source: branches/hpc33/src/STMath.cpp @ 2443

Last change on this file since 2443 was 2443, checked in by Takeshi Nakazato, 12 years ago

New Development: No

JIRA Issue: No

Ready for Test: No

Interface Changes: No

What Interface Changed: Please list interface changes

Test Programs:

Put in Release Notes: No

Module(s): Module Names change impacts.

Description: Describe your changes here...

Test tuning ALMA calibration code.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 175.4 KB
Line 
1//
2// C++ Implementation: STMath
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2006
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12
13#include <sstream>
14
15#include <casa/iomanip.h>
16#include <casa/Arrays/MaskArrLogi.h>
17#include <casa/Arrays/MaskArrMath.h>
18#include <casa/Arrays/ArrayLogical.h>
19#include <casa/Arrays/ArrayMath.h>
20#include <casa/Arrays/Slice.h>
21#include <casa/Arrays/Slicer.h>
22#include <casa/BasicSL/String.h>
23#include <casa/Containers/Block.h>
24#include <casa/Containers/RecordField.h>
25#include <casa/Exceptions/Error.h>
26#include <casa/Logging/LogIO.h>
27
28#include <coordinates/Coordinates/CoordinateSystem.h>
29#include <coordinates/Coordinates/CoordinateUtil.h>
30#include <coordinates/Coordinates/FrequencyAligner.h>
31#include <coordinates/Coordinates/SpectralCoordinate.h>
32
33#include <lattices/Lattices/LatticeUtilities.h>
34
35#include <scimath/Functionals/Polynomial.h>
36#include <scimath/Mathematics/Convolver.h>
37#include <scimath/Mathematics/VectorKernel.h>
38
39#include <tables/Tables/ExprNode.h>
40#include <tables/Tables/ReadAsciiTable.h>
41#include <tables/Tables/TableCopy.h>
42#include <tables/Tables/TableIter.h>
43#include <tables/Tables/TableParse.h>
44#include <tables/Tables/TableRecord.h>
45#include <tables/Tables/TableRow.h>
46#include <tables/Tables/TableVector.h>
47#include <tables/Tables/TabVecMath.h>
48
49#include <atnf/PKSIO/SrcType.h>
50
51#include "RowAccumulator.h"
52#include "STAttr.h"
53#include "STMath.h"
54#include "STSelector.h"
55
56using namespace casa;
57using namespace asap;
58
59// 2012/02/17 TN
60// Since STGrid is implemented, average doesn't consider direction
61// when accumulating
62// tolerance for direction comparison (rad)
63// #define TOL_OTF    1.0e-15
64// #define TOL_POINT  2.9088821e-4  // 1 arcmin
65
66STMath::STMath(bool insitu) :
67  insitu_(insitu)
68{
69}
70
71
72STMath::~STMath()
73{
74}
75
76CountedPtr<Scantable>
77STMath::average( const std::vector<CountedPtr<Scantable> >& in,
78                 const std::vector<bool>& mask,
79                 const std::string& weight,
80                 const std::string& avmode)
81{
82  LogIO os( LogOrigin( "STMath", "average()", WHERE ) ) ;
83  if ( avmode == "SCAN" && in.size() != 1 )
84    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
85                    "Use merge first."));
86  WeightType wtype = stringToWeight(weight);
87
88  // 2012/02/17 TN
89  // Since STGrid is implemented, average doesn't consider direction
90  // when accumulating
91  // check if OTF observation
92//   String obstype = in[0]->getHeader().obstype ;
93//   Double tol = 0.0 ;
94//   if ( (obstype.find( "OTF" ) != String::npos) || (obstype.find( "OBSERVE_TARGET" ) != String::npos) ) {
95//     tol = TOL_OTF ;
96//   }
97//   else {
98//     tol = TOL_POINT ;
99//   }
100
101  // output
102  // clone as this is non insitu
103  bool insitu = insitu_;
104  setInsitu(false);
105  CountedPtr< Scantable > out = getScantable(in[0], true);
106  setInsitu(insitu);
107  std::vector<CountedPtr<Scantable> >::const_iterator stit = in.begin();
108  ++stit;
109  while ( stit != in.end() ) {
110    out->appendToHistoryTable((*stit)->history());
111    ++stit;
112  }
113
114  Table& tout = out->table();
115
116  /// @todo check if all scantables are conformant
117
118  ArrayColumn<Float> specColOut(tout,"SPECTRA");
119  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
120  ArrayColumn<Float> tsysColOut(tout,"TSYS");
121  ScalarColumn<Double> mjdColOut(tout,"TIME");
122  ScalarColumn<Double> intColOut(tout,"INTERVAL");
123  ScalarColumn<uInt> cycColOut(tout,"CYCLENO");
124  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
125
126  // set up the output table rows. These are based on the structure of the
127  // FIRST scantable in the vector
128  const Table& baset = in[0]->table();
129
130  Block<String> cols(3);
131  cols[0] = String("BEAMNO");
132  cols[1] = String("IFNO");
133  cols[2] = String("POLNO");
134  if ( avmode == "SOURCE" ) {
135    cols.resize(4);
136    cols[3] = String("SRCNAME");
137  }
138  if ( avmode == "SCAN"  && in.size() == 1) {
139    //cols.resize(4);
140    //cols[3] = String("SCANNO");
141    cols.resize(5);
142    cols[3] = String("SRCNAME");
143    cols[4] = String("SCANNO");
144  }
145  uInt outrowCount = 0;
146  TableIterator iter(baset, cols);
147//   int count = 0 ;
148  while (!iter.pastEnd()) {
149    Table subt = iter.table();
150    // copy the first row of this selection into the new table
151    tout.addRow();
152    TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
153    // re-index to 0
154    if ( avmode != "SCAN" && avmode != "SOURCE" ) {
155      scanColOut.put(outrowCount, uInt(0));
156    }
157    ++outrowCount;
158    // 2012/02/17 TN
159    // Since STGrid is implemented, average doesn't consider direction
160    // when accumulating
161//     MDirection::ScalarColumn dircol ;
162//     dircol.attach( subt, "DIRECTION" ) ;
163//     Int length = subt.nrow() ;
164//     vector< Vector<Double> > dirs ;
165//     vector<int> indexes ;
166//     for ( Int i = 0 ; i < length ; i++ ) {
167//       Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
168//       //os << << count++ << ": " ;
169//       //os << "[" << t[0] << "," << t[1] << "]" << LogIO::POST ;
170//       bool adddir = true ;
171//       for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
172//         //if ( allTrue( t == dirs[j] ) ) {
173//         Double dx = t[0] - dirs[j][0] ;
174//         Double dy = t[1] - dirs[j][1] ;
175//         Double dd = sqrt( dx * dx + dy * dy ) ;
176//         //if ( allNearAbs( t, dirs[j], tol ) ) {
177//         if ( dd <= tol ) {
178//           adddir = false ;
179//           break ;
180//         }
181//       }
182//       if ( adddir ) {
183//         dirs.push_back( t ) ;
184//         indexes.push_back( i ) ;
185//       }
186//     }
187//     uInt rowNum = dirs.size() ;
188//     tout.addRow( rowNum ) ;
189//     for ( uInt i = 0 ; i < rowNum ; i++ ) {
190//       TableCopy::copyRows( tout, subt, outrowCount+i, indexes[i], 1 ) ;
191//       // re-index to 0
192//       if ( avmode != "SCAN" && avmode != "SOURCE" ) {
193//         scanColOut.put(outrowCount+i, uInt(0));
194//       }       
195//     }
196//     outrowCount += rowNum ;
197    ++iter;
198  }
199  RowAccumulator acc(wtype);
200  Vector<Bool> cmask(mask);
201  acc.setUserMask(cmask);
202  ROTableRow row(tout);
203  ROArrayColumn<Float> specCol, tsysCol;
204  ROArrayColumn<uChar> flagCol;
205  ROScalarColumn<Double> mjdCol, intCol;
206  ROScalarColumn<Int> scanIDCol;
207
208  Vector<uInt> rowstodelete;
209
210  for (uInt i=0; i < tout.nrow(); ++i) {
211    for ( int j=0; j < int(in.size()); ++j ) {
212      const Table& tin = in[j]->table();
213      const TableRecord& rec = row.get(i);
214      ROScalarColumn<Double> tmp(tin, "TIME");
215      Double td;tmp.get(0,td);
216      Table basesubt = tin( tin.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
217                         && tin.col("IFNO") == Int(rec.asuInt("IFNO"))
218                         && tin.col("POLNO") == Int(rec.asuInt("POLNO")) );
219      Table subt;
220      if ( avmode == "SOURCE") {
221        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME"));
222      } else if (avmode == "SCAN") {
223        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME")
224                      && basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) );
225      } else {
226        subt = basesubt;
227      }
228
229      // 2012/02/17 TN
230      // Since STGrid is implemented, average doesn't consider direction
231      // when accumulating
232//       vector<uInt> removeRows ;
233//       uInt nrsubt = subt.nrow() ;
234//       for ( uInt irow = 0 ; irow < nrsubt ; irow++ ) {
235//         //if ( !allTrue((subt.col("DIRECTION").getArrayDouble(TableExprId(irow)))==rec.asArrayDouble("DIRECTION")) ) {
236//         Vector<Double> x0 = (subt.col("DIRECTION").getArrayDouble(TableExprId(irow))) ;
237//         Vector<Double> x1 = rec.asArrayDouble("DIRECTION") ;
238//         double dx = x0[0] - x1[0];
239//         double dy = x0[1] - x1[1];
240//         Double dd = sqrt( dx * dx + dy * dy ) ;
241//         //if ( !allNearAbs((subt.col("DIRECTION").getArrayDouble(TableExprId(irow))), rec.asArrayDouble("DIRECTION"), tol ) ) {
242//         if ( dd > tol ) {
243//           removeRows.push_back( irow ) ;
244//         }
245//       }
246//       if ( removeRows.size() != 0 ) {
247//         subt.removeRow( removeRows ) ;
248//       }
249     
250//       if ( nrsubt == removeRows.size() )
251//         throw(AipsError("Averaging data is empty.")) ;
252
253      specCol.attach(subt,"SPECTRA");
254      flagCol.attach(subt,"FLAGTRA");
255      tsysCol.attach(subt,"TSYS");
256      intCol.attach(subt,"INTERVAL");
257      mjdCol.attach(subt,"TIME");
258      Vector<Float> spec,tsys;
259      Vector<uChar> flag;
260      Double inter,time;
261      for (uInt k = 0; k < subt.nrow(); ++k ) {
262        flagCol.get(k, flag);
263        Vector<Bool> bflag(flag.shape());
264        convertArray(bflag, flag);
265        /*
266        if ( allEQ(bflag, True) ) {
267        continue;//don't accumulate
268        }
269        */
270        specCol.get(k, spec);
271        tsysCol.get(k, tsys);
272        intCol.get(k, inter);
273        mjdCol.get(k, time);
274        // spectrum has to be added last to enable weighting by the other values
275        acc.add(spec, !bflag, tsys, inter, time);
276      }
277
278      // If there exists a channel at which all the input spectra are masked,
279      // spec has 'nan' values for that channel and it may affect the following
280      // processes. To avoid this, replacing 'nan' values in spec with
281      // weighted-mean of all spectra in the following line.
282      // (done for CAS-2776, 2011/04/07 by Wataru Kawasaki)
283      acc.replaceNaN();
284    }
285    const Vector<Bool>& msk = acc.getMask();
286    if ( allEQ(msk, False) ) {
287      uint n = rowstodelete.nelements();
288      rowstodelete.resize(n+1, True);
289      rowstodelete[n] = i;
290      continue;
291    }
292    //write out
293    if (acc.state()) {
294      Vector<uChar> flg(msk.shape());
295      convertArray(flg, !msk);
296      for (uInt k = 0; k < flg.nelements(); ++k) {
297        uChar userFlag = 1 << 7;
298        if (msk[k]==True) userFlag = 0 << 7;
299        flg(k) = userFlag;
300      }
301
302      flagColOut.put(i, flg);
303      specColOut.put(i, acc.getSpectrum());
304      tsysColOut.put(i, acc.getTsys());
305      intColOut.put(i, acc.getInterval());
306      mjdColOut.put(i, acc.getTime());
307      // we should only have one cycle now -> reset it to be 0
308      // frequency switched data has different CYCLENO for different IFNO
309      // which requires resetting this value
310      cycColOut.put(i, uInt(0));
311    } else {
312      ostringstream oss;
313      oss << "For output row="<<i<<", all input rows of data are flagged. no averaging" << endl;
314      pushLog(String(oss));
315    }
316    acc.reset();
317  }
318
319  if (rowstodelete.nelements() > 0) {
320    os << rowstodelete << LogIO::POST ;
321    tout.removeRow(rowstodelete);
322    if (tout.nrow() == 0) {
323      throw(AipsError("Can't average fully flagged data."));
324    }
325  }
326  return out;
327}
328
329CountedPtr< Scantable >
330STMath::averageChannel( const CountedPtr < Scantable > & in,
331                          const std::string & mode,
332                          const std::string& avmode )
333{
334  (void) mode; // currently unused
335  // 2012/02/17 TN
336  // Since STGrid is implemented, average doesn't consider direction
337  // when accumulating
338  // check if OTF observation
339//   String obstype = in->getHeader().obstype ;
340//   Double tol = 0.0 ;
341//   if ( obstype.find( "OTF" ) != String::npos ) {
342//     tol = TOL_OTF ;
343//   }
344//   else {
345//     tol = TOL_POINT ;
346//   }
347
348  // clone as this is non insitu
349  bool insitu = insitu_;
350  setInsitu(false);
351  CountedPtr< Scantable > out = getScantable(in, true);
352  setInsitu(insitu);
353  Table& tout = out->table();
354  ArrayColumn<Float> specColOut(tout,"SPECTRA");
355  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
356  ArrayColumn<Float> tsysColOut(tout,"TSYS");
357  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
358  ScalarColumn<Double> intColOut(tout, "INTERVAL");
359  Table tmp = in->table().sort("BEAMNO");
360  Block<String> cols(3);
361  cols[0] = String("BEAMNO");
362  cols[1] = String("IFNO");
363  cols[2] = String("POLNO");
364  if ( avmode == "SCAN") {
365    cols.resize(4);
366    cols[3] = String("SCANNO");
367  }
368  uInt outrowCount = 0;
369  uChar userflag = 1 << 7;
370  TableIterator iter(tmp, cols);
371  while (!iter.pastEnd()) {
372    Table subt = iter.table();
373    ROArrayColumn<Float> specCol, tsysCol;
374    ROArrayColumn<uChar> flagCol;
375    ROScalarColumn<Double> intCol(subt, "INTERVAL");
376    specCol.attach(subt,"SPECTRA");
377    flagCol.attach(subt,"FLAGTRA");
378    tsysCol.attach(subt,"TSYS");
379
380    tout.addRow();
381    TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
382    if ( avmode != "SCAN") {
383      scanColOut.put(outrowCount, uInt(0));
384    }
385    Vector<Float> tmp;
386    specCol.get(0, tmp);
387    uInt nchan = tmp.nelements();
388    // have to do channel by channel here as MaskedArrMath
389    // doesn't have partialMedians
390    Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
391    Vector<Float> outspec(nchan);
392    Vector<uChar> outflag(nchan,0);
393    Vector<Float> outtsys(1);/// @fixme when tsys is channel based
394    for (uInt i=0; i<nchan; ++i) {
395      Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
396      MaskedArray<Float> ma = maskedArray(specs,flags);
397      outspec[i] = median(ma);
398      if ( allEQ(ma.getMask(), False) )
399        outflag[i] = userflag;// flag data
400    }
401    outtsys[0] = median(tsysCol.getColumn());
402    specColOut.put(outrowCount, outspec);
403    flagColOut.put(outrowCount, outflag);
404    tsysColOut.put(outrowCount, outtsys);
405    Double intsum = sum(intCol.getColumn());
406    intColOut.put(outrowCount, intsum);
407    ++outrowCount;
408    ++iter;
409
410    // 2012/02/17 TN
411    // Since STGrid is implemented, average doesn't consider direction
412    // when accumulating
413//     MDirection::ScalarColumn dircol ;
414//     dircol.attach( subt, "DIRECTION" ) ;
415//     Int length = subt.nrow() ;
416//     vector< Vector<Double> > dirs ;
417//     vector<int> indexes ;
418//     // Handle MX mode averaging
419//     if (in->nbeam() > 1 ) {     
420//       length = 1;
421//     }
422//     for ( Int i = 0 ; i < length ; i++ ) {
423//       Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
424//       bool adddir = true ;
425//       for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
426//         //if ( allTrue( t == dirs[j] ) ) {
427//         Double dx = t[0] - dirs[j][0] ;
428//         Double dy = t[1] - dirs[j][1] ;
429//         Double dd = sqrt( dx * dx + dy * dy ) ;
430//         //if ( allNearAbs( t, dirs[j], tol ) ) {
431//         if ( dd <= tol ) {
432//           adddir = false ;
433//           break ;
434//         }
435//       }
436//       if ( adddir ) {
437//         dirs.push_back( t ) ;
438//         indexes.push_back( i ) ;
439//       }
440//     }
441//     uInt rowNum = dirs.size() ;
442//     tout.addRow( rowNum );
443//     for ( uInt i = 0 ; i < rowNum ; i++ ) {
444//       TableCopy::copyRows(tout, subt, outrowCount+i, indexes[i], 1) ;
445//       // Handle MX mode averaging
446//       if ( avmode != "SCAN") {
447//         scanColOut.put(outrowCount+i, uInt(0));
448//       }
449//     }
450//     MDirection::ScalarColumn dircolOut ;
451//     dircolOut.attach( tout, "DIRECTION" ) ;
452//     for ( uInt irow = 0 ; irow < rowNum ; irow++ ) {
453//       Vector<Double> t = \
454//      dircolOut(outrowCount+irow).getAngle(Unit(String("rad"))).getValue() ;
455//       Vector<Float> tmp;
456//       specCol.get(0, tmp);
457//       uInt nchan = tmp.nelements();
458//       // have to do channel by channel here as MaskedArrMath
459//       // doesn't have partialMedians
460//       Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
461//       // mask spectra for different DIRECTION
462//       for ( uInt jrow = 0 ; jrow < subt.nrow() ; jrow++ ) {
463//         Vector<Double> direction = \
464//        dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
465//         //if ( t[0] != direction[0] || t[1] != direction[1] ) {
466//         Double dx = t[0] - direction[0];
467//         Double dy = t[1] - direction[1];
468//         Double dd = sqrt(dx*dx + dy*dy);
469//         //if ( !allNearAbs( t, direction, tol ) ) {
470//         if ( dd > tol &&  in->nbeam() < 2 ) {
471//           flags[jrow] = userflag ;
472//         }
473//       }
474//       Vector<Float> outspec(nchan);
475//       Vector<uChar> outflag(nchan,0);
476//       Vector<Float> outtsys(1);/// @fixme when tsys is channel based
477//       for (uInt i=0; i<nchan; ++i) {
478//         Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
479//         MaskedArray<Float> ma = maskedArray(specs,flags);
480//         outspec[i] = median(ma);
481//         if ( allEQ(ma.getMask(), False) )
482//           outflag[i] = userflag;// flag data
483//       }
484//       outtsys[0] = median(tsysCol.getColumn());
485//       specColOut.put(outrowCount+irow, outspec);
486//       flagColOut.put(outrowCount+irow, outflag);
487//       tsysColOut.put(outrowCount+irow, outtsys);
488//       Vector<Double> integ = intCol.getColumn() ;
489//       MaskedArray<Double> mi = maskedArray( integ, flags ) ;
490//       Double intsum = sum(mi);
491//       intColOut.put(outrowCount+irow, intsum);
492//     }
493//     outrowCount += rowNum ;
494//     ++iter;
495  }
496  return out;
497}
498
499CountedPtr< Scantable > STMath::getScantable(const CountedPtr< Scantable >& in,
500                                             bool droprows)
501{
502  if (insitu_) {
503    return in;
504  }
505  else {
506    // clone
507    return CountedPtr<Scantable>(new Scantable(*in, Bool(droprows)));
508  }
509}
510
511CountedPtr< Scantable > STMath::unaryOperate( const CountedPtr< Scantable >& in,
512                                              float val,
513                                              const std::string& mode,
514                                              bool tsys )
515{
516  CountedPtr< Scantable > out = getScantable(in, false);
517  Table& tab = out->table();
518  ArrayColumn<Float> specCol(tab,"SPECTRA");
519  ArrayColumn<Float> tsysCol(tab,"TSYS");
520  if (mode=="DIV") val = 1.0/val ;
521  else if (mode=="SUB") val *= -1.0 ;
522  for (uInt i=0; i<tab.nrow(); ++i) {
523    Vector<Float> spec;
524    Vector<Float> ts;
525    specCol.get(i, spec);
526    tsysCol.get(i, ts);
527    if (mode == "MUL" || mode == "DIV") {
528      //if (mode == "DIV") val = 1.0/val;
529      spec *= val;
530      specCol.put(i, spec);
531      if ( tsys ) {
532        ts *= val;
533        tsysCol.put(i, ts);
534      }
535    } else if ( mode == "ADD"  || mode == "SUB") {
536      //if (mode == "SUB") val *= -1.0;
537      spec += val;
538      specCol.put(i, spec);
539      if ( tsys ) {
540        ts += val;
541        tsysCol.put(i, ts);
542      }
543    }
544  }
545  return out;
546}
547
548CountedPtr< Scantable > STMath::arrayOperate( const CountedPtr< Scantable >& in,
549                                              const std::vector<float> val,
550                                              const std::string& mode,
551                                              const std::string& opmode,
552                                              bool tsys )
553{
554  CountedPtr< Scantable > out ;
555  if ( opmode == "channel" ) {
556    out = arrayOperateChannel( in, val, mode, tsys ) ;
557  }
558  else if ( opmode == "row" ) {
559    out = arrayOperateRow( in, val, mode, tsys ) ;
560  }
561  else {
562    throw( AipsError( "Unknown array operation mode." ) ) ;
563  }
564  return out ;
565}
566
567CountedPtr< Scantable > STMath::arrayOperateChannel( const CountedPtr< Scantable >& in,
568                                                     const std::vector<float> val,
569                                                     const std::string& mode,
570                                                     bool tsys )
571{
572  if ( val.size() == 1 ){
573    return unaryOperate( in, val[0], mode, tsys ) ;
574  }
575
576  // conformity of SPECTRA and TSYS
577  if ( tsys ) {
578    TableIterator titer(in->table(), "IFNO");
579    while ( !titer.pastEnd() ) {
580      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
581      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
582      Array<Float> spec = specCol.getColumn() ;
583      Array<Float> ts = tsysCol.getColumn() ;
584      if ( !spec.conform( ts ) ) {
585        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
586      }
587      titer.next() ;
588    }
589  }
590
591  // check if all spectra in the scantable have the same number of channel
592  vector<uInt> nchans;
593  vector<uInt> ifnos = in->getIFNos() ;
594  for ( uInt i = 0 ; i < ifnos.size() ; i++ ) {
595    nchans.push_back( in->nchan( ifnos[i] ) ) ;
596  }
597  Vector<uInt> mchans( nchans ) ;
598  if ( anyNE( mchans, mchans[0] ) ) {
599    throw( AipsError("All spectra in the input scantable must have the same number of channel for vector operation." ) ) ;
600  }
601
602  // check if vector size is equal to nchan
603  Vector<Float> fact( val ) ;
604  if ( fact.nelements() != mchans[0] ) {
605    throw( AipsError("Vector size must be 1 or be same as number of channel.") ) ;
606  }
607
608  // check divided by zero
609  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
610    throw( AipsError("Divided by zero is not recommended." ) ) ;
611  }
612
613  CountedPtr< Scantable > out = getScantable(in, false);
614  Table& tab = out->table();
615  ArrayColumn<Float> specCol(tab,"SPECTRA");
616  ArrayColumn<Float> tsysCol(tab,"TSYS");
617  if (mode == "DIV") fact = (float)1.0 / fact;
618  else if (mode == "SUB") fact *= (float)-1.0 ;
619  for (uInt i=0; i<tab.nrow(); ++i) {
620    Vector<Float> spec;
621    Vector<Float> ts;
622    specCol.get(i, spec);
623    tsysCol.get(i, ts);
624    if (mode == "MUL" || mode == "DIV") {
625      //if (mode == "DIV") fact = (float)1.0 / fact;
626      spec *= fact;
627      specCol.put(i, spec);
628      if ( tsys ) {
629        ts *= fact;
630        tsysCol.put(i, ts);
631      }
632    } else if ( mode == "ADD"  || mode == "SUB") {
633      //if (mode == "SUB") fact *= (float)-1.0 ;
634      spec += fact;
635      specCol.put(i, spec);
636      if ( tsys ) {
637        ts += fact;
638        tsysCol.put(i, ts);
639      }
640    }
641  }
642  return out;
643}
644
645CountedPtr< Scantable > STMath::arrayOperateRow( const CountedPtr< Scantable >& in,
646                                                 const std::vector<float> val,
647                                                 const std::string& mode,
648                                                 bool tsys )
649{
650  if ( val.size() == 1 ) {
651    return unaryOperate( in, val[0], mode, tsys ) ;
652  }
653
654  // conformity of SPECTRA and TSYS
655  if ( tsys ) {
656    TableIterator titer(in->table(), "IFNO");
657    while ( !titer.pastEnd() ) {
658      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
