source: branches/hpc33/src/STMath.cpp @ 2449

Last change on this file since 2449 was 2449, checked in by KohjiNakamura, 12 years ago

probably faster TableExprNode?

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 177.2 KB
Line 
1//
2// C++ Implementation: STMath
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2006
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12
13#include <sstream>
14
15#include <casa/iomanip.h>
16#include <casa/Arrays/MaskArrLogi.h>
17#include <casa/Arrays/MaskArrMath.h>
18#include <casa/Arrays/ArrayLogical.h>
19#include <casa/Arrays/ArrayMath.h>
20#include <casa/Arrays/Slice.h>
21#include <casa/Arrays/Slicer.h>
22#include <casa/BasicSL/String.h>
23#include <casa/Containers/Block.h>
24#include <casa/Containers/RecordField.h>
25#include <casa/Exceptions/Error.h>
26#include <casa/Logging/LogIO.h>
27
28#include <coordinates/Coordinates/CoordinateSystem.h>
29#include <coordinates/Coordinates/CoordinateUtil.h>
30#include <coordinates/Coordinates/FrequencyAligner.h>
31#include <coordinates/Coordinates/SpectralCoordinate.h>
32
33#include <lattices/Lattices/LatticeUtilities.h>
34
35#include <scimath/Functionals/Polynomial.h>
36#include <scimath/Mathematics/Convolver.h>
37#include <scimath/Mathematics/VectorKernel.h>
38
39#include <tables/Tables/ExprNode.h>
40#include <tables/Tables/ReadAsciiTable.h>
41#include <tables/Tables/TableCopy.h>
42#include <tables/Tables/TableIter.h>
43#include <tables/Tables/TableParse.h>
44#include <tables/Tables/TableRecord.h>
45#include <tables/Tables/TableRow.h>
46#include <tables/Tables/TableVector.h>
47#include <tables/Tables/TabVecMath.h>
48
49#include <atnf/PKSIO/SrcType.h>
50
51#include "RowAccumulator.h"
52#include "STAttr.h"
53#include "STMath.h"
54#include "STSelector.h"
55
56using namespace casa;
57using namespace asap;
58
59class TableExprPredicate {
60public:
61        virtual ~TableExprPredicate() {}
62        virtual Bool match(Table const& table, const TableExprId& id) const = 0;
63};
64
65class CustomTableExprNodeRep :public TableExprNodeRep {
66        TableExprPredicate const & pred_;
67public:
68        CustomTableExprNodeRep(const Table &table,
69                TableExprPredicate const & pred)
70        :TableExprNodeRep(TableExprNodeRep::NTBool,
71                TableExprNodeRep::VTScalar,
72                TableExprNodeRep::OtUndef,
73                table),
74         pred_(pred) {}
75        virtual Bool getBool(const TableExprId& id) {
76                return pred_.match(table(), id);
77        }
78};
79
80class CustomTableExprNode: public TableExprNode {
81        CustomTableExprNodeRep nodeRep;
82public:
83        CustomTableExprNode(Table const &table, TableExprPredicate const &pred)
84        : nodeRep(table, pred), TableExprNode(&nodeRep) {
85        }
86        virtual ~CustomTableExprNode() {
87        }
88};
89
90template<typename T, size_t N>
91class MyPredicate: public TableExprPredicate {
92        Table const & table;
93        ROScalarColumn<T> *cols[N];
94        uInt const *values;
95public:
96        virtual ~MyPredicate() {
97                for (size_t i = 0; i < N; i++) {
98                        delete cols[i];
99                }
100        }
101        MyPredicate(Table const &table_,
102                char const*const colNames[],
103                uInt const values_[]):
104                        table(table_), values(values_) {
105                for (size_t i = 0; i < N; i++) {
106                        cols[i] = new ROScalarColumn<T>(table, colNames[i]);
107                }
108        }
109        virtual Bool match(Table const& table, const TableExprId& id) const {
110                for (size_t i = 0; i < N; i++) {
111                        T v;
112                        cols[i]->get(id.rownr(), v);
113                        if (v != values[i]) {
114                                return false;
115                        }
116                }
117                return true;
118        }
119};
120
121// 2012/02/17 TN
122// Since STGrid is implemented, average doesn't consider direction
123// when accumulating
124// tolerance for direction comparison (rad)
125// #define TOL_OTF    1.0e-15
126// #define TOL_POINT  2.9088821e-4  // 1 arcmin
127
128STMath::STMath(bool insitu) :
129  insitu_(insitu)
130{
131}
132
133
134STMath::~STMath()
135{
136}
137
138CountedPtr<Scantable>
139STMath::average( const std::vector<CountedPtr<Scantable> >& in,
140                 const std::vector<bool>& mask,
141                 const std::string& weight,
142                 const std::string& avmode)
143{
144  LogIO os( LogOrigin( "STMath", "average()", WHERE ) ) ;
145  if ( avmode == "SCAN" && in.size() != 1 )
146    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
147                    "Use merge first."));
148  WeightType wtype = stringToWeight(weight);
149
150  // 2012/02/17 TN
151  // Since STGrid is implemented, average doesn't consider direction
152  // when accumulating
153  // check if OTF observation
154//   String obstype = in[0]->getHeader().obstype ;
155//   Double tol = 0.0 ;
156//   if ( (obstype.find( "OTF" ) != String::npos) || (obstype.find( "OBSERVE_TARGET" ) != String::npos) ) {
157//     tol = TOL_OTF ;
158//   }
159//   else {
160//     tol = TOL_POINT ;
161//   }
162
163  // output
164  // clone as this is non insitu
165  bool insitu = insitu_;
166  setInsitu(false);
167  CountedPtr< Scantable > out = getScantable(in[0], true);
168  setInsitu(insitu);
169  std::vector<CountedPtr<Scantable> >::const_iterator stit = in.begin();
170  ++stit;
171  while ( stit != in.end() ) {
172    out->appendToHistoryTable((*stit)->history());
173    ++stit;
174  }
175
176  Table& tout = out->table();
177
178  /// @todo check if all scantables are conformant
179
180  ArrayColumn<Float> specColOut(tout,"SPECTRA");
181  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
182  ArrayColumn<Float> tsysColOut(tout,"TSYS");
183  ScalarColumn<Double> mjdColOut(tout,"TIME");
184  ScalarColumn<Double> intColOut(tout,"INTERVAL");
185  ScalarColumn<uInt> cycColOut(tout,"CYCLENO");
186  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
187
188  // set up the output table rows. These are based on the structure of the
189  // FIRST scantable in the vector
190  const Table& baset = in[0]->table();
191
192  Block<String> cols(3);
193  cols[0] = String("BEAMNO");
194  cols[1] = String("IFNO");
195  cols[2] = String("POLNO");
196  if ( avmode == "SOURCE" ) {
197    cols.resize(4);
198    cols[3] = String("SRCNAME");
199  }
200  if ( avmode == "SCAN"  && in.size() == 1) {
201    //cols.resize(4);
202    //cols[3] = String("SCANNO");
203    cols.resize(5);
204    cols[3] = String("SRCNAME");
205    cols[4] = String("SCANNO");
206  }
207  uInt outrowCount = 0;
208  TableIterator iter(baset, cols);
209//   int count = 0 ;
210  while (!iter.pastEnd()) {
211    Table subt = iter.table();
212    // copy the first row of this selection into the new table
213    tout.addRow();
214    TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
215    // re-index to 0
216    if ( avmode != "SCAN" && avmode != "SOURCE" ) {
217      scanColOut.put(outrowCount, uInt(0));
218    }
219    ++outrowCount;
220    // 2012/02/17 TN
221    // Since STGrid is implemented, average doesn't consider direction
222    // when accumulating
223//     MDirection::ScalarColumn dircol ;
224//     dircol.attach( subt, "DIRECTION" ) ;
225//     Int length = subt.nrow() ;
226//     vector< Vector<Double> > dirs ;
227//     vector<int> indexes ;
228//     for ( Int i = 0 ; i < length ; i++ ) {
229//       Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
230//       //os << << count++ << ": " ;
231//       //os << "[" << t[0] << "," << t[1] << "]" << LogIO::POST ;
232//       bool adddir = true ;
233//       for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
234//         //if ( allTrue( t == dirs[j] ) ) {
235//         Double dx = t[0] - dirs[j][0] ;
236//         Double dy = t[1] - dirs[j][1] ;
237//         Double dd = sqrt( dx * dx + dy * dy ) ;
238//         //if ( allNearAbs( t, dirs[j], tol ) ) {
239//         if ( dd <= tol ) {
240//           adddir = false ;
241//           break ;
242//         }
243//       }
244//       if ( adddir ) {
245//         dirs.push_back( t ) ;
246//         indexes.push_back( i ) ;
247//       }
248//     }
249//     uInt rowNum = dirs.size() ;
250//     tout.addRow( rowNum ) ;
251//     for ( uInt i = 0 ; i < rowNum ; i++ ) {
252//       TableCopy::copyRows( tout, subt, outrowCount+i, indexes[i], 1 ) ;
253//       // re-index to 0
254//       if ( avmode != "SCAN" && avmode != "SOURCE" ) {
255//         scanColOut.put(outrowCount+i, uInt(0));
256//       }       
257//     }
258//     outrowCount += rowNum ;
259    ++iter;
260  }
261  RowAccumulator acc(wtype);
262  Vector<Bool> cmask(mask);
263  acc.setUserMask(cmask);
264  ROTableRow row(tout);
265  ROArrayColumn<Float> specCol, tsysCol;
266  ROArrayColumn<uChar> flagCol;
267  ROScalarColumn<Double> mjdCol, intCol;
268  ROScalarColumn<Int> scanIDCol;
269
270  Vector<uInt> rowstodelete;
271
272  for (uInt i=0; i < tout.nrow(); ++i) {
273    for ( int j=0; j < int(in.size()); ++j ) {
274      const Table& tin = in[j]->table();
275      const TableRecord& rec = row.get(i);
276      ROScalarColumn<Double> tmp(tin, "TIME");
277      Double td;tmp.get(0,td);
278
279#if 1
280      static char const*const colNames1[] = { "BEAMNO", "IFNO", "POLNO" };
281      uInt const values1[] = { rec.asuInt("BEAMNO"), rec.asuInt("IFNO"), rec.asuInt("POLNO") };
282      MyPredicate<uInt, 3> myPred(tin, colNames1, values1);
283      CustomTableExprNode myExpr(tin, myPred);
284      Table basesubt = tin(myExpr);
285#else
286      Table basesubt = tin( tin.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
287                         && tin.col("IFNO") == Int(rec.asuInt("IFNO"))
288                         && tin.col("POLNO") == Int(rec.asuInt("POLNO")) );
289#endif
290      Table subt;
291      if ( avmode == "SOURCE") {
292        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME"));
293      } else if (avmode == "SCAN") {
294        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME")
295                      && basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) );
296      } else {
297        subt = basesubt;
298      }
299
300      // 2012/02/17 TN
301      // Since STGrid is implemented, average doesn't consider direction
302      // when accumulating
303//       vector<uInt> removeRows ;
304//       uInt nrsubt = subt.nrow() ;
305//       for ( uInt irow = 0 ; irow < nrsubt ; irow++ ) {
306//         //if ( !allTrue((subt.col("DIRECTION").getArrayDouble(TableExprId(irow)))==rec.asArrayDouble("DIRECTION")) ) {
307//         Vector<Double> x0 = (subt.col("DIRECTION").getArrayDouble(TableExprId(irow))) ;
308//         Vector<Double> x1 = rec.asArrayDouble("DIRECTION") ;
309//         double dx = x0[0] - x1[0];
310//         double dy = x0[1] - x1[1];
311//         Double dd = sqrt( dx * dx + dy * dy ) ;
312//         //if ( !allNearAbs((subt.col("DIRECTION").getArrayDouble(TableExprId(irow))), rec.asArrayDouble("DIRECTION"), tol ) ) {
313//         if ( dd > tol ) {
314//           removeRows.push_back( irow ) ;
315//         }
316//       }
317//       if ( removeRows.size() != 0 ) {
318//         subt.removeRow( removeRows ) ;
319//       }
320     
321//       if ( nrsubt == removeRows.size() )
322//         throw(AipsError("Averaging data is empty.")) ;
323
324      specCol.attach(subt,"SPECTRA");
325      flagCol.attach(subt,"FLAGTRA");
326      tsysCol.attach(subt,"TSYS");
327      intCol.attach(subt,"INTERVAL");
328      mjdCol.attach(subt,"TIME");
329      Vector<Float> spec,tsys;
330      Vector<uChar> flag;
331      Double inter,time;
332      for (uInt k = 0; k < subt.nrow(); ++k ) {
333        flagCol.get(k, flag);
334        Vector<Bool> bflag(flag.shape());
335        convertArray(bflag, flag);
336        /*
337        if ( allEQ(bflag, True) ) {
338        continue;//don't accumulate
339        }
340        */
341        specCol.get(k, spec);
342        tsysCol.get(k, tsys);
343        intCol.get(k, inter);
344        mjdCol.get(k, time);
345        // spectrum has to be added last to enable weighting by the other values
346        acc.add(spec, !bflag, tsys, inter, time);
347      }
348
349      // If there exists a channel at which all the input spectra are masked,
350      // spec has 'nan' values for that channel and it may affect the following
351      // processes. To avoid this, replacing 'nan' values in spec with
352      // weighted-mean of all spectra in the following line.
353      // (done for CAS-2776, 2011/04/07 by Wataru Kawasaki)
354      acc.replaceNaN();
355    }
356    const Vector<Bool>& msk = acc.getMask();
357    if ( allEQ(msk, False) ) {
358      uint n = rowstodelete.nelements();
359      rowstodelete.resize(n+1, True);
360      rowstodelete[n] = i;
361      continue;
362    }
363    //write out
364    if (acc.state()) {
365      Vector<uChar> flg(msk.shape());
366      convertArray(flg, !msk);
367      for (uInt k = 0; k < flg.nelements(); ++k) {
368        uChar userFlag = 1 << 7;
369        if (msk[k]==True) userFlag = 0 << 7;
370        flg(k) = userFlag;
371      }
372
373      flagColOut.put(i, flg);
374      specColOut.put(i, acc.getSpectrum());
375      tsysColOut.put(i, acc.getTsys());
376      intColOut.put(i, acc.getInterval());
377      mjdColOut.put(i, acc.getTime());
378      // we should only have one cycle now -> reset it to be 0
379      // frequency switched data has different CYCLENO for different IFNO
380      // which requires resetting this value
381      cycColOut.put(i, uInt(0));
382    } else {
383      ostringstream oss;
384      oss << "For output row="<<i<<", all input rows of data are flagged. no averaging" << endl;
385      pushLog(String(oss));
386    }
387    acc.reset();
388  }
389
390  if (rowstodelete.nelements() > 0) {
391    os << rowstodelete << LogIO::POST ;
392    tout.removeRow(rowstodelete);
393    if (tout.nrow() == 0) {
394      throw(AipsError("Can't average fully flagged data."));
395    }
396  }
397  return out;
398}
399
400CountedPtr< Scantable >
401STMath::averageChannel( const CountedPtr < Scantable > & in,
402                          const std::string & mode,
403                          const std::string& avmode )
404{
405  (void) mode; // currently unused
406  // 2012/02/17 TN
407  // Since STGrid is implemented, average doesn't consider direction
408  // when accumulating
409  // check if OTF observation
410//   String obstype = in->getHeader().obstype ;
411//   Double tol = 0.0 ;
412//   if ( obstype.find( "OTF" ) != String::npos ) {
413//     tol = TOL_OTF ;
414//   }
415//   else {
416//     tol = TOL_POINT ;
417//   }
418
419  // clone as this is non insitu
420  bool insitu = insitu_;
421  setInsitu(false);
422  CountedPtr< Scantable > out = getScantable(in, true);
423  setInsitu(insitu);
424  Table& tout = out->table();
425  ArrayColumn<Float> specColOut(tout,"SPECTRA");
426  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
427  ArrayColumn<Float> tsysColOut(tout,"TSYS");
428  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
429  ScalarColumn<Double> intColOut(tout, "INTERVAL");
430  Table tmp = in->table().sort("BEAMNO");
431  Block<String> cols(3);
432  cols[0] = String("BEAMNO");
433  cols[1] = String("IFNO");
434  cols[2] = String("POLNO");
435  if ( avmode == "SCAN") {
436    cols.resize(4);
437    cols[3] = String("SCANNO");
438  }
439  uInt outrowCount = 0;
440  uChar userflag = 1 << 7;
441  TableIterator iter(tmp, cols);
442  while (!iter.pastEnd()) {
443    Table subt = iter.table();
444    ROArrayColumn<Float> specCol, tsysCol;
445    ROArrayColumn<uChar> flagCol;
446    ROScalarColumn<Double> intCol(subt, "INTERVAL");
447    specCol.attach(subt,"SPECTRA");
448    flagCol.attach(subt,"FLAGTRA");
449    tsysCol.attach(subt,"TSYS");
450
451    tout.addRow();
452    TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
453    if ( avmode != "SCAN") {
454      scanColOut.put(outrowCount, uInt(0));
455    }
456    Vector<Float> tmp;
457    specCol.get(0, tmp);
458    uInt nchan = tmp.nelements();
459    // have to do channel by channel here as MaskedArrMath
460    // doesn't have partialMedians
461    Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
462    Vector<Float> outspec(nchan);
463    Vector<uChar> outflag(nchan,0);
464    Vector<Float> outtsys(1);/// @fixme when tsys is channel based
465    for (uInt i=0; i<nchan; ++i) {
466      Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
467      MaskedArray<Float> ma = maskedArray(specs,flags);
468      outspec[i] = median(ma);
469      if ( allEQ(ma.getMask(), False) )
470        outflag[i] = userflag;// flag data
471    }
472    outtsys[0] = median(tsysCol.getColumn());
473    specColOut.put(outrowCount, outspec);
474    flagColOut.put(outrowCount, outflag);
475    tsysColOut.put(outrowCount, outtsys);
476    Double intsum = sum(intCol.getColumn());
477    intColOut.put(outrowCount, intsum);
478    ++outrowCount;
479    ++iter;
480
481    // 2012/02/17 TN
482    // Since STGrid is implemented, average doesn't consider direction
483    // when accumulating
484//     MDirection::ScalarColumn dircol ;
485//     dircol.attach( subt, "DIRECTION" ) ;
486//     Int length = subt.nrow() ;
487//     vector< Vector<Double> > dirs ;
488//     vector<int> indexes ;
489//     // Handle MX mode averaging
490//     if (in->nbeam() > 1 ) {     
491//       length = 1;
492//     }
493//     for ( Int i = 0 ; i < length ; i++ ) {
494//       Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
495//       bool adddir = true ;
496//       for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
497//         //if ( allTrue( t == dirs[j] ) ) {
498//         Double dx = t[0] - dirs[j][0] ;
499//         Double dy = t[1] - dirs[j][1] ;
500//         Double dd = sqrt( dx * dx + dy * dy ) ;
501//         //if ( allNearAbs( t, dirs[j], tol ) ) {
502//         if ( dd <= tol ) {
503//           adddir = false ;
504//           break ;
505//         }
506//       }
507//       if ( adddir ) {
508//         dirs.push_back( t ) ;
509//         indexes.push_back( i ) ;
510//       }
511//     }
512//     uInt rowNum = dirs.size() ;
513//     tout.addRow( rowNum );
514//     for ( uInt i = 0 ; i < rowNum ; i++ ) {
515//       TableCopy::copyRows(tout, subt, outrowCount+i, indexes[i], 1) ;
516//       // Handle MX mode averaging
517//       if ( avmode != "SCAN") {
518//         scanColOut.put(outrowCount+i, uInt(0));
519//       }
520//     }
521//     MDirection::ScalarColumn dircolOut ;
522//     dircolOut.attach( tout, "DIRECTION" ) ;
523//     for ( uInt irow = 0 ; irow < rowNum ; irow++ ) {
524//       Vector<Double> t = \
525//      dircolOut(outrowCount+irow).getAngle(Unit(String("rad"))).getValue() ;
526//       Vector<Float> tmp;
527//       specCol.get(0, tmp);
528//       uInt nchan = tmp.nelements();
529//       // have to do channel by channel here as MaskedArrMath
530//       // doesn't have partialMedians
531//       Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
532//       // mask spectra for different DIRECTION
533//       for ( uInt jrow = 0 ; jrow < subt.nrow() ; jrow++ ) {
534//         Vector<Double> direction = \
535//        dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
536//         //if ( t[0] != direction[0] || t[1] != direction[1] ) {
537//         Double dx = t[0] - direction[0];
538//         Double dy = t[1] - direction[1];
539//         Double dd = sqrt(dx*dx + dy*dy);
540//         //if ( !allNearAbs( t, direction, tol ) ) {
541//         if ( dd > tol &&  in->nbeam() < 2 ) {
542//           flags[jrow] = userflag ;
543//         }
544//       }
545//       Vector<Float> outspec(nchan);
546//       Vector<uChar> outflag(nchan,0);
547//       Vector<Float> outtsys(1);/// @fixme when tsys is channel based
548//       for (uInt i=0; i<nchan; ++i) {
549//         Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
550//         MaskedArray<Float> ma = maskedArray(specs,flags);
551//         outspec[i] = median(ma);
552//         if ( allEQ(ma.getMask(), False) )
553//           outflag[i] = userflag;// flag data
554//       }
555//       outtsys[0] = median(tsysCol.getColumn());
556//       specColOut.put(outrowCount+irow, outspec);
557//       flagColOut.put(outrowCount+irow, outflag);
558//       tsysColOut.put(outrowCount+irow, outtsys);
559//       Vector<Double> integ = intCol.getColumn() ;
560//       MaskedArray<Double> mi = maskedArray( integ, flags ) ;
561//       Double intsum = sum(mi);
562//       intColOut.put(outrowCount+irow, intsum);
563//     }
564//     outrowCount += rowNum ;
565//     ++iter;
566  }
567  return out;
568}
569
570CountedPtr< Scantable > STMath::getScantable(const CountedPtr< Scantable >& in,
571                                             bool droprows)
572{
573  if (insitu_) {
574    return in;
575  }
576  else {
577    // clone
578    return CountedPtr<Scantable>(new Scantable(*in, Bool(droprows)));
579  }
580}
581
582CountedPtr< Scantable > STMath::unaryOperate( const CountedPtr< Scantable >& in,
583                                              float val,
584                                              const std::string& mode,
585                                              bool tsys )
586{
587  CountedPtr< Scantable > out = getScantable(in, false);
588  Table& tab = out->table();
589  ArrayColumn<Float> specCol(tab,"SPECTRA");
590  ArrayColumn<Float> tsysCol(tab,"TSYS");
591  if (mode=="DIV") val = 1.0/val ;
592  else if (mode=="SUB") val *= -1.0 ;
593  for (uInt i=0; i<tab.nrow(); ++i) {
594    Vector<Float> spec;
595    Vector<Float> ts;
596    specCol.get(i, spec);
597    tsysCol.get(i, ts);
598    if (mode == "MUL" || mode == "DIV") {
599      //if (mode == "DIV") val = 1.0/val;
600      spec *= val;
601      specCol.put(i, spec);
602      if ( tsys ) {
603        ts *= val;
604        tsysCol.put(i, ts);
605      }
606    } else if ( mode == "ADD"  || mode == "SUB") {
607      //if (mode == "SUB") val *= -1.0;
608      spec += val;
609      specCol.put(i, spec);
610      if ( tsys ) {
611        ts += val;
612        tsysCol.put(i, ts);
613      }
614    }
615  }
616  return out;
617}
618
619CountedPtr< Scantable > STMath::arrayOperate( const CountedPtr< Scantable >& in,
620                                              const std::vector<float> val,
621                                              const std::string& mode,
622                                              const std::string& opmode,
623                                              bool tsys )
624{
625  CountedPtr< Scantable > out ;
626  if ( opmode == "channel" ) {
627    out = arrayOperateChannel( in, val, mode, tsys ) ;
628  }
629  else if ( opmode == "row" ) {
630    out = arrayOperateRow( in, val, mode, tsys ) ;
631  }
632  else {
633    throw( AipsError( "Unknown array operation mode." ) ) ;
634  }
635  return out ;
636}
637
638CountedPtr< Scantable > STMath::arrayOperateChannel( const CountedPtr< Scantable >& in,
639                                                     const std::vector<float> val,
640                                                     const std::string& mode,
641                                                     bool tsys )
642{
643  if ( val.size() == 1 ){
644    return unaryOperate( in, val[0], mode, tsys ) ;
645  }
646
647  // conformity of SPECTRA and TSYS
648  if ( tsys ) {
649    TableIterator titer(in->table(), "IFNO");
650    while ( !titer.pastEnd() ) {
651      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
652      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
653      Array<Float> spec = specCol.getColumn() ;
654      Array<Float> ts = tsysCol.getColumn() ;
655      if ( !spec.conform( ts ) ) {
656        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
657      }
658      titer.next() ;
659    }
660  }
661
662  // check if all spectra in the scantable have the same number of channel
663  vector<uInt> nchans;
664  vector<uInt> ifnos = in->getIFNos() ;
665  for ( uInt i = 0 ; i < ifnos.size() ; i++ ) {
666    nchans.push_back( in->nchan( ifnos[i] ) ) ;
667  }
668  Vector<uInt> mchans( nchans ) ;
669  if ( anyNE( mchans, mchans[0] ) ) {
670    throw( AipsError("All spectra in the input scantable must have the same number of channel for vector operation." ) ) ;
671  }
672
673  // check if vector size is equal to nchan
674  Vector<Float> fact( val ) ;
675  if ( fact.nelements() != mchans[0] ) {
676    throw( AipsError("Vector size must be 1 or be same as number of channel.") ) ;
677  }
678
679  // check divided by zero
680  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
681    throw( AipsError("Divided by zero is not recommended." ) ) ;
682  }
683
684  CountedPtr< Scantable > out = getScantable(in, false);
685  Table& tab = out->table();
686  ArrayColumn<Float> specCol(tab,"SPECTRA");
687  ArrayColumn<Float> tsysCol(tab,"TSYS");
688  if (mode == "DIV") fact = (float)1.0 / fact;
689  else if (mode == "SUB") fact *= (float)-1.0 ;
690  for (uInt i=0; i<tab.nrow(); ++i) {
691    Vector<Float> spec;
692    Vector<Float> ts;
693    specCol.get(i, spec);
694    tsysCol.get(i, ts);
