[1846] | 1 | """This module defines the scantable class."""
|
---|
| 2 |
|
---|
[1697] | 3 | import os
|
---|
[1948] | 4 | import numpy
|
---|
[1691] | 5 | try:
|
---|
| 6 | from functools import wraps as wraps_dec
|
---|
| 7 | except ImportError:
|
---|
| 8 | from asap.compatibility import wraps as wraps_dec
|
---|
| 9 |
|
---|
[1824] | 10 | from asap.env import is_casapy
|
---|
[876] | 11 | from asap._asap import Scantable
|
---|
[2004] | 12 | from asap._asap import filler, msfiller
|
---|
[1824] | 13 | from asap.parameters import rcParams
|
---|
[1862] | 14 | from asap.logging import asaplog, asaplog_post_dec
|
---|
[1824] | 15 | from asap.selector import selector
|
---|
| 16 | from asap.linecatalog import linecatalog
|
---|
[1600] | 17 | from asap.coordinate import coordinate
|
---|
[1859] | 18 | from asap.utils import _n_bools, mask_not, mask_and, mask_or, page
|
---|
[1907] | 19 | from asap.asapfitter import fitter
|
---|
[102] | 20 |
|
---|
[1689] | 21 |
|
---|
| 22 | def preserve_selection(func):
|
---|
[1691] | 23 | @wraps_dec(func)
|
---|
[1689] | 24 | def wrap(obj, *args, **kw):
|
---|
| 25 | basesel = obj.get_selection()
|
---|
[1857] | 26 | try:
|
---|
| 27 | val = func(obj, *args, **kw)
|
---|
| 28 | finally:
|
---|
| 29 | obj.set_selection(basesel)
|
---|
[1689] | 30 | return val
|
---|
| 31 | return wrap
|
---|
| 32 |
|
---|
[1846] | 33 | def is_scantable(filename):
|
---|
| 34 | """Is the given file a scantable?
|
---|
[1689] | 35 |
|
---|
[1846] | 36 | Parameters:
|
---|
| 37 |
|
---|
| 38 | filename: the name of the file/directory to test
|
---|
| 39 |
|
---|
| 40 | """
|
---|
[1883] | 41 | if ( os.path.isdir(filename)
|
---|
| 42 | and os.path.exists(filename+'/table.info')
|
---|
| 43 | and os.path.exists(filename+'/table.dat') ):
|
---|
| 44 | f=open(filename+'/table.info')
|
---|
| 45 | l=f.readline()
|
---|
| 46 | f.close()
|
---|
| 47 | #if ( l.find('Scantable') != -1 ):
|
---|
| 48 | if ( l.find('Measurement Set') == -1 ):
|
---|
| 49 | return True
|
---|
| 50 | else:
|
---|
| 51 | return False
|
---|
| 52 | else:
|
---|
| 53 | return False
|
---|
| 54 | ## return (os.path.isdir(filename)
|
---|
| 55 | ## and not os.path.exists(filename+'/table.f1')
|
---|
| 56 | ## and os.path.exists(filename+'/table.info'))
|
---|
[1697] | 57 |
|
---|
[1883] | 58 | def is_ms(filename):
|
---|
| 59 | """Is the given file a MeasurementSet?
|
---|
[1697] | 60 |
|
---|
[1883] | 61 | Parameters:
|
---|
| 62 |
|
---|
| 63 | filename: the name of the file/directory to test
|
---|
| 64 |
|
---|
| 65 | """
|
---|
| 66 | if ( os.path.isdir(filename)
|
---|
| 67 | and os.path.exists(filename+'/table.info')
|
---|
| 68 | and os.path.exists(filename+'/table.dat') ):
|
---|
| 69 | f=open(filename+'/table.info')
|
---|
| 70 | l=f.readline()
|
---|
| 71 | f.close()
|
---|
| 72 | if ( l.find('Measurement Set') != -1 ):
|
---|
| 73 | return True
|
---|
| 74 | else:
|
---|
| 75 | return False
|
---|
| 76 | else:
|
---|
| 77 | return False
|
---|
| 78 |
|
---|
[876] | 79 | class scantable(Scantable):
|
---|
[1846] | 80 | """\
|
---|
| 81 | The ASAP container for scans (single-dish data).
|
---|
[102] | 82 | """
|
---|
[1819] | 83 |
|
---|
[1862] | 84 | @asaplog_post_dec
|
---|
[1916] | 85 | #def __init__(self, filename, average=None, unit=None, getpt=None,
|
---|
| 86 | # antenna=None, parallactify=None):
|
---|
| 87 | def __init__(self, filename, average=None, unit=None, parallactify=None, **args):
|
---|
[1846] | 88 | """\
|
---|
[102] | 89 | Create a scantable from a saved one or make a reference
|
---|
[1846] | 90 |
|
---|
[102] | 91 | Parameters:
|
---|
[1846] | 92 |
|
---|
| 93 | filename: the name of an asap table on disk
|
---|
| 94 | or
|
---|
| 95 | the name of a rpfits/sdfits/ms file
|
---|
| 96 | (integrations within scans are auto averaged
|
---|
| 97 | and the whole file is read) or
|
---|
| 98 | [advanced] a reference to an existing scantable
|
---|
| 99 |
|
---|
| 100 | average: average all integrations withinb a scan on read.
|
---|
| 101 | The default (True) is taken from .asaprc.
|
---|
| 102 |
|
---|
[484] | 103 | unit: brightness unit; must be consistent with K or Jy.
|
---|
[1846] | 104 | Over-rides the default selected by the filler
|
---|
| 105 | (input rpfits/sdfits/ms) or replaces the value
|
---|
| 106 | in existing scantables
|
---|
| 107 |
|
---|
| 108 | getpt: for MeasurementSet input data only:
|
---|
| 109 | If True, all pointing data are filled.
|
---|
| 110 | The deafult is False, which makes time to load
|
---|
| 111 | the MS data faster in some cases.
|
---|
| 112 |
|
---|
[1920] | 113 | antenna: for MeasurementSet input data only:
|
---|
| 114 | Antenna selection. integer (id) or string (name or id).
|
---|
[1846] | 115 |
|
---|
| 116 | parallactify: Indicate that the data had been parallatified. Default
|
---|
| 117 | is taken from rc file.
|
---|
| 118 |
|
---|
[710] | 119 | """
|
---|
[976] | 120 | if average is None:
|
---|
[710] | 121 | average = rcParams['scantable.autoaverage']
|
---|
[1916] | 122 | #if getpt is None:
|
---|
| 123 | # getpt = True
|
---|
| 124 | #if antenna is not None:
|
---|
| 125 | # asaplog.push("Antenna selection currently unsupported."
|
---|
| 126 | # "Using ''")
|
---|
| 127 | # asaplog.post('WARN')
|
---|
| 128 | #if antenna is None:
|
---|
| 129 | # antenna = ''
|
---|
| 130 | #elif type(antenna) == int:
|
---|
| 131 | # antenna = '%s' % antenna
|
---|
| 132 | #elif type(antenna) == list:
|
---|
| 133 | # tmpstr = ''
|
---|
| 134 | # for i in range( len(antenna) ):
|
---|
| 135 | # if type(antenna[i]) == int:
|
---|
| 136 | # tmpstr = tmpstr + ('%s,'%(antenna[i]))
|
---|
| 137 | # elif type(antenna[i]) == str:
|
---|
| 138 | # tmpstr=tmpstr+antenna[i]+','
|
---|
| 139 | # else:
|
---|
| 140 | # raise TypeError('Bad antenna selection.')
|
---|
| 141 | # antenna = tmpstr.rstrip(',')
|
---|
[1593] | 142 | parallactify = parallactify or rcParams['scantable.parallactify']
|
---|
[1259] | 143 | varlist = vars()
|
---|
[876] | 144 | from asap._asap import stmath
|
---|
[1819] | 145 | self._math = stmath( rcParams['insitu'] )
|
---|
[876] | 146 | if isinstance(filename, Scantable):
|
---|
| 147 | Scantable.__init__(self, filename)
|
---|
[181] | 148 | else:
|
---|
[1697] | 149 | if isinstance(filename, str):
|
---|
[976] | 150 | filename = os.path.expandvars(filename)
|
---|
| 151 | filename = os.path.expanduser(filename)
|
---|
| 152 | if not os.path.exists(filename):
|
---|
| 153 | s = "File '%s' not found." % (filename)
|
---|
| 154 | raise IOError(s)
|
---|
[1697] | 155 | if is_scantable(filename):
|
---|
| 156 | ondisk = rcParams['scantable.storage'] == 'disk'
|
---|
| 157 | Scantable.__init__(self, filename, ondisk)
|
---|
| 158 | if unit is not None:
|
---|
| 159 | self.set_fluxunit(unit)
|
---|
[2008] | 160 | if average:
|
---|
| 161 | self._assign( self.average_time( scanav=True ) )
|
---|
[1819] | 162 | # do not reset to the default freqframe
|
---|
| 163 | #self.set_freqframe(rcParams['scantable.freqframe'])
|
---|
[1883] | 164 | #elif os.path.isdir(filename) \
|
---|
| 165 | # and not os.path.exists(filename+'/table.f1'):
|
---|
| 166 | elif is_ms(filename):
|
---|
[1916] | 167 | # Measurement Set
|
---|
| 168 | opts={'ms': {}}
|
---|
| 169 | mskeys=['getpt','antenna']
|
---|
| 170 | for key in mskeys:
|
---|
| 171 | if key in args.keys():
|
---|
| 172 | opts['ms'][key] = args[key]
|
---|
| 173 | #self._fill([filename], unit, average, getpt, antenna)
|
---|
| 174 | self._fill([filename], unit, average, opts)
|
---|
[1893] | 175 | elif os.path.isfile(filename):
|
---|
[1916] | 176 | #self._fill([filename], unit, average, getpt, antenna)
|
---|
| 177 | self._fill([filename], unit, average)
|
---|
[1883] | 178 | else:
|
---|
[1819] | 179 | msg = "The given file '%s'is not a valid " \
|
---|
| 180 | "asap table." % (filename)
|
---|
[1859] | 181 | raise IOError(msg)
|
---|
[1118] | 182 | elif (isinstance(filename, list) or isinstance(filename, tuple)) \
|
---|
[976] | 183 | and isinstance(filename[-1], str):
|
---|
[1916] | 184 | #self._fill(filename, unit, average, getpt, antenna)
|
---|
| 185 | self._fill(filename, unit, average)
|
---|
[1586] | 186 | self.parallactify(parallactify)
|
---|
[1259] | 187 | self._add_history("scantable", varlist)
|
---|
[102] | 188 |
|
---|
[1862] | 189 | @asaplog_post_dec
|
---|
[876] | 190 | def save(self, name=None, format=None, overwrite=False):
|
---|
[1846] | 191 | """\
|
---|
[1280] | 192 | Store the scantable on disk. This can be an asap (aips++) Table,
|
---|
| 193 | SDFITS or MS2 format.
|
---|
[1846] | 194 |
|
---|
[116] | 195 | Parameters:
|
---|
[1846] | 196 |
|
---|
[1093] | 197 | name: the name of the outputfile. For format "ASCII"
|
---|
| 198 | this is the root file name (data in 'name'.txt
|
---|
[497] | 199 | and header in 'name'_header.txt)
|
---|
[1855] | 200 |
|
---|
[116] | 201 | format: an optional file format. Default is ASAP.
|
---|
[1855] | 202 | Allowed are:
|
---|
| 203 |
|
---|
| 204 | * 'ASAP' (save as ASAP [aips++] Table),
|
---|
| 205 | * 'SDFITS' (save as SDFITS file)
|
---|
| 206 | * 'ASCII' (saves as ascii text file)
|
---|
| 207 | * 'MS2' (saves as an casacore MeasurementSet V2)
|
---|
| 208 | * 'FITS' (save as image FITS - not readable by class)
|
---|
| 209 | * 'CLASS' (save as FITS readable by CLASS)
|
---|
| 210 |
|
---|
[411] | 211 | overwrite: If the file should be overwritten if it exists.
|
---|
[256] | 212 | The default False is to return with warning
|
---|
[411] | 213 | without writing the output. USE WITH CARE.
|
---|
[1855] | 214 |
|
---|
[1846] | 215 | Example::
|
---|
| 216 |
|
---|
[116] | 217 | scan.save('myscan.asap')
|
---|
[1118] | 218 | scan.save('myscan.sdfits', 'SDFITS')
|
---|
[1846] | 219 |
|
---|
[116] | 220 | """
|
---|
[411] | 221 | from os import path
|
---|
[1593] | 222 | format = format or rcParams['scantable.save']
|
---|
[256] | 223 | suffix = '.'+format.lower()
|
---|
[1118] | 224 | if name is None or name == "":
|
---|
[256] | 225 | name = 'scantable'+suffix
|
---|
[718] | 226 | msg = "No filename given. Using default name %s..." % name
|
---|
| 227 | asaplog.push(msg)
|
---|
[411] | 228 | name = path.expandvars(name)
|
---|
[256] | 229 | if path.isfile(name) or path.isdir(name):
|
---|
| 230 | if not overwrite:
|
---|
[718] | 231 | msg = "File %s exists." % name
|
---|
[1859] | 232 | raise IOError(msg)
|
---|
[451] | 233 | format2 = format.upper()
|
---|
| 234 | if format2 == 'ASAP':
|
---|
[116] | 235 | self._save(name)
|
---|
[2029] | 236 | elif format2 == 'MS2':
|
---|
| 237 | msopt = {'ms': {'overwrite': overwrite } }
|
---|
| 238 | from asap._asap import mswriter
|
---|
| 239 | writer = mswriter( self )
|
---|
| 240 | writer.write( name, msopt )
|
---|
[116] | 241 | else:
|
---|
[989] | 242 | from asap._asap import stwriter as stw
|
---|
[1118] | 243 | writer = stw(format2)
|
---|
| 244 | writer.write(self, name)
|
---|
[116] | 245 | return
|
---|
| 246 |
|
---|
[102] | 247 | def copy(self):
|
---|
[1846] | 248 | """Return a copy of this scantable.
|
---|
| 249 |
|
---|
| 250 | *Note*:
|
---|
| 251 |
|
---|
[1348] | 252 | This makes a full (deep) copy. scan2 = scan1 makes a reference.
|
---|
[1846] | 253 |
|
---|
| 254 | Example::
|
---|
| 255 |
|
---|
[102] | 256 | copiedscan = scan.copy()
|
---|
[1846] | 257 |
|
---|
[102] | 258 | """
|
---|
[876] | 259 | sd = scantable(Scantable._copy(self))
|
---|
[113] | 260 | return sd
|
---|
| 261 |
|
---|
[1093] | 262 | def drop_scan(self, scanid=None):
|
---|
[1846] | 263 | """\
|
---|
[1093] | 264 | Return a new scantable where the specified scan number(s) has(have)
|
---|
| 265 | been dropped.
|
---|
[1846] | 266 |
|
---|
[1093] | 267 | Parameters:
|
---|
[1846] | 268 |
|
---|
[1093] | 269 | scanid: a (list of) scan number(s)
|
---|
[1846] | 270 |
|
---|
[1093] | 271 | """
|
---|
| 272 | from asap import _is_sequence_or_number as _is_valid
|
---|
| 273 | from asap import _to_list
|
---|
| 274 | from asap import unique
|
---|
| 275 | if not _is_valid(scanid):
|
---|
[1859] | 276 | raise RuntimeError( 'Please specify a scanno to drop from the scantable' )
|
---|
| 277 | scanid = _to_list(scanid)
|
---|
| 278 | allscans = unique([ self.getscan(i) for i in range(self.nrow())])
|
---|
| 279 | for sid in scanid: allscans.remove(sid)
|
---|
| 280 | if len(allscans) == 0:
|
---|
| 281 | raise ValueError("Can't remove all scans")
|
---|
| 282 | sel = selector(scans=allscans)
|
---|
| 283 | return self._select_copy(sel)
|
---|
[1093] | 284 |
|
---|
[1594] | 285 | def _select_copy(self, selection):
|
---|
| 286 | orig = self.get_selection()
|
---|
| 287 | self.set_selection(orig+selection)
|
---|
| 288 | cp = self.copy()
|
---|
| 289 | self.set_selection(orig)
|
---|
| 290 | return cp
|
---|
| 291 |
|
---|
[102] | 292 | def get_scan(self, scanid=None):
|
---|
[1855] | 293 | """\
|
---|
[102] | 294 | Return a specific scan (by scanno) or collection of scans (by
|
---|
| 295 | source name) in a new scantable.
|
---|
[1846] | 296 |
|
---|
| 297 | *Note*:
|
---|
| 298 |
|
---|
[1348] | 299 | See scantable.drop_scan() for the inverse operation.
|
---|
[1846] | 300 |
|
---|
[102] | 301 | Parameters:
|
---|
[1846] | 302 |
|
---|
[513] | 303 | scanid: a (list of) scanno or a source name, unix-style
|
---|
| 304 | patterns are accepted for source name matching, e.g.
|
---|
| 305 | '*_R' gets all 'ref scans
|
---|
[1846] | 306 |
|
---|
| 307 | Example::
|
---|
| 308 |
|
---|
[513] | 309 | # get all scans containing the source '323p459'
|
---|
| 310 | newscan = scan.get_scan('323p459')
|
---|
| 311 | # get all 'off' scans
|
---|
| 312 | refscans = scan.get_scan('*_R')
|
---|
| 313 | # get a susbset of scans by scanno (as listed in scan.summary())
|
---|
[1118] | 314 | newscan = scan.get_scan([0, 2, 7, 10])
|
---|
[1846] | 315 |
|
---|
[102] | 316 | """
|
---|
| 317 | if scanid is None:
|
---|
[1859] | 318 | raise RuntimeError( 'Please specify a scan no or name to '
|
---|
| 319 | 'retrieve from the scantable' )
|
---|
[102] | 320 | try:
|
---|
[946] | 321 | bsel = self.get_selection()
|
---|
| 322 | sel = selector()
|
---|
[102] | 323 | if type(scanid) is str:
|
---|
[946] | 324 | sel.set_name(scanid)
|
---|
[1594] | 325 | return self._select_copy(sel)
|
---|
[102] | 326 | elif type(scanid) is int:
|
---|
[946] | 327 | sel.set_scans([scanid])
|
---|
[1594] | 328 | return self._select_copy(sel)
|
---|
[381] | 329 | elif type(scanid) is list:
|
---|
[946] | 330 | sel.set_scans(scanid)
|
---|
[1594] | 331 | return self._select_copy(sel)
|
---|
[381] | 332 | else:
|
---|
[718] | 333 | msg = "Illegal scanid type, use 'int' or 'list' if ints."
|
---|
[1859] | 334 | raise TypeError(msg)
|
---|
[102] | 335 | except RuntimeError:
|
---|
[1859] | 336 | raise
|
---|
[102] | 337 |
|
---|
| 338 | def __str__(self):
|
---|
[1118] | 339 | return Scantable._summary(self, True)
|
---|
[102] | 340 |
|
---|
[976] | 341 | def summary(self, filename=None):
|
---|
[1846] | 342 | """\
|
---|
[102] | 343 | Print a summary of the contents of this scantable.
|
---|
[1846] | 344 |
|
---|
[102] | 345 | Parameters:
|
---|
[1846] | 346 |
|
---|
[1931] | 347 | filename: the name of a file to write the putput to
|
---|
[102] | 348 | Default - no file output
|
---|
[1846] | 349 |
|
---|
[102] | 350 | """
|
---|
[976] | 351 | info = Scantable._summary(self, True)
|
---|
[102] | 352 | if filename is not None:
|
---|
[256] | 353 | if filename is "":
|
---|
| 354 | filename = 'scantable_summary.txt'
|
---|
[415] | 355 | from os.path import expandvars, isdir
|
---|
[411] | 356 | filename = expandvars(filename)
|
---|
[415] | 357 | if not isdir(filename):
|
---|
[413] | 358 | data = open(filename, 'w')
|
---|
| 359 | data.write(info)
|
---|
| 360 | data.close()
|
---|
| 361 | else:
|
---|
[718] | 362 | msg = "Illegal file name '%s'." % (filename)
|
---|
[1859] | 363 | raise IOError(msg)
|
---|
| 364 | return page(info)
|
---|
[710] | 365 |
|
---|
[1512] | 366 | def get_spectrum(self, rowno):
|
---|
[1471] | 367 | """Return the spectrum for the current row in the scantable as a list.
|
---|
[1846] | 368 |
|
---|
[1471] | 369 | Parameters:
|
---|
[1846] | 370 |
|
---|
[1573] | 371 | rowno: the row number to retrieve the spectrum from
|
---|
[1846] | 372 |
|
---|
[1471] | 373 | """
|
---|
| 374 | return self._getspectrum(rowno)
|
---|
[946] | 375 |
|
---|
[1471] | 376 | def get_mask(self, rowno):
|
---|
| 377 | """Return the mask for the current row in the scantable as a list.
|
---|
[1846] | 378 |
|
---|
[1471] | 379 | Parameters:
|
---|
[1846] | 380 |
|
---|
[1573] | 381 | rowno: the row number to retrieve the mask from
|
---|
[1846] | 382 |
|
---|
[1471] | 383 | """
|
---|
| 384 | return self._getmask(rowno)
|
---|
| 385 |
|
---|
| 386 | def set_spectrum(self, spec, rowno):
|
---|
[1938] | 387 | """Set the spectrum for the current row in the scantable.
|
---|
[1846] | 388 |
|
---|
[1471] | 389 | Parameters:
|
---|
[1846] | 390 |
|
---|
[1855] | 391 | spec: the new spectrum
|
---|
[1846] | 392 |
|
---|
[1855] | 393 | rowno: the row number to set the spectrum for
|
---|
| 394 |
|
---|
[1471] | 395 | """
|
---|
| 396 | assert(len(spec) == self.nchan())
|
---|
| 397 | return self._setspectrum(spec, rowno)
|
---|
| 398 |
|
---|
[1600] | 399 | def get_coordinate(self, rowno):
|
---|
| 400 | """Return the (spectral) coordinate for a a given 'rowno'.
|
---|
[1846] | 401 |
|
---|
| 402 | *Note*:
|
---|
| 403 |
|
---|
[1600] | 404 | * This coordinate is only valid until a scantable method modifies
|
---|
| 405 | the frequency axis.
|
---|
| 406 | * This coordinate does contain the original frequency set-up
|
---|
| 407 | NOT the new frame. The conversions however are done using the user
|
---|
| 408 | specified frame (e.g. LSRK/TOPO). To get the 'real' coordinate,
|
---|
| 409 | use scantable.freq_align first. Without it there is no closure,
|
---|
[1846] | 410 | i.e.::
|
---|
[1600] | 411 |
|
---|
[1846] | 412 | c = myscan.get_coordinate(0)
|
---|
| 413 | c.to_frequency(c.get_reference_pixel()) != c.get_reference_value()
|
---|
| 414 |
|
---|
[1600] | 415 | Parameters:
|
---|
[1846] | 416 |
|
---|
[1600] | 417 | rowno: the row number for the spectral coordinate
|
---|
| 418 |
|
---|
| 419 | """
|
---|
| 420 | return coordinate(Scantable.get_coordinate(self, rowno))
|
---|
| 421 |
|
---|
[946] | 422 | def get_selection(self):
|
---|
[1846] | 423 | """\
|
---|
[1005] | 424 | Get the selection object currently set on this scantable.
|
---|
[1846] | 425 |
|
---|
| 426 | Example::
|
---|
| 427 |
|
---|
[1005] | 428 | sel = scan.get_selection()
|
---|
| 429 | sel.set_ifs(0) # select IF 0
|
---|
| 430 | scan.set_selection(sel) # apply modified selection
|
---|
[1846] | 431 |
|
---|
[946] | 432 | """
|
---|
| 433 | return selector(self._getselection())
|
---|
| 434 |
|
---|
[1576] | 435 | def set_selection(self, selection=None, **kw):
|
---|
[1846] | 436 | """\
|
---|
[1005] | 437 | Select a subset of the data. All following operations on this scantable
|
---|
| 438 | are only applied to thi selection.