659      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
660      Array<Float> spec = specCol.getColumn() ;
661      Array<Float> ts = tsysCol.getColumn() ;
662      if ( !spec.conform( ts ) ) {
663        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
664      }
665      titer.next() ;
666    }
667  }
668
669  // check if vector size is equal to nrow
670  Vector<Float> fact( val ) ;
671  if (fact.nelements() != uInt(in->nrow())) {
672    throw( AipsError("Vector size must be 1 or be same as number of row.") ) ;
673  }
674
675  // check divided by zero
676  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
677    throw( AipsError("Divided by zero is not recommended." ) ) ;
678  }
679
680  CountedPtr< Scantable > out = getScantable(in, false);
681  Table& tab = out->table();
682  ArrayColumn<Float> specCol(tab,"SPECTRA");
683  ArrayColumn<Float> tsysCol(tab,"TSYS");
684  if (mode == "DIV") fact = (float)1.0 / fact;
685  if (mode == "SUB") fact *= (float)-1.0 ;
686  for (uInt i=0; i<tab.nrow(); ++i) {
687    Vector<Float> spec;
688    Vector<Float> ts;
689    specCol.get(i, spec);
690    tsysCol.get(i, ts);
691    if (mode == "MUL" || mode == "DIV") {
692      spec *= fact[i];
693      specCol.put(i, spec);
694      if ( tsys ) {
695        ts *= fact[i];
696        tsysCol.put(i, ts);
697      }
698    } else if ( mode == "ADD"  || mode == "SUB") {
699      spec += fact[i];
700      specCol.put(i, spec);
701      if ( tsys ) {
702        ts += fact[i];
703        tsysCol.put(i, ts);
704      }
705    }
706  }
707  return out;
708}
709
710CountedPtr< Scantable > STMath::array2dOperate( const CountedPtr< Scantable >& in,
711                                                const std::vector< std::vector<float> > val,
712                                                const std::string& mode,
713                                                bool tsys )
714{
715  // conformity of SPECTRA and TSYS
716  if ( tsys ) {
717    TableIterator titer(in->table(), "IFNO");
718    while ( !titer.pastEnd() ) {
719      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
720      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
721      Array<Float> spec = specCol.getColumn() ;
722      Array<Float> ts = tsysCol.getColumn() ;
723      if ( !spec.conform( ts ) ) {
724        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
725      }
726      titer.next() ;
727    }
728  }
729
730  // some checks
731  vector<uInt> nchans;
732  for (Int i = 0 ; i < in->nrow() ; i++) {
733    nchans.push_back((in->getSpectrum(i)).size());
734  }
735  //Vector<uInt> mchans( nchans ) ;
736  vector< Vector<Float> > facts ;
737  for ( uInt i = 0 ; i < nchans.size() ; i++ ) {
738    Vector<Float> tmp( val[i] ) ;
739    // check divided by zero
740    if ( ( mode == "DIV" ) && anyEQ( tmp, (float)0.0 ) ) {
741      throw( AipsError("Divided by zero is not recommended." ) ) ;
742    }
743    // conformity check
744    if ( tmp.nelements() != nchans[i] ) {
745      stringstream ss ;
746      ss << "Row " << i << ": Vector size must be same as number of channel." ;
747      throw( AipsError( ss.str() ) ) ;
748    }
749    facts.push_back( tmp ) ;
750  }
751
752
753  CountedPtr< Scantable > out = getScantable(in, false);
754  Table& tab = out->table();
755  ArrayColumn<Float> specCol(tab,"SPECTRA");
756  ArrayColumn<Float> tsysCol(tab,"TSYS");
757  for (uInt i=0; i<tab.nrow(); ++i) {
758    Vector<Float> fact = facts[i] ;
759    Vector<Float> spec;
760    Vector<Float> ts;
761    specCol.get(i, spec);
762    tsysCol.get(i, ts);
763    if (mode == "MUL" || mode == "DIV") {
764      if (mode == "DIV") fact = (float)1.0 / fact;
765      spec *= fact;
766      specCol.put(i, spec);
767      if ( tsys ) {
768        ts *= fact;
769        tsysCol.put(i, ts);
770      }
771    } else if ( mode == "ADD"  || mode == "SUB") {
772      if (mode == "SUB") fact *= (float)-1.0 ;
773      spec += fact;
774      specCol.put(i, spec);
775      if ( tsys ) {
776        ts += fact;
777        tsysCol.put(i, ts);
778      }
779    }
780  }
781  return out;
782}
783
784CountedPtr<Scantable> STMath::binaryOperate(const CountedPtr<Scantable>& left,
785                                            const CountedPtr<Scantable>& right,
786                                            const std::string& mode)
787{
788  bool insitu = insitu_;
789  if ( ! left->conformant(*right) ) {
790    throw(AipsError("'left' and 'right' scantables are not conformant."));
791  }
792  setInsitu(false);
793  CountedPtr< Scantable > out = getScantable(left, false);
794  setInsitu(insitu);
795  Table& tout = out->table();
796  Block<String> coln(5);
797  coln[0] = "SCANNO";  coln[1] = "CYCLENO";  coln[2] = "BEAMNO";
798  coln[3] = "IFNO";  coln[4] = "POLNO";
799  Table tmpl = tout.sort(coln);
800  Table tmpr = right->table().sort(coln);
801  ArrayColumn<Float> lspecCol(tmpl,"SPECTRA");
802  ROArrayColumn<Float> rspecCol(tmpr,"SPECTRA");
803  ArrayColumn<uChar> lflagCol(tmpl,"FLAGTRA");
804  ROArrayColumn<uChar> rflagCol(tmpr,"FLAGTRA");
805
806  for (uInt i=0; i<tout.nrow(); ++i) {
807    Vector<Float> lspecvec, rspecvec;
808    Vector<uChar> lflagvec, rflagvec;
809    lspecvec = lspecCol(i);    rspecvec = rspecCol(i);
810    lflagvec = lflagCol(i);    rflagvec = rflagCol(i);
811    MaskedArray<Float> mleft = maskedArray(lspecvec, lflagvec);
812    MaskedArray<Float> mright = maskedArray(rspecvec, rflagvec);
813    if (mode == "ADD") {
814      mleft += mright;
815    } else if ( mode == "SUB") {
816      mleft -= mright;
817    } else if ( mode == "MUL") {
818      mleft *= mright;
819    } else if ( mode == "DIV") {
820      mleft /= mright;
821    } else {
822      throw(AipsError("Illegal binary operator"));
823    }
824    lspecCol.put(i, mleft.getArray());
825  }
826  return out;
827}
828
829
830
831MaskedArray<Float> STMath::maskedArray( const Vector<Float>& s,
832                                        const Vector<uChar>& f)
833{
834  Vector<Bool> mask;
835  mask.resize(f.shape());
836  convertArray(mask, f);
837  return MaskedArray<Float>(s,!mask);
838}
839
840MaskedArray<Double> STMath::maskedArray( const Vector<Double>& s,
841                                         const Vector<uChar>& f)
842{
843  Vector<Bool> mask;
844  mask.resize(f.shape());
845  convertArray(mask, f);
846  return MaskedArray<Double>(s,!mask);
847}
848
849Vector<uChar> STMath::flagsFromMA(const MaskedArray<Float>& ma)
850{
851  const Vector<Bool>& m = ma.getMask();
852  Vector<uChar> flags(m.shape());
853  convertArray(flags, !m);
854  return flags;
855}
856
857CountedPtr< Scantable > STMath::autoQuotient( const CountedPtr< Scantable >& in,
858                                              const std::string & mode,
859                                              bool preserve )
860{
861  /// @todo make other modes available
862  /// modes should be "nearest", "pair"
863  // make this operation non insitu
864  (void) mode; //currently unused
865  const Table& tin = in->table();
866  Table ons = tin(tin.col("SRCTYPE") == Int(SrcType::PSON));
867  Table offs = tin(tin.col("SRCTYPE") == Int(SrcType::PSOFF));
868  if ( offs.nrow() == 0 )
869    throw(AipsError("No 'off' scans present."));
870  // put all "on" scans into output table
871
872  bool insitu = insitu_;
873  setInsitu(false);
874  CountedPtr< Scantable > out = getScantable(in, true);
875  setInsitu(insitu);
876  Table& tout = out->table();
877
878  TableCopy::copyRows(tout, ons);
879  TableRow row(tout);
880  ROScalarColumn<Double> offtimeCol(offs, "TIME");
881  ArrayColumn<Float> outspecCol(tout, "SPECTRA");
882  ROArrayColumn<Float> outtsysCol(tout, "TSYS");
883  ArrayColumn<uChar> outflagCol(tout, "FLAGTRA");
884  for (uInt i=0; i < tout.nrow(); ++i) {
885    const TableRecord& rec = row.get(i);
886    Double ontime = rec.asDouble("TIME");
887    Table presel = offs(offs.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
888                        && offs.col("IFNO") == Int(rec.asuInt("IFNO"))
889                        && offs.col("POLNO") == Int(rec.asuInt("POLNO")) );
890    ROScalarColumn<Double> offtimeCol(presel, "TIME");
891
892    Double mindeltat = min(abs(offtimeCol.getColumn() - ontime));
893    // Timestamp may vary within a cycle ???!!!
894    // increase this by 0.01 sec in case of rounding errors...
895    // There might be a better way to do this.
896    // fix to this fix. TIME is MJD, so 1.0d not 1.0s
897    mindeltat += 0.01/24./60./60.;
898    Table sel = presel( abs(presel.col("TIME")-ontime) <= mindeltat);
899
900    if ( sel.nrow() < 1 )  {
901      throw(AipsError("No closest in time found... This could be a rounding "
902                      "issue. Try quotient instead."));
903    }
904    TableRow offrow(sel);
905    const TableRecord& offrec = offrow.get(0);//should only be one row
906    RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
907    RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
908    RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
909    /// @fixme this assumes tsys is a scalar not vector
910    Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
911    Vector<Float> specon, tsyson;
912    outtsysCol.get(i, tsyson);
913    outspecCol.get(i, specon);
914    Vector<uChar> flagon;
915    outflagCol.get(i, flagon);
916    MaskedArray<Float> mon = maskedArray(specon, flagon);
917    MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
918    MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
919    if (preserve) {
920      quot -= tsysoffscalar;
921    } else {
922      quot -= tsyson[0];
923    }
924    outspecCol.put(i, quot.getArray());
925    outflagCol.put(i, flagsFromMA(quot));
926  }
927  // renumber scanno
928  TableIterator it(tout, "SCANNO");
929  uInt i = 0;
930  while ( !it.pastEnd() ) {
931    Table t = it.table();
932    TableVector<uInt> vec(t, "SCANNO");
933    vec = i;
934    ++i;
935    ++it;
936  }
937  return out;
938}
939
940
941CountedPtr< Scantable > STMath::quotient( const CountedPtr< Scantable > & on,
942                                          const CountedPtr< Scantable > & off,
943                                          bool preserve )
944{
945  bool insitu = insitu_;
946  if ( ! on->conformant(*off) ) {
947    throw(AipsError("'on' and 'off' scantables are not conformant."));
948  }
949  setInsitu(false);
950  CountedPtr< Scantable > out = getScantable(on, false);
951  setInsitu(insitu);
952  Table& tout = out->table();
953  const Table& toff = off->table();
954  TableIterator sit(tout, "SCANNO");
955  TableIterator s2it(toff, "SCANNO");
956  while ( !sit.pastEnd() ) {
957    Table ton = sit.table();
958    TableRow row(ton);
959    Table t = s2it.table();
960    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
961    ROArrayColumn<Float> outtsysCol(ton, "TSYS");
962    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
963    for (uInt i=0; i < ton.nrow(); ++i) {
964      const TableRecord& rec = row.get(i);
965      Table offsel = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
966                          && t.col("IFNO") == Int(rec.asuInt("IFNO"))
967                          && t.col("POLNO") == Int(rec.asuInt("POLNO")) );
968      if ( offsel.nrow() == 0 )
969        throw AipsError("STMath::quotient: no matching off");
970      TableRow offrow(offsel);
971      const TableRecord& offrec = offrow.get(0);//should be ncycles - take first
972      RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
973      RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
974      RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
975      Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
976      Vector<Float> specon, tsyson;
977      outtsysCol.get(i, tsyson);
978      outspecCol.get(i, specon);
979      Vector<uChar> flagon;
980      outflagCol.get(i, flagon);
981      MaskedArray<Float> mon = maskedArray(specon, flagon);
982      MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
983      MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
984      if (preserve) {
985        quot -= tsysoffscalar;
986      } else {
987        quot -= tsyson[0];
988      }
989      outspecCol.put(i, quot.getArray());
990      outflagCol.put(i, flagsFromMA(quot));
991    }
992    ++sit;
993    ++s2it;
994    // take the first off for each on scan which doesn't have a
995    // matching off scan
996    // non <= noff:  matching pairs, non > noff matching pairs then first off
997    if ( s2it.pastEnd() ) s2it.reset();
998  }
999  return out;
1000}
1001
1002// dototalpower (migration of GBTIDL procedure dototalpower.pro)
1003// calibrate the CAL on-off pair. It calculate Tsys and average CAL on-off subintegrations
1004// do it for each cycles in a specific scan.
1005CountedPtr< Scantable > STMath::dototalpower( const CountedPtr< Scantable >& calon,
1006                                              const CountedPtr< Scantable >& caloff, Float tcal )
1007{
1008  if ( ! calon->conformant(*caloff) ) {
1009    throw(AipsError("'CAL on' and 'CAL off' scantables are not conformant."));
1010  }
1011  setInsitu(false);
1012  CountedPtr< Scantable > out = getScantable(caloff, false);
1013  Table& tout = out->table();
1014  const Table& tcon = calon->table();
1015  Vector<Float> tcalout;
1016
1017  std::map<uInt,uInt> tcalIdToRecNoMap;
1018  const Table& calOffTcalTable = caloff->tcal().table();
1019  {
1020    ROScalarColumn<uInt> calOffTcalTable_IDcol(calOffTcalTable, "ID");
1021    const Vector<uInt> tcalIds(calOffTcalTable_IDcol.getColumn());
1022    size_t tcalIdsEnd = tcalIds.nelements();
1023    for (uInt i = 0; i < tcalIdsEnd; i++) {
1024      tcalIdToRecNoMap[tcalIds[i]] = i;
1025    }
1026  }
1027  ROArrayColumn<Float> calOffTcalTable_TCALcol(calOffTcalTable, "TCAL");
1028
1029  if ( tout.nrow() != tcon.nrow() ) {
1030    throw(AipsError("Mismatch in number of rows to form cal on - off pair."));
1031  }
1032  // iteration by scanno or cycle no.
1033  TableIterator sit(tout, "SCANNO");
1034  TableIterator s2it(tcon, "SCANNO");
1035  while ( !sit.pastEnd() ) {
1036    Table toff = sit.table();
1037    TableRow row(toff);
1038    Table t = s2it.table();
1039    ScalarColumn<Double> outintCol(toff, "INTERVAL");
1040    ArrayColumn<Float> outspecCol(toff, "SPECTRA");
1041    ArrayColumn<Float> outtsysCol(toff, "TSYS");
1042    ArrayColumn<uChar> outflagCol(toff, "FLAGTRA");
1043    ROScalarColumn<uInt> outtcalIdCol(toff, "TCAL_ID");
1044    ROScalarColumn<uInt> outpolCol(toff, "POLNO");
1045    ROScalarColumn<Double> onintCol(t, "INTERVAL");
1046    ROArrayColumn<Float> onspecCol(t, "SPECTRA");
1047    ROArrayColumn<Float> ontsysCol(t, "TSYS");
1048    ROArrayColumn<uChar> onflagCol(t, "FLAGTRA");
1049    //ROScalarColumn<uInt> ontcalIdCol(t, "TCAL_ID");
1050
1051    for (uInt i=0; i < toff.nrow(); ++i) {
1052      //skip these checks -> assumes the data order are the same between the cal on off pairs
1053      //
1054      Vector<Float> specCalon, specCaloff;
1055      // to store scalar (mean) tsys
1056      Vector<Float> tsysout(1);
1057      uInt tcalId, polno;
1058      Double offint, onint;
1059      outpolCol.get(i, polno);
1060      outspecCol.get(i, specCaloff);
1061      onspecCol.get(i, specCalon);
1062      Vector<uChar> flagCaloff, flagCalon;
1063      outflagCol.get(i, flagCaloff);
1064      onflagCol.get(i, flagCalon);
1065      outtcalIdCol.get(i, tcalId);
1066      outintCol.get(i, offint);
1067      onintCol.get(i, onint);
1068      // caluculate mean Tsys
1069      uInt nchan = specCaloff.nelements();
1070      // percentage of edge cut off
1071      uInt pc = 10;
1072      uInt bchan = nchan/pc;
1073      uInt echan = nchan-bchan;
1074
1075      Slicer chansl(IPosition(1,bchan-1), IPosition(1,echan-1), IPosition(1,1),Slicer::endIsLast);
1076      Vector<Float> testsubsp = specCaloff(chansl);
1077      MaskedArray<Float> spoff = maskedArray( specCaloff(chansl),flagCaloff(chansl) );
1078      MaskedArray<Float> spon = maskedArray( specCalon(chansl),flagCalon(chansl) );
1079      MaskedArray<Float> spdiff = spon-spoff;
1080      uInt noff = spoff.nelementsValid();
1081      //uInt non = spon.nelementsValid();
1082      uInt ndiff = spdiff.nelementsValid();
1083      Float meantsys;
1084
1085/**
1086      Double subspec, subdiff;
1087      uInt usednchan;
1088      subspec = 0;
1089      subdiff = 0;
1090      usednchan = 0;
1091      for(uInt k=(bchan-1); k<echan; k++) {
1092        subspec += specCaloff[k];
1093        subdiff += static_cast<Double>(specCalon[k]-specCaloff[k]);
1094        ++usednchan;
1095      }
1096**/
1097      // get tcal if input tcal <= 0
1098      Float tcalUsed;
1099      tcalUsed = tcal;
1100      if ( tcal <= 0.0 ) {
1101        uInt tcalRecNo = tcalIdToRecNoMap[tcalId];
1102        calOffTcalTable_TCALcol.get(tcalRecNo, tcalout);
1103//         if (polno<=3) {
1104//           tcalUsed = tcalout[polno];
1105//         }
1106//         else {
1107//           tcalUsed = tcalout[0];
1108//         }
1109        if ( tcalout.size() == 1 )
1110          tcalUsed = tcalout[0] ;
1111        else if ( tcalout.size() == nchan )
1112          tcalUsed = mean(tcalout) ;
1113        else {
1114          uInt ipol = polno ;
1115          if ( ipol > 3 ) ipol = 0 ;
1116          tcalUsed = tcalout[ipol] ;
1117        }
1118      }
1119
1120      Float meanoff;
1121      Float meandiff;
1122      if (noff && ndiff) {
1123         //Debug
1124         //if(noff!=ndiff) cerr<<"noff and ndiff is not equal"<<endl;
1125         //LogIO os( LogOrigin( "STMath", "dototalpower()", WHERE ) ) ;
1126         //if(noff!=ndiff) os<<"noff and ndiff is not equal"<<LogIO::POST;
1127         meanoff = sum(spoff)/noff;
1128         meandiff = sum(spdiff)/ndiff;
1129         meantsys= (meanoff/meandiff )*tcalUsed + tcalUsed/2;
1130      }
1131      else {
1132         meantsys=1;
1133      }
1134
1135      tsysout[0] = Float(meantsys);
1136      MaskedArray<Float> mcaloff = maskedArray(specCaloff, flagCaloff);
1137      MaskedArray<Float> mcalon = maskedArray(specCalon, flagCalon);
1138      MaskedArray<Float> sig =   Float(0.5) * (mcaloff + mcalon);
1139      //uInt ncaloff = mcaloff.nelementsValid();
1140      //uInt ncalon = mcalon.nelementsValid();
1141
1142      outintCol.put(i, offint+onint);
1143      outspecCol.put(i, sig.getArray());
1144      outflagCol.put(i, flagsFromMA(sig));
1145      outtsysCol.put(i, tsysout);
1146    }
1147    ++sit;
1148    ++s2it;
1149  }
1150  return out;
1151}
1152
1153//dosigref - migrated from GBT IDL's dosigref.pro, do calibration of position switch
1154// observatiions.
1155// input: sig and ref scantables, and an optional boxcar smoothing width(default width=0,
1156//        no smoothing).
1157// output: resultant scantable [= (sig-ref/ref)*tsys]
1158CountedPtr< Scantable > STMath::dosigref( const CountedPtr < Scantable >& sig,
1159                                          const CountedPtr < Scantable >& ref,
1160                                          int smoothref,
1161                                          casa::Float tsysv,
1162                                          casa::Float tau )
1163{
1164if ( ! ref->conformant(*sig) ) {
1165    throw(AipsError("'sig' and 'ref' scantables are not conformant."));
1166  }
1167  setInsitu(false);
1168  CountedPtr< Scantable > out = getScantable(sig, false);
1169  CountedPtr< Scantable > smref;
1170  if ( smoothref > 1 ) {
1171    float fsmoothref = static_cast<float>(smoothref);
1172    std::string inkernel = "boxcar";
1173    smref = smooth(ref, inkernel, fsmoothref );
1174    ostringstream oss;
1175    oss<<"Applied smoothing of "<<fsmoothref<<" on the reference."<<endl;
1176    pushLog(String(oss));
1177  }
1178  else {
1179    smref = ref;
1180  }
1181  Table& tout = out->table();
1182  const Table& tref = smref->table();
1183  if ( tout.nrow() != tref.nrow() ) {
1184    throw(AipsError("Mismatch in number of rows to form on-source and reference pair."));
1185  }
1186  // iteration by scanno? or cycle no.
1187  TableIterator sit(tout, "SCANNO");
1188  TableIterator s2it(tref, "SCANNO");
1189  while ( !sit.pastEnd() ) {
1190    Table ton = sit.table();
1191    Table t = s2it.table();
1192    ScalarColumn<Double> outintCol(ton, "INTERVAL");
1193    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1194    ArrayColumn<Float> outtsysCol(ton, "TSYS");
1195    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1196    ArrayColumn<Float> refspecCol(t, "SPECTRA");
1197    ROScalarColumn<Double> refintCol(t, "INTERVAL");
1198    ROArrayColumn<Float> reftsysCol(t, "TSYS");
1199    ArrayColumn<uChar> refflagCol(t, "FLAGTRA");
1200    ROScalarColumn<Float> refelevCol(t, "ELEVATION");
1201    for (uInt i=0; i < ton.nrow(); ++i) {
1202
1203      Double onint, refint;
1204      Vector<Float> specon, specref;
1205      // to store scalar (mean) tsys
1206      Vector<Float> tsysref;
1207      outintCol.get(i, onint);
1208      refintCol.get(i, refint);
1209      outspecCol.get(i, specon);
1210      refspecCol.get(i, specref);
1211      Vector<uChar> flagref, flagon;
1212      outflagCol.get(i, flagon);
1213      refflagCol.get(i, flagref);
1214      reftsysCol.get(i, tsysref);
1215
1216      Float tsysrefscalar;
1217      if ( tsysv > 0.0 ) {
1218        ostringstream oss;
1219        Float elev;
1220        refelevCol.get(i, elev);
1221        oss << "user specified Tsys = " << tsysv;
1222        // do recalc elevation if EL = 0
1223        if ( elev == 0 ) {
1224          throw(AipsError("EL=0, elevation data is missing."));
1225        } else {
1226          if ( tau <= 0.0 ) {
1227            throw(AipsError("Valid tau is not supplied."));
1228          } else {
1229            tsysrefscalar = tsysv * exp(tau/elev);
1230          }
1231        }
1232        oss << ", corrected (for El) tsys= "<<tsysrefscalar;
1233        pushLog(String(oss));
1234      }
1235      else {
1236        tsysrefscalar = tsysref[0];
1237      }
1238      //get quotient spectrum
1239      MaskedArray<Float> mref = maskedArray(specref, flagref);
1240      MaskedArray<Float> mon = maskedArray(specon, flagon);
1241      MaskedArray<Float> specres =   tsysrefscalar*((mon - mref)/mref);
1242      Double resint = onint*refint*smoothref/(onint+refint*smoothref);
1243
1244      //Debug
1245      //cerr<<"Tsys used="<<tsysrefscalar<<endl;
1246      //LogIO os( LogOrigin( "STMath", "dosigref", WHERE ) ) ;
1247      //os<<"Tsys used="<<tsysrefscalar<<LogIO::POST;
1248      // fill the result, replay signal tsys by reference tsys
1249      outintCol.put(i, resint);
1250      outspecCol.put(i, specres.getArray());
1251      outflagCol.put(i, flagsFromMA(specres));
1252      outtsysCol.put(i, tsysref);
1253    }
1254    ++sit;
1255    ++s2it;
1256  }
1257  return out;
1258}
1259
1260CountedPtr< Scantable > STMath::donod(const casa::CountedPtr<Scantable>& s,
1261                                     const std::vector<int>& scans,
1262                                     int smoothref,
1263                                     casa::Float tsysv,
1264                                     casa::Float tau,
1265                                     casa::Float tcal )
1266
1267{
1268  setInsitu(false);
1269  STSelector sel;
1270  std::vector<int> scan1, scan2, beams, types;
1271  std::vector< vector<int> > scanpair;
1272  //std::vector<string> calstate;
1273  std::vector<int> calstate;
1274  String msg;
1275
1276  CountedPtr< Scantable > s1b1on, s1b1off, s1b2on, s1b2off;
1277  CountedPtr< Scantable > s2b1on, s2b1off, s2b2on, s2b2off;
1278
1279  std::vector< CountedPtr< Scantable > > sctables;
1280  sctables.push_back(s1b1on);
1281  sctables.push_back(s1b1off);
1282  sctables.push_back(s1b2on);
1283  sctables.push_back(s1b2off);
1284  sctables.push_back(s2b1on);
1285  sctables.push_back(s2b1off);
1286  sctables.push_back(s2b2on);
1287  sctables.push_back(s2b2off);
1288
1289  //check scanlist
1290  int n=s->checkScanInfo(scans);
1291  if (n==1) {
1292     throw(AipsError("Incorrect scan pairs. "));
1293  }
1294
1295  // Assume scans contain only a pair of consecutive scan numbers.
1296  // It is assumed that first beam, b1,  is on target.
1297  // There is no check if the first beam is on or not.