695    if (mode == "MUL" || mode == "DIV") {
696      //if (mode == "DIV") fact = (float)1.0 / fact;
697      spec *= fact;
698      specCol.put(i, spec);
699      if ( tsys ) {
700        ts *= fact;
701        tsysCol.put(i, ts);
702      }
703    } else if ( mode == "ADD"  || mode == "SUB") {
704      //if (mode == "SUB") fact *= (float)-1.0 ;
705      spec += fact;
706      specCol.put(i, spec);
707      if ( tsys ) {
708        ts += fact;
709        tsysCol.put(i, ts);
710      }
711    }
712  }
713  return out;
714}
715
716CountedPtr< Scantable > STMath::arrayOperateRow( const CountedPtr< Scantable >& in,
717                                                 const std::vector<float> val,
718                                                 const std::string& mode,
719                                                 bool tsys )
720{
721  if ( val.size() == 1 ) {
722    return unaryOperate( in, val[0], mode, tsys ) ;
723  }
724
725  // conformity of SPECTRA and TSYS
726  if ( tsys ) {
727    TableIterator titer(in->table(), "IFNO");
728    while ( !titer.pastEnd() ) {
729      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
730      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
731      Array<Float> spec = specCol.getColumn() ;
732      Array<Float> ts = tsysCol.getColumn() ;
733      if ( !spec.conform( ts ) ) {
734        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
735      }
736      titer.next() ;
737    }
738  }
739
740  // check if vector size is equal to nrow
741  Vector<Float> fact( val ) ;
742  if (fact.nelements() != uInt(in->nrow())) {
743    throw( AipsError("Vector size must be 1 or be same as number of row.") ) ;
744  }
745
746  // check divided by zero
747  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
748    throw( AipsError("Divided by zero is not recommended." ) ) ;
749  }
750
751  CountedPtr< Scantable > out = getScantable(in, false);
752  Table& tab = out->table();
753  ArrayColumn<Float> specCol(tab,"SPECTRA");
754  ArrayColumn<Float> tsysCol(tab,"TSYS");
755  if (mode == "DIV") fact = (float)1.0 / fact;
756  if (mode == "SUB") fact *= (float)-1.0 ;
757  for (uInt i=0; i<tab.nrow(); ++i) {
758    Vector<Float> spec;
759    Vector<Float> ts;
760    specCol.get(i, spec);
761    tsysCol.get(i, ts);
762    if (mode == "MUL" || mode == "DIV") {
763      spec *= fact[i];
764      specCol.put(i, spec);
765      if ( tsys ) {
766        ts *= fact[i];
767        tsysCol.put(i, ts);
768      }
769    } else if ( mode == "ADD"  || mode == "SUB") {
770      spec += fact[i];
771      specCol.put(i, spec);
772      if ( tsys ) {
773        ts += fact[i];
774        tsysCol.put(i, ts);
775      }
776    }
777  }
778  return out;
779}
780
781CountedPtr< Scantable > STMath::array2dOperate( const CountedPtr< Scantable >& in,
782                                                const std::vector< std::vector<float> > val,
783                                                const std::string& mode,
784                                                bool tsys )
785{
786  // conformity of SPECTRA and TSYS
787  if ( tsys ) {
788    TableIterator titer(in->table(), "IFNO");
789    while ( !titer.pastEnd() ) {
790      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
791      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
792      Array<Float> spec = specCol.getColumn() ;
793      Array<Float> ts = tsysCol.getColumn() ;
794      if ( !spec.conform( ts ) ) {
795        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
796      }
797      titer.next() ;
798    }
799  }
800
801  // some checks
802  vector<uInt> nchans;
803  for (Int i = 0 ; i < in->nrow() ; i++) {
804    nchans.push_back((in->getSpectrum(i)).size());
805  }
806  //Vector<uInt> mchans( nchans ) ;
807  vector< Vector<Float> > facts ;
808  for ( uInt i = 0 ; i < nchans.size() ; i++ ) {
809    Vector<Float> tmp( val[i] ) ;
810    // check divided by zero
811    if ( ( mode == "DIV" ) && anyEQ( tmp, (float)0.0 ) ) {
812      throw( AipsError("Divided by zero is not recommended." ) ) ;
813    }
814    // conformity check
815    if ( tmp.nelements() != nchans[i] ) {
816      stringstream ss ;
817      ss << "Row " << i << ": Vector size must be same as number of channel." ;
818      throw( AipsError( ss.str() ) ) ;
819    }
820    facts.push_back( tmp ) ;
821  }
822
823
824  CountedPtr< Scantable > out = getScantable(in, false);
825  Table& tab = out->table();
826  ArrayColumn<Float> specCol(tab,"SPECTRA");
827  ArrayColumn<Float> tsysCol(tab,"TSYS");
828  for (uInt i=0; i<tab.nrow(); ++i) {
829    Vector<Float> fact = facts[i] ;
830    Vector<Float> spec;
831    Vector<Float> ts;
832    specCol.get(i, spec);
833    tsysCol.get(i, ts);
834    if (mode == "MUL" || mode == "DIV") {
835      if (mode == "DIV") fact = (float)1.0 / fact;
836      spec *= fact;
837      specCol.put(i, spec);
838      if ( tsys ) {
839        ts *= fact;
840        tsysCol.put(i, ts);
841      }
842    } else if ( mode == "ADD"  || mode == "SUB") {
843      if (mode == "SUB") fact *= (float)-1.0 ;
844      spec += fact;
845      specCol.put(i, spec);
846      if ( tsys ) {
847        ts += fact;
848        tsysCol.put(i, ts);
849      }
850    }
851  }
852  return out;
853}
854
855CountedPtr<Scantable> STMath::binaryOperate(const CountedPtr<Scantable>& left,
856                                            const CountedPtr<Scantable>& right,
857                                            const std::string& mode)
858{
859  bool insitu = insitu_;
860  if ( ! left->conformant(*right) ) {
861    throw(AipsError("'left' and 'right' scantables are not conformant."));
862  }
863  setInsitu(false);
864  CountedPtr< Scantable > out = getScantable(left, false);
865  setInsitu(insitu);
866  Table& tout = out->table();
867  Block<String> coln(5);
868  coln[0] = "SCANNO";  coln[1] = "CYCLENO";  coln[2] = "BEAMNO";
869  coln[3] = "IFNO";  coln[4] = "POLNO";
870  Table tmpl = tout.sort(coln);
871  Table tmpr = right->table().sort(coln);
872  ArrayColumn<Float> lspecCol(tmpl,"SPECTRA");
873  ROArrayColumn<Float> rspecCol(tmpr,"SPECTRA");
874  ArrayColumn<uChar> lflagCol(tmpl,"FLAGTRA");
875  ROArrayColumn<uChar> rflagCol(tmpr,"FLAGTRA");
876
877  for (uInt i=0; i<tout.nrow(); ++i) {
878    Vector<Float> lspecvec, rspecvec;
879    Vector<uChar> lflagvec, rflagvec;
880    lspecvec = lspecCol(i);    rspecvec = rspecCol(i);
881    lflagvec = lflagCol(i);    rflagvec = rflagCol(i);
882    MaskedArray<Float> mleft = maskedArray(lspecvec, lflagvec);
883    MaskedArray<Float> mright = maskedArray(rspecvec, rflagvec);
884    if (mode == "ADD") {
885      mleft += mright;
886    } else if ( mode == "SUB") {
887      mleft -= mright;
888    } else if ( mode == "MUL") {
889      mleft *= mright;
890    } else if ( mode == "DIV") {
891      mleft /= mright;
892    } else {
893      throw(AipsError("Illegal binary operator"));
894    }
895    lspecCol.put(i, mleft.getArray());
896  }
897  return out;
898}
899
900
901
902MaskedArray<Float> STMath::maskedArray( const Vector<Float>& s,
903                                        const Vector<uChar>& f)
904{
905  Vector<Bool> mask;
906  mask.resize(f.shape());
907  convertArray(mask, f);
908  return MaskedArray<Float>(s,!mask);
909}
910
911MaskedArray<Double> STMath::maskedArray( const Vector<Double>& s,
912                                         const Vector<uChar>& f)
913{
914  Vector<Bool> mask;
915  mask.resize(f.shape());
916  convertArray(mask, f);
917  return MaskedArray<Double>(s,!mask);
918}
919
920Vector<uChar> STMath::flagsFromMA(const MaskedArray<Float>& ma)
921{
922  const Vector<Bool>& m = ma.getMask();
923  Vector<uChar> flags(m.shape());
924  convertArray(flags, !m);
925  return flags;
926}
927
928CountedPtr< Scantable > STMath::autoQuotient( const CountedPtr< Scantable >& in,
929                                              const std::string & mode,
930                                              bool preserve )
931{
932  /// @todo make other modes available
933  /// modes should be "nearest", "pair"
934  // make this operation non insitu
935  (void) mode; //currently unused
936  const Table& tin = in->table();
937  Table ons = tin(tin.col("SRCTYPE") == Int(SrcType::PSON));
938  Table offs = tin(tin.col("SRCTYPE") == Int(SrcType::PSOFF));
939  if ( offs.nrow() == 0 )
940    throw(AipsError("No 'off' scans present."));
941  // put all "on" scans into output table
942
943  bool insitu = insitu_;
944  setInsitu(false);
945  CountedPtr< Scantable > out = getScantable(in, true);
946  setInsitu(insitu);
947  Table& tout = out->table();
948
949  TableCopy::copyRows(tout, ons);
950  TableRow row(tout);
951  ROScalarColumn<Double> offtimeCol(offs, "TIME");
952  ArrayColumn<Float> outspecCol(tout, "SPECTRA");
953  ROArrayColumn<Float> outtsysCol(tout, "TSYS");
954  ArrayColumn<uChar> outflagCol(tout, "FLAGTRA");
955  for (uInt i=0; i < tout.nrow(); ++i) {
956    const TableRecord& rec = row.get(i);
957    Double ontime = rec.asDouble("TIME");
958    Table presel = offs(offs.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
959                        && offs.col("IFNO") == Int(rec.asuInt("IFNO"))
960                        && offs.col("POLNO") == Int(rec.asuInt("POLNO")) );
961    ROScalarColumn<Double> offtimeCol(presel, "TIME");
962
963    Double mindeltat = min(abs(offtimeCol.getColumn() - ontime));
964    // Timestamp may vary within a cycle ???!!!
965    // increase this by 0.01 sec in case of rounding errors...
966    // There might be a better way to do this.
967    // fix to this fix. TIME is MJD, so 1.0d not 1.0s
968    mindeltat += 0.01/24./60./60.;
969    Table sel = presel( abs(presel.col("TIME")-ontime) <= mindeltat);
970
971    if ( sel.nrow() < 1 )  {
972      throw(AipsError("No closest in time found... This could be a rounding "
973                      "issue. Try quotient instead."));
974    }
975    TableRow offrow(sel);
976    const TableRecord& offrec = offrow.get(0);//should only be one row
977    RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
978    RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
979    RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
980    /// @fixme this assumes tsys is a scalar not vector
981    Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
982    Vector<Float> specon, tsyson;
983    outtsysCol.get(i, tsyson);
984    outspecCol.get(i, specon);
985    Vector<uChar> flagon;
986    outflagCol.get(i, flagon);
987    MaskedArray<Float> mon = maskedArray(specon, flagon);
988    MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
989    MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
990    if (preserve) {
991      quot -= tsysoffscalar;
992    } else {
993      quot -= tsyson[0];
994    }
995    outspecCol.put(i, quot.getArray());
996    outflagCol.put(i, flagsFromMA(quot));
997  }
998  // renumber scanno
999  TableIterator it(tout, "SCANNO");
1000  uInt i = 0;
1001  while ( !it.pastEnd() ) {
1002    Table t = it.table();
1003    TableVector<uInt> vec(t, "SCANNO");
1004    vec = i;
1005    ++i;
1006    ++it;
1007  }
1008  return out;
1009}
1010
1011
1012CountedPtr< Scantable > STMath::quotient( const CountedPtr< Scantable > & on,
1013                                          const CountedPtr< Scantable > & off,
1014                                          bool preserve )
1015{
1016  bool insitu = insitu_;
1017  if ( ! on->conformant(*off) ) {
1018    throw(AipsError("'on' and 'off' scantables are not conformant."));
1019  }
1020  setInsitu(false);
1021  CountedPtr< Scantable > out = getScantable(on, false);
1022  setInsitu(insitu);
1023  Table& tout = out->table();
1024  const Table& toff = off->table();
1025  TableIterator sit(tout, "SCANNO");
1026  TableIterator s2it(toff, "SCANNO");
1027  while ( !sit.pastEnd() ) {
1028    Table ton = sit.table();
1029    TableRow row(ton);
1030    Table t = s2it.table();
1031    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1032    ROArrayColumn<Float> outtsysCol(ton, "TSYS");
1033    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1034    for (uInt i=0; i < ton.nrow(); ++i) {
1035      const TableRecord& rec = row.get(i);
1036      Table offsel = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1037                          && t.col("IFNO") == Int(rec.asuInt("IFNO"))
1038                          && t.col("POLNO") == Int(rec.asuInt("POLNO")) );
1039      if ( offsel.nrow() == 0 )
1040        throw AipsError("STMath::quotient: no matching off");
1041      TableRow offrow(offsel);
1042      const TableRecord& offrec = offrow.get(0);//should be ncycles - take first
1043      RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
1044      RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
1045      RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
1046      Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
1047      Vector<Float> specon, tsyson;
1048      outtsysCol.get(i, tsyson);
1049      outspecCol.get(i, specon);
1050      Vector<uChar> flagon;
1051      outflagCol.get(i, flagon);
1052      MaskedArray<Float> mon = maskedArray(specon, flagon);
1053      MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
1054      MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
1055      if (preserve) {
1056        quot -= tsysoffscalar;
1057      } else {
1058        quot -= tsyson[0];
1059      }
1060      outspecCol.put(i, quot.getArray());
1061      outflagCol.put(i, flagsFromMA(quot));
1062    }
1063    ++sit;
1064    ++s2it;
1065    // take the first off for each on scan which doesn't have a
1066    // matching off scan
1067    // non <= noff:  matching pairs, non > noff matching pairs then first off
1068    if ( s2it.pastEnd() ) s2it.reset();
1069  }
1070  return out;
1071}
1072
1073// dototalpower (migration of GBTIDL procedure dototalpower.pro)
1074// calibrate the CAL on-off pair. It calculate Tsys and average CAL on-off subintegrations
1075// do it for each cycles in a specific scan.
1076CountedPtr< Scantable > STMath::dototalpower( const CountedPtr< Scantable >& calon,
1077                                              const CountedPtr< Scantable >& caloff, Float tcal )
1078{
1079  if ( ! calon->conformant(*caloff) ) {
1080    throw(AipsError("'CAL on' and 'CAL off' scantables are not conformant."));
1081  }
1082  setInsitu(false);
1083  CountedPtr< Scantable > out = getScantable(caloff, false);
1084  Table& tout = out->table();
1085  const Table& tcon = calon->table();
1086  Vector<Float> tcalout;
1087
1088  std::map<uInt,uInt> tcalIdToRecNoMap;
1089  const Table& calOffTcalTable = caloff->tcal().table();
1090  {
1091    ROScalarColumn<uInt> calOffTcalTable_IDcol(calOffTcalTable, "ID");
1092    const Vector<uInt> tcalIds(calOffTcalTable_IDcol.getColumn());
1093    size_t tcalIdsEnd = tcalIds.nelements();
1094    for (uInt i = 0; i < tcalIdsEnd; i++) {
1095      tcalIdToRecNoMap[tcalIds[i]] = i;
1096    }
1097  }
1098  ROArrayColumn<Float> calOffTcalTable_TCALcol(calOffTcalTable, "TCAL");
1099
1100  if ( tout.nrow() != tcon.nrow() ) {
1101    throw(AipsError("Mismatch in number of rows to form cal on - off pair."));
1102  }
1103  // iteration by scanno or cycle no.
1104  TableIterator sit(tout, "SCANNO");
1105  TableIterator s2it(tcon, "SCANNO");
1106  while ( !sit.pastEnd() ) {
1107    Table toff = sit.table();
1108    TableRow row(toff);
1109    Table t = s2it.table();
1110    ScalarColumn<Double> outintCol(toff, "INTERVAL");
1111    ArrayColumn<Float> outspecCol(toff, "SPECTRA");
1112    ArrayColumn<Float> outtsysCol(toff, "TSYS");
1113    ArrayColumn<uChar> outflagCol(toff, "FLAGTRA");
1114    ROScalarColumn<uInt> outtcalIdCol(toff, "TCAL_ID");
1115    ROScalarColumn<uInt> outpolCol(toff, "POLNO");
1116    ROScalarColumn<Double> onintCol(t, "INTERVAL");
1117    ROArrayColumn<Float> onspecCol(t, "SPECTRA");
1118    ROArrayColumn<Float> ontsysCol(t, "TSYS");
1119    ROArrayColumn<uChar> onflagCol(t, "FLAGTRA");
1120    //ROScalarColumn<uInt> ontcalIdCol(t, "TCAL_ID");
1121
1122    for (uInt i=0; i < toff.nrow(); ++i) {
1123      //skip these checks -> assumes the data order are the same between the cal on off pairs
1124      //
1125      Vector<Float> specCalon, specCaloff;
1126      // to store scalar (mean) tsys
1127      Vector<Float> tsysout(1);
1128      uInt tcalId, polno;
1129      Double offint, onint;
1130      outpolCol.get(i, polno);
1131      outspecCol.get(i, specCaloff);
1132      onspecCol.get(i, specCalon);
1133      Vector<uChar> flagCaloff, flagCalon;
1134      outflagCol.get(i, flagCaloff);
1135      onflagCol.get(i, flagCalon);
1136      outtcalIdCol.get(i, tcalId);
1137      outintCol.get(i, offint);
1138      onintCol.get(i, onint);
1139      // caluculate mean Tsys
1140      uInt nchan = specCaloff.nelements();
1141      // percentage of edge cut off
1142      uInt pc = 10;
1143      uInt bchan = nchan/pc;
1144      uInt echan = nchan-bchan;
1145
1146      Slicer chansl(IPosition(1,bchan-1), IPosition(1,echan-1), IPosition(1,1),Slicer::endIsLast);
1147      Vector<Float> testsubsp = specCaloff(chansl);
1148      MaskedArray<Float> spoff = maskedArray( specCaloff(chansl),flagCaloff(chansl) );
1149      MaskedArray<Float> spon = maskedArray( specCalon(chansl),flagCalon(chansl) );
1150      MaskedArray<Float> spdiff = spon-spoff;
1151      uInt noff = spoff.nelementsValid();
1152      //uInt non = spon.nelementsValid();
1153      uInt ndiff = spdiff.nelementsValid();
1154      Float meantsys;
1155
1156/**
1157      Double subspec, subdiff;
1158      uInt usednchan;
1159      subspec = 0;
1160      subdiff = 0;
1161      usednchan = 0;
1162      for(uInt k=(bchan-1); k<echan; k++) {
1163        subspec += specCaloff[k];
1164        subdiff += static_cast<Double>(specCalon[k]-specCaloff[k]);
1165        ++usednchan;
1166      }
1167**/
1168      // get tcal if input tcal <= 0
1169      Float tcalUsed;
1170      tcalUsed = tcal;
1171      if ( tcal <= 0.0 ) {
1172        uInt tcalRecNo = tcalIdToRecNoMap[tcalId];
1173        calOffTcalTable_TCALcol.get(tcalRecNo, tcalout);
1174//         if (polno<=3) {
1175//           tcalUsed = tcalout[polno];
1176//         }
1177//         else {
1178//           tcalUsed = tcalout[0];
1179//         }
1180        if ( tcalout.size() == 1 )
1181          tcalUsed = tcalout[0] ;
1182        else if ( tcalout.size() == nchan )
1183          tcalUsed = mean(tcalout) ;
1184        else {
1185          uInt ipol = polno ;
1186          if ( ipol > 3 ) ipol = 0 ;
1187          tcalUsed = tcalout[ipol] ;
1188        }
1189      }
1190
1191      Float meanoff;
1192      Float meandiff;
1193      if (noff && ndiff) {
1194         //Debug
1195         //if(noff!=ndiff) cerr<<"noff and ndiff is not equal"<<endl;
1196         //LogIO os( LogOrigin( "STMath", "dototalpower()", WHERE ) ) ;
1197         //if(noff!=ndiff) os<<"noff and ndiff is not equal"<<LogIO::POST;
1198         meanoff = sum(spoff)/noff;
1199         meandiff = sum(spdiff)/ndiff;
1200         meantsys= (meanoff/meandiff )*tcalUsed + tcalUsed/2;
1201      }
1202      else {
1203         meantsys=1;
1204      }
1205
1206      tsysout[0] = Float(meantsys);
1207      MaskedArray<Float> mcaloff = maskedArray(specCaloff, flagCaloff);
1208      MaskedArray<Float> mcalon = maskedArray(specCalon, flagCalon);
1209      MaskedArray<Float> sig =   Float(0.5) * (mcaloff + mcalon);
1210      //uInt ncaloff = mcaloff.nelementsValid();
1211      //uInt ncalon = mcalon.nelementsValid();
1212
1213      outintCol.put(i, offint+onint);
1214      outspecCol.put(i, sig.getArray());
1215      outflagCol.put(i, flagsFromMA(sig));
1216      outtsysCol.put(i, tsysout);
1217    }
1218    ++sit;
1219    ++s2it;
1220  }
1221  return out;
1222}
1223
1224//dosigref - migrated from GBT IDL's dosigref.pro, do calibration of position switch
1225// observatiions.
1226// input: sig and ref scantables, and an optional boxcar smoothing width(default width=0,
1227//        no smoothing).
1228// output: resultant scantable [= (sig-ref/ref)*tsys]
1229CountedPtr< Scantable > STMath::dosigref( const CountedPtr < Scantable >& sig,
1230                                          const CountedPtr < Scantable >& ref,
1231                                          int smoothref,
1232                                          casa::Float tsysv,
1233                                          casa::Float tau )
1234{
1235if ( ! ref->conformant(*sig) ) {
1236    throw(AipsError("'sig' and 'ref' scantables are not conformant."));
1237  }
1238  setInsitu(false);
1239  CountedPtr< Scantable > out = getScantable(sig, false);
1240  CountedPtr< Scantable > smref;
1241  if ( smoothref > 1 ) {
1242    float fsmoothref = static_cast<float>(smoothref);
1243    std::string inkernel = "boxcar";
1244    smref = smooth(ref, inkernel, fsmoothref );
1245    ostringstream oss;
1246    oss<<"Applied smoothing of "<<fsmoothref<<" on the reference."<<endl;
1247    pushLog(String(oss));
1248  }
1249  else {
1250    smref = ref;
1251  }
1252  Table& tout = out->table();
1253  const Table& tref = smref->table();
1254  if ( tout.nrow() != tref.nrow() ) {
1255    throw(AipsError("Mismatch in number of rows to form on-source and reference pair."));
1256  }
1257  // iteration by scanno? or cycle no.
1258  TableIterator sit(tout, "SCANNO");
1259  TableIterator s2it(tref, "SCANNO");
1260  while ( !sit.pastEnd() ) {
1261    Table ton = sit.table();
1262    Table t = s2it.table();
1263    ScalarColumn<Double> outintCol(ton, "INTERVAL");
1264    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1265    ArrayColumn<Float> outtsysCol(ton, "TSYS");
1266    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1267    ArrayColumn<Float> refspecCol(t, "SPECTRA");
1268    ROScalarColumn<Double> refintCol(t, "INTERVAL");
1269    ROArrayColumn<Float> reftsysCol(t, "TSYS");
1270    ArrayColumn<uChar> refflagCol(t, "FLAGTRA");
1271    ROScalarColumn<Float> refelevCol(t, "ELEVATION");
1272    for (uInt i=0; i < ton.nrow(); ++i) {
1273
1274      Double onint, refint;
1275      Vector<Float> specon, specref;
1276      // to store scalar (mean) tsys
1277      Vector<Float> tsysref;
1278      outintCol.get(i, onint);
1279      refintCol.get(i, refint);
1280      outspecCol.get(i, specon);
1281      refspecCol.get(i, specref);
1282      Vector<uChar> flagref, flagon;
1283      outflagCol.get(i, flagon);
1284      refflagCol.get(i, flagref);
1285      reftsysCol.get(i, tsysref);
1286
1287      Float tsysrefscalar;
1288      if ( tsysv > 0.0 ) {
1289        ostringstream oss;
1290        Float elev;
1291        refelevCol.get(i, elev);
1292        oss << "user specified Tsys = " << tsysv;
1293        // do recalc elevation if EL = 0
1294        if ( elev == 0 ) {
1295          throw(AipsError("EL=0, elevation data is missing."));
1296        } else {
1297          if ( tau <= 0.0 ) {
1298            throw(AipsError("Valid tau is not supplied."));
1299          } else {
1300            tsysrefscalar = tsysv * exp(tau/elev);
1301          }
1302        }
1303        oss << ", corrected (for El) tsys= "<<tsysrefscalar;
1304        pushLog(String(oss));
1305      }
1306      else {
1307        tsysrefscalar = tsysref[0];
1308      }
1309      //get quotient spectrum
1310      MaskedArray<Float> mref = maskedArray(specref, flagref);
1311      MaskedArray<Float> mon = maskedArray(specon, flagon);
1312      MaskedArray<Float> specres =   tsysrefscalar*((mon - mref)/mref);
1313      Double resint = onint*refint*smoothref/(onint+refint*smoothref);
1314
1315      //Debug
1316      //cerr<<"Tsys used="<<tsysrefscalar<<endl;
1317      //LogIO os( LogOrigin( "STMath", "dosigref", WHERE ) ) ;
1318      //os<<"Tsys used="<<tsysrefscalar<<LogIO::POST;
1319      // fill the result, replay signal tsys by reference tsys
1320      outintCol.put(i, resint);
1321      outspecCol.put(i, specres.getArray());
1322      outflagCol.put(i, flagsFromMA(specres));
1323      outtsysCol.put(i, tsysref);
1324    }
1325    ++sit;
1326    ++s2it;
1327  }
1328  return out;
1329}
1330
1331CountedPtr< Scantable > STMath::donod(const casa::CountedPtr<Scantable>& s,
1332                                     const std::vector<int>& scans,
1333                                     int smoothref,
1334                                     casa::Float tsysv,
1335                                     casa::Float tau,
1336                                     casa::Float tcal )
1337
1338{
1339  setInsitu(false);
1340  STSelector sel;
1341  std::vector<int> scan1, scan2, beams, types;
1342  std::vector< vector<int> > scanpair;
1343  //std::vector<string> calstate;
1344  std::vector<int> calstate;
1345  String msg;
1346
1347  CountedPtr< Scantable > s1b1on, s1b1off, s1b2on, s1b2off;
1348  CountedPtr< Scantable > s2b1on, s2b1off, s2b2on, s2b2off;
1349
1350  std::vector< CountedPtr< Scantable > > sctables;
1351  sctables.push_back(s1b1on);
1352  sctables.push_back(s1b1off);
1353  sctables.push_back(s1b2on);
1354  sctables.push_back(s1b2off);
1355  sctables.push_back(s2b1on);
1356  sctables.push_back(s2b1off);
1357  sctables.push_back(s2b2on);
1358  sctables.push_back(s2b2off);
1359
1360  //check scanlist
1361  int n=s->checkScanInfo(scans);
1362  if (n==1) {
1363     throw(AipsError("Incorrect scan pairs. "));
1364  }
1365
1366  // Assume scans contain only a pair of consecutive scan numbers.
