotateXYPhase( const CountedPtr < Scantable >& in, float phase )
2485{
2486   return applyToPol(in, &STPol::rotatePhase, Float(phase));
2487}
2488
2489CountedPtr< Scantable >
2490  STMath::rotateLinPolPhase( const CountedPtr < Scantable >& in, float phase )
2491{
2492  return applyToPol(in, &STPol::rotateLinPolPhase, Float(phase));
2493}
2494
2495CountedPtr< Scantable > STMath::applyToPol( const CountedPtr<Scantable>& in,
2496                                             STPol::polOperation fptr,
2497                                             Float phase )
2498{
2499  CountedPtr< Scantable > out = getScantable(in, false);
2500  Table& tout = out->table();
2501  Block<String> cols(4);
2502  cols[0] = String("SCANNO");
2503  cols[1] = String("BEAMNO");
2504  cols[2] = String("IFNO");
2505  cols[3] = String("CYCLENO");
2506  TableIterator iter(tout, cols);
2507  CountedPtr<STPol> stpol = STPol::getPolClass(out->factories_,
2508                                               out->getPolType() );
2509  while (!iter.pastEnd()) {
2510    Table t = iter.table();
2511    ArrayColumn<Float> speccol(t, "SPECTRA");
2512    ScalarColumn<uInt> focidcol(t, "FOCUS_ID");
2513    Matrix<Float> pols(speccol.getColumn());
2514    try {
2515      stpol->setSpectra(pols);
2516      Float fang,fhand;
2517      fang = in->focusTable_.getTotalAngle(focidcol(0));
2518      fhand = in->focusTable_.getFeedHand(focidcol(0));
2519      stpol->setPhaseCorrections(fang, fhand);
2520      // use a member function pointer in STPol.  This only works on
2521      // the STPol pointer itself, not the Counted Pointer so
2522      // derefernce it.
2523      (&(*(stpol))->*fptr)(phase);
2524      speccol.putColumn(stpol->getSpectra());
2525    } catch (AipsError& e) {
2526      //delete stpol;stpol=0;
2527      throw(e);
2528    }
2529    ++iter;
2530  }
2531  //delete stpol;stpol=0;
2532  return out;
2533}
2534
2535CountedPtr< Scantable >
2536  STMath::swapPolarisations( const CountedPtr< Scantable > & in )
2537{
2538  CountedPtr< Scantable > out = getScantable(in, false);
2539  Table& tout = out->table();
2540  Table t0 = tout(tout.col("POLNO") == 0);
2541  Table t1 = tout(tout.col("POLNO") == 1);
2542  if ( t0.nrow() != t1.nrow() )
2543    throw(AipsError("Inconsistent number of polarisations"));
2544  ArrayColumn<Float> speccol0(t0, "SPECTRA");
2545  ArrayColumn<uChar> flagcol0(t0, "FLAGTRA");
2546  ArrayColumn<Float> speccol1(t1, "SPECTRA");
2547  ArrayColumn<uChar> flagcol1(t1, "FLAGTRA");
2548  Matrix<Float> s0 = speccol0.getColumn();
2549  Matrix<uChar> f0 = flagcol0.getColumn();
2550  speccol0.putColumn(speccol1.getColumn());
2551  flagcol0.putColumn(flagcol1.getColumn());
2552  speccol1.putColumn(s0);
2553  flagcol1.putColumn(f0);
2554  return out;
2555}
2556
2557CountedPtr< Scantable >
2558  STMath::averagePolarisations( const CountedPtr< Scantable > & in,
2559                                const std::vector<bool>& mask,
2560                                const std::string& weight )
2561{
2562  if (in->npol() < 2 )
2563    throw(AipsError("averagePolarisations can only be applied to two or more"
2564                    "polarisations"));
2565  bool insitu = insitu_;
2566  setInsitu(false);
2567  CountedPtr< Scantable > pols = getScantable(in, true);
2568  setInsitu(insitu);
2569  Table& tout = pols->table();
2570  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
2571  Table tab = tableCommand(taql, in->table());
2572  if (tab.nrow() == 0 )
2573    throw(AipsError("Could not find  any rows with POLNO==0 and POLNO==1"));
2574  TableCopy::copyRows(tout, tab);
2575  TableVector<uInt> vec(tout, "POLNO");
2576  vec = 0;
2577  pols->table_.rwKeywordSet().define("nPol", Int(1));
2578  pols->table_.rwKeywordSet().define("POLTYPE", String("stokes"));
2579  //pols->table_.rwKeywordSet().define("POLTYPE", in->getPolType());
2580  std::vector<CountedPtr<Scantable> > vpols;
2581  vpols.push_back(pols);
2582  CountedPtr< Scantable > out = average(vpols, mask, weight, "SCAN");
2583  return out;
2584}
2585
2586CountedPtr< Scantable >
2587  STMath::averageBeams( const CountedPtr< Scantable > & in,
2588                        const std::vector<bool>& mask,
2589                        const std::string& weight )
2590{
2591  bool insitu = insitu_;
2592  setInsitu(false);
2593  CountedPtr< Scantable > beams = getScantable(in, false);
2594  setInsitu(insitu);
2595  Table& tout = beams->table();
2596  // give all rows the same BEAMNO
2597  TableVector<uInt> vec(tout, "BEAMNO");
2598  vec = 0;
2599  beams->table_.rwKeywordSet().define("nBeam", Int(1));
2600  std::vector<CountedPtr<Scantable> > vbeams;
2601  vbeams.push_back(beams);
2602  CountedPtr< Scantable > out = average(vbeams, mask, weight, "SCAN");
2603  return out;
2604}
2605
2606
2607CountedPtr< Scantable >
2608  asap::STMath::frequencyAlign( const CountedPtr< Scantable > & in,
2609                                const std::string & refTime,
2610                                const std::string & method)
2611{
2612  // clone as this is not working insitu
2613  bool insitu = insitu_;
2614  setInsitu(false);
2615  CountedPtr< Scantable > out = getScantable(in, false);
2616  setInsitu(insitu);
2617  Table& tout = out->table();
2618  // Get reference Epoch to time of first row or given String
2619  Unit DAY(String("d"));
2620  MEpoch::Ref epochRef(in->getTimeReference());
2621  MEpoch refEpoch;
2622  if (refTime.length()>0) {
2623    Quantum<Double> qt;
2624    if (MVTime::read(qt,refTime)) {
2625      MVEpoch mv(qt);
2626      refEpoch = MEpoch(mv, epochRef);
2627   } else {
2628      throw(AipsError("Invalid format for Epoch string"));
2629   }
2630  } else {
2631    refEpoch = in->timeCol_(0);
2632  }
2633  MPosition refPos = in->getAntennaPosition();
2634
2635  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2636  /*
2637  // Comment from MV.
2638  // the following code has been commented out because different FREQ_IDs have to be aligned together even
2639  // if the frame doesn't change. So far, lack of this check didn't cause any problems.
2640  // test if user frame is different to base frame
2641  if ( in->frequencies().getFrameString(true)
2642       == in->frequencies().getFrameString(false) ) {
2643    throw(AipsError("Can't convert as no output frame has been set"
2644                    " (use set_freqframe) or it is aligned already."));
2645  }
2646  */
2647  MFrequency::Types system = in->frequencies().getFrame();
2648  MVTime mvt(refEpoch.getValue());
2649  String epochout = mvt.string(MVTime::YMD) + String(" (") + refEpoch.getRefString() + String(")");
2650  ostringstream oss;
2651  oss << "Aligned at reference Epoch " << epochout
2652      << " in frame " << MFrequency::showType(system);
2653  pushLog(String(oss));
2654  // set up the iterator
2655  Block<String> cols(4);
2656  // select by constant direction
2657  cols[0] = String("SRCNAME");
2658  cols[1] = String("BEAMNO");
2659  // select by IF ( no of channels varies over this )
2660  cols[2] = String("IFNO");
2661  // select by restfrequency
2662  cols[3] = String("MOLECULE_ID");
2663  TableIterator iter(tout, cols);
2664  while ( !iter.pastEnd() ) {
2665    Table t = iter.table();
2666    MDirection::ROScalarColumn dirCol(t, "DIRECTION");
2667    TableIterator fiter(t, "FREQ_ID");
2668    // determine nchan from the first row. This should work as
2669    // we are iterating over BEAMNO and IFNO    // we should have constant direction
2670
2671    ROArrayColumn<Float> sCol(t, "SPECTRA");
2672    const MDirection direction = dirCol(0);
2673    const uInt nchan = sCol(0).nelements();
2674
2675    // skip operations if there is nothing to align
2676    if (fiter.pastEnd()) {
2677        continue;
2678    }
2679
2680    Table ftab = fiter.table();
2681    // align all frequency ids with respect to the first encountered id
2682    ScalarColumn<uInt> freqidCol(ftab, "FREQ_ID");
2683    // get the SpectralCoordinate for the freqid, which we are iterating over
2684    SpectralCoordinate sC = in->frequencies().getSpectralCoordinate(freqidCol(0));
2685    FrequencyAligner<Float> fa( sC, nchan, refEpoch,
2686                                direction, refPos, system );
2687    // realign the SpectralCoordinate and put into the output Scantable
2688    Vector<String> units(1);
2689    units = String("Hz");
2690    Bool linear=True;
2691    SpectralCoordinate sc2 = fa.alignedSpectralCoordinate(linear);
2692    sc2.setWorldAxisUnits(units);
2693    const uInt id = out->frequencies().addEntry(sc2.referencePixel()[0],
2694                                                sc2.referenceValue()[0],
2695                                                sc2.increment()[0]);
2696    while ( !fiter.pastEnd() ) {
2697      ftab = fiter.table();
2698      // spectral coordinate for the current FREQ_ID
2699      ScalarColumn<uInt> freqidCol2(ftab, "FREQ_ID");
2700      sC = in->frequencies().getSpectralCoordinate(freqidCol2(0));
2701      // create the "global" abcissa for alignment with same FREQ_ID
2702      Vector<Double> abc(nchan);
2703      for (uInt i=0; i<nchan; i++) {
2704           Double w;
2705           sC.toWorld(w,Double(i));
2706           abc[i] = w;
2707      }
2708      TableVector<uInt> tvec(ftab, "FREQ_ID");
2709      // assign new frequency id to all rows
2710      tvec = id;
2711      // cache abcissa for same time stamps, so iterate over those
2712      TableIterator timeiter(ftab, "TIME");
2713      while ( !timeiter.pastEnd() ) {
2714        Table tab = timeiter.table();
2715        ArrayColumn<Float> specCol(tab, "SPECTRA");
2716        ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2717        MEpoch::ROScalarColumn timeCol(tab, "TIME");
2718        // use align abcissa cache after the first row
2719        // these rows should be just be POLNO
2720        bool first = true;
2721        for (int i=0; i<int(tab.nrow()); ++i) {
2722          // input values
2723          Vector<uChar> flag = flagCol(i);
2724          Vector<Bool> mask(flag.shape());
2725          Vector<Float> specOut, spec;
2726          spec  = specCol(i);
2727          Vector<Bool> maskOut;Vector<uChar> flagOut;
2728          convertArray(mask, flag);
2729          // alignment
2730          Bool ok = fa.align(specOut, maskOut, abc, spec,
2731                             mask, timeCol(i), !first,
2732                             interp, False);
2733          // back into scantable
2734          flagOut.resize(maskOut.nelements());
2735          convertArray(flagOut, maskOut);
2736          flagCol.put(i, flagOut);
2737          specCol.put(i, specOut);
2738          // start abcissa caching
2739          first = false;
2740        }
2741        // next timestamp
2742        ++timeiter;
2743      }
2744      // next FREQ_ID
2745      ++fiter;
2746    }
2747    // next aligner
2748    ++iter;
2749  }
2750  // set this afterwards to ensure we are doing insitu correctly.