1298  if ( scans.size()==1 ) {
1299    scan1.push_back(scans[0]);
1300    scan2.push_back(scans[0]+1);
1301  } else if ( scans.size()==2 ) {
1302   scan1.push_back(scans[0]);
1303   scan2.push_back(scans[1]);
1304  } else {
1305    if ( scans.size()%2 == 0 ) {
1306      for (uInt i=0; i<scans.size(); i++) {
1307        if (i%2 == 0) {
1308          scan1.push_back(scans[i]);
1309        }
1310        else {
1311          scan2.push_back(scans[i]);
1312        }
1313      }
1314    } else {
1315      throw(AipsError("Odd numbers of scans, cannot form pairs."));
1316    }
1317  }
1318  scanpair.push_back(scan1);
1319  scanpair.push_back(scan2);
1320  //calstate.push_back("*calon");
1321  //calstate.push_back("*[^calon]");
1322  calstate.push_back(SrcType::NODCAL);
1323  calstate.push_back(SrcType::NOD);
1324  CountedPtr< Scantable > ws = getScantable(s, false);
1325  uInt l=0;
1326  while ( l < sctables.size() ) {
1327    for (uInt i=0; i < 2; i++) {
1328      for (uInt j=0; j < 2; j++) {
1329        for (uInt k=0; k < 2; k++) {
1330          sel.reset();
1331          sel.setScans(scanpair[i]);
1332          //sel.setName(calstate[k]);
1333          types.clear();
1334          types.push_back(calstate[k]);
1335          sel.setTypes(types);
1336          beams.clear();
1337          beams.push_back(j);
1338          sel.setBeams(beams);
1339          ws->setSelection(sel);
1340          sctables[l]= getScantable(ws, false);
1341          l++;
1342        }
1343      }
1344    }
1345  }
1346
1347  // replace here by splitData or getData functionality
1348  CountedPtr< Scantable > sig1;
1349  CountedPtr< Scantable > ref1;
1350  CountedPtr< Scantable > sig2;
1351  CountedPtr< Scantable > ref2;
1352  CountedPtr< Scantable > calb1;
1353  CountedPtr< Scantable > calb2;
1354
1355  msg=String("Processing dototalpower for subset of the data");
1356  ostringstream oss1;
1357  oss1 << msg  << endl;
1358  pushLog(String(oss1));
1359  // Debug for IRC CS data
1360  //float tcal1=7.0;
1361  //float tcal2=4.0;
1362  sig1 = dototalpower(sctables[0], sctables[1], tcal=tcal);
1363  ref1 = dototalpower(sctables[2], sctables[3], tcal=tcal);
1364  ref2 = dototalpower(sctables[4], sctables[5], tcal=tcal);
1365  sig2 = dototalpower(sctables[6], sctables[7], tcal=tcal);
1366
1367  // correction of user-specified tsys for elevation here
1368
1369  // dosigref calibration
1370  msg=String("Processing dosigref for subset of the data");
1371  ostringstream oss2;
1372  oss2 << msg  << endl;
1373  pushLog(String(oss2));
1374  calb1=dosigref(sig1,ref2,smoothref,tsysv,tau);
1375  calb2=dosigref(sig2,ref1,smoothref,tsysv,tau);
1376
1377  // iteration by scanno or cycle no.
1378  Table& tcalb1 = calb1->table();
1379  Table& tcalb2 = calb2->table();
1380  TableIterator sit(tcalb1, "SCANNO");
1381  TableIterator s2it(tcalb2, "SCANNO");
1382  while ( !sit.pastEnd() ) {
1383    Table t1 = sit.table();
1384    Table t2= s2it.table();
1385    ArrayColumn<Float> outspecCol(t1, "SPECTRA");
1386    ArrayColumn<Float> outtsysCol(t1, "TSYS");
1387    ArrayColumn<uChar> outflagCol(t1, "FLAGTRA");
1388    ScalarColumn<Double> outintCol(t1, "INTERVAL");
1389    ArrayColumn<Float> t2specCol(t2, "SPECTRA");
1390    ROArrayColumn<Float> t2tsysCol(t2, "TSYS");
1391    ArrayColumn<uChar> t2flagCol(t2, "FLAGTRA");
1392    ROScalarColumn<Double> t2intCol(t2, "INTERVAL");
1393    for (uInt i=0; i < t1.nrow(); ++i) {
1394      Vector<Float> spec1, spec2;
1395      // to store scalar (mean) tsys
1396      Vector<Float> tsys1, tsys2;
1397      Vector<uChar> flag1, flag2;
1398      Double tint1, tint2;
1399      outspecCol.get(i, spec1);
1400      t2specCol.get(i, spec2);
1401      outflagCol.get(i, flag1);
1402      t2flagCol.get(i, flag2);
1403      outtsysCol.get(i, tsys1);
1404      t2tsysCol.get(i, tsys2);
1405      outintCol.get(i, tint1);
1406      t2intCol.get(i, tint2);
1407      // average
1408      // assume scalar tsys for weights
1409      Float wt1, wt2, tsyssq1, tsyssq2;
1410      tsyssq1 = tsys1[0]*tsys1[0];
1411      tsyssq2 = tsys2[0]*tsys2[0];
1412      wt1 = Float(tint1)/tsyssq1;
1413      wt2 = Float(tint2)/tsyssq2;
1414      Float invsumwt=1/(wt1+wt2);
1415      MaskedArray<Float> mspec1 = maskedArray(spec1, flag1);
1416      MaskedArray<Float> mspec2 = maskedArray(spec2, flag2);
1417      MaskedArray<Float> avspec =  invsumwt * (wt1*mspec1 + wt2*mspec2);
1418      //Array<Float> avtsys =  Float(0.5) * (tsys1 + tsys2);
1419      // cerr<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<endl;
1420      // LogIO os( LogOrigin( "STMath", "donod", WHERE ) ) ;
1421      // os<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<LogIO::POST;
1422      tsys1[0] = sqrt(tsyssq1 + tsyssq2);
1423      Array<Float> avtsys =  tsys1;
1424
1425      outspecCol.put(i, avspec.getArray());
1426      outflagCol.put(i, flagsFromMA(avspec));
1427      outtsysCol.put(i, avtsys);
1428    }
1429    ++sit;
1430    ++s2it;
1431  }
1432  return calb1;
1433}
1434
1435//GBTIDL version of frequency switched data calibration
1436CountedPtr< Scantable > STMath::dofs( const CountedPtr< Scantable >& s,
1437                                      const std::vector<int>& scans,
1438                                      int smoothref,
1439                                      casa::Float tsysv,
1440                                      casa::Float tau,
1441                                      casa::Float tcal )
1442{
1443
1444
1445  (void) scans; //currently unused
1446  STSelector sel;
1447  CountedPtr< Scantable > ws = getScantable(s, false);
1448  CountedPtr< Scantable > sig, sigwcal, ref, refwcal;
1449  CountedPtr< Scantable > calsig, calref, out, out1, out2;
1450  Bool nofold=False;
1451  vector<int> types ;
1452
1453  //split the data
1454  //sel.setName("*_fs");
1455  types.push_back( SrcType::FSON ) ;
1456  sel.setTypes( types ) ;
1457  ws->setSelection(sel);
1458  sig = getScantable(ws,false);
1459  sel.reset();
1460  types.clear() ;
1461  //sel.setName("*_fs_calon");
1462  types.push_back( SrcType::FONCAL ) ;
1463  sel.setTypes( types ) ;
1464  ws->setSelection(sel);
1465  sigwcal = getScantable(ws,false);
1466  sel.reset();
1467  types.clear() ;
1468  //sel.setName("*_fsr");
1469  types.push_back( SrcType::FSOFF ) ;
1470  sel.setTypes( types ) ;
1471  ws->setSelection(sel);
1472  ref = getScantable(ws,false);
1473  sel.reset();
1474  types.clear() ;
1475  //sel.setName("*_fsr_calon");
1476  types.push_back( SrcType::FOFFCAL ) ;
1477  sel.setTypes( types ) ;
1478  ws->setSelection(sel);
1479  refwcal = getScantable(ws,false);
1480  sel.reset() ;
1481  types.clear() ;
1482
1483  calsig = dototalpower(sigwcal, sig, tcal=tcal);
1484  calref = dototalpower(refwcal, ref, tcal=tcal);
1485
1486  out1=dosigref(calsig,calref,smoothref,tsysv,tau);
1487  out2=dosigref(calref,calsig,smoothref,tsysv,tau);
1488
1489  Table& tabout1=out1->table();
1490  Table& tabout2=out2->table();
1491  ROScalarColumn<uInt> freqidCol1(tabout1, "FREQ_ID");
1492  ScalarColumn<uInt> freqidCol2(tabout2, "FREQ_ID");
1493  ROArrayColumn<Float> specCol(tabout2, "SPECTRA");
1494  Vector<Float> spec; specCol.get(0, spec);
1495  uInt nchan = spec.nelements();
1496  uInt freqid1; freqidCol1.get(0,freqid1);
1497  uInt freqid2; freqidCol2.get(0,freqid2);
1498  Double rp1, rp2, rv1, rv2, inc1, inc2;
1499  out1->frequencies().getEntry(rp1, rv1, inc1, freqid1);
1500  out2->frequencies().getEntry(rp2, rv2, inc2, freqid2);
1501  //cerr << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << endl ;
1502  //LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1503  //os << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << LogIO::POST ;
1504  if (rp1==rp2) {
1505    Double foffset = rv1 - rv2;
1506    uInt choffset = static_cast<uInt>(foffset/abs(inc2));
1507    if (choffset >= nchan) {
1508      //cerr<<"out-band frequency switching, no folding"<<endl;
1509      LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1510      os<<"out-band frequency switching, no folding"<<LogIO::POST;
1511      nofold = True;
1512    }
1513  }
1514
1515  if (nofold) {
1516    std::vector< CountedPtr< Scantable > > tabs;
1517    tabs.push_back(out1);
1518    tabs.push_back(out2);
1519    out = merge(tabs);
1520  }
1521  else {
1522    //out = out1;
1523    Double choffset = ( rv1 - rv2 ) / inc2 ;
1524    out = dofold( out1, out2, choffset ) ;
1525  }
1526   
1527  return out;
1528}
1529
1530CountedPtr<Scantable> STMath::dofold( const CountedPtr<Scantable> &sig,
1531                                      const CountedPtr<Scantable> &ref,
1532                                      Double choffset,
1533                                      Double choffset2 )
1534{
1535  LogIO os( LogOrigin( "STMath", "dofold", WHERE ) ) ;
1536  os << "choffset=" << choffset << " choffset2=" << choffset2 << LogIO::POST ;
1537
1538  // output scantable
1539  CountedPtr<Scantable> out = getScantable( sig, false ) ;
1540
1541  // separate choffset to integer part and decimal part
1542  Int ioffset = (Int)choffset ;
1543  Double doffset = choffset - ioffset ;
1544  Int ioffset2 = (Int)choffset2 ;
1545  Double doffset2 = choffset2 - ioffset2 ;
1546  os << "ioffset=" << ioffset << " doffset=" << doffset << LogIO::POST ;
1547  os << "ioffset2=" << ioffset2 << " doffset2=" << doffset2 << LogIO::POST ; 
1548
1549  // get column
1550  ROArrayColumn<Float> specCol1( sig->table(), "SPECTRA" ) ;
1551  ROArrayColumn<Float> specCol2( ref->table(), "SPECTRA" ) ;
1552  ROArrayColumn<Float> tsysCol1( sig->table(), "TSYS" ) ;
1553  ROArrayColumn<Float> tsysCol2( ref->table(), "TSYS" ) ;
1554  ROArrayColumn<uChar> flagCol1( sig->table(), "FLAGTRA" ) ;
1555  ROArrayColumn<uChar> flagCol2( ref->table(), "FLAGTRA" ) ;
1556  ROScalarColumn<Double> mjdCol1( sig->table(), "TIME" ) ;
1557  ROScalarColumn<Double> mjdCol2( ref->table(), "TIME" ) ;
1558  ROScalarColumn<Double> intervalCol1( sig->table(), "INTERVAL" ) ;
1559  ROScalarColumn<Double> intervalCol2( ref->table(), "INTERVAL" ) ;
1560
1561  // check
1562  if ( ioffset == 0 ) {
1563    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1564    os << "channel offset is zero, no folding" << LogIO::POST ;
1565    return out ;
1566  }
1567  int nchan = ref->nchan() ;
1568  if ( abs(ioffset) >= nchan ) {
1569    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1570    os << "out-band frequency switching, no folding" << LogIO::POST ;
1571    return out ;
1572  }
1573
1574  // attach column for output scantable
1575  ArrayColumn<Float> specColOut( out->table(), "SPECTRA" ) ;
1576  ArrayColumn<uChar> flagColOut( out->table(), "FLAGTRA" ) ;
1577  ArrayColumn<Float> tsysColOut( out->table(), "TSYS" ) ;
1578  ScalarColumn<Double> mjdColOut( out->table(), "TIME" ) ;
1579  ScalarColumn<Double> intervalColOut( out->table(), "INTERVAL" ) ;
1580  ScalarColumn<uInt> fidColOut( out->table(), "FREQ_ID" ) ;
1581
1582  // for each row
1583  // assume that the data order are same between sig and ref
1584  RowAccumulator acc( asap::W_TINTSYS ) ;
1585  for ( int i = 0 ; i < sig->nrow() ; i++ ) {
1586    // get values
1587    Vector<Float> spsig ;
1588    specCol1.get( i, spsig ) ;
1589    Vector<Float> spref ;
1590    specCol2.get( i, spref ) ;
1591    Vector<Float> tsyssig ;
1592    tsysCol1.get( i, tsyssig ) ;
1593    Vector<Float> tsysref ;
1594    tsysCol2.get( i, tsysref ) ;
1595    Vector<uChar> flagsig ;
1596    flagCol1.get( i, flagsig ) ;
1597    Vector<uChar> flagref ;
1598    flagCol2.get( i, flagref ) ;
1599    Double timesig ;
1600    mjdCol1.get( i, timesig ) ;
1601    Double timeref ;
1602    mjdCol2.get( i, timeref ) ;
1603    Double intsig ;
1604    intervalCol1.get( i, intsig ) ;
1605    Double intref ;
1606    intervalCol2.get( i, intref ) ;
1607
1608    // shift reference spectra
1609    int refchan = spref.nelements() ;
1610    Vector<Float> sspref( spref.nelements() ) ;
1611    Vector<Float> stsysref( tsysref.nelements() ) ;
1612    Vector<uChar> sflagref( flagref.nelements() ) ;
1613    if ( ioffset > 0 ) {
1614      // SPECTRA and FLAGTRA
1615      for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1616        sspref[j] = spref[j+ioffset] ;
1617        sflagref[j] = flagref[j+ioffset] ;
1618      }
1619      for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1620        sspref[j] = spref[j-refchan+ioffset] ;
1621        sflagref[j] = flagref[j-refchan+ioffset] ;
1622      }
1623      spref = sspref.copy() ;
1624      flagref = sflagref.copy() ;
1625      for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1626        sspref[j] = doffset * spref[j+1] + ( 1.0 - doffset ) * spref[j] ;
1627        sflagref[j] = flagref[j+1] + flagref[j] ;
1628      }
1629      sspref[refchan-1] = doffset * spref[0] + ( 1.0 - doffset ) * spref[refchan-1] ;
1630      sflagref[refchan-1] = flagref[0] + flagref[refchan-1] ;
1631
1632      // TSYS
1633      if ( spref.nelements() == tsysref.nelements() ) {
1634        for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1635          stsysref[j] = tsysref[j+ioffset] ;
1636        }
1637        for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1638          stsysref[j] = tsysref[j-refchan+ioffset] ;
1639        }
1640        tsysref = stsysref.copy() ;
1641        for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1642          stsysref[j] = doffset * tsysref[j+1] + ( 1.0 - doffset ) * tsysref[j] ;
1643        }
1644        stsysref[refchan-1] = doffset * tsysref[0] + ( 1.0 - doffset ) * tsysref[refchan-1] ;
1645      }
1646    }
1647    else {
1648      // SPECTRA and FLAGTRA
1649      for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1650        sspref[j] = spref[refchan+ioffset+j] ;
1651        sflagref[j] = flagref[refchan+ioffset+j] ;
1652      }
1653      for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1654        sspref[j] = spref[j+ioffset] ;
1655        sflagref[j] = flagref[j+ioffset] ;
1656      }
1657      spref = sspref.copy() ;
1658      flagref = sflagref.copy() ;
1659      sspref[0] = doffset * spref[refchan-1] + ( 1.0 - doffset ) * spref[0] ;
1660      sflagref[0] = flagref[0] + flagref[refchan-1] ;
1661      for ( int j = 1 ; j < refchan ; j++ ) {
1662        sspref[j] = doffset * spref[j-1] + ( 1.0 - doffset ) * spref[j] ;
1663        sflagref[j] = flagref[j-1] + flagref[j] ;
1664      }
1665      // TSYS
1666      if ( spref.nelements() == tsysref.nelements() ) {
1667        for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1668          stsysref[j] = tsysref[refchan+ioffset+j] ;
1669        }
1670        for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1671          stsysref[j] = tsysref[j+ioffset] ;
1672        }
1673        tsysref = stsysref.copy() ;
1674        stsysref[0] = doffset * tsysref[refchan-1] + ( 1.0 - doffset ) * tsysref[0] ;
1675        for ( int j = 1 ; j < refchan ; j++ ) {
1676          stsysref[j] = doffset * tsysref[j-1] + ( 1.0 - doffset ) * tsysref[j] ;
1677        }
1678      }
1679    }
1680
1681    // shift signal spectra if necessary (only for APEX?)
1682    if ( choffset2 != 0.0 ) {
1683      int sigchan = spsig.nelements() ;
1684      Vector<Float> sspsig( spsig.nelements() ) ;
1685      Vector<Float> stsyssig( tsyssig.nelements() ) ;
1686      Vector<uChar> sflagsig( flagsig.nelements() ) ;
1687      if ( ioffset2 > 0 ) {
1688        // SPECTRA and FLAGTRA
1689        for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1690          sspsig[j] = spsig[j+ioffset2] ;
1691          sflagsig[j] = flagsig[j+ioffset2] ;
1692        }
1693        for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1694          sspsig[j] = spsig[j-sigchan+ioffset2] ;
1695          sflagsig[j] = flagsig[j-sigchan+ioffset2] ;
1696        }
1697        spsig = sspsig.copy() ;
1698        flagsig = sflagsig.copy() ;
1699        for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1700          sspsig[j] = doffset2 * spsig[j+1] + ( 1.0 - doffset2 ) * spsig[j] ;
1701          sflagsig[j] = flagsig[j+1] || flagsig[j] ;
1702        }
1703        sspsig[sigchan-1] = doffset2 * spsig[0] + ( 1.0 - doffset2 ) * spsig[sigchan-1] ;
1704        sflagsig[sigchan-1] = flagsig[0] || flagsig[sigchan-1] ;
1705        // TSTS
1706        if ( spsig.nelements() == tsyssig.nelements() ) {
1707          for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1708            stsyssig[j] = tsyssig[j+ioffset2] ;
1709          }
1710          for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1711            stsyssig[j] = tsyssig[j-sigchan+ioffset2] ;
1712          }
1713          tsyssig = stsyssig.copy() ;
1714          for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1715            stsyssig[j] = doffset2 * tsyssig[j+1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1716          }
1717          stsyssig[sigchan-1] = doffset2 * tsyssig[0] + ( 1.0 - doffset2 ) * tsyssig[sigchan-1] ;
1718        }
1719      }
1720      else {
1721        // SPECTRA and FLAGTRA
1722        for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1723          sspsig[j] = spsig[sigchan+ioffset2+j] ;
1724          sflagsig[j] = flagsig[sigchan+ioffset2+j] ;
1725        }
1726        for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1727          sspsig[j] = spsig[j+ioffset2] ;
1728          sflagsig[j] = flagsig[j+ioffset2] ;
1729        }
1730        spsig = sspsig.copy() ;
1731        flagsig = sflagsig.copy() ;
1732        sspsig[0] = doffset2 * spsig[sigchan-1] + ( 1.0 - doffset2 ) * spsig[0] ;
1733        sflagsig[0] = flagsig[0] + flagsig[sigchan-1] ;
1734        for ( int j = 1 ; j < sigchan ; j++ ) {
1735          sspsig[j] = doffset2 * spsig[j-1] + ( 1.0 - doffset2 ) * spsig[j] ;
1736          sflagsig[j] = flagsig[j-1] + flagsig[j] ;
1737        }
1738        // TSYS
1739        if ( spsig.nelements() == tsyssig.nelements() ) {
1740          for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1741            stsyssig[j] = tsyssig[sigchan+ioffset2+j] ;
1742          }
1743          for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1744            stsyssig[j] = tsyssig[j+ioffset2] ;
1745          }
1746          tsyssig = stsyssig.copy() ;
1747          stsyssig[0] = doffset2 * tsyssig[sigchan-1] + ( 1.0 - doffset2 ) * tsyssig[0] ;
1748          for ( int j = 1 ; j < sigchan ; j++ ) {
1749            stsyssig[j] = doffset2 * tsyssig[j-1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1750          }
1751        }
1752      }
1753    }
1754
1755    // folding
1756    acc.add( spsig, !flagsig, tsyssig, intsig, timesig ) ;
1757    acc.add( sspref, !sflagref, stsysref, intref, timeref ) ;
1758   
1759    // put result
1760    specColOut.put( i, acc.getSpectrum() ) ;
1761    const Vector<Bool> &msk = acc.getMask() ;
1762    Vector<uChar> flg( msk.shape() ) ;
1763    convertArray( flg, !msk ) ;
1764    flagColOut.put( i, flg ) ;
1765    tsysColOut.put( i, acc.getTsys() ) ;
1766    intervalColOut.put( i, acc.getInterval() ) ;
1767    mjdColOut.put( i, acc.getTime() ) ;
1768    // change FREQ_ID to unshifted IF setting (only for APEX?)
1769    if ( choffset2 != 0.0 ) {
1770      uInt freqid = fidColOut( 0 ) ; // assume single-IF data
1771      double refpix, refval, increment ;
1772      out->frequencies().getEntry( refpix, refval, increment, freqid ) ;
1773      refval -= choffset * increment ;
1774      uInt newfreqid = out->frequencies().addEntry( refpix, refval, increment ) ;
1775      Vector<uInt> freqids = fidColOut.getColumn() ;
1776      for ( uInt j = 0 ; j < freqids.nelements() ; j++ ) {
1777        if ( freqids[j] == freqid )
1778          freqids[j] = newfreqid ;
1779      }
1780      fidColOut.putColumn( freqids ) ;
1781    }
1782
1783    acc.reset() ;
1784  }
1785
1786  return out ;
1787}
1788
1789
1790CountedPtr< Scantable > STMath::freqSwitch( const CountedPtr< Scantable >& in )
1791{
1792  // make copy or reference
1793  CountedPtr< Scantable > out = getScantable(in, false);
1794  Table& tout = out->table();
1795  Block<String> cols(4);
1796  cols[0] = String("SCANNO");
1797  cols[1] = String("CYCLENO");
1798  cols[2] = String("BEAMNO");
1799  cols[3] = String("POLNO");
1800  TableIterator iter(tout, cols);
1801  while (!iter.pastEnd()) {
1802    Table subt = iter.table();
1803    // this should leave us with two rows for the two IFs....if not ignore
1804    if (subt.nrow() != 2 ) {
1805      continue;
1806    }
1807    ArrayColumn<Float> specCol(subt, "SPECTRA");
1808    ArrayColumn<Float> tsysCol(subt, "TSYS");
1809    ArrayColumn<uChar> flagCol(subt, "FLAGTRA");
1810    Vector<Float> onspec,offspec, ontsys, offtsys;
1811    Vector<uChar> onflag, offflag;
1812    tsysCol.get(0, ontsys);   tsysCol.get(1, offtsys);
1813    specCol.get(0, onspec);   specCol.get(1, offspec);
1814    flagCol.get(0, onflag);   flagCol.get(1, offflag);
1815    MaskedArray<Float> on  = maskedArray(onspec, onflag);
1816    MaskedArray<Float> off = maskedArray(offspec, offflag);
1817    MaskedArray<Float> oncopy = on.copy();
1818
1819    on /= off; on -= 1.0f;
1820    on *= ontsys[0];
1821    off /= oncopy; off -= 1.0f;
1822    off *= offtsys[0];
1823    specCol.put(0, on.getArray());
1824    const Vector<Bool>& m0 = on.getMask();
1825    Vector<uChar> flags0(m0.shape());
1826    convertArray(flags0, !m0);
1827    flagCol.put(0, flags0);
1828
1829    specCol.put(1, off.getArray());
1830    const Vector<Bool>& m1 = off.getMask();
1831    Vector<uChar> flags1(m1.shape());
1832    convertArray(flags1, !m1);
1833    flagCol.put(1, flags1);
1834    ++iter;
1835  }
1836
1837  return out;
1838}
1839
1840std::vector< float > STMath::statistic( const CountedPtr< Scantable > & in,
1841                                        const std::vector< bool > & mask,
1842                                        const std::string& which )
1843{
1844
1845  Vector<Bool> m(mask);
1846  const Table& tab = in->table();
1847  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1848  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1849  std::vector<float> out;
1850  for (uInt i=0; i < tab.nrow(); ++i ) {
1851    Vector<Float> spec; specCol.get(i, spec);
1852    Vector<uChar> flag; flagCol.get(i, flag);
1853    MaskedArray<Float> ma  = maskedArray(spec, flag);
1854    float outstat = 0.0;
1855    if ( spec.nelements() == m.nelements() ) {
1856      outstat = mathutil::statistics(which, ma(m));
1857    } else {
1858      outstat = mathutil::statistics(which, ma);
1859    }
1860    out.push_back(outstat);
1861  }
1862  return out;
1863}
1864
1865std::vector< float > STMath::statisticRow( const CountedPtr< Scantable > & in,
1866                                        const std::vector< bool > & mask,
1867                                        const std::string& which,
1868                                        int row )
1869{
1870
1871  Vector<Bool> m(mask);
1872  const Table& tab = in->table();
1873  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1874  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1875  std::vector<float> out;
1876
1877  Vector<Float> spec; specCol.get(row, spec);
1878  Vector<uChar> flag; flagCol.get(row, flag);
1879  MaskedArray<Float> ma  = maskedArray(spec, flag);
1880  float outstat = 0.0;
1881  if ( spec.nelements() == m.nelements() ) {
1882    outstat = mathutil::statistics(which, ma(m));
1883  } else {
1884    outstat = mathutil::statistics(which, ma);
1885  }
1886  out.push_back(outstat);
1887
1888  return out;
1889}
1890
1891std::vector< int > STMath::minMaxChan( const CountedPtr< Scantable > & in,
1892                                        const std::vector< bool > & mask,
1893                                        const std::string& which )
1894{
1895
1896  Vector<Bool> m(mask);
1897  const Table& tab = in->table();
1898  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1899  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1900  std::vector<int> out;
1901  for (uInt i=0; i < tab.nrow(); ++i ) {
1902    Vector<Float> spec; specCol.get(i, spec);
1903    Vector<uChar> flag; flagCol.get(i, flag);
1904    MaskedArray<Float> ma  = maskedArray(spec, flag);
1905    if (ma.ndim() != 1) {
1906      throw (ArrayError(
1907          "std::vector<int> STMath::minMaxChan("
1908          "ContedPtr<Scantable> &in, std::vector<bool> &mask, "
1909          " std::string &which)"
1910          " - MaskedArray is not 1D"));
1911    }
1912    IPosition outpos(1,0);
1913    if ( spec.nelements() == m.nelements() ) {
1914      outpos = mathutil::minMaxPos(which, ma(m));
1915    } else {
1916      outpos = mathutil::minMaxPos(which, ma);
1917    }
1918    out.push_back(outpos[0]);
1919  }
1920  return out;
1921}
1922
1923CountedPtr< Scantable > STMath::bin( const CountedPtr< Scantable > & in,
1924                                     int width )
1925{
1926  if ( !in->getSelection().empty() ) throw(AipsError("Can't bin subset of the data."));
1927  CountedPtr< Scantable > out = getScantable(in, false);
1928  Table& tout = out->table();
1929  out->frequencies().rescale(width, "BIN");
1930  ArrayColumn<Float> specCol(tout, "SPECTRA");
1931  ArrayColumn<uChar> flagCol(tout, "FLAGTRA");
1932  for (uInt i=0; i < tout.nrow(); ++i ) {
1933    MaskedArray<Float> main  = maskedArray(specCol(i), flagCol(i));
1934    MaskedArray<Float> maout;
1935    LatticeUtilities::bin(maout, main, 0, Int(width));
1936    /// @todo implement channel based tsys binning
1937    specCol.put(i, maout.getArray());
1938    flagCol.put(i, flagsFromMA(maout));
1939    // take only the first binned spectrum's length for the deprecated
1940    // global header item nChan
1941    if (i==0) tout.rwKeywordSet().define(String("nChan"),
1942                                       Int(maout.getArray().nelements()));
1943  }
1944  return out;
1945}
1946
1947CountedPtr< Scantable > STMath::resample( const CountedPtr< Scantable >& in,
1948                                          const std::string& method,
1949                                          float width )
1950//
1951// Should add the possibility of width being specified in km/s. This means
1952// that for each freqID (SpectralCoordinate) we will need to convert to an
1953// average channel width (say at the reference pixel).  Then we would need
1954// to be careful to make sure each spectrum (of different freqID)
1955// is the same length.