|
---|
[1846] | 439 |
|
---|
[1005] | 440 | Parameters:
|
---|
[1697] | 441 |
|
---|
[1846] | 442 | selection: a selector object (default unset the selection), or
|
---|
| 443 | any combination of "pols", "ifs", "beams", "scans",
|
---|
| 444 | "cycles", "name", "query"
|
---|
[1697] | 445 |
|
---|
[1846] | 446 | Examples::
|
---|
[1697] | 447 |
|
---|
[1005] | 448 | sel = selector() # create a selection object
|
---|
[1118] | 449 | self.set_scans([0, 3]) # select SCANNO 0 and 3
|
---|
[1005] | 450 | scan.set_selection(sel) # set the selection
|
---|
| 451 | scan.summary() # will only print summary of scanno 0 an 3
|
---|
| 452 | scan.set_selection() # unset the selection
|
---|
[1697] | 453 | # or the equivalent
|
---|
| 454 | scan.set_selection(scans=[0,3])
|
---|
| 455 | scan.summary() # will only print summary of scanno 0 an 3
|
---|
| 456 | scan.set_selection() # unset the selection
|
---|
[1846] | 457 |
|
---|
[946] | 458 | """
|
---|
[1576] | 459 | if selection is None:
|
---|
| 460 | # reset
|
---|
| 461 | if len(kw) == 0:
|
---|
| 462 | selection = selector()
|
---|
| 463 | else:
|
---|
| 464 | # try keywords
|
---|
| 465 | for k in kw:
|
---|
| 466 | if k not in selector.fields:
|
---|
| 467 | raise KeyError("Invalid selection key '%s', valid keys are %s" % (k, selector.fields))
|
---|
| 468 | selection = selector(**kw)
|
---|
[946] | 469 | self._setselection(selection)
|
---|
| 470 |
|
---|
[1819] | 471 | def get_row(self, row=0, insitu=None):
|
---|
[1846] | 472 | """\
|
---|
[1819] | 473 | Select a row in the scantable.
|
---|
| 474 | Return a scantable with single row.
|
---|
[1846] | 475 |
|
---|
[1819] | 476 | Parameters:
|
---|
[1846] | 477 |
|
---|
| 478 | row: row no of integration, default is 0.
|
---|
| 479 | insitu: if False a new scantable is returned. Otherwise, the
|
---|
| 480 | scaling is done in-situ. The default is taken from .asaprc
|
---|
| 481 | (False)
|
---|
| 482 |
|
---|
[1819] | 483 | """
|
---|
| 484 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 485 | if not insitu:
|
---|
| 486 | workscan = self.copy()
|
---|
| 487 | else:
|
---|
| 488 | workscan = self
|
---|
| 489 | # Select a row
|
---|
| 490 | sel=selector()
|
---|
[1992] | 491 | sel.set_rows([row])
|
---|
| 492 | #sel.set_scans([workscan.getscan(row)])
|
---|
| 493 | #sel.set_cycles([workscan.getcycle(row)])
|
---|
| 494 | #sel.set_beams([workscan.getbeam(row)])
|
---|
| 495 | #sel.set_ifs([workscan.getif(row)])
|
---|
| 496 | #sel.set_polarisations([workscan.getpol(row)])
|
---|
| 497 | #sel.set_name(workscan._getsourcename(row))
|
---|
[1819] | 498 | workscan.set_selection(sel)
|
---|
| 499 | if not workscan.nrow() == 1:
|
---|
| 500 | msg = "Cloud not identify single row. %d rows selected."%(workscan.nrow())
|
---|
| 501 | raise RuntimeError(msg)
|
---|
| 502 | del sel
|
---|
| 503 | if insitu:
|
---|
| 504 | self._assign(workscan)
|
---|
| 505 | else:
|
---|
| 506 | return workscan
|
---|
| 507 |
|
---|
[1862] | 508 | @asaplog_post_dec
|
---|
[1907] | 509 | def stats(self, stat='stddev', mask=None, form='3.3f', row=None):
|
---|
[1846] | 510 | """\
|
---|
[135] | 511 | Determine the specified statistic of the current beam/if/pol
|
---|
[102] | 512 | Takes a 'mask' as an optional parameter to specify which
|
---|
| 513 | channels should be excluded.
|
---|
[1846] | 514 |
|
---|
[102] | 515 | Parameters:
|
---|
[1846] | 516 |
|
---|
[1819] | 517 | stat: 'min', 'max', 'min_abc', 'max_abc', 'sumsq', 'sum',
|
---|
| 518 | 'mean', 'var', 'stddev', 'avdev', 'rms', 'median'
|
---|
[1855] | 519 |
|
---|
[135] | 520 | mask: an optional mask specifying where the statistic
|
---|
[102] | 521 | should be determined.
|
---|
[1855] | 522 |
|
---|
[1819] | 523 | form: format string to print statistic values
|
---|
[1846] | 524 |
|
---|
[1907] | 525 | row: row number of spectrum to process.
|
---|
| 526 | (default is None: for all rows)
|
---|
[1846] | 527 |
|
---|
[1907] | 528 | Example:
|
---|
[113] | 529 | scan.set_unit('channel')
|
---|
[1118] | 530 | msk = scan.create_mask([100, 200], [500, 600])
|
---|
[135] | 531 | scan.stats(stat='mean', mask=m)
|
---|
[1846] | 532 |
|
---|
[102] | 533 | """
|
---|
[1593] | 534 | mask = mask or []
|
---|
[876] | 535 | if not self._check_ifs():
|
---|
[1118] | 536 | raise ValueError("Cannot apply mask as the IFs have different "
|
---|
| 537 | "number of channels. Please use setselection() "
|
---|
| 538 | "to select individual IFs")
|
---|
[1819] | 539 | rtnabc = False
|
---|
| 540 | if stat.lower().endswith('_abc'): rtnabc = True
|
---|
| 541 | getchan = False
|
---|
| 542 | if stat.lower().startswith('min') or stat.lower().startswith('max'):
|
---|
| 543 | chan = self._math._minmaxchan(self, mask, stat)
|
---|
| 544 | getchan = True
|
---|
| 545 | statvals = []
|
---|
[1907] | 546 | if not rtnabc:
|
---|
| 547 | if row == None:
|
---|
| 548 | statvals = self._math._stats(self, mask, stat)
|
---|
| 549 | else:
|
---|
| 550 | statvals = self._math._statsrow(self, mask, stat, int(row))
|
---|
[256] | 551 |
|
---|
[1819] | 552 | #def cb(i):
|
---|
| 553 | # return statvals[i]
|
---|
[256] | 554 |
|
---|
[1819] | 555 | #return self._row_callback(cb, stat)
|
---|
[102] | 556 |
|
---|
[1819] | 557 | label=stat
|
---|
| 558 | #callback=cb
|
---|
| 559 | out = ""
|
---|
| 560 | #outvec = []
|
---|
| 561 | sep = '-'*50
|
---|
[1907] | 562 |
|
---|
| 563 | if row == None:
|
---|
| 564 | rows = xrange(self.nrow())
|
---|
| 565 | elif isinstance(row, int):
|
---|
| 566 | rows = [ row ]
|
---|
| 567 |
|
---|
| 568 | for i in rows:
|
---|
[1819] | 569 | refstr = ''
|
---|
| 570 | statunit= ''
|
---|
| 571 | if getchan:
|
---|
| 572 | qx, qy = self.chan2data(rowno=i, chan=chan[i])
|
---|
| 573 | if rtnabc:
|
---|
| 574 | statvals.append(qx['value'])
|
---|
| 575 | refstr = ('(value: %'+form) % (qy['value'])+' ['+qy['unit']+'])'
|
---|
| 576 | statunit= '['+qx['unit']+']'
|
---|
| 577 | else:
|
---|
| 578 | refstr = ('(@ %'+form) % (qx['value'])+' ['+qx['unit']+'])'
|
---|
| 579 |
|
---|
| 580 | tm = self._gettime(i)
|
---|
| 581 | src = self._getsourcename(i)
|
---|
| 582 | out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
|
---|
| 583 | out += 'Time[%s]:\n' % (tm)
|
---|
[1907] | 584 | if self.nbeam(-1) > 1: out += ' Beam[%d] ' % (self.getbeam(i))
|
---|
| 585 | if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
|
---|
| 586 | if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
|
---|
[1819] | 587 | #outvec.append(callback(i))
|
---|
[1907] | 588 | if len(rows) > 1:
|
---|
| 589 | # out += ('= %'+form) % (outvec[i]) +' '+refstr+'\n'
|
---|
| 590 | out += ('= %'+form) % (statvals[i]) +' '+refstr+'\n'
|
---|
| 591 | else:
|
---|
| 592 | # out += ('= %'+form) % (outvec[0]) +' '+refstr+'\n'
|
---|
| 593 | out += ('= %'+form) % (statvals[0]) +' '+refstr+'\n'
|
---|
[1819] | 594 | out += sep+"\n"
|
---|
| 595 |
|
---|
[1859] | 596 | import os
|
---|
| 597 | if os.environ.has_key( 'USER' ):
|
---|
| 598 | usr = os.environ['USER']
|
---|
| 599 | else:
|
---|
| 600 | import commands
|
---|
| 601 | usr = commands.getoutput( 'whoami' )
|
---|
| 602 | tmpfile = '/tmp/tmp_'+usr+'_casapy_asap_scantable_stats'
|
---|
| 603 | f = open(tmpfile,'w')
|
---|
| 604 | print >> f, sep
|
---|
| 605 | print >> f, ' %s %s' % (label, statunit)
|
---|
| 606 | print >> f, sep
|
---|
| 607 | print >> f, out
|
---|
| 608 | f.close()
|
---|
| 609 | f = open(tmpfile,'r')
|
---|
| 610 | x = f.readlines()
|
---|
| 611 | f.close()
|
---|
| 612 | asaplog.push(''.join(x), False)
|
---|
| 613 |
|
---|
[1819] | 614 | return statvals
|
---|
| 615 |
|
---|
| 616 | def chan2data(self, rowno=0, chan=0):
|
---|
[1846] | 617 | """\
|
---|
[1819] | 618 | Returns channel/frequency/velocity and spectral value
|
---|
| 619 | at an arbitrary row and channel in the scantable.
|
---|
[1846] | 620 |
|
---|
[1819] | 621 | Parameters:
|
---|
[1846] | 622 |
|
---|
[1819] | 623 | rowno: a row number in the scantable. Default is the
|
---|
| 624 | first row, i.e. rowno=0
|
---|
[1855] | 625 |
|
---|
[1819] | 626 | chan: a channel in the scantable. Default is the first
|
---|
| 627 | channel, i.e. pos=0
|
---|
[1846] | 628 |
|
---|
[1819] | 629 | """
|
---|
| 630 | if isinstance(rowno, int) and isinstance(chan, int):
|
---|
| 631 | qx = {'unit': self.get_unit(),
|
---|
| 632 | 'value': self._getabcissa(rowno)[chan]}
|
---|
| 633 | qy = {'unit': self.get_fluxunit(),
|
---|
| 634 | 'value': self._getspectrum(rowno)[chan]}
|
---|
| 635 | return qx, qy
|
---|
| 636 |
|
---|
[1118] | 637 | def stddev(self, mask=None):
|
---|
[1846] | 638 | """\
|
---|
[135] | 639 | Determine the standard deviation of the current beam/if/pol
|
---|
| 640 | Takes a 'mask' as an optional parameter to specify which
|
---|
| 641 | channels should be excluded.
|
---|
[1846] | 642 |
|
---|
[135] | 643 | Parameters:
|
---|
[1846] | 644 |
|
---|
[135] | 645 | mask: an optional mask specifying where the standard
|
---|
| 646 | deviation should be determined.
|
---|
| 647 |
|
---|
[1846] | 648 | Example::
|
---|
| 649 |
|
---|
[135] | 650 | scan.set_unit('channel')
|
---|
[1118] | 651 | msk = scan.create_mask([100, 200], [500, 600])
|
---|
[135] | 652 | scan.stddev(mask=m)
|
---|
[1846] | 653 |
|
---|
[135] | 654 | """
|
---|
[1118] | 655 | return self.stats(stat='stddev', mask=mask);
|
---|
[135] | 656 |
|
---|
[1003] | 657 |
|
---|
[1259] | 658 | def get_column_names(self):
|
---|
[1846] | 659 | """\
|
---|
[1003] | 660 | Return a list of column names, which can be used for selection.
|
---|
| 661 | """
|
---|
[1259] | 662 | return list(Scantable.get_column_names(self))
|
---|
[1003] | 663 |
|
---|
[1730] | 664 | def get_tsys(self, row=-1):
|
---|
[1846] | 665 | """\
|
---|
[113] | 666 | Return the System temperatures.
|
---|
[1846] | 667 |
|
---|
| 668 | Parameters:
|
---|
| 669 |
|
---|
| 670 | row: the rowno to get the information for. (default all rows)
|
---|
| 671 |
|
---|
[113] | 672 | Returns:
|
---|
[1846] | 673 |
|
---|
[876] | 674 | a list of Tsys values for the current selection
|
---|
[1846] | 675 |
|
---|
[113] | 676 | """
|
---|
[1730] | 677 | if row > -1:
|
---|
| 678 | return self._get_column(self._gettsys, row)
|
---|
[876] | 679 | return self._row_callback(self._gettsys, "Tsys")
|
---|
[256] | 680 |
|
---|
[1730] | 681 |
|
---|
| 682 | def get_weather(self, row=-1):
|
---|
[1846] | 683 | """\
|
---|
| 684 | Return the weather informations.
|
---|
| 685 |
|
---|
| 686 | Parameters:
|
---|
| 687 |
|
---|
| 688 | row: the rowno to get the information for. (default all rows)
|
---|
| 689 |
|
---|
| 690 | Returns:
|
---|
| 691 |
|
---|
| 692 | a dict or list of of dicts of values for the current selection
|
---|
| 693 |
|
---|
| 694 | """
|
---|
| 695 |
|
---|
[1730] | 696 | values = self._get_column(self._get_weather, row)
|
---|
| 697 | if row > -1:
|
---|
| 698 | return {'temperature': values[0],
|
---|
| 699 | 'pressure': values[1], 'humidity' : values[2],
|
---|
| 700 | 'windspeed' : values[3], 'windaz' : values[4]
|
---|
| 701 | }
|
---|
| 702 | else:
|
---|
| 703 | out = []
|
---|
| 704 | for r in values:
|
---|
| 705 |
|
---|
| 706 | out.append({'temperature': r[0],
|
---|
| 707 | 'pressure': r[1], 'humidity' : r[2],
|
---|
| 708 | 'windspeed' : r[3], 'windaz' : r[4]
|
---|
| 709 | })
|
---|
| 710 | return out
|
---|
| 711 |
|
---|
[876] | 712 | def _row_callback(self, callback, label):
|
---|
| 713 | out = ""
|
---|
[1118] | 714 | outvec = []
|
---|
[1590] | 715 | sep = '-'*50
|
---|
[876] | 716 | for i in range(self.nrow()):
|
---|
| 717 | tm = self._gettime(i)
|
---|
| 718 | src = self._getsourcename(i)
|
---|
[1590] | 719 | out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
|
---|
[876] | 720 | out += 'Time[%s]:\n' % (tm)
|
---|
[1590] | 721 | if self.nbeam(-1) > 1:
|
---|
| 722 | out += ' Beam[%d] ' % (self.getbeam(i))
|
---|
| 723 | if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
|
---|
| 724 | if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
|
---|
[876] | 725 | outvec.append(callback(i))
|
---|
| 726 | out += '= %3.3f\n' % (outvec[i])
|
---|
[1590] | 727 | out += sep+'\n'
|
---|
[1859] | 728 |
|
---|
| 729 | asaplog.push(sep)
|
---|
| 730 | asaplog.push(" %s" % (label))
|
---|
| 731 | asaplog.push(sep)
|
---|
| 732 | asaplog.push(out)
|
---|
[1861] | 733 | asaplog.post()
|
---|
[1175] | 734 | return outvec
|
---|
[256] | 735 |
|
---|
[1947] | 736 | def _get_column(self, callback, row=-1, *args):
|
---|
[1070] | 737 | """
|
---|
| 738 | """
|
---|
| 739 | if row == -1:
|
---|
[1947] | 740 | return [callback(i, *args) for i in range(self.nrow())]
|
---|
[1070] | 741 | else:
|
---|
[1819] | 742 | if 0 <= row < self.nrow():
|
---|
[1947] | 743 | return callback(row, *args)
|
---|
[256] | 744 |
|
---|
[1070] | 745 |
|
---|
[1948] | 746 | def get_time(self, row=-1, asdatetime=False, prec=-1):
|
---|
[1846] | 747 | """\
|
---|
[113] | 748 | Get a list of time stamps for the observations.
|
---|
[1938] | 749 | Return a datetime object or a string (default) for each
|
---|
| 750 | integration time stamp in the scantable.
|
---|
[1846] | 751 |
|
---|
[113] | 752 | Parameters:
|
---|
[1846] | 753 |
|
---|
[1348] | 754 | row: row no of integration. Default -1 return all rows
|
---|
[1855] | 755 |
|
---|
[1348] | 756 | asdatetime: return values as datetime objects rather than strings
|
---|
[1846] | 757 |
|
---|
[1948] | 758 | prec: number of digits shown. Default -1 to automatic calculation.
|
---|
| 759 | Note this number is equals to the digits of MVTime,
|
---|
| 760 | i.e., 0<prec<3: dates with hh:: only,
|
---|
| 761 | <5: with hh:mm:, <7 or 0: with hh:mm:ss,
|
---|
[1947] | 762 | and 6> : with hh:mm:ss.tt... (prec-6 t's added)
|
---|
| 763 |
|
---|
[113] | 764 | """
|
---|
[1175] | 765 | from datetime import datetime
|
---|
[1948] | 766 | if prec < 0:
|
---|
| 767 | # automagically set necessary precision +1
|
---|
[1950] | 768 | prec = 7 - numpy.floor(numpy.log10(numpy.min(self.get_inttime(row))))
|
---|
[1948] | 769 | prec = max(6, int(prec))
|
---|
| 770 | else:
|
---|
| 771 | prec = max(0, prec)
|
---|
| 772 | if asdatetime:
|
---|
| 773 | #precision can be 1 millisecond at max
|
---|
| 774 | prec = min(12, prec)
|
---|
| 775 |
|
---|
[1947] | 776 | times = self._get_column(self._gettime, row, prec)
|
---|
[1348] | 777 | if not asdatetime:
|
---|
[1392] | 778 | return times
|
---|
[1947] | 779 | format = "%Y/%m/%d/%H:%M:%S.%f"
|
---|
| 780 | if prec < 7:
|
---|
| 781 | nsub = 1 + (((6-prec)/2) % 3)
|
---|
| 782 | substr = [".%f","%S","%M"]
|
---|
| 783 | for i in range(nsub):
|
---|
| 784 | format = format.replace(substr[i],"")
|
---|
[1175] | 785 | if isinstance(times, list):
|
---|
[1947] | 786 | return [datetime.strptime(i, format) for i in times]
|
---|
[1175] | 787 | else:
|
---|
[1947] | 788 | return datetime.strptime(times, format)
|
---|
[102] | 789 |
|
---|
[1348] | 790 |
|
---|
| 791 | def get_inttime(self, row=-1):
|
---|
[1846] | 792 | """\
|
---|
[1348] | 793 | Get a list of integration times for the observations.
|
---|
| 794 | Return a time in seconds for each integration in the scantable.
|
---|
[1846] | 795 |
|
---|
[1348] | 796 | Parameters:
|
---|
[1846] | 797 |
|
---|
[1348] | 798 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 799 |
|
---|
[1348] | 800 | """
|
---|
[1573] | 801 | return self._get_column(self._getinttime, row)
|
---|
[1348] | 802 |
|
---|
[1573] | 803 |
|
---|
[714] | 804 | def get_sourcename(self, row=-1):
|
---|
[1846] | 805 | """\
|
---|
[794] | 806 | Get a list source names for the observations.
|
---|
[714] | 807 | Return a string for each integration in the scantable.
|
---|
| 808 | Parameters:
|
---|
[1846] | 809 |
|
---|
[1348] | 810 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 811 |
|
---|
[714] | 812 | """
|
---|
[1070] | 813 | return self._get_column(self._getsourcename, row)
|
---|
[714] | 814 |
|
---|
[794] | 815 | def get_elevation(self, row=-1):
|
---|
[1846] | 816 | """\
|
---|
[794] | 817 | Get a list of elevations for the observations.
|
---|
| 818 | Return a float for each integration in the scantable.
|
---|
[1846] | 819 |
|
---|
[794] | 820 | Parameters:
|
---|
[1846] | 821 |
|
---|
[1348] | 822 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 823 |
|
---|
[794] | 824 | """
|
---|
[1070] | 825 | return self._get_column(self._getelevation, row)
|
---|
[794] | 826 |
|
---|
| 827 | def get_azimuth(self, row=-1):
|
---|
[1846] | 828 | """\
|
---|
[794] | 829 | Get a list of azimuths for the observations.
|
---|
| 830 | Return a float for each integration in the scantable.
|
---|
[1846] | 831 |
|
---|
[794] | 832 | Parameters:
|
---|
[1348] | 833 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 834 |
|
---|
[794] | 835 | """
|
---|
[1070] | 836 | return self._get_column(self._getazimuth, row)
|
---|
[794] | 837 |
|
---|
| 838 | def get_parangle(self, row=-1):
|
---|
[1846] | 839 | """\
|
---|
[794] | 840 | Get a list of parallactic angles for the observations.
|
---|
| 841 | Return a float for each integration in the scantable.
|
---|
[1846] | 842 |
|
---|
[794] | 843 | Parameters:
|
---|
[1846] | 844 |
|
---|
[1348] | 845 | row: row no of integration. Default -1 return all rows.
|
---|
[1846] | 846 |
|
---|
[794] | 847 | """
|
---|
[1070] | 848 | return self._get_column(self._getparangle, row)
|
---|
[794] | 849 |
|
---|
[1070] | 850 | def get_direction(self, row=-1):
|
---|
| 851 | """
|
---|
| 852 | Get a list of Positions on the sky (direction) for the observations.
|
---|
[1594] | 853 | Return a string for each integration in the scantable.
|
---|
[1855] | 854 |
|
---|
[1070] | 855 | Parameters:
|
---|
[1855] | 856 |
|
---|
[1070] | 857 | row: row no of integration. Default -1 return all rows
|
---|
[1855] | 858 |
|
---|
[1070] | 859 | """
|
---|
| 860 | return self._get_column(self._getdirection, row)
|
---|
| 861 |
|
---|
[1391] | 862 | def get_directionval(self, row=-1):
|
---|
[1846] | 863 | """\
|
---|
[1391] | 864 | Get a list of Positions on the sky (direction) for the observations.
|
---|
| 865 | Return a float for each integration in the scantable.
|
---|
[1846] | 866 |
|
---|
[1391] | 867 | Parameters:
|
---|
[1846] | 868 |
|
---|
[1391] | 869 | row: row no of integration. Default -1 return all rows
|
---|
[1846] | 870 |
|
---|
[1391] | 871 | """
|
---|
| 872 | return self._get_column(self._getdirectionvec, row)
|
---|
| 873 |
|
---|
[1862] | 874 | @asaplog_post_dec
|
---|
[102] | 875 | def set_unit(self, unit='channel'):
|
---|
[1846] | 876 | """\
|
---|
[102] | 877 | Set the unit for all following operations on this scantable
|
---|
[1846] | 878 |
|
---|
[102] | 879 | Parameters:
|
---|
[1846] | 880 |
|
---|
| 881 | unit: optional unit, default is 'channel'. Use one of '*Hz',
|
---|
| 882 | 'km/s', 'channel' or equivalent ''
|
---|
| 883 |
|
---|
[102] | 884 | """
|
---|
[484] | 885 | varlist = vars()
|
---|
[1118] | 886 | if unit in ['', 'pixel', 'channel']:
|
---|
[113] | 887 | unit = ''
|
---|
| 888 | inf = list(self._getcoordinfo())
|
---|
| 889 | inf[0] = unit
|
---|
| 890 | self._setcoordinfo(inf)
|
---|
[1118] | 891 | self._add_history("set_unit", varlist)
|
---|
[113] | 892 |
|
---|
[1862] | 893 | @asaplog_post_dec
|
---|
[484] | 894 | def set_instrument(self, instr):
|
---|
[1846] | 895 | """\
|
---|
[1348] | 896 | Set the instrument for subsequent processing.