2751  out->frequencies().setFrame(system, true);
2752  return out;
2753}
2754
2755CountedPtr<Scantable>
2756  asap::STMath::convertPolarisation( const CountedPtr<Scantable>& in,
2757                                     const std::string & newtype )
2758{
2759  if (in->npol() != 2 && in->npol() != 4)
2760    throw(AipsError("Can only convert two or four polarisations."));
2761  if ( in->getPolType() == newtype )
2762    throw(AipsError("No need to convert."));
2763  if ( ! in->selector_.empty() )
2764    throw(AipsError("Can only convert whole scantable. Unset the selection."));
2765  bool insitu = insitu_;
2766  setInsitu(false);
2767  CountedPtr< Scantable > out = getScantable(in, true);
2768  setInsitu(insitu);
2769  Table& tout = out->table();
2770  tout.rwKeywordSet().define("POLTYPE", String(newtype));
2771
2772  Block<String> cols(4);
2773  cols[0] = "SCANNO";
2774  cols[1] = "CYCLENO";
2775  cols[2] = "BEAMNO";
2776  cols[3] = "IFNO";
2777  TableIterator it(in->originalTable_, cols);
2778  String basetype = in->getPolType();
2779  STPol* stpol = STPol::getPolClass(in->factories_, basetype);
2780  try {
2781    while ( !it.pastEnd() ) {
2782      Table tab = it.table();
2783      uInt row = tab.rowNumbers()[0];
2784      stpol->setSpectra(in->getPolMatrix(row));
2785      Float fang,fhand;
2786      fang = in->focusTable_.getTotalAngle(in->mfocusidCol_(row));
2787      fhand = in->focusTable_.getFeedHand(in->mfocusidCol_(row));
2788      stpol->setPhaseCorrections(fang, fhand);
2789      Int npolout = 0;
2790      for (uInt i=0; i<tab.nrow(); ++i) {
2791        Vector<Float> outvec = stpol->getSpectrum(i, newtype);
2792        if ( outvec.nelements() > 0 ) {
2793          tout.addRow();
2794          TableCopy::copyRows(tout, tab, tout.nrow()-1, 0, 1);
2795          ArrayColumn<Float> sCol(tout,"SPECTRA");
2796          ScalarColumn<uInt> pCol(tout,"POLNO");
2797          sCol.put(tout.nrow()-1 ,outvec);
2798          pCol.put(tout.nrow()-1 ,uInt(npolout));
2799          npolout++;
2800       }
2801      }
2802      tout.rwKeywordSet().define("nPol", npolout);
2803      ++it;
2804    }
2805  } catch (AipsError& e) {
2806    delete stpol;
2807    throw(e);
2808  }
2809  delete stpol;
2810  return out;
2811}
2812
2813CountedPtr< Scantable >
2814  asap::STMath::mxExtract( const CountedPtr< Scantable > & in,
2815                           const std::string & scantype )
2816{
2817  bool insitu = insitu_;
2818  setInsitu(false);
2819  CountedPtr< Scantable > out = getScantable(in, true);
2820  setInsitu(insitu);
2821  Table& tout = out->table();
2822  std::string taql = "SELECT FROM $1 WHERE BEAMNO != REFBEAMNO";
2823  if (scantype == "on") {
2824    taql = "SELECT FROM $1 WHERE BEAMNO == REFBEAMNO";
2825  }
2826  Table tab = tableCommand(taql, in->table());
2827  TableCopy::copyRows(tout, tab);
2828  if (scantype == "on") {
2829    // re-index SCANNO to 0
2830    TableVector<uInt> vec(tout, "SCANNO");
2831    vec = 0;
2832  }
2833  return out;
2834}
2835
2836CountedPtr< Scantable >
2837  asap::STMath::lagFlag( const CountedPtr< Scantable > & in,
2838                         double start, double end,
2839                         const std::string& mode)
2840{
2841  CountedPtr< Scantable > out = getScantable(in, false);
2842  Table& tout = out->table();
2843  TableIterator iter(tout, "FREQ_ID");
2844  FFTServer<Float,Complex> ffts;
2845  while ( !iter.pastEnd() ) {
2846    Table tab = iter.table();
2847    Double rp,rv,inc;
2848    ROTableRow row(tab);
2849    const TableRecord& rec = row.get(0);
2850    uInt freqid = rec.asuInt("FREQ_ID");
2851    out->frequencies().getEntry(rp, rv, inc, freqid);
2852    ArrayColumn<Float> specCol(tab, "SPECTRA");
2853    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2854    for (int i=0; i<int(tab.nrow()); ++i) {
2855      Vector<Float> spec = specCol(i);
2856      Vector<uChar> flag = flagCol(i);
2857      int fstart = -1;
2858      int fend = -1;
2859      for (unsigned int k=0; k < flag.nelements(); ++k ) {
2860        if (flag[k] > 0) {
2861          fstart = k;
2862          while (flag[k] > 0 && k < flag.nelements()) {
2863            fend = k;
2864            k++;
2865          }
2866        }
2867        Float interp = 0.0;
2868        if (fstart-1 > 0 ) {
2869          interp = spec[fstart-1];
2870          if (fend+1 < Int(spec.nelements())) {
2871            interp = (interp+spec[fend+1])/2.0;
2872          }
2873        } else {
2874          interp = spec[fend+1];
2875        }
2876        if (fstart > -1 && fend > -1) {
2877          for (int j=fstart;j<=fend;++j) {
2878            spec[j] = interp;
2879          }
2880        }
2881        fstart =-1;
2882        fend = -1;
2883      }
2884      Vector<Complex> lags;
2885      ffts.fft0(lags, spec);
2886      Int lag0(start+0.5);
2887      Int lag1(end+0.5);
2888      if (mode == "frequency") {
2889        lag0 = Int(spec.nelements()*abs(inc)/(start)+0.5);
2890        lag1 = Int(spec.nelements()*abs(inc)/(end)+0.5);
2891      }
2892      Int lstart =  max(0, lag0);
2893      Int lend =  min(Int(lags.nelements()-1), lag1);
2894      if (lstart == lend) {
2895        lags[lstart] = Complex(0.0);
2896      } else {
2897        if (lstart > lend) {
2898          Int tmp = lend;
2899          lend = lstart;
2900          lstart = tmp;
2901        }
2902        for (int j=lstart; j <=lend ;++j) {
2903          lags[j] = Complex(0.0);
2904        }
2905      }
2906      ffts.fft0(spec, lags);
2907      specCol.put(i, spec);
2908    }
2909    ++iter;
2910  }
2911  return out;
2912}
2913
2914// Averaging spectra with different channel/resolution
2915CountedPtr<Scantable>
2916STMath::new_average( const std::vector<CountedPtr<Scantable> >& in,
2917                     const bool& compel,
2918                     const std::vector<bool>& mask,
2919                     const std::string& weight,
2920                     const std::string& avmode )
2921  throw ( casa::AipsError )
2922{
2923  LogIO os( LogOrigin( "STMath", "new_average()", WHERE ) ) ;
2924  if ( avmode == "SCAN" && in.size() != 1 )
2925    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
2926                    "Use merge first."));
2927 
2928  // check if OTF observation
2929  String obstype = in[0]->getHeader().obstype ;
2930  Double tol = 0.0 ;
2931  if ( obstype.find( "OTF" ) != String::npos ) {
2932    tol = TOL_OTF ;
2933  }
2934  else {
2935    tol = TOL_POINT ;
2936  }
2937
2938  CountedPtr<Scantable> out ;     // processed result
2939  if ( compel ) {
2940    std::vector< CountedPtr<Scantable> > newin ; // input for average process
2941    uInt insize = in.size() ;    // number of input scantables
2942
2943    // TEST: do normal average in each table before IF grouping
2944    os << "Do preliminary averaging" << LogIO::POST ;
2945    vector< CountedPtr<Scantable> > tmpin( insize ) ;
2946    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2947      vector< CountedPtr<Scantable> > v( 1, in[itable] ) ;
2948      tmpin[itable] = average( v, mask, weight, avmode ) ;
2949    }
2950
2951    // warning
2952    os << "Average spectra with different spectral resolution" << LogIO::POST ;
2953
2954    // temporarily set coordinfo
2955    vector<string> oldinfo( insize ) ;
2956    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2957      vector<string> coordinfo = in[itable]->getCoordInfo() ;
2958      oldinfo[itable] = coordinfo[0] ;
2959      coordinfo[0] = "Hz" ;
2960      tmpin[itable]->setCoordInfo( coordinfo ) ;
2961    }
2962
2963    // columns
2964    ScalarColumn<uInt> freqIDCol ;
2965    ScalarColumn<uInt> ifnoCol ;
2966    ScalarColumn<uInt> scannoCol ;
2967
2968
2969    // check IF frequency coverage
2970    // freqid: list of FREQ_ID, which is used, in each table 
2971    // iffreq: list of minimum and maximum frequency for each FREQ_ID in
2972    //         each table
2973    // freqid[insize][numIF]
2974    // freqid: [[id00, id01, ...],
2975    //          [id10, id11, ...],
2976    //          ...
2977    //          [idn0, idn1, ...]]
2978    // iffreq[insize][numIF*2]
2979    // iffreq: [[min_id00, max_id00, min_id01, max_id01, ...],
2980    //          [min_id10, max_id10, min_id11, max_id11, ...],
2981    //          ...
2982    //          [min_idn0, max_idn0, min_idn1, max_idn1, ...]]
2983    //os << "Check IF settings in each table" << LogIO::POST ;
2984    vector< vector<uInt> > freqid( insize );
2985    vector< vector<double> > iffreq( insize ) ;
2986    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2987      uInt rows = tmpin[itable]->nrow() ;
2988      uInt freqnrows = tmpin[itable]->frequencies().table().nrow() ;
2989      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
2990        if ( freqid[itable].size() == freqnrows ) {
2991          break ;
2992        }
2993        else {
2994          freqIDCol.attach( tmpin[itable]->table(), "FREQ_ID" ) ;
2995          ifnoCol.attach( tmpin[itable]->table(), "IFNO" ) ;
2996          uInt id = freqIDCol( irow ) ;
2997          if ( freqid[itable].size() == 0 || count( freqid[itable].begin(), freqid[itable].end(), id ) == 0 ) {
2998            //os << "itable = " << itable << ": IF " << id << " is included in the list" << LogIO::POST ;
2999            vector<double> abcissa = tmpin[itable]->getAbcissa( irow ) ;
3000            freqid[itable].push_back( id ) ;
3001            iffreq[itable].push_back( abcissa[0] - 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
3002            iffreq[itable].push_back( abcissa[abcissa.size()-1] + 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
3003          }
3004        }
3005      }
3006    }
3007
3008    // debug
3009    //os << "IF settings summary:" << endl ;
3010    //for ( uInt i = 0 ; i < freqid.size() ; i++ ) {
3011    //os << "   Table" << i << endl ;
3012    //for ( uInt j = 0 ; j < freqid[i].size() ; j++ ) {
3013    //os << "      id = " << freqid[i][j] << " (min,max) = (" << iffreq[i][2*j] << "," << iffreq[i][2*j+1] << ")" << endl ;
3014    //}
3015    //}
3016    //os << endl ;
3017    //os.post() ;
3018
3019    // IF grouping based on their frequency coverage
3020    // ifgrp: list of table index and FREQ_ID for all members in each IF group
3021    // ifgfreq: list of minimum and maximum frequency in each IF group
3022    // ifgrp[numgrp][nummember*2]
3023    // ifgrp: [[table00, freqrow00, table01, freqrow01, ...],
3024    //         [table10, freqrow10, table11, freqrow11, ...],
3025    //         ...
3026    //         [tablen0, freqrown0, tablen1, freqrown1, ...]]
3027    // ifgfreq[numgrp*2]
3028    // ifgfreq: [min0_grp0, max0_grp0, min1_grp1, max1_grp1, ...]
3029    //os << "IF grouping based on their frequency coverage" << LogIO::POST ;
3030    vector< vector<uInt> > ifgrp ;
3031    vector<double> ifgfreq ;
3032
3033    // parameter for IF grouping
3034    // groupmode = OR    retrieve all region
3035    //             AND   only retrieve overlaped region
3036    //string groupmode = "AND" ;
3037    string groupmode = "OR" ;
3038    uInt sizecr = 0 ;
3039    if ( groupmode == "AND" )
3040      sizecr = 2 ;
3041    else if ( groupmode == "OR" )
3042      sizecr = 0 ;
3043
3044    vector<double> sortedfreq ;
3045    for ( uInt i = 0 ; i < iffreq.size() ; i++ ) {
3046      for ( uInt j = 0 ; j < iffreq[i].size() ; j++ ) {
3047        if ( count( sortedfreq.begin(), sortedfreq.end(), iffreq[i][j] ) == 0 )
3048          sortedfreq.push_back( iffreq[i][j] ) ;
3049      }
3050    }
3051    sort( sortedfreq.begin(), sortedfreq.end() ) ;
3052    for ( vector<double>::iterator i = sortedfreq.begin() ; i != sortedfreq.end()-1 ; i++ ) {
3053      ifgfreq.push_back( *i ) ;
3054      ifgfreq.push_back( *(i+1) ) ;
3055    }
3056    ifgrp.resize( ifgfreq.size()/2 ) ;
3057    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3058      for ( uInt iif = 0 ; iif < freqid[itable].size() ; iif++ ) {
3059        double range0 = iffreq[itable][2*iif] ;
3060        double range1 = iffreq[itable][2*iif+1] ;
3061        for ( uInt j = 0 ; j < ifgrp.size() ; j++ ) {
3062          double fmin = max( range0, ifgfreq[2*j] ) ;
3063          double fmax = min( range1, ifgfreq[2*j+1] ) ;
3064          if ( fmin < fmax ) {
3065            ifgrp[j].push_back( itable ) ;
3066            ifgrp[j].push_back( freqid[itable][iif] ) ;
3067          }
3068        }
3069      }
3070    }
3071    vector< vector<uInt> >::iterator fiter = ifgrp.begin() ;
3072    vector<double>::iterator giter = ifgfreq.begin() ;
3073    while( fiter != ifgrp.end() ) {
3074      if ( fiter->size() <= sizecr ) {
3075        fiter = ifgrp.erase( fiter ) ;
3076        giter = ifgfreq.erase( giter ) ;
3077        giter = ifgfreq.erase( giter ) ;
3078      }
3079      else {
3080        fiter++ ;
3081        advance( giter, 2 ) ;
3082      }
3083    }
3084
3085    // Grouping continuous IF groups (without frequency gap)
3086    // freqgrp: list of IF group indexes in each frequency group
3087    // freqrange: list of minimum and maximum frequency in each frequency group
3088    // freqgrp[numgrp][nummember]
3089    // freqgrp: [[ifgrp00, ifgrp01, ifgrp02, ...],
3090    //           [ifgrp10, ifgrp11, ifgrp12, ...],
3091    //           ...