1956//
1957{
1958  //InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1959  Int interpMethod(stringToIMethod(method));
1960
1961  CountedPtr< Scantable > out = getScantable(in, false);
1962  Table& tout = out->table();
1963
1964// Resample SpectralCoordinates (one per freqID)
1965  out->frequencies().rescale(width, "RESAMPLE");
1966  TableIterator iter(tout, "IFNO");
1967  TableRow row(tout);
1968  while ( !iter.pastEnd() ) {
1969    Table tab = iter.table();
1970    ArrayColumn<Float> specCol(tab, "SPECTRA");
1971    //ArrayColumn<Float> tsysCol(tout, "TSYS");
1972    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1973    Vector<Float> spec;
1974    Vector<uChar> flag;
1975    specCol.get(0,spec); // the number of channels should be constant per IF
1976    uInt nChanIn = spec.nelements();
1977    Vector<Float> xIn(nChanIn); indgen(xIn);
1978    Int fac =  Int(nChanIn/width);
1979    Vector<Float> xOut(fac+10); // 10 to be safe - resize later
1980    uInt k = 0;
1981    Float x = 0.0;
1982    while (x < Float(nChanIn) ) {
1983      xOut(k) = x;
1984      k++;
1985      x += width;
1986    }
1987    uInt nChanOut = k;
1988    xOut.resize(nChanOut, True);
1989    // process all rows for this IFNO
1990    Vector<Float> specOut;
1991    Vector<Bool> maskOut;
1992    Vector<uChar> flagOut;
1993    for (uInt i=0; i < tab.nrow(); ++i) {
1994      specCol.get(i, spec);
1995      flagCol.get(i, flag);
1996      Vector<Bool> mask(flag.nelements());
1997      convertArray(mask, flag);
1998
1999      IPosition shapeIn(spec.shape());
2000      //sh.nchan = nChanOut;
2001      InterpolateArray1D<Float,Float>::interpolate(specOut, maskOut, xOut,
2002                                                   xIn, spec, mask,
2003                                                   interpMethod, True, True);
2004      /// @todo do the same for channel based Tsys
2005      flagOut.resize(maskOut.nelements());
2006      convertArray(flagOut, maskOut);
2007      specCol.put(i, specOut);
2008      flagCol.put(i, flagOut);
2009    }
2010    ++iter;
2011  }
2012
2013  return out;
2014}
2015
2016STMath::imethod STMath::stringToIMethod(const std::string& in)
2017{
2018  static STMath::imap lookup;
2019
2020  // initialize the lookup table if necessary
2021  if ( lookup.empty() ) {
2022    lookup["nearest"]   = InterpolateArray1D<Double,Float>::nearestNeighbour;
2023    lookup["linear"] = InterpolateArray1D<Double,Float>::linear;
2024    lookup["cubic"]  = InterpolateArray1D<Double,Float>::cubic;
2025    lookup["spline"]  = InterpolateArray1D<Double,Float>::spline;
2026  }
2027
2028  STMath::imap::const_iterator iter = lookup.find(in);
2029
2030  if ( lookup.end() == iter ) {
2031    std::string message = in;
2032    message += " is not a valid interpolation mode";
2033    throw(AipsError(message));
2034  }
2035  return iter->second;
2036}
2037
2038WeightType STMath::stringToWeight(const std::string& in)
2039{
2040  static std::map<std::string, WeightType> lookup;
2041
2042  // initialize the lookup table if necessary
2043  if ( lookup.empty() ) {
2044    lookup["NONE"]   = asap::W_NONE;
2045    lookup["TINT"] = asap::W_TINT;
2046    lookup["TINTSYS"]  = asap::W_TINTSYS;
2047    lookup["TSYS"]  = asap::W_TSYS;
2048    lookup["VAR"]  = asap::W_VAR;
2049  }
2050
2051  std::map<std::string, WeightType>::const_iterator iter = lookup.find(in);
2052
2053  if ( lookup.end() == iter ) {
2054    std::string message = in;
2055    message += " is not a valid weighting mode";
2056    throw(AipsError(message));
2057  }
2058  return iter->second;
2059}
2060
2061CountedPtr< Scantable > STMath::gainElevation( const CountedPtr< Scantable >& in,
2062                                               const vector< float > & coeff,
2063                                               const std::string & filename,
2064                                               const std::string& method)
2065{
2066  // Get elevation data from Scantable and convert to degrees
2067  CountedPtr< Scantable > out = getScantable(in, false);
2068  Table& tab = out->table();
2069  ROScalarColumn<Float> elev(tab, "ELEVATION");
2070  Vector<Float> x = elev.getColumn();
2071  x *= Float(180 / C::pi);                        // Degrees
2072
2073  Vector<Float> coeffs(coeff);
2074  const uInt nc = coeffs.nelements();
2075  if ( filename.length() > 0 && nc > 0 ) {
2076    throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
2077  }
2078
2079  // Correct
2080  if ( nc > 0 || filename.length() == 0 ) {
2081    // Find instrument
2082    Bool throwit = True;
2083    Instrument inst =
2084      STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2085                                throwit);
2086
2087    // Set polynomial
2088    Polynomial<Float>* ppoly = 0;
2089    Vector<Float> coeff;
2090    String msg;
2091    if ( nc > 0 ) {
2092      ppoly = new Polynomial<Float>(nc-1);
2093      coeff = coeffs;
2094      msg = String("user");
2095    } else {
2096      STAttr sdAttr;
2097      coeff = sdAttr.gainElevationPoly(inst);
2098      ppoly = new Polynomial<Float>(coeff.nelements()-1);
2099      msg = String("built in");
2100    }
2101
2102    if ( coeff.nelements() > 0 ) {
2103      ppoly->setCoefficients(coeff);
2104    } else {
2105      delete ppoly;
2106      throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
2107    }
2108    ostringstream oss;
2109    oss << "Making polynomial correction with " << msg << " coefficients:" << endl;
2110    oss << "   " <<  coeff;
2111    pushLog(String(oss));
2112    const uInt nrow = tab.nrow();
2113    Vector<Float> factor(nrow);
2114    for ( uInt i=0; i < nrow; ++i ) {
2115      factor[i] = 1.0 / (*ppoly)(x[i]);
2116    }
2117    delete ppoly;
2118    scaleByVector(tab, factor, true);
2119
2120  } else {
2121    // Read and correct
2122    pushLog("Making correction from ascii Table");
2123    scaleFromAsciiTable(tab, filename, method, x, true);
2124  }
2125  return out;
2126}
2127
2128void STMath::scaleFromAsciiTable(Table& in, const std::string& filename,
2129                                 const std::string& method,
2130                                 const Vector<Float>& xout, bool dotsys)
2131{
2132
2133// Read gain-elevation ascii file data into a Table.
2134
2135  String formatString;
2136  Table tbl = readAsciiTable(formatString, Table::Memory, filename, "", "", False);
2137  scaleFromTable(in, tbl, method, xout, dotsys);
2138}
2139
2140void STMath::scaleFromTable(Table& in,
2141                            const Table& table,
2142                            const std::string& method,
2143                            const Vector<Float>& xout, bool dotsys)
2144{
2145
2146  ROScalarColumn<Float> geElCol(table, "ELEVATION");
2147  ROScalarColumn<Float> geFacCol(table, "FACTOR");
2148  Vector<Float> xin = geElCol.getColumn();
2149  Vector<Float> yin = geFacCol.getColumn();
2150  Vector<Bool> maskin(xin.nelements(),True);
2151
2152  // Interpolate (and extrapolate) with desired method
2153
2154  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2155
2156   Vector<Float> yout;
2157   Vector<Bool> maskout;
2158   InterpolateArray1D<Float,Float>::interpolate(yout, maskout, xout,
2159                                                xin, yin, maskin, interp,
2160                                                True, True);
2161
2162   scaleByVector(in, Float(1.0)/yout, dotsys);
2163}
2164
2165void STMath::scaleByVector( Table& in,
2166                            const Vector< Float >& factor,
2167                            bool dotsys )
2168{
2169  uInt nrow = in.nrow();
2170  if ( factor.nelements() != nrow ) {
2171    throw(AipsError("factors.nelements() != table.nelements()"));
2172  }
2173  ArrayColumn<Float> specCol(in, "SPECTRA");
2174  ArrayColumn<uChar> flagCol(in, "FLAGTRA");
2175  ArrayColumn<Float> tsysCol(in, "TSYS");
2176  for (uInt i=0; i < nrow; ++i) {
2177    MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2178    ma *= factor[i];
2179    specCol.put(i, ma.getArray());
2180    flagCol.put(i, flagsFromMA(ma));
2181    if ( dotsys ) {
2182      Vector<Float> tsys = tsysCol(i);
2183      tsys *= factor[i];
2184      tsysCol.put(i,tsys);
2185    }
2186  }
2187}
2188
2189CountedPtr< Scantable > STMath::convertFlux( const CountedPtr< Scantable >& in,
2190                                             float d, float etaap,
2191                                             float jyperk )
2192{
2193  CountedPtr< Scantable > out = getScantable(in, false);
2194  Table& tab = in->table();
2195  Unit fluxUnit(tab.keywordSet().asString("FluxUnit"));
2196  Unit K(String("K"));
2197  Unit JY(String("Jy"));
2198
2199  bool tokelvin = true;
2200  Double cfac = 1.0;
2201
2202  if ( fluxUnit == JY ) {
2203    pushLog("Converting to K");
2204    Quantum<Double> t(1.0,fluxUnit);
2205    Quantum<Double> t2 = t.get(JY);
2206    cfac = (t2 / t).getValue();               // value to Jy
2207
2208    tokelvin = true;
2209    out->setFluxUnit("K");
2210  } else if ( fluxUnit == K ) {
2211    pushLog("Converting to Jy");
2212    Quantum<Double> t(1.0,fluxUnit);
2213    Quantum<Double> t2 = t.get(K);
2214    cfac = (t2 / t).getValue();              // value to K
2215
2216    tokelvin = false;
2217    out->setFluxUnit("Jy");
2218  } else {
2219    throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
2220  }
2221  // Make sure input values are converted to either Jy or K first...
2222  Float factor = cfac;
2223
2224  // Select method
2225  if (jyperk > 0.0) {
2226    factor *= jyperk;
2227    if ( tokelvin ) factor = 1.0 / jyperk;
2228    ostringstream oss;
2229    oss << "Jy/K = " << jyperk;
2230    pushLog(String(oss));
2231    Vector<Float> factors(tab.nrow(), factor);
2232    scaleByVector(tab,factors, false);
2233  } else if ( etaap > 0.0) {
2234    if (d < 0) {
2235      Instrument inst =
2236        STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2237                                  True);
2238      STAttr sda;
2239      d = sda.diameter(inst);
2240    }
2241    jyperk = STAttr::findJyPerK(etaap, d);
2242    ostringstream oss;
2243    oss << "Jy/K = " << jyperk;
2244    pushLog(String(oss));
2245    factor *= jyperk;
2246    if ( tokelvin ) {
2247      factor = 1.0 / factor;
2248    }
2249    Vector<Float> factors(tab.nrow(), factor);
2250    scaleByVector(tab, factors, False);
2251  } else {
2252
2253    // OK now we must deal with automatic look up of values.
2254    // We must also deal with the fact that the factors need
2255    // to be computed per IF and may be different and may
2256    // change per integration.
2257
2258    pushLog("Looking up conversion factors");
2259    convertBrightnessUnits(out, tokelvin, cfac);
2260  }
2261
2262  return out;
2263}
2264
2265void STMath::convertBrightnessUnits( CountedPtr<Scantable>& in,
2266                                     bool tokelvin, float cfac )
2267{
2268  Table& table = in->table();
2269  Instrument inst =
2270    STAttr::convertInstrument(table.keywordSet().asString("AntennaName"), True);
2271  TableIterator iter(table, "FREQ_ID");
2272  STFrequencies stfreqs = in->frequencies();
2273  STAttr sdAtt;
2274  while (!iter.pastEnd()) {
2275    Table tab = iter.table();
2276    ArrayColumn<Float> specCol(tab, "SPECTRA");
2277    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2278    ROScalarColumn<uInt> freqidCol(tab, "FREQ_ID");
2279    MEpoch::ROScalarColumn timeCol(tab, "TIME");
2280
2281    uInt freqid; freqidCol.get(0, freqid);
2282    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2283    // STAttr.JyPerK has a Vector interface... change sometime.
2284    Vector<Float> freqs(1,stfreqs.getRefFreq(freqid, tmpspec.nelements()));
2285    for ( uInt i=0; i<tab.nrow(); ++i) {
2286      Float jyperk = (sdAtt.JyPerK(inst, timeCol(i), freqs))[0];
2287      Float factor = cfac * jyperk;
2288      if ( tokelvin ) factor = Float(1.0) / factor;
2289      MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2290      ma *= factor;
2291      specCol.put(i, ma.getArray());
2292      flagCol.put(i, flagsFromMA(ma));
2293    }
2294  ++iter;
2295  }
2296}
2297
2298CountedPtr< Scantable > STMath::opacity( const CountedPtr< Scantable > & in,
2299                                         const std::vector<float>& tau )
2300{
2301  CountedPtr< Scantable > out = getScantable(in, false);
2302
2303  Table outtab = out->table();
2304
2305  const Int ntau = uInt(tau.size());
2306  std::vector<float>::const_iterator tauit = tau.begin();
2307  AlwaysAssert((ntau == 1 || ntau == in->nif() || ntau == in->nif() * in->npol()),
2308               AipsError);
2309  TableIterator iiter(outtab, "IFNO");
2310  while ( !iiter.pastEnd() ) {
2311    Table itab = iiter.table();
2312    TableIterator piter(itab, "POLNO");
2313    while ( !piter.pastEnd() ) {
2314      Table tab = piter.table();
2315      ROScalarColumn<Float> elev(tab, "ELEVATION");
2316      ArrayColumn<Float> specCol(tab, "SPECTRA");
2317      ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2318      ArrayColumn<Float> tsysCol(tab, "TSYS");
2319      for ( uInt i=0; i<tab.nrow(); ++i) {
2320        Float zdist = Float(C::pi_2) - elev(i);
2321        Float factor = exp(*tauit/cos(zdist));
2322        MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2323        ma *= factor;
2324        specCol.put(i, ma.getArray());
2325        flagCol.put(i, flagsFromMA(ma));
2326        Vector<Float> tsys;
2327        tsysCol.get(i, tsys);
2328        tsys *= factor;
2329        tsysCol.put(i, tsys);
2330      }
2331      if (ntau == in->nif()*in->npol() ) {
2332        tauit++;
2333      }
2334      piter++;
2335    }
2336    if (ntau >= in->nif() ) {
2337      tauit++;
2338    }
2339    iiter++;
2340  }
2341  return out;
2342}
2343
2344CountedPtr< Scantable > STMath::smoothOther( const CountedPtr< Scantable >& in,
2345                                             const std::string& kernel,
2346                                             float width, int order)
2347{
2348  CountedPtr< Scantable > out = getScantable(in, false);
2349  Table table = out->table();
2350
2351  TableIterator iter(table, "IFNO");
2352  while (!iter.pastEnd()) {
2353    Table tab = iter.table();
2354    ArrayColumn<Float> specCol(tab, "SPECTRA");
2355    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2356    Vector<Float> spec;
2357    Vector<uChar> flag;
2358    for (uInt i = 0; i < tab.nrow(); ++i) {
2359      specCol.get(i, spec);
2360      flagCol.get(i, flag);
2361      Vector<Bool> mask(flag.nelements());
2362      convertArray(mask, flag);
2363      Vector<Float> specout;
2364      Vector<Bool> maskout;
2365      if (kernel == "hanning") {
2366        mathutil::hanning(specout, maskout, spec, !mask);
2367        convertArray(flag, !maskout);
2368      } else if (kernel == "rmedian") {
2369        mathutil::runningMedian(specout, maskout, spec , mask, width);
2370        convertArray(flag, maskout);
2371      } else if (kernel == "poly") {
2372        mathutil::polyfit(specout, maskout, spec, !mask, width, order);
2373        convertArray(flag, !maskout);
2374      }
2375
2376      for (uInt j = 0; j < flag.nelements(); ++j) {
2377        uChar userFlag = 1 << 7;
2378        if (maskout[j]==True) userFlag = 0 << 7;
2379        flag(j) = userFlag;
2380      }
2381
2382      flagCol.put(i, flag);
2383      specCol.put(i, specout);
2384    }
2385  ++iter;
2386  }
2387  return out;
2388}
2389
2390CountedPtr< Scantable > STMath::smooth( const CountedPtr< Scantable >& in,
2391                                        const std::string& kernel, float width,
2392                                        int order)
2393{
2394  if (kernel == "rmedian"  || kernel == "hanning" || kernel == "poly") {
2395    return smoothOther(in, kernel, width, order);
2396  }
2397  CountedPtr< Scantable > out = getScantable(in, false);
2398  Table& table = out->table();
2399  VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernel);
2400  // same IFNO should have same no of channels
2401  // this saves overhead
2402  TableIterator iter(table, "IFNO");
2403  while (!iter.pastEnd()) {
2404    Table tab = iter.table();
2405    ArrayColumn<Float> specCol(tab, "SPECTRA");
2406    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2407    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2408    uInt nchan = tmpspec.nelements();
2409    Vector<Float> kvec = VectorKernel::make(type, width, nchan, True, False);
2410    Convolver<Float> conv(kvec, IPosition(1,nchan));
2411    Vector<Float> spec;
2412    Vector<uChar> flag;
2413    for ( uInt i=0; i<tab.nrow(); ++i) {
2414      specCol.get(i, spec);
2415      flagCol.get(i, flag);
2416      Vector<Bool> mask(flag.nelements());
2417      convertArray(mask, flag);
2418      Vector<Float> specout;
2419      mathutil::replaceMaskByZero(specout, mask);
2420      conv.linearConv(specout, spec);
2421      specCol.put(i, specout);
2422    }
2423    ++iter;
2424  }
2425  return out;
2426}
2427
2428CountedPtr< Scantable >
2429  STMath::merge( const std::vector< CountedPtr < Scantable > >& in )
2430{
2431  if ( in.size() < 2 ) {
2432    throw(AipsError("Need at least two scantables to perform a merge."));
2433  }
2434  std::vector<CountedPtr < Scantable > >::const_iterator it = in.begin();
2435  bool insitu = insitu_;
2436  setInsitu(false);
2437  CountedPtr< Scantable > out = getScantable(*it, false);
2438  setInsitu(insitu);
2439  Table& tout = out->table();
2440  ScalarColumn<uInt> freqidcol(tout,"FREQ_ID"), molidcol(tout, "MOLECULE_ID");
2441  ScalarColumn<uInt> scannocol(tout,"SCANNO"), focusidcol(tout,"FOCUS_ID");
2442  // Renumber SCANNO to be 0-based
2443  Vector<uInt> scannos = scannocol.getColumn();
2444  uInt offset = min(scannos);
2445  scannos -= offset;
2446  scannocol.putColumn(scannos);
2447  uInt newscanno = max(scannos)+1;
2448  ++it;
2449  while ( it != in.end() ){
2450    if ( ! (*it)->conformant(*out) ) {
2451      // non conformant.
2452      //pushLog(String("Warning: Can't merge scantables as header info differs."));
2453      LogIO os( LogOrigin( "STMath", "merge()", WHERE ) ) ;
2454      os << LogIO::SEVERE << "Can't merge scantables as header informations (any one of AntennaName, Equinox, and FluxUnit) differ." << LogIO::EXCEPTION ;
2455    }
2456    out->appendToHistoryTable((*it)->history());
2457    const Table& tab = (*it)->table();
2458
2459    Block<String> cols(3);
2460    cols[0] = String("FREQ_ID");
2461    cols[1] = String("MOLECULE_ID");
2462    cols[2] = String("FOCUS_ID");
2463
2464    TableIterator scanit(tab, "SCANNO");
2465    while (!scanit.pastEnd()) {
2466      ScalarColumn<uInt> thescannocol(scanit.table(),"SCANNO");
2467      Vector<uInt> thescannos(thescannocol.nrow(),newscanno);
2468      thescannocol.putColumn(thescannos);
2469      TableIterator subit(scanit.table(), cols);
2470      while ( !subit.pastEnd() ) {
2471        uInt nrow = tout.nrow();
2472        Table thetab = subit.table();
2473        ROTableRow row(thetab);
2474        Vector<uInt> thecolvals(thetab.nrow());
2475        ScalarColumn<uInt> thefreqidcol(thetab,"FREQ_ID");
2476        ScalarColumn<uInt> themolidcol(thetab, "MOLECULE_ID");
2477        ScalarColumn<uInt> thefocusidcol(thetab,"FOCUS_ID");
2478        // The selected subset of table should have
2479        // the equal FREQ_ID, MOLECULE_ID, and FOCUS_ID values.
2480        const TableRecord& rec = row.get(0);
2481        // Set the proper FREQ_ID
2482        Double rv,rp,inc;
2483        (*it)->frequencies().getEntry(rp, rv, inc, rec.asuInt("FREQ_ID"));
2484        uInt id;
2485        id = out->frequencies().addEntry(rp, rv, inc);
2486        thecolvals = id;
2487        thefreqidcol.putColumn(thecolvals);
2488        // Set the proper MOLECULE_ID
2489        Vector<String> name,fname;Vector<Double> rf;
2490        (*it)->molecules().getEntry(rf, name, fname, rec.asuInt("MOLECULE_ID"));
2491        id = out->molecules().addEntry(rf, name, fname);
2492        thecolvals = id;
2493        themolidcol.putColumn(thecolvals);
2494        // Set the proper FOCUS_ID
2495        Float fpa,frot,fax,ftan,fhand,fmount,fuser, fxy, fxyp;
2496        (*it)->focus().getEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2497                                fxy, fxyp, rec.asuInt("FOCUS_ID"));
2498        id = out->focus().addEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2499                                   fxy, fxyp);
2500        thecolvals = id;
2501        thefocusidcol.putColumn(thecolvals);
2502
2503        tout.addRow(thetab.nrow());
2504        TableCopy::copyRows(tout, thetab, nrow, 0, thetab.nrow());
2505
2506        ++subit;
2507      }
2508      ++newscanno;
2509      ++scanit;
2510    }
2511    ++it;
2512  }
2513  return out;
2514}
2515
2516CountedPtr< Scantable >
2517  STMath::invertPhase( const CountedPtr < Scantable >& in )
2518{
2519  return applyToPol(in, &STPol::invertPhase, Float(0.0));
2520}
2521
2522CountedPtr< Scantable >
2523  STMath::rotateXYPhase( const CountedPtr < Scantable >& in, float phase )
2524{
2525   return applyToPol(in, &STPol::rotatePhase, Float(phase));
2526}
2527
2528CountedPtr< Scantable >
2529  STMath::rotateLinPolPhase( const CountedPtr < Scantable >& in, float phase )
2530{
2531  return applyToPol(in, &STPol::rotateLinPolPhase, Float(phase));
2532}
2533
2534CountedPtr< Scantable > STMath::applyToPol( const CountedPtr<Scantable>& in,
2535                                             STPol::polOperation fptr,
2536                                             Float phase )
2537{
2538  CountedPtr< Scantable > out = getScantable(in, false);
2539  Table& tout = out->table();
2540  Block<String> cols(4);
2541  cols[0] = String("SCANNO");
2542  cols[1] = String("BEAMNO");
2543  cols[2] = String("IFNO");
2544  cols[3] = String("CYCLENO");
2545  TableIterator iter(tout, cols);
2546  CountedPtr<STPol> stpol = STPol::getPolClass(out->factories_,
2547                                               out->getPolType() );
2548  while (!iter.pastEnd()) {
2549    Table t = iter.table();
2550    ArrayColumn<Float> speccol(t, "SPECTRA");
2551    ScalarColumn<uInt> focidcol(t, "FOCUS_ID");
2552    Matrix<Float> pols(speccol.getColumn());
2553    try {
2554      stpol->setSpectra(pols);
2555      Float fang,fhand;
2556      fang = in->focusTable_.getTotalAngle(focidcol(0));
2557      fhand = in->focusTable_.getFeedHand(focidcol(0));
2558      stpol->setPhaseCorrections(fang, fhand);
2559      // use a member function pointer in STPol.  This only works on
2560      // the STPol pointer itself, not the Counted Pointer so
2561      // derefernce it.