|
---|
[1846] | 897 |
|
---|
[358] | 898 | Parameters:
|
---|
[1846] | 899 |
|
---|
[710] | 900 | instr: Select from 'ATPKSMB', 'ATPKSHOH', 'ATMOPRA',
|
---|
[407] | 901 | 'DSS-43' (Tid), 'CEDUNA', and 'HOBART'
|
---|
[1846] | 902 |
|
---|
[358] | 903 | """
|
---|
| 904 | self._setInstrument(instr)
|
---|
[1118] | 905 | self._add_history("set_instument", vars())
|
---|
[358] | 906 |
|
---|
[1862] | 907 | @asaplog_post_dec
|
---|
[1190] | 908 | def set_feedtype(self, feedtype):
|
---|
[1846] | 909 | """\
|
---|
[1190] | 910 | Overwrite the feed type, which might not be set correctly.
|
---|
[1846] | 911 |
|
---|
[1190] | 912 | Parameters:
|
---|
[1846] | 913 |
|
---|
[1190] | 914 | feedtype: 'linear' or 'circular'
|
---|
[1846] | 915 |
|
---|
[1190] | 916 | """
|
---|
| 917 | self._setfeedtype(feedtype)
|
---|
| 918 | self._add_history("set_feedtype", vars())
|
---|
| 919 |
|
---|
[1862] | 920 | @asaplog_post_dec
|
---|
[276] | 921 | def set_doppler(self, doppler='RADIO'):
|
---|
[1846] | 922 | """\
|
---|
[276] | 923 | Set the doppler for all following operations on this scantable.
|
---|
[1846] | 924 |
|
---|
[276] | 925 | Parameters:
|
---|
[1846] | 926 |
|
---|
[276] | 927 | doppler: One of 'RADIO', 'OPTICAL', 'Z', 'BETA', 'GAMMA'
|
---|
[1846] | 928 |
|
---|
[276] | 929 | """
|
---|
[484] | 930 | varlist = vars()
|
---|
[276] | 931 | inf = list(self._getcoordinfo())
|
---|
| 932 | inf[2] = doppler
|
---|
| 933 | self._setcoordinfo(inf)
|
---|
[1118] | 934 | self._add_history("set_doppler", vars())
|
---|
[710] | 935 |
|
---|
[1862] | 936 | @asaplog_post_dec
|
---|
[226] | 937 | def set_freqframe(self, frame=None):
|
---|
[1846] | 938 | """\
|
---|
[113] | 939 | Set the frame type of the Spectral Axis.
|
---|
[1846] | 940 |
|
---|
[113] | 941 | Parameters:
|
---|
[1846] | 942 |
|
---|
[591] | 943 | frame: an optional frame type, default 'LSRK'. Valid frames are:
|
---|
[1819] | 944 | 'TOPO', 'LSRD', 'LSRK', 'BARY',
|
---|
[1118] | 945 | 'GEO', 'GALACTO', 'LGROUP', 'CMB'
|
---|
[1846] | 946 |
|
---|
| 947 | Example::
|
---|
| 948 |
|
---|
[113] | 949 | scan.set_freqframe('BARY')
|
---|
[1846] | 950 |
|
---|
[113] | 951 | """
|
---|
[1593] | 952 | frame = frame or rcParams['scantable.freqframe']
|
---|
[484] | 953 | varlist = vars()
|
---|
[1819] | 954 | # "REST" is not implemented in casacore
|
---|
| 955 | #valid = ['REST', 'TOPO', 'LSRD', 'LSRK', 'BARY', \
|
---|
| 956 | # 'GEO', 'GALACTO', 'LGROUP', 'CMB']
|
---|
| 957 | valid = ['TOPO', 'LSRD', 'LSRK', 'BARY', \
|
---|
[1118] | 958 | 'GEO', 'GALACTO', 'LGROUP', 'CMB']
|
---|
[591] | 959 |
|
---|
[989] | 960 | if frame in valid:
|
---|
[113] | 961 | inf = list(self._getcoordinfo())
|
---|
| 962 | inf[1] = frame
|
---|
| 963 | self._setcoordinfo(inf)
|
---|
[1118] | 964 | self._add_history("set_freqframe", varlist)
|
---|
[102] | 965 | else:
|
---|
[1118] | 966 | msg = "Please specify a valid freq type. Valid types are:\n", valid
|
---|
[1859] | 967 | raise TypeError(msg)
|
---|
[710] | 968 |
|
---|
[1862] | 969 | @asaplog_post_dec
|
---|
[989] | 970 | def set_dirframe(self, frame=""):
|
---|
[1846] | 971 | """\
|
---|
[989] | 972 | Set the frame type of the Direction on the sky.
|
---|
[1846] | 973 |
|
---|
[989] | 974 | Parameters:
|
---|
[1846] | 975 |
|
---|
[989] | 976 | frame: an optional frame type, default ''. Valid frames are:
|
---|
| 977 | 'J2000', 'B1950', 'GALACTIC'
|
---|
[1846] | 978 |
|
---|
| 979 | Example:
|
---|
| 980 |
|
---|
[989] | 981 | scan.set_dirframe('GALACTIC')
|
---|
[1846] | 982 |
|
---|
[989] | 983 | """
|
---|
| 984 | varlist = vars()
|
---|
[1859] | 985 | Scantable.set_dirframe(self, frame)
|
---|
[1118] | 986 | self._add_history("set_dirframe", varlist)
|
---|
[989] | 987 |
|
---|
[113] | 988 | def get_unit(self):
|
---|
[1846] | 989 | """\
|
---|
[113] | 990 | Get the default unit set in this scantable
|
---|
[1846] | 991 |
|
---|
[113] | 992 | Returns:
|
---|
[1846] | 993 |
|
---|
[113] | 994 | A unit string
|
---|
[1846] | 995 |
|
---|
[113] | 996 | """
|
---|
| 997 | inf = self._getcoordinfo()
|
---|
| 998 | unit = inf[0]
|
---|
| 999 | if unit == '': unit = 'channel'
|
---|
| 1000 | return unit
|
---|
[102] | 1001 |
|
---|
[1862] | 1002 | @asaplog_post_dec
|
---|
[158] | 1003 | def get_abcissa(self, rowno=0):
|
---|
[1846] | 1004 | """\
|
---|
[158] | 1005 | Get the abcissa in the current coordinate setup for the currently
|
---|
[113] | 1006 | selected Beam/IF/Pol
|
---|
[1846] | 1007 |
|
---|
[113] | 1008 | Parameters:
|
---|
[1846] | 1009 |
|
---|
[226] | 1010 | rowno: an optional row number in the scantable. Default is the
|
---|
| 1011 | first row, i.e. rowno=0
|
---|
[1846] | 1012 |
|
---|
[113] | 1013 | Returns:
|
---|
[1846] | 1014 |
|
---|
[1348] | 1015 | The abcissa values and the format string (as a dictionary)
|
---|
[1846] | 1016 |
|
---|
[113] | 1017 | """
|
---|
[256] | 1018 | abc = self._getabcissa(rowno)
|
---|
[710] | 1019 | lbl = self._getabcissalabel(rowno)
|
---|
[158] | 1020 | return abc, lbl
|
---|
[113] | 1021 |
|
---|
[1862] | 1022 | @asaplog_post_dec
|
---|
[1994] | 1023 | def flag(self, row=-1, mask=None, unflag=False):
|
---|
[1846] | 1024 | """\
|
---|
[1001] | 1025 | Flag the selected data using an optional channel mask.
|
---|
[1846] | 1026 |
|
---|
[1001] | 1027 | Parameters:
|
---|
[1846] | 1028 |
|
---|
[1994] | 1029 | row: an optional row number in the scantable.
|
---|
| 1030 | Default -1 flags all rows
|
---|
| 1031 |
|
---|
[1001] | 1032 | mask: an optional channel mask, created with create_mask. Default
|
---|
| 1033 | (no mask) is all channels.
|
---|
[1855] | 1034 |
|
---|
[1819] | 1035 | unflag: if True, unflag the data
|
---|
[1846] | 1036 |
|
---|
[1001] | 1037 | """
|
---|
| 1038 | varlist = vars()
|
---|
[1593] | 1039 | mask = mask or []
|
---|
[1994] | 1040 | self._flag(row, mask, unflag)
|
---|
[1001] | 1041 | self._add_history("flag", varlist)
|
---|
| 1042 |
|
---|
[1862] | 1043 | @asaplog_post_dec
|
---|
[1819] | 1044 | def flag_row(self, rows=[], unflag=False):
|
---|
[1846] | 1045 | """\
|
---|
[1819] | 1046 | Flag the selected data in row-based manner.
|
---|
[1846] | 1047 |
|
---|
[1819] | 1048 | Parameters:
|
---|
[1846] | 1049 |
|
---|
[1843] | 1050 | rows: list of row numbers to be flagged. Default is no row
|
---|
| 1051 | (must be explicitly specified to execute row-based flagging).
|
---|
[1855] | 1052 |
|
---|
[1819] | 1053 | unflag: if True, unflag the data.
|
---|
[1846] | 1054 |
|
---|
[1819] | 1055 | """
|
---|
| 1056 | varlist = vars()
|
---|
[1859] | 1057 | self._flag_row(rows, unflag)
|
---|
[1819] | 1058 | self._add_history("flag_row", varlist)
|
---|
| 1059 |
|
---|
[1862] | 1060 | @asaplog_post_dec
|
---|
[1819] | 1061 | def clip(self, uthres=None, dthres=None, clipoutside=True, unflag=False):
|
---|
[1846] | 1062 | """\
|
---|
[1819] | 1063 | Flag the selected data outside a specified range (in channel-base)
|
---|
[1846] | 1064 |
|
---|
[1819] | 1065 | Parameters:
|
---|
[1846] | 1066 |
|
---|
[1819] | 1067 | uthres: upper threshold.
|
---|
[1855] | 1068 |
|
---|
[1819] | 1069 | dthres: lower threshold
|
---|
[1846] | 1070 |
|
---|
[1819] | 1071 | clipoutside: True for flagging data outside the range [dthres:uthres].
|
---|
[1928] | 1072 | False for flagging data inside the range.
|
---|
[1855] | 1073 |
|
---|
[1846] | 1074 | unflag: if True, unflag the data.
|
---|
| 1075 |
|
---|
[1819] | 1076 | """
|
---|
| 1077 | varlist = vars()
|
---|
[1859] | 1078 | self._clip(uthres, dthres, clipoutside, unflag)
|
---|
[1819] | 1079 | self._add_history("clip", varlist)
|
---|
| 1080 |
|
---|
[1862] | 1081 | @asaplog_post_dec
|
---|
[1584] | 1082 | def lag_flag(self, start, end, unit="MHz", insitu=None):
|
---|
[1846] | 1083 | """\
|
---|
[1192] | 1084 | Flag the data in 'lag' space by providing a frequency to remove.
|
---|
[1584] | 1085 | Flagged data in the scantable gets interpolated over the region.
|
---|
[1192] | 1086 | No taper is applied.
|
---|
[1846] | 1087 |
|
---|
[1192] | 1088 | Parameters:
|
---|
[1846] | 1089 |
|
---|
[1579] | 1090 | start: the start frequency (really a period within the
|
---|
| 1091 | bandwidth) or period to remove
|
---|
[1855] | 1092 |
|
---|
[1579] | 1093 | end: the end frequency or period to remove
|
---|
[1855] | 1094 |
|
---|
[1584] | 1095 | unit: the frequency unit (default "MHz") or "" for
|
---|
[1579] | 1096 | explicit lag channels
|
---|
[1846] | 1097 |
|
---|
| 1098 | *Notes*:
|
---|
| 1099 |
|
---|
[1579] | 1100 | It is recommended to flag edges of the band or strong
|
---|
[1348] | 1101 | signals beforehand.
|
---|
[1846] | 1102 |
|
---|
[1192] | 1103 | """
|
---|
| 1104 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 1105 | self._math._setinsitu(insitu)
|
---|
| 1106 | varlist = vars()
|
---|
[1579] | 1107 | base = { "GHz": 1000000000., "MHz": 1000000., "kHz": 1000., "Hz": 1.}
|
---|
| 1108 | if not (unit == "" or base.has_key(unit)):
|
---|
[1192] | 1109 | raise ValueError("%s is not a valid unit." % unit)
|
---|
[1859] | 1110 | if unit == "":
|
---|
| 1111 | s = scantable(self._math._lag_flag(self, start, end, "lags"))
|
---|
| 1112 | else:
|
---|
| 1113 | s = scantable(self._math._lag_flag(self, start*base[unit],
|
---|
| 1114 | end*base[unit], "frequency"))
|
---|
[1192] | 1115 | s._add_history("lag_flag", varlist)
|
---|
| 1116 | if insitu:
|
---|
| 1117 | self._assign(s)
|
---|
| 1118 | else:
|
---|
| 1119 | return s
|
---|
[1001] | 1120 |
|
---|
[1862] | 1121 | @asaplog_post_dec
|
---|
[113] | 1122 | def create_mask(self, *args, **kwargs):
|
---|
[1846] | 1123 | """\
|
---|
[1118] | 1124 | Compute and return a mask based on [min, max] windows.
|
---|
[189] | 1125 | The specified windows are to be INCLUDED, when the mask is
|
---|
[113] | 1126 | applied.
|
---|
[1846] | 1127 |
|
---|
[102] | 1128 | Parameters:
|
---|
[1846] | 1129 |
|
---|
[1118] | 1130 | [min, max], [min2, max2], ...
|
---|
[1024] | 1131 | Pairs of start/end points (inclusive)specifying the regions
|
---|
[102] | 1132 | to be masked
|
---|
[1855] | 1133 |
|
---|
[189] | 1134 | invert: optional argument. If specified as True,
|
---|
| 1135 | return an inverted mask, i.e. the regions
|
---|
| 1136 | specified are EXCLUDED
|
---|
[1855] | 1137 |
|
---|
[513] | 1138 | row: create the mask using the specified row for
|
---|
| 1139 | unit conversions, default is row=0
|
---|
| 1140 | only necessary if frequency varies over rows.
|
---|
[1846] | 1141 |
|
---|
| 1142 | Examples::
|
---|
| 1143 |
|
---|
[113] | 1144 | scan.set_unit('channel')
|
---|
[1846] | 1145 | # a)
|
---|
[1118] | 1146 | msk = scan.create_mask([400, 500], [800, 900])
|
---|
[189] | 1147 | # masks everything outside 400 and 500
|
---|
[113] | 1148 | # and 800 and 900 in the unit 'channel'
|
---|
| 1149 |
|
---|
[1846] | 1150 | # b)
|
---|
[1118] | 1151 | msk = scan.create_mask([400, 500], [800, 900], invert=True)
|
---|
[189] | 1152 | # masks the regions between 400 and 500
|
---|
[113] | 1153 | # and 800 and 900 in the unit 'channel'
|
---|
[1846] | 1154 |
|
---|
| 1155 | # c)
|
---|
| 1156 | #mask only channel 400
|
---|
[1554] | 1157 | msk = scan.create_mask([400])
|
---|
[1846] | 1158 |
|
---|
[102] | 1159 | """
|
---|
[1554] | 1160 | row = kwargs.get("row", 0)
|
---|
[513] | 1161 | data = self._getabcissa(row)
|
---|
[113] | 1162 | u = self._getcoordinfo()[0]
|
---|
[1859] | 1163 | if u == "":
|
---|
| 1164 | u = "channel"
|
---|
| 1165 | msg = "The current mask window unit is %s" % u
|
---|
| 1166 | i = self._check_ifs()
|
---|
| 1167 | if not i:
|
---|
| 1168 | msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
|
---|
| 1169 | asaplog.push(msg)
|
---|
[102] | 1170 | n = self.nchan()
|
---|
[1295] | 1171 | msk = _n_bools(n, False)
|
---|
[710] | 1172 | # test if args is a 'list' or a 'normal *args - UGLY!!!
|
---|
| 1173 |
|
---|
[1118] | 1174 | ws = (isinstance(args[-1][-1], int) or isinstance(args[-1][-1], float)) \
|
---|
| 1175 | and args or args[0]
|
---|
[710] | 1176 | for window in ws:
|
---|
[1554] | 1177 | if len(window) == 1:
|
---|
| 1178 | window = [window[0], window[0]]
|
---|
| 1179 | if len(window) == 0 or len(window) > 2:
|
---|
| 1180 | raise ValueError("A window needs to be defined as [start(, end)]")
|
---|
[1545] | 1181 | if window[0] > window[1]:
|
---|
| 1182 | tmp = window[0]
|
---|
| 1183 | window[0] = window[1]
|
---|
| 1184 | window[1] = tmp
|
---|
[102] | 1185 | for i in range(n):
|
---|
[1024] | 1186 | if data[i] >= window[0] and data[i] <= window[1]:
|
---|
[1295] | 1187 | msk[i] = True
|
---|
[113] | 1188 | if kwargs.has_key('invert'):
|
---|
| 1189 | if kwargs.get('invert'):
|
---|
[1295] | 1190 | msk = mask_not(msk)
|
---|
[102] | 1191 | return msk
|
---|
[710] | 1192 |
|
---|
[1931] | 1193 | def get_masklist(self, mask=None, row=0, silent=False):
|
---|
[1846] | 1194 | """\
|
---|
[1819] | 1195 | Compute and return a list of mask windows, [min, max].
|
---|
[1846] | 1196 |
|
---|
[1819] | 1197 | Parameters:
|
---|
[1846] | 1198 |
|
---|
[1819] | 1199 | mask: channel mask, created with create_mask.
|
---|
[1855] | 1200 |
|
---|
[1819] | 1201 | row: calcutate the masklist using the specified row
|
---|
| 1202 | for unit conversions, default is row=0
|
---|
| 1203 | only necessary if frequency varies over rows.
|
---|
[1846] | 1204 |
|
---|
[1819] | 1205 | Returns:
|
---|
[1846] | 1206 |
|
---|
[1819] | 1207 | [min, max], [min2, max2], ...
|
---|
| 1208 | Pairs of start/end points (inclusive)specifying
|
---|
| 1209 | the masked regions
|
---|
[1846] | 1210 |
|
---|
[1819] | 1211 | """
|
---|
| 1212 | if not (isinstance(mask,list) or isinstance(mask, tuple)):
|
---|
| 1213 | raise TypeError("The mask should be list or tuple.")
|
---|
| 1214 | if len(mask) < 2:
|
---|
| 1215 | raise TypeError("The mask elements should be > 1")
|
---|
| 1216 | if self.nchan() != len(mask):
|
---|
| 1217 | msg = "Number of channels in scantable != number of mask elements"
|
---|
| 1218 | raise TypeError(msg)
|
---|
| 1219 | data = self._getabcissa(row)
|
---|
| 1220 | u = self._getcoordinfo()[0]
|
---|
[1859] | 1221 | if u == "":
|
---|
| 1222 | u = "channel"
|
---|
| 1223 | msg = "The current mask window unit is %s" % u
|
---|
| 1224 | i = self._check_ifs()
|
---|
| 1225 | if not i:
|
---|
| 1226 | msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
|
---|
[1931] | 1227 | if not silent:
|
---|
| 1228 | asaplog.push(msg)
|
---|
[1819] | 1229 | masklist=[]
|
---|
| 1230 | ist, ien = None, None
|
---|
| 1231 | ist, ien=self.get_mask_indices(mask)
|
---|
| 1232 | if ist is not None and ien is not None:
|
---|
| 1233 | for i in xrange(len(ist)):
|
---|
| 1234 | range=[data[ist[i]],data[ien[i]]]
|
---|
| 1235 | range.sort()
|
---|
| 1236 | masklist.append([range[0],range[1]])
|
---|
| 1237 | return masklist
|
---|
| 1238 |
|
---|
| 1239 | def get_mask_indices(self, mask=None):
|
---|
[1846] | 1240 | """\
|
---|
[1819] | 1241 | Compute and Return lists of mask start indices and mask end indices.
|
---|
[1855] | 1242 |
|
---|
| 1243 | Parameters:
|
---|
| 1244 |
|
---|
[1819] | 1245 | mask: channel mask, created with create_mask.
|
---|
[1846] | 1246 |
|
---|
[1819] | 1247 | Returns:
|
---|
[1846] | 1248 |
|
---|
[1819] | 1249 | List of mask start indices and that of mask end indices,
|
---|
| 1250 | i.e., [istart1,istart2,....], [iend1,iend2,....].
|
---|
[1846] | 1251 |
|
---|
[1819] | 1252 | """
|
---|
| 1253 | if not (isinstance(mask,list) or isinstance(mask, tuple)):
|
---|
| 1254 | raise TypeError("The mask should be list or tuple.")
|
---|
| 1255 | if len(mask) < 2:
|
---|
| 1256 | raise TypeError("The mask elements should be > 1")
|
---|
| 1257 | istart=[]
|
---|
| 1258 | iend=[]
|
---|
| 1259 | if mask[0]: istart.append(0)
|
---|
| 1260 | for i in range(len(mask)-1):
|
---|
| 1261 | if not mask[i] and mask[i+1]:
|
---|
| 1262 | istart.append(i+1)
|
---|
| 1263 | elif mask[i] and not mask[i+1]:
|
---|
| 1264 | iend.append(i)
|
---|
| 1265 | if mask[len(mask)-1]: iend.append(len(mask)-1)
|
---|
| 1266 | if len(istart) != len(iend):
|
---|
| 1267 | raise RuntimeError("Numbers of mask start != mask end.")
|
---|
| 1268 | for i in range(len(istart)):
|
---|
| 1269 | if istart[i] > iend[i]:
|
---|
| 1270 | raise RuntimeError("Mask start index > mask end index")
|
---|
| 1271 | break
|
---|
| 1272 | return istart,iend
|
---|
| 1273 |
|
---|
[2013] | 1274 | @asaplog_post_dec
|
---|
| 1275 | def parse_maskexpr(self,maskstring):
|
---|
| 1276 | """
|
---|
| 1277 | Parse CASA type mask selection syntax (IF dependent).
|
---|
| 1278 |
|
---|
| 1279 | Parameters:
|
---|
| 1280 | maskstring : A string mask selection expression.
|
---|
| 1281 | A comma separated selections mean different IF -
|
---|
| 1282 | channel combinations. IFs and channel selections
|
---|
| 1283 | are partitioned by a colon, ':'.
|
---|
| 1284 | examples:
|
---|
[2015] | 1285 | '' = all IFs (all channels)
|
---|
[2013] | 1286 | '<2,4~6,9' = IFs 0,1,4,5,6,9 (all channels)
|
---|
| 1287 | '3:3~45;60' = channels 3 to 45 and 60 in IF 3
|
---|
| 1288 | '0~1:2~6,8' = channels 2 to 6 in IFs 0,1, and
|
---|
| 1289 | all channels in IF8
|
---|
| 1290 | Returns:
|
---|
| 1291 | A dictionary of selected (valid) IF and masklist pairs,
|
---|
| 1292 | e.g. {'0': [[50,250],[350,462]], '2': [[100,400],[550,974]]}
|
---|
| 1293 | """
|
---|
| 1294 | if not isinstance(maskstring,str):
|
---|
| 1295 | asaplog.post()
|
---|
| 1296 | asaplog.push("Invalid mask expression")
|
---|
| 1297 | asaplog.post("ERROR")
|
---|
| 1298 |
|
---|
| 1299 | valid_ifs = self.getifnos()
|
---|
| 1300 | frequnit = self.get_unit()
|
---|
| 1301 | seldict = {}
|
---|
[2015] | 1302 | if maskstring == "":
|
---|
| 1303 | maskstring = str(valid_ifs)[1:-1]
|
---|
[2013] | 1304 | ## split each selection
|
---|
| 1305 | sellist = maskstring.split(',')
|
---|
| 1306 | for currselstr in sellist:
|
---|
| 1307 | selset = currselstr.split(':')
|
---|
| 1308 | # spw and mask string (may include ~, < or >)
|
---|
| 1309 | spwmasklist = self._parse_selection(selset[0],typestr='integer',
|
---|
| 1310 | offset=1,minval=min(valid_ifs),
|
---|
| 1311 | maxval=max(valid_ifs))
|
---|
| 1312 | for spwlist in spwmasklist:
|
---|
| 1313 | selspws = []
|
---|
| 1314 | for ispw in range(spwlist[0],spwlist[1]+1):
|
---|
| 1315 | # Put into the list only if ispw exists
|
---|
| 1316 | if valid_ifs.count(ispw):
|
---|
| 1317 | selspws.append(ispw)
|
---|
| 1318 | del spwmasklist, spwlist
|
---|
| 1319 |
|
---|
| 1320 | # parse frequency mask list
|
---|
| 1321 | if len(selset) > 1:
|
---|
| 1322 | freqmasklist = self._parse_selection(selset[1],typestr='float',
|
---|
| 1323 | offset=0.)