3092    //           [ifgrpn0, ifgrpn1, ifgrpn2, ...]]
3093    // freqrange[numgrp*2]
3094    // freqrange: [min_grp0, max_grp0, min_grp1, max_grp1, ...]
3095    vector< vector<uInt> > freqgrp ;
3096    double freqrange = 0.0 ;
3097    uInt grpnum = 0 ;
3098    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3099      // Assumed that ifgfreq was sorted
3100      if ( grpnum != 0 && freqrange == ifgfreq[2*i] ) {
3101        freqgrp[grpnum-1].push_back( i ) ;
3102      }
3103      else {
3104        vector<uInt> grp0( 1, i ) ;
3105        freqgrp.push_back( grp0 ) ;
3106        grpnum++ ;
3107      }
3108      freqrange = ifgfreq[2*i+1] ;
3109    }
3110       
3111
3112    // print IF groups
3113    ostringstream oss ;
3114    oss << "IF Group summary: " << endl ;
3115    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3116    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3117      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3118      for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3119        oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3120      }
3121      oss << endl ;
3122    }
3123    oss << endl ;
3124    os << oss.str() << LogIO::POST ;
3125   
3126    // print frequency group
3127    oss.str("") ;
3128    oss << "Frequency Group summary: " << endl ;
3129    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: IF_GROUP_ID" << endl ;
3130    for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3131      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*freqgrp[i][0]] << "," << ifgfreq[2*freqgrp[i][freqgrp[i].size()-1]+1] << "]: " ;
3132      for ( uInt j = 0 ; j < freqgrp[i].size() ; j++ ) {
3133        oss << freqgrp[i][j] << " " ;
3134      }
3135      oss << endl ;
3136    }
3137    oss << endl ;
3138    os << oss.str() << LogIO::POST ;
3139
3140    // membership check
3141    // groups: list of IF group indexes whose frequency range overlaps with
3142    //         that of each table and IF
3143    // groups[numtable][numIF][nummembership]
3144    // groups: [[[grp, grp,...], [grp, grp,...],...],
3145    //          [[grp, grp,...], [grp, grp,...],...],
3146    //          ...
3147    //          [[grp, grp,...], [grp, grp,...],...]]
3148    vector< vector< vector<uInt> > > groups( insize ) ;
3149    for ( uInt i = 0 ; i < insize ; i++ ) {
3150      groups[i].resize( freqid[i].size() ) ;
3151    }
3152    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3153      for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3154        uInt tableid = ifgrp[igrp][2*imem] ;
3155        vector<uInt>::iterator iter = find( freqid[tableid].begin(), freqid[tableid].end(), ifgrp[igrp][2*imem+1] ) ;
3156        if ( iter != freqid[tableid].end() ) {
3157          uInt rowid = distance( freqid[tableid].begin(), iter ) ;
3158          groups[tableid][rowid].push_back( igrp ) ;
3159        }
3160      }
3161    }
3162
3163    // print membership
3164    //oss.str("") ;
3165    //for ( uInt i = 0 ; i < insize ; i++ ) {
3166    //oss << "Table " << i << endl ;
3167    //for ( uInt j = 0 ; j < groups[i].size() ; j++ ) {
3168    //oss << "   FREQ_ID " <<  setw( 2 ) << freqid[i][j] << ": " ;
3169    //for ( uInt k = 0 ; k < groups[i][j].size() ; k++ ) {
3170    //oss << setw( 2 ) << groups[i][j][k] << " " ;
3171    //}
3172    //oss << endl ;
3173    //}
3174    //}
3175    //os << oss.str() << LogIO::POST ;
3176
3177    // set back coordinfo
3178    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3179      vector<string> coordinfo = tmpin[itable]->getCoordInfo() ;
3180      coordinfo[0] = oldinfo[itable] ;
3181      tmpin[itable]->setCoordInfo( coordinfo ) ;
3182    }
3183
3184    // Create additional table if needed
3185    bool oldInsitu = insitu_ ;
3186    setInsitu( false ) ;
3187    vector< vector<uInt> > addrow( insize ) ;
3188    vector<uInt> addtable( insize, 0 ) ;
3189    vector<uInt> newtableids( insize ) ;
3190    vector<uInt> newifids( insize, 0 ) ;
3191    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3192      //os << "Table " << itable << ": " ;
3193      for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3194        addrow[itable].push_back( groups[itable][ifrow].size()-1 ) ;
3195        //os << addrow[itable][ifrow] << " " ;
3196      }
3197      addtable[itable] = *max_element( addrow[itable].begin(), addrow[itable].end() ) ;
3198      //os << "(" << addtable[itable] << ")" << LogIO::POST ;
3199    }
3200    newin.resize( insize ) ;
3201    copy( tmpin.begin(), tmpin.end(), newin.begin() ) ;
3202    for ( uInt i = 0 ; i < insize ; i++ ) {
3203      newtableids[i] = i ;
3204    }
3205    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3206      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3207        CountedPtr<Scantable> add = getScantable( newin[itable], false ) ;
3208        vector<int> freqidlist ;
3209        for ( uInt i = 0 ; i < groups[itable].size() ; i++ ) {
3210          if ( groups[itable][i].size() > iadd + 1 ) {
3211            freqidlist.push_back( freqid[itable][i] ) ;
3212          }
3213        }
3214        stringstream taqlstream ;
3215        taqlstream << "SELECT FROM $1 WHERE FREQ_ID IN [" ;
3216        for ( uInt i = 0 ; i < freqidlist.size() ; i++ ) {
3217          taqlstream << freqidlist[i] ;
3218          if ( i < freqidlist.size() - 1 )
3219            taqlstream << "," ;
3220          else
3221            taqlstream << "]" ;
3222        }
3223        string taql = taqlstream.str() ;
3224        //os << "taql = " << taql << LogIO::POST ;
3225        STSelector selector = STSelector() ;
3226        selector.setTaQL( taql ) ;
3227        add->setSelection( selector ) ;
3228        newin.push_back( add ) ;
3229        newtableids.push_back( itable ) ;
3230        newifids.push_back( iadd + 1 ) ;
3231      }
3232    }
3233
3234    // udpate ifgrp
3235    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3236      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3237        for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3238          if ( groups[itable][ifrow].size() > iadd + 1 ) {
3239            uInt igrp = groups[itable][ifrow][iadd+1] ;
3240            for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3241              if ( ifgrp[igrp][2*imem] == newtableids[iadd+insize] && ifgrp[igrp][2*imem+1] == freqid[newtableids[iadd+insize]][ifrow] ) {
3242                ifgrp[igrp][2*imem] = insize + iadd ;
3243              }
3244            }
3245          }
3246        }
3247      }
3248    }
3249
3250    // print IF groups again for debug
3251    //oss.str( "" ) ;
3252    //oss << "IF Group summary: " << endl ;
3253    //oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3254    //for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3255    //oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3256    //for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3257    //oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3258    //}
3259    //oss << endl ;
3260    //}
3261    //oss << endl ;
3262    //os << oss.str() << LogIO::POST ;
3263
3264    // reset SCANNO and IFNO/FREQ_ID: IF is reset by the result of sortation
3265    os << "All scan number is set to 0" << LogIO::POST ;
3266    //os << "All IF number is set to IF group index" << LogIO::POST ;
3267    insize = newin.size() ;
3268    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3269      uInt rows = newin[itable]->nrow() ;
3270      Table &tmpt = newin[itable]->table() ;
3271      freqIDCol.attach( tmpt, "FREQ_ID" ) ;
3272      scannoCol.attach( tmpt, "SCANNO" ) ;
3273      ifnoCol.attach( tmpt, "IFNO" ) ;
3274      for ( uInt irow=0 ; irow < rows ; irow++ ) {
3275        scannoCol.put( irow, 0 ) ;
3276        uInt freqID = freqIDCol( irow ) ;
3277        vector<uInt>::iterator iter = find( freqid[newtableids[itable]].begin(), freqid[newtableids[itable]].end(), freqID ) ;
3278        if ( iter != freqid[newtableids[itable]].end() ) {
3279          uInt index = distance( freqid[newtableids[itable]].begin(), iter ) ;
3280          ifnoCol.put( irow, groups[newtableids[itable]][index][newifids[itable]] ) ;
3281        }
3282        else {
3283          throw(AipsError("IF grouping was wrong in additional tables.")) ;
3284        }
3285      }
3286    }
3287    oldinfo.resize( insize ) ;
3288    setInsitu( oldInsitu ) ;
3289
3290    // temporarily set coordinfo
3291    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3292      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3293      oldinfo[itable] = coordinfo[0] ;
3294      coordinfo[0] = "Hz" ;
3295      newin[itable]->setCoordInfo( coordinfo ) ;
3296    }
3297
3298    // save column values in the vector
3299    vector< vector<uInt> > freqTableIdVec( insize ) ;
3300    vector< vector<uInt> > freqIdVec( insize ) ;
3301    vector< vector<uInt> > ifNoVec( insize ) ;
3302    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3303      ScalarColumn<uInt> freqIDs ;
3304      freqIDs.attach( newin[itable]->frequencies().table(), "ID" ) ;
3305      ifnoCol.attach( newin[itable]->table(), "IFNO" ) ;
3306      freqIDCol.attach( newin[itable]->table(), "FREQ_ID" ) ;
3307      for ( uInt irow = 0 ; irow < newin[itable]->frequencies().table().nrow() ; irow++ ) {
3308        freqTableIdVec[itable].push_back( freqIDs( irow ) ) ;
3309      }
3310      for ( uInt irow = 0 ; irow < newin[itable]->table().nrow() ; irow++ ) {
3311        freqIdVec[itable].push_back( freqIDCol( irow ) ) ;
3312        ifNoVec[itable].push_back( ifnoCol( irow ) ) ;
3313      }
3314    }
3315
3316    // reset spectra and flagtra: pick up common part of frequency coverage
3317    //os << "Pick common frequency range and align resolution" << LogIO::POST ;
3318    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3319      uInt rows = newin[itable]->nrow() ;
3320      int nminchan = -1 ;
3321      int nmaxchan = -1 ;
3322      vector<uInt> freqIdUpdate ;
3323      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3324        uInt ifno = ifNoVec[itable][irow] ;  // IFNO is reset by group index
3325        double minfreq = ifgfreq[2*ifno] ;
3326        double maxfreq = ifgfreq[2*ifno+1] ;
3327        //os << "frequency range: [" << minfreq << "," << maxfreq << "]" << LogIO::POST ;
3328        vector<double> abcissa = newin[itable]->getAbcissa( irow ) ;
3329        int nchan = abcissa.size() ;
3330        double resol = abcissa[1] - abcissa[0] ;
3331        //os << "abcissa range  : [" << abcissa[0] << "," << abcissa[nchan-1] << "]" << LogIO::POST ;
3332        if ( minfreq <= abcissa[0] )
3333          nminchan = 0 ;
3334        else {
3335          //double cfreq = ( minfreq - abcissa[0] ) / resol ;
3336          double cfreq = ( minfreq - abcissa[0] + 0.5 * resol ) / resol ;
3337          nminchan = int(cfreq) + ( ( cfreq - int(cfreq) <= 0.5 ) ? 0 : 1 ) ;
3338        }
3339        if ( maxfreq >= abcissa[abcissa.size()-1] )
3340          nmaxchan = abcissa.size() - 1 ;
3341        else {
3342          //double cfreq = ( abcissa[abcissa.size()-1] - maxfreq ) / resol ;
3343          double cfreq = ( abcissa[abcissa.size()-1] - maxfreq + 0.5 * resol ) / resol ;
3344          nmaxchan = abcissa.size() - 1 - int(cfreq) - ( ( cfreq - int(cfreq) >= 0.5 ) ? 1 : 0 ) ;
3345        }
3346        //os << "channel range (" << irow << "): [" << nminchan << "," << nmaxchan << "]" << LogIO::POST ;
3347        if ( nmaxchan > nminchan ) {
3348          newin[itable]->reshapeSpectrum( nminchan, nmaxchan, irow ) ;
3349          int newchan = nmaxchan - nminchan + 1 ;
3350          if ( count( freqIdUpdate.begin(), freqIdUpdate.end(), freqIdVec[itable][irow] ) == 0 && newchan < nchan )
3351            freqIdUpdate.push_back( freqIdVec[itable][irow] ) ;
3352        }
3353        else {
3354          throw(AipsError("Failed to pick up common part of frequency range.")) ;
3355        }
3356      }
3357      for ( uInt i = 0 ; i < freqIdUpdate.size() ; i++ ) {
3358        uInt freqId = freqIdUpdate[i] ;
3359        Double refpix ;
3360        Double refval ;
3361        Double increment ;
3362       
3363        // update row
3364        newin[itable]->frequencies().getEntry( refpix, refval, increment, freqId ) ;
3365        refval = refval - ( refpix - nminchan ) * increment ;
3366        refpix = 0 ;
3367        newin[itable]->frequencies().setEntry( refpix, refval, increment, freqId ) ;
3368      }   
3369    }
3370
3371   
3372    // reset spectra and flagtra: align spectral resolution
3373    //os << "Align spectral resolution" << LogIO::POST ;
3374    // gmaxdnu: the coarsest frequency resolution in the frequency group
3375    // gmemid: member index that have a resolution equal to gmaxdnu
3376    // gmaxdnu[numfreqgrp]
3377    // gmaxdnu: [dnu0, dnu1, ...]