1367  // It is assumed that first beam, b1,  is on target.
1368  // There is no check if the first beam is on or not.
1369  if ( scans.size()==1 ) {
1370    scan1.push_back(scans[0]);
1371    scan2.push_back(scans[0]+1);
1372  } else if ( scans.size()==2 ) {
1373   scan1.push_back(scans[0]);
1374   scan2.push_back(scans[1]);
1375  } else {
1376    if ( scans.size()%2 == 0 ) {
1377      for (uInt i=0; i<scans.size(); i++) {
1378        if (i%2 == 0) {
1379          scan1.push_back(scans[i]);
1380        }
1381        else {
1382          scan2.push_back(scans[i]);
1383        }
1384      }
1385    } else {
1386      throw(AipsError("Odd numbers of scans, cannot form pairs."));
1387    }
1388  }
1389  scanpair.push_back(scan1);
1390  scanpair.push_back(scan2);
1391  //calstate.push_back("*calon");
1392  //calstate.push_back("*[^calon]");
1393  calstate.push_back(SrcType::NODCAL);
1394  calstate.push_back(SrcType::NOD);
1395  CountedPtr< Scantable > ws = getScantable(s, false);
1396  uInt l=0;
1397  while ( l < sctables.size() ) {
1398    for (uInt i=0; i < 2; i++) {
1399      for (uInt j=0; j < 2; j++) {
1400        for (uInt k=0; k < 2; k++) {
1401          sel.reset();
1402          sel.setScans(scanpair[i]);
1403          //sel.setName(calstate[k]);
1404          types.clear();
1405          types.push_back(calstate[k]);
1406          sel.setTypes(types);
1407          beams.clear();
1408          beams.push_back(j);
1409          sel.setBeams(beams);
1410          ws->setSelection(sel);
1411          sctables[l]= getScantable(ws, false);
1412          l++;
1413        }
1414      }
1415    }
1416  }
1417
1418  // replace here by splitData or getData functionality
1419  CountedPtr< Scantable > sig1;
1420  CountedPtr< Scantable > ref1;
1421  CountedPtr< Scantable > sig2;
1422  CountedPtr< Scantable > ref2;
1423  CountedPtr< Scantable > calb1;
1424  CountedPtr< Scantable > calb2;
1425
1426  msg=String("Processing dototalpower for subset of the data");
1427  ostringstream oss1;
1428  oss1 << msg  << endl;
1429  pushLog(String(oss1));
1430  // Debug for IRC CS data
1431  //float tcal1=7.0;
1432  //float tcal2=4.0;
1433  sig1 = dototalpower(sctables[0], sctables[1], tcal=tcal);
1434  ref1 = dototalpower(sctables[2], sctables[3], tcal=tcal);
1435  ref2 = dototalpower(sctables[4], sctables[5], tcal=tcal);
1436  sig2 = dototalpower(sctables[6], sctables[7], tcal=tcal);
1437
1438  // correction of user-specified tsys for elevation here
1439
1440  // dosigref calibration
1441  msg=String("Processing dosigref for subset of the data");
1442  ostringstream oss2;
1443  oss2 << msg  << endl;
1444  pushLog(String(oss2));
1445  calb1=dosigref(sig1,ref2,smoothref,tsysv,tau);
1446  calb2=dosigref(sig2,ref1,smoothref,tsysv,tau);
1447
1448  // iteration by scanno or cycle no.
1449  Table& tcalb1 = calb1->table();
1450  Table& tcalb2 = calb2->table();
1451  TableIterator sit(tcalb1, "SCANNO");
1452  TableIterator s2it(tcalb2, "SCANNO");
1453  while ( !sit.pastEnd() ) {
1454    Table t1 = sit.table();
1455    Table t2= s2it.table();
1456    ArrayColumn<Float> outspecCol(t1, "SPECTRA");
1457    ArrayColumn<Float> outtsysCol(t1, "TSYS");
1458    ArrayColumn<uChar> outflagCol(t1, "FLAGTRA");
1459    ScalarColumn<Double> outintCol(t1, "INTERVAL");
1460    ArrayColumn<Float> t2specCol(t2, "SPECTRA");
1461    ROArrayColumn<Float> t2tsysCol(t2, "TSYS");
1462    ArrayColumn<uChar> t2flagCol(t2, "FLAGTRA");
1463    ROScalarColumn<Double> t2intCol(t2, "INTERVAL");
1464    for (uInt i=0; i < t1.nrow(); ++i) {
1465      Vector<Float> spec1, spec2;
1466      // to store scalar (mean) tsys
1467      Vector<Float> tsys1, tsys2;
1468      Vector<uChar> flag1, flag2;
1469      Double tint1, tint2;
1470      outspecCol.get(i, spec1);
1471      t2specCol.get(i, spec2);
1472      outflagCol.get(i, flag1);
1473      t2flagCol.get(i, flag2);
1474      outtsysCol.get(i, tsys1);
1475      t2tsysCol.get(i, tsys2);
1476      outintCol.get(i, tint1);
1477      t2intCol.get(i, tint2);
1478      // average
1479      // assume scalar tsys for weights
1480      Float wt1, wt2, tsyssq1, tsyssq2;
1481      tsyssq1 = tsys1[0]*tsys1[0];
1482      tsyssq2 = tsys2[0]*tsys2[0];
1483      wt1 = Float(tint1)/tsyssq1;
1484      wt2 = Float(tint2)/tsyssq2;
1485      Float invsumwt=1/(wt1+wt2);
1486      MaskedArray<Float> mspec1 = maskedArray(spec1, flag1);
1487      MaskedArray<Float> mspec2 = maskedArray(spec2, flag2);
1488      MaskedArray<Float> avspec =  invsumwt * (wt1*mspec1 + wt2*mspec2);
1489      //Array<Float> avtsys =  Float(0.5) * (tsys1 + tsys2);
1490      // cerr<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<endl;
1491      // LogIO os( LogOrigin( "STMath", "donod", WHERE ) ) ;
1492      // os<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<LogIO::POST;
1493      tsys1[0] = sqrt(tsyssq1 + tsyssq2);
1494      Array<Float> avtsys =  tsys1;
1495
1496      outspecCol.put(i, avspec.getArray());
1497      outflagCol.put(i, flagsFromMA(avspec));
1498      outtsysCol.put(i, avtsys);
1499    }
1500    ++sit;
1501    ++s2it;
1502  }
1503  return calb1;
1504}
1505
1506//GBTIDL version of frequency switched data calibration
1507CountedPtr< Scantable > STMath::dofs( const CountedPtr< Scantable >& s,
1508                                      const std::vector<int>& scans,
1509                                      int smoothref,
1510                                      casa::Float tsysv,
1511                                      casa::Float tau,
1512                                      casa::Float tcal )
1513{
1514
1515
1516  (void) scans; //currently unused
1517  STSelector sel;
1518  CountedPtr< Scantable > ws = getScantable(s, false);
1519  CountedPtr< Scantable > sig, sigwcal, ref, refwcal;
1520  CountedPtr< Scantable > calsig, calref, out, out1, out2;
1521  Bool nofold=False;
1522  vector<int> types ;
1523
1524  //split the data
1525  //sel.setName("*_fs");
1526  types.push_back( SrcType::FSON ) ;
1527  sel.setTypes( types ) ;
1528  ws->setSelection(sel);
1529  sig = getScantable(ws,false);
1530  sel.reset();
1531  types.clear() ;
1532  //sel.setName("*_fs_calon");
1533  types.push_back( SrcType::FONCAL ) ;
1534  sel.setTypes( types ) ;
1535  ws->setSelection(sel);
1536  sigwcal = getScantable(ws,false);
1537  sel.reset();
1538  types.clear() ;
1539  //sel.setName("*_fsr");
1540  types.push_back( SrcType::FSOFF ) ;
1541  sel.setTypes( types ) ;
1542  ws->setSelection(sel);
1543  ref = getScantable(ws,false);
1544  sel.reset();
1545  types.clear() ;
1546  //sel.setName("*_fsr_calon");
1547  types.push_back( SrcType::FOFFCAL ) ;
1548  sel.setTypes( types ) ;
1549  ws->setSelection(sel);
1550  refwcal = getScantable(ws,false);
1551  sel.reset() ;
1552  types.clear() ;
1553
1554  calsig = dototalpower(sigwcal, sig, tcal=tcal);
1555  calref = dototalpower(refwcal, ref, tcal=tcal);
1556
1557  out1=dosigref(calsig,calref,smoothref,tsysv,tau);
1558  out2=dosigref(calref,calsig,smoothref,tsysv,tau);
1559
1560  Table& tabout1=out1->table();
1561  Table& tabout2=out2->table();
1562  ROScalarColumn<uInt> freqidCol1(tabout1, "FREQ_ID");
1563  ScalarColumn<uInt> freqidCol2(tabout2, "FREQ_ID");
1564  ROArrayColumn<Float> specCol(tabout2, "SPECTRA");
1565  Vector<Float> spec; specCol.get(0, spec);
1566  uInt nchan = spec.nelements();
1567  uInt freqid1; freqidCol1.get(0,freqid1);
1568  uInt freqid2; freqidCol2.get(0,freqid2);
1569  Double rp1, rp2, rv1, rv2, inc1, inc2;
1570  out1->frequencies().getEntry(rp1, rv1, inc1, freqid1);
1571  out2->frequencies().getEntry(rp2, rv2, inc2, freqid2);
1572  //cerr << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << endl ;
1573  //LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1574  //os << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << LogIO::POST ;
1575  if (rp1==rp2) {
1576    Double foffset = rv1 - rv2;
1577    uInt choffset = static_cast<uInt>(foffset/abs(inc2));
1578    if (choffset >= nchan) {
1579      //cerr<<"out-band frequency switching, no folding"<<endl;
1580      LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1581      os<<"out-band frequency switching, no folding"<<LogIO::POST;
1582      nofold = True;
1583    }
1584  }
1585
1586  if (nofold) {
1587    std::vector< CountedPtr< Scantable > > tabs;
1588    tabs.push_back(out1);
1589    tabs.push_back(out2);
1590    out = merge(tabs);
1591  }
1592  else {
1593    //out = out1;
1594    Double choffset = ( rv1 - rv2 ) / inc2 ;
1595    out = dofold( out1, out2, choffset ) ;
1596  }
1597   
1598  return out;
1599}
1600
1601CountedPtr<Scantable> STMath::dofold( const CountedPtr<Scantable> &sig,
1602                                      const CountedPtr<Scantable> &ref,
1603                                      Double choffset,
1604                                      Double choffset2 )
1605{
1606  LogIO os( LogOrigin( "STMath", "dofold", WHERE ) ) ;
1607  os << "choffset=" << choffset << " choffset2=" << choffset2 << LogIO::POST ;
1608
1609  // output scantable
1610  CountedPtr<Scantable> out = getScantable( sig, false ) ;
1611
1612  // separate choffset to integer part and decimal part
1613  Int ioffset = (Int)choffset ;
1614  Double doffset = choffset - ioffset ;
1615  Int ioffset2 = (Int)choffset2 ;
1616  Double doffset2 = choffset2 - ioffset2 ;
1617  os << "ioffset=" << ioffset << " doffset=" << doffset << LogIO::POST ;
1618  os << "ioffset2=" << ioffset2 << " doffset2=" << doffset2 << LogIO::POST ; 
1619
1620  // get column
1621  ROArrayColumn<Float> specCol1( sig->table(), "SPECTRA" ) ;
1622  ROArrayColumn<Float> specCol2( ref->table(), "SPECTRA" ) ;
1623  ROArrayColumn<Float> tsysCol1( sig->table(), "TSYS" ) ;
1624  ROArrayColumn<Float> tsysCol2( ref->table(), "TSYS" ) ;
1625  ROArrayColumn<uChar> flagCol1( sig->table(), "FLAGTRA" ) ;
1626  ROArrayColumn<uChar> flagCol2( ref->table(), "FLAGTRA" ) ;
1627  ROScalarColumn<Double> mjdCol1( sig->table(), "TIME" ) ;
1628  ROScalarColumn<Double> mjdCol2( ref->table(), "TIME" ) ;
1629  ROScalarColumn<Double> intervalCol1( sig->table(), "INTERVAL" ) ;
1630  ROScalarColumn<Double> intervalCol2( ref->table(), "INTERVAL" ) ;
1631
1632  // check
1633  if ( ioffset == 0 ) {
1634    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1635    os << "channel offset is zero, no folding" << LogIO::POST ;
1636    return out ;
1637  }
1638  int nchan = ref->nchan() ;
1639  if ( abs(ioffset) >= nchan ) {
1640    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1641    os << "out-band frequency switching, no folding" << LogIO::POST ;
1642    return out ;
1643  }
1644
1645  // attach column for output scantable
1646  ArrayColumn<Float> specColOut( out->table(), "SPECTRA" ) ;
1647  ArrayColumn<uChar> flagColOut( out->table(), "FLAGTRA" ) ;
1648  ArrayColumn<Float> tsysColOut( out->table(), "TSYS" ) ;
1649  ScalarColumn<Double> mjdColOut( out->table(), "TIME" ) ;
1650  ScalarColumn<Double> intervalColOut( out->table(), "INTERVAL" ) ;
1651  ScalarColumn<uInt> fidColOut( out->table(), "FREQ_ID" ) ;
1652
1653  // for each row
1654  // assume that the data order are same between sig and ref
1655  RowAccumulator acc( asap::W_TINTSYS ) ;
1656  for ( int i = 0 ; i < sig->nrow() ; i++ ) {
1657    // get values
1658    Vector<Float> spsig ;
1659    specCol1.get( i, spsig ) ;
1660    Vector<Float> spref ;
1661    specCol2.get( i, spref ) ;
1662    Vector<Float> tsyssig ;
1663    tsysCol1.get( i, tsyssig ) ;
1664    Vector<Float> tsysref ;
1665    tsysCol2.get( i, tsysref ) ;
1666    Vector<uChar> flagsig ;
1667    flagCol1.get( i, flagsig ) ;
1668    Vector<uChar> flagref ;
1669    flagCol2.get( i, flagref ) ;
1670    Double timesig ;
1671    mjdCol1.get( i, timesig ) ;
1672    Double timeref ;
1673    mjdCol2.get( i, timeref ) ;
1674    Double intsig ;
1675    intervalCol1.get( i, intsig ) ;
1676    Double intref ;
1677    intervalCol2.get( i, intref ) ;
1678
1679    // shift reference spectra
1680    int refchan = spref.nelements() ;
1681    Vector<Float> sspref( spref.nelements() ) ;
1682    Vector<Float> stsysref( tsysref.nelements() ) ;
1683    Vector<uChar> sflagref( flagref.nelements() ) ;
1684    if ( ioffset > 0 ) {
1685      // SPECTRA and FLAGTRA
1686      for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1687        sspref[j] = spref[j+ioffset] ;
1688        sflagref[j] = flagref[j+ioffset] ;
1689      }
1690      for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1691        sspref[j] = spref[j-refchan+ioffset] ;
1692        sflagref[j] = flagref[j-refchan+ioffset] ;
1693      }
1694      spref = sspref.copy() ;
1695      flagref = sflagref.copy() ;
1696      for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1697        sspref[j] = doffset * spref[j+1] + ( 1.0 - doffset ) * spref[j] ;
1698        sflagref[j] = flagref[j+1] + flagref[j] ;
1699      }
1700      sspref[refchan-1] = doffset * spref[0] + ( 1.0 - doffset ) * spref[refchan-1] ;
1701      sflagref[refchan-1] = flagref[0] + flagref[refchan-1] ;
1702
1703      // TSYS
1704      if ( spref.nelements() == tsysref.nelements() ) {
1705        for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1706          stsysref[j] = tsysref[j+ioffset] ;
1707        }
1708        for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1709          stsysref[j] = tsysref[j-refchan+ioffset] ;
1710        }
1711        tsysref = stsysref.copy() ;
1712        for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1713          stsysref[j] = doffset * tsysref[j+1] + ( 1.0 - doffset ) * tsysref[j] ;
1714        }
1715        stsysref[refchan-1] = doffset * tsysref[0] + ( 1.0 - doffset ) * tsysref[refchan-1] ;
1716      }
1717    }
1718    else {
1719      // SPECTRA and FLAGTRA
1720      for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1721        sspref[j] = spref[refchan+ioffset+j] ;
1722        sflagref[j] = flagref[refchan+ioffset+j] ;
1723      }
1724      for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1725        sspref[j] = spref[j+ioffset] ;
1726        sflagref[j] = flagref[j+ioffset] ;
1727      }
1728      spref = sspref.copy() ;
1729      flagref = sflagref.copy() ;
1730      sspref[0] = doffset * spref[refchan-1] + ( 1.0 - doffset ) * spref[0] ;
1731      sflagref[0] = flagref[0] + flagref[refchan-1] ;
1732      for ( int j = 1 ; j < refchan ; j++ ) {
1733        sspref[j] = doffset * spref[j-1] + ( 1.0 - doffset ) * spref[j] ;
1734        sflagref[j] = flagref[j-1] + flagref[j] ;
1735      }
1736      // TSYS
1737      if ( spref.nelements() == tsysref.nelements() ) {
1738        for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1739          stsysref[j] = tsysref[refchan+ioffset+j] ;
1740        }
1741        for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1742          stsysref[j] = tsysref[j+ioffset] ;
1743        }
1744        tsysref = stsysref.copy() ;
1745        stsysref[0] = doffset * tsysref[refchan-1] + ( 1.0 - doffset ) * tsysref[0] ;
1746        for ( int j = 1 ; j < refchan ; j++ ) {
1747          stsysref[j] = doffset * tsysref[j-1] + ( 1.0 - doffset ) * tsysref[j] ;
1748        }
1749      }
1750    }
1751
1752    // shift signal spectra if necessary (only for APEX?)
1753    if ( choffset2 != 0.0 ) {
1754      int sigchan = spsig.nelements() ;
1755      Vector<Float> sspsig( spsig.nelements() ) ;
1756      Vector<Float> stsyssig( tsyssig.nelements() ) ;
1757      Vector<uChar> sflagsig( flagsig.nelements() ) ;
1758      if ( ioffset2 > 0 ) {
1759        // SPECTRA and FLAGTRA
1760        for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1761          sspsig[j] = spsig[j+ioffset2] ;
1762          sflagsig[j] = flagsig[j+ioffset2] ;
1763        }
1764        for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1765          sspsig[j] = spsig[j-sigchan+ioffset2] ;
1766          sflagsig[j] = flagsig[j-sigchan+ioffset2] ;
1767        }
1768        spsig = sspsig.copy() ;
1769        flagsig = sflagsig.copy() ;
1770        for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1771          sspsig[j] = doffset2 * spsig[j+1] + ( 1.0 - doffset2 ) * spsig[j] ;
1772          sflagsig[j] = flagsig[j+1] || flagsig[j] ;
1773        }
1774        sspsig[sigchan-1] = doffset2 * spsig[0] + ( 1.0 - doffset2 ) * spsig[sigchan-1] ;
1775        sflagsig[sigchan-1] = flagsig[0] || flagsig[sigchan-1] ;
1776        // TSTS
1777        if ( spsig.nelements() == tsyssig.nelements() ) {
1778          for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1779            stsyssig[j] = tsyssig[j+ioffset2] ;
1780          }
1781          for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1782            stsyssig[j] = tsyssig[j-sigchan+ioffset2] ;
1783          }
1784          tsyssig = stsyssig.copy() ;
1785          for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1786            stsyssig[j] = doffset2 * tsyssig[j+1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1787          }
1788          stsyssig[sigchan-1] = doffset2 * tsyssig[0] + ( 1.0 - doffset2 ) * tsyssig[sigchan-1] ;
1789        }
1790      }
1791      else {
1792        // SPECTRA and FLAGTRA
1793        for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1794          sspsig[j] = spsig[sigchan+ioffset2+j] ;
1795          sflagsig[j] = flagsig[sigchan+ioffset2+j] ;
1796        }
1797        for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1798          sspsig[j] = spsig[j+ioffset2] ;
1799          sflagsig[j] = flagsig[j+ioffset2] ;
1800        }
1801        spsig = sspsig.copy() ;
1802        flagsig = sflagsig.copy() ;
1803        sspsig[0] = doffset2 * spsig[sigchan-1] + ( 1.0 - doffset2 ) * spsig[0] ;
1804        sflagsig[0] = flagsig[0] + flagsig[sigchan-1] ;
1805        for ( int j = 1 ; j < sigchan ; j++ ) {
1806          sspsig[j] = doffset2 * spsig[j-1] + ( 1.0 - doffset2 ) * spsig[j] ;
1807          sflagsig[j] = flagsig[j-1] + flagsig[j] ;
1808        }
1809        // TSYS
1810        if ( spsig.nelements() == tsyssig.nelements() ) {
1811          for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1812            stsyssig[j] = tsyssig[sigchan+ioffset2+j] ;
1813          }
1814          for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1815            stsyssig[j] = tsyssig[j+ioffset2] ;
1816          }
1817          tsyssig = stsyssig.copy() ;
1818          stsyssig[0] = doffset2 * tsyssig[sigchan-1] + ( 1.0 - doffset2 ) * tsyssig[0] ;
1819          for ( int j = 1 ; j < sigchan ; j++ ) {
1820            stsyssig[j] = doffset2 * tsyssig[j-1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1821          }
1822        }
1823      }
1824    }
1825
1826    // folding
1827    acc.add( spsig, !flagsig, tsyssig, intsig, timesig ) ;
1828    acc.add( sspref, !sflagref, stsysref, intref, timeref ) ;
1829   
1830    // put result
1831    specColOut.put( i, acc.getSpectrum() ) ;
1832    const Vector<Bool> &msk = acc.getMask() ;
1833    Vector<uChar> flg( msk.shape() ) ;
1834    convertArray( flg, !msk ) ;
1835    flagColOut.put( i, flg ) ;
1836    tsysColOut.put( i, acc.getTsys() ) ;
1837    intervalColOut.put( i, acc.getInterval() ) ;
1838    mjdColOut.put( i, acc.getTime() ) ;
1839    // change FREQ_ID to unshifted IF setting (only for APEX?)
1840    if ( choffset2 != 0.0 ) {
1841      uInt freqid = fidColOut( 0 ) ; // assume single-IF data
1842      double refpix, refval, increment ;
1843      out->frequencies().getEntry( refpix, refval, increment, freqid ) ;
1844      refval -= choffset * increment ;
1845      uInt newfreqid = out->frequencies().addEntry( refpix, refval, increment ) ;
1846      Vector<uInt> freqids = fidColOut.getColumn() ;
1847      for ( uInt j = 0 ; j < freqids.nelements() ; j++ ) {
1848        if ( freqids[j] == freqid )
1849          freqids[j] = newfreqid ;
1850      }
1851      fidColOut.putColumn( freqids ) ;
1852    }
1853
1854    acc.reset() ;
1855  }
1856
1857  return out ;
1858}
1859
1860
1861CountedPtr< Scantable > STMath::freqSwitch( const CountedPtr< Scantable >& in )
1862{
1863  // make copy or reference
1864  CountedPtr< Scantable > out = getScantable(in, false);
1865  Table& tout = out->table();
1866  Block<String> cols(4);
1867  cols[0] = String("SCANNO");
1868  cols[1] = String("CYCLENO");
1869  cols[2] = String("BEAMNO");
1870  cols[3] = String("POLNO");
1871  TableIterator iter(tout, cols);
1872  while (!iter.pastEnd()) {
1873    Table subt = iter.table();
1874    // this should leave us with two rows for the two IFs....if not ignore
1875    if (subt.nrow() != 2 ) {
1876      continue;
1877    }
1878    ArrayColumn<Float> specCol(subt, "SPECTRA");
1879    ArrayColumn<Float> tsysCol(subt, "TSYS");
1880    ArrayColumn<uChar> flagCol(subt, "FLAGTRA");
1881    Vector<Float> onspec,offspec, ontsys, offtsys;
1882    Vector<uChar> onflag, offflag;
1883    tsysCol.get(0, ontsys);   tsysCol.get(1, offtsys);
1884    specCol.get(0, onspec);   specCol.get(1, offspec);
1885    flagCol.get(0, onflag);   flagCol.get(1, offflag);
1886    MaskedArray<Float> on  = maskedArray(onspec, onflag);
1887    MaskedArray<Float> off = maskedArray(offspec, offflag);
1888    MaskedArray<Float> oncopy = on.copy();
1889
1890    on /= off; on -= 1.0f;
1891    on *= ontsys[0];
1892    off /= oncopy; off -= 1.0f;
1893    off *= offtsys[0];
1894    specCol.put(0, on.getArray());
1895    const Vector<Bool>& m0 = on.getMask();
1896    Vector<uChar> flags0(m0.shape());
1897    convertArray(flags0, !m0);
1898    flagCol.put(0, flags0);
1899
1900    specCol.put(1, off.getArray());
1901    const Vector<Bool>& m1 = off.getMask();
1902    Vector<uChar> flags1(m1.shape());
1903    convertArray(flags1, !m1);
1904    flagCol.put(1, flags1);
1905    ++iter;
1906  }
1907
1908  return out;
1909}
1910
1911std::vector< float > STMath::statistic( const CountedPtr< Scantable > & in,
1912                                        const std::vector< bool > & mask,
1913                                        const std::string& which )
1914{
1915
1916  Vector<Bool> m(mask);
1917  const Table& tab = in->table();
1918  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1919  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1920  std::vector<float> out;
1921  for (uInt i=0; i < tab.nrow(); ++i ) {
1922    Vector<Float> spec; specCol.get(i, spec);
1923    Vector<uChar> flag; flagCol.get(i, flag);
1924    MaskedArray<Float> ma  = maskedArray(spec, flag);
1925    float outstat = 0.0;
1926    if ( spec.nelements() == m.nelements() ) {
1927      outstat = mathutil::statistics(which, ma(m));
1928    } else {
1929      outstat = mathutil::statistics(which, ma);
1930    }
1931    out.push_back(outstat);
1932  }
1933  return out;
1934}
1935
1936std::vector< float > STMath::statisticRow( const CountedPtr< Scantable > & in,
1937                                        const std::vector< bool > & mask,
1938                                        const std::string& which,
1939                                        int row )
1940{
1941
1942  Vector<Bool> m(mask);
1943  const Table& tab = in->table();
1944  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1945  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1946  std::vector<float> out;
1947
1948  Vector<Float> spec; specCol.get(row, spec);
1949  Vector<uChar> flag; flagCol.get(row, flag);
1950  MaskedArray<Float> ma  = maskedArray(spec, flag);
1951  float outstat = 0.0;
1952  if ( spec.nelements() == m.nelements() ) {
1953    outstat = mathutil::statistics(which, ma(m));
1954  } else {
1955    outstat = mathutil::statistics(which, ma);
1956  }
1957  out.push_back(outstat);
1958
1959  return out;
1960}
1961
1962std::vector< int > STMath::minMaxChan( const CountedPtr< Scantable > & in,
1963                                        const std::vector< bool > & mask,
1964                                        const std::string& which )
1965{
1966
1967  Vector<Bool> m(mask);
1968  const Table& tab = in->table();
1969  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1970  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1971  std::vector<int> out;
1972  for (uInt i=0; i < tab.nrow(); ++i ) {
1973    Vector<Float> spec; specCol.get(i, spec);
1974    Vector<uChar> flag; flagCol.get(i, flag);
1975    MaskedArray<Float> ma  = maskedArray(spec, flag);
1976    if (ma.ndim() != 1) {
1977      throw (ArrayError(
1978          "std::vector<int> STMath::minMaxChan("
1979          "ContedPtr<Scantable> &in, std::vector<bool> &mask, "
1980          " std::string &which)"
1981          " - MaskedArray is not 1D"));
1982    }
1983    IPosition outpos(1,0);
1984    if ( spec.nelements() == m.nelements() ) {
1985      outpos = mathutil::minMaxPos(which, ma(m));
1986    } else {
1987      outpos = mathutil::minMaxPos(which, ma);
1988    }
1989    out.push_back(outpos[0]);
1990  }
1991  return out;
1992}
1993
1994CountedPtr< Scantable > STMath::bin( const CountedPtr< Scantable > & in,
1995                                     int width )
1996{
1997  if ( !in->getSelection().empty() ) throw(AipsError("Can't bin subset of the data."));
1998  CountedPtr< Scantable > out = getScantable(in, false);
1999  Table& tout = out->table();
2000  out->frequencies().rescale(width, "BIN");
2001  ArrayColumn<Float> specCol(tout, "SPECTRA");
2002  ArrayColumn<uChar> flagCol(tout, "FLAGTRA");
2003  for (uInt i=0; i < tout.nrow(); ++i ) {
2004    MaskedArray<Float> main  = maskedArray(specCol(i), flagCol(i));
2005    MaskedArray<Float> maout;
2006    LatticeUtilities::bin(maout, main, 0, Int(width));
2007    /// @todo implement channel based tsys binning
2008    specCol.put(i, maout.getArray());
2009    flagCol.put(i, flagsFromMA(maout));
2010    // take only the first binned spectrum's length for the deprecated
2011    // global header item nChan
2012    if (i==0) tout.rwKeywordSet().define(String("nChan"),
2013                                       Int(maout.getArray().nelements()));
2014  }
2015  return out;
2016}
2017
2018CountedPtr< Scantable > STMath::resample( const CountedPtr< Scantable >& in,
2019                                          const std::string& method,
2020                                          float width )
2021//
2022// Should add the possibility of width being specified in km/s. This means
2023// that for each freqID (SpectralCoordinate) we will need to convert to an
2024// average channel width (say at the reference pixel).  Then we would need
2025// to be careful to make sure each spectrum (of different freqID)
2026// is the same length.