|
---|
| 1324 | else:
|
---|
| 1325 | # want to select the whole spectrum
|
---|
| 1326 | freqmasklist = [None]
|
---|
| 1327 |
|
---|
| 1328 | ## define a dictionary of spw - masklist combination
|
---|
| 1329 | for ispw in selspws:
|
---|
| 1330 | #print "working on", ispw
|
---|
| 1331 | spwstr = str(ispw)
|
---|
| 1332 | if len(selspws) == 0:
|
---|
| 1333 | # empty spw
|
---|
| 1334 | continue
|
---|
| 1335 | else:
|
---|
| 1336 | ## want to get min and max of the spw and
|
---|
| 1337 | ## offset to set for '<' and '>'
|
---|
| 1338 | if frequnit == 'channel':
|
---|
| 1339 | minfreq = 0
|
---|
| 1340 | maxfreq = self.nchan(ifno=ispw)
|
---|
| 1341 | offset = 0.5
|
---|
| 1342 | else:
|
---|
| 1343 | ## This is ugly part. need improvement
|
---|
| 1344 | for ifrow in xrange(self.nrow()):
|
---|
| 1345 | if self.getif(ifrow) == ispw:
|
---|
| 1346 | #print "IF",ispw,"found in row =",ifrow
|
---|
| 1347 | break
|
---|
| 1348 | freqcoord = self.get_coordinate(ifrow)
|
---|
| 1349 | freqs = self._getabcissa(ifrow)
|
---|
| 1350 | minfreq = min(freqs)
|
---|
| 1351 | maxfreq = max(freqs)
|
---|
| 1352 | if len(freqs) == 1:
|
---|
| 1353 | offset = 0.5
|
---|
| 1354 | elif frequnit.find('Hz') > 0:
|
---|
| 1355 | offset = abs(freqcoord.to_frequency(1,unit=frequnit)
|
---|
| 1356 | -freqcoord.to_frequency(0,unit=frequnit))*0.5
|
---|
| 1357 | elif frequnit.find('m/s') > 0:
|
---|
| 1358 | offset = abs(freqcoord.to_velocity(1,unit=frequnit)
|
---|
| 1359 | -freqcoord.to_velocity(0,unit=frequnit))*0.5
|
---|
| 1360 | else:
|
---|
| 1361 | asaplog.post()
|
---|
| 1362 | asaplog.push("Invalid frequency unit")
|
---|
| 1363 | asaplog.post("ERROR")
|
---|
| 1364 | del freqs, freqcoord, ifrow
|
---|
| 1365 | for freq in freqmasklist:
|
---|
| 1366 | selmask = freq or [minfreq, maxfreq]
|
---|
| 1367 | if selmask[0] == None:
|
---|
| 1368 | ## selection was "<freq[1]".
|
---|
| 1369 | if selmask[1] < minfreq:
|
---|
| 1370 | ## avoid adding region selection
|
---|
| 1371 | selmask = None
|
---|
| 1372 | else:
|
---|
| 1373 | selmask = [minfreq,selmask[1]-offset]
|
---|
| 1374 | elif selmask[1] == None:
|
---|
| 1375 | ## selection was ">freq[0]"
|
---|
| 1376 | if selmask[0] > maxfreq:
|
---|
| 1377 | ## avoid adding region selection
|
---|
| 1378 | selmask = None
|
---|
| 1379 | else:
|
---|
| 1380 | selmask = [selmask[0]+offset,maxfreq]
|
---|
| 1381 | if selmask:
|
---|
| 1382 | if not seldict.has_key(spwstr):
|
---|
| 1383 | # new spw selection
|
---|
| 1384 | seldict[spwstr] = []
|
---|
| 1385 | seldict[spwstr] += [selmask]
|
---|
| 1386 | del minfreq,maxfreq,offset,freq,selmask
|
---|
| 1387 | del spwstr
|
---|
| 1388 | del freqmasklist
|
---|
| 1389 | del valid_ifs
|
---|
| 1390 | if len(seldict) == 0:
|
---|
| 1391 | asaplog.post()
|
---|
| 1392 | asaplog.push("No valid selection in the mask expression: "+maskstring)
|
---|
| 1393 | asaplog.post("WARN")
|
---|
| 1394 | return None
|
---|
| 1395 | msg = "Selected masklist:\n"
|
---|
| 1396 | for sif, lmask in seldict.iteritems():
|
---|
| 1397 | msg += " IF"+sif+" - "+str(lmask)+"\n"
|
---|
| 1398 | asaplog.push(msg)
|
---|
| 1399 | return seldict
|
---|
| 1400 |
|
---|
| 1401 | def _parse_selection(self,selstr,typestr='float',offset=0.,minval=None,maxval=None):
|
---|
| 1402 | """
|
---|
| 1403 | Parameters:
|
---|
| 1404 | selstr : The Selection string, e.g., '<3;5~7;100~103;9'
|
---|
| 1405 | typestr : The type of the values in returned list
|
---|
| 1406 | ('integer' or 'float')
|
---|
| 1407 | offset : The offset value to subtract from or add to
|
---|
| 1408 | the boundary value if the selection string
|
---|
| 1409 | includes '<' or '>'
|
---|
| 1410 | minval, maxval : The minimum/maximum values to set if the
|
---|
| 1411 | selection string includes '<' or '>'.
|
---|
| 1412 | The list element is filled with None by default.
|
---|
| 1413 | Returns:
|
---|
| 1414 | A list of min/max pair of selections.
|
---|
| 1415 | Example:
|
---|
| 1416 | _parseSelection('<3;5~7;9',typestr='int',offset=1,minval=0)
|
---|
| 1417 | returns [[0,2],[5,7],[9,9]]
|
---|
| 1418 | """
|
---|
| 1419 | selgroups = selstr.split(';')
|
---|
| 1420 | sellists = []
|
---|
| 1421 | if typestr.lower().startswith('int'):
|
---|
| 1422 | formatfunc = int
|
---|
| 1423 | else:
|
---|
| 1424 | formatfunc = float
|
---|
| 1425 |
|
---|
| 1426 | for currsel in selgroups:
|
---|
| 1427 | if currsel.find('~') > 0:
|
---|
| 1428 | minsel = formatfunc(currsel.split('~')[0].strip())
|
---|
| 1429 | maxsel = formatfunc(currsel.split('~')[1].strip())
|
---|
| 1430 | elif currsel.strip().startswith('<'):
|
---|
| 1431 | minsel = minval
|
---|
| 1432 | maxsel = formatfunc(currsel.split('<')[1].strip()) \
|
---|
| 1433 | - formatfunc(offset)
|
---|
| 1434 | elif currsel.strip().startswith('>'):
|
---|
| 1435 | minsel = formatfunc(currsel.split('>')[1].strip()) \
|
---|
| 1436 | + formatfunc(offset)
|
---|
| 1437 | maxsel = maxval
|
---|
| 1438 | else:
|
---|
| 1439 | minsel = formatfunc(currsel)
|
---|
| 1440 | maxsel = formatfunc(currsel)
|
---|
| 1441 | sellists.append([minsel,maxsel])
|
---|
| 1442 | return sellists
|
---|
| 1443 |
|
---|
[1819] | 1444 | # def get_restfreqs(self):
|
---|
| 1445 | # """
|
---|
| 1446 | # Get the restfrequency(s) stored in this scantable.
|
---|
| 1447 | # The return value(s) are always of unit 'Hz'
|
---|
| 1448 | # Parameters:
|
---|
| 1449 | # none
|
---|
| 1450 | # Returns:
|
---|
| 1451 | # a list of doubles
|
---|
| 1452 | # """
|
---|
| 1453 | # return list(self._getrestfreqs())
|
---|
| 1454 |
|
---|
| 1455 | def get_restfreqs(self, ids=None):
|
---|
[1846] | 1456 | """\
|
---|
[256] | 1457 | Get the restfrequency(s) stored in this scantable.
|
---|
| 1458 | The return value(s) are always of unit 'Hz'
|
---|
[1846] | 1459 |
|
---|
[256] | 1460 | Parameters:
|
---|
[1846] | 1461 |
|
---|
[1819] | 1462 | ids: (optional) a list of MOLECULE_ID for that restfrequency(s) to
|
---|
| 1463 | be retrieved
|
---|
[1846] | 1464 |
|
---|
[256] | 1465 | Returns:
|
---|
[1846] | 1466 |
|
---|
[1819] | 1467 | dictionary containing ids and a list of doubles for each id
|
---|
[1846] | 1468 |
|
---|
[256] | 1469 | """
|
---|
[1819] | 1470 | if ids is None:
|
---|
| 1471 | rfreqs={}
|
---|
| 1472 | idlist = self.getmolnos()
|
---|
| 1473 | for i in idlist:
|
---|
| 1474 | rfreqs[i]=list(self._getrestfreqs(i))
|
---|
| 1475 | return rfreqs
|
---|
| 1476 | else:
|
---|
| 1477 | if type(ids)==list or type(ids)==tuple:
|
---|
| 1478 | rfreqs={}
|
---|
| 1479 | for i in ids:
|
---|
| 1480 | rfreqs[i]=list(self._getrestfreqs(i))
|
---|
| 1481 | return rfreqs
|
---|
| 1482 | else:
|
---|
| 1483 | return list(self._getrestfreqs(ids))
|
---|
| 1484 | #return list(self._getrestfreqs(ids))
|
---|
[102] | 1485 |
|
---|
[931] | 1486 | def set_restfreqs(self, freqs=None, unit='Hz'):
|
---|
[1846] | 1487 | """\
|
---|
[931] | 1488 | Set or replace the restfrequency specified and
|
---|
[1938] | 1489 | if the 'freqs' argument holds a scalar,
|
---|
[931] | 1490 | then that rest frequency will be applied to all the selected
|
---|
| 1491 | data. If the 'freqs' argument holds
|
---|
| 1492 | a vector, then it MUST be of equal or smaller length than
|
---|
| 1493 | the number of IFs (and the available restfrequencies will be
|
---|
| 1494 | replaced by this vector). In this case, *all* data have
|
---|
| 1495 | the restfrequency set per IF according
|
---|
| 1496 | to the corresponding value you give in the 'freqs' vector.
|
---|
[1118] | 1497 | E.g. 'freqs=[1e9, 2e9]' would mean IF 0 gets restfreq 1e9 and
|
---|
[931] | 1498 | IF 1 gets restfreq 2e9.
|
---|
[1846] | 1499 |
|
---|
[1395] | 1500 | You can also specify the frequencies via a linecatalog.
|
---|
[1153] | 1501 |
|
---|
[931] | 1502 | Parameters:
|
---|
[1846] | 1503 |
|
---|
[931] | 1504 | freqs: list of rest frequency values or string idenitfiers
|
---|
[1855] | 1505 |
|
---|
[931] | 1506 | unit: unit for rest frequency (default 'Hz')
|
---|
[402] | 1507 |
|
---|
[1846] | 1508 |
|
---|
| 1509 | Example::
|
---|
| 1510 |
|
---|
[1819] | 1511 | # set the given restfrequency for the all currently selected IFs
|
---|
[931] | 1512 | scan.set_restfreqs(freqs=1.4e9)
|
---|
[1845] | 1513 | # set restfrequencies for the n IFs (n > 1) in the order of the
|
---|
| 1514 | # list, i.e
|
---|
| 1515 | # IF0 -> 1.4e9, IF1 -> 1.41e9, IF3 -> 1.42e9
|
---|
| 1516 | # len(list_of_restfreqs) == nIF
|
---|
| 1517 | # for nIF == 1 the following will set multiple restfrequency for
|
---|
| 1518 | # that IF
|
---|
[1819] | 1519 | scan.set_restfreqs(freqs=[1.4e9, 1.41e9, 1.42e9])
|
---|
[1845] | 1520 | # set multiple restfrequencies per IF. as a list of lists where
|
---|
| 1521 | # the outer list has nIF elements, the inner s arbitrary
|
---|
| 1522 | scan.set_restfreqs(freqs=[[1.4e9, 1.41e9], [1.67e9]])
|
---|
[391] | 1523 |
|
---|
[1846] | 1524 | *Note*:
|
---|
[1845] | 1525 |
|
---|
[931] | 1526 | To do more sophisticate Restfrequency setting, e.g. on a
|
---|
| 1527 | source and IF basis, use scantable.set_selection() before using
|
---|
[1846] | 1528 | this function::
|
---|
[931] | 1529 |
|
---|
[1846] | 1530 | # provided your scantable is called scan
|
---|
| 1531 | selection = selector()
|
---|
| 1532 | selection.set_name("ORION*")
|
---|
| 1533 | selection.set_ifs([1])
|
---|
| 1534 | scan.set_selection(selection)
|
---|
| 1535 | scan.set_restfreqs(freqs=86.6e9)
|
---|
| 1536 |
|
---|
[931] | 1537 | """
|
---|
| 1538 | varlist = vars()
|
---|
[1157] | 1539 | from asap import linecatalog
|
---|
| 1540 | # simple value
|
---|
[1118] | 1541 | if isinstance(freqs, int) or isinstance(freqs, float):
|
---|
[1845] | 1542 | self._setrestfreqs([freqs], [""], unit)
|
---|
[1157] | 1543 | # list of values
|
---|
[1118] | 1544 | elif isinstance(freqs, list) or isinstance(freqs, tuple):
|
---|
[1157] | 1545 | # list values are scalars
|
---|
[1118] | 1546 | if isinstance(freqs[-1], int) or isinstance(freqs[-1], float):
|
---|
[1845] | 1547 | if len(freqs) == 1:
|
---|
| 1548 | self._setrestfreqs(freqs, [""], unit)
|
---|
| 1549 | else:
|
---|
| 1550 | # allow the 'old' mode of setting mulitple IFs
|
---|
| 1551 | sel = selector()
|
---|
| 1552 | savesel = self._getselection()
|
---|
| 1553 | iflist = self.getifnos()
|
---|
| 1554 | if len(freqs)>len(iflist):
|
---|
| 1555 | raise ValueError("number of elements in list of list "
|
---|
| 1556 | "exeeds the current IF selections")
|
---|
| 1557 | iflist = self.getifnos()
|
---|
| 1558 | for i, fval in enumerate(freqs):
|
---|
| 1559 | sel.set_ifs(iflist[i])
|
---|
| 1560 | self._setselection(sel)
|
---|
| 1561 | self._setrestfreqs([fval], [""], unit)
|
---|
| 1562 | self._setselection(savesel)
|
---|
| 1563 |
|
---|
| 1564 | # list values are dict, {'value'=, 'name'=)
|
---|
[1157] | 1565 | elif isinstance(freqs[-1], dict):
|
---|
[1845] | 1566 | values = []
|
---|
| 1567 | names = []
|
---|
| 1568 | for d in freqs:
|
---|
| 1569 | values.append(d["value"])
|
---|
| 1570 | names.append(d["name"])
|
---|
| 1571 | self._setrestfreqs(values, names, unit)
|
---|
[1819] | 1572 | elif isinstance(freqs[-1], list) or isinstance(freqs[-1], tuple):
|
---|
[1157] | 1573 | sel = selector()
|
---|
| 1574 | savesel = self._getselection()
|
---|
[1322] | 1575 | iflist = self.getifnos()
|
---|
[1819] | 1576 | if len(freqs)>len(iflist):
|
---|
[1845] | 1577 | raise ValueError("number of elements in list of list exeeds"
|
---|
| 1578 | " the current IF selections")
|
---|
| 1579 | for i, fval in enumerate(freqs):
|
---|
[1322] | 1580 | sel.set_ifs(iflist[i])
|
---|
[1259] | 1581 | self._setselection(sel)
|
---|
[1845] | 1582 | self._setrestfreqs(fval, [""], unit)
|
---|
[1157] | 1583 | self._setselection(savesel)
|
---|
| 1584 | # freqs are to be taken from a linecatalog
|
---|
[1153] | 1585 | elif isinstance(freqs, linecatalog):
|
---|
| 1586 | sel = selector()
|
---|
| 1587 | savesel = self._getselection()
|
---|
| 1588 | for i in xrange(freqs.nrow()):
|
---|
[1322] | 1589 | sel.set_ifs(iflist[i])
|
---|
[1153] | 1590 | self._setselection(sel)
|
---|
[1845] | 1591 | self._setrestfreqs([freqs.get_frequency(i)],
|
---|
| 1592 | [freqs.get_name(i)], "MHz")
|
---|
[1153] | 1593 | # ensure that we are not iterating past nIF
|
---|
| 1594 | if i == self.nif()-1: break
|
---|
| 1595 | self._setselection(savesel)
|
---|
[931] | 1596 | else:
|
---|
| 1597 | return
|
---|
| 1598 | self._add_history("set_restfreqs", varlist)
|
---|
| 1599 |
|
---|
[1360] | 1600 | def shift_refpix(self, delta):
|
---|
[1846] | 1601 | """\
|
---|
[1589] | 1602 | Shift the reference pixel of the Spectra Coordinate by an
|
---|
| 1603 | integer amount.
|
---|
[1846] | 1604 |
|
---|
[1589] | 1605 | Parameters:
|
---|
[1846] | 1606 |
|
---|
[1589] | 1607 | delta: the amount to shift by
|
---|
[1846] | 1608 |
|
---|
| 1609 | *Note*:
|
---|
| 1610 |
|
---|
[1589] | 1611 | Be careful using this with broadband data.
|
---|
[1846] | 1612 |
|
---|
[1360] | 1613 | """
|
---|
[1731] | 1614 | Scantable.shift_refpix(self, delta)
|
---|
[931] | 1615 |
|
---|
[1862] | 1616 | @asaplog_post_dec
|
---|
[1259] | 1617 | def history(self, filename=None):
|
---|
[1846] | 1618 | """\
|
---|
[1259] | 1619 | Print the history. Optionally to a file.
|
---|
[1846] | 1620 |
|
---|
[1348] | 1621 | Parameters:
|
---|
[1846] | 1622 |
|
---|
[1928] | 1623 | filename: The name of the file to save the history to.
|
---|
[1846] | 1624 |
|
---|
[1259] | 1625 | """
|
---|
[484] | 1626 | hist = list(self._gethistory())
|
---|
[794] | 1627 | out = "-"*80
|
---|
[484] | 1628 | for h in hist:
|
---|
[489] | 1629 | if h.startswith("---"):
|
---|
[1857] | 1630 | out = "\n".join([out, h])
|
---|
[489] | 1631 | else:
|
---|
| 1632 | items = h.split("##")
|
---|
| 1633 | date = items[0]
|
---|
| 1634 | func = items[1]
|
---|
| 1635 | items = items[2:]
|
---|
[794] | 1636 | out += "\n"+date+"\n"
|
---|
| 1637 | out += "Function: %s\n Parameters:" % (func)
|
---|
[489] | 1638 | for i in items:
|
---|
[1938] | 1639 | if i == '':
|
---|
| 1640 | continue
|
---|
[489] | 1641 | s = i.split("=")
|
---|
[1118] | 1642 | out += "\n %s = %s" % (s[0], s[1])
|
---|
[1857] | 1643 | out = "\n".join([out, "-"*80])
|
---|
[1259] | 1644 | if filename is not None:
|
---|
| 1645 | if filename is "":
|
---|
| 1646 | filename = 'scantable_history.txt'
|
---|
| 1647 | import os
|
---|
| 1648 | filename = os.path.expandvars(os.path.expanduser(filename))
|
---|
| 1649 | if not os.path.isdir(filename):
|
---|
| 1650 | data = open(filename, 'w')
|
---|
| 1651 | data.write(out)
|
---|
| 1652 | data.close()
|
---|
| 1653 | else:
|
---|
| 1654 | msg = "Illegal file name '%s'." % (filename)
|
---|
[1859] | 1655 | raise IOError(msg)
|
---|
| 1656 | return page(out)
|
---|
[513] | 1657 | #
|
---|
| 1658 | # Maths business
|
---|
| 1659 | #
|
---|
[1862] | 1660 | @asaplog_post_dec
|
---|
[931] | 1661 | def average_time(self, mask=None, scanav=False, weight='tint', align=False):
|
---|
[1846] | 1662 | """\
|
---|
[1070] | 1663 | Return the (time) weighted average of a scan.
|
---|
[1846] | 1664 |
|
---|
| 1665 | *Note*:
|
---|
| 1666 |
|
---|
[1070] | 1667 | in channels only - align if necessary
|
---|
[1846] | 1668 |
|
---|
[513] | 1669 | Parameters:
|
---|
[1846] | 1670 |
|
---|
[513] | 1671 | mask: an optional mask (only used for 'var' and 'tsys'
|
---|
| 1672 | weighting)
|
---|
[1855] | 1673 |
|
---|
[558] | 1674 | scanav: True averages each scan separately
|
---|
| 1675 | False (default) averages all scans together,
|
---|
[1855] | 1676 |
|
---|
[1099] | 1677 | weight: Weighting scheme.
|
---|
| 1678 | 'none' (mean no weight)
|
---|
| 1679 | 'var' (1/var(spec) weighted)
|
---|
| 1680 | 'tsys' (1/Tsys**2 weighted)
|
---|
| 1681 | 'tint' (integration time weighted)
|
---|
| 1682 | 'tintsys' (Tint/Tsys**2)
|
---|
| 1683 | 'median' ( median averaging)
|
---|
[535] | 1684 | The default is 'tint'
|
---|
[1855] | 1685 |
|
---|
[931] | 1686 | align: align the spectra in velocity before averaging. It takes
|
---|
| 1687 | the time of the first spectrum as reference time.
|
---|
[1846] | 1688 |
|
---|
| 1689 | Example::
|
---|
| 1690 |
|
---|
[513] | 1691 | # time average the scantable without using a mask
|
---|
[710] | 1692 | newscan = scan.average_time()
|
---|
[1846] | 1693 |
|
---|
[513] | 1694 | """
|
---|
| 1695 | varlist = vars()
|
---|
[1593] | 1696 | weight = weight or 'TINT'
|
---|
| 1697 | mask = mask or ()
|
---|
| 1698 | scanav = (scanav and 'SCAN') or 'NONE'
|
---|
[1118] | 1699 | scan = (self, )
|
---|
[1859] | 1700 |
|
---|
| 1701 | if align:
|
---|
| 1702 | scan = (self.freq_align(insitu=False), )
|
---|
| 1703 | s = None
|
---|
| 1704 | if weight.upper() == 'MEDIAN':
|
---|
| 1705 | s = scantable(self._math._averagechannel(scan[0], 'MEDIAN',
|
---|
| 1706 | scanav))
|
---|
| 1707 | else:
|
---|
| 1708 | s = scantable(self._math._average(scan, mask, weight.upper(),
|
---|
| 1709 | scanav))
|
---|
[1099] | 1710 | s._add_history("average_time", varlist)
|
---|
[513] | 1711 | return s
|
---|
[710] | 1712 |
|
---|
[1862] | 1713 | @asaplog_post_dec
|
---|
[876] | 1714 | def convert_flux(self, jyperk=None, eta=None, d=None, insitu=None):
|
---|
[1846] | 1715 | """\
|
---|
[513] | 1716 | Return a scan where all spectra are converted to either
|
---|
| 1717 | Jansky or Kelvin depending upon the flux units of the scan table.
|
---|
| 1718 | By default the function tries to look the values up internally.
|
---|
| 1719 | If it can't find them (or if you want to over-ride), you must
|
---|
| 1720 | specify EITHER jyperk OR eta (and D which it will try to look up
|
---|
| 1721 | also if you don't set it). jyperk takes precedence if you set both.