3378    // gmemid[numfreqgrp]
3379    // gmemid: [id0, id1, ...]
3380    vector<double> gmaxdnu( freqgrp.size(), 0.0 ) ;
3381    vector<uInt> gmemid( freqgrp.size(), 0 ) ;
3382    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3383      double maxdnu = 0.0 ;       // maximum (coarsest) frequency resolution
3384      int minchan = INT_MAX ;     // minimum channel number
3385      Double refpixref = -1 ;     // reference of 'reference pixel'
3386      Double refvalref = -1 ;     // reference of 'reference frequency'
3387      Double refinc = -1 ;        // reference frequency resolution
3388      uInt refreqid ;
3389      uInt reftable = INT_MAX;
3390      // process only if group member > 1
3391      if ( ifgrp[igrp].size() > 2 ) {
3392        // find minchan and maxdnu in each group
3393        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3394          uInt tableid = ifgrp[igrp][2*imem] ;
3395          uInt rowid = ifgrp[igrp][2*imem+1] ;
3396          vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3397          if ( iter != freqIdVec[tableid].end() ) {
3398            uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3399            vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3400            int nchan = abcissa.size() ;
3401            double dnu = abcissa[1] - abcissa[0] ;
3402            //os << "GROUP " << igrp << " (" << tableid << "," << rowid << "): nchan = " << nchan << " (minchan = " << minchan << ")" << LogIO::POST ;
3403            if ( nchan < minchan ) {
3404              minchan = nchan ;
3405              maxdnu = dnu ;
3406              newin[tableid]->frequencies().getEntry( refpixref, refvalref, refinc, rowid ) ;
3407              refreqid = rowid ;
3408              reftable = tableid ;
3409            }
3410          }
3411        }
3412        // regrid spectra in each group
3413        os << "GROUP " << igrp << endl ;
3414        os << "   Channel number is adjusted to " << minchan << endl ;
3415        os << "   Corresponding frequency resolution is " << maxdnu << "Hz" << LogIO::POST ;
3416        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3417          uInt tableid = ifgrp[igrp][2*imem] ;
3418          uInt rowid = ifgrp[igrp][2*imem+1] ;
3419          freqIDCol.attach( newin[tableid]->table(), "FREQ_ID" ) ;
3420          //os << "tableid = " << tableid << " rowid = " << rowid << ": " << LogIO::POST ;
3421          //os << "   regridChannel applied to " ;
3422          //if ( tableid != reftable )
3423          refreqid = newin[tableid]->frequencies().addEntry( refpixref, refvalref, refinc ) ;
3424          for ( uInt irow = 0 ; irow < newin[tableid]->table().nrow() ; irow++ ) {
3425            uInt tfreqid = freqIdVec[tableid][irow] ;
3426            if ( tfreqid == rowid ) {     
3427              //os << irow << " " ;
3428              newin[tableid]->regridChannel( minchan, maxdnu, irow ) ;
3429              freqIDCol.put( irow, refreqid ) ;
3430              freqIdVec[tableid][irow] = refreqid ;
3431            }
3432          }
3433          //os << LogIO::POST ;
3434        }
3435      }
3436      else {
3437        uInt tableid = ifgrp[igrp][0] ;
3438        uInt rowid = ifgrp[igrp][1] ;
3439        vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3440        if ( iter != freqIdVec[tableid].end() ) {
3441          uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3442          vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3443          minchan = abcissa.size() ;
3444          maxdnu = abcissa[1] - abcissa[0] ;
3445        }
3446      }
3447      for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3448        if ( count( freqgrp[i].begin(), freqgrp[i].end(), igrp ) > 0 ) {
3449          if ( maxdnu > gmaxdnu[i] ) {
3450            gmaxdnu[i] = maxdnu ;
3451            gmemid[i] = igrp ;
3452          }
3453          break ;
3454        }
3455      }
3456    }
3457
3458    // set back coordinfo
3459    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3460      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3461      coordinfo[0] = oldinfo[itable] ;
3462      newin[itable]->setCoordInfo( coordinfo ) ;
3463    }     
3464
3465    // accumulate all rows into the first table
3466    // NOTE: assumed in.size() = 1
3467    vector< CountedPtr<Scantable> > tmp( 1 ) ;
3468    if ( newin.size() == 1 )
3469      tmp[0] = newin[0] ;
3470    else
3471      tmp[0] = merge( newin ) ;
3472
3473    //return tmp[0] ;
3474
3475    // average
3476    CountedPtr<Scantable> tmpout = average( tmp, mask, weight, avmode ) ;
3477
3478    //return tmpout ;
3479
3480    // combine frequency group
3481    os << "Combine spectra based on frequency grouping" << LogIO::POST ;
3482    os << "IFNO is renumbered as frequency group ID (see above)" << LogIO::POST ;
3483    vector<string> coordinfo = tmpout->getCoordInfo() ;
3484    oldinfo[0] = coordinfo[0] ;
3485    coordinfo[0] = "Hz" ;
3486    tmpout->setCoordInfo( coordinfo ) ;
3487    // create proformas of output table
3488    stringstream taqlstream ;
3489    taqlstream << "SELECT FROM $1 WHERE IFNO IN [" ;
3490    for ( uInt i = 0 ; i < gmemid.size() ; i++ ) {
3491      taqlstream << gmemid[i] ;
3492      if ( i < gmemid.size() - 1 )
3493        taqlstream << "," ;
3494      else
3495        taqlstream << "]" ;
3496    }
3497    string taql = taqlstream.str() ;
3498    //os << "taql = " << taql << LogIO::POST ;
3499    STSelector selector = STSelector() ;
3500    selector.setTaQL( taql ) ;
3501    oldInsitu = insitu_ ;
3502    setInsitu( false ) ;
3503    out = getScantable( tmpout, false ) ;
3504    setInsitu( oldInsitu ) ;
3505    out->setSelection( selector ) ;
3506    // regrid rows
3507    ifnoCol.attach( tmpout->table(), "IFNO" ) ;
3508    for ( uInt irow = 0 ; irow < tmpout->table().nrow() ; irow++ ) {
3509      uInt ifno = ifnoCol( irow ) ;
3510      for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3511        if ( count( freqgrp[igrp].begin(), freqgrp[igrp].end(), ifno ) > 0 ) {
3512          vector<double> abcissa = tmpout->getAbcissa( irow ) ;
3513          double bw = ( abcissa[1] - abcissa[0] ) * abcissa.size() ;
3514          int nchan = (int)( bw / gmaxdnu[igrp] ) ;
3515          tmpout->regridChannel( nchan, gmaxdnu[igrp], irow ) ;
3516          break ;
3517        }
3518      }
3519    }
3520    // combine spectra
3521    ArrayColumn<Float> specColOut ;
3522    specColOut.attach( out->table(), "SPECTRA" ) ;
3523    ArrayColumn<uChar> flagColOut ;
3524    flagColOut.attach( out->table(), "FLAGTRA" ) ;
3525    ScalarColumn<uInt> ifnoColOut ;
3526    ifnoColOut.attach( out->table(), "IFNO" ) ;
3527    ScalarColumn<uInt> polnoColOut ;
3528    polnoColOut.attach( out->table(), "POLNO" ) ;
3529    ScalarColumn<uInt> freqidColOut ;
3530    freqidColOut.attach( out->table(), "FREQ_ID" ) ;
3531    MDirection::ScalarColumn dirColOut ;
3532    dirColOut.attach( out->table(), "DIRECTION" ) ;
3533    Table &tab = tmpout->table() ;
3534    Block<String> cols(1);
3535    cols[0] = String("POLNO") ;
3536    TableIterator iter( tab, cols ) ;
3537    bool done = false ;
3538    vector< vector<uInt> > sizes( freqgrp.size() ) ;
3539    while( !iter.pastEnd() ) {
3540      vector< vector<Float> > specout( freqgrp.size() ) ;
3541      vector< vector<uChar> > flagout( freqgrp.size() ) ;
3542      ArrayColumn<Float> specCols ;
3543      specCols.attach( iter.table(), "SPECTRA" ) ;
3544      ArrayColumn<uChar> flagCols ;
3545      flagCols.attach( iter.table(), "FLAGTRA" ) ;
3546      ifnoCol.attach( iter.table(), "IFNO" ) ;
3547      ScalarColumn<uInt> polnos ;
3548      polnos.attach( iter.table(), "POLNO" ) ;
3549      MDirection::ScalarColumn dircol ;
3550      dircol.attach( iter.table(), "DIRECTION" ) ;
3551      uInt polno = polnos( 0 ) ;
3552      //os << "POLNO iteration: " << polno << LogIO::POST ;
3553//       for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3554//      sizes[igrp].resize( freqgrp[igrp].size() ) ;
3555//      for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3556//        for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3557//          uInt ifno = ifnoCol( irow ) ;
3558//          if ( ifno == freqgrp[igrp][imem] ) {
3559//            Vector<Float> spec = specCols( irow ) ;
3560//            Vector<uChar> flag = flagCols( irow ) ;
3561//            vector<Float> svec ;
3562//            spec.tovector( svec ) ;
3563//            vector<uChar> fvec ;
3564//            flag.tovector( fvec ) ;
3565//            //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3566//            specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3567//            flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3568//            //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3569//            sizes[igrp][imem] = spec.nelements() ;
3570//          }
3571//        }
3572//      }
3573//      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3574//        uInt ifout = ifnoColOut( irow ) ;
3575//        uInt polout = polnoColOut( irow ) ;
3576//        if ( ifout == gmemid[igrp] && polout == polno ) {
3577//          // set SPECTRA and FRAGTRA
3578//          Vector<Float> newspec( specout[igrp] ) ;
3579//          Vector<uChar> newflag( flagout[igrp] ) ;
3580//          specColOut.put( irow, newspec ) ;
3581//          flagColOut.put( irow, newflag ) ;
3582//          // IFNO renumbering
3583//          ifnoColOut.put( irow, igrp ) ;
3584//        }
3585//      }
3586//       }
3587      // get a list of number of channels for each frequency group member
3588      if ( !done ) {
3589        for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3590          sizes[igrp].resize( freqgrp[igrp].size() ) ;
3591          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3592            for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3593              uInt ifno = ifnoCol( irow ) ;
3594              if ( ifno == freqgrp[igrp][imem] ) {
3595                Vector<Float> spec = specCols( irow ) ;
3596                sizes[igrp][imem] = spec.nelements() ;
3597                break ;
3598              }               
3599            }
3600          }
3601        }
3602        done = true ;
3603      }
3604      // combine spectra
3605      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3606        uInt polout = polnoColOut( irow ) ;
3607        if ( polout == polno ) {
3608          uInt ifout = ifnoColOut( irow ) ;
3609          Vector<Double> direction = dirColOut(irow).getAngle(Unit(String("rad"))).getValue() ;
3610          uInt igrp ;
3611          for ( uInt jgrp = 0 ; jgrp < freqgrp.size() ; jgrp++ ) {
3612            if ( ifout == gmemid[jgrp] ) {
3613              igrp = jgrp ;
3614              break ;
3615            }
3616          }
3617          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3618            for ( uInt jrow = 0 ; jrow < iter.table().nrow() ; jrow++ ) {
3619              uInt ifno = ifnoCol( jrow ) ;
3620              Vector<Double> tdir = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
3621              //if ( ifno == freqgrp[igrp][imem] && allTrue( tdir == direction  ) ) {
3622              Double dx = tdir[0] - direction[0] ;
3623              Double dy = tdir[1] - direction[1] ;
3624              Double dd = sqrt( dx * dx + dy * dy ) ;
3625              //if ( ifno == freqgrp[igrp][imem] && allNearAbs( tdir, direction, tol ) ) {
3626              if ( ifno == freqgrp[igrp][imem] && dd <= tol ) {
3627                Vector<Float> spec = specCols( jrow ) ;
3628                Vector<uChar> flag = flagCols( jrow ) ;
3629                vector<Float> svec ;
3630                spec.tovector( svec ) ;
3631                vector<uChar> fvec ;