2562      (&(*(stpol))->*fptr)(phase);
2563      speccol.putColumn(stpol->getSpectra());
2564    } catch (AipsError& e) {
2565      //delete stpol;stpol=0;
2566      throw(e);
2567    }
2568    ++iter;
2569  }
2570  //delete stpol;stpol=0;
2571  return out;
2572}
2573
2574CountedPtr< Scantable >
2575  STMath::swapPolarisations( const CountedPtr< Scantable > & in )
2576{
2577  CountedPtr< Scantable > out = getScantable(in, false);
2578  Table& tout = out->table();
2579  Table t0 = tout(tout.col("POLNO") == 0);
2580  Table t1 = tout(tout.col("POLNO") == 1);
2581  if ( t0.nrow() != t1.nrow() )
2582    throw(AipsError("Inconsistent number of polarisations"));
2583  ArrayColumn<Float> speccol0(t0, "SPECTRA");
2584  ArrayColumn<uChar> flagcol0(t0, "FLAGTRA");
2585  ArrayColumn<Float> speccol1(t1, "SPECTRA");
2586  ArrayColumn<uChar> flagcol1(t1, "FLAGTRA");
2587  Matrix<Float> s0 = speccol0.getColumn();
2588  Matrix<uChar> f0 = flagcol0.getColumn();
2589  speccol0.putColumn(speccol1.getColumn());
2590  flagcol0.putColumn(flagcol1.getColumn());
2591  speccol1.putColumn(s0);
2592  flagcol1.putColumn(f0);
2593  return out;
2594}
2595
2596CountedPtr< Scantable >
2597  STMath::averagePolarisations( const CountedPtr< Scantable > & in,
2598                                const std::vector<bool>& mask,
2599                                const std::string& weight )
2600{
2601  if (in->npol() < 2 )
2602    throw(AipsError("averagePolarisations can only be applied to two or more"
2603                    "polarisations"));
2604  bool insitu = insitu_;
2605  setInsitu(false);
2606  CountedPtr< Scantable > pols = getScantable(in, true);
2607  setInsitu(insitu);
2608  Table& tout = pols->table();
2609  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
2610  Table tab = tableCommand(taql, in->table());
2611  if (tab.nrow() == 0 )
2612    throw(AipsError("Could not find  any rows with POLNO==0 and POLNO==1"));
2613  TableCopy::copyRows(tout, tab);
2614  TableVector<uInt> vec(tout, "POLNO");
2615  vec = 0;
2616  pols->table_.rwKeywordSet().define("nPol", Int(1));
2617  pols->table_.rwKeywordSet().define("POLTYPE", String("stokes"));
2618  //pols->table_.rwKeywordSet().define("POLTYPE", in->getPolType());
2619  std::vector<CountedPtr<Scantable> > vpols;
2620  vpols.push_back(pols);
2621  CountedPtr< Scantable > out = average(vpols, mask, weight, "SCAN");
2622  return out;
2623}
2624
2625CountedPtr< Scantable >
2626  STMath::averageBeams( const CountedPtr< Scantable > & in,
2627                        const std::vector<bool>& mask,
2628                        const std::string& weight )
2629{
2630  bool insitu = insitu_;
2631  setInsitu(false);
2632  CountedPtr< Scantable > beams = getScantable(in, false);
2633  setInsitu(insitu);
2634  Table& tout = beams->table();
2635  // give all rows the same BEAMNO
2636  TableVector<uInt> vec(tout, "BEAMNO");
2637  vec = 0;
2638  beams->table_.rwKeywordSet().define("nBeam", Int(1));
2639  std::vector<CountedPtr<Scantable> > vbeams;
2640  vbeams.push_back(beams);
2641  CountedPtr< Scantable > out = average(vbeams, mask, weight, "SCAN");
2642  return out;
2643}
2644
2645
2646CountedPtr< Scantable >
2647  asap::STMath::frequencyAlign( const CountedPtr< Scantable > & in,
2648                                const std::string & refTime,
2649                                const std::string & method)
2650{
2651  // clone as this is not working insitu
2652  bool insitu = insitu_;
2653  setInsitu(false);
2654  CountedPtr< Scantable > out = getScantable(in, false);
2655  setInsitu(insitu);
2656  Table& tout = out->table();
2657  // Get reference Epoch to time of first row or given String
2658  Unit DAY(String("d"));
2659  MEpoch::Ref epochRef(in->getTimeReference());
2660  MEpoch refEpoch;
2661  if (refTime.length()>0) {
2662    Quantum<Double> qt;
2663    if (MVTime::read(qt,refTime)) {
2664      MVEpoch mv(qt);
2665      refEpoch = MEpoch(mv, epochRef);
2666   } else {
2667      throw(AipsError("Invalid format for Epoch string"));
2668   }
2669  } else {
2670    refEpoch = in->timeCol_(0);
2671  }
2672  MPosition refPos = in->getAntennaPosition();
2673
2674  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2675  /*
2676  // Comment from MV.
2677  // the following code has been commented out because different FREQ_IDs have to be aligned together even
2678  // if the frame doesn't change. So far, lack of this check didn't cause any problems.
2679  // test if user frame is different to base frame
2680  if ( in->frequencies().getFrameString(true)
2681       == in->frequencies().getFrameString(false) ) {
2682    throw(AipsError("Can't convert as no output frame has been set"
2683                    " (use set_freqframe) or it is aligned already."));
2684  }
2685  */
2686  MFrequency::Types system = in->frequencies().getFrame();
2687  MVTime mvt(refEpoch.getValue());
2688  String epochout = mvt.string(MVTime::YMD) + String(" (") + refEpoch.getRefString() + String(")");
2689  ostringstream oss;
2690  oss << "Aligned at reference Epoch " << epochout
2691      << " in frame " << MFrequency::showType(system);
2692  pushLog(String(oss));
2693  // set up the iterator
2694  Block<String> cols(4);
2695  // select by constant direction
2696  cols[0] = String("SRCNAME");
2697  cols[1] = String("BEAMNO");
2698  // select by IF ( no of channels varies over this )
2699  cols[2] = String("IFNO");
2700  // select by restfrequency
2701  cols[3] = String("MOLECULE_ID");
2702  TableIterator iter(tout, cols);
2703  while ( !iter.pastEnd() ) {
2704    Table t = iter.table();
2705    MDirection::ROScalarColumn dirCol(t, "DIRECTION");
2706    TableIterator fiter(t, "FREQ_ID");
2707    // determine nchan from the first row. This should work as
2708    // we are iterating over BEAMNO and IFNO    // we should have constant direction
2709
2710    ROArrayColumn<Float> sCol(t, "SPECTRA");
2711    const MDirection direction = dirCol(0);
2712    const uInt nchan = sCol(0).nelements();
2713
2714    // skip operations if there is nothing to align
2715    if (fiter.pastEnd()) {
2716        continue;
2717    }
2718
2719    Table ftab = fiter.table();
2720    // align all frequency ids with respect to the first encountered id
2721    ScalarColumn<uInt> freqidCol(ftab, "FREQ_ID");
2722    // get the SpectralCoordinate for the freqid, which we are iterating over
2723    SpectralCoordinate sC = in->frequencies().getSpectralCoordinate(freqidCol(0));
2724    FrequencyAligner<Float> fa( sC, nchan, refEpoch,
2725                                direction, refPos, system );
2726    // realign the SpectralCoordinate and put into the output Scantable
2727    Vector<String> units(1);
2728    units = String("Hz");
2729    Bool linear=True;
2730    SpectralCoordinate sc2 = fa.alignedSpectralCoordinate(linear);
2731    sc2.setWorldAxisUnits(units);
2732    const uInt id = out->frequencies().addEntry(sc2.referencePixel()[0],
2733                                                sc2.referenceValue()[0],
2734                                                sc2.increment()[0]);
2735    while ( !fiter.pastEnd() ) {
2736      ftab = fiter.table();
2737      // spectral coordinate for the current FREQ_ID
2738      ScalarColumn<uInt> freqidCol2(ftab, "FREQ_ID");
2739      sC = in->frequencies().getSpectralCoordinate(freqidCol2(0));
2740      // create the "global" abcissa for alignment with same FREQ_ID
2741      Vector<Double> abc(nchan);
2742      for (uInt i=0; i<nchan; i++) {
2743           Double w;
2744           sC.toWorld(w,Double(i));
2745           abc[i] = w;
2746      }
2747      TableVector<uInt> tvec(ftab, "FREQ_ID");
2748      // assign new frequency id to all rows
2749      tvec = id;
2750      // cache abcissa for same time stamps, so iterate over those
2751      TableIterator timeiter(ftab, "TIME");
2752      while ( !timeiter.pastEnd() ) {
2753        Table tab = timeiter.table();
2754        ArrayColumn<Float> specCol(tab, "SPECTRA");
2755        ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2756        MEpoch::ROScalarColumn timeCol(tab, "TIME");
2757        // use align abcissa cache after the first row
2758        // these rows should be just be POLNO
2759        bool first = true;
2760        for (int i=0; i<int(tab.nrow()); ++i) {
2761          // input values
2762          Vector<uChar> flag = flagCol(i);
2763          Vector<Bool> mask(flag.shape());
2764          Vector<Float> specOut, spec;
2765          spec  = specCol(i);
2766          Vector<Bool> maskOut;Vector<uChar> flagOut;
2767          convertArray(mask, flag);
2768          // alignment
2769          Bool ok = fa.align(specOut, maskOut, abc, spec,
2770                             mask, timeCol(i), !first,
2771                             interp, False);
2772          (void) ok; // unused stop compiler nagging     
2773          // back into scantable
2774          flagOut.resize(maskOut.nelements());
2775          convertArray(flagOut, maskOut);
2776          flagCol.put(i, flagOut);
2777          specCol.put(i, specOut);
2778          // start abcissa caching
2779          first = false;
2780        }
2781        // next timestamp
2782        ++timeiter;
2783      }
2784      // next FREQ_ID
2785      ++fiter;
2786    }
2787    // next aligner
2788    ++iter;
2789  }
2790  // set this afterwards to ensure we are doing insitu correctly.
2791  out->frequencies().setFrame(system, true);
2792  return out;
2793}
2794
2795CountedPtr<Scantable>
2796  asap::STMath::convertPolarisation( const CountedPtr<Scantable>& in,
2797                                     const std::string & newtype )
2798{
2799  if (in->npol() != 2 && in->npol() != 4)
2800    throw(AipsError("Can only convert two or four polarisations."));
2801  if ( in->getPolType() == newtype )
2802    throw(AipsError("No need to convert."));
2803  if ( ! in->selector_.empty() )
2804    throw(AipsError("Can only convert whole scantable. Unset the selection."));
2805  bool insitu = insitu_;
2806  setInsitu(false);
2807  CountedPtr< Scantable > out = getScantable(in, true);
2808  setInsitu(insitu);
2809  Table& tout = out->table();
2810  tout.rwKeywordSet().define("POLTYPE", String(newtype));
2811
2812  Block<String> cols(4);
2813  cols[0] = "SCANNO";
2814  cols[1] = "CYCLENO";
2815  cols[2] = "BEAMNO";
2816  cols[3] = "IFNO";
2817  TableIterator it(in->originalTable_, cols);
2818  String basetype = in->getPolType();
2819  STPol* stpol = STPol::getPolClass(in->factories_, basetype);
2820  try {
2821    while ( !it.pastEnd() ) {
2822      Table tab = it.table();
2823      uInt row = tab.rowNumbers()[0];
2824      stpol->setSpectra(in->getPolMatrix(row));
2825      Float fang,fhand;
2826      fang = in->focusTable_.getTotalAngle(in->mfocusidCol_(row));
2827      fhand = in->focusTable_.getFeedHand(in->mfocusidCol_(row));
2828      stpol->setPhaseCorrections(fang, fhand);
2829      Int npolout = 0;
2830      for (uInt i=0; i<tab.nrow(); ++i) {
2831        Vector<Float> outvec = stpol->getSpectrum(i, newtype);
2832        if ( outvec.nelements() > 0 ) {
2833          tout.addRow();
2834          TableCopy::copyRows(tout, tab, tout.nrow()-1, 0, 1);
2835          ArrayColumn<Float> sCol(tout,"SPECTRA");
2836          ScalarColumn<uInt> pCol(tout,"POLNO");
2837          sCol.put(tout.nrow()-1 ,outvec);
2838          pCol.put(tout.nrow()-1 ,uInt(npolout));
2839          npolout++;
2840       }
2841      }
2842      tout.rwKeywordSet().define("nPol", npolout);
2843      ++it;
2844    }
2845  } catch (AipsError& e) {
2846    delete stpol;
2847    throw(e);
2848  }
2849  delete stpol;
2850  return out;
2851}
2852
2853CountedPtr< Scantable >
2854  asap::STMath::mxExtract( const CountedPtr< Scantable > & in,
2855                           const std::string & scantype )
2856{
2857  bool insitu = insitu_;
2858  setInsitu(false);
2859  CountedPtr< Scantable > out = getScantable(in, true);
2860  setInsitu(insitu);
2861  Table& tout = out->table();
2862  std::string taql = "SELECT FROM $1 WHERE BEAMNO != REFBEAMNO";
2863  if (scantype == "on") {
2864    taql = "SELECT FROM $1 WHERE BEAMNO == REFBEAMNO";
2865  }
2866  Table tab = tableCommand(taql, in->table());
2867  TableCopy::copyRows(tout, tab);
2868  if (scantype == "on") {
2869    // re-index SCANNO to 0
2870    TableVector<uInt> vec(tout, "SCANNO");
2871    vec = 0;
2872  }
2873  return out;
2874}
2875
2876std::vector<float>
2877  asap::STMath::fft( const casa::CountedPtr< Scantable > & in,
2878                     const std::vector<int>& whichrow,
2879                     bool getRealImag )
2880{
2881  std::vector<float> res;
2882  Table tab = in->table();
2883  std::vector<bool> mask;
2884
2885  if (whichrow.size() < 1) {          // for all rows (by default)
2886    int nrow = int(tab.nrow());
2887    for (int i = 0; i < nrow; ++i) {
2888      res = in->execFFT(i, mask, getRealImag);
2889    }
2890  } else {                           // for specified rows
2891    for (uInt i = 0; i < whichrow.size(); ++i) {
2892      res = in->execFFT(i, mask, getRealImag);
2893    }
2894  }
2895
2896  return res;
2897}
2898
2899
2900CountedPtr<Scantable>
2901  asap::STMath::lagFlag( const CountedPtr<Scantable>& in,
2902                         double start, double end,
2903                         const std::string& mode )
2904{
2905  CountedPtr<Scantable> out = getScantable(in, false);
2906  Table& tout = out->table();
2907  TableIterator iter(tout, "FREQ_ID");
2908  FFTServer<Float,Complex> ffts;
2909
2910  while ( !iter.pastEnd() ) {
2911    Table tab = iter.table();
2912    Double rp,rv,inc;
2913    ROTableRow row(tab);
2914    const TableRecord& rec = row.get(0);
2915    uInt freqid = rec.asuInt("FREQ_ID");
2916    out->frequencies().getEntry(rp, rv, inc, freqid);
2917    ArrayColumn<Float> specCol(tab, "SPECTRA");
2918    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2919
2920    for (int i=0; i<int(tab.nrow()); ++i) {
2921      Vector<Float> spec = specCol(i);
2922      Vector<uChar> flag = flagCol(i);
2923      std::vector<bool> mask;
2924      for (uInt j = 0; j < flag.nelements(); ++j) {
2925        mask.push_back(!(flag[j]>0));
2926      }
2927      mathutil::doZeroOrderInterpolation(spec, mask);
2928
2929      Vector<Complex> lags;
2930      ffts.fft0(lags, spec);
2931
2932      Int lag0(start+0.5);
2933      Int lag1(end+0.5);
2934      if (mode == "frequency") {
2935        lag0 = Int(spec.nelements()*abs(inc)/(start)+0.5);
2936        lag1 = Int(spec.nelements()*abs(inc)/(end)+0.5);
2937      }
2938      Int lstart =  max(0, lag0);
2939      Int lend   =  min(Int(lags.nelements()-1), lag1);
2940      if (lstart == lend) {
2941        lags[lstart] = Complex(0.0);
2942      } else {
2943        if (lstart > lend) {
2944          Int tmp = lend;
2945          lend = lstart;
2946          lstart = tmp;
2947        }
2948        for (int j=lstart; j <=lend ;++j) {
2949          lags[j] = Complex(0.0);
2950        }
2951      }
2952
2953      ffts.fft0(spec, lags);
2954
2955      specCol.put(i, spec);
2956    }
2957    ++iter;
2958  }
2959  return out;
2960}
2961
2962// Averaging spectra with different channel/resolution
2963CountedPtr<Scantable>
2964STMath::new_average( const std::vector<CountedPtr<Scantable> >& in,
2965                     const bool& compel,
2966                     const std::vector<bool>& mask,
2967                     const std::string& weight,
2968                     const std::string& avmode )
2969  throw ( casa::AipsError )
2970{
2971  LogIO os( LogOrigin( "STMath", "new_average()", WHERE ) ) ;
2972  if ( avmode == "SCAN" && in.size() != 1 )
2973    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
2974                    "Use merge first."));
2975 
2976  // 2012/02/17 TN
2977  // Since STGrid is implemented, average doesn't consider direction
2978  // when accumulating
2979  // check if OTF observation
2980//   String obstype = in[0]->getHeader().obstype ;
2981//   Double tol = 0.0 ;
2982//   if ( obstype.find( "OTF" ) != String::npos ) {
2983//     tol = TOL_OTF ;
2984//   }
2985//   else {
2986//     tol = TOL_POINT ;
2987//   }
2988
2989  CountedPtr<Scantable> out ;     // processed result
2990  if ( compel ) {
2991    std::vector< CountedPtr<Scantable> > newin ; // input for average process
2992    uInt insize = in.size() ;    // number of input scantables
2993
2994    // TEST: do normal average in each table before IF grouping
2995    os << "Do preliminary averaging" << LogIO::POST ;
2996    vector< CountedPtr<Scantable> > tmpin( insize ) ;
2997    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2998      vector< CountedPtr<Scantable> > v( 1, in[itable] ) ;
2999      tmpin[itable] = average( v, mask, weight, avmode ) ;
3000    }
3001
3002    // warning
3003    os << "Average spectra with different spectral resolution" << LogIO::POST ;
3004
3005    // temporarily set coordinfo
3006    vector<string> oldinfo( insize ) ;
3007    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3008      vector<string> coordinfo = in[itable]->getCoordInfo() ;
3009      oldinfo[itable] = coordinfo[0] ;
3010      coordinfo[0] = "Hz" ;
3011      tmpin[itable]->setCoordInfo( coordinfo ) ;
3012    }
3013
3014    // columns
3015    ScalarColumn<uInt> freqIDCol ;
3016    ScalarColumn<uInt> ifnoCol ;
3017    ScalarColumn<uInt> scannoCol ;
3018
3019
3020    // check IF frequency coverage
3021    // freqid: list of FREQ_ID, which is used, in each table 
3022    // iffreq: list of minimum and maximum frequency for each FREQ_ID in
3023    //         each table
3024    // freqid[insize][numIF]
3025    // freqid: [[id00, id01, ...],
3026    //          [id10, id11, ...],
3027    //          ...
3028    //          [idn0, idn1, ...]]
3029    // iffreq[insize][numIF*2]
3030    // iffreq: [[min_id00, max_id00, min_id01, max_id01, ...],
3031    //          [min_id10, max_id10, min_id11, max_id11, ...],
3032    //          ...
3033    //          [min_idn0, max_idn0, min_idn1, max_idn1, ...]]
3034    //os << "Check IF settings in each table" << LogIO::POST ;
3035    vector< vector<uInt> > freqid( insize );
3036    vector< vector<double> > iffreq( insize ) ;
3037    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3038      uInt rows = tmpin[itable]->nrow() ;
3039      uInt freqnrows = tmpin[itable]->frequencies().table().nrow() ;
3040      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3041        if ( freqid[itable].size() == freqnrows ) {
3042          break ;
3043        }
3044        else {
3045          freqIDCol.attach( tmpin[itable]->table(), "FREQ_ID" ) ;
3046          ifnoCol.attach( tmpin[itable]->table(), "IFNO" ) ;
3047          uInt id = freqIDCol( irow ) ;
3048          if ( freqid[itable].size() == 0 || count( freqid[itable].begin(), freqid[itable].end(), id ) == 0 ) {
3049            //os << "itable = " << itable << ": IF " << id << " is included in the list" << LogIO::POST ;
3050            vector<double> abcissa = tmpin[itable]->getAbcissa( irow ) ;
3051            freqid[itable].push_back( id ) ;
3052            iffreq[itable].push_back( abcissa[0] - 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
3053            iffreq[itable].push_back( abcissa[abcissa.size()-1] + 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
3054          }
3055        }
3056      }
3057    }
3058
3059    // debug
3060    //os << "IF settings summary:" << endl ;
3061    //for ( uInt i = 0 ; i < freqid.size() ; i++ ) {
3062    //os << "   Table" << i << endl ;
3063    //for ( uInt j = 0 ; j < freqid[i].size() ; j++ ) {
3064    //os << "      id = " << freqid[i][j] << " (min,max) = (" << iffreq[i][2*j] << "," << iffreq[i][2*j+1] << ")" << endl ;
3065    //}
3066    //}
3067    //os << endl ;
3068    //os.post() ;
3069
3070    // IF grouping based on their frequency coverage
3071    // ifgrp: list of table index and FREQ_ID for all members in each IF group
3072    // ifgfreq: list of minimum and maximum frequency in each IF group
3073    // ifgrp[numgrp][nummember*2]
3074    // ifgrp: [[table00, freqrow00, table01, freqrow01, ...],
3075    //         [table10, freqrow10, table11, freqrow11, ...],
3076    //         ...
3077    //         [tablen0, freqrown0, tablen1, freqrown1, ...]]
3078    // ifgfreq[numgrp*2]
3079    // ifgfreq: [min0_grp0, max0_grp0, min1_grp1, max1_grp1, ...]
3080    //os << "IF grouping based on their frequency coverage" << LogIO::POST ;
3081    vector< vector<uInt> > ifgrp ;
3082    vector<double> ifgfreq ;
3083
3084    // parameter for IF grouping
3085    // groupmode = OR    retrieve all region
3086    //             AND   only retrieve overlaped region
3087    //string groupmode = "AND" ;
3088    string groupmode = "OR" ;
3089    uInt sizecr = 0 ;
3090    if ( groupmode == "AND" )
3091      sizecr = 2 ;
3092    else if ( groupmode == "OR" )
3093      sizecr = 0 ;
3094
3095    vector<double> sortedfreq ;
3096    for ( uInt i = 0 ; i < iffreq.size() ; i++ ) {
3097      for ( uInt j = 0 ; j < iffreq[i].size() ; j++ ) {
3098        if ( count( sortedfreq.begin(), sortedfreq.end(), iffreq[i][j] ) == 0 )
3099          sortedfreq.push_back( iffreq[i][j] ) ;
3100      }
3101    }
3102    sort( sortedfreq.begin(), sortedfreq.end() ) ;
3103    for ( vector<double>::iterator i = sortedfreq.begin() ; i != sortedfreq.end()-1 ; i++ ) {
3104      ifgfreq.push_back( *i ) ;
3105      ifgfreq.push_back( *(i+1) ) ;
3106    }
3107    ifgrp.resize( ifgfreq.size()/2 ) ;
3108    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3109      for ( uInt iif = 0 ; iif < freqid[itable].size() ; iif++ ) {
3110        double range0 = iffreq[itable][2*iif] ;
3111        double range1 = iffreq[itable][2*iif+1] ;
3112        for ( uInt j = 0 ; j < ifgrp.size() ; j++ ) {
3113          double fmin = max( range0, ifgfreq[2*j] ) ;
3114          double fmax = min( range1, ifgfreq[2*j+1] ) ;
3115          if ( fmin < fmax ) {
3116            ifgrp[j].push_back( itable ) ;
3117            ifgrp[j].push_back( freqid[itable][iif] ) ;
3118          }
3119        }
3120      }
3121    }
3122    vector< vector<uInt> >::iterator fiter = ifgrp.begin() ;
3123    vector<double>::iterator giter = ifgfreq.begin() ;
3124    while( fiter != ifgrp.end() ) {
3125      if ( fiter->size() <= sizecr ) {
3126        fiter = ifgrp.erase( fiter ) ;
3127        giter = ifgfreq.erase( giter ) ;
3128        giter = ifgfreq.erase( giter ) ;
3129      }
3130      else {
3131        fiter++ ;
3132        advance( giter, 2 ) ;
3133      }
3134    }
3135
3136    // Grouping continuous IF groups (without frequency gap)
3137    // freqgrp: list of IF group indexes in each frequency group
3138    // freqrange: list of minimum and maximum frequency in each frequency group
3139    // freqgrp[numgrp][nummember]
3140    // freqgrp: [[ifgrp00, ifgrp01, ifgrp02, ...],
3141    //           [ifgrp10, ifgrp11, ifgrp12, ...],
3142    //           ...
3143    //           [ifgrpn0, ifgrpn1, ifgrpn2, ...]]
3144    // freqrange[numgrp*2]
3145    // freqrange: [min_grp0, max_grp0, min_grp1, max_grp1, ...]
3146    vector< vector<uInt> > freqgrp ;
3147    double freqrange = 0.0 ;
3148    uInt grpnum = 0 ;
3149    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3150      // Assumed that ifgfreq was sorted
3151      if ( grpnum != 0 && freqrange == ifgfreq[2*i] ) {
3152        freqgrp[grpnum-1].push_back( i ) ;
3153      }
3154      else {
3155        vector<uInt> grp0( 1, i ) ;
3156        freqgrp.push_back( grp0 ) ;
3157        grpnum++ ;
3158      }
3159      freqrange = ifgfreq[2*i+1] ;
3160    }
3161       
3162
3163    // print IF groups
3164    ostringstream oss ;
3165    oss << "IF Group summary: " << endl ;
3166    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3167    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3168      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3169      for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3170        oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3171      }
3172      oss << endl ;
3173    }
3174    oss << endl ;
3175    os << oss.str() << LogIO::POST ;
3176   
3177    // print frequency group
3178    oss.str("") ;
3179    oss << "Frequency Group summary: " << endl ;
3180    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: IF_GROUP_ID" << endl ;
3181    for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3182      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*freqgrp[i][0]] << "," << ifgfreq[2*freqgrp[i][freqgrp[i].size()-1]+1] << "]: " ;
3183      for ( uInt j = 0 ; j < freqgrp[i].size() ; j++ ) {
3184        oss << freqgrp[i][j] << " " ;
3185      }
3186      oss << endl ;
3187    }
3188    oss << endl ;
3189    os << oss.str() << LogIO::POST ;
3190
3191    // membership check
3192    // groups: list of IF group indexes whose frequency range overlaps with
3193    //         that of each table and IF
3194    // groups[numtable][numIF][nummembership]
3195    // groups: [[[grp, grp,...], [grp, grp,...],...],
3196    //          [[grp, grp,...], [grp, grp,...],...],
3197    //          ...