|
---|
[1846] | 1722 |
|
---|
[513] | 1723 | Parameters:
|
---|
[1846] | 1724 |
|
---|
[513] | 1725 | jyperk: the Jy / K conversion factor
|
---|
[1855] | 1726 |
|
---|
[513] | 1727 | eta: the aperture efficiency
|
---|
[1855] | 1728 |
|
---|
[1928] | 1729 | d: the geometric diameter (metres)
|
---|
[1855] | 1730 |
|
---|
[513] | 1731 | insitu: if False a new scantable is returned.
|
---|
| 1732 | Otherwise, the scaling is done in-situ
|
---|
| 1733 | The default is taken from .asaprc (False)
|
---|
[1846] | 1734 |
|
---|
[513] | 1735 | """
|
---|
| 1736 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 1737 | self._math._setinsitu(insitu)
|
---|
[513] | 1738 | varlist = vars()
|
---|
[1593] | 1739 | jyperk = jyperk or -1.0
|
---|
| 1740 | d = d or -1.0
|
---|
| 1741 | eta = eta or -1.0
|
---|
[876] | 1742 | s = scantable(self._math._convertflux(self, d, eta, jyperk))
|
---|
| 1743 | s._add_history("convert_flux", varlist)
|
---|
| 1744 | if insitu: self._assign(s)
|
---|
| 1745 | else: return s
|
---|
[513] | 1746 |
|
---|
[1862] | 1747 | @asaplog_post_dec
|
---|
[876] | 1748 | def gain_el(self, poly=None, filename="", method="linear", insitu=None):
|
---|
[1846] | 1749 | """\
|
---|
[513] | 1750 | Return a scan after applying a gain-elevation correction.
|
---|
| 1751 | The correction can be made via either a polynomial or a
|
---|
| 1752 | table-based interpolation (and extrapolation if necessary).
|
---|
| 1753 | You specify polynomial coefficients, an ascii table or neither.
|
---|
| 1754 | If you specify neither, then a polynomial correction will be made
|
---|
| 1755 | with built in coefficients known for certain telescopes (an error
|
---|
| 1756 | will occur if the instrument is not known).
|
---|
| 1757 | The data and Tsys are *divided* by the scaling factors.
|
---|
[1846] | 1758 |
|
---|
[513] | 1759 | Parameters:
|
---|
[1846] | 1760 |
|
---|
[513] | 1761 | poly: Polynomial coefficients (default None) to compute a
|
---|
| 1762 | gain-elevation correction as a function of
|
---|
| 1763 | elevation (in degrees).
|
---|
[1855] | 1764 |
|
---|
[513] | 1765 | filename: The name of an ascii file holding correction factors.
|
---|
| 1766 | The first row of the ascii file must give the column
|
---|
| 1767 | names and these MUST include columns
|
---|
| 1768 | "ELEVATION" (degrees) and "FACTOR" (multiply data
|
---|
| 1769 | by this) somewhere.
|
---|
| 1770 | The second row must give the data type of the
|
---|
| 1771 | column. Use 'R' for Real and 'I' for Integer.
|
---|
| 1772 | An example file would be
|
---|
| 1773 | (actual factors are arbitrary) :
|
---|
| 1774 |
|
---|
| 1775 | TIME ELEVATION FACTOR
|
---|
| 1776 | R R R
|
---|
| 1777 | 0.1 0 0.8
|
---|
| 1778 | 0.2 20 0.85
|
---|
| 1779 | 0.3 40 0.9
|
---|
| 1780 | 0.4 60 0.85
|
---|
| 1781 | 0.5 80 0.8
|
---|
| 1782 | 0.6 90 0.75
|
---|
[1855] | 1783 |
|
---|
[513] | 1784 | method: Interpolation method when correcting from a table.
|
---|
| 1785 | Values are "nearest", "linear" (default), "cubic"
|
---|
| 1786 | and "spline"
|
---|
[1855] | 1787 |
|
---|
[513] | 1788 | insitu: if False a new scantable is returned.
|
---|
| 1789 | Otherwise, the scaling is done in-situ
|
---|
| 1790 | The default is taken from .asaprc (False)
|
---|
[1846] | 1791 |
|
---|
[513] | 1792 | """
|
---|
| 1793 |
|
---|
| 1794 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 1795 | self._math._setinsitu(insitu)
|
---|
[513] | 1796 | varlist = vars()
|
---|
[1593] | 1797 | poly = poly or ()
|
---|
[513] | 1798 | from os.path import expandvars
|
---|
| 1799 | filename = expandvars(filename)
|
---|
[876] | 1800 | s = scantable(self._math._gainel(self, poly, filename, method))
|
---|
| 1801 | s._add_history("gain_el", varlist)
|
---|
[1593] | 1802 | if insitu:
|
---|
| 1803 | self._assign(s)
|
---|
| 1804 | else:
|
---|
| 1805 | return s
|
---|
[710] | 1806 |
|
---|
[1862] | 1807 | @asaplog_post_dec
|
---|
[931] | 1808 | def freq_align(self, reftime=None, method='cubic', insitu=None):
|
---|
[1846] | 1809 | """\
|
---|
[513] | 1810 | Return a scan where all rows have been aligned in frequency/velocity.
|
---|
| 1811 | The alignment frequency frame (e.g. LSRK) is that set by function
|
---|
| 1812 | set_freqframe.
|
---|
[1846] | 1813 |
|
---|
[513] | 1814 | Parameters:
|
---|
[1855] | 1815 |
|
---|
[513] | 1816 | reftime: reference time to align at. By default, the time of
|
---|
| 1817 | the first row of data is used.
|
---|
[1855] | 1818 |
|
---|
[513] | 1819 | method: Interpolation method for regridding the spectra.
|
---|
| 1820 | Choose from "nearest", "linear", "cubic" (default)
|
---|
| 1821 | and "spline"
|
---|
[1855] | 1822 |
|
---|
[513] | 1823 | insitu: if False a new scantable is returned.
|
---|
| 1824 | Otherwise, the scaling is done in-situ
|
---|
| 1825 | The default is taken from .asaprc (False)
|
---|
[1846] | 1826 |
|
---|
[513] | 1827 | """
|
---|
[931] | 1828 | if insitu is None: insitu = rcParams["insitu"]
|
---|
[876] | 1829 | self._math._setinsitu(insitu)
|
---|
[513] | 1830 | varlist = vars()
|
---|
[1593] | 1831 | reftime = reftime or ""
|
---|
[931] | 1832 | s = scantable(self._math._freq_align(self, reftime, method))
|
---|
[876] | 1833 | s._add_history("freq_align", varlist)
|
---|
| 1834 | if insitu: self._assign(s)
|
---|
| 1835 | else: return s
|
---|
[513] | 1836 |
|
---|
[1862] | 1837 | @asaplog_post_dec
|
---|
[1725] | 1838 | def opacity(self, tau=None, insitu=None):
|
---|
[1846] | 1839 | """\
|
---|
[513] | 1840 | Apply an opacity correction. The data
|
---|
| 1841 | and Tsys are multiplied by the correction factor.
|
---|
[1846] | 1842 |
|
---|
[513] | 1843 | Parameters:
|
---|
[1855] | 1844 |
|
---|
[1689] | 1845 | tau: (list of) opacity from which the correction factor is
|
---|
[513] | 1846 | exp(tau*ZD)
|
---|
[1689] | 1847 | where ZD is the zenith-distance.
|
---|
| 1848 | If a list is provided, it has to be of length nIF,
|
---|
| 1849 | nIF*nPol or 1 and in order of IF/POL, e.g.
|
---|
| 1850 | [opif0pol0, opif0pol1, opif1pol0 ...]
|
---|
[1725] | 1851 | if tau is `None` the opacities are determined from a
|
---|
| 1852 | model.
|
---|
[1855] | 1853 |
|
---|
[513] | 1854 | insitu: if False a new scantable is returned.
|
---|
| 1855 | Otherwise, the scaling is done in-situ
|
---|
| 1856 | The default is taken from .asaprc (False)
|
---|
[1846] | 1857 |
|
---|
[513] | 1858 | """
|
---|
| 1859 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 1860 | self._math._setinsitu(insitu)
|
---|
[513] | 1861 | varlist = vars()
|
---|
[1689] | 1862 | if not hasattr(tau, "__len__"):
|
---|
| 1863 | tau = [tau]
|
---|
[876] | 1864 | s = scantable(self._math._opacity(self, tau))
|
---|
| 1865 | s._add_history("opacity", varlist)
|
---|
| 1866 | if insitu: self._assign(s)
|
---|
| 1867 | else: return s
|
---|
[513] | 1868 |
|
---|
[1862] | 1869 | @asaplog_post_dec
|
---|
[513] | 1870 | def bin(self, width=5, insitu=None):
|
---|
[1846] | 1871 | """\
|
---|
[513] | 1872 | Return a scan where all spectra have been binned up.
|
---|
[1846] | 1873 |
|
---|
[1348] | 1874 | Parameters:
|
---|
[1846] | 1875 |
|
---|
[513] | 1876 | width: The bin width (default=5) in pixels
|
---|
[1855] | 1877 |
|
---|
[513] | 1878 | insitu: if False a new scantable is returned.
|
---|
| 1879 | Otherwise, the scaling is done in-situ
|
---|
| 1880 | The default is taken from .asaprc (False)
|
---|
[1846] | 1881 |
|
---|
[513] | 1882 | """
|
---|
| 1883 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 1884 | self._math._setinsitu(insitu)
|
---|
[513] | 1885 | varlist = vars()
|
---|
[876] | 1886 | s = scantable(self._math._bin(self, width))
|
---|
[1118] | 1887 | s._add_history("bin", varlist)
|
---|
[1589] | 1888 | if insitu:
|
---|
| 1889 | self._assign(s)
|
---|
| 1890 | else:
|
---|
| 1891 | return s
|
---|
[513] | 1892 |
|
---|
[1862] | 1893 | @asaplog_post_dec
|
---|
[513] | 1894 | def resample(self, width=5, method='cubic', insitu=None):
|
---|
[1846] | 1895 | """\
|
---|
[1348] | 1896 | Return a scan where all spectra have been binned up.
|
---|
[1573] | 1897 |
|
---|
[1348] | 1898 | Parameters:
|
---|
[1846] | 1899 |
|
---|
[513] | 1900 | width: The bin width (default=5) in pixels
|
---|
[1855] | 1901 |
|
---|
[513] | 1902 | method: Interpolation method when correcting from a table.
|
---|
| 1903 | Values are "nearest", "linear", "cubic" (default)
|
---|
| 1904 | and "spline"
|
---|
[1855] | 1905 |
|
---|
[513] | 1906 | insitu: if False a new scantable is returned.
|
---|
| 1907 | Otherwise, the scaling is done in-situ
|
---|
| 1908 | The default is taken from .asaprc (False)
|
---|
[1846] | 1909 |
|
---|
[513] | 1910 | """
|
---|
| 1911 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 1912 | self._math._setinsitu(insitu)
|
---|
[513] | 1913 | varlist = vars()
|
---|
[876] | 1914 | s = scantable(self._math._resample(self, method, width))
|
---|
[1118] | 1915 | s._add_history("resample", varlist)
|
---|
[876] | 1916 | if insitu: self._assign(s)
|
---|
| 1917 | else: return s
|
---|
[513] | 1918 |
|
---|
[1862] | 1919 | @asaplog_post_dec
|
---|
[946] | 1920 | def average_pol(self, mask=None, weight='none'):
|
---|
[1846] | 1921 | """\
|
---|
[946] | 1922 | Average the Polarisations together.
|
---|
[1846] | 1923 |
|
---|
[946] | 1924 | Parameters:
|
---|
[1846] | 1925 |
|
---|
[946] | 1926 | mask: An optional mask defining the region, where the
|
---|
| 1927 | averaging will be applied. The output will have all
|
---|
| 1928 | specified points masked.
|
---|
[1855] | 1929 |
|
---|
[946] | 1930 | weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
|
---|
| 1931 | weighted), or 'tsys' (1/Tsys**2 weighted)
|
---|
[1846] | 1932 |
|
---|
[946] | 1933 | """
|
---|
| 1934 | varlist = vars()
|
---|
[1593] | 1935 | mask = mask or ()
|
---|
[1010] | 1936 | s = scantable(self._math._averagepol(self, mask, weight.upper()))
|
---|
[1118] | 1937 | s._add_history("average_pol", varlist)
|
---|
[992] | 1938 | return s
|
---|
[513] | 1939 |
|
---|
[1862] | 1940 | @asaplog_post_dec
|
---|
[1145] | 1941 | def average_beam(self, mask=None, weight='none'):
|
---|
[1846] | 1942 | """\
|
---|
[1145] | 1943 | Average the Beams together.
|
---|
[1846] | 1944 |
|
---|
[1145] | 1945 | Parameters:
|
---|
| 1946 | mask: An optional mask defining the region, where the
|
---|
| 1947 | averaging will be applied. The output will have all
|
---|
| 1948 | specified points masked.
|
---|
[1855] | 1949 |
|
---|
[1145] | 1950 | weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
|
---|
| 1951 | weighted), or 'tsys' (1/Tsys**2 weighted)
|
---|
[1846] | 1952 |
|
---|
[1145] | 1953 | """
|
---|
| 1954 | varlist = vars()
|
---|
[1593] | 1955 | mask = mask or ()
|
---|
[1145] | 1956 | s = scantable(self._math._averagebeams(self, mask, weight.upper()))
|
---|
| 1957 | s._add_history("average_beam", varlist)
|
---|
| 1958 | return s
|
---|
| 1959 |
|
---|
[1586] | 1960 | def parallactify(self, pflag):
|
---|
[1846] | 1961 | """\
|
---|
[1843] | 1962 | Set a flag to indicate whether this data should be treated as having
|
---|
[1617] | 1963 | been 'parallactified' (total phase == 0.0)
|
---|
[1846] | 1964 |
|
---|
[1617] | 1965 | Parameters:
|
---|
[1855] | 1966 |
|
---|
[1843] | 1967 | pflag: Bool indicating whether to turn this on (True) or
|
---|
[1617] | 1968 | off (False)
|
---|
[1846] | 1969 |
|
---|
[1617] | 1970 | """
|
---|
[1586] | 1971 | varlist = vars()
|
---|
| 1972 | self._parallactify(pflag)
|
---|
| 1973 | self._add_history("parallactify", varlist)
|
---|
| 1974 |
|
---|
[1862] | 1975 | @asaplog_post_dec
|
---|
[992] | 1976 | def convert_pol(self, poltype=None):
|
---|
[1846] | 1977 | """\
|
---|
[992] | 1978 | Convert the data to a different polarisation type.
|
---|
[1565] | 1979 | Note that you will need cross-polarisation terms for most conversions.
|
---|
[1846] | 1980 |
|
---|
[992] | 1981 | Parameters:
|
---|
[1855] | 1982 |
|
---|
[992] | 1983 | poltype: The new polarisation type. Valid types are:
|
---|
[1565] | 1984 | "linear", "circular", "stokes" and "linpol"
|
---|
[1846] | 1985 |
|
---|
[992] | 1986 | """
|
---|
| 1987 | varlist = vars()
|
---|
[1859] | 1988 | s = scantable(self._math._convertpol(self, poltype))
|
---|
[1118] | 1989 | s._add_history("convert_pol", varlist)
|
---|
[992] | 1990 | return s
|
---|
| 1991 |
|
---|
[1862] | 1992 | @asaplog_post_dec
|
---|
[1819] | 1993 | def smooth(self, kernel="hanning", width=5.0, order=2, plot=False, insitu=None):
|
---|
[1846] | 1994 | """\
|
---|
[513] | 1995 | Smooth the spectrum by the specified kernel (conserving flux).
|
---|
[1846] | 1996 |
|
---|
[513] | 1997 | Parameters:
|
---|
[1846] | 1998 |
|
---|
[513] | 1999 | kernel: The type of smoothing kernel. Select from
|
---|
[1574] | 2000 | 'hanning' (default), 'gaussian', 'boxcar', 'rmedian'
|
---|
| 2001 | or 'poly'
|
---|
[1855] | 2002 |
|
---|
[513] | 2003 | width: The width of the kernel in pixels. For hanning this is
|
---|
| 2004 | ignored otherwise it defauls to 5 pixels.
|
---|
| 2005 | For 'gaussian' it is the Full Width Half
|
---|
| 2006 | Maximum. For 'boxcar' it is the full width.
|
---|
[1574] | 2007 | For 'rmedian' and 'poly' it is the half width.
|
---|
[1855] | 2008 |
|
---|
[1574] | 2009 | order: Optional parameter for 'poly' kernel (default is 2), to
|
---|
| 2010 | specify the order of the polnomial. Ignored by all other
|
---|
| 2011 | kernels.
|
---|
[1855] | 2012 |
|
---|
[1819] | 2013 | plot: plot the original and the smoothed spectra.
|
---|
| 2014 | In this each indivual fit has to be approved, by
|
---|
| 2015 | typing 'y' or 'n'
|
---|
[1855] | 2016 |
|
---|
[513] | 2017 | insitu: if False a new scantable is returned.
|
---|
| 2018 | Otherwise, the scaling is done in-situ
|
---|
| 2019 | The default is taken from .asaprc (False)
|
---|
[1846] | 2020 |
|
---|
[513] | 2021 | """
|
---|
| 2022 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 2023 | self._math._setinsitu(insitu)
|
---|
[513] | 2024 | varlist = vars()
|
---|
[1819] | 2025 |
|
---|
| 2026 | if plot: orgscan = self.copy()
|
---|
| 2027 |
|
---|
[1574] | 2028 | s = scantable(self._math._smooth(self, kernel.lower(), width, order))
|
---|
[876] | 2029 | s._add_history("smooth", varlist)
|
---|
[1819] | 2030 |
|
---|
| 2031 | if plot:
|
---|
| 2032 | if rcParams['plotter.gui']:
|
---|
| 2033 | from asap.asaplotgui import asaplotgui as asaplot
|
---|
| 2034 | else:
|
---|
| 2035 | from asap.asaplot import asaplot
|
---|
| 2036 | self._p=asaplot()
|
---|
| 2037 | self._p.set_panels()
|
---|
| 2038 | ylab=s._get_ordinate_label()
|
---|
| 2039 | #self._p.palette(0,["#777777","red"])
|
---|
| 2040 | for r in xrange(s.nrow()):
|
---|
| 2041 | xsm=s._getabcissa(r)
|
---|
| 2042 | ysm=s._getspectrum(r)
|
---|
| 2043 | xorg=orgscan._getabcissa(r)
|
---|
| 2044 | yorg=orgscan._getspectrum(r)
|
---|
| 2045 | self._p.clear()
|
---|
| 2046 | self._p.hold()
|
---|
| 2047 | self._p.set_axes('ylabel',ylab)
|
---|
| 2048 | self._p.set_axes('xlabel',s._getabcissalabel(r))
|
---|
| 2049 | self._p.set_axes('title',s._getsourcename(r))
|
---|
| 2050 | self._p.set_line(label='Original',color="#777777")
|
---|
| 2051 | self._p.plot(xorg,yorg)
|
---|
| 2052 | self._p.set_line(label='Smoothed',color="red")
|
---|
| 2053 | self._p.plot(xsm,ysm)
|
---|
| 2054 | ### Ugly part for legend
|
---|
| 2055 | for i in [0,1]:
|
---|
| 2056 | self._p.subplots[0]['lines'].append([self._p.subplots[0]['axes'].lines[i]])
|
---|
| 2057 | self._p.release()
|
---|
| 2058 | ### Ugly part for legend
|
---|
| 2059 | self._p.subplots[0]['lines']=[]
|
---|
| 2060 | res = raw_input("Accept smoothing ([y]/n): ")
|
---|
| 2061 | if res.upper() == 'N':
|
---|
| 2062 | s._setspectrum(yorg, r)
|
---|
| 2063 | self._p.unmap()
|
---|
| 2064 | self._p = None
|
---|
| 2065 | del orgscan
|
---|
| 2066 |
|
---|
[876] | 2067 | if insitu: self._assign(s)
|
---|
| 2068 | else: return s
|
---|
[513] | 2069 |
|
---|
[2012] | 2070 |
|
---|
[1862] | 2071 | @asaplog_post_dec
|
---|
[2082] | 2072 | def sinusoid_baseline(self, insitu=None, mask=None, nwave=None, maxwavelength=None,
|
---|
| 2073 | clipthresh=None, clipniter=None, plot=None, getresidual=None, outlog=None, blfile=None):
|
---|
[2047] | 2074 | """\
|
---|
[2082] | 2075 | Return a scan which has been baselined (all rows) by sinusoidal functions.
|
---|
[2047] | 2076 | Parameters:
|
---|
[2082] | 2077 | insitu: If False a new scantable is returned.
|
---|
| 2078 | Otherwise, the scaling is done in-situ
|
---|
| 2079 | The default is taken from .asaprc (False)
|
---|
| 2080 | mask: An optional mask
|
---|
| 2081 | nwave: the maximum wave number of sinusoids within
|
---|
| 2082 | maxwavelength * (spectral range).
|
---|
| 2083 | The default is 3 (i.e., sinusoids with wave
|
---|
| 2084 | number of 0(=constant), 1, 2, and 3 are
|
---|
| 2085 | used for fitting). Also it is possible to
|
---|
| 2086 | explicitly specify all the wave numbers to
|
---|
| 2087 | be used, by giving a list including them
|
---|
| 2088 | (e.g. [0,1,2,15,16]).
|
---|
| 2089 | maxwavelength: the longest sinusoidal wavelength. The
|
---|
| 2090 | default is 1.0 (unit: spectral range).
|
---|
| 2091 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
| 2092 | clipniter: maximum number of iteration of 'clipthresh'-sigma clipping (default is 1)
|
---|
| 2093 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 2094 | plot the fit and the residual. In this each
|
---|
| 2095 | indivual fit has to be approved, by typing 'y'
|
---|
| 2096 | or 'n'
|
---|
| 2097 | getresidual: if False, returns best-fit values instead of
|
---|
| 2098 | residual. (default is True)
|
---|
| 2099 | outlog: Output the coefficients of the best-fit
|
---|
| 2100 | function to logger (default is False)
|
---|
| 2101 | blfile: Name of a text file in which the best-fit
|
---|
| 2102 | parameter values to be written
|
---|
| 2103 | (default is "": no file/logger output)
|
---|
[2047] | 2104 |
|
---|
| 2105 | Example:
|
---|
| 2106 | # return a scan baselined by a combination of sinusoidal curves having
|
---|
[2082] | 2107 | # wave numbers in spectral window up to 10,
|
---|
[2047] | 2108 | # also with 3-sigma clipping, iteration up to 4 times
|
---|
[2082] | 2109 | bscan = scan.sinusoid_baseline(nwave=10,clipthresh=3.0,clipniter=4)
|
---|
| 2110 |
|
---|
| 2111 | Note:
|
---|
| 2112 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 2113 | based on specunit of 'channel'.
|
---|
[2047] | 2114 | """
|
---|
| 2115 |
|
---|
| 2116 | varlist = vars()
|
---|
| 2117 |
|
---|
| 2118 | if insitu is None: insitu = rcParams["insitu"]
|
---|
| 2119 | if insitu:
|
---|
| 2120 | workscan = self
|
---|
| 2121 | else:
|
---|
| 2122 | workscan = self.copy()
|
---|
| 2123 |
|
---|
| 2124 | nchan = workscan.nchan()
|
---|
| 2125 |
|
---|
[2082] | 2126 | if mask is None: mask = [True for i in xrange(nchan)]
|
---|
| 2127 | if nwave is None: nwave = 3
|
---|
| 2128 | if maxwavelength is None: maxwavelength = 1.0
|
---|
| 2129 | if clipthresh is None: clipthresh = 3.0
|
---|
| 2130 | if clipniter is None: clipniter = 1
|
---|
| 2131 | if plot is None: plot = False
|
---|
| 2132 | if getresidual is None: getresidual = True
|
---|
| 2133 | if outlog is None: outlog = False
|
---|
| 2134 | if blfile is None: blfile = ""
|
---|
[2047] | 2135 |
|
---|
[2082] | 2136 | if isinstance(nwave, int):
|
---|
| 2137 | in_nwave = nwave
|
---|
| 2138 | nwave = []
|
---|
| 2139 | for i in xrange(in_nwave+1): nwave.append(i)
|
---|
| 2140 |
|
---|
[2047] | 2141 | outblfile = (blfile != "") and os.path.exists(os.path.expanduser(os.path.expandvars(blfile)))
|
---|
| 2142 |
|
---|
| 2143 | try:
|
---|
[2082] | 2144 | #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method.