3632                flag.tovector( fvec ) ;
3633                //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3634                specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3635                flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3636                //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3637              }
3638            }
3639          }
3640          // set SPECTRA and FRAGTRA
3641          Vector<Float> newspec( specout[igrp] ) ;
3642          Vector<uChar> newflag( flagout[igrp] ) ;
3643          specColOut.put( irow, newspec ) ;
3644          flagColOut.put( irow, newflag ) ;
3645          // IFNO renumbering
3646          ifnoColOut.put( irow, igrp ) ;
3647        }
3648      }
3649      iter++ ;
3650    }
3651    // update FREQUENCIES subtable
3652    vector<bool> updated( freqgrp.size(), false ) ;
3653    for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3654      uInt index = 0 ;
3655      uInt pixShift = 0 ;
3656      while ( freqgrp[igrp][index] != gmemid[igrp] ) {
3657        pixShift += sizes[igrp][index++] ;
3658      }
3659      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3660        if ( ifnoColOut( irow ) == gmemid[igrp] && !updated[igrp] ) {
3661          uInt freqidOut = freqidColOut( irow ) ;
3662          //os << "freqgrp " << igrp << " freqidOut = " << freqidOut << LogIO::POST ;
3663          double refpix ;
3664          double refval ;
3665          double increm ;
3666          out->frequencies().getEntry( refpix, refval, increm, freqidOut ) ;
3667          refpix += pixShift ;
3668          out->frequencies().setEntry( refpix, refval, increm, freqidOut ) ;
3669          updated[igrp] = true ;
3670        }
3671      }
3672    }
3673
3674    //out = tmpout ;
3675
3676    coordinfo = tmpout->getCoordInfo() ;
3677    coordinfo[0] = oldinfo[0] ;
3678    tmpout->setCoordInfo( coordinfo ) ;
3679  }
3680  else {
3681    // simple average
3682    out =  average( in, mask, weight, avmode ) ;
3683  }
3684 
3685  return out ;
3686}
3687
3688CountedPtr<Scantable> STMath::cwcal( const CountedPtr<Scantable>& s,
3689                                     const String calmode,
3690                                     const String antname )
3691{
3692  // frequency switch
3693  if ( calmode == "fs" ) {
3694    return cwcalfs( s, antname ) ;
3695  }
3696  else {
3697    vector<bool> masks = s->getMask( 0 ) ;
3698    vector<int> types ;
3699
3700    // sky scan
3701    STSelector sel = STSelector() ;
3702    types.push_back( SrcType::SKY ) ;
3703    sel.setTypes( types ) ;
3704    s->setSelection( sel ) ;
3705    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3706    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
3707    s->unsetSelection() ;
3708    sel.reset() ;
3709    types.clear() ;
3710
3711    // hot scan
3712    types.push_back( SrcType::HOT ) ;
3713    sel.setTypes( types ) ;
3714    s->setSelection( sel ) ;
3715    tmp.clear() ;
3716    tmp.push_back( getScantable( s, false ) ) ;
3717    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
3718    s->unsetSelection() ;
3719    sel.reset() ;
3720    types.clear() ;
3721   
3722    // cold scan
3723    CountedPtr<Scantable> acold ;
3724//     types.push_back( SrcType::COLD ) ;
3725//     sel.setTypes( types ) ;
3726//     s->setSelection( sel ) ;
3727//     tmp.clear() ;
3728//     tmp.push_back( getScantable( s, false ) ) ;
3729//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCNAN" ) ;
3730//     s->unsetSelection() ;
3731//     sel.reset() ;
3732//     types.clear() ;
3733
3734    // off scan
3735    types.push_back( SrcType::PSOFF ) ;
3736    sel.setTypes( types ) ;
3737    s->setSelection( sel ) ;
3738    tmp.clear() ;
3739    tmp.push_back( getScantable( s, false ) ) ;
3740    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3741    s->unsetSelection() ;
3742    sel.reset() ;
3743    types.clear() ;
3744   
3745    // on scan
3746    bool insitu = insitu_ ;
3747    insitu_ = false ;
3748    CountedPtr<Scantable> out = getScantable( s, true ) ;
3749    insitu_ = insitu ;
3750    types.push_back( SrcType::PSON ) ;
3751    sel.setTypes( types ) ;
3752    s->setSelection( sel ) ;
3753    TableCopy::copyRows( out->table(), s->table() ) ;
3754    s->unsetSelection() ;
3755    sel.reset() ;
3756    types.clear() ;
3757   
3758    // process each on scan
3759    ArrayColumn<Float> tsysCol ;
3760    tsysCol.attach( out->table(), "TSYS" ) ;
3761    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3762      vector<float> sp = getCalibratedSpectra( out, aoff, asky, ahot, acold, i, antname ) ;
3763      out->setSpectrum( sp, i ) ;
3764      string reftime = out->getTime( i ) ;
3765      vector<int> ii( 1, out->getIF( i ) ) ;
3766      vector<int> ib( 1, out->getBeam( i ) ) ;
3767      vector<int> ip( 1, out->getPol( i ) ) ;
3768      sel.setIFs( ii ) ;
3769      sel.setBeams( ib ) ;
3770      sel.setPolarizations( ip ) ;
3771      asky->setSelection( sel ) ;   
3772      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
3773      const Vector<Float> Vtsys( sptsys ) ;
3774      tsysCol.put( i, Vtsys ) ;
3775      asky->unsetSelection() ;
3776      sel.reset() ;
3777    }
3778
3779    // flux unit
3780    out->setFluxUnit( "K" ) ;
3781
3782    return out ;
3783  }
3784}
3785 
3786CountedPtr<Scantable> STMath::almacal( const CountedPtr<Scantable>& s,
3787                                       const String calmode )
3788{
3789  // frequency switch
3790  if ( calmode == "fs" ) {
3791    return almacalfs( s ) ;
3792  }
3793  else {
3794    vector<bool> masks = s->getMask( 0 ) ;
3795   
3796    // off scan
3797    STSelector sel = STSelector() ;
3798    vector<int> types ;
3799    types.push_back( SrcType::PSOFF ) ;
3800    sel.setTypes( types ) ;
3801    s->setSelection( sel ) ;
3802    // TODO 2010/01/08 TN
3803    // Grouping by time should be needed before averaging.
3804    // Each group must have own unique SCANNO (should be renumbered).
3805    // See PIPELINE/SDCalibration.py
3806    CountedPtr<Scantable> soff = getScantable( s, false ) ;
3807    Table ttab = soff->table() ;
3808    ROScalarColumn<Double> timeCol( ttab, "TIME" ) ;
3809    uInt nrow = timeCol.nrow() ;
3810    Vector<Double> timeSep( nrow - 1 ) ;
3811    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3812      timeSep[i] = timeCol(i+1) - timeCol(i) ;
3813    }
3814    ScalarColumn<Double> intervalCol( ttab, "INTERVAL" ) ;
3815    Vector<Double> interval = intervalCol.getColumn() ;
3816    interval /= 86400.0 ;
3817    ScalarColumn<uInt> scanCol( ttab, "SCANNO" ) ;
3818    vector<uInt> glist ;
3819    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3820      double gap = 2.0 * timeSep[i] / ( interval[i] + interval[i+1] ) ;
3821      //cout << "gap[" << i << "]=" << setw(5) << gap << endl ;
3822      if ( gap > 1.1 ) {
3823        glist.push_back( i ) ;
3824      }
3825    }
3826    Vector<uInt> gaplist( glist ) ;
3827    //cout << "gaplist = " << gaplist << endl ;
3828    uInt newid = 0 ;
3829    for ( uInt i = 0 ; i < nrow ; i++ ) {
3830      scanCol.put( i, newid ) ;
3831      if ( i == gaplist[newid] ) {
3832        newid++ ;
3833      }
3834    }
3835    //cout << "new scancol = " << scanCol.getColumn() << endl ;
3836    vector< CountedPtr<Scantable> > tmp( 1, soff ) ;
3837    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3838    //cout << "aoff.nrow = " << aoff->nrow() << endl ;
3839    s->unsetSelection() ;
3840    sel.reset() ;
3841    types.clear() ;
3842   
3843    // on scan
3844    bool insitu = insitu_ ;
3845    insitu_ = false ;
3846    CountedPtr<Scantable> out = getScantable( s, true ) ;
3847    insitu_ = insitu ;
3848    types.push_back( SrcType::PSON ) ;
3849    sel.setTypes( types ) ;
3850    s->setSelection( sel ) ;
3851    TableCopy::copyRows( out->table(), s->table() ) ;
3852    s->unsetSelection() ;
3853    sel.reset() ;
3854    types.clear() ;
3855   
3856    // process each on scan
3857    ArrayColumn<Float> tsysCol ;
3858    tsysCol.attach( out->table(), "TSYS" ) ;
3859    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3860      vector<float> sp = getCalibratedSpectra( out, aoff, i ) ;
3861      out->setSpectrum( sp, i ) ;
3862    }
3863
3864    // flux unit
3865    out->setFluxUnit( "K" ) ;
3866
3867    return out ;
3868  }
3869}
3870
3871CountedPtr<Scantable> STMath::cwcalfs( const CountedPtr<Scantable>& s,
3872                                       const String antname )
3873{
3874  vector<int> types ;
3875
3876  // APEX calibration mode
3877  int apexcalmode = 1 ;
3878 
3879  if ( antname.find( "APEX" ) != string::npos ) {
3880    // check if off scan exists or not
3881    STSelector sel = STSelector() ;
3882    //sel.setName( offstr1 ) ;
3883    types.push_back( SrcType::FLOOFF ) ;
3884    sel.setTypes( types ) ;
3885    try {
3886      s->setSelection( sel ) ;
3887    }
3888    catch ( AipsError &e ) {
3889      apexcalmode = 0 ;
3890    }
3891    sel.reset() ;
3892  }
3893  s->unsetSelection() ;
3894  types.clear() ;
3895
3896  vector<bool> masks = s->getMask( 0 ) ;
3897  CountedPtr<Scantable> ssig, sref ;
3898  CountedPtr<Scantable> out ;
3899
3900  if ( antname.find( "APEX" ) != string::npos ) {
3901    // APEX calibration
3902    // sky scan
3903    STSelector sel = STSelector() ;
3904    types.push_back( SrcType::FLOSKY ) ;
3905    sel.setTypes( types ) ;
3906    s->setSelection( sel ) ;
3907    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3908    CountedPtr<Scantable> askylo = average( tmp, masks, "TINT", "SCAN" ) ;
3909    s->unsetSelection() ;
3910    sel.reset() ;
3911    types.clear() ;
3912    types.push_back( SrcType::FHISKY ) ;
3913    sel.setTypes( types ) ;
3914    s->setSelection( sel ) ;
3915    tmp.clear() ;
3916    tmp.push_back( getScantable( s, false ) ) ;
3917    CountedPtr<Scantable> askyhi = average( tmp, masks, "TINT", "SCAN" ) ;
3918    s->unsetSelection() ;
3919    sel.reset() ;
3920    types.clear() ;
3921   
3922    // hot scan
3923    types.push_back( SrcType::FLOHOT ) ;
3924    sel.setTypes( types ) ;
3925    s->setSelection( sel ) ;
3926    tmp.clear() ;
3927    tmp.push_back( getScantable( s, false ) ) ;
3928    CountedPtr<Scantable> ahotlo = average( tmp, masks, "TINT", "SCAN" ) ;
3929    s->unsetSelection() ;
3930    sel.reset() ;
3931    types.clear() ;
3932    types.push_back( SrcType::FHIHOT ) ;
3933    sel.setTypes( types ) ;
3934    s->setSelection( sel ) ;
3935    tmp.clear() ;
3936    tmp.push_back( getScantable( s, false ) ) ;
3937    CountedPtr<Scantable> ahothi = average( tmp, masks, "TINT", "SCAN" ) ;
3938    s->unsetSelection() ;
3939    sel.reset() ;
3940    types.clear() ;
3941   
3942    // cold scan
3943    CountedPtr<Scantable> acoldlo, acoldhi ;
3944//     types.push_back( SrcType::FLOCOLD ) ;
3945//     sel.setTypes( types ) ;
3946//     s->setSelection( sel ) ;
3947//     tmp.clear() ;
3948//     tmp.push_back( getScantable( s, false ) ) ;
3949//     CountedPtr<Scantable> acoldlo = average( tmp, masks, "TINT", "SCAN" ) ;
3950//     s->unsetSelection() ;
3951//     sel.reset() ;
3952//     types.clear() ;
3953//     types.push_back( SrcType::FHICOLD ) ;
3954//     sel.setTypes( types ) ;
3955//     s->setSelection( sel ) ;
3956//     tmp.clear() ;
3957//     tmp.push_back( getScantable( s, false ) ) ;
3958//     CountedPtr<Scantable> acoldhi = average( tmp, masks, "TINT", "SCAN" ) ;
3959//     s->unsetSelection() ;
3960//     sel.reset() ;
3961//     types.clear() ;
3962
3963    // ref scan
3964    bool insitu = insitu_ ;
3965    insitu_ = false ;
3966    sref = getScantable( s, true ) ;
3967    insitu_ = insitu ;
3968    types.push_back( SrcType::FSLO ) ;
3969    sel.setTypes( types ) ;
3970    s->setSelection( sel ) ;