2027//
2028{
2029  //InterpolateArray1D<Double,Float>::InterpolationMethod interp;
2030  Int interpMethod(stringToIMethod(method));
2031
2032  CountedPtr< Scantable > out = getScantable(in, false);
2033  Table& tout = out->table();
2034
2035// Resample SpectralCoordinates (one per freqID)
2036  out->frequencies().rescale(width, "RESAMPLE");
2037  TableIterator iter(tout, "IFNO");
2038  TableRow row(tout);
2039  while ( !iter.pastEnd() ) {
2040    Table tab = iter.table();
2041    ArrayColumn<Float> specCol(tab, "SPECTRA");
2042    //ArrayColumn<Float> tsysCol(tout, "TSYS");
2043    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2044    Vector<Float> spec;
2045    Vector<uChar> flag;
2046    specCol.get(0,spec); // the number of channels should be constant per IF
2047    uInt nChanIn = spec.nelements();
2048    Vector<Float> xIn(nChanIn); indgen(xIn);
2049    Int fac =  Int(nChanIn/width);
2050    Vector<Float> xOut(fac+10); // 10 to be safe - resize later
2051    uInt k = 0;
2052    Float x = 0.0;
2053    while (x < Float(nChanIn) ) {
2054      xOut(k) = x;
2055      k++;
2056      x += width;
2057    }
2058    uInt nChanOut = k;
2059    xOut.resize(nChanOut, True);
2060    // process all rows for this IFNO
2061    Vector<Float> specOut;
2062    Vector<Bool> maskOut;
2063    Vector<uChar> flagOut;
2064    for (uInt i=0; i < tab.nrow(); ++i) {
2065      specCol.get(i, spec);
2066      flagCol.get(i, flag);
2067      Vector<Bool> mask(flag.nelements());
2068      convertArray(mask, flag);
2069
2070      IPosition shapeIn(spec.shape());
2071      //sh.nchan = nChanOut;
2072      InterpolateArray1D<Float,Float>::interpolate(specOut, maskOut, xOut,
2073                                                   xIn, spec, mask,
2074                                                   interpMethod, True, True);
2075      /// @todo do the same for channel based Tsys
2076      flagOut.resize(maskOut.nelements());
2077      convertArray(flagOut, maskOut);
2078      specCol.put(i, specOut);
2079      flagCol.put(i, flagOut);
2080    }
2081    ++iter;
2082  }
2083
2084  return out;
2085}
2086
2087STMath::imethod STMath::stringToIMethod(const std::string& in)
2088{
2089  static STMath::imap lookup;
2090
2091  // initialize the lookup table if necessary
2092  if ( lookup.empty() ) {
2093    lookup["nearest"]   = InterpolateArray1D<Double,Float>::nearestNeighbour;
2094    lookup["linear"] = InterpolateArray1D<Double,Float>::linear;
2095    lookup["cubic"]  = InterpolateArray1D<Double,Float>::cubic;
2096    lookup["spline"]  = InterpolateArray1D<Double,Float>::spline;
2097  }
2098
2099  STMath::imap::const_iterator iter = lookup.find(in);
2100
2101  if ( lookup.end() == iter ) {
2102    std::string message = in;
2103    message += " is not a valid interpolation mode";
2104    throw(AipsError(message));
2105  }
2106  return iter->second;
2107}
2108
2109WeightType STMath::stringToWeight(const std::string& in)
2110{
2111  static std::map<std::string, WeightType> lookup;
2112
2113  // initialize the lookup table if necessary
2114  if ( lookup.empty() ) {
2115    lookup["NONE"]   = asap::W_NONE;
2116    lookup["TINT"] = asap::W_TINT;
2117    lookup["TINTSYS"]  = asap::W_TINTSYS;
2118    lookup["TSYS"]  = asap::W_TSYS;
2119    lookup["VAR"]  = asap::W_VAR;
2120  }
2121
2122  std::map<std::string, WeightType>::const_iterator iter = lookup.find(in);
2123
2124  if ( lookup.end() == iter ) {
2125    std::string message = in;
2126    message += " is not a valid weighting mode";
2127    throw(AipsError(message));
2128  }
2129  return iter->second;
2130}
2131
2132CountedPtr< Scantable > STMath::gainElevation( const CountedPtr< Scantable >& in,
2133                                               const vector< float > & coeff,
2134                                               const std::string & filename,
2135                                               const std::string& method)
2136{
2137  // Get elevation data from Scantable and convert to degrees
2138  CountedPtr< Scantable > out = getScantable(in, false);
2139  Table& tab = out->table();
2140  ROScalarColumn<Float> elev(tab, "ELEVATION");
2141  Vector<Float> x = elev.getColumn();
2142  x *= Float(180 / C::pi);                        // Degrees
2143
2144  Vector<Float> coeffs(coeff);
2145  const uInt nc = coeffs.nelements();
2146  if ( filename.length() > 0 && nc > 0 ) {
2147    throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
2148  }
2149
2150  // Correct
2151  if ( nc > 0 || filename.length() == 0 ) {
2152    // Find instrument
2153    Bool throwit = True;
2154    Instrument inst =
2155      STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2156                                throwit);
2157
2158    // Set polynomial
2159    Polynomial<Float>* ppoly = 0;
2160    Vector<Float> coeff;
2161    String msg;
2162    if ( nc > 0 ) {
2163      ppoly = new Polynomial<Float>(nc-1);
2164      coeff = coeffs;
2165      msg = String("user");
2166    } else {
2167      STAttr sdAttr;
2168      coeff = sdAttr.gainElevationPoly(inst);
2169      ppoly = new Polynomial<Float>(coeff.nelements()-1);
2170      msg = String("built in");
2171    }
2172
2173    if ( coeff.nelements() > 0 ) {
2174      ppoly->setCoefficients(coeff);
2175    } else {
2176      delete ppoly;
2177      throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
2178    }
2179    ostringstream oss;
2180    oss << "Making polynomial correction with " << msg << " coefficients:" << endl;
2181    oss << "   " <<  coeff;
2182    pushLog(String(oss));
2183    const uInt nrow = tab.nrow();
2184    Vector<Float> factor(nrow);
2185    for ( uInt i=0; i < nrow; ++i ) {
2186      factor[i] = 1.0 / (*ppoly)(x[i]);
2187    }
2188    delete ppoly;
2189    scaleByVector(tab, factor, true);
2190
2191  } else {
2192    // Read and correct
2193    pushLog("Making correction from ascii Table");
2194    scaleFromAsciiTable(tab, filename, method, x, true);
2195  }
2196  return out;
2197}
2198
2199void STMath::scaleFromAsciiTable(Table& in, const std::string& filename,
2200                                 const std::string& method,
2201                                 const Vector<Float>& xout, bool dotsys)
2202{
2203
2204// Read gain-elevation ascii file data into a Table.
2205
2206  String formatString;
2207  Table tbl = readAsciiTable(formatString, Table::Memory, filename, "", "", False);
2208  scaleFromTable(in, tbl, method, xout, dotsys);
2209}
2210
2211void STMath::scaleFromTable(Table& in,
2212                            const Table& table,
2213                            const std::string& method,
2214                            const Vector<Float>& xout, bool dotsys)
2215{
2216
2217  ROScalarColumn<Float> geElCol(table, "ELEVATION");
2218  ROScalarColumn<Float> geFacCol(table, "FACTOR");
2219  Vector<Float> xin = geElCol.getColumn();
2220  Vector<Float> yin = geFacCol.getColumn();
2221  Vector<Bool> maskin(xin.nelements(),True);
2222
2223  // Interpolate (and extrapolate) with desired method
2224
2225  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2226
2227   Vector<Float> yout;
2228   Vector<Bool> maskout;
2229   InterpolateArray1D<Float,Float>::interpolate(yout, maskout, xout,
2230                                                xin, yin, maskin, interp,
2231                                                True, True);
2232
2233   scaleByVector(in, Float(1.0)/yout, dotsys);
2234}
2235
2236void STMath::scaleByVector( Table& in,
2237                            const Vector< Float >& factor,
2238                            bool dotsys )
2239{
2240  uInt nrow = in.nrow();
2241  if ( factor.nelements() != nrow ) {
2242    throw(AipsError("factors.nelements() != table.nelements()"));
2243  }
2244  ArrayColumn<Float> specCol(in, "SPECTRA");
2245  ArrayColumn<uChar> flagCol(in, "FLAGTRA");
2246  ArrayColumn<Float> tsysCol(in, "TSYS");
2247  for (uInt i=0; i < nrow; ++i) {
2248    MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2249    ma *= factor[i];
2250    specCol.put(i, ma.getArray());
2251    flagCol.put(i, flagsFromMA(ma));
2252    if ( dotsys ) {
2253      Vector<Float> tsys = tsysCol(i);
2254      tsys *= factor[i];
2255      tsysCol.put(i,tsys);
2256    }
2257  }
2258}
2259
2260CountedPtr< Scantable > STMath::convertFlux( const CountedPtr< Scantable >& in,
2261                                             float d, float etaap,
2262                                             float jyperk )
2263{
2264  CountedPtr< Scantable > out = getScantable(in, false);
2265  Table& tab = in->table();
2266  Unit fluxUnit(tab.keywordSet().asString("FluxUnit"));
2267  Unit K(String("K"));
2268  Unit JY(String("Jy"));
2269
2270  bool tokelvin = true;
2271  Double cfac = 1.0;
2272
2273  if ( fluxUnit == JY ) {
2274    pushLog("Converting to K");
2275    Quantum<Double> t(1.0,fluxUnit);
2276    Quantum<Double> t2 = t.get(JY);
2277    cfac = (t2 / t).getValue();               // value to Jy
2278
2279    tokelvin = true;
2280    out->setFluxUnit("K");
2281  } else if ( fluxUnit == K ) {
2282    pushLog("Converting to Jy");
2283    Quantum<Double> t(1.0,fluxUnit);
2284    Quantum<Double> t2 = t.get(K);
2285    cfac = (t2 / t).getValue();              // value to K
2286
2287    tokelvin = false;
2288    out->setFluxUnit("Jy");
2289  } else {
2290    throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
2291  }
2292  // Make sure input values are converted to either Jy or K first...
2293  Float factor = cfac;
2294
2295  // Select method
2296  if (jyperk > 0.0) {
2297    factor *= jyperk;
2298    if ( tokelvin ) factor = 1.0 / jyperk;
2299    ostringstream oss;
2300    oss << "Jy/K = " << jyperk;
2301    pushLog(String(oss));
2302    Vector<Float> factors(tab.nrow(), factor);
2303    scaleByVector(tab,factors, false);
2304  } else if ( etaap > 0.0) {
2305    if (d < 0) {
2306      Instrument inst =
2307        STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2308                                  True);
2309      STAttr sda;
2310      d = sda.diameter(inst);
2311    }
2312    jyperk = STAttr::findJyPerK(etaap, d);
2313    ostringstream oss;
2314    oss << "Jy/K = " << jyperk;
2315    pushLog(String(oss));
2316    factor *= jyperk;
2317    if ( tokelvin ) {
2318      factor = 1.0 / factor;
2319    }
2320    Vector<Float> factors(tab.nrow(), factor);
2321    scaleByVector(tab, factors, False);
2322  } else {
2323
2324    // OK now we must deal with automatic look up of values.
2325    // We must also deal with the fact that the factors need
2326    // to be computed per IF and may be different and may
2327    // change per integration.
2328
2329    pushLog("Looking up conversion factors");
2330    convertBrightnessUnits(out, tokelvin, cfac);
2331  }
2332
2333  return out;
2334}
2335
2336void STMath::convertBrightnessUnits( CountedPtr<Scantable>& in,
2337                                     bool tokelvin, float cfac )
2338{
2339  Table& table = in->table();
2340  Instrument inst =
2341    STAttr::convertInstrument(table.keywordSet().asString("AntennaName"), True);
2342  TableIterator iter(table, "FREQ_ID");
2343  STFrequencies stfreqs = in->frequencies();
2344  STAttr sdAtt;
2345  while (!iter.pastEnd()) {
2346    Table tab = iter.table();
2347    ArrayColumn<Float> specCol(tab, "SPECTRA");
2348    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2349    ROScalarColumn<uInt> freqidCol(tab, "FREQ_ID");
2350    MEpoch::ROScalarColumn timeCol(tab, "TIME");
2351
2352    uInt freqid; freqidCol.get(0, freqid);
2353    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2354    // STAttr.JyPerK has a Vector interface... change sometime.
2355    Vector<Float> freqs(1,stfreqs.getRefFreq(freqid, tmpspec.nelements()));
2356    for ( uInt i=0; i<tab.nrow(); ++i) {
2357      Float jyperk = (sdAtt.JyPerK(inst, timeCol(i), freqs))[0];
2358      Float factor = cfac * jyperk;
2359      if ( tokelvin ) factor = Float(1.0) / factor;
2360      MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2361      ma *= factor;
2362      specCol.put(i, ma.getArray());
2363      flagCol.put(i, flagsFromMA(ma));
2364    }
2365  ++iter;
2366  }
2367}
2368
2369CountedPtr< Scantable > STMath::opacity( const CountedPtr< Scantable > & in,
2370                                         const std::vector<float>& tau )
2371{
2372  CountedPtr< Scantable > out = getScantable(in, false);
2373
2374  Table outtab = out->table();
2375
2376  const Int ntau = uInt(tau.size());
2377  std::vector<float>::const_iterator tauit = tau.begin();
2378  AlwaysAssert((ntau == 1 || ntau == in->nif() || ntau == in->nif() * in->npol()),
2379               AipsError);
2380  TableIterator iiter(outtab, "IFNO");
2381  while ( !iiter.pastEnd() ) {
2382    Table itab = iiter.table();
2383    TableIterator piter(itab, "POLNO");
2384    while ( !piter.pastEnd() ) {
2385      Table tab = piter.table();
2386      ROScalarColumn<Float> elev(tab, "ELEVATION");
2387      ArrayColumn<Float> specCol(tab, "SPECTRA");
2388      ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2389      ArrayColumn<Float> tsysCol(tab, "TSYS");
2390      for ( uInt i=0; i<tab.nrow(); ++i) {
2391        Float zdist = Float(C::pi_2) - elev(i);
2392        Float factor = exp(*tauit/cos(zdist));
2393        MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2394        ma *= factor;
2395        specCol.put(i, ma.getArray());
2396        flagCol.put(i, flagsFromMA(ma));
2397        Vector<Float> tsys;
2398        tsysCol.get(i, tsys);
2399        tsys *= factor;
2400        tsysCol.put(i, tsys);
2401      }
2402      if (ntau == in->nif()*in->npol() ) {
2403        tauit++;
2404      }
2405      piter++;
2406    }
2407    if (ntau >= in->nif() ) {
2408      tauit++;
2409    }
2410    iiter++;
2411  }
2412  return out;
2413}
2414
2415CountedPtr< Scantable > STMath::smoothOther( const CountedPtr< Scantable >& in,
2416                                             const std::string& kernel,
2417                                             float width, int order)
2418{
2419  CountedPtr< Scantable > out = getScantable(in, false);
2420  Table table = out->table();
2421
2422  TableIterator iter(table, "IFNO");
2423  while (!iter.pastEnd()) {
2424    Table tab = iter.table();
2425    ArrayColumn<Float> specCol(tab, "SPECTRA");
2426    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2427    Vector<Float> spec;
2428    Vector<uChar> flag;
2429    for (uInt i = 0; i < tab.nrow(); ++i) {
2430      specCol.get(i, spec);
2431      flagCol.get(i, flag);
2432      Vector<Bool> mask(flag.nelements());
2433      convertArray(mask, flag);
2434      Vector<Float> specout;
2435      Vector<Bool> maskout;
2436      if (kernel == "hanning") {
2437        mathutil::hanning(specout, maskout, spec, !mask);
2438        convertArray(flag, !maskout);
2439      } else if (kernel == "rmedian") {
2440        mathutil::runningMedian(specout, maskout, spec , mask, width);
2441        convertArray(flag, maskout);
2442      } else if (kernel == "poly") {
2443        mathutil::polyfit(specout, maskout, spec, !mask, width, order);
2444        convertArray(flag, !maskout);
2445      }
2446
2447      for (uInt j = 0; j < flag.nelements(); ++j) {
2448        uChar userFlag = 1 << 7;
2449        if (maskout[j]==True) userFlag = 0 << 7;
2450        flag(j) = userFlag;
2451      }
2452
2453      flagCol.put(i, flag);
2454      specCol.put(i, specout);
2455    }
2456  ++iter;
2457  }
2458  return out;
2459}
2460
2461CountedPtr< Scantable > STMath::smooth( const CountedPtr< Scantable >& in,
2462                                        const std::string& kernel, float width,
2463                                        int order)
2464{
2465  if (kernel == "rmedian"  || kernel == "hanning" || kernel == "poly") {
2466    return smoothOther(in, kernel, width, order);
2467  }
2468  CountedPtr< Scantable > out = getScantable(in, false);
2469  Table& table = out->table();
2470  VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernel);
2471  // same IFNO should have same no of channels
2472  // this saves overhead
2473  TableIterator iter(table, "IFNO");
2474  while (!iter.pastEnd()) {
2475    Table tab = iter.table();
2476    ArrayColumn<Float> specCol(tab, "SPECTRA");
2477    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2478    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2479    uInt nchan = tmpspec.nelements();
2480    Vector<Float> kvec = VectorKernel::make(type, width, nchan, True, False);
2481    Convolver<Float> conv(kvec, IPosition(1,nchan));
2482    Vector<Float> spec;
2483    Vector<uChar> flag;
2484    for ( uInt i=0; i<tab.nrow(); ++i) {
2485      specCol.get(i, spec);
2486      flagCol.get(i, flag);
2487      Vector<Bool> mask(flag.nelements());
2488      convertArray(mask, flag);
2489      Vector<Float> specout;
2490      mathutil::replaceMaskByZero(specout, mask);
2491      conv.linearConv(specout, spec);
2492      specCol.put(i, specout);
2493    }
2494    ++iter;
2495  }
2496  return out;
2497}
2498
2499CountedPtr< Scantable >
2500  STMath::merge( const std::vector< CountedPtr < Scantable > >& in )
2501{
2502  if ( in.size() < 2 ) {
2503    throw(AipsError("Need at least two scantables to perform a merge."));
2504  }
2505  std::vector<CountedPtr < Scantable > >::const_iterator it = in.begin();
2506  bool insitu = insitu_;
2507  setInsitu(false);
2508  CountedPtr< Scantable > out = getScantable(*it, false);
2509  setInsitu(insitu);
2510  Table& tout = out->table();
2511  ScalarColumn<uInt> freqidcol(tout,"FREQ_ID"), molidcol(tout, "MOLECULE_ID");
2512  ScalarColumn<uInt> scannocol(tout,"SCANNO"), focusidcol(tout,"FOCUS_ID");
2513  // Renumber SCANNO to be 0-based
2514  Vector<uInt> scannos = scannocol.getColumn();
2515  uInt offset = min(scannos);
2516  scannos -= offset;
2517  scannocol.putColumn(scannos);
2518  uInt newscanno = max(scannos)+1;
2519  ++it;
2520  while ( it != in.end() ){
2521    if ( ! (*it)->conformant(*out) ) {
2522      // non conformant.
2523      //pushLog(String("Warning: Can't merge scantables as header info differs."));
2524      LogIO os( LogOrigin( "STMath", "merge()", WHERE ) ) ;
2525      os << LogIO::SEVERE << "Can't merge scantables as header informations (any one of AntennaName, Equinox, and FluxUnit) differ." << LogIO::EXCEPTION ;
2526    }
2527    out->appendToHistoryTable((*it)->history());
2528    const Table& tab = (*it)->table();
2529
2530    Block<String> cols(3);
2531    cols[0] = String("FREQ_ID");
2532    cols[1] = String("MOLECULE_ID");
2533    cols[2] = String("FOCUS_ID");
2534
2535    TableIterator scanit(tab, "SCANNO");
2536    while (!scanit.pastEnd()) {
2537      ScalarColumn<uInt> thescannocol(scanit.table(),"SCANNO");
2538      Vector<uInt> thescannos(thescannocol.nrow(),newscanno);
2539      thescannocol.putColumn(thescannos);
2540      TableIterator subit(scanit.table(), cols);
2541      while ( !subit.pastEnd() ) {
2542        uInt nrow = tout.nrow();
2543        Table thetab = subit.table();
2544        ROTableRow row(thetab);
2545        Vector<uInt> thecolvals(thetab.nrow());
2546        ScalarColumn<uInt> thefreqidcol(thetab,"FREQ_ID");
2547        ScalarColumn<uInt> themolidcol(thetab, "MOLECULE_ID");
2548        ScalarColumn<uInt> thefocusidcol(thetab,"FOCUS_ID");
2549        // The selected subset of table should have
2550        // the equal FREQ_ID, MOLECULE_ID, and FOCUS_ID values.
2551        const TableRecord& rec = row.get(0);
2552        // Set the proper FREQ_ID
2553        Double rv,rp,inc;
2554        (*it)->frequencies().getEntry(rp, rv, inc, rec.asuInt("FREQ_ID"));
2555        uInt id;
2556        id = out->frequencies().addEntry(rp, rv, inc);
2557        thecolvals = id;
2558        thefreqidcol.putColumn(thecolvals);
2559        // Set the proper MOLECULE_ID
2560        Vector<String> name,fname;Vector<Double> rf;
2561        (*it)->molecules().getEntry(rf, name, fname, rec.asuInt("MOLECULE_ID"));
2562        id = out->molecules().addEntry(rf, name, fname);
2563        thecolvals = id;
2564        themolidcol.putColumn(thecolvals);
2565        // Set the proper FOCUS_ID
2566        Float fpa,frot,fax,ftan,fhand,fmount,fuser, fxy, fxyp;
2567        (*it)->focus().getEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2568                                fxy, fxyp, rec.asuInt("FOCUS_ID"));
2569        id = out->focus().addEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2570                                   fxy, fxyp);
2571        thecolvals = id;
2572        thefocusidcol.putColumn(thecolvals);
2573
2574        tout.addRow(thetab.nrow());
2575        TableCopy::copyRows(tout, thetab, nrow, 0, thetab.nrow());
2576
2577        ++subit;
2578      }
2579      ++newscanno;
2580      ++scanit;
2581    }
2582    ++it;
2583  }
2584  return out;
2585}
2586
2587CountedPtr< Scantable >
2588  STMath::invertPhase( const CountedPtr < Scantable >& in )
2589{
2590  return applyToPol(in, &STPol::invertPhase, Float(0.0));
2591}
2592
2593CountedPtr< Scantable >
2594  STMath::rotateXYPhase( const CountedPtr < Scantable >& in, float phase )
2595{
2596   return applyToPol(in, &STPol::rotatePhase, Float(phase));
2597}
2598
2599CountedPtr< Scantable >
2600  STMath::rotateLinPolPhase( const CountedPtr < Scantable >& in, float phase )
2601{
2602  return applyToPol(in, &STPol::rotateLinPolPhase, Float(phase));
2603}
2604
2605CountedPtr< Scantable > STMath::applyToPol( const CountedPtr<Scantable>& in,
2606                                             STPol::polOperation fptr,
2607                                             Float phase )
2608{
2609  CountedPtr< Scantable > out = getScantable(in, false);
2610  Table& tout = out->table();
2611  Block<String> cols(4);
2612  cols[0] = String("SCANNO");
2613  cols[1] = String("BEAMNO");
2614  cols[2] = String("IFNO");
2615  cols[3] = String("CYCLENO");
2616  TableIterator iter(tout, cols);
2617  CountedPtr<STPol> stpol = STPol::getPolClass(out->factories_,
2618                                               out->getPolType() );
2619  while (!iter.pastEnd()) {
2620    Table t = iter.table();
2621    ArrayColumn<Float> speccol(t, "SPECTRA");
2622    ScalarColumn<uInt> focidcol(t, "FOCUS_ID");
2623    Matrix<Float> pols(speccol.getColumn());
2624    try {
2625      stpol->setSpectra(pols);
2626      Float fang,fhand;
2627      fang = in->focusTable_.getTotalAngle(focidcol(0));
2628      fhand = in->focusTable_.getFeedHand(focidcol(0));
2629      stpol->setPhaseCorrections(fang, fhand);
2630      // use a member function pointer in STPol.  This only works on
2631      // the STPol pointer itself, not the Counted Pointer so
2632      // derefernce it.