|
---|
| 2145 | workscan._sinusoid_baseline(mask, nwave, maxwavelength, clipthresh, clipniter, getresidual, outlog, blfile)
|
---|
[2047] | 2146 |
|
---|
| 2147 | workscan._add_history("sinusoid_baseline", varlist)
|
---|
| 2148 |
|
---|
| 2149 | if insitu:
|
---|
| 2150 | self._assign(workscan)
|
---|
| 2151 | else:
|
---|
| 2152 | return workscan
|
---|
| 2153 |
|
---|
| 2154 | except RuntimeError, e:
|
---|
| 2155 | msg = "The fit failed, possibly because it didn't converge."
|
---|
| 2156 | if rcParams["verbose"]:
|
---|
| 2157 | asaplog.push(str(e))
|
---|
| 2158 | asaplog.push(str(msg))
|
---|
| 2159 | return
|
---|
| 2160 | else:
|
---|
| 2161 | raise RuntimeError(str(e)+'\n'+msg)
|
---|
| 2162 |
|
---|
| 2163 |
|
---|
[2082] | 2164 | def auto_sinusoid_baseline(self, insitu=None, mask=None, nwave=None, maxwavelength=None,
|
---|
[2047] | 2165 | clipthresh=None, clipniter=None, edge=None, threshold=None,
|
---|
[2082] | 2166 | chan_avg_limit=None, plot=None, getresidual=None, outlog=None, blfile=None):
|
---|
[2047] | 2167 | """\
|
---|
| 2168 | Return a scan which has been baselined (all rows) by cubic spline
|
---|
| 2169 | function (piecewise cubic polynomial).
|
---|
| 2170 | Spectral lines are detected first using linefinder and masked out
|
---|
| 2171 | to avoid them affecting the baseline solution.
|
---|
| 2172 |
|
---|
| 2173 | Parameters:
|
---|
[2082] | 2174 | insitu: if False a new scantable is returned.
|
---|
| 2175 | Otherwise, the scaling is done in-situ
|
---|
| 2176 | The default is taken from .asaprc (False)
|
---|
| 2177 | mask: an optional mask retreived from scantable
|
---|
| 2178 | nwave: the maximum wave number of sinusoids within
|
---|
| 2179 | maxwavelength * (spectral range).
|
---|
| 2180 | The default is 3 (i.e., sinusoids with wave
|
---|
| 2181 | number of 0(=constant), 1, 2, and 3 are
|
---|
| 2182 | used for fitting). Also it is possible to
|
---|
| 2183 | explicitly specify all the wave numbers to
|
---|
| 2184 | be used, by giving a list including them
|
---|
| 2185 | (e.g. [0,1,2,15,16]).
|
---|
| 2186 | maxwavelength: the longest sinusoidal wavelength. The
|
---|
| 2187 | default is 1.0 (unit: spectral range).
|
---|
| 2188 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
| 2189 | clipniter: maximum number of iteration of 'clipthresh'-sigma clipping (default is 1)
|
---|
| 2190 | edge: an optional number of channel to drop at
|
---|
| 2191 | the edge of spectrum. If only one value is
|
---|
| 2192 | specified, the same number will be dropped
|
---|
| 2193 | from both sides of the spectrum. Default
|
---|
| 2194 | is to keep all channels. Nested tuples
|
---|
| 2195 | represent individual edge selection for
|
---|
| 2196 | different IFs (a number of spectral channels
|
---|
| 2197 | can be different)
|
---|
| 2198 | threshold: the threshold used by line finder. It is
|
---|
| 2199 | better to keep it large as only strong lines
|
---|
| 2200 | affect the baseline solution.
|
---|
| 2201 | chan_avg_limit:a maximum number of consequtive spectral
|
---|
| 2202 | channels to average during the search of
|
---|
| 2203 | weak and broad lines. The default is no
|
---|
| 2204 | averaging (and no search for weak lines).
|
---|
| 2205 | If such lines can affect the fitted baseline
|
---|
| 2206 | (e.g. a high order polynomial is fitted),
|
---|
| 2207 | increase this parameter (usually values up
|
---|
| 2208 | to 8 are reasonable). Most users of this
|
---|
| 2209 | method should find the default value sufficient.
|
---|
| 2210 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 2211 | plot the fit and the residual. In this each
|
---|
| 2212 | indivual fit has to be approved, by typing 'y'
|
---|
| 2213 | or 'n'
|
---|
| 2214 | getresidual: if False, returns best-fit values instead of
|
---|
| 2215 | residual. (default is True)
|
---|
| 2216 | outlog: Output the coefficients of the best-fit
|
---|
| 2217 | function to logger (default is False)
|
---|
| 2218 | blfile: Name of a text file in which the best-fit
|
---|
| 2219 | parameter values to be written
|
---|
| 2220 | (default is "": no file/logger output)
|
---|
[2047] | 2221 |
|
---|
| 2222 | Example:
|
---|
[2082] | 2223 | bscan = scan.auto_sinusoid_baseline(nwave=10, insitu=False)
|
---|
| 2224 |
|
---|
| 2225 | Note:
|
---|
| 2226 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 2227 | based on specunit of 'channel'.
|
---|
[2047] | 2228 | """
|
---|
| 2229 |
|
---|
| 2230 | varlist = vars()
|
---|
| 2231 |
|
---|
| 2232 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2233 | if insitu:
|
---|
| 2234 | workscan = self
|
---|
| 2235 | else:
|
---|
| 2236 | workscan = self.copy()
|
---|
| 2237 |
|
---|
| 2238 | nchan = workscan.nchan()
|
---|
| 2239 |
|
---|
[2082] | 2240 | if mask is None: mask = [True for i in xrange(nchan)]
|
---|
| 2241 | if nwave is None: nwave = 3
|
---|
| 2242 | if maxwavelength is None: maxwavelength = 1.0
|
---|
| 2243 | if clipthresh is None: clipthresh = 3.0
|
---|
| 2244 | if clipniter is None: clipniter = 1
|
---|
| 2245 | if edge is None: edge = (0,0)
|
---|
| 2246 | if threshold is None: threshold = 3
|
---|
[2047] | 2247 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
[2082] | 2248 | if plot is None: plot = False
|
---|
| 2249 | if getresidual is None: getresidual = True
|
---|
| 2250 | if outlog is None: outlog = False
|
---|
| 2251 | if blfile is None: blfile = ""
|
---|
[2047] | 2252 |
|
---|
| 2253 | outblfile = (blfile != "") and os.path.exists(os.path.expanduser(os.path.expandvars(blfile)))
|
---|
| 2254 |
|
---|
| 2255 | from asap.asaplinefind import linefinder
|
---|
| 2256 | from asap import _is_sequence_or_number as _is_valid
|
---|
| 2257 |
|
---|
[2082] | 2258 | if isinstance(nwave, int):
|
---|
| 2259 | in_nwave = nwave
|
---|
| 2260 | nwave = []
|
---|
| 2261 | for i in xrange(in_nwave+1): nwave.append(i)
|
---|
| 2262 |
|
---|
[2047] | 2263 | if not (isinstance(edge, list) or isinstance(edge, tuple)): edge = [ edge ]
|
---|
| 2264 | individualedge = False;
|
---|
| 2265 | if len(edge) > 1: individualedge = isinstance(edge[0], list) or isinstance(edge[0], tuple)
|
---|
| 2266 |
|
---|
| 2267 | if individualedge:
|
---|
| 2268 | for edgepar in edge:
|
---|
| 2269 | if not _is_valid(edgepar, int):
|
---|
| 2270 | raise ValueError, "Each element of the 'edge' tuple has \
|
---|
| 2271 | to be a pair of integers or an integer."
|
---|
| 2272 | else:
|
---|
| 2273 | if not _is_valid(edge, int):
|
---|
| 2274 | raise ValueError, "Parameter 'edge' has to be an integer or a \
|
---|
| 2275 | pair of integers specified as a tuple. \
|
---|
| 2276 | Nested tuples are allowed \
|
---|
| 2277 | to make individual selection for different IFs."
|
---|
| 2278 |
|
---|
| 2279 | if len(edge) > 1:
|
---|
| 2280 | curedge = edge
|
---|
| 2281 | else:
|
---|
| 2282 | curedge = edge + edge
|
---|
| 2283 |
|
---|
| 2284 | try:
|
---|
[2082] | 2285 | #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method.
|
---|
[2047] | 2286 | if individualedge:
|
---|
| 2287 | curedge = []
|
---|
| 2288 | for i in xrange(len(edge)):
|
---|
| 2289 | curedge += edge[i]
|
---|
| 2290 |
|
---|
[2082] | 2291 | workscan._auto_sinusoid_baseline(mask, nwave, maxwavelength, clipthresh, clipniter, curedge, threshold, chan_avg_limit, getresidual, outlog, blfile)
|
---|
[2047] | 2292 |
|
---|
| 2293 | workscan._add_history("auto_sinusoid_baseline", varlist)
|
---|
| 2294 |
|
---|
| 2295 | if insitu:
|
---|
| 2296 | self._assign(workscan)
|
---|
| 2297 | else:
|
---|
| 2298 | return workscan
|
---|
| 2299 |
|
---|
| 2300 | except RuntimeError, e:
|
---|
| 2301 | msg = "The fit failed, possibly because it didn't converge."
|
---|
| 2302 | if rcParams["verbose"]:
|
---|
| 2303 | asaplog.push(str(e))
|
---|
| 2304 | asaplog.push(str(msg))
|
---|
| 2305 | return
|
---|
| 2306 | else:
|
---|
| 2307 | raise RuntimeError(str(e)+'\n'+msg)
|
---|
| 2308 |
|
---|
| 2309 |
|
---|
| 2310 | @asaplog_post_dec
|
---|
[2012] | 2311 | def cspline_baseline(self, insitu=None, mask=None, npiece=None, clipthresh=None, clipniter=None, plot=None, outlog=None, blfile=None):
|
---|
[1846] | 2312 | """\
|
---|
[2012] | 2313 | Return a scan which has been baselined (all rows) by cubic spline function (piecewise cubic polynomial).
|
---|
[513] | 2314 | Parameters:
|
---|
[2012] | 2315 | insitu: If False a new scantable is returned.
|
---|
| 2316 | Otherwise, the scaling is done in-situ
|
---|
| 2317 | The default is taken from .asaprc (False)
|
---|
| 2318 | mask: An optional mask
|
---|
| 2319 | npiece: Number of pieces. (default is 2)
|
---|
| 2320 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
| 2321 | clipniter: maximum number of iteration of 'clipthresh'-sigma clipping (default is 1)
|
---|
| 2322 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 2323 | plot the fit and the residual. In this each
|
---|
| 2324 | indivual fit has to be approved, by typing 'y'
|
---|
| 2325 | or 'n'
|
---|
| 2326 | outlog: Output the coefficients of the best-fit
|
---|
| 2327 | function to logger (default is False)
|
---|
| 2328 | blfile: Name of a text file in which the best-fit
|
---|
| 2329 | parameter values to be written
|
---|
| 2330 | (default is "": no file/logger output)
|
---|
[1846] | 2331 |
|
---|
[2012] | 2332 | Example:
|
---|
| 2333 | # return a scan baselined by a cubic spline consisting of 2 pieces (i.e., 1 internal knot),
|
---|
| 2334 | # also with 3-sigma clipping, iteration up to 4 times
|
---|
| 2335 | bscan = scan.cspline_baseline(npiece=2,clipthresh=3.0,clipniter=4)
|
---|
[2082] | 2336 |
|
---|
| 2337 | Note:
|
---|
| 2338 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 2339 | based on specunit of 'channel'.
|
---|
[2012] | 2340 | """
|
---|
| 2341 |
|
---|
| 2342 | varlist = vars()
|
---|
| 2343 |
|
---|
| 2344 | if insitu is None: insitu = rcParams["insitu"]
|
---|
| 2345 | if insitu:
|
---|
| 2346 | workscan = self
|
---|
| 2347 | else:
|
---|
| 2348 | workscan = self.copy()
|
---|
[1855] | 2349 |
|
---|
[2012] | 2350 | nchan = workscan.nchan()
|
---|
| 2351 |
|
---|
| 2352 | if mask is None: mask = [True for i in xrange(nchan)]
|
---|
| 2353 | if npiece is None: npiece = 2
|
---|
| 2354 | if clipthresh is None: clipthresh = 3.0
|
---|
| 2355 | if clipniter is None: clipniter = 1
|
---|
| 2356 | if plot is None: plot = False
|
---|
| 2357 | if outlog is None: outlog = False
|
---|
| 2358 | if blfile is None: blfile = ""
|
---|
[1855] | 2359 |
|
---|
[2012] | 2360 | outblfile = (blfile != "") and os.path.exists(os.path.expanduser(os.path.expandvars(blfile)))
|
---|
| 2361 |
|
---|
| 2362 | try:
|
---|
| 2363 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
| 2364 | workscan._cspline_baseline(mask, npiece, clipthresh, clipniter, outlog, blfile)
|
---|
| 2365 |
|
---|
| 2366 | workscan._add_history("cspline_baseline", varlist)
|
---|
| 2367 |
|
---|
| 2368 | if insitu:
|
---|
| 2369 | self._assign(workscan)
|
---|
| 2370 | else:
|
---|
| 2371 | return workscan
|
---|
| 2372 |
|
---|
| 2373 | except RuntimeError, e:
|
---|
| 2374 | msg = "The fit failed, possibly because it didn't converge."
|
---|
| 2375 | if rcParams["verbose"]:
|
---|
| 2376 | asaplog.push(str(e))
|
---|
| 2377 | asaplog.push(str(msg))
|
---|
| 2378 | return
|
---|
| 2379 | else:
|
---|
| 2380 | raise RuntimeError(str(e)+'\n'+msg)
|
---|
[1855] | 2381 |
|
---|
| 2382 |
|
---|
[2012] | 2383 | def auto_cspline_baseline(self, insitu=None, mask=None, npiece=None, clipthresh=None,
|
---|
| 2384 | clipniter=None, edge=None, threshold=None,
|
---|
| 2385 | chan_avg_limit=None, plot=None, outlog=None, blfile=None):
|
---|
| 2386 | """\
|
---|
| 2387 | Return a scan which has been baselined (all rows) by cubic spline
|
---|
| 2388 | function (piecewise cubic polynomial).
|
---|
| 2389 | Spectral lines are detected first using linefinder and masked out
|
---|
| 2390 | to avoid them affecting the baseline solution.
|
---|
| 2391 |
|
---|
| 2392 | Parameters:
|
---|
[794] | 2393 | insitu: if False a new scantable is returned.
|
---|
| 2394 | Otherwise, the scaling is done in-situ
|
---|
| 2395 | The default is taken from .asaprc (False)
|
---|
[2012] | 2396 | mask: an optional mask retreived from scantable
|
---|
| 2397 | npiece: Number of pieces. (default is 2)
|
---|
| 2398 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
| 2399 | clipniter: maximum number of iteration of 'clipthresh'-sigma clipping (default is 1)
|
---|
| 2400 | edge: an optional number of channel to drop at
|
---|
| 2401 | the edge of spectrum. If only one value is
|
---|
| 2402 | specified, the same number will be dropped
|
---|
| 2403 | from both sides of the spectrum. Default
|
---|
| 2404 | is to keep all channels. Nested tuples
|
---|
| 2405 | represent individual edge selection for
|
---|
| 2406 | different IFs (a number of spectral channels
|
---|
| 2407 | can be different)
|
---|
| 2408 | threshold: the threshold used by line finder. It is
|
---|
| 2409 | better to keep it large as only strong lines
|
---|
| 2410 | affect the baseline solution.
|
---|
| 2411 | chan_avg_limit:
|
---|
| 2412 | a maximum number of consequtive spectral
|
---|
| 2413 | channels to average during the search of
|
---|
| 2414 | weak and broad lines. The default is no
|
---|
| 2415 | averaging (and no search for weak lines).
|
---|
| 2416 | If such lines can affect the fitted baseline
|
---|
| 2417 | (e.g. a high order polynomial is fitted),
|
---|
| 2418 | increase this parameter (usually values up
|
---|
| 2419 | to 8 are reasonable). Most users of this
|
---|
| 2420 | method should find the default value sufficient.
|
---|
| 2421 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
| 2422 | plot the fit and the residual. In this each
|
---|
| 2423 | indivual fit has to be approved, by typing 'y'
|
---|
| 2424 | or 'n'
|
---|
| 2425 | outlog: Output the coefficients of the best-fit
|
---|
| 2426 | function to logger (default is False)
|
---|
| 2427 | blfile: Name of a text file in which the best-fit
|
---|
| 2428 | parameter values to be written
|
---|
| 2429 | (default is "": no file/logger output)
|
---|
[1846] | 2430 |
|
---|
[1907] | 2431 | Example:
|
---|
[2012] | 2432 | bscan = scan.auto_cspline_baseline(npiece=3, insitu=False)
|
---|
[2082] | 2433 |
|
---|
| 2434 | Note:
|
---|
| 2435 | The best-fit parameter values output in logger and/or blfile are now
|
---|
| 2436 | based on specunit of 'channel'.
|
---|
[2012] | 2437 | """
|
---|
[1846] | 2438 |
|
---|
[2012] | 2439 | varlist = vars()
|
---|
| 2440 |
|
---|
[513] | 2441 | if insitu is None: insitu = rcParams['insitu']
|
---|
[2012] | 2442 | if insitu:
|
---|
| 2443 | workscan = self
|
---|
| 2444 | else:
|
---|
[1819] | 2445 | workscan = self.copy()
|
---|
[2012] | 2446 |
|
---|
| 2447 | nchan = workscan.nchan()
|
---|
| 2448 |
|
---|
| 2449 | if mask is None: mask = [True for i in xrange(nchan)]
|
---|
| 2450 | if npiece is None: npiece = 2
|
---|
| 2451 | if clipthresh is None: clipthresh = 3.0
|
---|
| 2452 | if clipniter is None: clipniter = 1
|
---|
| 2453 | if edge is None: edge = (0, 0)
|
---|
| 2454 | if threshold is None: threshold = 3
|
---|
| 2455 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 2456 | if plot is None: plot = False
|
---|
| 2457 | if outlog is None: outlog = False
|
---|
| 2458 | if blfile is None: blfile = ""
|
---|
| 2459 |
|
---|
| 2460 | outblfile = (blfile != "") and os.path.exists(os.path.expanduser(os.path.expandvars(blfile)))
|
---|
| 2461 |
|
---|
| 2462 | from asap.asaplinefind import linefinder
|
---|
| 2463 | from asap import _is_sequence_or_number as _is_valid
|
---|
| 2464 |
|
---|
| 2465 | if not (isinstance(edge, list) or isinstance(edge, tuple)): edge = [ edge ]
|
---|
| 2466 | individualedge = False;
|
---|
| 2467 | if len(edge) > 1: individualedge = isinstance(edge[0], list) or isinstance(edge[0], tuple)
|
---|
| 2468 |
|
---|
| 2469 | if individualedge:
|
---|
| 2470 | for edgepar in edge:
|
---|
| 2471 | if not _is_valid(edgepar, int):
|
---|
| 2472 | raise ValueError, "Each element of the 'edge' tuple has \
|
---|
| 2473 | to be a pair of integers or an integer."
|
---|
[1819] | 2474 | else:
|
---|
[2012] | 2475 | if not _is_valid(edge, int):
|
---|
| 2476 | raise ValueError, "Parameter 'edge' has to be an integer or a \
|
---|
| 2477 | pair of integers specified as a tuple. \
|
---|
| 2478 | Nested tuples are allowed \
|
---|
| 2479 | to make individual selection for different IFs."
|
---|
[1819] | 2480 |
|
---|
[2012] | 2481 | if len(edge) > 1:
|
---|
| 2482 | curedge = edge
|
---|
[1391] | 2483 | else:
|
---|
[2012] | 2484 | curedge = edge + edge
|
---|
[1819] | 2485 |
|
---|
[2012] | 2486 | try:
|
---|
| 2487 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
| 2488 | if individualedge:
|
---|
| 2489 | curedge = []
|
---|
| 2490 | for i in xrange(len(edge)):
|
---|
| 2491 | curedge += edge[i]
|
---|
| 2492 |
|
---|
| 2493 | workscan._auto_cspline_baseline(mask, npiece, clipthresh, clipniter, curedge, threshold, chan_avg_limit, outlog, blfile)
|
---|
| 2494 |
|
---|
| 2495 | workscan._add_history("auto_cspline_baseline", varlist)
|
---|
[1907] | 2496 |
|
---|
[1856] | 2497 | if insitu:
|
---|
| 2498 | self._assign(workscan)
|
---|
| 2499 | else:
|
---|
| 2500 | return workscan
|
---|
[2012] | 2501 |
|
---|
| 2502 | except RuntimeError, e:
|
---|
[1217] | 2503 | msg = "The fit failed, possibly because it didn't converge."
|
---|
[2012] | 2504 | if rcParams["verbose"]:
|
---|
| 2505 | asaplog.push(str(e))
|
---|
| 2506 | asaplog.push(str(msg))
|
---|
| 2507 | return
|
---|
| 2508 | else:
|
---|
| 2509 | raise RuntimeError(str(e)+'\n'+msg)
|
---|
[513] | 2510 |
|
---|
[2012] | 2511 |
|
---|
[1931] | 2512 | @asaplog_post_dec
|
---|
[2012] | 2513 | def poly_baseline(self, insitu=None, mask=None, order=None, plot=None, outlog=None, blfile=None):
|
---|
[1907] | 2514 | """\
|
---|
| 2515 | Return a scan which has been baselined (all rows) by a polynomial.
|
---|
| 2516 | Parameters:
|
---|
[2012] | 2517 | insitu: if False a new scantable is returned.