3971    TableCopy::copyRows( sref->table(), s->table() ) ;
3972    s->unsetSelection() ;
3973    sel.reset() ;
3974    types.clear() ;
3975   
3976    // sig scan
3977    insitu_ = false ;
3978    ssig = getScantable( s, true ) ;
3979    insitu_ = insitu ;
3980    types.push_back( SrcType::FSHI ) ;
3981    sel.setTypes( types ) ;
3982    s->setSelection( sel ) ;
3983    TableCopy::copyRows( ssig->table(), s->table() ) ;
3984    s->unsetSelection() ;
3985    sel.reset() ; 
3986    types.clear() ;
3987         
3988    if ( apexcalmode == 0 ) {
3989      // APEX fs data without off scan
3990      // process each sig and ref scan
3991      ArrayColumn<Float> tsysCollo ;
3992      tsysCollo.attach( ssig->table(), "TSYS" ) ;
3993      ArrayColumn<Float> tsysColhi ;
3994      tsysColhi.attach( sref->table(), "TSYS" ) ;
3995      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
3996        vector< CountedPtr<Scantable> > sky( 2 ) ;
3997        sky[0] = askylo ;
3998        sky[1] = askyhi ;
3999        vector< CountedPtr<Scantable> > hot( 2 ) ;
4000        hot[0] = ahotlo ;
4001        hot[1] = ahothi ;
4002        vector< CountedPtr<Scantable> > cold( 2 ) ;
4003        //cold[0] = acoldlo ;
4004        //cold[1] = acoldhi ;
4005        vector<float> sp = getFSCalibratedSpectra( ssig, sref, sky, hot, cold, i ) ;
4006        ssig->setSpectrum( sp, i ) ;
4007        string reftime = ssig->getTime( i ) ;
4008        vector<int> ii( 1, ssig->getIF( i ) ) ;
4009        vector<int> ib( 1, ssig->getBeam( i ) ) ;
4010        vector<int> ip( 1, ssig->getPol( i ) ) ;
4011        sel.setIFs( ii ) ;
4012        sel.setBeams( ib ) ;
4013        sel.setPolarizations( ip ) ;
4014        askylo->setSelection( sel ) ;
4015        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4016        const Vector<Float> Vtsyslo( sptsys ) ;
4017        tsysCollo.put( i, Vtsyslo ) ;
4018        askylo->unsetSelection() ;
4019        sel.reset() ;
4020        sky[0] = askyhi ;
4021        sky[1] = askylo ;
4022        hot[0] = ahothi ;
4023        hot[1] = ahotlo ;
4024        cold[0] = acoldhi ;
4025        cold[1] = acoldlo ;
4026        sp = getFSCalibratedSpectra( sref, ssig, sky, hot, cold, i ) ;
4027        sref->setSpectrum( sp, i ) ;
4028        reftime = sref->getTime( i ) ;
4029        ii[0] = sref->getIF( i )  ;
4030        ib[0] = sref->getBeam( i ) ;
4031        ip[0] = sref->getPol( i ) ;
4032        sel.setIFs( ii ) ;
4033        sel.setBeams( ib ) ;
4034        sel.setPolarizations( ip ) ;
4035        askyhi->setSelection( sel ) ;   
4036        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4037        const Vector<Float> Vtsyshi( sptsys ) ;
4038        tsysColhi.put( i, Vtsyshi ) ;
4039        askyhi->unsetSelection() ;
4040        sel.reset() ;
4041      }
4042    }
4043    else if ( apexcalmode == 1 ) {
4044      // APEX fs data with off scan
4045      // off scan
4046      types.push_back( SrcType::FLOOFF ) ;
4047      sel.setTypes( types ) ;
4048      s->setSelection( sel ) ;
4049      tmp.clear() ;
4050      tmp.push_back( getScantable( s, false ) ) ;
4051      CountedPtr<Scantable> aofflo = average( tmp, masks, "TINT", "SCAN" ) ;
4052      s->unsetSelection() ;
4053      sel.reset() ;
4054      types.clear() ;
4055      types.push_back( SrcType::FHIOFF ) ;
4056      sel.setTypes( types ) ;
4057      s->setSelection( sel ) ;
4058      tmp.clear() ;
4059      tmp.push_back( getScantable( s, false ) ) ;
4060      CountedPtr<Scantable> aoffhi = average( tmp, masks, "TINT", "SCAN" ) ;
4061      s->unsetSelection() ;
4062      sel.reset() ;
4063      types.clear() ;
4064     
4065      // process each sig and ref scan
4066      ArrayColumn<Float> tsysCollo ;
4067      tsysCollo.attach( ssig->table(), "TSYS" ) ;
4068      ArrayColumn<Float> tsysColhi ;
4069      tsysColhi.attach( sref->table(), "TSYS" ) ;
4070      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4071        vector<float> sp = getCalibratedSpectra( ssig, aofflo, askylo, ahotlo, acoldlo, i, antname ) ;
4072        ssig->setSpectrum( sp, i ) ;
4073        sp = getCalibratedSpectra( sref, aoffhi, askyhi, ahothi, acoldhi, i, antname ) ;
4074        string reftime = ssig->getTime( i ) ;
4075        vector<int> ii( 1, ssig->getIF( i ) ) ;
4076        vector<int> ib( 1, ssig->getBeam( i ) ) ;
4077        vector<int> ip( 1, ssig->getPol( i ) ) ;
4078        sel.setIFs( ii ) ;
4079        sel.setBeams( ib ) ;
4080        sel.setPolarizations( ip ) ;
4081        askylo->setSelection( sel ) ;
4082        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4083        const Vector<Float> Vtsyslo( sptsys ) ;
4084        tsysCollo.put( i, Vtsyslo ) ;
4085        askylo->unsetSelection() ;
4086        sel.reset() ;
4087        sref->setSpectrum( sp, i ) ;
4088        reftime = sref->getTime( i ) ;
4089        ii[0] = sref->getIF( i )  ;
4090        ib[0] = sref->getBeam( i ) ;
4091        ip[0] = sref->getPol( i ) ;
4092        sel.setIFs( ii ) ;
4093        sel.setBeams( ib ) ;
4094        sel.setPolarizations( ip ) ;
4095        askyhi->setSelection( sel ) ;   
4096        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4097        const Vector<Float> Vtsyshi( sptsys ) ;
4098        tsysColhi.put( i, Vtsyshi ) ;
4099        askyhi->unsetSelection() ;
4100        sel.reset() ;
4101      }
4102    }
4103  }
4104  else {
4105    // non-APEX fs data
4106    // sky scan
4107    STSelector sel = STSelector() ;
4108    types.push_back( SrcType::SKY ) ;
4109    sel.setTypes( types ) ;
4110    s->setSelection( sel ) ;
4111    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
4112    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
4113    s->unsetSelection() ;
4114    sel.reset() ;
4115    types.clear() ;
4116   
4117    // hot scan
4118    types.push_back( SrcType::HOT ) ;
4119    sel.setTypes( types ) ;
4120    s->setSelection( sel ) ;
4121    tmp.clear() ;
4122    tmp.push_back( getScantable( s, false ) ) ;
4123    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
4124    s->unsetSelection() ;
4125    sel.reset() ;
4126    types.clear() ;
4127
4128    // cold scan
4129    CountedPtr<Scantable> acold ;
4130//     types.push_back( SrcType::COLD ) ;
4131//     sel.setTypes( types ) ;
4132//     s->setSelection( sel ) ;
4133//     tmp.clear() ;
4134//     tmp.push_back( getScantable( s, false ) ) ;
4135//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCAN" ) ;
4136//     s->unsetSelection() ;
4137//     sel.reset() ;
4138//     types.clear() ;
4139   
4140    // ref scan
4141    bool insitu = insitu_ ;
4142    insitu_ = false ;
4143    sref = getScantable( s, true ) ;
4144    insitu_ = insitu ;
4145    types.push_back( SrcType::FSOFF ) ;
4146    sel.setTypes( types ) ;
4147    s->setSelection( sel ) ;
4148    TableCopy::copyRows( sref->table(), s->table() ) ;
4149    s->unsetSelection() ;
4150    sel.reset() ;
4151    types.clear() ;
4152   
4153    // sig scan
4154    insitu_ = false ;
4155    ssig = getScantable( s, true ) ;
4156    insitu_ = insitu ;
4157    types.push_back( SrcType::FSON ) ;
4158    sel.setTypes( types ) ;
4159    s->setSelection( sel ) ;
4160    TableCopy::copyRows( ssig->table(), s->table() ) ;
4161    s->unsetSelection() ;
4162    sel.reset() ;
4163    types.clear() ;
4164
4165    // process each sig and ref scan
4166    ArrayColumn<Float> tsysColsig ;
4167    tsysColsig.attach( ssig->table(), "TSYS" ) ;
4168    ArrayColumn<Float> tsysColref ;
4169    tsysColref.attach( ssig->table(), "TSYS" ) ;
4170    for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4171      vector<float> sp = getFSCalibratedSpectra( ssig, sref, asky, ahot, acold, i ) ;
4172      ssig->setSpectrum( sp, i ) ;
4173      string reftime = ssig->getTime( i ) ;
4174      vector<int> ii( 1, ssig->getIF( i ) ) ;
4175      vector<int> ib( 1, ssig->getBeam( i ) ) ;
4176      vector<int> ip( 1, ssig->getPol( i ) ) ;
4177      sel.setIFs( ii ) ;
4178      sel.setBeams( ib ) ;
4179      sel.setPolarizations( ip ) ;
4180      asky->setSelection( sel ) ;
4181      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
4182      const Vector<Float> Vtsys( sptsys ) ;
4183      tsysColsig.put( i, Vtsys ) ;
4184      asky->unsetSelection() ;
4185      sel.reset() ;
4186      sp = getFSCalibratedSpectra( sref, ssig, asky, ahot, acold, i ) ;
4187      sref->setSpectrum( sp, i ) ;
4188      tsysColref.put( i, Vtsys ) ;
4189    }
4190  }
4191
4192  // do folding if necessary
4193  Table sigtab = ssig->table() ;
4194  Table reftab = sref->table() ;
4195  ScalarColumn<uInt> sigifnoCol ;
4196  ScalarColumn<uInt> refifnoCol ;
4197  ScalarColumn<uInt> sigfidCol ;
4198  ScalarColumn<uInt> reffidCol ;
4199  Int nchan = (Int)ssig->nchan() ;
4200  sigifnoCol.attach( sigtab, "IFNO" ) ;
4201  refifnoCol.attach( reftab, "IFNO" ) ;
4202  sigfidCol.attach( sigtab, "FREQ_ID" ) ;
4203  reffidCol.attach( reftab, "FREQ_ID" ) ;
4204  Vector<uInt> sfids( sigfidCol.getColumn() ) ;
4205  Vector<uInt> rfids( reffidCol.getColumn() ) ;
4206  vector<uInt> sfids_unique ;
4207  vector<uInt> rfids_unique ;
4208  vector<uInt> sifno_unique ;
4209  vector<uInt> rifno_unique ;
4210  for ( uInt i = 0 ; i < sfids.nelements() ; i++ ) {
4211    if ( count( sfids_unique.begin(), sfids_unique.end(), sfids[i] ) == 0 ) {
4212      sfids_unique.push_back( sfids[i] ) ;
4213      sifno_unique.push_back( ssig->getIF( i ) ) ;
4214    }
4215    if ( count( rfids_unique.begin(), rfids_unique.end(),  rfids[i] ) == 0 ) {
4216      rfids_unique.push_back( rfids[i] ) ;
4217      rifno_unique.push_back( sref->getIF( i ) ) ;
4218    }
4219  }
4220  double refpix_sig, refval_sig, increment_sig ;
4221  double refpix_ref, refval_ref, increment_ref ;
4222  vector< CountedPtr<Scantable> > tmp( sfids_unique.size() ) ;
4223  for ( uInt i = 0 ; i < sfids_unique.size() ; i++ ) {
4224    ssig->frequencies().getEntry( refpix_sig, refval_sig, increment_sig, sfids_unique[i] ) ;
4225    sref->frequencies().getEntry( refpix_ref, refval_ref, increment_ref, rfids_unique[i] ) ;
4226    if ( refpix_sig == refpix_ref ) {
4227      double foffset = refval_ref - refval_sig ;
4228      int choffset = static_cast<int>(foffset/increment_sig) ;
4229      double doffset = foffset / increment_sig ;
4230      if ( abs(choffset) >= nchan ) {
4231        LogIO os( LogOrigin( "STMath", "cwcalfs", WHERE ) ) ;
4232        os << "FREQ_ID=[" << sfids_unique[i] << "," << rfids_unique[i] << "]: out-band frequency switching, no folding" << LogIO::POST ;
4233        os << "Just return signal data" << LogIO::POST ;
4234        //std::vector< CountedPtr<Scantable> > tabs ;
4235        //tabs.push_back( ssig ) ;
4236        //tabs.push_back( sref ) ;
4237        //out = merge( tabs ) ;
4238        tmp[i] = ssig ;
4239      }
4240      else {
4241        STSelector sel = STSelector() ;
4242        vector<int> v( 1, sifno_unique[i] ) ;
4243        sel.setIFs( v ) ;
4244        ssig->setSelection( sel ) ;
4245        sel.reset() ;
4246        v[0] = rifno_unique[i] ;
4247        sel.setIFs( v ) ;
4248        sref->setSelection( sel ) ;
4249        sel.reset() ;
4250        if ( antname.find( "APEX" ) != string::npos ) {
4251          tmp[i] = dofold( ssig, sref, 0.5*doffset, -0.5*doffset ) ;
4252          //tmp[i] = dofold( ssig, sref, doffset ) ;
4253        }
4254        else {
4255          tmp[i] = dofold( ssig, sref, doffset ) ;
4256        }
4257        ssig->unsetSelection() ;
4258        sref->unsetSelection() ;
4259      }
4260    }
4261  }
4262
4263  if ( tmp.size() > 1 ) {
4264    out = merge( tmp ) ;
4265  }
4266  else {
4267    out = tmp[0] ;
4268  }
4269
4270  // flux unit
4271  out->setFluxUnit( "K" ) ;
4272
4273  return out ;
4274}
4275
4276CountedPtr<Scantable> STMath::almacalfs( const CountedPtr<Scantable>& s )