2633      (&(*(stpol))->*fptr)(phase);
2634      speccol.putColumn(stpol->getSpectra());
2635    } catch (AipsError& e) {
2636      //delete stpol;stpol=0;
2637      throw(e);
2638    }
2639    ++iter;
2640  }
2641  //delete stpol;stpol=0;
2642  return out;
2643}
2644
2645CountedPtr< Scantable >
2646  STMath::swapPolarisations( const CountedPtr< Scantable > & in )
2647{
2648  CountedPtr< Scantable > out = getScantable(in, false);
2649  Table& tout = out->table();
2650  Table t0 = tout(tout.col("POLNO") == 0);
2651  Table t1 = tout(tout.col("POLNO") == 1);
2652  if ( t0.nrow() != t1.nrow() )
2653    throw(AipsError("Inconsistent number of polarisations"));
2654  ArrayColumn<Float> speccol0(t0, "SPECTRA");
2655  ArrayColumn<uChar> flagcol0(t0, "FLAGTRA");
2656  ArrayColumn<Float> speccol1(t1, "SPECTRA");
2657  ArrayColumn<uChar> flagcol1(t1, "FLAGTRA");
2658  Matrix<Float> s0 = speccol0.getColumn();
2659  Matrix<uChar> f0 = flagcol0.getColumn();
2660  speccol0.putColumn(speccol1.getColumn());
2661  flagcol0.putColumn(flagcol1.getColumn());
2662  speccol1.putColumn(s0);
2663  flagcol1.putColumn(f0);
2664  return out;
2665}
2666
2667CountedPtr< Scantable >
2668  STMath::averagePolarisations( const CountedPtr< Scantable > & in,
2669                                const std::vector<bool>& mask,
2670                                const std::string& weight )
2671{
2672  if (in->npol() < 2 )
2673    throw(AipsError("averagePolarisations can only be applied to two or more"
2674                    "polarisations"));
2675  bool insitu = insitu_;
2676  setInsitu(false);
2677  CountedPtr< Scantable > pols = getScantable(in, true);
2678  setInsitu(insitu);
2679  Table& tout = pols->table();
2680  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
2681  Table tab = tableCommand(taql, in->table());
2682  if (tab.nrow() == 0 )
2683    throw(AipsError("Could not find  any rows with POLNO==0 and POLNO==1"));
2684  TableCopy::copyRows(tout, tab);
2685  TableVector<uInt> vec(tout, "POLNO");
2686  vec = 0;
2687  pols->table_.rwKeywordSet().define("nPol", Int(1));
2688  pols->table_.rwKeywordSet().define("POLTYPE", String("stokes"));
2689  //pols->table_.rwKeywordSet().define("POLTYPE", in->getPolType());
2690  std::vector<CountedPtr<Scantable> > vpols;
2691  vpols.push_back(pols);
2692  CountedPtr< Scantable > out = average(vpols, mask, weight, "SCAN");
2693  return out;
2694}
2695
2696CountedPtr< Scantable >
2697  STMath::averageBeams( const CountedPtr< Scantable > & in,
2698                        const std::vector<bool>& mask,
2699                        const std::string& weight )
2700{
2701  bool insitu = insitu_;
2702  setInsitu(false);
2703  CountedPtr< Scantable > beams = getScantable(in, false);
2704  setInsitu(insitu);
2705  Table& tout = beams->table();
2706  // give all rows the same BEAMNO
2707  TableVector<uInt> vec(tout, "BEAMNO");
2708  vec = 0;
2709  beams->table_.rwKeywordSet().define("nBeam", Int(1));
2710  std::vector<CountedPtr<Scantable> > vbeams;
2711  vbeams.push_back(beams);
2712  CountedPtr< Scantable > out = average(vbeams, mask, weight, "SCAN");
2713  return out;
2714}
2715
2716
2717CountedPtr< Scantable >
2718  asap::STMath::frequencyAlign( const CountedPtr< Scantable > & in,
2719                                const std::string & refTime,
2720                                const std::string & method)
2721{
2722  // clone as this is not working insitu
2723  bool insitu = insitu_;
2724  setInsitu(false);
2725  CountedPtr< Scantable > out = getScantable(in, false);
2726  setInsitu(insitu);
2727  Table& tout = out->table();
2728  // Get reference Epoch to time of first row or given String
2729  Unit DAY(String("d"));
2730  MEpoch::Ref epochRef(in->getTimeReference());
2731  MEpoch refEpoch;
2732  if (refTime.length()>0) {
2733    Quantum<Double> qt;
2734    if (MVTime::read(qt,refTime)) {
2735      MVEpoch mv(qt);
2736      refEpoch = MEpoch(mv, epochRef);
2737   } else {
2738      throw(AipsError("Invalid format for Epoch string"));
2739   }
2740  } else {
2741    refEpoch = in->timeCol_(0);
2742  }
2743  MPosition refPos = in->getAntennaPosition();
2744
2745  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2746  /*
2747  // Comment from MV.
2748  // the following code has been commented out because different FREQ_IDs have to be aligned together even
2749  // if the frame doesn't change. So far, lack of this check didn't cause any problems.
2750  // test if user frame is different to base frame
2751  if ( in->frequencies().getFrameString(true)
2752       == in->frequencies().getFrameString(false) ) {
2753    throw(AipsError("Can't convert as no output frame has been set"
2754                    " (use set_freqframe) or it is aligned already."));
2755  }
2756  */
2757  MFrequency::Types system = in->frequencies().getFrame();
2758  MVTime mvt(refEpoch.getValue());
2759  String epochout = mvt.string(MVTime::YMD) + String(" (") + refEpoch.getRefString() + String(")");
2760  ostringstream oss;
2761  oss << "Aligned at reference Epoch " << epochout
2762      << " in frame " << MFrequency::showType(system);
2763  pushLog(String(oss));
2764  // set up the iterator
2765  Block<String> cols(4);
2766  // select by constant direction
2767  cols[0] = String("SRCNAME");
2768  cols[1] = String("BEAMNO");
2769  // select by IF ( no of channels varies over this )
2770  cols[2] = String("IFNO");
2771  // select by restfrequency
2772  cols[3] = String("MOLECULE_ID");
2773  TableIterator iter(tout, cols);
2774  while ( !iter.pastEnd() ) {
2775    Table t = iter.table();
2776    MDirection::ROScalarColumn dirCol(t, "DIRECTION");
2777    TableIterator fiter(t, "FREQ_ID");
2778    // determine nchan from the first row. This should work as
2779    // we are iterating over BEAMNO and IFNO    // we should have constant direction
2780
2781    ROArrayColumn<Float> sCol(t, "SPECTRA");
2782    const MDirection direction = dirCol(0);
2783    const uInt nchan = sCol(0).nelements();
2784
2785    // skip operations if there is nothing to align
2786    if (fiter.pastEnd()) {
2787        continue;
2788    }
2789
2790    Table ftab = fiter.table();
2791    // align all frequency ids with respect to the first encountered id
2792    ScalarColumn<uInt> freqidCol(ftab, "FREQ_ID");
2793    // get the SpectralCoordinate for the freqid, which we are iterating over
2794    SpectralCoordinate sC = in->frequencies().getSpectralCoordinate(freqidCol(0));
2795    FrequencyAligner<Float> fa( sC, nchan, refEpoch,
2796                                direction, refPos, system );
2797    // realign the SpectralCoordinate and put into the output Scantable
2798    Vector<String> units(1);
2799    units = String("Hz");
2800    Bool linear=True;
2801    SpectralCoordinate sc2 = fa.alignedSpectralCoordinate(linear);
2802    sc2.setWorldAxisUnits(units);
2803    const uInt id = out->frequencies().addEntry(sc2.referencePixel()[0],
2804                                                sc2.referenceValue()[0],
2805                                                sc2.increment()[0]);
2806    while ( !fiter.pastEnd() ) {
2807      ftab = fiter.table();
2808      // spectral coordinate for the current FREQ_ID
2809      ScalarColumn<uInt> freqidCol2(ftab, "FREQ_ID");
2810      sC = in->frequencies().getSpectralCoordinate(freqidCol2(0));
2811      // create the "global" abcissa for alignment with same FREQ_ID
2812      Vector<Double> abc(nchan);
2813      for (uInt i=0; i<nchan; i++) {
2814           Double w;
2815           sC.toWorld(w,Double(i));
2816           abc[i] = w;
2817      }
2818      TableVector<uInt> tvec(ftab, "FREQ_ID");
2819      // assign new frequency id to all rows
2820      tvec = id;
2821      // cache abcissa for same time stamps, so iterate over those
2822      TableIterator timeiter(ftab, "TIME");
2823      while ( !timeiter.pastEnd() ) {
2824        Table tab = timeiter.table();
2825        ArrayColumn<Float> specCol(tab, "SPECTRA");
2826        ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2827        MEpoch::ROScalarColumn timeCol(tab, "TIME");
2828        // use align abcissa cache after the first row
2829        // these rows should be just be POLNO
2830        bool first = true;
2831        for (int i=0; i<int(tab.nrow()); ++i) {
2832          // input values
2833          Vector<uChar> flag = flagCol(i);
2834          Vector<Bool> mask(flag.shape());
2835          Vector<Float> specOut, spec;
2836          spec  = specCol(i);
2837          Vector<Bool> maskOut;Vector<uChar> flagOut;
2838          convertArray(mask, flag);
2839          // alignment
2840          Bool ok = fa.align(specOut, maskOut, abc, spec,
2841                             mask, timeCol(i), !first,
2842                             interp, False);
2843          (void) ok; // unused stop compiler nagging     
2844          // back into scantable
2845          flagOut.resize(maskOut.nelements());
2846          convertArray(flagOut, maskOut);
2847          flagCol.put(i, flagOut);
2848          specCol.put(i, specOut);
2849          // start abcissa caching
2850          first = false;
2851        }
2852        // next timestamp
2853        ++timeiter;
2854      }
2855      // next FREQ_ID
2856      ++fiter;
2857    }
2858    // next aligner
2859    ++iter;
2860  }
2861  // set this afterwards to ensure we are doing insitu correctly.
2862  out->frequencies().setFrame(system, true);
2863  return out;
2864}
2865
2866CountedPtr<Scantable>
2867  asap::STMath::convertPolarisation( const CountedPtr<Scantable>& in,
2868                                     const std::string & newtype )
2869{
2870  if (in->npol() != 2 && in->npol() != 4)
2871    throw(AipsError("Can only convert two or four polarisations."));
2872  if ( in->getPolType() == newtype )
2873    throw(AipsError("No need to convert."));
2874  if ( ! in->selector_.empty() )
2875    throw(AipsError("Can only convert whole scantable. Unset the selection."));
2876  bool insitu = insitu_;
2877  setInsitu(false);
2878  CountedPtr< Scantable > out = getScantable(in, true);
2879  setInsitu(insitu);
2880  Table& tout = out->table();
2881  tout.rwKeywordSet().define("POLTYPE", String(newtype));
2882
2883  Block<String> cols(4);
2884  cols[0] = "SCANNO";
2885  cols[1] = "CYCLENO";
2886  cols[2] = "BEAMNO";
2887  cols[3] = "IFNO";
2888  TableIterator it(in->originalTable_, cols);
2889  String basetype = in->getPolType();
2890  STPol* stpol = STPol::getPolClass(in->factories_, basetype);
2891  try {
2892    while ( !it.pastEnd() ) {
2893      Table tab = it.table();
2894      uInt row = tab.rowNumbers()[0];
2895      stpol->setSpectra(in->getPolMatrix(row));
2896      Float fang,fhand;
2897      fang = in->focusTable_.getTotalAngle(in->mfocusidCol_(row));
2898      fhand = in->focusTable_.getFeedHand(in->mfocusidCol_(row));
2899      stpol->setPhaseCorrections(fang, fhand);
2900      Int npolout = 0;
2901      for (uInt i=0; i<tab.nrow(); ++i) {
2902        Vector<Float> outvec = stpol->getSpectrum(i, newtype);
2903        if ( outvec.nelements() > 0 ) {
2904          tout.addRow();
2905          TableCopy::copyRows(tout, tab, tout.nrow()-1, 0, 1);
2906          ArrayColumn<Float> sCol(tout,"SPECTRA");
2907          ScalarColumn<uInt> pCol(tout,"POLNO");
2908          sCol.put(tout.nrow()-1 ,outvec);
2909          pCol.put(tout.nrow()-1 ,uInt(npolout));
2910          npolout++;
2911       }
2912      }
2913      tout.rwKeywordSet().define("nPol", npolout);
2914      ++it;
2915    }
2916  } catch (AipsError& e) {
2917    delete stpol;
2918    throw(e);
2919  }
2920  delete stpol;
2921  return out;
2922}
2923
2924CountedPtr< Scantable >
2925  asap::STMath::mxExtract( const CountedPtr< Scantable > & in,
2926                           const std::string & scantype )
2927{
2928  bool insitu = insitu_;
2929  setInsitu(false);
2930  CountedPtr< Scantable > out = getScantable(in, true);
2931  setInsitu(insitu);
2932  Table& tout = out->table();
2933  std::string taql = "SELECT FROM $1 WHERE BEAMNO != REFBEAMNO";
2934  if (scantype == "on") {
2935    taql = "SELECT FROM $1 WHERE BEAMNO == REFBEAMNO";
2936  }
2937  Table tab = tableCommand(taql, in->table());
2938  TableCopy::copyRows(tout, tab);
2939  if (scantype == "on") {
2940    // re-index SCANNO to 0
2941    TableVector<uInt> vec(tout, "SCANNO");
2942    vec = 0;
2943  }
2944  return out;
2945}
2946
2947std::vector<float>
2948  asap::STMath::fft( const casa::CountedPtr< Scantable > & in,
2949                     const std::vector<int>& whichrow,
2950                     bool getRealImag )
2951{
2952  std::vector<float> res;
2953  Table tab = in->table();
2954  std::vector<bool> mask;
2955
2956  if (whichrow.size() < 1) {          // for all rows (by default)
2957    int nrow = int(tab.nrow());
2958    for (int i = 0; i < nrow; ++i) {
2959      res = in->execFFT(i, mask, getRealImag);
2960    }
2961  } else {                           // for specified rows
2962    for (uInt i = 0; i < whichrow.size(); ++i) {
2963      res = in->execFFT(i, mask, getRealImag);
2964    }
2965  }
2966
2967  return res;
2968}
2969
2970
2971CountedPtr<Scantable>
2972  asap::STMath::lagFlag( const CountedPtr<Scantable>& in,
2973                         double start, double end,
2974                         const std::string& mode )
2975{
2976  CountedPtr<Scantable> out = getScantable(in, false);
2977  Table& tout = out->table();
2978  TableIterator iter(tout, "FREQ_ID");
2979  FFTServer<Float,Complex> ffts;
2980
2981  while ( !iter.pastEnd() ) {
2982    Table tab = iter.table();
2983    Double rp,rv,inc;
2984    ROTableRow row(tab);
2985    const TableRecord& rec = row.get(0);
2986    uInt freqid = rec.asuInt("FREQ_ID");
2987    out->frequencies().getEntry(rp, rv, inc, freqid);
2988    ArrayColumn<Float> specCol(tab, "SPECTRA");
2989    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2990
2991    for (int i=0; i<int(tab.nrow()); ++i) {
2992      Vector<Float> spec = specCol(i);
2993      Vector<uChar> flag = flagCol(i);
2994      std::vector<bool> mask;
2995      for (uInt j = 0; j < flag.nelements(); ++j) {
2996        mask.push_back(!(flag[j]>0));
2997      }
2998      mathutil::doZeroOrderInterpolation(spec, mask);
2999
3000      Vector<Complex> lags;
3001      ffts.fft0(lags, spec);
3002
3003      Int lag0(start+0.5);
3004      Int lag1(end+0.5);
3005      if (mode == "frequency") {
3006        lag0 = Int(spec.nelements()*abs(inc)/(start)+0.5);
3007        lag1 = Int(spec.nelements()*abs(inc)/(end)+0.5);
3008      }
3009      Int lstart =  max(0, lag0);
3010      Int lend   =  min(Int(lags.nelements()-1), lag1);
3011      if (lstart == lend) {
3012        lags[lstart] = Complex(0.0);
3013      } else {
3014        if (lstart > lend) {
3015          Int tmp = lend;
3016          lend = lstart;
3017          lstart = tmp;
3018        }
3019        for (int j=lstart; j <=lend ;++j) {
3020          lags[j] = Complex(0.0);
3021        }
3022      }
3023
3024      ffts.fft0(spec, lags);
3025
3026      specCol.put(i, spec);
3027    }
3028    ++iter;
3029  }
3030  return out;
3031}
3032
3033// Averaging spectra with different channel/resolution
3034CountedPtr<Scantable>
3035STMath::new_average( const std::vector<CountedPtr<Scantable> >& in,
3036                     const bool& compel,
3037                     const std::vector<bool>& mask,
3038                     const std::string& weight,
3039                     const std::string& avmode )
3040  throw ( casa::AipsError )
3041{
3042  LogIO os( LogOrigin( "STMath", "new_average()", WHERE ) ) ;
3043  if ( avmode == "SCAN" && in.size() != 1 )
3044    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
3045                    "Use merge first."));
3046 
3047  // 2012/02/17 TN
3048  // Since STGrid is implemented, average doesn't consider direction
3049  // when accumulating
3050  // check if OTF observation
3051//   String obstype = in[0]->getHeader().obstype ;
3052//   Double tol = 0.0 ;
3053//   if ( obstype.find( "OTF" ) != String::npos ) {
3054//     tol = TOL_OTF ;
3055//   }
3056//   else {
3057//     tol = TOL_POINT ;
3058//   }
3059
3060  CountedPtr<Scantable> out ;     // processed result
3061  if ( compel ) {
3062    std::vector< CountedPtr<Scantable> > newin ; // input for average process
3063    uInt insize = in.size() ;    // number of input scantables
3064
3065    // TEST: do normal average in each table before IF grouping
3066    os << "Do preliminary averaging" << LogIO::POST ;
3067    vector< CountedPtr<Scantable> > tmpin( insize ) ;
3068    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3069      vector< CountedPtr<Scantable> > v( 1, in[itable] ) ;
3070      tmpin[itable] = average( v, mask, weight, avmode ) ;
3071    }
3072
3073    // warning
3074    os << "Average spectra with different spectral resolution" << LogIO::POST ;
3075
3076    // temporarily set coordinfo
3077    vector<string> oldinfo( insize ) ;
3078    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3079      vector<string> coordinfo = in[itable]->getCoordInfo() ;
3080      oldinfo[itable] = coordinfo[0] ;
3081      coordinfo[0] = "Hz" ;
3082      tmpin[itable]->setCoordInfo( coordinfo ) ;
3083    }
3084
3085    // columns
3086    ScalarColumn<uInt> freqIDCol ;
3087    ScalarColumn<uInt> ifnoCol ;
3088    ScalarColumn<uInt> scannoCol ;
3089
3090
3091    // check IF frequency coverage
3092    // freqid: list of FREQ_ID, which is used, in each table 
3093    // iffreq: list of minimum and maximum frequency for each FREQ_ID in
3094    //         each table
3095    // freqid[insize][numIF]
3096    // freqid: [[id00, id01, ...],
3097    //          [id10, id11, ...],
3098    //          ...
3099    //          [idn0, idn1, ...]]
3100    // iffreq[insize][numIF*2]
3101    // iffreq: [[min_id00, max_id00, min_id01, max_id01, ...],
3102    //          [min_id10, max_id10, min_id11, max_id11, ...],
3103    //          ...
3104    //          [min_idn0, max_idn0, min_idn1, max_idn1, ...]]
3105    //os << "Check IF settings in each table" << LogIO::POST ;
3106    vector< vector<uInt> > freqid( insize );
3107    vector< vector<double> > iffreq( insize ) ;
3108    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3109      uInt rows = tmpin[itable]->nrow() ;
3110      uInt freqnrows = tmpin[itable]->frequencies().table().nrow() ;
3111      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3112        if ( freqid[itable].size() == freqnrows ) {
3113          break ;
3114        }
3115        else {
3116          freqIDCol.attach( tmpin[itable]->table(), "FREQ_ID" ) ;
3117          ifnoCol.attach( tmpin[itable]->table(), "IFNO" ) ;
3118          uInt id = freqIDCol( irow ) ;
3119          if ( freqid[itable].size() == 0 || count( freqid[itable].begin(), freqid[itable].end(), id ) == 0 ) {
3120            //os << "itable = " << itable << ": IF " << id << " is included in the list" << LogIO::POST ;
3121            vector<double> abcissa = tmpin[itable]->getAbcissa( irow ) ;
3122            freqid[itable].push_back( id ) ;
3123            iffreq[itable].push_back( abcissa[0] - 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
3124            iffreq[itable].push_back( abcissa[abcissa.size()-1] + 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
3125          }
3126        }
3127      }
3128    }
3129
3130    // debug
3131    //os << "IF settings summary:" << endl ;
3132    //for ( uInt i = 0 ; i < freqid.size() ; i++ ) {
3133    //os << "   Table" << i << endl ;
3134    //for ( uInt j = 0 ; j < freqid[i].size() ; j++ ) {
3135    //os << "      id = " << freqid[i][j] << " (min,max) = (" << iffreq[i][2*j] << "," << iffreq[i][2*j+1] << ")" << endl ;
3136    //}
3137    //}
3138    //os << endl ;
3139    //os.post() ;
3140
3141    // IF grouping based on their frequency coverage
3142    // ifgrp: list of table index and FREQ_ID for all members in each IF group
3143    // ifgfreq: list of minimum and maximum frequency in each IF group
3144    // ifgrp[numgrp][nummember*2]
3145    // ifgrp: [[table00, freqrow00, table01, freqrow01, ...],
3146    //         [table10, freqrow10, table11, freqrow11, ...],
3147    //         ...
3148    //         [tablen0, freqrown0, tablen1, freqrown1, ...]]
3149    // ifgfreq[numgrp*2]
3150    // ifgfreq: [min0_grp0, max0_grp0, min1_grp1, max1_grp1, ...]
3151    //os << "IF grouping based on their frequency coverage" << LogIO::POST ;
3152    vector< vector<uInt> > ifgrp ;
3153    vector<double> ifgfreq ;
3154
3155    // parameter for IF grouping
3156    // groupmode = OR    retrieve all region
3157    //             AND   only retrieve overlaped region
3158    //string groupmode = "AND" ;
3159    string groupmode = "OR" ;
3160    uInt sizecr = 0 ;
3161    if ( groupmode == "AND" )
3162      sizecr = 2 ;
3163    else if ( groupmode == "OR" )
3164      sizecr = 0 ;
3165
3166    vector<double> sortedfreq ;
3167    for ( uInt i = 0 ; i < iffreq.size() ; i++ ) {
3168      for ( uInt j = 0 ; j < iffreq[i].size() ; j++ ) {
3169        if ( count( sortedfreq.begin(), sortedfreq.end(), iffreq[i][j] ) == 0 )
3170          sortedfreq.push_back( iffreq[i][j] ) ;
3171      }
3172    }
3173    sort( sortedfreq.begin(), sortedfreq.end() ) ;
3174    for ( vector<double>::iterator i = sortedfreq.begin() ; i != sortedfreq.end()-1 ; i++ ) {
3175      ifgfreq.push_back( *i ) ;
3176      ifgfreq.push_back( *(i+1) ) ;
3177    }
3178    ifgrp.resize( ifgfreq.size()/2 ) ;
3179    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3180      for ( uInt iif = 0 ; iif < freqid[itable].size() ; iif++ ) {
3181        double range0 = iffreq[itable][2*iif] ;
3182        double range1 = iffreq[itable][2*iif+1] ;
3183        for ( uInt j = 0 ; j < ifgrp.size() ; j++ ) {
3184          double fmin = max( range0, ifgfreq[2*j] ) ;
3185          double fmax = min( range1, ifgfreq[2*j+1] ) ;
3186          if ( fmin < fmax ) {
3187            ifgrp[j].push_back( itable ) ;
3188            ifgrp[j].push_back( freqid[itable][iif] ) ;
3189          }
3190        }
3191      }
3192    }
3193    vector< vector<uInt> >::iterator fiter = ifgrp.begin() ;
3194    vector<double>::iterator giter = ifgfreq.begin() ;
3195    while( fiter != ifgrp.end() ) {
3196      if ( fiter->size() <= sizecr ) {
3197        fiter = ifgrp.erase( fiter ) ;
3198        giter = ifgfreq.erase( giter ) ;
3199        giter = ifgfreq.erase( giter ) ;
3200      }
3201      else {
3202        fiter++ ;
3203        advance( giter, 2 ) ;
3204      }
3205    }
3206
3207    // Grouping continuous IF groups (without frequency gap)
3208    // freqgrp: list of IF group indexes in each frequency group
3209    // freqrange: list of minimum and maximum frequency in each frequency group
3210    // freqgrp[numgrp][nummember]
3211    // freqgrp: [[ifgrp00, ifgrp01, ifgrp02, ...],
3212    //           [ifgrp10, ifgrp11, ifgrp12, ...],
3213    //           ...
3214    //           [ifgrpn0, ifgrpn1, ifgrpn2, ...]]
3215    // freqrange[numgrp*2]
3216    // freqrange: [min_grp0, max_grp0, min_grp1, max_grp1, ...]