|
---|
| 2518 | Otherwise, the scaling is done in-situ
|
---|
| 2519 | The default is taken from .asaprc (False)
|
---|
[1907] | 2520 | mask: an optional mask
|
---|
| 2521 | order: the order of the polynomial (default is 0)
|
---|
| 2522 | plot: plot the fit and the residual. In this each
|
---|
| 2523 | indivual fit has to be approved, by typing 'y'
|
---|
[2012] | 2524 | or 'n'
|
---|
| 2525 | outlog: Output the coefficients of the best-fit
|
---|
| 2526 | function to logger (default is False)
|
---|
| 2527 | blfile: Name of a text file in which the best-fit
|
---|
| 2528 | parameter values to be written
|
---|
| 2529 | (default is "": no file/logger output)
|
---|
| 2530 |
|
---|
[1907] | 2531 | Example:
|
---|
| 2532 | # return a scan baselined by a third order polynomial,
|
---|
| 2533 | # not using a mask
|
---|
| 2534 | bscan = scan.poly_baseline(order=3)
|
---|
| 2535 | """
|
---|
[1931] | 2536 |
|
---|
| 2537 | varlist = vars()
|
---|
| 2538 |
|
---|
[1907] | 2539 | if insitu is None: insitu = rcParams["insitu"]
|
---|
| 2540 | if insitu:
|
---|
| 2541 | workscan = self
|
---|
| 2542 | else:
|
---|
| 2543 | workscan = self.copy()
|
---|
| 2544 |
|
---|
| 2545 | nchan = workscan.nchan()
|
---|
| 2546 |
|
---|
[2012] | 2547 | if mask is None: mask = [True for i in xrange(nchan)]
|
---|
| 2548 | if order is None: order = 0
|
---|
| 2549 | if plot is None: plot = False
|
---|
| 2550 | if outlog is None: outlog = False
|
---|
| 2551 | if blfile is None: blfile = ""
|
---|
[1907] | 2552 |
|
---|
[2012] | 2553 | outblfile = (blfile != "") and os.path.exists(os.path.expanduser(os.path.expandvars(blfile)))
|
---|
| 2554 |
|
---|
[1907] | 2555 | try:
|
---|
[2012] | 2556 | rows = xrange(workscan.nrow())
|
---|
[1907] | 2557 |
|
---|
[2012] | 2558 | #if len(rows) > 0: workscan._init_blinfo()
|
---|
[1907] | 2559 |
|
---|
[2012] | 2560 | if plot:
|
---|
| 2561 | if outblfile: blf = open(blfile, "a")
|
---|
| 2562 |
|
---|
[1907] | 2563 | f = fitter()
|
---|
| 2564 | f.set_function(lpoly=order)
|
---|
| 2565 | for r in rows:
|
---|
| 2566 | f.x = workscan._getabcissa(r)
|
---|
| 2567 | f.y = workscan._getspectrum(r)
|
---|
| 2568 | f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
|
---|
| 2569 | f.data = None
|
---|
| 2570 | f.fit()
|
---|
| 2571 |
|
---|
| 2572 | f.plot(residual=True)
|
---|
| 2573 | accept_fit = raw_input("Accept fit ( [y]/n ): ")
|
---|
| 2574 | if accept_fit.upper() == "N":
|
---|
[2012] | 2575 | #workscan._append_blinfo(None, None, None)
|
---|
[1907] | 2576 | continue
|
---|
[2012] | 2577 |
|
---|
| 2578 | blpars = f.get_parameters()
|
---|
| 2579 | masklist = workscan.get_masklist(f.mask, row=r, silent=True)
|
---|
| 2580 | #workscan._append_blinfo(blpars, masklist, f.mask)
|
---|
[1907] | 2581 | workscan._setspectrum(f.fitter.getresidual(), r)
|
---|
| 2582 |
|
---|
[2012] | 2583 | if outblfile:
|
---|
| 2584 | rms = workscan.get_rms(f.mask, r)
|
---|
| 2585 | dataout = workscan.format_blparams_row(blpars["params"], blpars["fixed"], rms, str(masklist), r, True)
|
---|
| 2586 | blf.write(dataout)
|
---|
| 2587 |
|
---|
[1907] | 2588 | f._p.unmap()
|
---|
| 2589 | f._p = None
|
---|
[2012] | 2590 |
|
---|
| 2591 | if outblfile: blf.close()
|
---|
[1907] | 2592 | else:
|
---|
[2012] | 2593 | workscan._poly_baseline(mask, order, outlog, blfile)
|
---|
[1907] | 2594 |
|
---|
| 2595 | workscan._add_history("poly_baseline", varlist)
|
---|
| 2596 |
|
---|
| 2597 | if insitu:
|
---|
| 2598 | self._assign(workscan)
|
---|
| 2599 | else:
|
---|
| 2600 | return workscan
|
---|
| 2601 |
|
---|
[1919] | 2602 | except RuntimeError, e:
|
---|
[1907] | 2603 | msg = "The fit failed, possibly because it didn't converge."
|
---|
| 2604 | if rcParams["verbose"]:
|
---|
[1919] | 2605 | asaplog.push(str(e))
|
---|
[1907] | 2606 | asaplog.push(str(msg))
|
---|
| 2607 | return
|
---|
| 2608 | else:
|
---|
[1919] | 2609 | raise RuntimeError(str(e)+'\n'+msg)
|
---|
[1907] | 2610 |
|
---|
| 2611 |
|
---|
[2012] | 2612 | def auto_poly_baseline(self, insitu=None, mask=None, order=None, edge=None, threshold=None,
|
---|
| 2613 | chan_avg_limit=None, plot=None, outlog=None, blfile=None):
|
---|
[1846] | 2614 | """\
|
---|
[1931] | 2615 | Return a scan which has been baselined (all rows) by a polynomial.
|
---|
[880] | 2616 | Spectral lines are detected first using linefinder and masked out
|
---|
| 2617 | to avoid them affecting the baseline solution.
|
---|
| 2618 |
|
---|
| 2619 | Parameters:
|
---|
[2012] | 2620 | insitu: if False a new scantable is returned.
|
---|
| 2621 | Otherwise, the scaling is done in-situ
|
---|
| 2622 | The default is taken from .asaprc (False)
|
---|
[880] | 2623 | mask: an optional mask retreived from scantable
|
---|
| 2624 | order: the order of the polynomial (default is 0)
|
---|
[2012] | 2625 | edge: an optional number of channel to drop at
|
---|
| 2626 | the edge of spectrum. If only one value is
|
---|
| 2627 | specified, the same number will be dropped
|
---|
| 2628 | from both sides of the spectrum. Default
|
---|
| 2629 | is to keep all channels. Nested tuples
|
---|
| 2630 | represent individual edge selection for
|
---|
| 2631 | different IFs (a number of spectral channels
|
---|
| 2632 | can be different)
|
---|
| 2633 | threshold: the threshold used by line finder. It is
|
---|
| 2634 | better to keep it large as only strong lines
|
---|
| 2635 | affect the baseline solution.
|
---|
[1280] | 2636 | chan_avg_limit:
|
---|
[2012] | 2637 | a maximum number of consequtive spectral
|
---|
| 2638 | channels to average during the search of
|
---|
| 2639 | weak and broad lines. The default is no
|
---|
| 2640 | averaging (and no search for weak lines).
|
---|
| 2641 | If such lines can affect the fitted baseline
|
---|
| 2642 | (e.g. a high order polynomial is fitted),
|
---|
| 2643 | increase this parameter (usually values up
|
---|
| 2644 | to 8 are reasonable). Most users of this
|
---|
| 2645 | method should find the default value sufficient.
|
---|
[1061] | 2646 | plot: plot the fit and the residual. In this each
|
---|
| 2647 | indivual fit has to be approved, by typing 'y'
|
---|
| 2648 | or 'n'
|
---|
[2012] | 2649 | outlog: Output the coefficients of the best-fit
|
---|
| 2650 | function to logger (default is False)
|
---|
| 2651 | blfile: Name of a text file in which the best-fit
|
---|
| 2652 | parameter values to be written
|
---|
| 2653 | (default is "": no file/logger output)
|
---|
[1846] | 2654 |
|
---|
[2012] | 2655 | Example:
|
---|
| 2656 | bscan = scan.auto_poly_baseline(order=7, insitu=False)
|
---|
| 2657 | """
|
---|
[880] | 2658 |
|
---|
[2012] | 2659 | varlist = vars()
|
---|
[1846] | 2660 |
|
---|
[2012] | 2661 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2662 | if insitu:
|
---|
| 2663 | workscan = self
|
---|
| 2664 | else:
|
---|
| 2665 | workscan = self.copy()
|
---|
[1846] | 2666 |
|
---|
[2012] | 2667 | nchan = workscan.nchan()
|
---|
| 2668 |
|
---|
| 2669 | if mask is None: mask = [True for i in xrange(nchan)]
|
---|
| 2670 | if order is None: order = 0
|
---|
| 2671 | if edge is None: edge = (0, 0)
|
---|
| 2672 | if threshold is None: threshold = 3
|
---|
| 2673 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
| 2674 | if plot is None: plot = False
|
---|
| 2675 | if outlog is None: outlog = False
|
---|
| 2676 | if blfile is None: blfile = ""
|
---|
[1846] | 2677 |
|
---|
[2012] | 2678 | outblfile = (blfile != "") and os.path.exists(os.path.expanduser(os.path.expandvars(blfile)))
|
---|
| 2679 |
|
---|
[880] | 2680 | from asap.asaplinefind import linefinder
|
---|
| 2681 | from asap import _is_sequence_or_number as _is_valid
|
---|
| 2682 |
|
---|
[2012] | 2683 | if not (isinstance(edge, list) or isinstance(edge, tuple)): edge = [ edge ]
|
---|
[1118] | 2684 | individualedge = False;
|
---|
[2012] | 2685 | if len(edge) > 1: individualedge = isinstance(edge[0], list) or isinstance(edge[0], tuple)
|
---|
[907] | 2686 |
|
---|
[1118] | 2687 | if individualedge:
|
---|
| 2688 | for edgepar in edge:
|
---|
| 2689 | if not _is_valid(edgepar, int):
|
---|
| 2690 | raise ValueError, "Each element of the 'edge' tuple has \
|
---|
| 2691 | to be a pair of integers or an integer."
|
---|
[907] | 2692 | else:
|
---|
[2012] | 2693 | if not _is_valid(edge, int):
|
---|
| 2694 | raise ValueError, "Parameter 'edge' has to be an integer or a \
|
---|
| 2695 | pair of integers specified as a tuple. \
|
---|
| 2696 | Nested tuples are allowed \
|
---|
| 2697 | to make individual selection for different IFs."
|
---|
[880] | 2698 |
|
---|
[2012] | 2699 | if len(edge) > 1:
|
---|
| 2700 | curedge = edge
|
---|
| 2701 | else:
|
---|
| 2702 | curedge = edge + edge
|
---|
[1907] | 2703 |
|
---|
[2012] | 2704 | try:
|
---|
| 2705 | rows = xrange(workscan.nrow())
|
---|
| 2706 |
|
---|
| 2707 | #if len(rows) > 0: workscan._init_blinfo()
|
---|
[880] | 2708 |
|
---|
[2012] | 2709 | if plot:
|
---|
| 2710 | if outblfile: blf = open(blfile, "a")
|
---|
| 2711 |
|
---|
| 2712 | fl = linefinder()
|
---|
| 2713 | fl.set_options(threshold=threshold,avg_limit=chan_avg_limit)
|
---|
| 2714 | fl.set_scan(workscan)
|
---|
| 2715 | f = fitter()
|
---|
| 2716 | f.set_function(lpoly=order)
|
---|
[880] | 2717 |
|
---|
[2012] | 2718 | for r in rows:
|
---|
| 2719 | if individualedge:
|
---|
| 2720 | if len(edge) <= workscan.getif(r):
|
---|
| 2721 | raise RuntimeError, "Number of edge elements appear to " \
|
---|
| 2722 | "be less than the number of IFs"
|
---|
| 2723 | else:
|
---|
| 2724 | curedge = edge[workscan.getif(r)]
|
---|
[907] | 2725 |
|
---|
[2012] | 2726 | fl.find_lines(r, mask_and(mask, workscan._getmask(r)), curedge) # (CAS-1434)
|
---|
| 2727 |
|
---|
| 2728 | f.x = workscan._getabcissa(r)
|
---|
| 2729 | f.y = workscan._getspectrum(r)
|
---|
| 2730 | f.mask = fl.get_mask()
|
---|
| 2731 | f.data = None
|
---|
| 2732 | f.fit()
|
---|
| 2733 |
|
---|
| 2734 | f.plot(residual=True)
|
---|
| 2735 | accept_fit = raw_input("Accept fit ( [y]/n ): ")
|
---|
| 2736 | if accept_fit.upper() == "N":
|
---|
| 2737 | #workscan._append_blinfo(None, None, None)
|
---|
| 2738 | continue
|
---|
| 2739 |
|
---|
| 2740 | blpars = f.get_parameters()
|
---|
| 2741 | masklist = workscan.get_masklist(f.mask, row=r, silent=True)
|
---|
| 2742 | #workscan._append_blinfo(blpars, masklist, f.mask)
|
---|
| 2743 | workscan._setspectrum(f.fitter.getresidual(), r)
|
---|
| 2744 |
|
---|
| 2745 | if outblfile:
|
---|
| 2746 | rms = workscan.get_rms(f.mask, r)
|
---|
| 2747 | dataout = workscan.format_blparams_row(blpars["params"], blpars["fixed"], rms, str(masklist), r, True)
|
---|
| 2748 | blf.write(dataout)
|
---|
| 2749 |
|
---|
| 2750 | f._p.unmap()
|
---|
| 2751 | f._p = None
|
---|
| 2752 |
|
---|
| 2753 | if outblfile: blf.close()
|
---|
| 2754 |
|
---|
| 2755 | else:
|
---|
| 2756 | if individualedge:
|
---|
| 2757 | curedge = []
|
---|
| 2758 | for i in xrange(len(edge)):
|
---|
| 2759 | curedge += edge[i]
|
---|
| 2760 |
|
---|
| 2761 | workscan._auto_poly_baseline(mask, order, curedge, threshold, chan_avg_limit, outlog, blfile)
|
---|
| 2762 |
|
---|
| 2763 | workscan._add_history("auto_poly_baseline", varlist)
|
---|
| 2764 |
|
---|
| 2765 | if insitu:
|
---|
| 2766 | self._assign(workscan)
|
---|
| 2767 | else:
|
---|
| 2768 | return workscan
|
---|
| 2769 |
|
---|
| 2770 | except RuntimeError, e:
|
---|
| 2771 | msg = "The fit failed, possibly because it didn't converge."
|
---|
| 2772 | if rcParams["verbose"]:
|
---|
| 2773 | asaplog.push(str(e))
|
---|
| 2774 | asaplog.push(str(msg))
|
---|
| 2775 | return
|
---|
| 2776 | else:
|
---|
| 2777 | raise RuntimeError(str(e)+'\n'+msg)
|
---|
| 2778 |
|
---|
| 2779 |
|
---|
| 2780 | ### OBSOLETE ##################################################################
|
---|
| 2781 | @asaplog_post_dec
|
---|
| 2782 | def old_poly_baseline(self, mask=None, order=0, plot=False, uselin=False, insitu=None, rows=None):
|
---|
| 2783 | """
|
---|
| 2784 | Return a scan which has been baselined (all rows) by a polynomial.
|
---|
[1907] | 2785 |
|
---|
[2012] | 2786 | Parameters:
|
---|
| 2787 |
|
---|
| 2788 | mask: an optional mask
|
---|
| 2789 |
|
---|
| 2790 | order: the order of the polynomial (default is 0)
|
---|
| 2791 |
|
---|
| 2792 | plot: plot the fit and the residual. In this each
|
---|
| 2793 | indivual fit has to be approved, by typing 'y'
|
---|
| 2794 | or 'n'
|
---|
| 2795 |
|
---|
| 2796 | uselin: use linear polynomial fit
|
---|
| 2797 |
|
---|
| 2798 | insitu: if False a new scantable is returned.
|
---|
| 2799 | Otherwise, the scaling is done in-situ
|
---|
| 2800 | The default is taken from .asaprc (False)
|
---|
| 2801 |
|
---|
| 2802 | rows: row numbers of spectra to be processed.
|
---|
| 2803 | (default is None: for all rows)
|
---|
[1907] | 2804 |
|
---|
[2012] | 2805 | Example:
|
---|
| 2806 | # return a scan baselined by a third order polynomial,
|
---|
| 2807 | # not using a mask
|
---|
| 2808 | bscan = scan.poly_baseline(order=3)
|
---|
[907] | 2809 |
|
---|
[2012] | 2810 | """
|
---|
| 2811 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 2812 | if not insitu:
|
---|
| 2813 | workscan = self.copy()
|
---|
| 2814 | else:
|
---|
| 2815 | workscan = self
|
---|
| 2816 | varlist = vars()
|
---|
| 2817 | if mask is None:
|
---|
| 2818 | mask = [True for i in xrange(self.nchan())]
|
---|
[919] | 2819 |
|
---|
[2012] | 2820 | try:
|
---|
| 2821 | f = fitter()
|
---|
| 2822 | if uselin:
|
---|
| 2823 | f.set_function(lpoly=order)
|
---|
| 2824 | else:
|
---|
| 2825 | f.set_function(poly=order)
|
---|
[1819] | 2826 |
|
---|
[2012] | 2827 | if rows == None:
|
---|
| 2828 | rows = xrange(workscan.nrow())
|
---|
| 2829 | elif isinstance(rows, int):
|
---|
| 2830 | rows = [ rows ]
|
---|
[1907] | 2831 |
|
---|
[2012] | 2832 | if len(rows) > 0:
|
---|
| 2833 | self.blpars = []
|
---|
| 2834 | self.masklists = []
|
---|
| 2835 | self.actualmask = []
|
---|
| 2836 |
|
---|
| 2837 | for r in rows:
|
---|
| 2838 | f.x = workscan._getabcissa(r)
|
---|
| 2839 | f.y = workscan._getspectrum(r)
|
---|
| 2840 | f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
|
---|
| 2841 | f.data = None
|
---|
| 2842 | f.fit()
|
---|
| 2843 | if plot:
|
---|
| 2844 | f.plot(residual=True)
|
---|
| 2845 | x = raw_input("Accept fit ( [y]/n ): ")
|
---|
| 2846 | if x.upper() == 'N':
|
---|
| 2847 | self.blpars.append(None)
|
---|
| 2848 | self.masklists.append(None)
|
---|
| 2849 | self.actualmask.append(None)
|
---|
| 2850 | continue
|
---|
| 2851 | workscan._setspectrum(f.fitter.getresidual(), r)
|
---|
| 2852 | self.blpars.append(f.get_parameters())
|
---|
| 2853 | self.masklists.append(workscan.get_masklist(f.mask, row=r, silent=True))
|
---|
| 2854 | self.actualmask.append(f.mask)
|
---|
[1819] | 2855 |
|
---|
[1061] | 2856 | if plot:
|
---|
[2012] | 2857 | f._p.unmap()
|
---|
| 2858 | f._p = None
|
---|
| 2859 | workscan._add_history("poly_baseline", varlist)
|
---|
| 2860 | if insitu:
|
---|
| 2861 | self._assign(workscan)
|
---|
| 2862 | else:
|
---|
| 2863 | return workscan
|
---|
| 2864 | except RuntimeError:
|
---|
| 2865 | msg = "The fit failed, possibly because it didn't converge."
|
---|
| 2866 | raise RuntimeError(msg)
|
---|
[1819] | 2867 |
|
---|
[2012] | 2868 | def _init_blinfo(self):
|
---|
| 2869 | """\
|
---|
| 2870 | Initialise the following three auxiliary members:
|
---|
| 2871 | blpars : parameters of the best-fit baseline,
|
---|
| 2872 | masklists : mask data (edge positions of masked channels) and
|
---|
| 2873 | actualmask : mask data (in boolean list),
|
---|
| 2874 | to keep for use later (including output to logger/text files).
|
---|
| 2875 | Used by poly_baseline() and auto_poly_baseline() in case of
|
---|
| 2876 | 'plot=True'.
|
---|
| 2877 | """
|
---|
| 2878 | self.blpars = []
|
---|
| 2879 | self.masklists = []
|
---|
| 2880 | self.actualmask = []
|
---|
| 2881 | return
|
---|
[880] | 2882 |
|
---|
[2012] | 2883 | def _append_blinfo(self, data_blpars, data_masklists, data_actualmask):
|
---|
| 2884 | """\
|
---|
| 2885 | Append baseline-fitting related info to blpars, masklist and
|
---|
| 2886 | actualmask.
|
---|
| 2887 | """
|
---|
| 2888 | self.blpars.append(data_blpars)
|
---|
| 2889 | self.masklists.append(data_masklists)
|
---|
| 2890 | self.actualmask.append(data_actualmask)
|
---|
| 2891 | return
|
---|
| 2892 |
|
---|
[1862] | 2893 | @asaplog_post_dec
|
---|
[914] | 2894 | def rotate_linpolphase(self, angle):
|
---|
[1846] | 2895 | """\
|
---|
[914] | 2896 | Rotate the phase of the complex polarization O=Q+iU correlation.
|
---|
| 2897 | This is always done in situ in the raw data. So if you call this
|
---|
| 2898 | function more than once then each call rotates the phase further.
|
---|
[1846] | 2899 |
|
---|
[914] | 2900 | Parameters:
|
---|
[1846] | 2901 |
|
---|
[914] | 2902 | angle: The angle (degrees) to rotate (add) by.
|
---|
[1846] | 2903 |
|
---|
| 2904 | Example::
|
---|
| 2905 |
|
---|
[914] | 2906 | scan.rotate_linpolphase(2.3)
|
---|
[1846] | 2907 |
|
---|
[914] | 2908 | """
|
---|
| 2909 | varlist = vars()
|
---|
[936] | 2910 | self._math._rotate_linpolphase(self, angle)
|
---|
[914] | 2911 | self._add_history("rotate_linpolphase", varlist)
|
---|
| 2912 | return
|
---|
[710] | 2913 |
|
---|
[1862] | 2914 | @asaplog_post_dec
|
---|
[914] | 2915 | def rotate_xyphase(self, angle):
|
---|
[1846] | 2916 | """\
|
---|
[914] | 2917 | Rotate the phase of the XY correlation. This is always done in situ
|
---|
| 2918 | in the data. So if you call this function more than once
|
---|
| 2919 | then each call rotates the phase further.
|
---|
[1846] | 2920 |
|
---|
[914] | 2921 | Parameters:
|
---|
[1846] | 2922 |
|
---|
[914] | 2923 | angle: The angle (degrees) to rotate (add) by.
|
---|
[1846] | 2924 |
|
---|
| 2925 | Example::
|
---|
| 2926 |
|
---|
[914] | 2927 | scan.rotate_xyphase(2.3)
|
---|
[1846] | 2928 |
|
---|
[914] | 2929 | """
|
---|
| 2930 | varlist = vars()
|
---|
[936] | 2931 | self._math._rotate_xyphase(self, angle)
|
---|
[914] | 2932 | self._add_history("rotate_xyphase", varlist)
|
---|
| 2933 | return
|
---|
| 2934 |
|
---|
[1862] | 2935 | @asaplog_post_dec
|
---|
[914] | 2936 | def swap_linears(self):
|
---|
[1846] | 2937 | """\
|
---|
[1573] | 2938 | Swap the linear polarisations XX and YY, or better the first two
|
---|
[1348] | 2939 | polarisations as this also works for ciculars.
|
---|
[914] | 2940 | """
|
---|
| 2941 | varlist = vars()
|
---|
[936] | 2942 | self._math._swap_linears(self)
|
---|
[914] | 2943 | self._add_history("swap_linears", varlist)
|
---|
| 2944 | return
|
---|
| 2945 |
|
---|
[1862] | 2946 | @asaplog_post_dec
|
---|
[914] | 2947 | def invert_phase(self):
|
---|
[1846] | 2948 | """\
|
---|
[914] | 2949 | Invert the phase of the complex polarisation
|
---|
| 2950 | """
|
---|
| 2951 | varlist = vars()
|
---|
[936] | 2952 | self._math._invert_phase(self)
|
---|
[914] | 2953 | self._add_history("invert_phase", varlist)
|
---|
| 2954 | return
|
---|
| 2955 |
|
---|
[1862] | 2956 | @asaplog_post_dec
|
---|
[876] | 2957 | def add(self, offset, insitu=None):
|
---|
[1846] | 2958 | """\
|
---|
[513] | 2959 | Return a scan where all spectra have the offset added
|
---|
[1846] | 2960 |
|
---|
[513] | 2961 | Parameters:
|
---|
[1846] | 2962 |
|
---|
[513] | 2963 | offset: the offset
|
---|
[1855] | 2964 |
|
---|
[513] | 2965 | insitu: if False a new scantable is returned.
|
---|
| 2966 | Otherwise, the scaling is done in-situ
|
---|
| 2967 | The default is taken from .asaprc (False)
|
---|
[1846] | 2968 |
|
---|
[513] | 2969 | """
|
---|
| 2970 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 2971 | self._math._setinsitu(insitu)
|
---|
[513] | 2972 | varlist = vars()
|
---|
[876] | 2973 | s = scantable(self._math._unaryop(self, offset, "ADD", False))
|
---|
[1118] | 2974 | s._add_history("add", varlist)
|
---|
[876] | 2975 | if insitu:
|
---|
| 2976 | self._assign(s)
|
---|
| 2977 | else:
|
---|
[513] | 2978 | return s
|
---|
| 2979 |
|
---|
[1862] | 2980 | @asaplog_post_dec
|
---|
[1308] | 2981 | def scale(self, factor, tsys=True, insitu=None):
|
---|
[1846] | 2982 | """\
|
---|
| 2983 |
|
---|
[1938] | 2984 | Return a scan where all spectra are scaled by the given 'factor'
|
---|
[1846] | 2985 |
|
---|
[513] | 2986 | Parameters:
|
---|
[1846] | 2987 |
|
---|
[1819] | 2988 | factor: the scaling factor (float or 1D float list)
|
---|
[1855] | 2989 |
|
---|
[513] | 2990 | insitu: if False a new scantable is returned.