3198    //          [[grp, grp,...], [grp, grp,...],...]]
3199    vector< vector< vector<uInt> > > groups( insize ) ;
3200    for ( uInt i = 0 ; i < insize ; i++ ) {
3201      groups[i].resize( freqid[i].size() ) ;
3202    }
3203    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3204      for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3205        uInt tableid = ifgrp[igrp][2*imem] ;
3206        vector<uInt>::iterator iter = find( freqid[tableid].begin(), freqid[tableid].end(), ifgrp[igrp][2*imem+1] ) ;
3207        if ( iter != freqid[tableid].end() ) {
3208          uInt rowid = distance( freqid[tableid].begin(), iter ) ;
3209          groups[tableid][rowid].push_back( igrp ) ;
3210        }
3211      }
3212    }
3213
3214    // print membership
3215    //oss.str("") ;
3216    //for ( uInt i = 0 ; i < insize ; i++ ) {
3217    //oss << "Table " << i << endl ;
3218    //for ( uInt j = 0 ; j < groups[i].size() ; j++ ) {
3219    //oss << "   FREQ_ID " <<  setw( 2 ) << freqid[i][j] << ": " ;
3220    //for ( uInt k = 0 ; k < groups[i][j].size() ; k++ ) {
3221    //oss << setw( 2 ) << groups[i][j][k] << " " ;
3222    //}
3223    //oss << endl ;
3224    //}
3225    //}
3226    //os << oss.str() << LogIO::POST ;
3227
3228    // set back coordinfo
3229    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3230      vector<string> coordinfo = tmpin[itable]->getCoordInfo() ;
3231      coordinfo[0] = oldinfo[itable] ;
3232      tmpin[itable]->setCoordInfo( coordinfo ) ;
3233    }
3234
3235    // Create additional table if needed
3236    bool oldInsitu = insitu_ ;
3237    setInsitu( false ) ;
3238    vector< vector<uInt> > addrow( insize ) ;
3239    vector<uInt> addtable( insize, 0 ) ;
3240    vector<uInt> newtableids( insize ) ;
3241    vector<uInt> newifids( insize, 0 ) ;
3242    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3243      //os << "Table " << itable << ": " ;
3244      for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3245        addrow[itable].push_back( groups[itable][ifrow].size()-1 ) ;
3246        //os << addrow[itable][ifrow] << " " ;
3247      }
3248      addtable[itable] = *max_element( addrow[itable].begin(), addrow[itable].end() ) ;
3249      //os << "(" << addtable[itable] << ")" << LogIO::POST ;
3250    }
3251    newin.resize( insize ) ;
3252    copy( tmpin.begin(), tmpin.end(), newin.begin() ) ;
3253    for ( uInt i = 0 ; i < insize ; i++ ) {
3254      newtableids[i] = i ;
3255    }
3256    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3257      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3258        CountedPtr<Scantable> add = getScantable( newin[itable], false ) ;
3259        vector<int> freqidlist ;
3260        for ( uInt i = 0 ; i < groups[itable].size() ; i++ ) {
3261          if ( groups[itable][i].size() > iadd + 1 ) {
3262            freqidlist.push_back( freqid[itable][i] ) ;
3263          }
3264        }
3265        stringstream taqlstream ;
3266        taqlstream << "SELECT FROM $1 WHERE FREQ_ID IN [" ;
3267        for ( uInt i = 0 ; i < freqidlist.size() ; i++ ) {
3268          taqlstream << freqidlist[i] ;
3269          if ( i < freqidlist.size() - 1 )
3270            taqlstream << "," ;
3271          else
3272            taqlstream << "]" ;
3273        }
3274        string taql = taqlstream.str() ;
3275        //os << "taql = " << taql << LogIO::POST ;
3276        STSelector selector = STSelector() ;
3277        selector.setTaQL( taql ) ;
3278        add->setSelection( selector ) ;
3279        newin.push_back( add ) ;
3280        newtableids.push_back( itable ) ;
3281        newifids.push_back( iadd + 1 ) ;
3282      }
3283    }
3284
3285    // udpate ifgrp
3286    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3287      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3288        for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3289          if ( groups[itable][ifrow].size() > iadd + 1 ) {
3290            uInt igrp = groups[itable][ifrow][iadd+1] ;
3291            for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3292              if ( ifgrp[igrp][2*imem] == newtableids[iadd+insize] && ifgrp[igrp][2*imem+1] == freqid[newtableids[iadd+insize]][ifrow] ) {
3293                ifgrp[igrp][2*imem] = insize + iadd ;
3294              }
3295            }
3296          }
3297        }
3298      }
3299    }
3300
3301    // print IF groups again for debug
3302    //oss.str( "" ) ;
3303    //oss << "IF Group summary: " << endl ;
3304    //oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3305    //for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3306    //oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3307    //for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3308    //oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3309    //}
3310    //oss << endl ;
3311    //}
3312    //oss << endl ;
3313    //os << oss.str() << LogIO::POST ;
3314
3315    // reset SCANNO and IFNO/FREQ_ID: IF is reset by the result of sortation
3316    os << "All scan number is set to 0" << LogIO::POST ;
3317    //os << "All IF number is set to IF group index" << LogIO::POST ;
3318    insize = newin.size() ;
3319    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3320      uInt rows = newin[itable]->nrow() ;
3321      Table &tmpt = newin[itable]->table() ;
3322      freqIDCol.attach( tmpt, "FREQ_ID" ) ;
3323      scannoCol.attach( tmpt, "SCANNO" ) ;
3324      ifnoCol.attach( tmpt, "IFNO" ) ;
3325      for ( uInt irow=0 ; irow < rows ; irow++ ) {
3326        scannoCol.put( irow, 0 ) ;
3327        uInt freqID = freqIDCol( irow ) ;
3328        vector<uInt>::iterator iter = find( freqid[newtableids[itable]].begin(), freqid[newtableids[itable]].end(), freqID ) ;
3329        if ( iter != freqid[newtableids[itable]].end() ) {
3330          uInt index = distance( freqid[newtableids[itable]].begin(), iter ) ;
3331          ifnoCol.put( irow, groups[newtableids[itable]][index][newifids[itable]] ) ;
3332        }
3333        else {
3334          throw(AipsError("IF grouping was wrong in additional tables.")) ;
3335        }
3336      }
3337    }
3338    oldinfo.resize( insize ) ;
3339    setInsitu( oldInsitu ) ;
3340
3341    // temporarily set coordinfo
3342    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3343      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3344      oldinfo[itable] = coordinfo[0] ;
3345      coordinfo[0] = "Hz" ;
3346      newin[itable]->setCoordInfo( coordinfo ) ;
3347    }
3348
3349    // save column values in the vector
3350    vector< vector<uInt> > freqTableIdVec( insize ) ;
3351    vector< vector<uInt> > freqIdVec( insize ) ;
3352    vector< vector<uInt> > ifNoVec( insize ) ;
3353    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3354      ScalarColumn<uInt> freqIDs ;
3355      freqIDs.attach( newin[itable]->frequencies().table(), "ID" ) ;
3356      ifnoCol.attach( newin[itable]->table(), "IFNO" ) ;
3357      freqIDCol.attach( newin[itable]->table(), "FREQ_ID" ) ;
3358      for ( uInt irow = 0 ; irow < newin[itable]->frequencies().table().nrow() ; irow++ ) {
3359        freqTableIdVec[itable].push_back( freqIDs( irow ) ) ;
3360      }
3361      for ( uInt irow = 0 ; irow < newin[itable]->table().nrow() ; irow++ ) {
3362        freqIdVec[itable].push_back( freqIDCol( irow ) ) ;
3363        ifNoVec[itable].push_back( ifnoCol( irow ) ) ;
3364      }
3365    }
3366
3367    // reset spectra and flagtra: pick up common part of frequency coverage
3368    //os << "Pick common frequency range and align resolution" << LogIO::POST ;
3369    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3370      uInt rows = newin[itable]->nrow() ;
3371      int nminchan = -1 ;
3372      int nmaxchan = -1 ;
3373      vector<uInt> freqIdUpdate ;
3374      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3375        uInt ifno = ifNoVec[itable][irow] ;  // IFNO is reset by group index
3376        double minfreq = ifgfreq[2*ifno] ;
3377        double maxfreq = ifgfreq[2*ifno+1] ;
3378        //os << "frequency range: [" << minfreq << "," << maxfreq << "]" << LogIO::POST ;
3379        vector<double> abcissa = newin[itable]->getAbcissa( irow ) ;
3380        int nchan = abcissa.size() ;
3381        double resol = abcissa[1] - abcissa[0] ;
3382        //os << "abcissa range  : [" << abcissa[0] << "," << abcissa[nchan-1] << "]" << LogIO::POST ;
3383        if ( minfreq <= abcissa[0] )
3384          nminchan = 0 ;
3385        else {
3386          //double cfreq = ( minfreq - abcissa[0] ) / resol ;
3387          double cfreq = ( minfreq - abcissa[0] + 0.5 * resol ) / resol ;
3388          nminchan = int(cfreq) + ( ( cfreq - int(cfreq) <= 0.5 ) ? 0 : 1 ) ;
3389        }
3390        if ( maxfreq >= abcissa[abcissa.size()-1] )
3391          nmaxchan = abcissa.size() - 1 ;
3392        else {
3393          //double cfreq = ( abcissa[abcissa.size()-1] - maxfreq ) / resol ;
3394          double cfreq = ( abcissa[abcissa.size()-1] - maxfreq + 0.5 * resol ) / resol ;
3395          nmaxchan = abcissa.size() - 1 - int(cfreq) - ( ( cfreq - int(cfreq) >= 0.5 ) ? 1 : 0 ) ;
3396        }
3397        //os << "channel range (" << irow << "): [" << nminchan << "," << nmaxchan << "]" << LogIO::POST ;
3398        if ( nmaxchan > nminchan ) {
3399          newin[itable]->reshapeSpectrum( nminchan, nmaxchan, irow ) ;
3400          int newchan = nmaxchan - nminchan + 1 ;
3401          if ( count( freqIdUpdate.begin(), freqIdUpdate.end(), freqIdVec[itable][irow] ) == 0 && newchan < nchan )
3402            freqIdUpdate.push_back( freqIdVec[itable][irow] ) ;
3403        }
3404        else {
3405          throw(AipsError("Failed to pick up common part of frequency range.")) ;
3406        }
3407      }
3408      for ( uInt i = 0 ; i < freqIdUpdate.size() ; i++ ) {
3409        uInt freqId = freqIdUpdate[i] ;
3410        Double refpix ;
3411        Double refval ;
3412        Double increment ;
3413       
3414        // update row
3415        newin[itable]->frequencies().getEntry( refpix, refval, increment, freqId ) ;
3416        refval = refval - ( refpix - nminchan ) * increment ;
3417        refpix = 0 ;
3418        newin[itable]->frequencies().setEntry( refpix, refval, increment, freqId ) ;
3419      }   
3420    }
3421
3422   
3423    // reset spectra and flagtra: align spectral resolution
3424    //os << "Align spectral resolution" << LogIO::POST ;
3425    // gmaxdnu: the coarsest frequency resolution in the frequency group
3426    // gmemid: member index that have a resolution equal to gmaxdnu
3427    // gmaxdnu[numfreqgrp]
3428    // gmaxdnu: [dnu0, dnu1, ...]
3429    // gmemid[numfreqgrp]
3430    // gmemid: [id0, id1, ...]
3431    vector<double> gmaxdnu( freqgrp.size(), 0.0 ) ;
3432    vector<uInt> gmemid( freqgrp.size(), 0 ) ;
3433    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3434      double maxdnu = 0.0 ;       // maximum (coarsest) frequency resolution
3435      int minchan = INT_MAX ;     // minimum channel number
3436      Double refpixref = -1 ;     // reference of 'reference pixel'
3437      Double refvalref = -1 ;     // reference of 'reference frequency'
3438      Double refinc = -1 ;        // reference frequency resolution
3439      uInt refreqid ;
3440      uInt reftable = INT_MAX;
3441      // process only if group member > 1
3442      if ( ifgrp[igrp].size() > 2 ) {
3443        // find minchan and maxdnu in each group
3444        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3445          uInt tableid = ifgrp[igrp][2*imem] ;
3446          uInt rowid = ifgrp[igrp][2*imem+1] ;
3447          vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3448          if ( iter != freqIdVec[tableid].end() ) {
3449            uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3450            vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3451            int nchan = abcissa.size() ;
3452            double dnu = abcissa[1] - abcissa[0] ;
3453            //os << "GROUP " << igrp << " (" << tableid << "," << rowid << "): nchan = " << nchan << " (minchan = " << minchan << ")" << LogIO::POST ;
3454            if ( nchan < minchan ) {
3455              minchan = nchan ;
3456              maxdnu = dnu ;
3457              newin[tableid]->frequencies().getEntry( refpixref, refvalref, refinc, rowid ) ;
3458              refreqid = rowid ;
3459              reftable = tableid ;
3460            }
3461          }
3462        }
3463        // regrid spectra in each group
3464        os << "GROUP " << igrp << endl ;
3465        os << "   Channel number is adjusted to " << minchan << endl ;
3466        os << "   Corresponding frequency resolution is " << maxdnu << "Hz" << LogIO::POST ;
3467        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3468          uInt tableid = ifgrp[igrp][2*imem] ;
3469          uInt rowid = ifgrp[igrp][2*imem+1] ;
3470          freqIDCol.attach( newin[tableid]->table(), "FREQ_ID" ) ;
3471          //os << "tableid = " << tableid << " rowid = " << rowid << ": " << LogIO::POST ;
3472          //os << "   regridChannel applied to " ;
3473          //if ( tableid != reftable )
3474          refreqid = newin[tableid]->frequencies().addEntry( refpixref, refvalref, refinc ) ;
3475          for ( uInt irow = 0 ; irow < newin[tableid]->table().nrow() ; irow++ ) {
3476            uInt tfreqid = freqIdVec[tableid][irow] ;
3477            if ( tfreqid == rowid ) {     
3478              //os << irow << " " ;
3479              newin[tableid]->regridChannel( minchan, maxdnu, irow ) ;
3480              freqIDCol.put( irow, refreqid ) ;
3481              freqIdVec[tableid][irow] = refreqid ;
3482            }
3483          }
3484          //os << LogIO::POST ;
3485        }
3486      }
3487      else {
3488        uInt tableid = ifgrp[igrp][0] ;
3489        uInt rowid = ifgrp[igrp][1] ;
3490        vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3491        if ( iter != freqIdVec[tableid].end() ) {
3492          uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3493          vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3494          minchan = abcissa.size() ;
3495          maxdnu = abcissa[1] - abcissa[0] ;
3496        }
3497      }
3498      for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3499        if ( count( freqgrp[i].begin(), freqgrp[i].end(), igrp ) > 0 ) {
3500          if ( maxdnu > gmaxdnu[i] ) {
3501            gmaxdnu[i] = maxdnu ;
3502            gmemid[i] = igrp ;
3503          }
3504          break ;
3505        }
3506      }
3507    }
3508
3509    // set back coordinfo
3510    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3511      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3512      coordinfo[0] = oldinfo[itable] ;
3513      newin[itable]->setCoordInfo( coordinfo ) ;
3514    }     
3515
3516    // accumulate all rows into the first table
3517    // NOTE: assumed in.size() = 1
3518    vector< CountedPtr<Scantable> > tmp( 1 ) ;
3519    if ( newin.size() == 1 )
3520      tmp[0] = newin[0] ;
3521    else
3522      tmp[0] = merge( newin ) ;
3523
3524    //return tmp[0] ;
3525
3526    // average
3527    CountedPtr<Scantable> tmpout = average( tmp, mask, weight, avmode ) ;
3528
3529    //return tmpout ;
3530
3531    // combine frequency group
3532    os << "Combine spectra based on frequency grouping" << LogIO::POST ;
3533    os << "IFNO is renumbered as frequency group ID (see above)" << LogIO::POST ;
3534    vector<string> coordinfo = tmpout->getCoordInfo() ;
3535    oldinfo[0] = coordinfo[0] ;
3536    coordinfo[0] = "Hz" ;
3537    tmpout->setCoordInfo( coordinfo ) ;
3538    // create proformas of output table
3539    stringstream taqlstream ;
3540    taqlstream << "SELECT FROM $1 WHERE IFNO IN [" ;
3541    for ( uInt i = 0 ; i < gmemid.size() ; i++ ) {
3542      taqlstream << gmemid[i] ;
3543      if ( i < gmemid.size() - 1 )
3544        taqlstream << "," ;
3545      else
3546        taqlstream << "]" ;
3547    }
3548    string taql = taqlstream.str() ;
3549    //os << "taql = " << taql << LogIO::POST ;
3550    STSelector selector = STSelector() ;
3551    selector.setTaQL( taql ) ;
3552    oldInsitu = insitu_ ;
3553    setInsitu( false ) ;
3554    out = getScantable( tmpout, false ) ;
3555    setInsitu( oldInsitu ) ;
3556    out->setSelection( selector ) ;
3557    // regrid rows
3558    ifnoCol.attach( tmpout->table(), "IFNO" ) ;
3559    for ( uInt irow = 0 ; irow < tmpout->table().nrow() ; irow++ ) {
3560      uInt ifno = ifnoCol( irow ) ;
3561      for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3562        if ( count( freqgrp[igrp].begin(), freqgrp[igrp].end(), ifno ) > 0 ) {
3563          vector<double> abcissa = tmpout->getAbcissa( irow ) ;
3564          double bw = ( abcissa[1] - abcissa[0] ) * abcissa.size() ;
3565          int nchan = (int)( bw / gmaxdnu[igrp] ) ;
3566          tmpout->regridChannel( nchan, gmaxdnu[igrp], irow ) ;
3567          break ;
3568        }
3569      }
3570    }
3571    // combine spectra
3572    ArrayColumn<Float> specColOut ;
3573    specColOut.attach( out->table(), "SPECTRA" ) ;
3574    ArrayColumn<uChar> flagColOut ;
3575    flagColOut.attach( out->table(), "FLAGTRA" ) ;
3576    ScalarColumn<uInt> ifnoColOut ;
3577    ifnoColOut.attach( out->table(), "IFNO" ) ;
3578    ScalarColumn<uInt> polnoColOut ;
3579    polnoColOut.attach( out->table(), "POLNO" ) ;
3580    ScalarColumn<uInt> freqidColOut ;
3581    freqidColOut.attach( out->table(), "FREQ_ID" ) ;
3582//     MDirection::ScalarColumn dirColOut ;
3583//     dirColOut.attach( out->table(), "DIRECTION" ) ;
3584    Table &tab = tmpout->table() ;
3585    Block<String> cols(1);
3586    cols[0] = String("POLNO") ;
3587    TableIterator iter( tab, cols ) ;
3588    bool done = false ;
3589    vector< vector<uInt> > sizes( freqgrp.size() ) ;
3590    while( !iter.pastEnd() ) {
3591      vector< vector<Float> > specout( freqgrp.size() ) ;
3592      vector< vector<uChar> > flagout( freqgrp.size() ) ;
3593      ArrayColumn<Float> specCols ;
3594      specCols.attach( iter.table(), "SPECTRA" ) ;
3595      ArrayColumn<uChar> flagCols ;
3596      flagCols.attach( iter.table(), "FLAGTRA" ) ;
3597      ifnoCol.attach( iter.table(), "IFNO" ) ;
3598      ScalarColumn<uInt> polnos ;
3599      polnos.attach( iter.table(), "POLNO" ) ;
3600//       MDirection::ScalarColumn dircol ;
3601//       dircol.attach( iter.table(), "DIRECTION" ) ;
3602      uInt polno = polnos( 0 ) ;
3603      //os << "POLNO iteration: " << polno << LogIO::POST ;
3604//       for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3605//      sizes[igrp].resize( freqgrp[igrp].size() ) ;
3606//      for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3607//        for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3608//          uInt ifno = ifnoCol( irow ) ;
3609//          if ( ifno == freqgrp[igrp][imem] ) {
3610//            Vector<Float> spec = specCols( irow ) ;
3611//            Vector<uChar> flag = flagCols( irow ) ;
3612//            vector<Float> svec ;
3613//            spec.tovector( svec ) ;
3614//            vector<uChar> fvec ;
3615//            flag.tovector( fvec ) ;
3616//            //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3617//            specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3618//            flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3619//            //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3620//            sizes[igrp][imem] = spec.nelements() ;
3621//          }
3622//        }
3623//      }
3624//      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3625//        uInt ifout = ifnoColOut( irow ) ;
3626//        uInt polout = polnoColOut( irow ) ;
3627//        if ( ifout == gmemid[igrp] && polout == polno ) {
3628//          // set SPECTRA and FRAGTRA
3629//          Vector<Float> newspec( specout[igrp] ) ;
3630//          Vector<uChar> newflag( flagout[igrp] ) ;
3631//          specColOut.put( irow, newspec ) ;
3632//          flagColOut.put( irow, newflag ) ;
3633//          // IFNO renumbering
3634//          ifnoColOut.put( irow, igrp ) ;
3635//        }
3636//      }
3637//       }
3638      // get a list of number of channels for each frequency group member
3639      if ( !done ) {
3640        for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3641          sizes[igrp].resize( freqgrp[igrp].size() ) ;
3642          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3643            for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3644              uInt ifno = ifnoCol( irow ) ;
3645              if ( ifno == freqgrp[igrp][imem] ) {
3646                Vector<Float> spec = specCols( irow ) ;
3647                sizes[igrp][imem] = spec.nelements() ;
3648                break ;
3649              }               
3650            }
3651          }
3652        }
3653        done = true ;
3654      }
3655      // combine spectra
3656      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3657        uInt polout = polnoColOut( irow ) ;
3658        if ( polout == polno ) {
3659          uInt ifout = ifnoColOut( irow ) ;
3660//           Vector<Double> direction = dirColOut(irow).getAngle(Unit(String("rad"))).getValue() ;
3661          uInt igrp ;
3662          for ( uInt jgrp = 0 ; jgrp < freqgrp.size() ; jgrp++ ) {
3663            if ( ifout == gmemid[jgrp] ) {
3664              igrp = jgrp ;
3665              break ;
3666            }
3667          }
3668          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3669            for ( uInt jrow = 0 ; jrow < iter.table().nrow() ; jrow++ ) {
3670              uInt ifno = ifnoCol( jrow ) ;
3671              // 2012/02/17 TN
3672              // Since STGrid is implemented, average doesn't consider direction
3673              // when accumulating
3674//               Vector<Double> tdir = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
3675//               //if ( ifno == freqgrp[igrp][imem] && allTrue( tdir == direction  ) ) {
3676//               Double dx = tdir[0] - direction[0] ;
3677//               Double dy = tdir[1] - direction[1] ;
3678//               Double dd = sqrt( dx * dx + dy * dy ) ;
3679              //if ( ifno == freqgrp[igrp][imem] && allNearAbs( tdir, direction, tol ) ) {
3680//               if ( ifno == freqgrp[igrp][imem] && dd <= tol ) {
3681              if ( ifno == freqgrp[igrp][imem] ) {
3682                Vector<Float> spec = specCols( jrow ) ;
3683                Vector<uChar> flag = flagCols( jrow ) ;
3684                vector<Float> svec ;
3685                spec.tovector( svec ) ;
3686                vector<uChar> fvec ;
3687                flag.tovector( fvec ) ;
3688                //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3689                specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3690                flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3691                //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3692              }
3693            }
3694          }
3695          // set SPECTRA and FRAGTRA
3696          Vector<Float> newspec( specout[igrp] ) ;
3697          Vector<uChar> newflag( flagout[igrp] ) ;
3698          specColOut.put( irow, newspec ) ;
3699          flagColOut.put( irow, newflag ) ;
3700          // IFNO renumbering
3701          ifnoColOut.put( irow, igrp ) ;
3702        }
3703      }
3704      iter++ ;
3705    }
3706    // update FREQUENCIES subtable
3707    vector<bool> updated( freqgrp.size(), false ) ;
3708    for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3709      uInt index = 0 ;
3710      uInt pixShift = 0 ;
3711      while ( freqgrp[igrp][index] != gmemid[igrp] ) {
3712        pixShift += sizes[igrp][index++] ;
3713      }
3714      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3715        if ( ifnoColOut( irow ) == gmemid[igrp] && !updated[igrp] ) {
3716          uInt freqidOut = freqidColOut( irow ) ;
3717          //os << "freqgrp " << igrp << " freqidOut = " << freqidOut << LogIO::POST ;
3718          double refpix ;
3719          double refval ;
3720          double increm ;
3721          out->frequencies().getEntry( refpix, refval, increm, freqidOut ) ;
3722          refpix += pixShift ;
3723          out->frequencies().setEntry( refpix, refval, increm, freqidOut ) ;
3724          updated[igrp] = true ;
3725        }
3726      }
3727    }
3728
3729    //out = tmpout ;
3730
3731    coordinfo = tmpout->getCoordInfo() ;
3732    coordinfo[0] = oldinfo[0] ;
3733    tmpout->setCoordInfo( coordinfo ) ;
3734  }
3735  else {
3736    // simple average
3737    out =  average( in, mask, weight, avmode ) ;
3738  }
3739 
3740  return out;
3741}
3742
3743CountedPtr<Scantable> STMath::cwcal( const CountedPtr<Scantable>& s,
3744                                     const String calmode,
3745                                     const String antname )
3746{
3747  // frequency switch
3748  if ( calmode == "fs" ) {
3749    return cwcalfs( s, antname ) ;
3750  }
3751  else {
3752    vector<bool> masks = s->getMask( 0 ) ;
3753    vector<int> types ;
3754
3755    // sky scan
3756    STSelector sel = STSelector() ;
3757    types.push_back( SrcType::SKY ) ;
3758    sel.setTypes( types ) ;
3759    s->setSelection( sel ) ;
3760    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3761    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
3762    s->unsetSelection() ;
3763    sel.reset() ;
3764    types.clear() ;
3765
3766    // hot scan
3767    types.push_back( SrcType::HOT ) ;
3768    sel.setTypes( types ) ;
3769    s->setSelection( sel ) ;
3770    tmp.clear() ;
3771    tmp.push_back( getScantable( s, false ) ) ;
3772    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
3773    s->unsetSelection() ;
3774    sel.reset() ;
3775    types.clear() ;
3776   
3777    // cold scan
3778    CountedPtr<Scantable> acold ;
3779//     types.push_back( SrcType::COLD ) ;
3780//     sel.setTypes( types ) ;
3781//     s->setSelection( sel ) ;
3782//     tmp.clear() ;
3783//     tmp.push_back( getScantable( s, false ) ) ;
3784//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCNAN" ) ;
3785//     s->unsetSelection() ;
3786//     sel.reset() ;
3787//     types.clear() ;
3788
3789    // off scan
3790    types.push_back( SrcType::PSOFF ) ;
3791    sel.setTypes( types ) ;
3792    s->setSelection( sel ) ;
3793    tmp.clear() ;
3794    tmp.push_back( getScantable( s, false ) ) ;
3795    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3796    s->unsetSelection() ;
3797    sel.reset() ;
3798    types.clear() ;
3799   
3800    // on scan
3801    bool insitu = insitu_ ;
3802    insitu_ = false ;
3803    CountedPtr<Scantable> out = getScantable( s, true ) ;
3804    insitu_ = insitu ;
3805    types.push_back( SrcType::PSON ) ;
3806    sel.setTypes( types ) ;
3807    s->setSelection( sel ) ;
3808    TableCopy::copyRows( out->table(), s->table() ) ;
3809    s->unsetSelection() ;
3810    sel.reset() ;
3811    types.clear() ;
3812   
3813    // process each on scan
3814    ArrayColumn<Float> tsysCol ;
3815    tsysCol.attach( out->table(), "TSYS" ) ;
3816    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3817      vector<float> sp = getCalibratedSpectra( out, aoff, asky, ahot, acold, i, antname ) ;
3818      out->setSpectrum( sp, i ) ;
3819      string reftime = out->getTime( i ) ;
3820      vector<int> ii( 1, out->getIF( i ) ) ;
3821      vector<int> ib( 1, out->getBeam( i ) ) ;
3822      vector<int> ip( 1, out->getPol( i ) ) ;
3823      sel.setIFs( ii ) ;
3824      sel.setBeams( ib ) ;
3825      sel.setPolarizations( ip ) ;
3826      asky->setSelection( sel ) ;   
3827      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
3828      const Vector<Float> Vtsys( sptsys ) ;
3829      tsysCol.put( i, Vtsys ) ;
3830      asky->unsetSelection() ;
3831      sel.reset() ;
3832    }
3833
3834    // flux unit
3835    out->setFluxUnit( "K" ) ;
3836
3837    return out ;
3838  }
3839}
3840 
3841CountedPtr<Scantable> STMath::almacal( const CountedPtr<Scantable>& s,
3842                                       const String calmode )
3843{
3844  // frequency switch
3845  if ( calmode == "fs" ) {
3846    return almacalfs( s ) ;
3847  }
3848  else {
3849    vector<bool> masks = s->getMask( 0 ) ;
3850   
3851    // off scan
3852    STSelector sel = STSelector() ;
3853    vector<int> types ;
3854    types.push_back( SrcType::PSOFF ) ;
3855    sel.setTypes( types ) ;
3856    s->setSelection( sel ) ;
3857    // TODO 2010/01/08 TN
3858    // Grouping by time should be needed before averaging.