3217    vector< vector<uInt> > freqgrp ;
3218    double freqrange = 0.0 ;
3219    uInt grpnum = 0 ;
3220    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3221      // Assumed that ifgfreq was sorted
3222      if ( grpnum != 0 && freqrange == ifgfreq[2*i] ) {
3223        freqgrp[grpnum-1].push_back( i ) ;
3224      }
3225      else {
3226        vector<uInt> grp0( 1, i ) ;
3227        freqgrp.push_back( grp0 ) ;
3228        grpnum++ ;
3229      }
3230      freqrange = ifgfreq[2*i+1] ;
3231    }
3232       
3233
3234    // print IF groups
3235    ostringstream oss ;
3236    oss << "IF Group summary: " << endl ;
3237    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3238    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3239      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3240      for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3241        oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3242      }
3243      oss << endl ;
3244    }
3245    oss << endl ;
3246    os << oss.str() << LogIO::POST ;
3247   
3248    // print frequency group
3249    oss.str("") ;
3250    oss << "Frequency Group summary: " << endl ;
3251    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: IF_GROUP_ID" << endl ;
3252    for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3253      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*freqgrp[i][0]] << "," << ifgfreq[2*freqgrp[i][freqgrp[i].size()-1]+1] << "]: " ;
3254      for ( uInt j = 0 ; j < freqgrp[i].size() ; j++ ) {
3255        oss << freqgrp[i][j] << " " ;
3256      }
3257      oss << endl ;
3258    }
3259    oss << endl ;
3260    os << oss.str() << LogIO::POST ;
3261
3262    // membership check
3263    // groups: list of IF group indexes whose frequency range overlaps with
3264    //         that of each table and IF
3265    // groups[numtable][numIF][nummembership]
3266    // groups: [[[grp, grp,...], [grp, grp,...],...],
3267    //          [[grp, grp,...], [grp, grp,...],...],
3268    //          ...
3269    //          [[grp, grp,...], [grp, grp,...],...]]
3270    vector< vector< vector<uInt> > > groups( insize ) ;
3271    for ( uInt i = 0 ; i < insize ; i++ ) {
3272      groups[i].resize( freqid[i].size() ) ;
3273    }
3274    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3275      for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3276        uInt tableid = ifgrp[igrp][2*imem] ;
3277        vector<uInt>::iterator iter = find( freqid[tableid].begin(), freqid[tableid].end(), ifgrp[igrp][2*imem+1] ) ;
3278        if ( iter != freqid[tableid].end() ) {
3279          uInt rowid = distance( freqid[tableid].begin(), iter ) ;
3280          groups[tableid][rowid].push_back( igrp ) ;
3281        }
3282      }
3283    }
3284
3285    // print membership
3286    //oss.str("") ;
3287    //for ( uInt i = 0 ; i < insize ; i++ ) {
3288    //oss << "Table " << i << endl ;
3289    //for ( uInt j = 0 ; j < groups[i].size() ; j++ ) {
3290    //oss << "   FREQ_ID " <<  setw( 2 ) << freqid[i][j] << ": " ;
3291    //for ( uInt k = 0 ; k < groups[i][j].size() ; k++ ) {
3292    //oss << setw( 2 ) << groups[i][j][k] << " " ;
3293    //}
3294    //oss << endl ;
3295    //}
3296    //}
3297    //os << oss.str() << LogIO::POST ;
3298
3299    // set back coordinfo
3300    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3301      vector<string> coordinfo = tmpin[itable]->getCoordInfo() ;
3302      coordinfo[0] = oldinfo[itable] ;
3303      tmpin[itable]->setCoordInfo( coordinfo ) ;
3304    }
3305
3306    // Create additional table if needed
3307    bool oldInsitu = insitu_ ;
3308    setInsitu( false ) ;
3309    vector< vector<uInt> > addrow( insize ) ;
3310    vector<uInt> addtable( insize, 0 ) ;
3311    vector<uInt> newtableids( insize ) ;
3312    vector<uInt> newifids( insize, 0 ) ;
3313    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3314      //os << "Table " << itable << ": " ;
3315      for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3316        addrow[itable].push_back( groups[itable][ifrow].size()-1 ) ;
3317        //os << addrow[itable][ifrow] << " " ;
3318      }
3319      addtable[itable] = *max_element( addrow[itable].begin(), addrow[itable].end() ) ;
3320      //os << "(" << addtable[itable] << ")" << LogIO::POST ;
3321    }
3322    newin.resize( insize ) ;
3323    copy( tmpin.begin(), tmpin.end(), newin.begin() ) ;
3324    for ( uInt i = 0 ; i < insize ; i++ ) {
3325      newtableids[i] = i ;
3326    }
3327    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3328      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3329        CountedPtr<Scantable> add = getScantable( newin[itable], false ) ;
3330        vector<int> freqidlist ;
3331        for ( uInt i = 0 ; i < groups[itable].size() ; i++ ) {
3332          if ( groups[itable][i].size() > iadd + 1 ) {
3333            freqidlist.push_back( freqid[itable][i] ) ;
3334          }
3335        }
3336        stringstream taqlstream ;
3337        taqlstream << "SELECT FROM $1 WHERE FREQ_ID IN [" ;
3338        for ( uInt i = 0 ; i < freqidlist.size() ; i++ ) {
3339          taqlstream << freqidlist[i] ;
3340          if ( i < freqidlist.size() - 1 )
3341            taqlstream << "," ;
3342          else
3343            taqlstream << "]" ;
3344        }
3345        string taql = taqlstream.str() ;
3346        //os << "taql = " << taql << LogIO::POST ;
3347        STSelector selector = STSelector() ;
3348        selector.setTaQL( taql ) ;
3349        add->setSelection( selector ) ;
3350        newin.push_back( add ) ;
3351        newtableids.push_back( itable ) ;
3352        newifids.push_back( iadd + 1 ) ;
3353      }
3354    }
3355
3356    // udpate ifgrp
3357    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3358      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3359        for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3360          if ( groups[itable][ifrow].size() > iadd + 1 ) {
3361            uInt igrp = groups[itable][ifrow][iadd+1] ;
3362            for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3363              if ( ifgrp[igrp][2*imem] == newtableids[iadd+insize] && ifgrp[igrp][2*imem+1] == freqid[newtableids[iadd+insize]][ifrow] ) {
3364                ifgrp[igrp][2*imem] = insize + iadd ;
3365              }
3366            }
3367          }
3368        }
3369      }
3370    }
3371
3372    // print IF groups again for debug
3373    //oss.str( "" ) ;
3374    //oss << "IF Group summary: " << endl ;
3375    //oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3376    //for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3377    //oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3378    //for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3379    //oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3380    //}
3381    //oss << endl ;
3382    //}
3383    //oss << endl ;
3384    //os << oss.str() << LogIO::POST ;
3385
3386    // reset SCANNO and IFNO/FREQ_ID: IF is reset by the result of sortation
3387    os << "All scan number is set to 0" << LogIO::POST ;
3388    //os << "All IF number is set to IF group index" << LogIO::POST ;
3389    insize = newin.size() ;
3390    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3391      uInt rows = newin[itable]->nrow() ;
3392      Table &tmpt = newin[itable]->table() ;
3393      freqIDCol.attach( tmpt, "FREQ_ID" ) ;
3394      scannoCol.attach( tmpt, "SCANNO" ) ;
3395      ifnoCol.attach( tmpt, "IFNO" ) ;
3396      for ( uInt irow=0 ; irow < rows ; irow++ ) {
3397        scannoCol.put( irow, 0 ) ;
3398        uInt freqID = freqIDCol( irow ) ;
3399        vector<uInt>::iterator iter = find( freqid[newtableids[itable]].begin(), freqid[newtableids[itable]].end(), freqID ) ;
3400        if ( iter != freqid[newtableids[itable]].end() ) {
3401          uInt index = distance( freqid[newtableids[itable]].begin(), iter ) ;
3402          ifnoCol.put( irow, groups[newtableids[itable]][index][newifids[itable]] ) ;
3403        }
3404        else {
3405          throw(AipsError("IF grouping was wrong in additional tables.")) ;
3406        }
3407      }
3408    }
3409    oldinfo.resize( insize ) ;
3410    setInsitu( oldInsitu ) ;
3411
3412    // temporarily set coordinfo
3413    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3414      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3415      oldinfo[itable] = coordinfo[0] ;
3416      coordinfo[0] = "Hz" ;
3417      newin[itable]->setCoordInfo( coordinfo ) ;
3418    }
3419
3420    // save column values in the vector
3421    vector< vector<uInt> > freqTableIdVec( insize ) ;
3422    vector< vector<uInt> > freqIdVec( insize ) ;
3423    vector< vector<uInt> > ifNoVec( insize ) ;
3424    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3425      ScalarColumn<uInt> freqIDs ;
3426      freqIDs.attach( newin[itable]->frequencies().table(), "ID" ) ;
3427      ifnoCol.attach( newin[itable]->table(), "IFNO" ) ;
3428      freqIDCol.attach( newin[itable]->table(), "FREQ_ID" ) ;
3429      for ( uInt irow = 0 ; irow < newin[itable]->frequencies().table().nrow() ; irow++ ) {
3430        freqTableIdVec[itable].push_back( freqIDs( irow ) ) ;
3431      }
3432      for ( uInt irow = 0 ; irow < newin[itable]->table().nrow() ; irow++ ) {
3433        freqIdVec[itable].push_back( freqIDCol( irow ) ) ;
3434        ifNoVec[itable].push_back( ifnoCol( irow ) ) ;
3435      }
3436    }
3437
3438    // reset spectra and flagtra: pick up common part of frequency coverage
3439    //os << "Pick common frequency range and align resolution" << LogIO::POST ;
3440    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3441      uInt rows = newin[itable]->nrow() ;
3442      int nminchan = -1 ;
3443      int nmaxchan = -1 ;
3444      vector<uInt> freqIdUpdate ;
3445      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3446        uInt ifno = ifNoVec[itable][irow] ;  // IFNO is reset by group index
3447        double minfreq = ifgfreq[2*ifno] ;
3448        double maxfreq = ifgfreq[2*ifno+1] ;
3449        //os << "frequency range: [" << minfreq << "," << maxfreq << "]" << LogIO::POST ;
3450        vector<double> abcissa = newin[itable]->getAbcissa( irow ) ;
3451        int nchan = abcissa.size() ;
3452        double resol = abcissa[1] - abcissa[0] ;
3453        //os << "abcissa range  : [" << abcissa[0] << "," << abcissa[nchan-1] << "]" << LogIO::POST ;
3454        if ( minfreq <= abcissa[0] )
3455          nminchan = 0 ;
3456        else {
3457          //double cfreq = ( minfreq - abcissa[0] ) / resol ;
3458          double cfreq = ( minfreq - abcissa[0] + 0.5 * resol ) / resol ;
3459          nminchan = int(cfreq) + ( ( cfreq - int(cfreq) <= 0.5 ) ? 0 : 1 ) ;
3460        }
3461        if ( maxfreq >= abcissa[abcissa.size()-1] )
3462          nmaxchan = abcissa.size() - 1 ;
3463        else {
3464          //double cfreq = ( abcissa[abcissa.size()-1] - maxfreq ) / resol ;
3465          double cfreq = ( abcissa[abcissa.size()-1] - maxfreq + 0.5 * resol ) / resol ;
3466          nmaxchan = abcissa.size() - 1 - int(cfreq) - ( ( cfreq - int(cfreq) >= 0.5 ) ? 1 : 0 ) ;
3467        }
3468        //os << "channel range (" << irow << "): [" << nminchan << "," << nmaxchan << "]" << LogIO::POST ;
3469        if ( nmaxchan > nminchan ) {
3470          newin[itable]->reshapeSpectrum( nminchan, nmaxchan, irow ) ;
3471          int newchan = nmaxchan - nminchan + 1 ;
3472          if ( count( freqIdUpdate.begin(), freqIdUpdate.end(), freqIdVec[itable][irow] ) == 0 && newchan < nchan )
3473            freqIdUpdate.push_back( freqIdVec[itable][irow] ) ;
3474        }
3475        else {
3476          throw(AipsError("Failed to pick up common part of frequency range.")) ;
3477        }
3478      }
3479      for ( uInt i = 0 ; i < freqIdUpdate.size() ; i++ ) {
3480        uInt freqId = freqIdUpdate[i] ;
3481        Double refpix ;
3482        Double refval ;
3483        Double increment ;
3484       
3485        // update row
3486        newin[itable]->frequencies().getEntry( refpix, refval, increment, freqId ) ;
3487        refval = refval - ( refpix - nminchan ) * increment ;
3488        refpix = 0 ;
3489        newin[itable]->frequencies().setEntry( refpix, refval, increment, freqId ) ;
3490      }   
3491    }
3492
3493   
3494    // reset spectra and flagtra: align spectral resolution
3495    //os << "Align spectral resolution" << LogIO::POST ;
3496    // gmaxdnu: the coarsest frequency resolution in the frequency group
3497    // gmemid: member index that have a resolution equal to gmaxdnu
3498    // gmaxdnu[numfreqgrp]
3499    // gmaxdnu: [dnu0, dnu1, ...]
3500    // gmemid[numfreqgrp]
3501    // gmemid: [id0, id1, ...]
3502    vector<double> gmaxdnu( freqgrp.size(), 0.0 ) ;
3503    vector<uInt> gmemid( freqgrp.size(), 0 ) ;
3504    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3505      double maxdnu = 0.0 ;       // maximum (coarsest) frequency resolution
3506      int minchan = INT_MAX ;     // minimum channel number
3507      Double refpixref = -1 ;     // reference of 'reference pixel'
3508      Double refvalref = -1 ;     // reference of 'reference frequency'
3509      Double refinc = -1 ;        // reference frequency resolution
3510      uInt refreqid ;
3511      uInt reftable = INT_MAX;
3512      // process only if group member > 1
3513      if ( ifgrp[igrp].size() > 2 ) {
3514        // find minchan and maxdnu in each group
3515        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3516          uInt tableid = ifgrp[igrp][2*imem] ;
3517          uInt rowid = ifgrp[igrp][2*imem+1] ;
3518          vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3519          if ( iter != freqIdVec[tableid].end() ) {
3520            uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3521            vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3522            int nchan = abcissa.size() ;
3523            double dnu = abcissa[1] - abcissa[0] ;
3524            //os << "GROUP " << igrp << " (" << tableid << "," << rowid << "): nchan = " << nchan << " (minchan = " << minchan << ")" << LogIO::POST ;
3525            if ( nchan < minchan ) {
3526              minchan = nchan ;
3527              maxdnu = dnu ;
3528              newin[tableid]->frequencies().getEntry( refpixref, refvalref, refinc, rowid ) ;
3529              refreqid = rowid ;
3530              reftable = tableid ;
3531            }
3532          }
3533        }
3534        // regrid spectra in each group
3535        os << "GROUP " << igrp << endl ;
3536        os << "   Channel number is adjusted to " << minchan << endl ;
3537        os << "   Corresponding frequency resolution is " << maxdnu << "Hz" << LogIO::POST ;
3538        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3539          uInt tableid = ifgrp[igrp][2*imem] ;
3540          uInt rowid = ifgrp[igrp][2*imem+1] ;
3541          freqIDCol.attach( newin[tableid]->table(), "FREQ_ID" ) ;
3542          //os << "tableid = " << tableid << " rowid = " << rowid << ": " << LogIO::POST ;
3543          //os << "   regridChannel applied to " ;
3544          //if ( tableid != reftable )
3545          refreqid = newin[tableid]->frequencies().addEntry( refpixref, refvalref, refinc ) ;
3546          for ( uInt irow = 0 ; irow < newin[tableid]->table().nrow() ; irow++ ) {
3547            uInt tfreqid = freqIdVec[tableid][irow] ;
3548            if ( tfreqid == rowid ) {     
3549              //os << irow << " " ;
3550              newin[tableid]->regridChannel( minchan, maxdnu, irow ) ;
3551              freqIDCol.put( irow, refreqid ) ;
3552              freqIdVec[tableid][irow] = refreqid ;
3553            }
3554          }
3555          //os << LogIO::POST ;
3556        }
3557      }
3558      else {
3559        uInt tableid = ifgrp[igrp][0] ;
3560        uInt rowid = ifgrp[igrp][1] ;
3561        vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3562        if ( iter != freqIdVec[tableid].end() ) {
3563          uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3564          vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3565          minchan = abcissa.size() ;
3566          maxdnu = abcissa[1] - abcissa[0] ;
3567        }
3568      }
3569      for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3570        if ( count( freqgrp[i].begin(), freqgrp[i].end(), igrp ) > 0 ) {
3571          if ( maxdnu > gmaxdnu[i] ) {
3572            gmaxdnu[i] = maxdnu ;
3573            gmemid[i] = igrp ;
3574          }
3575          break ;
3576        }
3577      }
3578    }
3579
3580    // set back coordinfo
3581    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3582      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3583      coordinfo[0] = oldinfo[itable] ;
3584      newin[itable]->setCoordInfo( coordinfo ) ;
3585    }     
3586
3587    // accumulate all rows into the first table
3588    // NOTE: assumed in.size() = 1
3589    vector< CountedPtr<Scantable> > tmp( 1 ) ;
3590    if ( newin.size() == 1 )
3591      tmp[0] = newin[0] ;
3592    else
3593      tmp[0] = merge( newin ) ;
3594
3595    //return tmp[0] ;
3596
3597    // average
3598    CountedPtr<Scantable> tmpout = average( tmp, mask, weight, avmode ) ;
3599
3600    //return tmpout ;
3601
3602    // combine frequency group
3603    os << "Combine spectra based on frequency grouping" << LogIO::POST ;
3604    os << "IFNO is renumbered as frequency group ID (see above)" << LogIO::POST ;
3605    vector<string> coordinfo = tmpout->getCoordInfo() ;
3606    oldinfo[0] = coordinfo[0] ;
3607    coordinfo[0] = "Hz" ;
3608    tmpout->setCoordInfo( coordinfo ) ;
3609    // create proformas of output table
3610    stringstream taqlstream ;
3611    taqlstream << "SELECT FROM $1 WHERE IFNO IN [" ;
3612    for ( uInt i = 0 ; i < gmemid.size() ; i++ ) {
3613      taqlstream << gmemid[i] ;
3614      if ( i < gmemid.size() - 1 )
3615        taqlstream << "," ;
3616      else
3617        taqlstream << "]" ;
3618    }
3619    string taql = taqlstream.str() ;
3620    //os << "taql = " << taql << LogIO::POST ;
3621    STSelector selector = STSelector() ;
3622    selector.setTaQL( taql ) ;
3623    oldInsitu = insitu_ ;
3624    setInsitu( false ) ;
3625    out = getScantable( tmpout, false ) ;
3626    setInsitu( oldInsitu ) ;
3627    out->setSelection( selector ) ;
3628    // regrid rows
3629    ifnoCol.attach( tmpout->table(), "IFNO" ) ;
3630    for ( uInt irow = 0 ; irow < tmpout->table().nrow() ; irow++ ) {
3631      uInt ifno = ifnoCol( irow ) ;
3632      for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3633        if ( count( freqgrp[igrp].begin(), freqgrp[igrp].end(), ifno ) > 0 ) {
3634          vector<double> abcissa = tmpout->getAbcissa( irow ) ;
3635          double bw = ( abcissa[1] - abcissa[0] ) * abcissa.size() ;
3636          int nchan = (int)( bw / gmaxdnu[igrp] ) ;
3637          tmpout->regridChannel( nchan, gmaxdnu[igrp], irow ) ;
3638          break ;
3639        }
3640      }
3641    }
3642    // combine spectra
3643    ArrayColumn<Float> specColOut ;
3644    specColOut.attach( out->table(), "SPECTRA" ) ;
3645    ArrayColumn<uChar> flagColOut ;
3646    flagColOut.attach( out->table(), "FLAGTRA" ) ;
3647    ScalarColumn<uInt> ifnoColOut ;
3648    ifnoColOut.attach( out->table(), "IFNO" ) ;
3649    ScalarColumn<uInt> polnoColOut ;
3650    polnoColOut.attach( out->table(), "POLNO" ) ;
3651    ScalarColumn<uInt> freqidColOut ;
3652    freqidColOut.attach( out->table(), "FREQ_ID" ) ;
3653//     MDirection::ScalarColumn dirColOut ;
3654//     dirColOut.attach( out->table(), "DIRECTION" ) ;
3655    Table &tab = tmpout->table() ;
3656    Block<String> cols(1);
3657    cols[0] = String("POLNO") ;
3658    TableIterator iter( tab, cols ) ;
3659    bool done = false ;
3660    vector< vector<uInt> > sizes( freqgrp.size() ) ;
3661    while( !iter.pastEnd() ) {
3662      vector< vector<Float> > specout( freqgrp.size() ) ;
3663      vector< vector<uChar> > flagout( freqgrp.size() ) ;
3664      ArrayColumn<Float> specCols ;
3665      specCols.attach( iter.table(), "SPECTRA" ) ;
3666      ArrayColumn<uChar> flagCols ;
3667      flagCols.attach( iter.table(), "FLAGTRA" ) ;
3668      ifnoCol.attach( iter.table(), "IFNO" ) ;
3669      ScalarColumn<uInt> polnos ;
3670      polnos.attach( iter.table(), "POLNO" ) ;
3671//       MDirection::ScalarColumn dircol ;
3672//       dircol.attach( iter.table(), "DIRECTION" ) ;
3673      uInt polno = polnos( 0 ) ;
3674      //os << "POLNO iteration: " << polno << LogIO::POST ;
3675//       for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3676//      sizes[igrp].resize( freqgrp[igrp].size() ) ;
3677//      for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3678//        for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3679//          uInt ifno = ifnoCol( irow ) ;
3680//          if ( ifno == freqgrp[igrp][imem] ) {
3681//            Vector<Float> spec = specCols( irow ) ;
3682//            Vector<uChar> flag = flagCols( irow ) ;
3683//            vector<Float> svec ;
3684//            spec.tovector( svec ) ;
3685//            vector<uChar> fvec ;
3686//            flag.tovector( fvec ) ;
3687//            //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3688//            specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3689//            flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3690//            //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3691//            sizes[igrp][imem] = spec.nelements() ;
3692//          }
3693//        }
3694//      }
3695//      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3696//        uInt ifout = ifnoColOut( irow ) ;
3697//        uInt polout = polnoColOut( irow ) ;
3698//        if ( ifout == gmemid[igrp] && polout == polno ) {
3699//          // set SPECTRA and FRAGTRA
3700//          Vector<Float> newspec( specout[igrp] ) ;
3701//          Vector<uChar> newflag( flagout[igrp] ) ;
3702//          specColOut.put( irow, newspec ) ;
3703//          flagColOut.put( irow, newflag ) ;
3704//          // IFNO renumbering
3705//          ifnoColOut.put( irow, igrp ) ;
3706//        }
3707//      }
3708//       }
3709      // get a list of number of channels for each frequency group member
3710      if ( !done ) {
3711        for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3712          sizes[igrp].resize( freqgrp[igrp].size() ) ;
3713          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3714            for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3715              uInt ifno = ifnoCol( irow ) ;
3716              if ( ifno == freqgrp[igrp][imem] ) {
3717                Vector<Float> spec = specCols( irow ) ;
3718                sizes[igrp][imem] = spec.nelements() ;
3719                break ;
3720              }               
3721            }
3722          }
3723        }
3724        done = true ;
3725      }
3726      // combine spectra
3727      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3728        uInt polout = polnoColOut( irow ) ;
3729        if ( polout == polno ) {
3730          uInt ifout = ifnoColOut( irow ) ;
3731//           Vector<Double> direction = dirColOut(irow).getAngle(Unit(String("rad"))).getValue() ;
3732          uInt igrp ;
3733          for ( uInt jgrp = 0 ; jgrp < freqgrp.size() ; jgrp++ ) {
3734            if ( ifout == gmemid[jgrp] ) {
3735              igrp = jgrp ;
3736              break ;
3737            }
3738          }
3739          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3740            for ( uInt jrow = 0 ; jrow < iter.table().nrow() ; jrow++ ) {
3741              uInt ifno = ifnoCol( jrow ) ;
3742              // 2012/02/17 TN
3743              // Since STGrid is implemented, average doesn't consider direction
3744              // when accumulating
3745//               Vector<Double> tdir = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
3746//               //if ( ifno == freqgrp[igrp][imem] && allTrue( tdir == direction  ) ) {
3747//               Double dx = tdir[0] - direction[0] ;
3748//               Double dy = tdir[1] - direction[1] ;
3749//               Double dd = sqrt( dx * dx + dy * dy ) ;
3750              //if ( ifno == freqgrp[igrp][imem] && allNearAbs( tdir, direction, tol ) ) {
3751//               if ( ifno == freqgrp[igrp][imem] && dd <= tol ) {
3752              if ( ifno == freqgrp[igrp][imem] ) {
3753                Vector<Float> spec = specCols( jrow ) ;
3754                Vector<uChar> flag = flagCols( jrow ) ;
3755                vector<Float> svec ;
3756                spec.tovector( svec ) ;
3757                vector<uChar> fvec ;
3758                flag.tovector( fvec ) ;
3759                //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3760                specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3761                flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3762                //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3763              }
3764            }
3765          }
3766          // set SPECTRA and FRAGTRA
3767          Vector<Float> newspec( specout[igrp] ) ;
3768          Vector<uChar> newflag( flagout[igrp] ) ;
3769          specColOut.put( irow, newspec ) ;
3770          flagColOut.put( irow, newflag ) ;
3771          // IFNO renumbering
3772          ifnoColOut.put( irow, igrp ) ;
3773        }
3774      }
3775      iter++ ;
3776    }
3777    // update FREQUENCIES subtable
3778    vector<bool> updated( freqgrp.size(), false ) ;
3779    for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3780      uInt index = 0 ;
3781      uInt pixShift = 0 ;
3782      while ( freqgrp[igrp][index] != gmemid[igrp] ) {
3783        pixShift += sizes[igrp][index++] ;
3784      }
3785      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3786        if ( ifnoColOut( irow ) == gmemid[igrp] && !updated[igrp] ) {
3787          uInt freqidOut = freqidColOut( irow ) ;
3788          //os << "freqgrp " << igrp << " freqidOut = " << freqidOut << LogIO::POST ;
3789          double refpix ;
3790          double refval ;
3791          double increm ;
3792          out->frequencies().getEntry( refpix, refval, increm, freqidOut ) ;
3793          refpix += pixShift ;
3794          out->frequencies().setEntry( refpix, refval, increm, freqidOut ) ;
3795          updated[igrp] = true ;
3796        }
3797      }
3798    }
3799
3800    //out = tmpout ;
3801
3802    coordinfo = tmpout->getCoordInfo() ;
3803    coordinfo[0] = oldinfo[0] ;
3804    tmpout->setCoordInfo( coordinfo ) ;
3805  }
3806  else {
3807    // simple average
3808    out =  average( in, mask, weight, avmode ) ;
3809  }
3810 
3811  return out;
3812}
3813
3814CountedPtr<Scantable> STMath::cwcal( const CountedPtr<Scantable>& s,
3815                                     const String calmode,
3816                                     const String antname )
3817{
3818  // frequency switch
3819  if ( calmode == "fs" ) {
3820    return cwcalfs( s, antname ) ;
3821  }
3822  else {
3823    vector<bool> masks = s->getMask( 0 ) ;
3824    vector<int> types ;
3825
3826    // sky scan
3827    STSelector sel = STSelector() ;
3828    types.push_back( SrcType::SKY ) ;
3829    sel.setTypes( types ) ;
3830    s->setSelection( sel ) ;
3831    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3832    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
3833    s->unsetSelection() ;
3834    sel.reset() ;
3835    types.clear() ;
3836
3837    // hot scan
3838    types.push_back( SrcType::HOT ) ;
3839    sel.setTypes( types ) ;
3840    s->setSelection( sel ) ;
3841    tmp.clear() ;
3842    tmp.push_back( getScantable( s, false ) ) ;
3843    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
3844    s->unsetSelection() ;
3845    sel.reset() ;
3846    types.clear() ;
3847   
3848    // cold scan
3849    CountedPtr<Scantable> acold ;
3850//     types.push_back( SrcType::COLD ) ;
3851//     sel.setTypes( types ) ;
3852//     s->setSelection( sel ) ;
3853//     tmp.clear() ;
3854//     tmp.push_back( getScantable( s, false ) ) ;
3855//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCNAN" ) ;
3856//     s->unsetSelection() ;
3857//     sel.reset() ;
3858//     types.clear() ;
3859
3860    // off scan
3861    types.push_back( SrcType::PSOFF ) ;
3862    sel.setTypes( types ) ;
3863    s->setSelection( sel ) ;
3864    tmp.clear() ;
3865    tmp.push_back( getScantable( s, false ) ) ;
3866    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3867    s->unsetSelection() ;
3868    sel.reset() ;
3869    types.clear() ;
3870   
3871    // on scan
3872    bool insitu = insitu_ ;
3873    insitu_ = false ;
3874    CountedPtr<Scantable> out = getScantable( s, true ) ;
3875    insitu_ = insitu ;
3876    types.push_back( SrcType::PSON ) ;
3877    sel.setTypes( types ) ;
3878    s->setSelection( sel ) ;
3879    TableCopy::copyRows( out->table(), s->table() ) ;
3880    s->unsetSelection() ;
3881    sel.reset() ;
3882    types.clear() ;
3883   
3884    // process each on scan
3885    ArrayColumn<Float> tsysCol ;
3886    tsysCol.attach( out->table(), "TSYS" ) ;
3887    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3888      vector<float> sp = getCalibratedSpectra( out, aoff, asky, ahot, acold, i, antname ) ;
3889      out->setSpectrum( sp, i ) ;
3890      string reftime = out->getTime( i ) ;
3891      vector<int> ii( 1, out->getIF( i ) ) ;
3892      vector<int> ib( 1, out->getBeam( i ) ) ;
3893      vector<int> ip( 1, out->getPol( i ) ) ;
3894      sel.setIFs( ii ) ;
3895      sel.setBeams( ib ) ;
3896      sel.setPolarizations( ip ) ;
3897      asky->setSelection( sel ) ;   
3898      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
3899      const Vector<Float> Vtsys( sptsys ) ;
3900      tsysCol.put( i, Vtsys ) ;
3901      asky->unsetSelection() ;
3902      sel.reset() ;
3903    }
3904
3905    // flux unit
3906    out->setFluxUnit( "K" ) ;
3907
3908    return out ;
3909  }
3910}
3911 
3912CountedPtr<Scantable> STMath::almacal( const CountedPtr<Scantable>& s,
3913                                       const String calmode )
3914{
3915  // frequency switch
3916  if ( calmode == "fs" ) {
3917    return almacalfs( s ) ;
3918  }
3919  else {
3920    vector<bool> masks = s->getMask( 0 ) ;
3921   
3922    // off scan
3923    STSelector sel = STSelector() ;
3924    vector<int> types ;
3925    types.push_back( SrcType::PSOFF ) ;
3926    sel.setTypes( types ) ;
3927    s->setSelection( sel ) ;
3928    // TODO 2010/01/08 TN
3929    // Grouping by time should be needed before averaging.