|
---|
| 2991 | Otherwise, the scaling is done in-situ
|
---|
| 2992 | The default is taken from .asaprc (False)
|
---|
[1855] | 2993 |
|
---|
[513] | 2994 | tsys: if True (default) then apply the operation to Tsys
|
---|
| 2995 | as well as the data
|
---|
[1846] | 2996 |
|
---|
[513] | 2997 | """
|
---|
| 2998 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 2999 | self._math._setinsitu(insitu)
|
---|
[513] | 3000 | varlist = vars()
|
---|
[1819] | 3001 | s = None
|
---|
| 3002 | import numpy
|
---|
| 3003 | if isinstance(factor, list) or isinstance(factor, numpy.ndarray):
|
---|
| 3004 | if isinstance(factor[0], list) or isinstance(factor[0], numpy.ndarray):
|
---|
| 3005 | from asapmath import _array2dOp
|
---|
| 3006 | s = _array2dOp( self.copy(), factor, "MUL", tsys )
|
---|
| 3007 | else:
|
---|
| 3008 | s = scantable( self._math._arrayop( self.copy(), factor, "MUL", tsys ) )
|
---|
| 3009 | else:
|
---|
| 3010 | s = scantable(self._math._unaryop(self.copy(), factor, "MUL", tsys))
|
---|
[1118] | 3011 | s._add_history("scale", varlist)
|
---|
[876] | 3012 | if insitu:
|
---|
| 3013 | self._assign(s)
|
---|
| 3014 | else:
|
---|
[513] | 3015 | return s
|
---|
| 3016 |
|
---|
[1504] | 3017 | def set_sourcetype(self, match, matchtype="pattern",
|
---|
| 3018 | sourcetype="reference"):
|
---|
[1846] | 3019 | """\
|
---|
[1502] | 3020 | Set the type of the source to be an source or reference scan
|
---|
[1846] | 3021 | using the provided pattern.
|
---|
| 3022 |
|
---|
[1502] | 3023 | Parameters:
|
---|
[1846] | 3024 |
|
---|
[1504] | 3025 | match: a Unix style pattern, regular expression or selector
|
---|
[1855] | 3026 |
|
---|
[1504] | 3027 | matchtype: 'pattern' (default) UNIX style pattern or
|
---|
| 3028 | 'regex' regular expression
|
---|
[1855] | 3029 |
|
---|
[1502] | 3030 | sourcetype: the type of the source to use (source/reference)
|
---|
[1846] | 3031 |
|
---|
[1502] | 3032 | """
|
---|
| 3033 | varlist = vars()
|
---|
| 3034 | basesel = self.get_selection()
|
---|
| 3035 | stype = -1
|
---|
| 3036 | if sourcetype.lower().startswith("r"):
|
---|
| 3037 | stype = 1
|
---|
| 3038 | elif sourcetype.lower().startswith("s"):
|
---|
| 3039 | stype = 0
|
---|
[1504] | 3040 | else:
|
---|
[1502] | 3041 | raise ValueError("Illegal sourcetype use s(ource) or r(eference)")
|
---|
[1504] | 3042 | if matchtype.lower().startswith("p"):
|
---|
| 3043 | matchtype = "pattern"
|
---|
| 3044 | elif matchtype.lower().startswith("r"):
|
---|
| 3045 | matchtype = "regex"
|
---|
| 3046 | else:
|
---|
| 3047 | raise ValueError("Illegal matchtype, use p(attern) or r(egex)")
|
---|
[1502] | 3048 | sel = selector()
|
---|
| 3049 | if isinstance(match, selector):
|
---|
| 3050 | sel = match
|
---|
| 3051 | else:
|
---|
[1504] | 3052 | sel.set_query("SRCNAME == %s('%s')" % (matchtype, match))
|
---|
[1502] | 3053 | self.set_selection(basesel+sel)
|
---|
| 3054 | self._setsourcetype(stype)
|
---|
| 3055 | self.set_selection(basesel)
|
---|
[1573] | 3056 | self._add_history("set_sourcetype", varlist)
|
---|
[1502] | 3057 |
|
---|
[1862] | 3058 | @asaplog_post_dec
|
---|
[1857] | 3059 | @preserve_selection
|
---|
[1819] | 3060 | def auto_quotient(self, preserve=True, mode='paired', verify=False):
|
---|
[1846] | 3061 | """\
|
---|
[670] | 3062 | This function allows to build quotients automatically.
|
---|
[1819] | 3063 | It assumes the observation to have the same number of
|
---|
[670] | 3064 | "ons" and "offs"
|
---|
[1846] | 3065 |
|
---|
[670] | 3066 | Parameters:
|
---|
[1846] | 3067 |
|
---|
[710] | 3068 | preserve: you can preserve (default) the continuum or
|
---|
| 3069 | remove it. The equations used are
|
---|
[1857] | 3070 |
|
---|
[670] | 3071 | preserve: Output = Toff * (on/off) - Toff
|
---|
[1857] | 3072 |
|
---|
[1070] | 3073 | remove: Output = Toff * (on/off) - Ton
|
---|
[1855] | 3074 |
|
---|
[1573] | 3075 | mode: the on/off detection mode
|
---|
[1348] | 3076 | 'paired' (default)
|
---|
| 3077 | identifies 'off' scans by the
|
---|
| 3078 | trailing '_R' (Mopra/Parkes) or
|
---|
| 3079 | '_e'/'_w' (Tid) and matches
|
---|
| 3080 | on/off pairs from the observing pattern
|
---|
[1502] | 3081 | 'time'
|
---|
| 3082 | finds the closest off in time
|
---|
[1348] | 3083 |
|
---|
[1857] | 3084 | .. todo:: verify argument is not implemented
|
---|
| 3085 |
|
---|
[670] | 3086 | """
|
---|
[1857] | 3087 | varlist = vars()
|
---|
[1348] | 3088 | modes = ["time", "paired"]
|
---|
[670] | 3089 | if not mode in modes:
|
---|
[876] | 3090 | msg = "please provide valid mode. Valid modes are %s" % (modes)
|
---|
| 3091 | raise ValueError(msg)
|
---|
[1348] | 3092 | s = None
|
---|
| 3093 | if mode.lower() == "paired":
|
---|
[1857] | 3094 | sel = self.get_selection()
|
---|
[1875] | 3095 | sel.set_query("SRCTYPE==psoff")
|
---|
[1356] | 3096 | self.set_selection(sel)
|
---|
[1348] | 3097 | offs = self.copy()
|
---|
[1875] | 3098 | sel.set_query("SRCTYPE==pson")
|
---|
[1356] | 3099 | self.set_selection(sel)
|
---|
[1348] | 3100 | ons = self.copy()
|
---|
| 3101 | s = scantable(self._math._quotient(ons, offs, preserve))
|
---|
| 3102 | elif mode.lower() == "time":
|
---|
| 3103 | s = scantable(self._math._auto_quotient(self, mode, preserve))
|
---|
[1118] | 3104 | s._add_history("auto_quotient", varlist)
|
---|
[876] | 3105 | return s
|
---|
[710] | 3106 |
|
---|
[1862] | 3107 | @asaplog_post_dec
|
---|
[1145] | 3108 | def mx_quotient(self, mask = None, weight='median', preserve=True):
|
---|
[1846] | 3109 | """\
|
---|
[1143] | 3110 | Form a quotient using "off" beams when observing in "MX" mode.
|
---|
[1846] | 3111 |
|
---|
[1143] | 3112 | Parameters:
|
---|
[1846] | 3113 |
|
---|
[1145] | 3114 | mask: an optional mask to be used when weight == 'stddev'
|
---|
[1855] | 3115 |
|
---|
[1143] | 3116 | weight: How to average the off beams. Default is 'median'.
|
---|
[1855] | 3117 |
|
---|
[1145] | 3118 | preserve: you can preserve (default) the continuum or
|
---|
[1855] | 3119 | remove it. The equations used are:
|
---|
[1846] | 3120 |
|
---|
[1855] | 3121 | preserve: Output = Toff * (on/off) - Toff
|
---|
| 3122 |
|
---|
| 3123 | remove: Output = Toff * (on/off) - Ton
|
---|
| 3124 |
|
---|
[1217] | 3125 | """
|
---|
[1593] | 3126 | mask = mask or ()
|
---|
[1141] | 3127 | varlist = vars()
|
---|
| 3128 | on = scantable(self._math._mx_extract(self, 'on'))
|
---|
[1143] | 3129 | preoff = scantable(self._math._mx_extract(self, 'off'))
|
---|
| 3130 | off = preoff.average_time(mask=mask, weight=weight, scanav=False)
|
---|
[1217] | 3131 | from asapmath import quotient
|
---|
[1145] | 3132 | q = quotient(on, off, preserve)
|
---|
[1143] | 3133 | q._add_history("mx_quotient", varlist)
|
---|
[1217] | 3134 | return q
|
---|
[513] | 3135 |
|
---|
[1862] | 3136 | @asaplog_post_dec
|
---|
[718] | 3137 | def freq_switch(self, insitu=None):
|
---|
[1846] | 3138 | """\
|
---|
[718] | 3139 | Apply frequency switching to the data.
|
---|
[1846] | 3140 |
|
---|
[718] | 3141 | Parameters:
|
---|
[1846] | 3142 |
|
---|
[718] | 3143 | insitu: if False a new scantable is returned.
|
---|
| 3144 | Otherwise, the swictching is done in-situ
|
---|
| 3145 | The default is taken from .asaprc (False)
|
---|
[1846] | 3146 |
|
---|
[718] | 3147 | """
|
---|
| 3148 | if insitu is None: insitu = rcParams['insitu']
|
---|
[876] | 3149 | self._math._setinsitu(insitu)
|
---|
[718] | 3150 | varlist = vars()
|
---|
[876] | 3151 | s = scantable(self._math._freqswitch(self))
|
---|
[1118] | 3152 | s._add_history("freq_switch", varlist)
|
---|
[1856] | 3153 | if insitu:
|
---|
| 3154 | self._assign(s)
|
---|
| 3155 | else:
|
---|
| 3156 | return s
|
---|
[718] | 3157 |
|
---|
[1862] | 3158 | @asaplog_post_dec
|
---|
[780] | 3159 | def recalc_azel(self):
|
---|
[1846] | 3160 | """Recalculate the azimuth and elevation for each position."""
|
---|
[780] | 3161 | varlist = vars()
|
---|
[876] | 3162 | self._recalcazel()
|
---|
[780] | 3163 | self._add_history("recalc_azel", varlist)
|
---|
| 3164 | return
|
---|
| 3165 |
|
---|
[1862] | 3166 | @asaplog_post_dec
|
---|
[513] | 3167 | def __add__(self, other):
|
---|
| 3168 | varlist = vars()
|
---|
| 3169 | s = None
|
---|
| 3170 | if isinstance(other, scantable):
|
---|
[1573] | 3171 | s = scantable(self._math._binaryop(self, other, "ADD"))
|
---|
[513] | 3172 | elif isinstance(other, float):
|
---|
[876] | 3173 | s = scantable(self._math._unaryop(self, other, "ADD", False))
|
---|
[513] | 3174 | else:
|
---|
[718] | 3175 | raise TypeError("Other input is not a scantable or float value")
|
---|
[513] | 3176 | s._add_history("operator +", varlist)
|
---|
| 3177 | return s
|
---|
| 3178 |
|
---|
[1862] | 3179 | @asaplog_post_dec
|
---|
[513] | 3180 | def __sub__(self, other):
|
---|
| 3181 | """
|
---|
| 3182 | implicit on all axes and on Tsys
|
---|
| 3183 | """
|
---|
| 3184 | varlist = vars()
|
---|
| 3185 | s = None
|
---|
| 3186 | if isinstance(other, scantable):
|
---|
[1588] | 3187 | s = scantable(self._math._binaryop(self, other, "SUB"))
|
---|
[513] | 3188 | elif isinstance(other, float):
|
---|
[876] | 3189 | s = scantable(self._math._unaryop(self, other, "SUB", False))
|
---|
[513] | 3190 | else:
|
---|
[718] | 3191 | raise TypeError("Other input is not a scantable or float value")
|
---|
[513] | 3192 | s._add_history("operator -", varlist)
|
---|
| 3193 | return s
|
---|
[710] | 3194 |
|
---|
[1862] | 3195 | @asaplog_post_dec
|
---|
[513] | 3196 | def __mul__(self, other):
|
---|
| 3197 | """
|
---|
| 3198 | implicit on all axes and on Tsys
|
---|
| 3199 | """
|
---|
| 3200 | varlist = vars()
|
---|
| 3201 | s = None
|
---|
| 3202 | if isinstance(other, scantable):
|
---|
[1588] | 3203 | s = scantable(self._math._binaryop(self, other, "MUL"))
|
---|
[513] | 3204 | elif isinstance(other, float):
|
---|
[876] | 3205 | s = scantable(self._math._unaryop(self, other, "MUL", False))
|
---|
[513] | 3206 | else:
|
---|
[718] | 3207 | raise TypeError("Other input is not a scantable or float value")
|
---|
[513] | 3208 | s._add_history("operator *", varlist)
|
---|
| 3209 | return s
|
---|
| 3210 |
|
---|
[710] | 3211 |
|
---|
[1862] | 3212 | @asaplog_post_dec
|
---|
[513] | 3213 | def __div__(self, other):
|
---|
| 3214 | """
|
---|
| 3215 | implicit on all axes and on Tsys
|
---|
| 3216 | """
|
---|
| 3217 | varlist = vars()
|
---|
| 3218 | s = None
|
---|
| 3219 | if isinstance(other, scantable):
|
---|
[1589] | 3220 | s = scantable(self._math._binaryop(self, other, "DIV"))
|
---|
[513] | 3221 | elif isinstance(other, float):
|
---|
| 3222 | if other == 0.0:
|
---|
[718] | 3223 | raise ZeroDivisionError("Dividing by zero is not recommended")
|
---|
[876] | 3224 | s = scantable(self._math._unaryop(self, other, "DIV", False))
|
---|
[513] | 3225 | else:
|
---|
[718] | 3226 | raise TypeError("Other input is not a scantable or float value")
|
---|
[513] | 3227 | s._add_history("operator /", varlist)
|
---|
| 3228 | return s
|
---|
| 3229 |
|
---|
[1862] | 3230 | @asaplog_post_dec
|
---|
[530] | 3231 | def get_fit(self, row=0):
|
---|
[1846] | 3232 | """\
|
---|
[530] | 3233 | Print or return the stored fits for a row in the scantable
|
---|
[1846] | 3234 |
|
---|
[530] | 3235 | Parameters:
|
---|
[1846] | 3236 |
|
---|
[530] | 3237 | row: the row which the fit has been applied to.
|
---|
[1846] | 3238 |
|
---|
[530] | 3239 | """
|
---|
| 3240 | if row > self.nrow():
|
---|
| 3241 | return
|
---|
[976] | 3242 | from asap.asapfit import asapfit
|
---|
[530] | 3243 | fit = asapfit(self._getfit(row))
|
---|
[1859] | 3244 | asaplog.push( '%s' %(fit) )
|
---|
| 3245 | return fit.as_dict()
|
---|
[530] | 3246 |
|
---|
[1483] | 3247 | def flag_nans(self):
|
---|
[1846] | 3248 | """\
|
---|
[1483] | 3249 | Utility function to flag NaN values in the scantable.
|
---|
| 3250 | """
|
---|
| 3251 | import numpy
|
---|
| 3252 | basesel = self.get_selection()
|
---|
| 3253 | for i in range(self.nrow()):
|
---|
[1589] | 3254 | sel = self.get_row_selector(i)
|
---|
| 3255 | self.set_selection(basesel+sel)
|
---|
[1483] | 3256 | nans = numpy.isnan(self._getspectrum(0))
|
---|
| 3257 | if numpy.any(nans):
|
---|
| 3258 | bnans = [ bool(v) for v in nans]
|
---|
| 3259 | self.flag(bnans)
|
---|
| 3260 | self.set_selection(basesel)
|
---|
| 3261 |
|
---|
[1588] | 3262 | def get_row_selector(self, rowno):
|
---|
[1992] | 3263 | #return selector(beams=self.getbeam(rowno),
|
---|
| 3264 | # ifs=self.getif(rowno),
|
---|
| 3265 | # pols=self.getpol(rowno),
|
---|
| 3266 | # scans=self.getscan(rowno),
|
---|
| 3267 | # cycles=self.getcycle(rowno))
|
---|
| 3268 | return selector(rows=[rowno])
|
---|
[1573] | 3269 |
|
---|
[484] | 3270 | def _add_history(self, funcname, parameters):
|
---|
[1435] | 3271 | if not rcParams['scantable.history']:
|
---|
| 3272 | return
|
---|
[484] | 3273 | # create date
|
---|
| 3274 | sep = "##"
|
---|
| 3275 | from datetime import datetime
|
---|
| 3276 | dstr = datetime.now().strftime('%Y/%m/%d %H:%M:%S')
|
---|
| 3277 | hist = dstr+sep
|
---|
| 3278 | hist += funcname+sep#cdate+sep
|
---|
| 3279 | if parameters.has_key('self'): del parameters['self']
|
---|
[1118] | 3280 | for k, v in parameters.iteritems():
|
---|
[484] | 3281 | if type(v) is dict:
|
---|
[1118] | 3282 | for k2, v2 in v.iteritems():
|
---|
[484] | 3283 | hist += k2
|
---|
| 3284 | hist += "="
|
---|
[1118] | 3285 | if isinstance(v2, scantable):
|
---|
[484] | 3286 | hist += 'scantable'
|
---|
| 3287 | elif k2 == 'mask':
|
---|
[1118] | 3288 | if isinstance(v2, list) or isinstance(v2, tuple):
|
---|
[513] | 3289 | hist += str(self._zip_mask(v2))
|
---|
| 3290 | else:
|
---|
| 3291 | hist += str(v2)
|
---|
[484] | 3292 | else:
|
---|
[513] | 3293 | hist += str(v2)
|
---|
[484] | 3294 | else:
|
---|
| 3295 | hist += k
|
---|
| 3296 | hist += "="
|
---|
[1118] | 3297 | if isinstance(v, scantable):
|
---|
[484] | 3298 | hist += 'scantable'
|
---|
| 3299 | elif k == 'mask':
|
---|
[1118] | 3300 | if isinstance(v, list) or isinstance(v, tuple):
|
---|
[513] | 3301 | hist += str(self._zip_mask(v))
|
---|
| 3302 | else:
|
---|
| 3303 | hist += str(v)
|
---|
[484] | 3304 | else:
|
---|
| 3305 | hist += str(v)
|
---|
| 3306 | hist += sep
|
---|
| 3307 | hist = hist[:-2] # remove trailing '##'
|
---|
| 3308 | self._addhistory(hist)
|
---|
| 3309 |
|
---|
[710] | 3310 |
|
---|
[484] | 3311 | def _zip_mask(self, mask):
|
---|
| 3312 | mask = list(mask)
|
---|
| 3313 | i = 0
|
---|
| 3314 | segments = []
|
---|
| 3315 | while mask[i:].count(1):
|
---|
| 3316 | i += mask[i:].index(1)
|
---|
| 3317 | if mask[i:].count(0):
|
---|
| 3318 | j = i + mask[i:].index(0)
|
---|
| 3319 | else:
|
---|
[710] | 3320 | j = len(mask)
|
---|
[1118] | 3321 | segments.append([i, j])
|
---|
[710] | 3322 | i = j
|
---|
[484] | 3323 | return segments
|
---|
[714] | 3324 |
|
---|
[626] | 3325 | def _get_ordinate_label(self):
|
---|
| 3326 | fu = "("+self.get_fluxunit()+")"
|
---|
| 3327 | import re
|
---|
| 3328 | lbl = "Intensity"
|
---|
[1118] | 3329 | if re.match(".K.", fu):
|
---|
[626] | 3330 | lbl = "Brightness Temperature "+ fu
|
---|
[1118] | 3331 | elif re.match(".Jy.", fu):
|
---|
[626] | 3332 | lbl = "Flux density "+ fu
|
---|
| 3333 | return lbl
|
---|
[710] | 3334 |
|
---|
[876] | 3335 | def _check_ifs(self):
|
---|
[1986] | 3336 | #nchans = [self.nchan(i) for i in range(self.nif(-1))]
|
---|
| 3337 | nchans = [self.nchan(i) for i in self.getifnos()]
|
---|
[2004] | 3338 | nchans = filter(lambda t: t > 0, nchans)
|
---|
[876] | 3339 | return (sum(nchans)/len(nchans) == nchans[0])
|
---|
[976] | 3340 |
|
---|
[1862] | 3341 | @asaplog_post_dec
|
---|
[1916] | 3342 | #def _fill(self, names, unit, average, getpt, antenna):
|
---|
| 3343 | def _fill(self, names, unit, average, opts={}):
|
---|
[976] | 3344 | first = True
|
---|
| 3345 | fullnames = []
|
---|
| 3346 | for name in names:
|
---|
| 3347 | name = os.path.expandvars(name)
|
---|
| 3348 | name = os.path.expanduser(name)
|
---|
| 3349 | if not os.path.exists(name):
|
---|
| 3350 | msg = "File '%s' does not exists" % (name)
|
---|
| 3351 | raise IOError(msg)
|
---|
| 3352 | fullnames.append(name)
|
---|
| 3353 | if average:
|
---|
| 3354 | asaplog.push('Auto averaging integrations')
|
---|
[1079] | 3355 | stype = int(rcParams['scantable.storage'].lower() == 'disk')
|
---|
[976] | 3356 | for name in fullnames:
|
---|
[1073] | 3357 | tbl = Scantable(stype)
|
---|
[2004] | 3358 | if is_ms( name ):
|
---|
| 3359 | r = msfiller( tbl )
|
---|
| 3360 | else:
|
---|
| 3361 | r = filler( tbl )
|
---|
| 3362 | rx = rcParams['scantable.reference']
|
---|
| 3363 | r.setreferenceexpr(rx)
|
---|
| 3364 | #r = filler(tbl)
|
---|
| 3365 | #rx = rcParams['scantable.reference']
|
---|
| 3366 | #r.setreferenceexpr(rx)
|
---|
[976] | 3367 | msg = "Importing %s..." % (name)
|
---|
[1118] | 3368 | asaplog.push(msg, False)
|
---|
[1916] | 3369 | #opts = {'ms': {'antenna' : antenna, 'getpt': getpt} }
|
---|
[1904] | 3370 | r.open(name, opts)# antenna, -1, -1, getpt)
|
---|
[1843] | 3371 | r.fill()
|
---|
[976] | 3372 | if average:
|
---|
[1118] | 3373 | tbl = self._math._average((tbl, ), (), 'NONE', 'SCAN')
|
---|
[976] | 3374 | if not first:
|
---|
| 3375 | tbl = self._math._merge([self, tbl])
|
---|
| 3376 | Scantable.__init__(self, tbl)
|
---|
[1843] | 3377 | r.close()
|
---|
[1118] | 3378 | del r, tbl
|
---|
[976] | 3379 | first = False
|
---|
[1861] | 3380 | #flush log
|
---|
| 3381 | asaplog.post()
|
---|
[976] | 3382 | if unit is not None:
|
---|
| 3383 | self.set_fluxunit(unit)
|
---|
[1824] | 3384 | if not is_casapy():
|
---|
| 3385 | self.set_freqframe(rcParams['scantable.freqframe'])
|
---|
[976] | 3386 |
|
---|
[2012] | 3387 |
|
---|
[1402] | 3388 | def __getitem__(self, key):
|
---|
| 3389 | if key < 0:
|
---|
| 3390 | key += self.nrow()
|
---|
| 3391 | if key >= self.nrow():
|
---|
| 3392 | raise IndexError("Row index out of range.")
|
---|
| 3393 | return self._getspectrum(key)
|
---|
| 3394 |
|
---|
| 3395 | def __setitem__(self, key, value):
|
---|
| 3396 | if key < 0:
|
---|
| 3397 | key += self.nrow()
|
---|
| 3398 | if key >= self.nrow():
|
---|
| 3399 | raise IndexError("Row index out of range.")
|
---|
| 3400 | if not hasattr(value, "__len__") or \
|
---|
| 3401 | len(value) > self.nchan(self.getif(key)):
|
---|
| 3402 | raise ValueError("Spectrum length doesn't match.")
|
---|
| 3403 | return self._setspectrum(value, key)
|
---|
| 3404 |
|
---|
| 3405 | def __len__(self):
|
---|
| 3406 | return self.nrow()
|
---|
| 3407 |
|
---|
| 3408 | def __iter__(self):
|
---|
| 3409 | for i in range(len(self)):
|
---|
| 3410 | yield self[i]
|
---|