4277{
4278  CountedPtr<Scantable> out ;
4279
4280  return out ;
4281}
4282
4283vector<float> STMath::getSpectrumFromTime( string reftime,
4284                                           CountedPtr<Scantable>& s,
4285                                           string mode )
4286{
4287  LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4288  vector<float> sp ;
4289
4290  if ( s->nrow() == 0 ) {
4291    os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4292    return sp ;
4293  }
4294  else if ( s->nrow() == 1 ) {
4295    //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4296    return s->getSpectrum( 0 ) ;
4297  }
4298  else {
4299    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4300    if ( mode == "before" ) {
4301      int id = -1 ;
4302      if ( idx[0] != -1 ) {
4303        id = idx[0] ;
4304      }
4305      else if ( idx[1] != -1 ) {
4306        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4307        id = idx[1] ;
4308      }
4309      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4310      sp = s->getSpectrum( id ) ;
4311    }
4312    else if ( mode == "after" ) {
4313      int id = -1 ;
4314      if ( idx[1] != -1 ) {
4315        id = idx[1] ;
4316      }
4317      else if ( idx[0] != -1 ) {
4318        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4319        id = idx[1] ;
4320      }
4321      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4322      sp = s->getSpectrum( id ) ;
4323    }
4324    else if ( mode == "nearest" ) {
4325      int id = -1 ;
4326      if ( idx[0] == -1 ) {
4327        id = idx[1] ;
4328      }
4329      else if ( idx[1] == -1 ) {
4330        id = idx[0] ;
4331      }
4332      else if ( idx[0] == idx[1] ) {
4333        id = idx[0] ;
4334      }
4335      else {
4336        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4337        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4338        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4339        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4340        double tref = getMJD( reftime ) ;
4341        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4342          id = idx[1] ;
4343        }
4344        else {
4345          id = idx[0] ;
4346        }
4347      }
4348      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4349      sp = s->getSpectrum( id ) ;     
4350    }
4351    else if ( mode == "linear" ) {
4352      if ( idx[0] == -1 ) {
4353        // use after
4354        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4355        int id = idx[1] ;
4356        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4357        sp = s->getSpectrum( id ) ;
4358      }
4359      else if ( idx[1] == -1 ) {
4360        // use before
4361        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4362        int id = idx[0] ;
4363        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4364        sp = s->getSpectrum( id ) ;
4365      }
4366      else if ( idx[0] == idx[1] ) {
4367        // use before
4368        //os << "No need to interporate." << LogIO::POST ;
4369        int id = idx[0] ;
4370        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4371        sp = s->getSpectrum( id ) ;
4372      }
4373      else {
4374        // do interpolation
4375        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4376        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4377        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4378        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4379        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4380        double tref = getMJD( reftime ) ;
4381        vector<float> sp0 = s->getSpectrum( idx[0] ) ;
4382        vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4383        for ( unsigned int i = 0 ; i < sp0.size() ; i++ ) {
4384          float v = ( sp1[i] - sp0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + sp0[i] ;
4385          sp.push_back( v ) ;
4386        }
4387      }
4388    }
4389    else {
4390      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4391    }
4392    return sp ;
4393  }
4394}
4395
4396double STMath::getMJD( string strtime )
4397{
4398  if ( strtime.find("/") == string::npos ) {
4399    // MJD time string
4400    return atof( strtime.c_str() ) ;
4401  }
4402  else {
4403    // string in YYYY/MM/DD/HH:MM:SS format
4404    uInt year = atoi( strtime.substr( 0, 4 ).c_str() ) ;
4405    uInt month = atoi( strtime.substr( 5, 2 ).c_str() ) ;
4406    uInt day = atoi( strtime.substr( 8, 2 ).c_str() ) ;
4407    uInt hour = atoi( strtime.substr( 11, 2 ).c_str() ) ;
4408    uInt minute = atoi( strtime.substr( 14, 2 ).c_str() ) ;
4409    uInt sec = atoi( strtime.substr( 17, 2 ).c_str() ) ;
4410    Time t( year, month, day, hour, minute, sec ) ;
4411    return t.modifiedJulianDay() ;
4412  }
4413}
4414
4415vector<int> STMath::getRowIdFromTime( string reftime, CountedPtr<Scantable> &s )
4416{
4417  double reft = getMJD( reftime ) ;
4418  double dtmin = 1.0e100 ;
4419  double dtmax = -1.0e100 ;
4420  vector<double> dt ;
4421  int just_before = -1 ;
4422  int just_after = -1 ;
4423  for ( int i = 0 ; i < s->nrow() ; i++ ) {
4424    dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
4425  }
4426  for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4427    if ( dt[i] > 0.0 ) {
4428      // after reftime
4429      if ( dt[i] < dtmin ) {
4430        just_after = i ;
4431        dtmin = dt[i] ;
4432      }
4433    }
4434    else if ( dt[i] < 0.0 ) {
4435      // before reftime
4436      if ( dt[i] > dtmax ) {
4437        just_before = i ;
4438        dtmax = dt[i] ;
4439      }
4440    }
4441    else {
4442      // just a reftime
4443      just_before = i ;
4444      just_after = i ;
4445      dtmax = 0 ;
4446      dtmin = 0 ;
4447      break ;
4448    }
4449  }
4450
4451  vector<int> v ;
4452  v.push_back( just_before ) ;
4453  v.push_back( just_after ) ;
4454
4455  return v ;
4456}
4457
4458vector<float> STMath::getTcalFromTime( string reftime,
4459                                       CountedPtr<Scantable>& s,
4460                                       string mode )
4461{
4462  LogIO os( LogOrigin( "STMath", "getTcalFromTime", WHERE ) ) ;
4463  vector<float> tcal ;
4464  STTcal tcalTable = s->tcal() ;
4465  String time ;
4466  Vector<Float> tcalval ;
4467  if ( s->nrow() == 0 ) {
4468    os << LogIO::SEVERE << "No row in the input scantable. Return empty tcal." << LogIO::POST ;
4469    return tcal ;
4470  }
4471  else if ( s->nrow() == 1 ) {
4472    uInt tcalid = s->getTcalId( 0 ) ;
4473    //os << "use row " << 0 << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4474    tcalTable.getEntry( time, tcalval, tcalid ) ;
4475    tcalval.tovector( tcal ) ;
4476    return tcal ;
4477  }
4478  else {
4479    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4480    if ( mode == "before" ) {
4481      int id = -1 ;
4482      if ( idx[0] != -1 ) {
4483        id = idx[0] ;
4484      }
4485      else if ( idx[1] != -1 ) {
4486        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4487        id = idx[1] ;
4488      }
4489      uInt tcalid = s->getTcalId( id ) ;
4490      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4491      tcalTable.getEntry( time, tcalval, tcalid ) ;
4492      tcalval.tovector( tcal ) ;
4493    }
4494    else if ( mode == "after" ) {
4495      int id = -1 ;
4496      if ( idx[1] != -1 ) {
4497        id = idx[1] ;
4498      }
4499      else if ( idx[0] != -1 ) {
4500        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4501        id = idx[1] ;
4502      }
4503      uInt tcalid = s->getTcalId( id ) ;
4504      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4505      tcalTable.getEntry( time, tcalval, tcalid ) ;
4506      tcalval.tovector( tcal ) ;
4507    }
4508    else if ( mode == "nearest" ) {
4509      int id = -1 ;
4510      if ( idx[0] == -1 ) {
4511        id = idx[1] ;
4512      }
4513      else if ( idx[1] == -1 ) {
4514        id = idx[0] ;
4515      }
4516      else if ( idx[0] == idx[1] ) {
4517        id = idx[0] ;
4518      }
4519      else {
4520        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4521        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4522        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4523        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4524        double tref = getMJD( reftime ) ;
4525        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4526          id = idx[1] ;
4527        }
4528        else {
4529          id = idx[0] ;
4530        }
4531      }
4532      uInt tcalid = s->getTcalId( id ) ;
4533      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4534      tcalTable.getEntry( time, tcalval, tcalid ) ;
4535      tcalval.tovector( tcal ) ;
4536    }
4537    else if ( mode == "linear" ) {
4538      if ( idx[0] == -1 ) {
4539        // use after
4540        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4541        int id = idx[1] ;
4542        uInt tcalid = s->getTcalId( id ) ;
4543        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4544        tcalTable.getEntry( time, tcalval, tcalid ) ;
4545        tcalval.tovector( tcal ) ;
4546      }
4547      else if ( idx[1] == -1 ) {
4548        // use before
4549        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4550        int id = idx[0] ;
4551        uInt tcalid = s->getTcalId( id ) ;
4552        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4553        tcalTable.getEntry( time, tcalval, tcalid ) ;
4554        tcalval.tovector( tcal ) ;
4555      }
4556      else if ( idx[0] == idx[1] ) {
4557        // use before
4558        //os << "No need to interporate." << LogIO::POST ;
4559        int id = idx[0] ;
4560        uInt tcalid = s->getTcalId( id ) ;
4561        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4562        tcalTable.getEntry( time, tcalval, tcalid ) ;
4563        tcalval.tovector( tcal ) ;
4564      }
4565      else {
4566        // do interpolation
4567        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4568        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4569        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4570        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4571        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4572        double tref = getMJD( reftime ) ;
4573        vector<float> tcal0 ;
4574        vector<float> tcal1 ;
4575        uInt tcalid0 = s->getTcalId( idx[0] ) ;
4576        uInt tcalid1 = s->getTcalId( idx[1] ) ;
4577        tcalTable.getEntry( time, tcalval, tcalid0 ) ;
4578        tcalval.tovector( tcal0 ) ;
4579        tcalTable.getEntry( time, tcalval, tcalid1 ) ;
4580        tcalval.tovector( tcal1 ) ;       
4581        for ( unsigned int i = 0 ; i < tcal0.size() ; i++ ) {
4582          float v = ( tcal1[i] - tcal0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tcal0[i] ;
4583          tcal.push_back( v ) ;
4584        }
4585      }
4586    }
4587    else {
4588      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4589    }
4590    return tcal ;
4591  }
4592}
4593
4594vector<float> STMath::getTsysFromTime( string reftime,
4595                                       CountedPtr<Scantable>& s,
4596                                       string mode )
4597{
4598  LogIO os( LogOrigin( "STMath", "getTsysFromTime", WHERE ) ) ;
4599  ArrayColumn<Float> tsysCol ;
4600  tsysCol.attach( s->table(), "TSYS" ) ;
4601  vector<float> tsys ;
4602  String time ;
4603  Vector<Float> tsysval ;
4604  if ( s->nrow() == 0 ) {
4605    os << LogIO::SEVERE << "No row in the input scantable. Return empty tsys." << LogIO::POST ;
4606    return tsys ;
4607  }
4608  else if ( s->nrow() == 1 ) {