3930    // Each group must have own unique SCANNO (should be renumbered).
3931    // See PIPELINE/SDCalibration.py
3932    CountedPtr<Scantable> soff = getScantable( s, false ) ;
3933    Table ttab = soff->table() ;
3934    ROScalarColumn<Double> timeCol( ttab, "TIME" ) ;
3935    uInt nrow = timeCol.nrow() ;
3936    Vector<Double> timeSep( nrow - 1 ) ;
3937    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3938      timeSep[i] = timeCol(i+1) - timeCol(i) ;
3939    }
3940    ScalarColumn<Double> intervalCol( ttab, "INTERVAL" ) ;
3941    Vector<Double> interval = intervalCol.getColumn() ;
3942    interval /= 86400.0 ;
3943    ScalarColumn<uInt> scanCol( ttab, "SCANNO" ) ;
3944    vector<uInt> glist ;
3945    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3946      double gap = 2.0 * timeSep[i] / ( interval[i] + interval[i+1] ) ;
3947      //cout << "gap[" << i << "]=" << setw(5) << gap << endl ;
3948      if ( gap > 1.1 ) {
3949        glist.push_back( i ) ;
3950      }
3951    }
3952    Vector<uInt> gaplist( glist ) ;
3953    //cout << "gaplist = " << gaplist << endl ;
3954    uInt newid = 0 ;
3955    for ( uInt i = 0 ; i < nrow ; i++ ) {
3956      scanCol.put( i, newid ) ;
3957      if ( i == gaplist[newid] ) {
3958        newid++ ;
3959      }
3960    }
3961    //cout << "new scancol = " << scanCol.getColumn() << endl ;
3962    vector< CountedPtr<Scantable> > tmp( 1, soff ) ;
3963    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3964    //cout << "aoff.nrow = " << aoff->nrow() << endl ;
3965    s->unsetSelection() ;
3966    sel.reset() ;
3967    types.clear() ;
3968   
3969    // on scan
3970    bool insitu = insitu_ ;
3971    insitu_ = false ;
3972    CountedPtr<Scantable> out = getScantable( s, true ) ;
3973    insitu_ = insitu ;
3974    types.push_back( SrcType::PSON ) ;
3975    sel.setTypes( types ) ;
3976    s->setSelection( sel ) ;
3977    TableCopy::copyRows( out->table(), s->table() ) ;
3978    s->unsetSelection() ;
3979    sel.reset() ;
3980    types.clear() ;
3981   
3982    // process each on scan
3983    ArrayColumn<Float> tsysCol ;
3984    tsysCol.attach( out->table(), "TSYS" ) ;
3985    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3986      vector<float> sp = getCalibratedSpectra( out, aoff, i ) ;
3987      out->setSpectrum( sp, i ) ;
3988    }
3989
3990    // flux unit
3991    out->setFluxUnit( "K" ) ;
3992
3993    return out ;
3994  }
3995}
3996
3997CountedPtr<Scantable> STMath::cwcalfs( const CountedPtr<Scantable>& s,
3998                                       const String antname )
3999{
4000  vector<int> types ;
4001
4002  // APEX calibration mode
4003  int apexcalmode = 1 ;
4004 
4005  if ( antname.find( "APEX" ) != string::npos ) {
4006    // check if off scan exists or not
4007    STSelector sel = STSelector() ;
4008    //sel.setName( offstr1 ) ;
4009    types.push_back( SrcType::FLOOFF ) ;
4010    sel.setTypes( types ) ;
4011    try {
4012      s->setSelection( sel ) ;
4013    }
4014    catch ( AipsError &e ) {
4015      apexcalmode = 0 ;
4016    }
4017    sel.reset() ;
4018  }
4019  s->unsetSelection() ;
4020  types.clear() ;
4021
4022  vector<bool> masks = s->getMask( 0 ) ;
4023  CountedPtr<Scantable> ssig, sref ;
4024  CountedPtr<Scantable> out ;
4025
4026  if ( antname.find( "APEX" ) != string::npos ) {
4027    // APEX calibration
4028    // sky scan
4029    STSelector sel = STSelector() ;
4030    types.push_back( SrcType::FLOSKY ) ;
4031    sel.setTypes( types ) ;
4032    s->setSelection( sel ) ;
4033    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
4034    CountedPtr<Scantable> askylo = average( tmp, masks, "TINT", "SCAN" ) ;
4035    s->unsetSelection() ;
4036    sel.reset() ;
4037    types.clear() ;
4038    types.push_back( SrcType::FHISKY ) ;
4039    sel.setTypes( types ) ;
4040    s->setSelection( sel ) ;
4041    tmp.clear() ;
4042    tmp.push_back( getScantable( s, false ) ) ;
4043    CountedPtr<Scantable> askyhi = average( tmp, masks, "TINT", "SCAN" ) ;
4044    s->unsetSelection() ;
4045    sel.reset() ;
4046    types.clear() ;
4047   
4048    // hot scan
4049    types.push_back( SrcType::FLOHOT ) ;
4050    sel.setTypes( types ) ;
4051    s->setSelection( sel ) ;
4052    tmp.clear() ;
4053    tmp.push_back( getScantable( s, false ) ) ;
4054    CountedPtr<Scantable> ahotlo = average( tmp, masks, "TINT", "SCAN" ) ;
4055    s->unsetSelection() ;
4056    sel.reset() ;
4057    types.clear() ;
4058    types.push_back( SrcType::FHIHOT ) ;
4059    sel.setTypes( types ) ;
4060    s->setSelection( sel ) ;
4061    tmp.clear() ;
4062    tmp.push_back( getScantable( s, false ) ) ;
4063    CountedPtr<Scantable> ahothi = average( tmp, masks, "TINT", "SCAN" ) ;
4064    s->unsetSelection() ;
4065    sel.reset() ;
4066    types.clear() ;
4067   
4068    // cold scan
4069    CountedPtr<Scantable> acoldlo, acoldhi ;
4070//     types.push_back( SrcType::FLOCOLD ) ;
4071//     sel.setTypes( types ) ;
4072//     s->setSelection( sel ) ;
4073//     tmp.clear() ;
4074//     tmp.push_back( getScantable( s, false ) ) ;
4075//     CountedPtr<Scantable> acoldlo = average( tmp, masks, "TINT", "SCAN" ) ;
4076//     s->unsetSelection() ;
4077//     sel.reset() ;
4078//     types.clear() ;
4079//     types.push_back( SrcType::FHICOLD ) ;
4080//     sel.setTypes( types ) ;
4081//     s->setSelection( sel ) ;
4082//     tmp.clear() ;
4083//     tmp.push_back( getScantable( s, false ) ) ;
4084//     CountedPtr<Scantable> acoldhi = average( tmp, masks, "TINT", "SCAN" ) ;
4085//     s->unsetSelection() ;
4086//     sel.reset() ;
4087//     types.clear() ;
4088
4089    // ref scan
4090    bool insitu = insitu_ ;
4091    insitu_ = false ;
4092    sref = getScantable( s, true ) ;
4093    insitu_ = insitu ;
4094    types.push_back( SrcType::FSLO ) ;
4095    sel.setTypes( types ) ;
4096    s->setSelection( sel ) ;
4097    TableCopy::copyRows( sref->table(), s->table() ) ;
4098    s->unsetSelection() ;
4099    sel.reset() ;
4100    types.clear() ;
4101   
4102    // sig scan
4103    insitu_ = false ;
4104    ssig = getScantable( s, true ) ;
4105    insitu_ = insitu ;
4106    types.push_back( SrcType::FSHI ) ;
4107    sel.setTypes( types ) ;
4108    s->setSelection( sel ) ;
4109    TableCopy::copyRows( ssig->table(), s->table() ) ;
4110    s->unsetSelection() ;
4111    sel.reset() ; 
4112    types.clear() ;
4113         
4114    if ( apexcalmode == 0 ) {
4115      // APEX fs data without off scan
4116      // process each sig and ref scan
4117      ArrayColumn<Float> tsysCollo ;
4118      tsysCollo.attach( ssig->table(), "TSYS" ) ;
4119      ArrayColumn<Float> tsysColhi ;
4120      tsysColhi.attach( sref->table(), "TSYS" ) ;
4121      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4122        vector< CountedPtr<Scantable> > sky( 2 ) ;
4123        sky[0] = askylo ;
4124        sky[1] = askyhi ;
4125        vector< CountedPtr<Scantable> > hot( 2 ) ;
4126        hot[0] = ahotlo ;
4127        hot[1] = ahothi ;
4128        vector< CountedPtr<Scantable> > cold( 2 ) ;
4129        //cold[0] = acoldlo ;
4130        //cold[1] = acoldhi ;
4131        vector<float> sp = getFSCalibratedSpectra( ssig, sref, sky, hot, cold, i ) ;
4132        ssig->setSpectrum( sp, i ) ;
4133        string reftime = ssig->getTime( i ) ;
4134        vector<int> ii( 1, ssig->getIF( i ) ) ;
4135        vector<int> ib( 1, ssig->getBeam( i ) ) ;
4136        vector<int> ip( 1, ssig->getPol( i ) ) ;
4137        sel.setIFs( ii ) ;
4138        sel.setBeams( ib ) ;
4139        sel.setPolarizations( ip ) ;
4140        askylo->setSelection( sel ) ;
4141        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4142        const Vector<Float> Vtsyslo( sptsys ) ;
4143        tsysCollo.put( i, Vtsyslo ) ;
4144        askylo->unsetSelection() ;
4145        sel.reset() ;
4146        sky[0] = askyhi ;
4147        sky[1] = askylo ;
4148        hot[0] = ahothi ;
4149        hot[1] = ahotlo ;
4150        cold[0] = acoldhi ;
4151        cold[1] = acoldlo ;
4152        sp = getFSCalibratedSpectra( sref, ssig, sky, hot, cold, i ) ;
4153        sref->setSpectrum( sp, i ) ;
4154        reftime = sref->getTime( i ) ;
4155        ii[0] = sref->getIF( i )  ;
4156        ib[0] = sref->getBeam( i ) ;
4157        ip[0] = sref->getPol( i ) ;
4158        sel.setIFs( ii ) ;
4159        sel.setBeams( ib ) ;
4160        sel.setPolarizations( ip ) ;
4161        askyhi->setSelection( sel ) ;   
4162        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4163        const Vector<Float> Vtsyshi( sptsys ) ;
4164        tsysColhi.put( i, Vtsyshi ) ;
4165        askyhi->unsetSelection() ;
4166        sel.reset() ;
4167      }
4168    }
4169    else if ( apexcalmode == 1 ) {
4170      // APEX fs data with off scan
4171      // off scan
4172      types.push_back( SrcType::FLOOFF ) ;
4173      sel.setTypes( types ) ;
4174      s->setSelection( sel ) ;
4175      tmp.clear() ;
4176      tmp.push_back( getScantable( s, false ) ) ;
4177      CountedPtr<Scantable> aofflo = average( tmp, masks, "TINT", "SCAN" ) ;
4178      s->unsetSelection() ;
4179      sel.reset() ;
4180      types.clear() ;
4181      types.push_back( SrcType::FHIOFF ) ;
4182      sel.setTypes( types ) ;
4183      s->setSelection( sel ) ;
4184      tmp.clear() ;
4185      tmp.push_back( getScantable( s, false ) ) ;
4186      CountedPtr<Scantable> aoffhi = average( tmp, masks, "TINT", "SCAN" ) ;
4187      s->unsetSelection() ;
4188      sel.reset() ;
4189      types.clear() ;
4190     
4191      // process each sig and ref scan
4192      ArrayColumn<Float> tsysCollo ;
4193      tsysCollo.attach( ssig->table(), "TSYS" ) ;
4194      ArrayColumn<Float> tsysColhi ;
4195      tsysColhi.attach( sref->table(), "TSYS" ) ;
4196      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4197        vector<float> sp = getCalibratedSpectra( ssig, aofflo, askylo, ahotlo, acoldlo, i, antname ) ;
4198        ssig->setSpectrum( sp, i ) ;
4199        sp = getCalibratedSpectra( sref, aoffhi, askyhi, ahothi, acoldhi, i, antname ) ;
4200        string reftime = ssig->getTime( i ) ;
4201        vector<int> ii( 1, ssig->getIF( i ) ) ;
4202        vector<int> ib( 1, ssig->getBeam( i ) ) ;
4203        vector<int> ip( 1, ssig->getPol( i ) ) ;
4204        sel.setIFs( ii ) ;
4205        sel.setBeams( ib ) ;
4206        sel.setPolarizations( ip ) ;
4207        askylo->setSelection( sel ) ;
4208        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4209        const Vector<Float> Vtsyslo( sptsys ) ;
4210        tsysCollo.put( i, Vtsyslo ) ;
4211        askylo->unsetSelection() ;
4212        sel.reset() ;
4213        sref->setSpectrum( sp, i ) ;
4214        reftime = sref->getTime( i ) ;
4215        ii[0] = sref->getIF( i )  ;
4216        ib[0] = sref->getBeam( i ) ;
4217        ip[0] = sref->getPol( i ) ;
4218        sel.setIFs( ii ) ;
4219        sel.setBeams( ib ) ;
4220        sel.setPolarizations( ip ) ;
4221        askyhi->setSelection( sel ) ;   
4222        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4223        const Vector<Float> Vtsyshi( sptsys ) ;
4224        tsysColhi.put( i, Vtsyshi ) ;
4225        askyhi->unsetSelection() ;
4226        sel.reset() ;
4227      }
4228    }
4229  }
4230  else {
4231    // non-APEX fs data
4232    // sky scan
4233    STSelector sel = STSelector() ;
4234    types.push_back( SrcType::SKY ) ;
4235    sel.setTypes( types ) ;
4236    s->setSelection( sel ) ;
4237    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
4238    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
4239    s->unsetSelection() ;
4240    sel.reset() ;
4241    types.clear() ;
4242   
4243    // hot scan
4244    types.push_back( SrcType::HOT ) ;
4245    sel.setTypes( types ) ;
4246    s->setSelection( sel ) ;
4247    tmp.clear() ;
4248    tmp.push_back( getScantable( s, false ) ) ;
4249    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
4250    s->unsetSelection() ;
4251    sel.reset() ;
4252    types.clear() ;
4253
4254    // cold scan
4255    CountedPtr<Scantable> acold ;
4256//     types.push_back( SrcType::COLD ) ;
4257//     sel.setTypes( types ) ;
4258//     s->setSelection( sel ) ;
4259//     tmp.clear() ;
4260//     tmp.push_back( getScantable( s, false ) ) ;
4261//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCAN" ) ;
4262//     s->unsetSelection() ;
4263//     sel.reset() ;
4264//     types.clear() ;
4265   
4266    // ref scan
4267    bool insitu = insitu_ ;
4268    insitu_ = false ;
4269    sref = getScantable( s, true ) ;
4270    insitu_ = insitu ;
4271    types.push_back( SrcType::FSOFF ) ;
4272    sel.setTypes( types ) ;
4273    s->setSelection( sel ) ;
4274    TableCopy::copyRows( sref->table(), s->table() ) ;
4275    s->unsetSelection() ;
4276    sel.reset() ;
4277    types.clear() ;
4278   
4279    // sig scan
4280    insitu_ = false ;
4281    ssig = getScantable( s, true ) ;
4282    insitu_ = insitu ;
4283    types.push_back( SrcType::FSON ) ;
4284    sel.setTypes( types ) ;
4285    s->setSelection( sel ) ;
4286    TableCopy::copyRows( ssig->table(), s->table() ) ;
4287    s->unsetSelection() ;
4288    sel.reset() ;
4289    types.clear() ;
4290
4291    // process each sig and ref scan
4292    ArrayColumn<Float> tsysColsig ;
4293    tsysColsig.attach( ssig->table(), "TSYS" ) ;
4294    ArrayColumn<Float> tsysColref ;
4295    tsysColref.attach( ssig->table(), "TSYS" ) ;
4296    for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4297      vector<float> sp = getFSCalibratedSpectra( ssig, sref, asky, ahot, acold, i ) ;
4298      ssig->setSpectrum( sp, i ) ;
4299      string reftime = ssig->getTime( i ) ;
4300      vector<int> ii( 1, ssig->getIF( i ) ) ;
4301      vector<int> ib( 1, ssig->getBeam( i ) ) ;
4302      vector<int> ip( 1, ssig->getPol( i ) ) ;
4303      sel.setIFs( ii ) ;
4304      sel.setBeams( ib ) ;
4305      sel.setPolarizations( ip ) ;
4306      asky->setSelection( sel ) ;
4307      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
4308      const Vector<Float> Vtsys( sptsys ) ;
4309      tsysColsig.put( i, Vtsys ) ;
4310      asky->unsetSelection() ;
4311      sel.reset() ;
4312      sp = getFSCalibratedSpectra( sref, ssig, asky, ahot, acold, i ) ;
4313      sref->setSpectrum( sp, i ) ;
4314      tsysColref.put( i, Vtsys ) ;
4315    }
4316  }
4317
4318  // do folding if necessary
4319  Table sigtab = ssig->table() ;
4320  Table reftab = sref->table() ;
4321  ScalarColumn<uInt> sigifnoCol ;
4322  ScalarColumn<uInt> refifnoCol ;
4323  ScalarColumn<uInt> sigfidCol ;
4324  ScalarColumn<uInt> reffidCol ;
4325  Int nchan = (Int)ssig->nchan() ;
4326  sigifnoCol.attach( sigtab, "IFNO" ) ;
4327  refifnoCol.attach( reftab, "IFNO" ) ;
4328  sigfidCol.attach( sigtab, "FREQ_ID" ) ;
4329  reffidCol.attach( reftab, "FREQ_ID" ) ;
4330  Vector<uInt> sfids( sigfidCol.getColumn() ) ;
4331  Vector<uInt> rfids( reffidCol.getColumn() ) ;
4332  vector<uInt> sfids_unique ;
4333  vector<uInt> rfids_unique ;
4334  vector<uInt> sifno_unique ;
4335  vector<uInt> rifno_unique ;
4336  for ( uInt i = 0 ; i < sfids.nelements() ; i++ ) {
4337    if ( count( sfids_unique.begin(), sfids_unique.end(), sfids[i] ) == 0 ) {
4338      sfids_unique.push_back( sfids[i] ) ;
4339      sifno_unique.push_back( ssig->getIF( i ) ) ;
4340    }
4341    if ( count( rfids_unique.begin(), rfids_unique.end(),  rfids[i] ) == 0 ) {
4342      rfids_unique.push_back( rfids[i] ) ;
4343      rifno_unique.push_back( sref->getIF( i ) ) ;
4344    }
4345  }
4346  double refpix_sig, refval_sig, increment_sig ;
4347  double refpix_ref, refval_ref, increment_ref ;
4348  vector< CountedPtr<Scantable> > tmp( sfids_unique.size() ) ;
4349  for ( uInt i = 0 ; i < sfids_unique.size() ; i++ ) {
4350    ssig->frequencies().getEntry( refpix_sig, refval_sig, increment_sig, sfids_unique[i] ) ;
4351    sref->frequencies().getEntry( refpix_ref, refval_ref, increment_ref, rfids_unique[i] ) ;
4352    if ( refpix_sig == refpix_ref ) {
4353      double foffset = refval_ref - refval_sig ;
4354      int choffset = static_cast<int>(foffset/increment_sig) ;
4355      double doffset = foffset / increment_sig ;
4356      if ( abs(choffset) >= nchan ) {
4357        LogIO os( LogOrigin( "STMath", "cwcalfs", WHERE ) ) ;
4358        os << "FREQ_ID=[" << sfids_unique[i] << "," << rfids_unique[i] << "]: out-band frequency switching, no folding" << LogIO::POST ;
4359        os << "Just return signal data" << LogIO::POST ;
4360        //std::vector< CountedPtr<Scantable> > tabs ;
4361        //tabs.push_back( ssig ) ;
4362        //tabs.push_back( sref ) ;
4363        //out = merge( tabs ) ;
4364        tmp[i] = ssig ;
4365      }
4366      else {
4367        STSelector sel = STSelector() ;
4368        vector<int> v( 1, sifno_unique[i] ) ;
4369        sel.setIFs( v ) ;
4370        ssig->setSelection( sel ) ;
4371        sel.reset() ;
4372        v[0] = rifno_unique[i] ;
4373        sel.setIFs( v ) ;
4374        sref->setSelection( sel ) ;
4375        sel.reset() ;
4376        if ( antname.find( "APEX" ) != string::npos ) {
4377          tmp[i] = dofold( ssig, sref, 0.5*doffset, -0.5*doffset ) ;
4378          //tmp[i] = dofold( ssig, sref, doffset ) ;
4379        }
4380        else {
4381          tmp[i] = dofold( ssig, sref, doffset ) ;
4382        }
4383        ssig->unsetSelection() ;
4384        sref->unsetSelection() ;
4385      }
4386    }
4387  }
4388
4389  if ( tmp.size() > 1 ) {
4390    out = merge( tmp ) ;
4391  }
4392  else {
4393    out = tmp[0] ;
4394  }
4395
4396  // flux unit
4397  out->setFluxUnit( "K" ) ;
4398
4399  return out ;
4400}
4401
4402CountedPtr<Scantable> STMath::almacalfs( const CountedPtr<Scantable>& s )
4403{
4404  (void) s; //currently unused
4405  CountedPtr<Scantable> out ;
4406
4407  return out ;
4408}
4409
4410vector<float> STMath::getSpectrumFromTime( string reftime,
4411                                           CountedPtr<Scantable>& s,
4412                                           string mode )
4413{
4414  LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4415  vector<float> sp ;
4416
4417  if ( s->nrow() == 0 ) {
4418    os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4419    return sp ;
4420  }
4421  else if ( s->nrow() == 1 ) {
4422    //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4423    return s->getSpectrum( 0 ) ;
4424  }
4425  else {
4426    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4427    if ( mode == "before" ) {
4428      int id = -1 ;
4429      if ( idx[0] != -1 ) {
4430        id = idx[0] ;
4431      }
4432      else if ( idx[1] != -1 ) {
4433        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4434        id = idx[1] ;
4435      }
4436      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4437      sp = s->getSpectrum( id ) ;
4438    }
4439    else if ( mode == "after" ) {
4440      int id = -1 ;
4441      if ( idx[1] != -1 ) {
4442        id = idx[1] ;
4443      }
4444      else if ( idx[0] != -1 ) {
4445        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4446        id = idx[1] ;
4447      }
4448      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4449      sp = s->getSpectrum( id ) ;
4450    }
4451    else if ( mode == "nearest" ) {
4452      int id = -1 ;
4453      if ( idx[0] == -1 ) {
4454        id = idx[1] ;
4455      }
4456      else if ( idx[1] == -1 ) {
4457        id = idx[0] ;
4458      }
4459      else if ( idx[0] == idx[1] ) {
4460        id = idx[0] ;
4461      }
4462      else {
4463        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4464        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4465        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4466        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4467        double tref = getMJD( reftime ) ;
4468        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4469          id = idx[1] ;
4470        }
4471        else {
4472          id = idx[0] ;
4473        }
4474      }
4475      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4476      sp = s->getSpectrum( id ) ;     
4477    }
4478    else if ( mode == "linear" ) {
4479      if ( idx[0] == -1 ) {
4480        // use after
4481        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4482        int id = idx[1] ;
4483        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4484        sp = s->getSpectrum( id ) ;
4485      }
4486      else if ( idx[1] == -1 ) {
4487        // use before
4488        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4489        int id = idx[0] ;
4490        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4491        sp = s->getSpectrum( id ) ;
4492      }
4493      else if ( idx[0] == idx[1] ) {
4494        // use before
4495        //os << "No need to interporate." << LogIO::POST ;
4496        int id = idx[0] ;
4497        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4498        sp = s->getSpectrum( id ) ;
4499      }
4500      else {
4501        // do interpolation
4502        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4503        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4504        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4505        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4506        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4507        double tref = getMJD( reftime ) ;
4508        vector<float> sp0 = s->getSpectrum( idx[0] ) ;
4509        vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4510        for ( unsigned int i = 0 ; i < sp0.size() ; i++ ) {
4511          float v = ( sp1[i] - sp0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + sp0[i] ;
4512          sp.push_back( v ) ;
4513        }
4514      }
4515    }
4516    else {
4517      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4518    }
4519    return sp ;
4520  }
4521}
4522
4523vector<float> STMath::getSpectrumFromTime( double reftime,
4524                                           CountedPtr<Scantable>& s,
4525                                           string mode )
4526{
4527  LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4528  vector<float> sp ;
4529
4530  if ( s->nrow() == 0 ) {
4531    os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4532    return sp ;
4533  }
4534  else if ( s->nrow() == 1 ) {
4535    //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4536    return s->getSpectrum( 0 ) ;
4537  }
4538  else {
4539    ROScalarColumn<Double> timeCol( s->table(), "TIME" ) ;
4540    Vector<Double> timeVec = timeCol.getColumn() ;
4541    vector<int> idx = getRowIdFromTime( reftime, timeVec ) ;
4542    if ( mode == "before" ) {
4543      int id = -1 ;
4544      if ( idx[0] != -1 ) {
4545        id = idx[0] ;
4546      }
4547      else if ( idx[1] != -1 ) {
4548        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4549        id = idx[1] ;
4550      }
4551      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4552      sp = s->getSpectrum( id ) ;
4553    }
4554    else if ( mode == "after" ) {
4555      int id = -1 ;
4556      if ( idx[1] != -1 ) {
4557        id = idx[1] ;
4558      }
4559      else if ( idx[0] != -1 ) {
4560        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4561        id = idx[1] ;
4562      }
4563      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4564      sp = s->getSpectrum( id ) ;
4565    }
4566    else if ( mode == "nearest" ) {
4567      int id = -1 ;
4568      if ( idx[0] == -1 ) {
4569        id = idx[1] ;
4570      }
4571      else if ( idx[1] == -1 ) {
4572        id = idx[0] ;
4573      }
4574      else if ( idx[0] == idx[1] ) {
4575        id = idx[0] ;
4576      }
4577      else {