3859    // Each group must have own unique SCANNO (should be renumbered).
3860    // See PIPELINE/SDCalibration.py
3861    CountedPtr<Scantable> soff = getScantable( s, false ) ;
3862    Table ttab = soff->table() ;
3863    ROScalarColumn<Double> timeCol( ttab, "TIME" ) ;
3864    uInt nrow = timeCol.nrow() ;
3865    Vector<Double> timeSep( nrow - 1 ) ;
3866    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3867      timeSep[i] = timeCol(i+1) - timeCol(i) ;
3868    }
3869    ScalarColumn<Double> intervalCol( ttab, "INTERVAL" ) ;
3870    Vector<Double> interval = intervalCol.getColumn() ;
3871    interval /= 86400.0 ;
3872    ScalarColumn<uInt> scanCol( ttab, "SCANNO" ) ;
3873    vector<uInt> glist ;
3874    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3875      double gap = 2.0 * timeSep[i] / ( interval[i] + interval[i+1] ) ;
3876      //cout << "gap[" << i << "]=" << setw(5) << gap << endl ;
3877      if ( gap > 1.1 ) {
3878        glist.push_back( i ) ;
3879      }
3880    }
3881    Vector<uInt> gaplist( glist ) ;
3882    //cout << "gaplist = " << gaplist << endl ;
3883    uInt newid = 0 ;
3884    for ( uInt i = 0 ; i < nrow ; i++ ) {
3885      scanCol.put( i, newid ) ;
3886      if ( i == gaplist[newid] ) {
3887        newid++ ;
3888      }
3889    }
3890    //cout << "new scancol = " << scanCol.getColumn() << endl ;
3891    vector< CountedPtr<Scantable> > tmp( 1, soff ) ;
3892    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3893    //cout << "aoff.nrow = " << aoff->nrow() << endl ;
3894    s->unsetSelection() ;
3895    sel.reset() ;
3896    types.clear() ;
3897   
3898    // on scan
3899    bool insitu = insitu_ ;
3900    insitu_ = false ;
3901    CountedPtr<Scantable> out = getScantable( s, true ) ;
3902    insitu_ = insitu ;
3903    types.push_back( SrcType::PSON ) ;
3904    sel.setTypes( types ) ;
3905    s->setSelection( sel ) ;
3906    TableCopy::copyRows( out->table(), s->table() ) ;
3907    s->unsetSelection() ;
3908    sel.reset() ;
3909    types.clear() ;
3910   
3911    // process each on scan
3912    ArrayColumn<Float> tsysCol ;
3913    tsysCol.attach( out->table(), "TSYS" ) ;
3914    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3915      vector<float> sp = getCalibratedSpectra( out, aoff, i ) ;
3916      out->setSpectrum( sp, i ) ;
3917    }
3918
3919    // flux unit
3920    out->setFluxUnit( "K" ) ;
3921
3922    return out ;
3923  }
3924}
3925
3926CountedPtr<Scantable> STMath::cwcalfs( const CountedPtr<Scantable>& s,
3927                                       const String antname )
3928{
3929  vector<int> types ;
3930
3931  // APEX calibration mode
3932  int apexcalmode = 1 ;
3933 
3934  if ( antname.find( "APEX" ) != string::npos ) {
3935    // check if off scan exists or not
3936    STSelector sel = STSelector() ;
3937    //sel.setName( offstr1 ) ;
3938    types.push_back( SrcType::FLOOFF ) ;
3939    sel.setTypes( types ) ;
3940    try {
3941      s->setSelection( sel ) ;
3942    }
3943    catch ( AipsError &e ) {
3944      apexcalmode = 0 ;
3945    }
3946    sel.reset() ;
3947  }
3948  s->unsetSelection() ;
3949  types.clear() ;
3950
3951  vector<bool> masks = s->getMask( 0 ) ;
3952  CountedPtr<Scantable> ssig, sref ;
3953  CountedPtr<Scantable> out ;
3954
3955  if ( antname.find( "APEX" ) != string::npos ) {
3956    // APEX calibration
3957    // sky scan
3958    STSelector sel = STSelector() ;
3959    types.push_back( SrcType::FLOSKY ) ;
3960    sel.setTypes( types ) ;
3961    s->setSelection( sel ) ;
3962    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3963    CountedPtr<Scantable> askylo = average( tmp, masks, "TINT", "SCAN" ) ;
3964    s->unsetSelection() ;
3965    sel.reset() ;
3966    types.clear() ;
3967    types.push_back( SrcType::FHISKY ) ;
3968    sel.setTypes( types ) ;
3969    s->setSelection( sel ) ;
3970    tmp.clear() ;
3971    tmp.push_back( getScantable( s, false ) ) ;
3972    CountedPtr<Scantable> askyhi = average( tmp, masks, "TINT", "SCAN" ) ;
3973    s->unsetSelection() ;
3974    sel.reset() ;
3975    types.clear() ;
3976   
3977    // hot scan
3978    types.push_back( SrcType::FLOHOT ) ;
3979    sel.setTypes( types ) ;
3980    s->setSelection( sel ) ;
3981    tmp.clear() ;
3982    tmp.push_back( getScantable( s, false ) ) ;
3983    CountedPtr<Scantable> ahotlo = average( tmp, masks, "TINT", "SCAN" ) ;
3984    s->unsetSelection() ;
3985    sel.reset() ;
3986    types.clear() ;
3987    types.push_back( SrcType::FHIHOT ) ;
3988    sel.setTypes( types ) ;
3989    s->setSelection( sel ) ;
3990    tmp.clear() ;
3991    tmp.push_back( getScantable( s, false ) ) ;
3992    CountedPtr<Scantable> ahothi = average( tmp, masks, "TINT", "SCAN" ) ;
3993    s->unsetSelection() ;
3994    sel.reset() ;
3995    types.clear() ;
3996   
3997    // cold scan
3998    CountedPtr<Scantable> acoldlo, acoldhi ;
3999//     types.push_back( SrcType::FLOCOLD ) ;
4000//     sel.setTypes( types ) ;
4001//     s->setSelection( sel ) ;
4002//     tmp.clear() ;
4003//     tmp.push_back( getScantable( s, false ) ) ;
4004//     CountedPtr<Scantable> acoldlo = average( tmp, masks, "TINT", "SCAN" ) ;
4005//     s->unsetSelection() ;
4006//     sel.reset() ;
4007//     types.clear() ;
4008//     types.push_back( SrcType::FHICOLD ) ;
4009//     sel.setTypes( types ) ;
4010//     s->setSelection( sel ) ;
4011//     tmp.clear() ;
4012//     tmp.push_back( getScantable( s, false ) ) ;
4013//     CountedPtr<Scantable> acoldhi = average( tmp, masks, "TINT", "SCAN" ) ;
4014//     s->unsetSelection() ;
4015//     sel.reset() ;
4016//     types.clear() ;
4017
4018    // ref scan
4019    bool insitu = insitu_ ;
4020    insitu_ = false ;
4021    sref = getScantable( s, true ) ;
4022    insitu_ = insitu ;
4023    types.push_back( SrcType::FSLO ) ;
4024    sel.setTypes( types ) ;
4025    s->setSelection( sel ) ;
4026    TableCopy::copyRows( sref->table(), s->table() ) ;
4027    s->unsetSelection() ;
4028    sel.reset() ;
4029    types.clear() ;
4030   
4031    // sig scan
4032    insitu_ = false ;
4033    ssig = getScantable( s, true ) ;
4034    insitu_ = insitu ;
4035    types.push_back( SrcType::FSHI ) ;
4036    sel.setTypes( types ) ;
4037    s->setSelection( sel ) ;
4038    TableCopy::copyRows( ssig->table(), s->table() ) ;
4039    s->unsetSelection() ;
4040    sel.reset() ; 
4041    types.clear() ;
4042         
4043    if ( apexcalmode == 0 ) {
4044      // APEX fs data without off scan
4045      // process each sig and ref scan
4046      ArrayColumn<Float> tsysCollo ;
4047      tsysCollo.attach( ssig->table(), "TSYS" ) ;
4048      ArrayColumn<Float> tsysColhi ;
4049      tsysColhi.attach( sref->table(), "TSYS" ) ;
4050      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4051        vector< CountedPtr<Scantable> > sky( 2 ) ;
4052        sky[0] = askylo ;
4053        sky[1] = askyhi ;
4054        vector< CountedPtr<Scantable> > hot( 2 ) ;
4055        hot[0] = ahotlo ;
4056        hot[1] = ahothi ;
4057        vector< CountedPtr<Scantable> > cold( 2 ) ;
4058        //cold[0] = acoldlo ;
4059        //cold[1] = acoldhi ;
4060        vector<float> sp = getFSCalibratedSpectra( ssig, sref, sky, hot, cold, i ) ;
4061        ssig->setSpectrum( sp, i ) ;
4062        string reftime = ssig->getTime( i ) ;
4063        vector<int> ii( 1, ssig->getIF( i ) ) ;
4064        vector<int> ib( 1, ssig->getBeam( i ) ) ;
4065        vector<int> ip( 1, ssig->getPol( i ) ) ;
4066        sel.setIFs( ii ) ;
4067        sel.setBeams( ib ) ;
4068        sel.setPolarizations( ip ) ;
4069        askylo->setSelection( sel ) ;
4070        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4071        const Vector<Float> Vtsyslo( sptsys ) ;
4072        tsysCollo.put( i, Vtsyslo ) ;
4073        askylo->unsetSelection() ;
4074        sel.reset() ;
4075        sky[0] = askyhi ;
4076        sky[1] = askylo ;
4077        hot[0] = ahothi ;
4078        hot[1] = ahotlo ;
4079        cold[0] = acoldhi ;
4080        cold[1] = acoldlo ;
4081        sp = getFSCalibratedSpectra( sref, ssig, sky, hot, cold, i ) ;
4082        sref->setSpectrum( sp, i ) ;
4083        reftime = sref->getTime( i ) ;
4084        ii[0] = sref->getIF( i )  ;
4085        ib[0] = sref->getBeam( i ) ;
4086        ip[0] = sref->getPol( i ) ;
4087        sel.setIFs( ii ) ;
4088        sel.setBeams( ib ) ;
4089        sel.setPolarizations( ip ) ;
4090        askyhi->setSelection( sel ) ;   
4091        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4092        const Vector<Float> Vtsyshi( sptsys ) ;
4093        tsysColhi.put( i, Vtsyshi ) ;
4094        askyhi->unsetSelection() ;
4095        sel.reset() ;
4096      }
4097    }
4098    else if ( apexcalmode == 1 ) {
4099      // APEX fs data with off scan
4100      // off scan
4101      types.push_back( SrcType::FLOOFF ) ;
4102      sel.setTypes( types ) ;
4103      s->setSelection( sel ) ;
4104      tmp.clear() ;
4105      tmp.push_back( getScantable( s, false ) ) ;
4106      CountedPtr<Scantable> aofflo = average( tmp, masks, "TINT", "SCAN" ) ;
4107      s->unsetSelection() ;
4108      sel.reset() ;
4109      types.clear() ;
4110      types.push_back( SrcType::FHIOFF ) ;
4111      sel.setTypes( types ) ;
4112      s->setSelection( sel ) ;
4113      tmp.clear() ;
4114      tmp.push_back( getScantable( s, false ) ) ;
4115      CountedPtr<Scantable> aoffhi = average( tmp, masks, "TINT", "SCAN" ) ;
4116      s->unsetSelection() ;
4117      sel.reset() ;
4118      types.clear() ;
4119     
4120      // process each sig and ref scan
4121      ArrayColumn<Float> tsysCollo ;
4122      tsysCollo.attach( ssig->table(), "TSYS" ) ;
4123      ArrayColumn<Float> tsysColhi ;
4124      tsysColhi.attach( sref->table(), "TSYS" ) ;
4125      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4126        vector<float> sp = getCalibratedSpectra( ssig, aofflo, askylo, ahotlo, acoldlo, i, antname ) ;
4127        ssig->setSpectrum( sp, i ) ;
4128        sp = getCalibratedSpectra( sref, aoffhi, askyhi, ahothi, acoldhi, i, antname ) ;
4129        string reftime = ssig->getTime( i ) ;
4130        vector<int> ii( 1, ssig->getIF( i ) ) ;
4131        vector<int> ib( 1, ssig->getBeam( i ) ) ;
4132        vector<int> ip( 1, ssig->getPol( i ) ) ;
4133        sel.setIFs( ii ) ;
4134        sel.setBeams( ib ) ;
4135        sel.setPolarizations( ip ) ;
4136        askylo->setSelection( sel ) ;
4137        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4138        const Vector<Float> Vtsyslo( sptsys ) ;
4139        tsysCollo.put( i, Vtsyslo ) ;
4140        askylo->unsetSelection() ;
4141        sel.reset() ;
4142        sref->setSpectrum( sp, i ) ;
4143        reftime = sref->getTime( i ) ;
4144        ii[0] = sref->getIF( i )  ;
4145        ib[0] = sref->getBeam( i ) ;
4146        ip[0] = sref->getPol( i ) ;
4147        sel.setIFs( ii ) ;
4148        sel.setBeams( ib ) ;
4149        sel.setPolarizations( ip ) ;
4150        askyhi->setSelection( sel ) ;   
4151        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4152        const Vector<Float> Vtsyshi( sptsys ) ;
4153        tsysColhi.put( i, Vtsyshi ) ;
4154        askyhi->unsetSelection() ;
4155        sel.reset() ;
4156      }
4157    }
4158  }
4159  else {
4160    // non-APEX fs data
4161    // sky scan
4162    STSelector sel = STSelector() ;
4163    types.push_back( SrcType::SKY ) ;
4164    sel.setTypes( types ) ;
4165    s->setSelection( sel ) ;
4166    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
4167    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
4168    s->unsetSelection() ;
4169    sel.reset() ;
4170    types.clear() ;
4171   
4172    // hot scan
4173    types.push_back( SrcType::HOT ) ;
4174    sel.setTypes( types ) ;
4175    s->setSelection( sel ) ;
4176    tmp.clear() ;
4177    tmp.push_back( getScantable( s, false ) ) ;
4178    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
4179    s->unsetSelection() ;
4180    sel.reset() ;
4181    types.clear() ;
4182
4183    // cold scan
4184    CountedPtr<Scantable> acold ;
4185//     types.push_back( SrcType::COLD ) ;
4186//     sel.setTypes( types ) ;
4187//     s->setSelection( sel ) ;
4188//     tmp.clear() ;
4189//     tmp.push_back( getScantable( s, false ) ) ;
4190//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCAN" ) ;
4191//     s->unsetSelection() ;
4192//     sel.reset() ;
4193//     types.clear() ;
4194   
4195    // ref scan
4196    bool insitu = insitu_ ;
4197    insitu_ = false ;
4198    sref = getScantable( s, true ) ;
4199    insitu_ = insitu ;
4200    types.push_back( SrcType::FSOFF ) ;
4201    sel.setTypes( types ) ;
4202    s->setSelection( sel ) ;
4203    TableCopy::copyRows( sref->table(), s->table() ) ;
4204    s->unsetSelection() ;
4205    sel.reset() ;
4206    types.clear() ;
4207   
4208    // sig scan
4209    insitu_ = false ;
4210    ssig = getScantable( s, true ) ;
4211    insitu_ = insitu ;
4212    types.push_back( SrcType::FSON ) ;
4213    sel.setTypes( types ) ;
4214    s->setSelection( sel ) ;
4215    TableCopy::copyRows( ssig->table(), s->table() ) ;
4216    s->unsetSelection() ;
4217    sel.reset() ;
4218    types.clear() ;
4219
4220    // process each sig and ref scan
4221    ArrayColumn<Float> tsysColsig ;
4222    tsysColsig.attach( ssig->table(), "TSYS" ) ;
4223    ArrayColumn<Float> tsysColref ;
4224    tsysColref.attach( ssig->table(), "TSYS" ) ;
4225    for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4226      vector<float> sp = getFSCalibratedSpectra( ssig, sref, asky, ahot, acold, i ) ;
4227      ssig->setSpectrum( sp, i ) ;
4228      string reftime = ssig->getTime( i ) ;
4229      vector<int> ii( 1, ssig->getIF( i ) ) ;
4230      vector<int> ib( 1, ssig->getBeam( i ) ) ;
4231      vector<int> ip( 1, ssig->getPol( i ) ) ;
4232      sel.setIFs( ii ) ;
4233      sel.setBeams( ib ) ;
4234      sel.setPolarizations( ip ) ;
4235      asky->setSelection( sel ) ;
4236      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
4237      const Vector<Float> Vtsys( sptsys ) ;
4238      tsysColsig.put( i, Vtsys ) ;
4239      asky->unsetSelection() ;
4240      sel.reset() ;
4241      sp = getFSCalibratedSpectra( sref, ssig, asky, ahot, acold, i ) ;
4242      sref->setSpectrum( sp, i ) ;
4243      tsysColref.put( i, Vtsys ) ;
4244    }
4245  }
4246
4247  // do folding if necessary
4248  Table sigtab = ssig->table() ;
4249  Table reftab = sref->table() ;
4250  ScalarColumn<uInt> sigifnoCol ;
4251  ScalarColumn<uInt> refifnoCol ;
4252  ScalarColumn<uInt> sigfidCol ;
4253  ScalarColumn<uInt> reffidCol ;
4254  Int nchan = (Int)ssig->nchan() ;
4255  sigifnoCol.attach( sigtab, "IFNO" ) ;
4256  refifnoCol.attach( reftab, "IFNO" ) ;
4257  sigfidCol.attach( sigtab, "FREQ_ID" ) ;
4258  reffidCol.attach( reftab, "FREQ_ID" ) ;
4259  Vector<uInt> sfids( sigfidCol.getColumn() ) ;
4260  Vector<uInt> rfids( reffidCol.getColumn() ) ;
4261  vector<uInt> sfids_unique ;
4262  vector<uInt> rfids_unique ;
4263  vector<uInt> sifno_unique ;
4264  vector<uInt> rifno_unique ;
4265  for ( uInt i = 0 ; i < sfids.nelements() ; i++ ) {
4266    if ( count( sfids_unique.begin(), sfids_unique.end(), sfids[i] ) == 0 ) {
4267      sfids_unique.push_back( sfids[i] ) ;
4268      sifno_unique.push_back( ssig->getIF( i ) ) ;
4269    }
4270    if ( count( rfids_unique.begin(), rfids_unique.end(),  rfids[i] ) == 0 ) {
4271      rfids_unique.push_back( rfids[i] ) ;
4272      rifno_unique.push_back( sref->getIF( i ) ) ;
4273    }
4274  }
4275  double refpix_sig, refval_sig, increment_sig ;
4276  double refpix_ref, refval_ref, increment_ref ;
4277  vector< CountedPtr<Scantable> > tmp( sfids_unique.size() ) ;
4278  for ( uInt i = 0 ; i < sfids_unique.size() ; i++ ) {
4279    ssig->frequencies().getEntry( refpix_sig, refval_sig, increment_sig, sfids_unique[i] ) ;
4280    sref->frequencies().getEntry( refpix_ref, refval_ref, increment_ref, rfids_unique[i] ) ;
4281    if ( refpix_sig == refpix_ref ) {
4282      double foffset = refval_ref - refval_sig ;
4283      int choffset = static_cast<int>(foffset/increment_sig) ;
4284      double doffset = foffset / increment_sig ;
4285      if ( abs(choffset) >= nchan ) {
4286        LogIO os( LogOrigin( "STMath", "cwcalfs", WHERE ) ) ;
4287        os << "FREQ_ID=[" << sfids_unique[i] << "," << rfids_unique[i] << "]: out-band frequency switching, no folding" << LogIO::POST ;
4288        os << "Just return signal data" << LogIO::POST ;
4289        //std::vector< CountedPtr<Scantable> > tabs ;
4290        //tabs.push_back( ssig ) ;
4291        //tabs.push_back( sref ) ;
4292        //out = merge( tabs ) ;
4293        tmp[i] = ssig ;
4294      }
4295      else {
4296        STSelector sel = STSelector() ;
4297        vector<int> v( 1, sifno_unique[i] ) ;
4298        sel.setIFs( v ) ;
4299        ssig->setSelection( sel ) ;
4300        sel.reset() ;
4301        v[0] = rifno_unique[i] ;
4302        sel.setIFs( v ) ;
4303        sref->setSelection( sel ) ;
4304        sel.reset() ;
4305        if ( antname.find( "APEX" ) != string::npos ) {
4306          tmp[i] = dofold( ssig, sref, 0.5*doffset, -0.5*doffset ) ;
4307          //tmp[i] = dofold( ssig, sref, doffset ) ;
4308        }
4309        else {
4310          tmp[i] = dofold( ssig, sref, doffset ) ;
4311        }
4312        ssig->unsetSelection() ;
4313        sref->unsetSelection() ;
4314      }
4315    }
4316  }
4317
4318  if ( tmp.size() > 1 ) {
4319    out = merge( tmp ) ;
4320  }
4321  else {
4322    out = tmp[0] ;
4323  }
4324
4325  // flux unit
4326  out->setFluxUnit( "K" ) ;
4327
4328  return out ;
4329}
4330
4331CountedPtr<Scantable> STMath::almacalfs( const CountedPtr<Scantable>& s )
4332{
4333  (void) s; //currently unused
4334  CountedPtr<Scantable> out ;
4335
4336  return out ;
4337}
4338
4339vector<float> STMath::getSpectrumFromTime( string reftime,
4340                                           CountedPtr<Scantable>& s,
4341                                           string mode )
4342{
4343  LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4344  vector<float> sp ;
4345
4346  if ( s->nrow() == 0 ) {
4347    os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4348    return sp ;
4349  }
4350  else if ( s->nrow() == 1 ) {
4351    //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4352    return s->getSpectrum( 0 ) ;
4353  }
4354  else {
4355    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4356    if ( mode == "before" ) {
4357      int id = -1 ;
4358      if ( idx[0] != -1 ) {
4359        id = idx[0] ;
4360      }
4361      else if ( idx[1] != -1 ) {
4362        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4363        id = idx[1] ;
4364      }
4365      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4366      sp = s->getSpectrum( id ) ;
4367    }
4368    else if ( mode == "after" ) {
4369      int id = -1 ;
4370      if ( idx[1] != -1 ) {
4371        id = idx[1] ;
4372      }
4373      else if ( idx[0] != -1 ) {
4374        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4375        id = idx[1] ;
4376      }
4377      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4378      sp = s->getSpectrum( id ) ;
4379    }
4380    else if ( mode == "nearest" ) {
4381      int id = -1 ;
4382      if ( idx[0] == -1 ) {
4383        id = idx[1] ;
4384      }
4385      else if ( idx[1] == -1 ) {
4386        id = idx[0] ;
4387      }
4388      else if ( idx[0] == idx[1] ) {
4389        id = idx[0] ;
4390      }
4391      else {
4392        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4393        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4394        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4395        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4396        double tref = getMJD( reftime ) ;
4397        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4398          id = idx[1] ;
4399        }
4400        else {
4401          id = idx[0] ;
4402        }
4403      }
4404      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4405      sp = s->getSpectrum( id ) ;     
4406    }
4407    else if ( mode == "linear" ) {
4408      if ( idx[0] == -1 ) {
4409        // use after
4410        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4411        int id = idx[1] ;
4412        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4413        sp = s->getSpectrum( id ) ;
4414      }
4415      else if ( idx[1] == -1 ) {
4416        // use before
4417        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4418        int id = idx[0] ;
4419        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4420        sp = s->getSpectrum( id ) ;
4421      }
4422      else if ( idx[0] == idx[1] ) {
4423        // use before
4424        //os << "No need to interporate." << LogIO::POST ;
4425        int id = idx[0] ;
4426        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4427        sp = s->getSpectrum( id ) ;
4428      }
4429      else {
4430        // do interpolation
4431        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4432        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4433        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4434        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4435        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4436        double tref = getMJD( reftime ) ;
4437        vector<float> sp0 = s->getSpectrum( idx[0] ) ;
4438        vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4439        for ( unsigned int i = 0 ; i < sp0.size() ; i++ ) {
4440          float v = ( sp1[i] - sp0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + sp0[i] ;
4441          sp.push_back( v ) ;
4442        }
4443      }
4444    }
4445    else {
4446      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4447    }
4448    return sp ;
4449  }
4450}
4451
4452vector<float> STMath::getSpectrumFromTime( double reftime,
4453                                           CountedPtr<Scantable>& s,
4454                                           string mode )
4455{
4456  LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4457  vector<float> sp ;
4458
4459  if ( s->nrow() == 0 ) {
4460    os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4461    return sp ;
4462  }
4463  else if ( s->nrow() == 1 ) {
4464    //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4465    return s->getSpectrum( 0 ) ;
4466  }
4467  else {
4468    ROScalarColumn<Double> timeCol( s->table(), "TIME" ) ;
4469    Vector<Double> timeVec = timeCol.getColumn() ;
4470    vector<int> idx = getRowIdFromTime( reftime, timeVec ) ;
4471    if ( mode == "before" ) {
4472      int id = -1 ;
4473      if ( idx[0] != -1 ) {
4474        id = idx[0] ;
4475      }
4476      else if ( idx[1] != -1 ) {
4477        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4478        id = idx[1] ;
4479      }
4480      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4481      sp = s->getSpectrum( id ) ;
4482    }
4483    else if ( mode == "after" ) {
4484      int id = -1 ;
4485      if ( idx[1] != -1 ) {
4486        id = idx[1] ;
4487      }
4488      else if ( idx[0] != -1 ) {
4489        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4490        id = idx[1] ;
4491      }
4492      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4493      sp = s->getSpectrum( id ) ;
4494    }
4495    else if ( mode == "nearest" ) {
4496      int id = -1 ;
4497      if ( idx[0] == -1 ) {
4498        id = idx[1] ;
4499      }
4500      else if ( idx[1] == -1 ) {
4501        id = idx[0] ;
4502      }
4503      else if ( idx[0] == idx[1] ) {
4504        id = idx[0] ;
4505      }
4506      else {