4609    //os << "use row " << 0 << LogIO::POST ;
4610    tsysval = tsysCol( 0 ) ;
4611    tsysval.tovector( tsys ) ;
4612    return tsys ;
4613  }
4614  else {
4615    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4616    if ( mode == "before" ) {
4617      int id = -1 ;
4618      if ( idx[0] != -1 ) {
4619        id = idx[0] ;
4620      }
4621      else if ( idx[1] != -1 ) {
4622        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4623        id = idx[1] ;
4624      }
4625      //os << "use row " << id << LogIO::POST ;
4626      tsysval = tsysCol( id ) ;
4627      tsysval.tovector( tsys ) ;
4628    }
4629    else if ( mode == "after" ) {
4630      int id = -1 ;
4631      if ( idx[1] != -1 ) {
4632        id = idx[1] ;
4633      }
4634      else if ( idx[0] != -1 ) {
4635        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4636        id = idx[1] ;
4637      }
4638      //os << "use row " << id << LogIO::POST ;
4639      tsysval = tsysCol( id ) ;
4640      tsysval.tovector( tsys ) ;
4641    }
4642    else if ( mode == "nearest" ) {
4643      int id = -1 ;
4644      if ( idx[0] == -1 ) {
4645        id = idx[1] ;
4646      }
4647      else if ( idx[1] == -1 ) {
4648        id = idx[0] ;
4649      }
4650      else if ( idx[0] == idx[1] ) {
4651        id = idx[0] ;
4652      }
4653      else {
4654        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4655        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4656        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4657        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4658        double tref = getMJD( reftime ) ;
4659        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4660          id = idx[1] ;
4661        }
4662        else {
4663          id = idx[0] ;
4664        }
4665      }
4666      //os << "use row " << id << LogIO::POST ;
4667      tsysval = tsysCol( id ) ;
4668      tsysval.tovector( tsys ) ;
4669    }
4670    else if ( mode == "linear" ) {
4671      if ( idx[0] == -1 ) {
4672        // use after
4673        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4674        int id = idx[1] ;
4675        //os << "use row " << id << LogIO::POST ;
4676        tsysval = tsysCol( id ) ;
4677        tsysval.tovector( tsys ) ;
4678      }
4679      else if ( idx[1] == -1 ) {
4680        // use before
4681        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4682        int id = idx[0] ;
4683        //os << "use row " << id << LogIO::POST ;
4684        tsysval = tsysCol( id ) ;
4685        tsysval.tovector( tsys ) ;
4686      }
4687      else if ( idx[0] == idx[1] ) {
4688        // use before
4689        //os << "No need to interporate." << LogIO::POST ;
4690        int id = idx[0] ;
4691        //os << "use row " << id << LogIO::POST ;
4692        tsysval = tsysCol( id ) ;
4693        tsysval.tovector( tsys ) ;
4694      }
4695      else {
4696        // do interpolation
4697        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4698        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4699        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4700        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4701        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4702        double tref = getMJD( reftime ) ;
4703        vector<float> tsys0 ;
4704        vector<float> tsys1 ;
4705        tsysval = tsysCol( idx[0] ) ;
4706        tsysval.tovector( tsys0 ) ;
4707        tsysval = tsysCol( idx[1] ) ;
4708        tsysval.tovector( tsys1 ) ;       
4709        for ( unsigned int i = 0 ; i < tsys0.size() ; i++ ) {
4710          float v = ( tsys1[i] - tsys0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tsys0[i] ;
4711          tsys.push_back( v ) ;
4712        }
4713      }
4714    }
4715    else {
4716      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4717    }
4718    return tsys ;
4719  }
4720}
4721
4722vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4723                                            CountedPtr<Scantable>& off,
4724                                            CountedPtr<Scantable>& sky,
4725                                            CountedPtr<Scantable>& hot,
4726                                            CountedPtr<Scantable>& cold,
4727                                            int index,
4728                                            string antname )
4729{
4730  string reftime = on->getTime( index ) ;
4731  vector<int> ii( 1, on->getIF( index ) ) ;
4732  vector<int> ib( 1, on->getBeam( index ) ) ;
4733  vector<int> ip( 1, on->getPol( index ) ) ;
4734  vector<int> ic( 1, on->getScan( index ) ) ;
4735  STSelector sel = STSelector() ;
4736  sel.setIFs( ii ) ;
4737  sel.setBeams( ib ) ;
4738  sel.setPolarizations( ip ) ;
4739  sky->setSelection( sel ) ;
4740  hot->setSelection( sel ) ;
4741  //cold->setSelection( sel ) ;
4742  off->setSelection( sel ) ;
4743  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4744  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4745  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4746  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4747  vector<float> spec = on->getSpectrum( index ) ;
4748  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4749  vector<float> sp( tcal.size() ) ;
4750  if ( antname.find( "APEX" ) != string::npos ) {
4751    // using gain array
4752    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4753      float v = ( ( spec[j] - spoff[j] ) / spoff[j] )
4754        * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4755      sp[j] = v ;
4756    }
4757  }
4758  else {
4759    // Chopper-Wheel calibration (Ulich & Haas 1976)
4760    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4761      float v = ( spec[j] - spoff[j] ) / ( sphot[j] - spsky[j] ) * tcal[j] ;
4762      sp[j] = v ;
4763    }
4764  }
4765  sel.reset() ;
4766  sky->unsetSelection() ;
4767  hot->unsetSelection() ;
4768  //cold->unsetSelection() ;
4769  off->unsetSelection() ;
4770
4771  return sp ;
4772}
4773
4774vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4775                                            CountedPtr<Scantable>& off,
4776                                            int index )
4777{
4778  string reftime = on->getTime( index ) ;
4779  vector<int> ii( 1, on->getIF( index ) ) ;
4780  vector<int> ib( 1, on->getBeam( index ) ) ;
4781  vector<int> ip( 1, on->getPol( index ) ) ;
4782  vector<int> ic( 1, on->getScan( index ) ) ;
4783  STSelector sel = STSelector() ;
4784  sel.setIFs( ii ) ;
4785  sel.setBeams( ib ) ;
4786  sel.setPolarizations( ip ) ;
4787  off->setSelection( sel ) ;
4788  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4789  vector<float> spec = on->getSpectrum( index ) ;
4790  //vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4791  //vector<float> tsys = on->getTsysVec( index ) ;
4792  ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
4793  Vector<Float> tsys = tsysCol( index ) ;
4794  vector<float> sp( spec.size() ) ;
4795  // ALMA Calibration
4796  //
4797  // Ta* = Tsys * ( ON - OFF ) / OFF
4798  //
4799  // 2010/01/07 Takeshi Nakazato
4800  unsigned int tsyssize = tsys.nelements() ;
4801  unsigned int spsize = sp.size() ;
4802  for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
4803    float tscale = 0.0 ;
4804    if ( tsyssize == spsize )
4805      tscale = tsys[j] ;
4806    else
4807      tscale = tsys[0] ;
4808    float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
4809    sp[j] = v ;
4810  }
4811  sel.reset() ;
4812  off->unsetSelection() ;
4813
4814  return sp ;
4815}
4816
4817vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4818                                              CountedPtr<Scantable>& ref,
4819                                              CountedPtr<Scantable>& sky,
4820                                              CountedPtr<Scantable>& hot,
4821                                              CountedPtr<Scantable>& cold,
4822                                              int index )
4823{
4824  string reftime = sig->getTime( index ) ;
4825  vector<int> ii( 1, sig->getIF( index ) ) ;
4826  vector<int> ib( 1, sig->getBeam( index ) ) ;
4827  vector<int> ip( 1, sig->getPol( index ) ) ;
4828  vector<int> ic( 1, sig->getScan( index ) ) ;
4829  STSelector sel = STSelector() ;
4830  sel.setIFs( ii ) ;
4831  sel.setBeams( ib ) ;
4832  sel.setPolarizations( ip ) ;
4833  sky->setSelection( sel ) ;
4834  hot->setSelection( sel ) ;
4835  //cold->setSelection( sel ) ;
4836  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4837  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4838  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4839  vector<float> spref = ref->getSpectrum( index ) ;
4840  vector<float> spsig = sig->getSpectrum( index ) ;
4841  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4842  vector<float> sp( tcal.size() ) ;
4843  for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4844    float v = tcal[j] * spsky[j] / ( sphot[j] - spsky[j] ) * ( spsig[j] - spref[j] ) / spref[j] ;
4845    sp[j] = v ;
4846  }
4847  sel.reset() ;
4848  sky->unsetSelection() ;
4849  hot->unsetSelection() ;
4850  //cold->unsetSelection() ;
4851
4852  return sp ;
4853}
4854
4855vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4856                                              CountedPtr<Scantable>& ref,
4857                                              vector< CountedPtr<Scantable> >& sky,
4858                                              vector< CountedPtr<Scantable> >& hot,
4859                                              vector< CountedPtr<Scantable> >& cold,
4860                                              int index )
4861{
4862  string reftime = sig->getTime( index ) ;
4863  vector<int> ii( 1, sig->getIF( index ) ) ;
4864  vector<int> ib( 1, sig->getBeam( index ) ) ;
4865  vector<int> ip( 1, sig->getPol( index ) ) ;
4866  vector<int> ic( 1, sig->getScan( index ) ) ;
4867  STSelector sel = STSelector() ;
4868  sel.setIFs( ii ) ;
4869  sel.setBeams( ib ) ;
4870  sel.setPolarizations( ip ) ;
4871  sky[0]->setSelection( sel ) ;
4872  hot[0]->setSelection( sel ) ;
4873  //cold[0]->setSelection( sel ) ;
4874  vector<float> spskys = getSpectrumFromTime( reftime, sky[0], "linear" ) ;
4875  vector<float> sphots = getSpectrumFromTime( reftime, hot[0], "linear" ) ;
4876  //vector<float> spcolds = getSpectrumFromTime( reftime, cold[0], "linear" ) ;
4877  vector<float> tcals = getTcalFromTime( reftime, sky[0], "linear" ) ;
4878  sel.reset() ;
4879  ii[0] = ref->getIF( index ) ;
4880  sel.setIFs( ii ) ;
4881  sel.setBeams( ib ) ;
4882  sel.setPolarizations( ip ) ;
4883  sky[1]->setSelection( sel ) ;
4884  hot[1]->setSelection( sel ) ;
4885  //cold[1]->setSelection( sel ) ;
4886  vector<float> spskyr = getSpectrumFromTime( reftime, sky[1], "linear" ) ;
4887  vector<float> sphotr = getSpectrumFromTime( reftime, hot[1], "linear" ) ;
4888  //vector<float> spcoldr = getSpectrumFromTime( reftime, cold[1], "linear" ) ;
4889  vector<float> tcalr = getTcalFromTime( reftime, sky[1], "linear" ) ; 
4890  vector<float> spref = ref->getSpectrum( index ) ;
4891  vector<float> spsig = sig->getSpectrum( index ) ;
4892  vector<float> sp( tcals.size() ) ;
4893  for ( unsigned int j = 0 ; j < tcals.size() ; j++ ) {
4894    float v = tcals[j] * spsig[j] / ( sphots[j] - spskys[j] ) - tcalr[j] * spref[j] / ( sphotr[j] - spskyr[j] ) ;
4895    sp[j] = v ;
4896  }
4897  sel.reset() ;
4898  sky[0]->unsetSelection() ;
4899  hot[0]->unsetSelection() ;
4900  //cold[0]->unsetSelection() ;
4901  sky[1]->unsetSelection() ;
4902  hot[1]->unsetSelection() ;
4903  //cold[1]->unsetSelection() ;
4904
4905  return sp ;
4906}
Note: See TracBrowser for help on using the repository browser.