4578        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4579        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4580//         double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4581//         double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4582        double t0 = timeVec[idx[0]] ;
4583        double t1 = timeVec[idx[1]] ;
4584//         cout << "t0-t0c=" << t0-t0c << endl ;
4585//         cout << "t1-t1c=" << t1-t1c << endl ;
4586//         double tref = getMJD( reftime ) ;
4587        double tref = reftime ;
4588        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4589          id = idx[1] ;
4590        }
4591        else {
4592          id = idx[0] ;
4593        }
4594      }
4595      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4596      sp = s->getSpectrum( id ) ;     
4597    }
4598    else if ( mode == "linear" ) {
4599      if ( idx[0] == -1 ) {
4600        // use after
4601        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4602        int id = idx[1] ;
4603        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4604        sp = s->getSpectrum( id ) ;
4605      }
4606      else if ( idx[1] == -1 ) {
4607        // use before
4608        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4609        int id = idx[0] ;
4610        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4611        sp = s->getSpectrum( id ) ;
4612      }
4613      else if ( idx[0] == idx[1] ) {
4614        // use before
4615        //os << "No need to interporate." << LogIO::POST ;
4616        int id = idx[0] ;
4617        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4618        sp = s->getSpectrum( id ) ;
4619      }
4620      else {
4621        // do interpolation
4622        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4623        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4624        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4625//         double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4626//         double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4627        double t0 = timeVec[idx[0]] ;
4628        double t1 = timeVec[idx[1]] ;
4629//         cout << "t0-t0c=" << t0-t0c << endl ;
4630//         cout << "t1-t1c=" << t1-t1c << endl ;
4631//         double tref = getMJD( reftime ) ;
4632        double tref = reftime ;
4633        vector<float> sp0 = s->getSpectrum( idx[0] ) ;
4634        vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4635        for ( unsigned int i = 0 ; i < sp0.size() ; i++ ) {
4636          float v = ( sp1[i] - sp0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + sp0[i] ;
4637          sp.push_back( v ) ;
4638        }
4639      }
4640    }
4641    else {
4642      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4643    }
4644    return sp ;
4645  }
4646}
4647
4648double STMath::getMJD( string strtime )
4649{
4650  if ( strtime.find("/") == string::npos ) {
4651    // MJD time string
4652    return atof( strtime.c_str() ) ;
4653  }
4654  else {
4655    // string in YYYY/MM/DD/HH:MM:SS format
4656    uInt year = atoi( strtime.substr( 0, 4 ).c_str() ) ;
4657    uInt month = atoi( strtime.substr( 5, 2 ).c_str() ) ;
4658    uInt day = atoi( strtime.substr( 8, 2 ).c_str() ) ;
4659    uInt hour = atoi( strtime.substr( 11, 2 ).c_str() ) ;
4660    uInt minute = atoi( strtime.substr( 14, 2 ).c_str() ) ;
4661    uInt sec = atoi( strtime.substr( 17, 2 ).c_str() ) ;
4662    Time t( year, month, day, hour, minute, sec ) ;
4663    return t.modifiedJulianDay() ;
4664  }
4665}
4666
4667vector<int> STMath::getRowIdFromTime( string reftime, CountedPtr<Scantable> &s )
4668{
4669  double reft = getMJD( reftime ) ;
4670  double dtmin = 1.0e100 ;
4671  double dtmax = -1.0e100 ;
4672  vector<double> dt ;
4673  int just_before = -1 ;
4674  int just_after = -1 ;
4675  for ( int i = 0 ; i < s->nrow() ; i++ ) {
4676    dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
4677  }
4678  for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4679    if ( dt[i] > 0.0 ) {
4680      // after reftime
4681      if ( dt[i] < dtmin ) {
4682        just_after = i ;
4683        dtmin = dt[i] ;
4684      }
4685    }
4686    else if ( dt[i] < 0.0 ) {
4687      // before reftime
4688      if ( dt[i] > dtmax ) {
4689        just_before = i ;
4690        dtmax = dt[i] ;
4691      }
4692    }
4693    else {
4694      // just a reftime
4695      just_before = i ;
4696      just_after = i ;
4697      dtmax = 0 ;
4698      dtmin = 0 ;
4699      break ;
4700    }
4701  }
4702
4703  vector<int> v ;
4704  v.push_back( just_before ) ;
4705  v.push_back( just_after ) ;
4706
4707  return v ;
4708}
4709
4710vector<int> STMath::getRowIdFromTime( double reftime, Vector<Double> &t )
4711{
4712//   double reft = reftime ;
4713  double dtmin = 1.0e100 ;
4714  double dtmax = -1.0e100 ;
4715//   vector<double> dt ;
4716  int just_before = -1 ;
4717  int just_after = -1 ;
4718  //cout << setprecision(24) << reft << endl ;
4719//   ROScalarColumn<Double> timeCol( s->table(), "TIME" ) ;
4720//   for ( int i = 0 ; i < s->nrow() ; i++ ) {
4721//     cout << setprecision(24) << timeCol(i) << endl ;
4722//     //dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
4723//     dt.push_back( timeCol(i) - reft ) ;
4724//   }
4725  Vector<Double> dt = t - reftime ;
4726  for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4727    if ( dt[i] > 0.0 ) {
4728      // after reftime
4729      if ( dt[i] < dtmin ) {
4730        just_after = i ;
4731        dtmin = dt[i] ;
4732      }
4733    }
4734    else if ( dt[i] < 0.0 ) {
4735      // before reftime
4736      if ( dt[i] > dtmax ) {
4737        just_before = i ;
4738        dtmax = dt[i] ;
4739      }
4740    }
4741    else {
4742      // just a reftime
4743      just_before = i ;
4744      just_after = i ;
4745      dtmax = 0 ;
4746      dtmin = 0 ;
4747      break ;
4748    }
4749  }
4750
4751  vector<int> v(2) ;
4752  v[0] = just_before ;
4753  v[1] = just_after ;
4754
4755  return v ;
4756}
4757
4758vector<float> STMath::getTcalFromTime( string reftime,
4759                                       CountedPtr<Scantable>& s,
4760                                       string mode )
4761{
4762  LogIO os( LogOrigin( "STMath", "getTcalFromTime", WHERE ) ) ;
4763  vector<float> tcal ;
4764  STTcal tcalTable = s->tcal() ;
4765  String time ;
4766  Vector<Float> tcalval ;
4767  if ( s->nrow() == 0 ) {
4768    os << LogIO::SEVERE << "No row in the input scantable. Return empty tcal." << LogIO::POST ;
4769    return tcal ;
4770  }
4771  else if ( s->nrow() == 1 ) {
4772    uInt tcalid = s->getTcalId( 0 ) ;
4773    //os << "use row " << 0 << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4774    tcalTable.getEntry( time, tcalval, tcalid ) ;
4775    tcalval.tovector( tcal ) ;
4776    return tcal ;
4777  }
4778  else {
4779    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4780    if ( mode == "before" ) {
4781      int id = -1 ;
4782      if ( idx[0] != -1 ) {
4783        id = idx[0] ;
4784      }
4785      else if ( idx[1] != -1 ) {
4786        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4787        id = idx[1] ;
4788      }
4789      uInt tcalid = s->getTcalId( id ) ;
4790      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4791      tcalTable.getEntry( time, tcalval, tcalid ) ;
4792      tcalval.tovector( tcal ) ;
4793    }
4794    else if ( mode == "after" ) {
4795      int id = -1 ;
4796      if ( idx[1] != -1 ) {
4797        id = idx[1] ;
4798      }
4799      else if ( idx[0] != -1 ) {
4800        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4801        id = idx[1] ;
4802      }
4803      uInt tcalid = s->getTcalId( id ) ;
4804      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4805      tcalTable.getEntry( time, tcalval, tcalid ) ;
4806      tcalval.tovector( tcal ) ;
4807    }
4808    else if ( mode == "nearest" ) {
4809      int id = -1 ;
4810      if ( idx[0] == -1 ) {
4811        id = idx[1] ;
4812      }
4813      else if ( idx[1] == -1 ) {
4814        id = idx[0] ;
4815      }
4816      else if ( idx[0] == idx[1] ) {
4817        id = idx[0] ;
4818      }
4819      else {
4820        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4821        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4822        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4823        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4824        double tref = getMJD( reftime ) ;
4825        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4826          id = idx[1] ;
4827        }
4828        else {
4829          id = idx[0] ;
4830        }
4831      }
4832      uInt tcalid = s->getTcalId( id ) ;
4833      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4834      tcalTable.getEntry( time, tcalval, tcalid ) ;
4835      tcalval.tovector( tcal ) ;
4836    }
4837    else if ( mode == "linear" ) {
4838      if ( idx[0] == -1 ) {
4839        // use after
4840        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4841        int id = idx[1] ;
4842        uInt tcalid = s->getTcalId( id ) ;
4843        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4844        tcalTable.getEntry( time, tcalval, tcalid ) ;
4845        tcalval.tovector( tcal ) ;
4846      }
4847      else if ( idx[1] == -1 ) {
4848        // use before
4849        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4850        int id = idx[0] ;
4851        uInt tcalid = s->getTcalId( id ) ;
4852        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4853        tcalTable.getEntry( time, tcalval, tcalid ) ;
4854        tcalval.tovector( tcal ) ;
4855      }
4856      else if ( idx[0] == idx[1] ) {
4857        // use before
4858        //os << "No need to interporate." << LogIO::POST ;
4859        int id = idx[0] ;
4860        uInt tcalid = s->getTcalId( id ) ;
4861        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4862        tcalTable.getEntry( time, tcalval, tcalid ) ;
4863        tcalval.tovector( tcal ) ;
4864      }
4865      else {
4866        // do interpolation
4867        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4868        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4869        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4870        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4871        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4872        double tref = getMJD( reftime ) ;
4873        vector<float> tcal0 ;
4874        vector<float> tcal1 ;
4875        uInt tcalid0 = s->getTcalId( idx[0] ) ;
4876        uInt tcalid1 = s->getTcalId( idx[1] ) ;
4877        tcalTable.getEntry( time, tcalval, tcalid0 ) ;
4878        tcalval.tovector( tcal0 ) ;
4879        tcalTable.getEntry( time, tcalval, tcalid1 ) ;
4880        tcalval.tovector( tcal1 ) ;       
4881        for ( unsigned int i = 0 ; i < tcal0.size() ; i++ ) {
4882          float v = ( tcal1[i] - tcal0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tcal0[i] ;
4883          tcal.push_back( v ) ;
4884        }
4885      }
4886    }
4887    else {
4888      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4889    }
4890    return tcal ;
4891  }
4892}
4893
4894vector<float> STMath::getTsysFromTime( string reftime,
4895                                       CountedPtr<Scantable>& s,
4896                                       string mode )
4897{
4898  LogIO os( LogOrigin( "STMath", "getTsysFromTime", WHERE ) ) ;
4899  ArrayColumn<Float> tsysCol ;
4900  tsysCol.attach( s->table(), "TSYS" ) ;
4901  vector<float> tsys ;
4902  String time ;
4903  Vector<Float> tsysval ;
4904  if ( s->nrow() == 0 ) {
4905    os << LogIO::SEVERE << "No row in the input scantable. Return empty tsys." << LogIO::POST ;
4906    return tsys ;
4907  }
4908  else if ( s->nrow() == 1 ) {
4909    //os << "use row " << 0 << LogIO::POST ;
4910    tsysval = tsysCol( 0 ) ;
4911    tsysval.tovector( tsys ) ;
4912    return tsys ;
4913  }
4914  else {
4915    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4916    if ( mode == "before" ) {
4917      int id = -1 ;
4918      if ( idx[0] != -1 ) {
4919        id = idx[0] ;
4920      }
4921      else if ( idx[1] != -1 ) {
4922        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4923        id = idx[1] ;
4924      }
4925      //os << "use row " << id << LogIO::POST ;
4926      tsysval = tsysCol( id ) ;
4927      tsysval.tovector( tsys ) ;
4928    }
4929    else if ( mode == "after" ) {
4930      int id = -1 ;
4931      if ( idx[1] != -1 ) {
4932        id = idx[1] ;
4933      }
4934      else if ( idx[0] != -1 ) {
4935        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4936        id = idx[1] ;
4937      }
4938      //os << "use row " << id << LogIO::POST ;
4939      tsysval = tsysCol( id ) ;
4940      tsysval.tovector( tsys ) ;
4941    }
4942    else if ( mode == "nearest" ) {
4943      int id = -1 ;
4944      if ( idx[0] == -1 ) {
4945        id = idx[1] ;
4946      }
4947      else if ( idx[1] == -1 ) {
4948        id = idx[0] ;
4949      }
4950      else if ( idx[0] == idx[1] ) {
4951        id = idx[0] ;
4952      }
4953      else {
4954        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4955        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4956        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4957        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4958        double tref = getMJD( reftime ) ;
4959        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4960          id = idx[1] ;
4961        }
4962        else {
4963          id = idx[0] ;
4964        }
4965      }
4966      //os << "use row " << id << LogIO::POST ;
4967      tsysval = tsysCol( id ) ;
4968      tsysval.tovector( tsys ) ;
4969    }
4970    else if ( mode == "linear" ) {
4971      if ( idx[0] == -1 ) {
4972        // use after
4973        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4974        int id = idx[1] ;
4975        //os << "use row " << id << LogIO::POST ;
4976        tsysval = tsysCol( id ) ;
4977        tsysval.tovector( tsys ) ;
4978      }
4979      else if ( idx[1] == -1 ) {
4980        // use before
4981        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4982        int id = idx[0] ;
4983        //os << "use row " << id << LogIO::POST ;
4984        tsysval = tsysCol( id ) ;
4985        tsysval.tovector( tsys ) ;
4986      }
4987      else if ( idx[0] == idx[1] ) {
4988        // use before
4989        //os << "No need to interporate." << LogIO::POST ;
4990        int id = idx[0] ;
4991        //os << "use row " << id << LogIO::POST ;
4992        tsysval = tsysCol( id ) ;
4993        tsysval.tovector( tsys ) ;
4994      }
4995      else {
4996        // do interpolation
4997        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4998        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4999        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
5000        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
5001        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
5002        double tref = getMJD( reftime ) ;
5003        vector<float> tsys0 ;
5004        vector<float> tsys1 ;
5005        tsysval = tsysCol( idx[0] ) ;
5006        tsysval.tovector( tsys0 ) ;
5007        tsysval = tsysCol( idx[1] ) ;
5008        tsysval.tovector( tsys1 ) ;       
5009        for ( unsigned int i = 0 ; i < tsys0.size() ; i++ ) {
5010          float v = ( tsys1[i] - tsys0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tsys0[i] ;
5011          tsys.push_back( v ) ;
5012        }
5013      }
5014    }
5015    else {
5016      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
5017    }
5018    return tsys ;
5019  }
5020}
5021
5022vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
5023                                            CountedPtr<Scantable>& off,
5024                                            CountedPtr<Scantable>& sky,
5025                                            CountedPtr<Scantable>& hot,
5026                                            CountedPtr<Scantable>& cold,
5027                                            int index,
5028                                            string antname )
5029{
5030  (void) cold; //currently unused
5031  string reftime = on->getTime( index ) ;
5032  vector<int> ii( 1, on->getIF( index ) ) ;
5033  vector<int> ib( 1, on->getBeam( index ) ) ;
5034  vector<int> ip( 1, on->getPol( index ) ) ;
5035  vector<int> ic( 1, on->getScan( index ) ) ;
5036  STSelector sel = STSelector() ;
5037  sel.setIFs( ii ) ;
5038  sel.setBeams( ib ) ;
5039  sel.setPolarizations( ip ) ;
5040  sky->setSelection( sel ) ;
5041  hot->setSelection( sel ) ;
5042  //cold->setSelection( sel ) ;
5043  off->setSelection( sel ) ;
5044  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
5045  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
5046  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
5047  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
5048  vector<float> spec = on->getSpectrum( index ) ;
5049  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
5050  vector<float> sp( tcal.size() ) ;
5051  if ( antname.find( "APEX" ) != string::npos ) {
5052    // using gain array
5053    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
5054      float v = ( ( spec[j] - spoff[j] ) / spoff[j] )
5055        * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
5056      sp[j] = v ;
5057    }
5058  }
5059  else {
5060    // Chopper-Wheel calibration (Ulich & Haas 1976)
5061    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
5062      float v = ( spec[j] - spoff[j] ) / ( sphot[j] - spsky[j] ) * tcal[j] ;
5063      sp[j] = v ;
5064    }
5065  }
5066  sel.reset() ;
5067  sky->unsetSelection() ;
5068  hot->unsetSelection() ;
5069  //cold->unsetSelection() ;
5070  off->unsetSelection() ;
5071
5072  return sp ;
5073}
5074
5075vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
5076                                            CountedPtr<Scantable>& off,
5077                                            int index )
5078{
5079//   string reftime = on->getTime( index ) ;
5080  ROTableColumn timeCol( on->table(), "TIME" ) ;
5081  double reftime = timeCol.asdouble(index) ;
5082  vector<int> ii( 1, on->getIF( index ) ) ;
5083  vector<int> ib( 1, on->getBeam( index ) ) ;
5084  vector<int> ip( 1, on->getPol( index ) ) ;
5085  vector<int> ic( 1, on->getScan( index ) ) ;
5086  STSelector sel = STSelector() ;
5087  sel.setIFs( ii ) ;
5088  sel.setBeams( ib ) ;
5089  sel.setPolarizations( ip ) ;
5090  off->setSelection( sel ) ;
5091  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
5092  vector<float> spec = on->getSpectrum( index ) ;
5093  //vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
5094  //vector<float> tsys = on->getTsysVec( index ) ;
5095  ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
5096  Vector<Float> tsys = tsysCol( index ) ;
5097  vector<float> sp( spec.size() ) ;
5098  // ALMA Calibration
5099  //
5100  // Ta* = Tsys * ( ON - OFF ) / OFF
5101  //
5102  // 2010/01/07 Takeshi Nakazato
5103  unsigned int tsyssize = tsys.nelements() ;
5104  unsigned int spsize = sp.size() ;
5105  for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
5106    float tscale = 0.0 ;
5107    if ( tsyssize == spsize )
5108      tscale = tsys[j] ;
5109    else
5110      tscale = tsys[0] ;
5111    float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
5112    sp[j] = v ;
5113  }
5114  sel.reset() ;
5115  off->unsetSelection() ;
5116
5117  return sp ;
5118}
5119
5120vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
5121                                              CountedPtr<Scantable>& ref,
5122                                              CountedPtr<Scantable>& sky,
5123                                              CountedPtr<Scantable>& hot,
5124                                              CountedPtr<Scantable>& cold,
5125                                              int index )
5126{
5127  (void) cold; //currently unused
5128  string reftime = sig->getTime( index ) ;
5129  vector<int> ii( 1, sig->getIF( index ) ) ;
5130  vector<int> ib( 1, sig->getBeam( index ) ) ;
5131  vector<int> ip( 1, sig->getPol( index ) ) ;
5132  vector<int> ic( 1, sig->getScan( index ) ) ;
5133  STSelector sel = STSelector() ;
5134  sel.setIFs( ii ) ;
5135  sel.setBeams( ib ) ;
5136  sel.setPolarizations( ip ) ;
5137  sky->setSelection( sel ) ;
5138  hot->setSelection( sel ) ;
5139  //cold->setSelection( sel ) ;
5140  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
5141  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
5142  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
5143  vector<float> spref = ref->getSpectrum( index ) ;
5144  vector<float> spsig = sig->getSpectrum( index ) ;
5145  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
5146  vector<float> sp( tcal.size() ) ;
5147  for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
5148    float v = tcal[j] * spsky[j] / ( sphot[j] - spsky[j] ) * ( spsig[j] - spref[j] ) / spref[j] ;
5149    sp[j] = v ;
5150  }
5151  sel.reset() ;
5152  sky->unsetSelection() ;
5153  hot->unsetSelection() ;
5154  //cold->unsetSelection() ;
5155
5156  return sp ;
5157}
5158
5159vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
5160                                              CountedPtr<Scantable>& ref,
5161                                              vector< CountedPtr<Scantable> >& sky,
5162                                              vector< CountedPtr<Scantable> >& hot,
5163                                              vector< CountedPtr<Scantable> >& cold,
5164                                              int index )
5165{
5166  (void) cold; //currently unused
5167  string reftime = sig->getTime( index ) ;
5168  vector<int> ii( 1, sig->getIF( index ) ) ;
5169  vector<int> ib( 1, sig->getBeam( index ) ) ;
5170  vector<int> ip( 1, sig->getPol( index ) ) ;
5171  vector<int> ic( 1, sig->getScan( index ) ) ;
5172  STSelector sel = STSelector() ;
5173  sel.setIFs( ii ) ;
5174  sel.setBeams( ib ) ;
5175  sel.setPolarizations( ip ) ;
5176  sky[0]->setSelection( sel ) ;
5177  hot[0]->setSelection( sel ) ;
5178  //cold[0]->setSelection( sel ) ;
5179  vector<float> spskys = getSpectrumFromTime( reftime, sky[0], "linear" ) ;
5180  vector<float> sphots = getSpectrumFromTime( reftime, hot[0], "linear" ) ;
5181  //vector<float> spcolds = getSpectrumFromTime( reftime, cold[0], "linear" ) ;
5182  vector<float> tcals = getTcalFromTime( reftime, sky[0], "linear" ) ;
5183  sel.reset() ;
5184  ii[0] = ref->getIF( index ) ;
5185  sel.setIFs( ii ) ;
5186  sel.setBeams( ib ) ;
5187  sel.setPolarizations( ip ) ;
5188  sky[1]->setSelection( sel ) ;
5189  hot[1]->setSelection( sel ) ;
5190  //cold[1]->setSelection( sel ) ;
5191  vector<float> spskyr = getSpectrumFromTime( reftime, sky[1], "linear" ) ;
5192  vector<float> sphotr = getSpectrumFromTime( reftime, hot[1], "linear" ) ;
5193  //vector<float> spcoldr = getSpectrumFromTime( reftime, cold[1], "linear" ) ;
5194  vector<float> tcalr = getTcalFromTime( reftime, sky[1], "linear" ) ; 
5195  vector<float> spref = ref->getSpectrum( index ) ;
5196  vector<float> spsig = sig->getSpectrum( index ) ;
5197  vector<float> sp( tcals.size() ) ;
5198  for ( unsigned int j = 0 ; j < tcals.size() ; j++ ) {
5199    float v = tcals[j] * spsig[j] / ( sphots[j] - spskys[j] ) - tcalr[j] * spref[j] / ( sphotr[j] - spskyr[j] ) ;
5200    sp[j] = v ;
5201  }
5202  sel.reset() ;
5203  sky[0]->unsetSelection() ;
5204  hot[0]->unsetSelection() ;
5205  //cold[0]->unsetSelection() ;
5206  sky[1]->unsetSelection() ;
5207  hot[1]->unsetSelection() ;
5208  //cold[1]->unsetSelection() ;
5209
5210  return sp ;
5211}
Note: See TracBrowser for help on using the repository browser.