4507        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4508        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4509//         double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4510//         double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4511        double t0 = timeVec[idx[0]] ;
4512        double t1 = timeVec[idx[1]] ;
4513//         cout << "t0-t0c=" << t0-t0c << endl ;
4514//         cout << "t1-t1c=" << t1-t1c << endl ;
4515//         double tref = getMJD( reftime ) ;
4516        double tref = reftime ;
4517        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4518          id = idx[1] ;
4519        }
4520        else {
4521          id = idx[0] ;
4522        }
4523      }
4524      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4525      sp = s->getSpectrum( id ) ;     
4526    }
4527    else if ( mode == "linear" ) {
4528      if ( idx[0] == -1 ) {
4529        // use after
4530        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4531        int id = idx[1] ;
4532        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4533        sp = s->getSpectrum( id ) ;
4534      }
4535      else if ( idx[1] == -1 ) {
4536        // use before
4537        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4538        int id = idx[0] ;
4539        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4540        sp = s->getSpectrum( id ) ;
4541      }
4542      else if ( idx[0] == idx[1] ) {
4543        // use before
4544        //os << "No need to interporate." << LogIO::POST ;
4545        int id = idx[0] ;
4546        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4547        sp = s->getSpectrum( id ) ;
4548      }
4549      else {
4550        // do interpolation
4551        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4552        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4553        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4554//         double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4555//         double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4556        double t0 = timeVec[idx[0]] ;
4557        double t1 = timeVec[idx[1]] ;
4558//         cout << "t0-t0c=" << t0-t0c << endl ;
4559//         cout << "t1-t1c=" << t1-t1c << endl ;
4560//         double tref = getMJD( reftime ) ;
4561        double tref = reftime ;
4562        vector<float> sp0 = s->getSpectrum( idx[0] ) ;
4563        vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4564        for ( unsigned int i = 0 ; i < sp0.size() ; i++ ) {
4565          float v = ( sp1[i] - sp0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + sp0[i] ;
4566          sp.push_back( v ) ;
4567        }
4568      }
4569    }
4570    else {
4571      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4572    }
4573    return sp ;
4574  }
4575}
4576
4577double STMath::getMJD( string strtime )
4578{
4579  if ( strtime.find("/") == string::npos ) {
4580    // MJD time string
4581    return atof( strtime.c_str() ) ;
4582  }
4583  else {
4584    // string in YYYY/MM/DD/HH:MM:SS format
4585    uInt year = atoi( strtime.substr( 0, 4 ).c_str() ) ;
4586    uInt month = atoi( strtime.substr( 5, 2 ).c_str() ) ;
4587    uInt day = atoi( strtime.substr( 8, 2 ).c_str() ) ;
4588    uInt hour = atoi( strtime.substr( 11, 2 ).c_str() ) ;
4589    uInt minute = atoi( strtime.substr( 14, 2 ).c_str() ) ;
4590    uInt sec = atoi( strtime.substr( 17, 2 ).c_str() ) ;
4591    Time t( year, month, day, hour, minute, sec ) ;
4592    return t.modifiedJulianDay() ;
4593  }
4594}
4595
4596vector<int> STMath::getRowIdFromTime( string reftime, CountedPtr<Scantable> &s )
4597{
4598  double reft = getMJD( reftime ) ;
4599  double dtmin = 1.0e100 ;
4600  double dtmax = -1.0e100 ;
4601  vector<double> dt ;
4602  int just_before = -1 ;
4603  int just_after = -1 ;
4604  for ( int i = 0 ; i < s->nrow() ; i++ ) {
4605    dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
4606  }
4607  for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4608    if ( dt[i] > 0.0 ) {
4609      // after reftime
4610      if ( dt[i] < dtmin ) {
4611        just_after = i ;
4612        dtmin = dt[i] ;
4613      }
4614    }
4615    else if ( dt[i] < 0.0 ) {
4616      // before reftime
4617      if ( dt[i] > dtmax ) {
4618        just_before = i ;
4619        dtmax = dt[i] ;
4620      }
4621    }
4622    else {
4623      // just a reftime
4624      just_before = i ;
4625      just_after = i ;
4626      dtmax = 0 ;
4627      dtmin = 0 ;
4628      break ;
4629    }
4630  }
4631
4632  vector<int> v ;
4633  v.push_back( just_before ) ;
4634  v.push_back( just_after ) ;
4635
4636  return v ;
4637}
4638
4639vector<int> STMath::getRowIdFromTime( double reftime, Vector<Double> &t )
4640{
4641//   double reft = reftime ;
4642  double dtmin = 1.0e100 ;
4643  double dtmax = -1.0e100 ;
4644//   vector<double> dt ;
4645  int just_before = -1 ;
4646  int just_after = -1 ;
4647  //cout << setprecision(24) << reft << endl ;
4648//   ROScalarColumn<Double> timeCol( s->table(), "TIME" ) ;
4649//   for ( int i = 0 ; i < s->nrow() ; i++ ) {
4650//     cout << setprecision(24) << timeCol(i) << endl ;
4651//     //dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
4652//     dt.push_back( timeCol(i) - reft ) ;
4653//   }
4654  Vector<Double> dt = t - reftime ;
4655  for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4656    if ( dt[i] > 0.0 ) {
4657      // after reftime
4658      if ( dt[i] < dtmin ) {
4659        just_after = i ;
4660        dtmin = dt[i] ;
4661      }
4662    }
4663    else if ( dt[i] < 0.0 ) {
4664      // before reftime
4665      if ( dt[i] > dtmax ) {
4666        just_before = i ;
4667        dtmax = dt[i] ;
4668      }
4669    }
4670    else {
4671      // just a reftime
4672      just_before = i ;
4673      just_after = i ;
4674      dtmax = 0 ;
4675      dtmin = 0 ;
4676      break ;
4677    }
4678  }
4679
4680  vector<int> v(2) ;
4681  v[0] = just_before ;
4682  v[1] = just_after ;
4683
4684  return v ;
4685}
4686
4687vector<float> STMath::getTcalFromTime( string reftime,
4688                                       CountedPtr<Scantable>& s,
4689                                       string mode )
4690{
4691  LogIO os( LogOrigin( "STMath", "getTcalFromTime", WHERE ) ) ;
4692  vector<float> tcal ;
4693  STTcal tcalTable = s->tcal() ;
4694  String time ;
4695  Vector<Float> tcalval ;
4696  if ( s->nrow() == 0 ) {
4697    os << LogIO::SEVERE << "No row in the input scantable. Return empty tcal." << LogIO::POST ;
4698    return tcal ;
4699  }
4700  else if ( s->nrow() == 1 ) {
4701    uInt tcalid = s->getTcalId( 0 ) ;
4702    //os << "use row " << 0 << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4703    tcalTable.getEntry( time, tcalval, tcalid ) ;
4704    tcalval.tovector( tcal ) ;
4705    return tcal ;
4706  }
4707  else {
4708    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4709    if ( mode == "before" ) {
4710      int id = -1 ;
4711      if ( idx[0] != -1 ) {
4712        id = idx[0] ;
4713      }
4714      else if ( idx[1] != -1 ) {
4715        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4716        id = idx[1] ;
4717      }
4718      uInt tcalid = s->getTcalId( id ) ;
4719      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4720      tcalTable.getEntry( time, tcalval, tcalid ) ;
4721      tcalval.tovector( tcal ) ;
4722    }
4723    else if ( mode == "after" ) {
4724      int id = -1 ;
4725      if ( idx[1] != -1 ) {
4726        id = idx[1] ;
4727      }
4728      else if ( idx[0] != -1 ) {
4729        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4730        id = idx[1] ;
4731      }
4732      uInt tcalid = s->getTcalId( id ) ;
4733      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4734      tcalTable.getEntry( time, tcalval, tcalid ) ;
4735      tcalval.tovector( tcal ) ;
4736    }
4737    else if ( mode == "nearest" ) {
4738      int id = -1 ;
4739      if ( idx[0] == -1 ) {
4740        id = idx[1] ;
4741      }
4742      else if ( idx[1] == -1 ) {
4743        id = idx[0] ;
4744      }
4745      else if ( idx[0] == idx[1] ) {
4746        id = idx[0] ;
4747      }
4748      else {
4749        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4750        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4751        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4752        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4753        double tref = getMJD( reftime ) ;
4754        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4755          id = idx[1] ;
4756        }
4757        else {
4758          id = idx[0] ;
4759        }
4760      }
4761      uInt tcalid = s->getTcalId( id ) ;
4762      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4763      tcalTable.getEntry( time, tcalval, tcalid ) ;
4764      tcalval.tovector( tcal ) ;
4765    }
4766    else if ( mode == "linear" ) {
4767      if ( idx[0] == -1 ) {
4768        // use after
4769        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4770        int id = idx[1] ;
4771        uInt tcalid = s->getTcalId( id ) ;
4772        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4773        tcalTable.getEntry( time, tcalval, tcalid ) ;
4774        tcalval.tovector( tcal ) ;
4775      }
4776      else if ( idx[1] == -1 ) {
4777        // use before
4778        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4779        int id = idx[0] ;
4780        uInt tcalid = s->getTcalId( id ) ;
4781        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4782        tcalTable.getEntry( time, tcalval, tcalid ) ;
4783        tcalval.tovector( tcal ) ;
4784      }
4785      else if ( idx[0] == idx[1] ) {
4786        // use before
4787        //os << "No need to interporate." << LogIO::POST ;
4788        int id = idx[0] ;
4789        uInt tcalid = s->getTcalId( id ) ;
4790        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4791        tcalTable.getEntry( time, tcalval, tcalid ) ;
4792        tcalval.tovector( tcal ) ;
4793      }
4794      else {
4795        // do interpolation
4796        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4797        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4798        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4799        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4800        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4801        double tref = getMJD( reftime ) ;
4802        vector<float> tcal0 ;
4803        vector<float> tcal1 ;
4804        uInt tcalid0 = s->getTcalId( idx[0] ) ;
4805        uInt tcalid1 = s->getTcalId( idx[1] ) ;
4806        tcalTable.getEntry( time, tcalval, tcalid0 ) ;
4807        tcalval.tovector( tcal0 ) ;
4808        tcalTable.getEntry( time, tcalval, tcalid1 ) ;
4809        tcalval.tovector( tcal1 ) ;       
4810        for ( unsigned int i = 0 ; i < tcal0.size() ; i++ ) {
4811          float v = ( tcal1[i] - tcal0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tcal0[i] ;
4812          tcal.push_back( v ) ;
4813        }
4814      }
4815    }
4816    else {
4817      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4818    }
4819    return tcal ;
4820  }
4821}
4822
4823vector<float> STMath::getTsysFromTime( string reftime,
4824                                       CountedPtr<Scantable>& s,
4825                                       string mode )
4826{
4827  LogIO os( LogOrigin( "STMath", "getTsysFromTime", WHERE ) ) ;
4828  ArrayColumn<Float> tsysCol ;
4829  tsysCol.attach( s->table(), "TSYS" ) ;
4830  vector<float> tsys ;
4831  String time ;
4832  Vector<Float> tsysval ;
4833  if ( s->nrow() == 0 ) {
4834    os << LogIO::SEVERE << "No row in the input scantable. Return empty tsys." << LogIO::POST ;
4835    return tsys ;
4836  }
4837  else if ( s->nrow() == 1 ) {
4838    //os << "use row " << 0 << LogIO::POST ;
4839    tsysval = tsysCol( 0 ) ;
4840    tsysval.tovector( tsys ) ;
4841    return tsys ;
4842  }
4843  else {
4844    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4845    if ( mode == "before" ) {
4846      int id = -1 ;
4847      if ( idx[0] != -1 ) {
4848        id = idx[0] ;
4849      }
4850      else if ( idx[1] != -1 ) {
4851        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4852        id = idx[1] ;
4853      }
4854      //os << "use row " << id << LogIO::POST ;
4855      tsysval = tsysCol( id ) ;
4856      tsysval.tovector( tsys ) ;
4857    }
4858    else if ( mode == "after" ) {
4859      int id = -1 ;
4860      if ( idx[1] != -1 ) {
4861        id = idx[1] ;
4862      }
4863      else if ( idx[0] != -1 ) {
4864        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4865        id = idx[1] ;
4866      }
4867      //os << "use row " << id << LogIO::POST ;
4868      tsysval = tsysCol( id ) ;
4869      tsysval.tovector( tsys ) ;
4870    }
4871    else if ( mode == "nearest" ) {
4872      int id = -1 ;
4873      if ( idx[0] == -1 ) {
4874        id = idx[1] ;
4875      }
4876      else if ( idx[1] == -1 ) {
4877        id = idx[0] ;
4878      }
4879      else if ( idx[0] == idx[1] ) {
4880        id = idx[0] ;
4881      }
4882      else {
4883        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4884        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4885        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4886        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4887        double tref = getMJD( reftime ) ;
4888        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4889          id = idx[1] ;
4890        }
4891        else {
4892          id = idx[0] ;
4893        }
4894      }
4895      //os << "use row " << id << LogIO::POST ;
4896      tsysval = tsysCol( id ) ;
4897      tsysval.tovector( tsys ) ;
4898    }
4899    else if ( mode == "linear" ) {
4900      if ( idx[0] == -1 ) {
4901        // use after
4902        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4903        int id = idx[1] ;
4904        //os << "use row " << id << LogIO::POST ;
4905        tsysval = tsysCol( id ) ;
4906        tsysval.tovector( tsys ) ;
4907      }
4908      else if ( idx[1] == -1 ) {
4909        // use before
4910        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4911        int id = idx[0] ;
4912        //os << "use row " << id << LogIO::POST ;
4913        tsysval = tsysCol( id ) ;
4914        tsysval.tovector( tsys ) ;
4915      }
4916      else if ( idx[0] == idx[1] ) {
4917        // use before
4918        //os << "No need to interporate." << LogIO::POST ;
4919        int id = idx[0] ;
4920        //os << "use row " << id << LogIO::POST ;
4921        tsysval = tsysCol( id ) ;
4922        tsysval.tovector( tsys ) ;
4923      }
4924      else {
4925        // do interpolation
4926        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4927        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4928        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4929        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4930        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4931        double tref = getMJD( reftime ) ;
4932        vector<float> tsys0 ;
4933        vector<float> tsys1 ;
4934        tsysval = tsysCol( idx[0] ) ;
4935        tsysval.tovector( tsys0 ) ;
4936        tsysval = tsysCol( idx[1] ) ;
4937        tsysval.tovector( tsys1 ) ;       
4938        for ( unsigned int i = 0 ; i < tsys0.size() ; i++ ) {
4939          float v = ( tsys1[i] - tsys0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tsys0[i] ;
4940          tsys.push_back( v ) ;
4941        }
4942      }
4943    }
4944    else {
4945      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4946    }
4947    return tsys ;
4948  }
4949}
4950
4951vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4952                                            CountedPtr<Scantable>& off,
4953                                            CountedPtr<Scantable>& sky,
4954                                            CountedPtr<Scantable>& hot,
4955                                            CountedPtr<Scantable>& cold,
4956                                            int index,
4957                                            string antname )
4958{
4959  (void) cold; //currently unused
4960  string reftime = on->getTime( index ) ;
4961  vector<int> ii( 1, on->getIF( index ) ) ;
4962  vector<int> ib( 1, on->getBeam( index ) ) ;
4963  vector<int> ip( 1, on->getPol( index ) ) ;
4964  vector<int> ic( 1, on->getScan( index ) ) ;
4965  STSelector sel = STSelector() ;
4966  sel.setIFs( ii ) ;
4967  sel.setBeams( ib ) ;
4968  sel.setPolarizations( ip ) ;
4969  sky->setSelection( sel ) ;
4970  hot->setSelection( sel ) ;
4971  //cold->setSelection( sel ) ;
4972  off->setSelection( sel ) ;
4973  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4974  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4975  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4976  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4977  vector<float> spec = on->getSpectrum( index ) ;
4978  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4979  vector<float> sp( tcal.size() ) ;
4980  if ( antname.find( "APEX" ) != string::npos ) {
4981    // using gain array
4982    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4983      float v = ( ( spec[j] - spoff[j] ) / spoff[j] )
4984        * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4985      sp[j] = v ;
4986    }
4987  }
4988  else {
4989    // Chopper-Wheel calibration (Ulich & Haas 1976)
4990    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4991      float v = ( spec[j] - spoff[j] ) / ( sphot[j] - spsky[j] ) * tcal[j] ;
4992      sp[j] = v ;
4993    }
4994  }
4995  sel.reset() ;
4996  sky->unsetSelection() ;
4997  hot->unsetSelection() ;
4998  //cold->unsetSelection() ;
4999  off->unsetSelection() ;
5000
5001  return sp ;
5002}
5003
5004vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
5005                                            CountedPtr<Scantable>& off,
5006                                            int index )
5007{
5008//   string reftime = on->getTime( index ) ;
5009  ROTableColumn timeCol( on->table(), "TIME" ) ;
5010  double reftime = timeCol.asdouble(index) ;
5011  vector<int> ii( 1, on->getIF( index ) ) ;
5012  vector<int> ib( 1, on->getBeam( index ) ) ;
5013  vector<int> ip( 1, on->getPol( index ) ) ;
5014  vector<int> ic( 1, on->getScan( index ) ) ;
5015  STSelector sel = STSelector() ;
5016  sel.setIFs( ii ) ;
5017  sel.setBeams( ib ) ;
5018  sel.setPolarizations( ip ) ;
5019  off->setSelection( sel ) ;
5020  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
5021  vector<float> spec = on->getSpectrum( index ) ;
5022  //vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
5023  //vector<float> tsys = on->getTsysVec( index ) ;
5024  ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
5025  Vector<Float> tsys = tsysCol( index ) ;
5026  vector<float> sp( spec.size() ) ;
5027  // ALMA Calibration
5028  //
5029  // Ta* = Tsys * ( ON - OFF ) / OFF
5030  //
5031  // 2010/01/07 Takeshi Nakazato
5032  unsigned int tsyssize = tsys.nelements() ;
5033  unsigned int spsize = sp.size() ;
5034  for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
5035    float tscale = 0.0 ;
5036    if ( tsyssize == spsize )
5037      tscale = tsys[j] ;
5038    else
5039      tscale = tsys[0] ;
5040    float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
5041    sp[j] = v ;
5042  }
5043  sel.reset() ;
5044  off->unsetSelection() ;
5045
5046  return sp ;
5047}
5048
5049vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
5050                                              CountedPtr<Scantable>& ref,
5051                                              CountedPtr<Scantable>& sky,
5052                                              CountedPtr<Scantable>& hot,
5053                                              CountedPtr<Scantable>& cold,
5054                                              int index )
5055{
5056  (void) cold; //currently unused
5057  string reftime = sig->getTime( index ) ;
5058  vector<int> ii( 1, sig->getIF( index ) ) ;
5059  vector<int> ib( 1, sig->getBeam( index ) ) ;
5060  vector<int> ip( 1, sig->getPol( index ) ) ;
5061  vector<int> ic( 1, sig->getScan( index ) ) ;
5062  STSelector sel = STSelector() ;
5063  sel.setIFs( ii ) ;
5064  sel.setBeams( ib ) ;
5065  sel.setPolarizations( ip ) ;
5066  sky->setSelection( sel ) ;
5067  hot->setSelection( sel ) ;
5068  //cold->setSelection( sel ) ;
5069  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
5070  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
5071  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
5072  vector<float> spref = ref->getSpectrum( index ) ;
5073  vector<float> spsig = sig->getSpectrum( index ) ;
5074  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
5075  vector<float> sp( tcal.size() ) ;
5076  for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
5077    float v = tcal[j] * spsky[j] / ( sphot[j] - spsky[j] ) * ( spsig[j] - spref[j] ) / spref[j] ;
5078    sp[j] = v ;
5079  }
5080  sel.reset() ;
5081  sky->unsetSelection() ;
5082  hot->unsetSelection() ;
5083  //cold->unsetSelection() ;
5084
5085  return sp ;
5086}
5087
5088vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
5089                                              CountedPtr<Scantable>& ref,
5090                                              vector< CountedPtr<Scantable> >& sky,
5091                                              vector< CountedPtr<Scantable> >& hot,
5092                                              vector< CountedPtr<Scantable> >& cold,
5093                                              int index )
5094{
5095  (void) cold; //currently unused
5096  string reftime = sig->getTime( index ) ;
5097  vector<int> ii( 1, sig->getIF( index ) ) ;
5098  vector<int> ib( 1, sig->getBeam( index ) ) ;
5099  vector<int> ip( 1, sig->getPol( index ) ) ;
5100  vector<int> ic( 1, sig->getScan( index ) ) ;
5101  STSelector sel = STSelector() ;
5102  sel.setIFs( ii ) ;
5103  sel.setBeams( ib ) ;
5104  sel.setPolarizations( ip ) ;
5105  sky[0]->setSelection( sel ) ;
5106  hot[0]->setSelection( sel ) ;
5107  //cold[0]->setSelection( sel ) ;
5108  vector<float> spskys = getSpectrumFromTime( reftime, sky[0], "linear" ) ;
5109  vector<float> sphots = getSpectrumFromTime( reftime, hot[0], "linear" ) ;
5110  //vector<float> spcolds = getSpectrumFromTime( reftime, cold[0], "linear" ) ;
5111  vector<float> tcals = getTcalFromTime( reftime, sky[0], "linear" ) ;
5112  sel.reset() ;
5113  ii[0] = ref->getIF( index ) ;
5114  sel.setIFs( ii ) ;
5115  sel.setBeams( ib ) ;
5116  sel.setPolarizations( ip ) ;
5117  sky[1]->setSelection( sel ) ;
5118  hot[1]->setSelection( sel ) ;
5119  //cold[1]->setSelection( sel ) ;
5120  vector<float> spskyr = getSpectrumFromTime( reftime, sky[1], "linear" ) ;
5121  vector<float> sphotr = getSpectrumFromTime( reftime, hot[1], "linear" ) ;
5122  //vector<float> spcoldr = getSpectrumFromTime( reftime, cold[1], "linear" ) ;
5123  vector<float> tcalr = getTcalFromTime( reftime, sky[1], "linear" ) ; 
5124  vector<float> spref = ref->getSpectrum( index ) ;
5125  vector<float> spsig = sig->getSpectrum( index ) ;
5126  vector<float> sp( tcals.size() ) ;
5127  for ( unsigned int j = 0 ; j < tcals.size() ; j++ ) {
5128    float v = tcals[j] * spsig[j] / ( sphots[j] - spskys[j] ) - tcalr[j] * spref[j] / ( sphotr[j] - spskyr[j] ) ;
5129    sp[j] = v ;
5130  }
5131  sel.reset() ;
5132  sky[0]->unsetSelection() ;
5133  hot[0]->unsetSelection() ;
5134  //cold[0]->unsetSelection() ;
5135  sky[1]->unsetSelection() ;
5136  hot[1]->unsetSelection() ;
5137  //cold[1]->unsetSelection() ;
5138
5139  return sp ;
5140}
Note: See TracBrowser for help on using the repository browser.